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The alternation hierarchy
for the theory of µ-lattices

Luigi Santocanale
luigis@brics.dk

BRICS∗

Abstract

The alternation hierarchy problem asks whether every µ-term,
that is a term built up using also a least fixed point constructor
as well as a greatest fixed point constructor, is equivalent to a
µ-term where the number of nested fixed point of a different type
is bounded by a fixed number.

In this paper we give a proof that the alternation hierarchy
for the theory of µ-lattices is strict, meaning that such number
does not exist if µ-terms are built up from the basic lattice op-
erations and are interpreted as expected. The proof relies on the
explicit characterization of free µ-lattices by means of games and
strategies.

1 Introduction

The alternation hierarchy problem is at the core of the definition of cat-
egories of µ-algebras [Niw85, Niw86] which we resume as follows. For
a given equational theory T, we let T0 be the category of its partially
ordered models and order preserving morphisms. Out of T0 we can se-
lect objects and morphisms so that all the “desired” least prefix-points

∗Basic Research in Computer Science,
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exist and are preserved, this process giving rise to a category S1. The
desired least prefix-points are those needed to have models of an itera-
tion theory [BÉ93] where the dagger operation is interpreted as the least
prefix-point. If we use, as a selection criterion, the existence of greatest
postfix-points and their preservation, we obtain a category P1. If we let
T1 be the intersection of S1 and P1, then T1 is a quasivariety and the
category of models of a theory T1 which is axiomatized by equational
implications. We can repeat the process out of T1 and T1 and the itera-
tion of this process leads to construct categories Sn,Pn,Tn for arbitrary
positive numbers n. The category of µ-T-algebras is defined to be the
inverse limit of the corresponding diagram of inclusions; the alternation
hierarchy problem asks whether this process stops after a finite number
of steps, i.e. whether the category of µ-T-algebras is equivalent to a cate-
gory among Sn,Pn,Tn for some n ≥ 0. The main contribution presented
in this paper is theorem 3.6 stating that the alternation hierarchy for the
theory of µ-lattices is strict, i.e. that there is no such number when T is
the theory of lattices.

The alternation hierarchy for the propositional µ-calculus has recently
been shown to be strict in several cases [Arn99, Bra98a, Len96]; together
with open problems on fix-point free polynomials in free lattices [FJN95],
these results have challenged us to the hierarchy problem for the theory
of µ-lattices; in particular we were interested in understanding whether
the explicit characterization of free µ-lattices [San00a, San00b] could be
of help.

It is our opinion that µ-algebras are algebraic objects suitable to gener-
alize the role of iteration theories in the context of the theorization of
communication and interactive computation. This statement is exempli-
fied by the consideration of free µ-lattices which have been characterized
by means of games and strategies. Games for free µ-lattices model bidi-
rectional synchronous communication channels which can be recursively
constructed from a few primitives: left and right choices – the lattice
operations – and left and right iterations – the least and greatest fixed
point operators. If G and H are games for a free µ-lattice, we say that
G ≤ H if there exists a winning strategy in a compound game 〈G,H〉
for a player whom we call Mediator. Such a strategy can be understood
as a protocol for letting the left user of the communication channel G
communicate with the right user of H in an asynchronous way. The
order theoretic point of view, which we adopt here, identifies two such
channels G and H if there are protocols in both directions, i.e. winning
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strategies for Mediator in both games 〈G,H〉 and 〈H,G〉. The analy-
sis of different strategies, in the spirit of categorical proof theory and
of the bicompletion of categories [HJ99, Joy95a, Joy95b], is probably a
more appropriate setting in which to understand communication; this
study is under way and suggests a possible characterization of free bi-
complete categories with enough initial algebras and terminal coalgebras
of functors. However, we can still ask whether the order theoretic iden-
tification is degenerate by posing the alternation hierarchy problem; its
translation in the language of communication sounds as follows: is every
channel equivalent to another one where the number of alternations be-
tween left and right iterations is bounded by a fixed positive integer? The
negative answer we provide to the order theoretic problem implies also
that a categorical identification is not degenerate; moreover the answer
depends on a coincidence of order theoretic ideas with categorical ideas.
There are games A for which the copycat strategy, which plays the role
of the identity, is the unique strategy in the game 〈A,A〉; because of
that, the asynchronous communication, which is the result of a protocol
mediating between the left user of the left channel and the right user
of the right channel, has the same dynamic as the communication along
the single channel A; therefore it happens to be synchronous and we call
these games synchronizing. These games impose strong conditions on
the structure of games H equivalent to A, we show that they hard, i.e.
they are good representatives of their equivalence class as far as we are
concerned with their alternation complexity.

