
B
R

IC
S

R
S

-01-2
P

agh
&

P
agter:

O
ptim

alT
im

e-S
pace

Trade-O
ffs

forN
on-C

om
parison-B

ased
S

orting

BRICS
Basic Research in Computer Science

Optimal Time-Space Trade-Offs for
Non-Comparison-Based Sorting

Rasmus Pagh
Jakob Pagter

BRICS Report Series RS-01-2

ISSN 0909-0878 January 2001

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233662314?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright c© 2001, Rasmus Pagh & Jakob Pagter.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/01/2/



Optimal Time-Space Trade-Offs for
Non-Comparison-Based Sorting∗

Rasmus Pagh and Jakob Pagter

BRICS†

University of Aarhus

DK-8000 Aarhus C
Denmark

January, 2001

∗Partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT).

†Basic Research in Computer Science. Centre of the Danish National Research Foun-
dation.



Abstract

We study the fundamental problem of sorting n integers
of w bits on a unit-cost RAM with word size w, and in par-
ticular consider the time-space trade-off (product of time and
space in bits) for this problem. For comparison-based algo-
rithms, the time-space complexity is known to be Θ(n2). A
result of Beame shows that the lower bound also holds for non-
comparison-based algorithms, but no algorithm has met this
for time below the comparison-based Ω(n lg n) lower bound.

We show that if sorting within some time bound T̃ is pos-
sible, then time T = O(T̃ + n lg∗ n) can be achieved with
high probability using space S = O(n2/T + w), which is op-
timal. Given a deterministic priority queue using amortized
time t(n) per operation and space nO(1), we provide a de-
terministic algorithm sorting in time T = O(n (t(n) + lg∗ n))
with S = O(n2/T +w). Both results require that w ≤ n1−Ω(1).
Using existing priority queues and sorting algorithms, this im-
plies that we can deterministically sort time-space optimally
in time Θ(T ) for T ≥ n (lg lg n)2, and with high probability
for T ≥ n lg lg n.

Our results imply that recent lower bounds for deciding
element distinctness in o(n lg n) time are nearly tight.

2



1 Introduction

1.1 Motivation and results

The study of time-space trade-offs, i.e., formulae that relate the most funda-
mental complexity measures, time and space, was initiated by Cobham [15],
who studied problems like recognizing the set of palindromes on Turing ma-
chines. There are two main lines of motivation for such studies: one is the
lower bound perspective, where restricting space allows you to prove general
lower bounds for decision problems [3, 4, 9, 10, 23]; the other line is the up-
per bound perspective where one attempts to find time efficient algorithms
that are also space efficient (or vice versa). Also, upper bounds are interest-
ing for more “academic” reasons, namely to establish, in conjunction with
lower bounds, the computational complexity of fundamental problems such
as sorting.

The complexity of sorting is a classical and well-studied problem in com-
puter science. We consider the time-space trade-off of perhaps the most
basic form of this problem, namely sequential sorting of a list of w-bit inte-
gers, where w refers to the number of bits that can be processed in one time
step by the computational model. Our model of computation is a unit-cost
RAM with word size w and a standard instruction set.

As space complexity in the setting of time-space trade-offs is often sub-
linear, the models used have read-only access to the input, and write-only
access to the output. Thus, when we speak of space complexity we refer to
the space usage in working memory, that is, the amount of space used for the
data structure employed. A natural question is whether this measure of space
is realistic. As an example, consider the task of sorting a large database by
secondary key: In such an example it can be important not to overwrite the
original database sorted by primary key. A typical example is the customer
database of a bank, which will normally be sorted by account numbers. Oc-
casionally the bank might want a phone book over its customers, requiring
the database to be sorted by customer names, but rarely will it be interested
in erasing the original database used for all standard business transactions.
Other examples occur when the input is stored on a medium which is physi-
cally read-only, for example on a CD-ROM. Moreover, as argued above, the
question is interesting for mere “academic” reasons. To be consistent with
the literature in the area, we will measure space in terms of the number of
bits, and not words, in working memory.

1



For comparison-based sorting the time-space trade-off is settled, as Borodin
et al. proved that any comparison-based algorithm must have TS = Ω(n2),
and Pagter and Rauhe exhibited an algorithm realizing TS = O(n2) for all
S down to the Ω(w) space lower bound. Beame extended the lower bound
of Borodin et al. to a model encompassing any reasonable sequential model
of computation, completely revealing the asymptotic time-space complexity
of sorting for time Ω(n lg n). This lower bound also holds for the product of
the expected time and space for any randomized Las Vegas algorithm.

Below the comparison-based Ω(n lg n) time lower bound, however, the
exact time-space complexity of sorting is still unknown. The lower bound
of Beame holds down to time n, implying for instance that any linear time
sorting algorithm must use space O(n). To our knowledge, all algorithms
sorting in time o(n lg n) use space at least Ω(nw), which is at best a factor
Ω(lg n) from optimal.

In this paper we provide time-space optimal upper bounds for time in
o(n lg n). Proving a general reduction and applying it to the best known
deterministic and randomized priority queues we obtain the following time-
space trade-offs, optimal for w ≤ n1−Ω(1):

Theorem 1 Let ε > 0 be constant. For T ≥ n (lg lg n)2, sorting of n words
can be done deterministically in time O(T ), using O(n2/T + nεw) bits of
memory. For T ≥ n lg lg n, sorting of n words can be done in time O(T )
w.h.p.1, using O(n2/T + nεw) bits of memory.

Note that, since we can always resort to an O(n2) time sorting algorithm
if the time bound is exceeded, the high probability bound can also be made
to hold in the expected sense. Theorem 1 improves the space usage of all
existing o(n lg n) sorting algorithms by a factor of Ω(w). Meeting the lower
bound without a condition like w ≤ n1−Ω(1) is probably too much to hope
for—indeed, when w ≥ n one can only keep a constant number of elements
in space O(n + w), which appears to make it hard to benefit from non-
comparison-based techniques.

Our main technical contribution is the following lemma:

1“With high probability”, refers to probability greater than 1 − n−c, where c is any
constant of the user’s choice.

2



Lemma 2 Let t : N → R+ be non-decreasing, and ε > 0 a constant. Sup-
pose there is a (monotone2) priority queue supporting Insert, FindMin, and
DeleteMin in amortized time O(t(n)), using space nO(1). Then any list of n
words can, for T ≥ n t(n), be sorted in time O(T ), using O(n2 lg(T/n)(n)/T +
nεw) bits of memory3. If the time bound for the priority queue only holds
w.h.p. or in the expected sense, the same is true for the sorting time bound.

Note that lg(T/n) n = 1 for T ≥ n lg∗ n. Our reduction uses multiplication,
but for t(n) = 2Ω(lg∗ n) we can avoid multiplication if not employed by the
priority queue itself (in fact, only AC0 instructions are introduced).

Using Lemma 2 and a conversion from sorting algorithms to monotone
priority queues due to Thorup [25] (see Theorem 4 below), we provide a re-
duction showing that any Ω(n lg∗ n) time sorting algorithm can be converted
into one using minimal space for n ≥ w1+Ω(1), at no asymptotic cost in time
(with high probability for any input). For time o(n lg∗ n) there is a tiny gap
to the time-space lower bound (for any constant k, a factor of O(lg(k) n)).

Theorem 3 Let T̃ : N → R+ be non-decreasing, and ε > 0 a constant.
Suppose there is an algorithm sorting n words in time O(T̃ (n)) w.h.p. Then
a list of n words can, for T ≥ T̃ (n), be sorted in time O(T ) w.h.p., using
O(n2 lg(T/n)(n)/T + nεw) bits of memory.

The theorem extends to the case where the O(T̃ (n)) time bound only
holds when n ≤ f(w), for some real function f . In this case the resulting
space-efficient sorting algorithm also requires that n ≤ f(w). If the O(T̃ (n))
time bound holds in the expected sense, the same is true for our space-efficient
sorting algorithm.

Our algorithms are able to output any information attached to an input
element, in the sense that when outputting an element, the location in the
input is known.

As an interesting aside, our unconditional upper bounds yield the same
upper bounds on deciding element distinctness. This should be compared to
the lower bounds of Ajtai [4] and Beame et al. [9]. Ajtai showed that for time
O(n), space Ω(n) is required, and this was later generalized by Beame et al.,

2A monotone priority queue does not allow insertion of elements less than the current
minimum.

3lg(k) n denotes the logarithm of n iterated bkc times, e.g. lg(2) n = lg lg n. For k > lg∗ n

we define lg(k) n = 1.

3



reference T TS

Andersson et al. [6] n lg lg n n2+o(1)w w.h.p.
Han [21] n lg lg n lg lg lg n n2+o(1)w

Pagter and Rauhe [24] n lg n to n2/w n2

new n (lg lg n)2 to n2/w n2

new n lg lg n to n2/w n2 w.h.p.

Table 1: Time-space upper bounds for sorting, w ≤ n1−Ω(1).

who showed that for space O(S) one must use time Ω(n
√

lg(n/S)/ lg lg(n/S)),
even if the algorithm is allowed to use randomization and have two-sided er-
ror. This implies that to solve element distinctness in time, say O(n lg lg n),
in the Las Vegas fashion (which we can do in space O(n/ lg lg n)), space
n1−o(1) is required.

We get stronger upper bounds for element distinctness (by sorting) in sev-
eral special settings. For (lgn)2+Ω(1) ≤ w ≤ n1−Ω(1) we obtain an algorithm
using time O(n lg∗ n) with high probability and space O(n/ lg∗ n), using the
linear time sorting algorithm from [6]4. From the element distinctness lower
bound, which holds for all w ≥ 2 lg n, we know that space Ω(n/(lg∗ n)(lg∗ n)2)
is required. For w > nΩ(1)—i.e., really large word sizes—one can match the
above performance deterministically, employing a deterministic linear space
priority queue using a non-standard AC0 instruction set to provide constant
time operations [20].

1.2 History

1.2.1 Lower bounds

Sorting Borodin et al. [13] founded the area of time-space trade-offs for
sorting, by proving that any comparison-based sorting algorithm running
in time T has TS = Ω(n2). To permit more general bounds, Borodin and
Cook [11] introduced the R-way branching program model which, for R = 2w,
is at least as strong as a unit-cost RAM with word size w, read-only input,
write-only output, and any instruction set. In this model they proved a
lower bound of TS = Ω(n2/ lg n) for any T and any w ≥ lg n. This was later

4The high probability bound for this algorithm is not stated in the paper, but can be
achieved by increasing the range of the hash functions employed.

4



improved by Beame [8], who showed that any sorting algorithm running
in time T has TS = Ω(n2). The proof counts only accesses to the input,
and hence holds for any kind of instruction set as long as we can only read
O(1) input words at a time. As noted by Beame, his result also holds for
average time and space by using ideas of Abrahamson [1]. Yao’s minimax
principle [28] then provides the same lower bound for the expected time and
space usage of any randomized Las Vegas algorithm.

Element distinctness For the related problem of element distinctness,
time-space trade-offs are also well-studied. Borodin et al. [12] proved a lower
bound of TS = Ω(n3/2) for comparison-based algorithms, which was later im-
proved by Yao [29] to TS = Ω(n2−ε(n)), where ε(n) = 5/

√
lg n. In the general

setting of R-way branching programs Ajtai [4] showed that for time O(n) one
must use space Ω(n). This result was later generalized by Beame et al. [9],
who show that for space O(S) one must use time Ω(n

√
lg(n/S)/ lg lg(n/S)),

or conversely, if time is restricted to kn, then space n/kO(k2) is required.