The ideas presented here have originated from Philip Whitman’s proof
that free lattices are not in general complete [Whi42]. It is difficult to
relate these ideas with those contained in previous works on the alterna-
tion hierarchy for the propositional µ-calculus [Arn99, Bra98a, Bra98b,
Len96, Niw86]. The main reason is that the traditional models of this
calculus are boolean algebras of sets with modal operators and that the
alternation hierarchy for the class of distributive µ-lattices is degenerate,
since every distributive lattice is a µ-lattice. In particular, the main theo-
rem presented in this paper cannot be derived from those results, at least
not in a straightforward way. Existing techniques for proving hardness
of a µ-calculus formula, as summarized in [Arn99], are diagonalization
arguments and rely on the presence of the boolean complement; they
cannot be applied in the context of µ-lattices. However, our technique is
also a sort of a diagonalization argument, but of a categorical flavor. An
analogous technique for the propositional µ-calculus would go through
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the explicit characterization of the order relation by means of refutations
[Wal95]. Other works [AM99, Bla92, Joy97] have studied the structure of
games as models of linear logic. With respect to those works, the focus
is here on the algebraic structure imposed by fix-points instead of the
algebraic structure imposed by the multiplicative connectives of linear
logic.

The paper is structured as follows. In section 2 we present definitions
of key concepts and introduce the notation we shall use. In section 3
we present µ-lattices and the alternation hierarchy problem; we sketch
the general strategy used to answer the problem. In section 4 we review
the structure of free µ-lattices in view of the hierarchy; for the sake of
completeness, we present once more the proof that the preorder relation
on games is transitive. In section 5 we define synchronizing games and
prove their hardness. In section 6 we construct synchronizing games of
arbitrary complexity.

2 Notation and useful definitions

2.1 Least and greatest fix-points

Let P be a partially ordered set and let φ : P - P be an order
preserving function. The least prefix-point of φ, whenever it exists, is an
element µz.φ(z) of P such that φ(µz.φ(z) ) ≤ µz.φ(z) and such that, if
φ( p ) ≤ p, then µz.φ(z) ≤ p. The greatest postfix-point of φ is defined
dually and is denoted by νz.φ(z). Least prefix-point and greatest postfix-
point are Conway operators in the sense of [BÉ93]. A summary of their
properties can be found in [Niw85].

2.2 Pointed graphs and trees with back edges

By a graph G we mean a tuple 〈G0, G1, dom , cod 〉, where G0 is a set
(of vertexes or states), G1 is a set (of directed edges or transitions) and
dom , cod : G1

- G0 are functions. By a morphism of graphs f :
G - H we mean a pair of functions fi : Gi

- Hi, i = 0, 1, such that
f0 ◦ dom = dom ◦ f1 and f0 ◦ cod = cod ◦ f1. We often write a graph as
a pair 〈G0, G1〉 and leave in the background the functions dom , cod . If
G1 ⊆ G0 × G0, we assume that dom and cod are the restrictions of the
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projections to G1.