1.2.2 Upper bounds

Sorting on the RAM The classical comparison-based upper bounds on
time for sorting also provide upper bounds on the time-space trade-off, albeit
in a limited fashion: A typical algorithm like mergesort uses space at least
n lg n, as it stores Θ(n) (pointers to) elements, hence giving TS = Ω(n2 lg2 n),
for T = n lg n. Note that in-place sorting algorithms, such as quicksort,
cannot be implemented directly in our model, as we are not allowed to change
the input. Instead, in-place algorithms can be simulated by first copying
the entire input to working memory, implying that S = Ω(nw) for in-place
sorting algorithms in our model.

The first attempt to provide more scalable solutions was made by Munro
and Paterson [22], providing tight bounds when input access is sequential. In
the random access model, an optimal TS = O(n2) upper bound for n lg n ≤
T ≤ n2/w was given by Pagter and Rauhe [24], using ideas of Frederickson
[17].

It has long been known that sorting in linear time is possible when
w = O(lg n), by using the indirect addressing features of the RAM (radix
sort). A flurry of research on non-comparison-based algorithms was initi-
ated by the seminal paper of Fredman and Willard [18], who exhibited the

5



first truly o(n lg n) sorting algorithm, with no restriction on w. More pre-
cisely, they showed how to sort deterministically in time O(n lg n/ lg lg n) and
space O(nw). They also present an O(n

√
lg n) time sorting algorithm, but it

uses either exponential space or randomization to implement a sparse table
in space O(nw).

Another breakthrough was made by Andersson et al. [6], who achieved
time O(n lg lg n) by a quite simple algorithm. Again, this algorithm uses
either exponential space or randomization to implement a sparse table. In
the special case w ≥ (lg n)2+Ω(1), Andersson et al. in fact exhibit a randomized
linear time sorting algorithm using space O(nw). For deterministic sorting in
space O(nw), the current “record holder” is the algorithm of Han [21], who
achieves time O(n lg lg n lg lg lg n)5. To our knowledge, this is the fastest
deterministic sorting algorithm whose space usage is not exponential in w.

Bounds similar to the above can be achieved via linear space priority
queues due to Thorup, achieving O(lg lg n) expected amortized time per op-
eration [25], and O((lg lg n)2) deterministically [26]. In fact, Thorup [25] has
given a general way of transforming any efficient sorting algorithm into an
efficient monotone priority queue. This is described in more detail in section
2.2.1.

For further information on sorting on the RAM, we refer the reader to
the surveys of Andersson [5] and Hagerup [20].

Sorting in other models Time-space upper bounds become relevant from
a practical point of view when the number of input elements is huge, a line
of reasoning that has lead to the study of so-called I/O-space trade-offs. Re-
cently both upper and lower bounds on the I/O-space trade-off for sorting and
element distinctness were proved in the I/O-model [2] by Arge and Pagter [7],
building on the abovementioned upper and lower bound techniques.

For completeness, we mention that Beame actually provides a tight time-
space upper bound in the branching program model for elements in the range
1, . . . , n. So within this model the lower bound cannot be improved indepen-
dently of the word size.

Element distinctness In the comparison based setting, the sorting algo-
rithm of Pagter and Rauhe [24] nearly closes the gap to Yao’s lower bound
[29]. For non-comparison-based algorithms however, much less is known. Of

5We have not had access to the paper describing this result.

6



course, all the abovementioned fast sorting algorithms show how to decide
element distinctness, but none of them in a very time-space efficient man-
ner (more than a factor of w from the lower bound). Using universal hash
functions [14] one can decide element distinctness in expected linear time,
using O(n lgn + w) bits of space. By another approach based on hashing,
Ajtai [4] provides a two-sided error randomized algorithm with time and
space O(n + w), which is tight by the lower bound of Beame et al. [9]. The
algorithm does not appear to generalize to time ω(n).

1.3 Intuition

We illustrate our approach by sketching a direct proof of Theorem 1 in the
special case where w ≤ (lg n)c for some constant c. We sketch how to trans-
form a space O(nw) and time t ≥ lg lg n priority queue into a time-space op-
timal sorting algorithm for T = nt, i.e., using space n/t. Our main ingredient
is the algorithm of Pagter and Rauhe [24] which sorts n ≤ 2t numbers in time
O(t) using O(n/t+lg n) bits of space; in fact, their construction allows us to
repeatedly retrieve the smallest remaining element (a DeleteMin operation)
in time O(t). This handles the case t ≥ lg n. Otherwise, we start by splitting
the input into intervals of length (lg n)c+1, for each of which we construct the
data structure of Pagter and Rauhe, allowing us to report the current min-
imum of each interval in time O(t) using space O((lg n)c+1/t + lg n), which,
summing over all intervals, yields O(n/t) bits. “On top” of this we now use
the t time priority queue to repeatedly report the minimum of the elements
not yet reported in the manner of Frederickson [17], the idea being that each
interval has exactly one element in the priority queue, namely the current
minimum of that interval. Calling DeleteMin on the priority queue will then
give us the current global minimum. Each time we report an element from
some interval, we use the data structure of Pagter and Rauhe to time-space
efficiently find the “next minimum” of that interval. Repeating this n times
will sort the input. As the priority queue contains one element per interval
and each element takes up w ≤ (lg n)c bits the priority queue uses O(n/ lgn)
bits in total, and the total time consumption per element is O(t). Using the
above with Thorup’s priority queues [25, 26] we arrive at Theorem 1 in the
special case w ≤ (lg n)c.

We can extend our approach to time-space optimal sorting for any T ≥
n lg∗ n given a monotone priority queue with amortized time complexity t =
T/n. The general idea is to apply the scheme described above recursively

7



to the intervals. However, we cannot afford a permanent fast priority for
each interval (more precisely, the total number of elements in all priority
queues used must at any time be O(n/tw) to use O(n/t) bits). The way
around this is to compute the smallest elements of each interval in “bursts”.
During a burst, a fast priority queue will be generating the smallest elements
of the interval, in the manner described above. After a burst there will be
an array of pointers to the smallest elements in the interval that can be
used for subsequent DeleteMin operations. A pointer to an element within
a small interval takes up much less space than the element itself. In fact, the
length of intervals and pointers will decrease exponentially at each step of the
recursion. We use the priority queue given only at the topmost O(1) layers,
below which the sets become so small that constant time priority queues are
possible. At the bottom of the recursion we use the data structure of Pagter
and Rauhe. For time below n lg∗ n we use fewer than lg∗ n levels of recursion,
giving a slight increase in space.

2 Preliminaries

2.1 Model of computation

Our model of computation is a unit-cost RAM with word size w and a stan-
dard instruction set, including multiplication. It is assumed that w ≥ lg n,
such that pointers to the input is possible. The memory of the RAM is split
into three parts: input which is read-only, output which is write-only, and
working memory in which we can both read and write. At each time step
we may: 1) read one word from input and write it to working memory, 2)
write one word to output, or 3) make one binary operation based on at most
two words from working memory and write the result to one word in working
memory. We will not use random access on the output, but simply output
the elements “left to right” in sorted order. Time is measured as the number
of operations 1), 2), and 3)—hence the name unit-cost. Space is the maximal
number of bits used in working memory during computation.

The comparison-based model used for earlier time-space upper bounds
[17, 24] differs from ours in that elements are never explicitly stored in work-
ing memory. Indeed, the word size is O(lg n) and one works with pointers
to elements. It is possible to compare elements and copy elements to output
without using working memory depending on w, allowing space usage down

8



to O(lg n) rather than O(w). Algorithms in this model can be simulated in
our model with a space overhead of O(w). We feel that the present model
is more realistic. Further, since our focus is on very fast sorting algorithms,
the Ω(w) space lower bound is insignificant. Finally this is consistent with
the R-way branching program model used for the lower bound.

2.2 Some results on priority queues

We now survey two results on priority queues that are used to prove our
results. We assume that it is possible to associate w bits of information with
each element in a priority queue. This is clearly true for any priority queue
we are aware of, and can in fact be assumed without loss of generality (see
Appendix B).

2.2.1 From sorting to priority queues

Our reduction of time-space optimal sorting to sorting with no space re-
striction relies on a transformation result of Thorup [25]. It is a black-box
transformation that, given any polynomial space sorting algorithm running
in time O(n t(n)), provides you with a polynomial space monotone priority
queue with time O(t(n)) per operation in the amortized sense, w.h.p. We
may, in fact, remove the assumption that the sorting algorithm uses polyno-
mial space: Since we can assume that it is fast, i.e. accesses O(n lg n) words
in memory, the entire memory of size 2w can be simulated by a dictionary
using O(n lg n) words of space with constant factor overhead, w.h.p. (the
perhaps simplest implementation of this being a hash table with chaining,
using the reliable hash functions of Dietzfelbinger et al. [16]).

Theorem 4 (Thorup [25]) Let s, t : N → R+ be non-decreasing. Suppose
there is an algorithm sorting n words in time O(n t(n)), using s(n)w bits
of space. Then there exists a monotone priority queue supporting Insert,
FindMin, and DeleteMin in amortized time O(t(n)) per operation using
s(n)w + O(nw) bits of space. The time bound holds w.h.p., or in the ex-
pected sense if the time bound of the sorting algorithm is expected.

The space bound and the high probability time bound are not explicit in
[25], but they are easy to derive. Thorup also describes a variant of the
above transformation that yields a deterministic priority queue if the sorting

9



algorithm is deterministic, but that priority queue uses space 2Ω(w) and so is
only space-efficient enough for our purposes when w = O(lg n).

2.2.2 Small constant-time priority queues

We will make use of the Q*-heaps of Fredman and Willard (contained in [19],
explicitly described in [27]).

Theorem 5 (Fredman and Willard) Let M ≤ wO(1) and δ ∈ R+. There
is a priority queue storing any set of n ≤ M elements using O(nw) bits
of space, supporting all operations in amortized constant time. The priority
queue relies on a fixed table (depending only on M) of 2Mδ

words. The table
can be computed in time 2O(Mδ).

The bound on the table size stated in [27] is o(2M) words, but the stronger
bound stated here can be easily derived. The crux of the above is that all
Q*-heaps can use the same table. In our construction, we will need Q*-heaps
of size at most M = O(lg2 n). Thus, choosing δ = 1/4 renders both the time
and space used for the table negligible.

3 Proofs

For simplicity we will give the proofs under the assumption that n is a power
of two. It is of course simple to reduce the general case to this one with a
constant factor loss in time and space.

Our basic building block is a “decremental” priority queue, called an in-
terval sorter , defined over an interval of input elements. It supports FindMin
and DeleteMin, and initially contains all elements in the interval. We will
consider interval sorters over very small intervals, making even lg n bits of
space usage unacceptable. We thus assume that the program performing the
priority queue operations has access to the following information (i.e., the
information does not reside in the interval sorter itself):

i) Pointers to the leftmost element of the interval and the length of the
interval (given as the integer logarithm of this number).

ii) Pointer to an element smaller than the current minimum of the priority
queue (if any), but larger than or equal to the last element deleted from
the priority queue.