Let G = 〈G0, G1〉 be a graph, a path γ in G is a morphism of graphs
γ : n̂ - G where n̂ is the graph 0 → 1 → . . . → n. The length of γ,
denoted |γ|, is defined to be n. We set dom γ = γ(0) and cod γ = γ(|γ|).
Paths γ1, γ2 can be composed in the usual way, provided that cod γ1 =
dom γ2, and we write γ1 ? γ2 for their composition; if g ∈ G0 we write
1g for the unique path γ such that |γ| = 0 and dom γ = g = cod γ. A
category F (G), free over G, is defined in this way. Let G,H be graphs
and let f : G - F (H) be a morphism of graphs, we say that f is
non-decreasing if |f(τ)| ≤ 1 for every τ ∈ G1. The morphism of graphs
f is non-decreasing if and only if its extension f : F (G) - F (H) to
a functor is convex, i.e. if f(γ) = δ1 ? δ2, then we can find γ1, γ2 such
that f(γi) = δi, i = 1, 2, and γ = γ1 ? γ2. We say that a path γ in G
visits a vertex g ∈ G0, or equivalently that g lies on γ, if there exists
i ∈ {0, . . . , |γ|} such that γ(i) = g. We say that a path γ is simple if it
does not visit a node twice, i.e. if γ0 is injective as a function. We say
that γ is a cycle if dom γ = cod γ and that γ is proper if |γ| > 0.

A pointed graph is a tuple 〈G0, G1, g0〉 such that 〈G0, G1〉 is a graph
and g0 ∈ G0; we shall say that g0 is the root of 〈G0, G1, g0〉. A mor-
phism of pointed graphs f : G - H is a morphism of graphs f :
〈G0, G1〉 - 〈H0, H1〉 such that f0(g0) = h0. An infinite path in G is
a morphism of graphs γ : ω̂ - G where ω̂ is the graph 0 → 1 →
. . . → n → . . .. Since the pointed graph 〈ω̂, 0〉 is the inductive limit of
the pointed graphs 〈n̂, 0〉, we shall often identify an infinite path γ with
the set {γn}n≥0 of prefixes of γ of finite length. On the other hand, if
{γn}n≥0 is a set of paths such that |γn| = n and γn+1 = γn ? τn+1, we
shall use that same notation {γn}n≥0 to denote the infinite path which
associates to the transition n→ n+1 of ω̂ the transition τn+1. A pointed
graph 〈G0, G1, g0〉 is said to be reachable if for every g ∈ G0 there exists
a path γ such that dom γ = g0 and cod γ = g. Let G be a graph and
let g0 ∈ G0, we denote by G, g0 the greatest subgraph H of G such that
〈H, g0〉 is reachable.

Definition 2.1 A tree with back edges is a pointed graph 〈G0, G1, g0〉
such that G1 ⊆ G0 × G0 and with the property that, for every vertex
g ∈ G0, there exists a unique simple path γg from g0 to g. In this case,
we say that an edge τ : g → g′ is a forward edge if γg ? τ = γg′ and that
it is a back edge otherwise.
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To give a tree with back edges is equivalent to give the pair 〈〈G0, F, g0〉, B〉,
where F is the set of forward edges and B is the set of back edges. Then
〈G0, F, g0〉 is a tree, i.e. a pointed graph such that, for every vertex
g ∈ G0, there exists a unique path from g0 to g; moreover, if g → g′

is an edge from B, then g′ is an ancestor of g in the tree 〈G0, F, g0〉.
We can specify a tree with back edges by giving a pair 〈T,B〉, where
T = 〈T0, T1, t0〉 is a tree and B ⊆ T0 × T0 is a set of pairs with the above
property.

Let 〈T,B〉 be a finite tree with back edges. A vertex r ∈ T0 is called a
return if there exists a back edge t→ r. Observe that, for an infinite path
γ in 〈T,B〉, there exists a unique return rγ which is visited infinitely often
and which is of minimal height. The height of a vertex in 〈T,B〉 is the
length of the unique simple path from the root to the vertex. Similarly,
for every proper cycle γ in 〈T,B〉, there exists a unique return rγ of
minimal height lying on γ. A vertex x ∈ T0 is said to be a leaf if it is
a leaf of T in the usual sense and there are no back edges from x; this
can be summarized by saying that { g′ | x → g′ } is empty. There is an
operation of substitution of a tree with back edges for a leaf induced by
the analogous operations on trees. Let x be a leaf of 〈T1, B1〉, we define:

〈T1, B1〉[〈T2, B2〉/x] = 〈T1[T2/x], B1 +B2〉.