10



iii) The space used by the interval sorter.

We will distinguish between space permanently used by an interval sorter
and space used only during operations (i.e., during initialization and when
FindMin or DeleteMin is being carried out), by referring to the former simply
as space, and to the latter as run-time memory. For purposes of the analysis
we require that the time to carry out FindMin is constant. We refer to
the total time for initialization and all DeleteMin operations divided by the
interval length as the operation time.

The sorting algorithm of Pagter and Rauhe [24] is in fact an interval
sorter for any length 2l and operation time t ≥ cl, for some constant c, using
space O(2l/t + l) and run-time memory O(w). A self-contained proof of this
can be found in Appendix A.

We now show three lemmas on composition of interval sorters. We will
refer to the following assumptions:

Assumption 1 We are given a (monotone) priority queue using at most
t(n) time and s(n)w bits of space, where s, t : N → R+ are non-decreasing
functions.

Assumption 2 We are given z, l ∈ N, 2 < l < z ≤ w, and an interval
sorter for length 2l using b bits of space, run-time memory at most m and
operation time at most a.

Our first lemma describes the basic way in which we compose interval
sorters to cover larger intervals:

Lemma 6 Under Assumptions 1 and 2 we can construct an interval sorter
for length 2z using 2z−l(b + 2z) bits of space, run-time memory at most m +
O(s(2z−l)w) and operation time at most a + O(t(2z−l)).

Proof. The interval sorter’s data structure consists of:

• The number l, easily stored using z bits.

• A counter p ∈ {0, . . . , 2z−l − 1}, using (at most) z bits.

• An array of 2z−l pointers to elements in the interval such that element
number p to 2z−l−1 are in sorted order, and are the smallest undeleted
elements in the interval sorter. If all elements have been deleted, p
points to an arbitrary array entry. In total this uses 2z−lz bits.

11



• A length 2z−l array of b-bit sub-interval sorters, the ith one covering
elements 2li, . . . , 2l(i + 1)− 1, for i = 0, . . . , 2z−l − 1. This uses a total
of 2z−lb bits.

The overall space usage is 2z−l(b + z) + 2z ≤ 2z−l(b + 2z) bits. Note that we
can compute the size of the sub-interval sorters in constant time from the
above information.

By invariant we can determine if the interval sorter is empty using ii). If
it is not, the interval sorter operations are trivial to perform in constant time
as long as there are undeleted elements in the pointer array. To initialize
the interval sorter, and whenever the last element in the array is deleted, we
perform the following:

1. Insert the minimum element (if any) of each sub-interval sorter in the
priority queue, associating with it a pointer to its position in the inter-
val.

2. Repeat 2z−l times:

(a) Perform DeleteMin from the priority queue, getting a pointer to
element x.

(b) Insert the pointer to x in the pointer array.

(c) Remove x from its sub-interval sorter.

(d) Put the new minimum from the sub-interval sorter into the prior-
ity queue.

3. Set p = 0.

This gives the 2z−l smallest undeleted elements, using O(2z−l) operations
on the priority queue, 2z−l deletions from the sub-interval sorters, and time
O(2z−l) for everything else. The bound on operation time and run-time
memory immediately follows. Since the minimum of the priority queue never
decreases, a monotone priority queue suffices by definition. Note that ii)
can be provided to the sub-interval sorters by sending a reference to element
2z−l − 1 in the array. 2

The second lemma essentially shows how interval sorters using run-time
memory nO(1)w can be composed such that the run-time memory in terms
of the combined length n is O(nεw).

12



Lemma 7 Under Assumptions 1 and 2 and for any constants c, p ∈ N,
if s(n) = O(nc) we can construct an interval sorter for length 2z using
O(2z−l(b + z)) bits of space, run-time memory O(m + 2z/pw) and operation
time O(a + t(2z)).

Proof. The space usage of applying the priority queue directly is s(2z)w =
O(2zcw). To reduce this we will allow only application of the priority queue to
at most 2z/pc elements, as this yields the desired run-time memory s(2z/pc)w =
O((2z/pc)cw) = O(2p/cw). More specifically, we will build an interval sorter
for length 2z by repeatedly applying Lemma 6 (fewer than pc times), such
that the ratio between interval sizes is at most 2z/pc.

For z < pc the lemma is trivial as z is constant and we can apply the
priority queue directly. Otherwise we repeatedly compose interval sorters
according to Lemma 6. The first composition uses the interval sorter for
length 2l, and all following compositions use the result of the previous com-
position. Let k be the largest integer such that z − kbz/pcc > l. We use the
ith composition to obtain length 2zi , where zi = z + (i − k − 1)bz/pcc, for
i = 1, . . . , k + 1.

The interval sorter obtained by the first composition has size 2z1−l(b+2z1).
More generally, we show by induction for i = 1, . . . , k + 1 that the interval
sorter obtained at composition i uses at most bi = 2zi−l(b + 2i zi) bits of
space. This means that the interval sorter for length 2z has size at most
bk+1 = 2z−l(b + 2(k + 1)z). For the inductive step, Lemma 6 bounds the size
of interval sorter i > 1 by:

2zi−zi−1(bi−1 + 2zi) = 2zi−zi−1(2zi−1−l(b + 2(i − 1) zi−1) + 2zi) ≤ bi .

The bound on operation time follows as we compose a constant number
of times, each time adding the stated operation time. Similarly, for each
composition the run-time memory usage is increased by at most s(2bz/pcc)w =
O(2z/pw). 2

The final lemma gives us an efficient way of composing tiny interval sorters
to form an interval sorter for length around lg2 n. It might be helpful to read
the lemma with the assignment z = lg lg n in mind. Note that the conditions
on k then imply that k is smaller than lg∗ n.

Lemma 8 Under Assumption 2, if z = O(lg w) and there is k ∈ N such
that l = b2 lg(k) zc, we can construct an interval sorter for length 4z using
O(4zb/2l) bits of space, run-time memory O(m + 4zw lg∗ z) and operation

13



time O(a + k). The interval sorter relies on an external table (depending
only on z) of O(22δz

w) bits that can be computed in time 2O(2δz), where δ > 0
is a constant of our choice.

Proof. We again repeatedly use Lemma 6 starting with composition of the
interval sorter for length 2l. The length used for the ith composition is 2zi ,
where zi = b2 lg(k−i) zc, for i = 1, . . . , k. (Note that for z = lg lg n the top
interval sorter has length roughly lg2 n, the second length (lg lg n)2, the third
length (lg lg lg n)2, etc.) We use the Q*-heap priority queue described in
Section 2.2.2 with constant time operations.

Now, we show by induction that the interval sorter obtained by the ith
composition uses at most bi = 2zi−l b (1 +

∑i
j=1 2l+2/zj) bits of space. Note

that indeed bk = O(22z−lb). For i = 0 we have the interval sorter of Assump-
tion 2 which indeed has size b0 = b. For the inductive step, Lemma 6 bounds
the size of interval sorter i ≥ 1 by:

2zi−zi−1(bi−1 + 2zi) < 2zi(2−l b (1 +

i−1∑

j=1

2l+2/zj) + 4/zi) ≤ bi .

Since we perform k ≤ lg∗ z compositions, each increasing run-time mem-
ory by O(4zw) and operation time by O(1), the bounds on run-time memory
and operation time are immediate. 2

Using the interval sorter of Pagter and Rauhe we can now prove our main
lemma:

Proof of Lemma 2. Let c ∈ N be a constant such that the priority queue
uses space O(ncw). If T ≥ n lg n we simply use the algorithm of [24]. Oth-
erwise, assume without loss of generality that T ≥ 4n, and let r = lg n,
t = bT/nc and l1 = 2blg rc. Our task can be reduced to that of building
an interval sorter for length 2l1 (roughly lg2 n) with operation time O(t), us-
ing space O(2l1 lg(t)(n)/t) and run-time memory O(2l1c): Applying Lemma 7
with p = d1/εe and z = r to such an interval sorter and the priority queue of
Assumption 1, we get an interval sorter for length n with operation time O(t),
run-time memory O(nεw) and space O(2r−l1(2l1 lg(t)(n)/t + r)), as desired.

If t ≥ lg r (i.e., lg lg n) we immediately have the required length 2l1 in-
terval sorter by [24]. Otherwise let q ≥ 1 be the largest integer for which
b2 lg(q)blg rcc ≥ b2 lg tc. We distinguish two cases:

14



1. t ≥ q. Let l2 = b2 lg(q)blg rcc. By definition of q we have l2 ≤ 2t+O(1),
so [24] provides an interval sorter for length 2l2 with operation time
O(t), using O(2l2/t) bits of space and run-time memory O(w). We can
thus use Lemma 8 with this and parameters k = q, z = l1/2, l = l2 and
δ = 1/4 to get the required interval sorter.

2. t < q. Let l′2 = b2 lg(t)blg rcc. We first use Lemma 6 with the Q*-heap
and the interval sorter of [24] with length and operation time 2blg tc to
get an interval sorter for length 2l′2 using space O(2l′2 lg(t)(n)/t) and
with the required operation time and run-time space bounds. Now
Lemma 8 with parameters k = t, z = l1/2, l = l′2 and δ = 1/4 gives the
desired.

Recall that the table used for the Q*-heap takes up O(22lg lg(n)/2
w) bits of space

and can be precomputed in 2O(2lg lg(n)/2) time, both of which are negligible.
Any expected time bound for the priority queue of Assumption 1 is pre-

served by linearity of expectation. If the priority queue’s time bound holds
with high probability, the same holds for our interval sorter: We use o(n)
priority queues on sets of size at least nε for some constant ε > 0, so to get
error probability n−c it suffices to choose the exponent in the error bounds
of the priority queues to be (c + 1)/ε. 2

The Q*-heap introduces a rather large constant factor on the time. If the
fast priority queue given has a smaller multiplicative constant on the time,
it might be more practical to use it instead of the Q*-heap. However, this
only yields an asymptotically optimal solution for time n 2Ω(lg∗ n).

4 Open problems

There remains a small gap in our bounds for time o(n lg∗ n). It is plausible
that sorting this fast is not possible in general, but it would be nice at least to
have tight bounds for cases where a linear time upper bound is known. The
role of randomization in sorting presents many open questions—in our case
it would be interesting to see if a general deterministic transformation to op-
timal space is possible. A particular instance of both of the above is whether
there exists an algorithm deciding element distinctness deterministically in
O(n) time using O(n) bits for w = O(lg n).

Another problem is to provide support for the intuition that sorting in
o(n lg n) time is not possible in O(w) bits of space (for w large relative to n).

15



An interesting question is whether our upper bound can be used in show-
ing a super-linear time lower bound for sorting. All known lower bound
techniques require some upper bound on space to give a lower bound for
time. If it is not possible in general to sort in time, say, n lg lg lg n, then it
might be easier to show a lower bound knowing that such an algorithm can
be assumed to use O(n/ lg lg lg n) bits of space.

References

[1] Karl Abrahamson, Time-Space Tradeoffs for Algebraic Problems on General Sequen-
tial Machines, Journal of Computer and System Sciences 43 (1991), 269–289.

[2] Alok Aggarwal and Jeffrey Scott Vitter, The Input/Output Complexity of Sorting and
Related Problems, Communications of the ACM 31 (1988), no. 9, 1116–1127.