If 〈T,B〉 is a tree with back edges and t ∈ T0, we say that t is a complete
vertex if for every descendant t′ of t and every back edge t′ → r, r is
also a descendant of t. If t is a complete vertex, we can define trees with
back edges T t↓ and T ↓

t so that t is a leaf of T ↓
t , t is the root of T t↓, and

moreover T = T ↓
t [T t↓/t]. Indeed, let T1 = T, t and T2 = T ′, t0, where

T ′
0 = T0 and T ′

1 = T1 \ { τ | dom τ = t }; define then T t↓ as 〈T1, B|T1〉 and

T ↓
t as 〈T2, B|T2〉. A return r is said to be minimal if there are no other

returns on the path γr from the root to r. A minimal return is easily
seen to be a complete vertex.

2.3 Games and strategies

Definition 2.2 A partial game is a tuple G = 〈G0, G1, g0, ε,Wσ〉 where
〈G0, G1〉 is a graph, g0 ∈ G0, ε : G0

- {0, σ, π} is a coloring, and Wσ

is a set of infinite paths in 〈G0, G1〉. We require that if ε(g) = 0, then
{ g′ | g → g′ } = ∅.
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The above data must be interpreted as follows: G0 is the set of positions
of G, g0 is the initial position and G1 is the set of possible moves. For
a position g ∈ G0, if ε(g) = σ, then it is player σ who must move, if
ε(g) = π, it is π’s turn to move. A position g ∈ G0 is final if there are no
possible moves from g, i.e. if { g′ | g → g′ } = ∅. In this case, if ε(g) = σ,
then player σ loses, if ε(g) = π, then player π loses, if ε(g) = 0, then it is
a draw and we call g a partial final position. We shall write XG for the
set { x ∈ G0 | ε(x) = 0 } of partial final positions of G. Finally, Wσ is the
set of infinite plays which are wins for player σ. We define Wπ to be the
complement of Wσ; we assume that there are no infinite draws so that
Wπ is meant to be the set of infinite plays which are wins for player π. A
game is a partial game G such that XG = ∅. We shall say that a partial
game is bipartite if ε(g) 6= ε(g′) for every move g → g′.

In the definitions below, G will be a fixed a partial game as defined in
2.2.

Definition 2.3 A winning strategy for player σ in G is a non empty set
S of paths in G satisfying the following properties:

• γ ∈ S implies dom γ = g0,

• γ1 ? γ2 ∈ S implies γ1 ∈ S,

• if γ ∈ S and ε(cod γ) = π, then γ ? τ ∈ S for every τ ∈ G1 such
that dom τ = cod γ,

• if γ ∈ S and ε(cod γ) = σ, then there exists τ ∈ G1 such that
dom τ = cod γ and γ ? τ ∈ S,

• if γ is an infinite path in G such that for every n ≥ 0 the prefix of
γ of length n belongs to S, then γ belongs to Wσ.

A strategy for player σ in G is a nonempty set S of paths in G such that
the first three properties hold. Let γ be a path in G, we say that γ has
been played according to the strategy S if there exists a path γ0 such
that γ0 ? γ ∈ S.

Definition 2.4 A bounded memory winning strategy for player σ in G
is a pair (S, ψ), where S = 〈S0, S1, s0〉 is a finite reachable pointed graph
and ψ : S - 〈G0, G1, g0〉 is a morphism of pointed graphs. The fol-
lowing properties hold:
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• If s ∈ S0 and ε(ψ(s)) = π, then for every τ ∈ G1 such that dom τ =
ψ(s) there exists a transition τ ′ ∈ S1 such that dom τ ′ = s and
ψ(τ ′) = τ ,

• if s ∈ S and ε(ψ(s)) = σ, then there exists τ ′ ∈ S1 such that
dom τ ′ = s,

• if γ is an infinite path in S, then ψ ◦ γ ∈Wσ.

Lemma 2.5 Let (S, ψ) be a bounded memory winning strategy for player
σ. Then the set of paths

ψS = {ψ ◦ γ | γ is a path in S and dom γ = s0 }

is a winning strategy for player σ as defined in 2.3.

3 The theory of µ-lattices and

the hierarchy

We begin by defining µ-lattices and the hierarchy. We shall later give an
equivalent but more combinatorial definition of µ-lattices using partial
games. This approach will allow us to have a combinatorial grasp on the
hierarchy.

Definition 3.1 The set of terms Λω and the arity-function a : Λω
- N

are defined by induction as follows:

1.
∧
k ∈ Λω and a(

∧
k) = k, for k ≥ 0.

2.
∨
k ∈ Λω and a(

∨
k) = k, for k ≥ 0.

3. If φ ∈ Λω, a(φ) = k, and φi ∈ Λω for i = 1, . . . , k, then φ ◦
(φ1, . . . , φk) ∈ Λω and a(φ ◦ (φ1, . . . , φk)) =

∑
i=1,...,k a(φi).

4. If φ ∈ Λω, a(φ) = k + 1, then µs.φ ∈ Λω and a(µs.φ) = k, for
s = 1, . . . , k + 1.

5. If φ ∈ Λω, a(φ) = k + 1, then νs.φ ∈ Λω and a(νs.φ) = k, for
s = 1, . . . , k + 1.
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Definition 3.2 Let L be a lattice, we define a partial interpretation of
terms φ ∈ Λω, a(φ) = k, as order preserving functions |φ| : Lk - L.

1. |∧k |(l1, . . . , lk) =
∧
i=1,...,k li .

2. As in 1, but substituting each symbol
∧

with the symbol
∨

.

3. Let φ ∈ Λω, a(φ) = k, and let φi ∈ Λω for i = 1, . . . , k. Suppose |φ|
and |φi| are defined. In this case we define |φ ◦ (φ1, . . . , φk)| to be:

|φ ◦ (φ1, . . . , φk)|(l1, . . . , lh)
= |φ|( |φ1|(lh−1 , . . . , lh+

1
), . . . , |φk|(lh−k , . . . , lh+

k
) ) ,

where h−i = 1 +
∑i−1

j=1 a(φj), h
+
i =

∑i
j=1 a(φj) and h = h+

k =
∑k

j=1 a(φj). Otherwise |φ ◦ (φ1, . . . , φk)| is undefined.

4. Let φ ∈ Λω be such that a(φ) = k + 1. Suppose that |φ| is defined
and let s ∈ {1, . . . , k + 1}. If for each vector (l1, . . . , lk) ∈ Lk the
least prefix-point of the order preserving function |φ|(l1, . . . , ls−1, z,
ls, . . . , lk) exists, then we define |µs.φ| to be:

|µs.φ|(l1, . . . , lk) = µz.|φ|(l1, . . . , ls−1, z, ls, . . . , lk) .

Otherwise |µs.φ| is undefined.

5. As in 4, but substituting each symbol µ with the symbol ν, and
the word least prefix-point with the word greatest postfix-point.

Definition 3.3 A lattice L is a µ-lattice if the interpretation of terms
φ ∈ Λω is a total function. Let L1, L2 be two µ-lattices. An order
preserving function f : L1

- L2 is a µ-lattice morphism if the equality
|φ|◦fa(φ) = f ◦|φ| holds for all φ ∈ Λω. We shall write Lω for the category
of µ-lattices.

Definition 3.4 We define classes of terms Σn,Πn,Λn ⊆