[3] Miklós Ajtai, A Non-linear Time Lower Bound for Boolean Branching Programs,
Proceedings of the 40th Annual Symposium on Foundations of Computer Science,
IEEE, 1999.

[4] , Determinism versus Non-Determinism for Linear Time RAMs with Mem-
ory Restrictions, Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, ACM, 1999.

[5] Arne Andersson, Sorting and Searching Revisited, Algorithm Theory - SWAT’96
(Rolf Karlsson and Andrzej Lingas, eds.), Springer-Verlag, 1996, pp. 185–197.

[6] Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman, Sorting in
linear time?, Proceedings of the 27th Annual ACM Symposium on Theory of Com-
puting, ACM, 1995.

[7] Lars Arge and Jakob Pagter, I/O-Space Trade-Offs, 7th Scandinavian Workshop
on Algorithm Theory (SWAT’00), Lecture Notes in Computer Science, vol. 1851,
Springer-Verlag, 2000, pp. 448–461.

[8] Paul Beame, A General Sequential Time-Space Tradeoff for Finding Unique Elements,
SIAM Journal on Computing 20 (1991), 270–277.

[9] Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee, Super-linear time-space
tradeoff lower bounds for randomized computation, Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, IEEE, 2000, pp. 169–179.

[10] Paul Beame, Michael Saks, and Jayram S. Thathachar, Time-Space Tradeoffs for
Branching Programs, Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, IEEE, 2000, pp. 254–263.

[11] Allan Borodin and Stephen Cook, A Time-Space Tradeoff for Sorting on a General
Sequential Model of Computation, SIAM Journal on Computing 11 (1982), no. 2,
287–297.

16



[12] Allan Borodin, Faith E. Fich, Friedhelm Meyer auf der Heide, Eli Upfal, and Avi
Wigderson, A Time-Space Tradeoff for Element Distinctness, SIAM Journal on Com-
puting 16 (1987), 97–99.

[13] Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and Mar-
tin Tompa, A Time-Space Tradeoff for Sorting on Non-Oblivious Machines, Journal
of Computer and System Sciences 22 (1981), 351–364.

[14] J. Lawrence Carter and Mark N. Wegman, Universal classes of hash functions (ex-
tended abstract), Proceedings of the 9th Annual ACM Symposium on Theory of
Computing, ACM, 1977, pp. 106–112.

[15] Alan Cobham, The Recognition Problem for the Set of Perfect Squares, Conference
Record of 1966 7th Annual Symposium on Switching and Automata Theory (“FOCS
7”), IEEE, 1966, pp. 78–87.

[16] Martin Dietzfelbinger, Joseph Gil, Yossi Matias, and Nicholas Pippenger, Polynomial
hash functions are reliable (extended abstract), Proceedings of the 19th International
Colloquium on Automata, Languages and Programming (ICALP ’92) (Berlin), Lec-
ture Notes in Computer Science, vol. 623, Springer-Verlag, 1992, pp. 235–246.

[17] Greg N. Frederickson, Upper Bounds for Time-Space Trade-offs in Sorting and Se-
lection, Journal of Computer and Systems Sciences 34 (1987), 19–26.

[18] Michael L. Fredman and Dan E. Willard, Surpassing the Information Theoretic Bound
with Fusion Trees, Journal of Computer and System Sciences 47 (1993), 424–436.

[19] Michael L. Fredman and Dan E. Willard, Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths, Journal of Computer and System Sciences
48 (1994), no. 3, 533–551.

[20] Torben Hagerup, Sorting and Searching on the Word RAM, Conference Proceedings
of the 15th Annual Symposium on Theoretical Aspects of Computer Science, Lexture
Notes in Computer Science, vol. 1373, Springer-Verlag, 1998, pp. 366–398.

[21] Yijie Han, Improved Fast Integer Sorting in Linear Space, Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM, 2001, pp. ??–
??

[22] J. Ian Munro and Mike S. Paterson, Selection and Sorting with Limited Storage,
Theoretical Computer Science 12 (1980), 315–323.

[23] Jakob Pagter, On Ajtai’s Lower Bound Technique for R-way Branching Programs
and the Hamming Distance Problem, Tech. Report RS-00-11, BRICS, Department of
Computer Science, University of Aarhus, 2000.

[24] Jakob Pagter and Theis Rauhe, Optimal Time-Space Trade-Offs for Sorting, Pro-
ceedings of the 39th Annual Symposium on Foundations of Computer Science, IEEE,
1998, pp. 264–268.

[25] Mikkel Thorup, On RAM priority queues, Proceedings of the 7th Annual ACM-SIAM
Symposium on Discrete Algorithms, ACM-SIAM, 1996, pp. 59–67.

17



[26] , Faster deterministic sorting and priority queues in linear space, Proceedings
of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM-SIAM,
1998.

[27] Dan E. Willard, Examining Computational Geometry, van Emde Boas Trees, and
Hashing from the Perspective of the Fusion Tree, SIAM Journal on Computing 29
(2000), no. 3, 1030–1049.

[28] Andrew Chi-Chih Yao, Probabilistic computations: toward a unified measure of com-
plexity (extended abstract)., Proceedings of the 18th Annual Symposium on Founda-
tions of Computer Science, IEEE, 1977, pp. 222–227.

[29] , Near-optimal Time-Space Tradeoff for Element Distinctness, SIAM Journal
on Computing 23 (1994), 966–975.

A The interval sorter of Pagter and Rauhe

In this section we outline the ideas of Pagter and Rauhe [24].

Lemma 9 For any z, l ∈ N, l ≤ z, there is an interval sorter for length 2z

with operation time O(2z−l + l), using O(2l + z) bits of space and run-time
memory O(w).

Proof sketch. In a traditional binary heap, each leaf node is associated with
an input element, and each internal node is associated with the minimum of
its two children. In a heap based on intervals, a leaf node will be associated
with the minimum of some interval of the input, but an internal node is still
associated with the minimum of its two children.

Basically the data structure of Pagter and Rauhe is a heap based on
intervals, i.e., for every interval of the form 2z−ij, . . . , 2z−i(j + 1) − 1, where
0 ≤ i ≤ l and 0 ≤ j < 2i, we remember the minimum ai,j . Instead of
remembering ai,j explicitly, we maintain a pointer pi,j to the leaf-layer interval
containing ai,j, allowing us to recover ai,j from pi,j making a linear search
through an interval of 2z/2l = 2z−l elements. Such a pointer takes up l − i
bits, as we need l bits to name one of the 2l leaf-layer intervals, but the i
most significant bits of ai,j will simply encode the integer j, and do not need
to be stored. To speed up the recovery process, we augment each pointer,
pi,j, with an additional l − i bits used to store more bits of ai,j, and thus
reducing the number of elements to be searched. To recover ai,j from pi,j we
then only need to make a linear search through d2z−2l+ie elements. The total
space usage is

∑l
i=0 2i 2(l − i) < 4 · 2l. We leave to the reader the details of

18



a memory layout that does not waste space and allows data to be accessed
efficiently.

Clearly the interval sorter can be initialized in linear time by the usual
bottom up algorithm. To perform DeleteMin, we use the constant time
FindMin to find the next element to be reported, after which we delete it by
updating pointers a0,j0 , a1,j1, . . . , am,jm , where m = l − 1, for nodes on the
path from the root to the element. It costs time O(2z−l) to find the new value
of am,jm, and then one can iteratively find, for i = m−1, . . . , 0, the new value
of ai,ji

in time O(d2z−2l+ie), i.e., the search times constitute an arithmetical
progression (rounded up), yielding a total operation time of O(2z−l + l).

To accommodate FindMin in constant time, we use z bits to store a
pointer to the current minimum (or to any element if the interval sorter is
empty). 2

This of course implies that for T ≥ n lg n one can sort in time O(T ), using
O(n2/T + w) bits of space.

B Associated memory in priority queues

In the randomized setting, the w bits of associated information can be re-
trieved by a dynamic dictionary that uses linear space and amortized constant
time per operation w.h.p. However, we would like not to introduce random-
ization in our reduction. We will assume only that the priority queue has the
three operations Insert, FindMin and DeleteMin. Assume for the moment
that w is even. It is simple to extend this to the case of odd w.

We use two levels of priority queues. The level-one priority queue contains
keys of the form ap, a, p ∈ {0, 1}w/2, where a is the first w/2 bits of some
“original” key and p is a pointer unique to a. Regarding p as an integer, we
can use it as a pointer into a length n array of level-two priority queues. The
level-two priority queue corresponding to a contains keys of the form a′p′,
a′, p′ ∈ {0, 1}w/2, where a′ is the last w/2 bits of an original key having a as
the first w/2 bits and p′ is a pointer unique to a′. Now p′ can be used as a
pointer to an array of up to n words of associated information.

When inserting, pointers need to be allocated, for which purpose a stan-
dard free-list is used. If no free space exists, the array is expanded by the
usual doubling technique. It should be clear that FindMin and DeleteMin

can be done with two priority queue calls plus a constant overhead. To keep
space down to O(nw) bits one needs to shrink arrays if a large constant

19



fraction of the elements are deleted from a priority queue. This is done in a
standard way, and we do not go into details.

20



Recent BRICS Report Series Publications

RS-01-2 Rasmus Pagh and Jakob Pagter.Optimal Time-Space Trade-
Offs for Non-Comparison-Based Sorting. January 2001. 20 pp.

RS-01-1 Gerth Stølting Brodal, AnnaÖstlin, and Christian N. S. Peder-
sen. The Complexity of Constructing Evolutionary Trees Using
Experiments. 2001.

RS-00-52 Claude Cŕepeau, Fŕedéric Légaŕe, and Louis Salvail. How to
Convert a Flavor of Quantum Bit Commitment. December 2000.
24 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’01 Proceedings, LNCS, 2001.

RS-00-51 Peter D. Mosses.CASL for CafeOBJ Users. December 2000.
25 pp. Appears in Futatsugi, Nakagawa and Tamai, editors,
CAFE: An Industrial-Strength Algebraic Formal Method, 2000,
chapter 6, pages 121–144.

RS-00-50 Peter D. Mosses.Modularity in Meta-Languages. December
2000. 19 pp. Appears in2nd Workshop on Logical Frameworks
and Meta-Languages, LFM ’00 Proceedings, 2000.

RS-00-49 Ulrich Kohlenbach. Higher Order Reverse Mathematics. De-
cember 2000. 18 pp.

RS-00-48 Marcin Jurdziński and Jens V̈oge.A Discrete Stratety Improve-
ment Algorithm for Solving Parity Games. December 2000.

RS-00-47 Lasse R. Nielsen. A Denotational Investigation of Defunc-
tionalization. December 2000. Presented at16th Workshop
on the Mathematical Foundations of Programming Semantics,
MFPS ’00 (Hoboken, New Jersey, USA, April 13–16, 2000).

RS-00-46 Zhe Yang. Reasoning About Code-Generation in Two-Level
Languages. December 2000.

RS-00-45 Ivan B. Damg̊ard and Mads J. Jurik. A Generalisation, a
Simplification and some Applications of Paillier’s Probabilistic
Public-Key System. December 2000. 18 pp. Appears in Kim,
editor, Fourth International Workshop on Practice and Theory
in Public Key Cryptography, PKC ’01 Proceedings, LNCS 1992,
2001, pages 119–136. This revised and extended report super-
sedes the earlier BRICS report RS-00-5.


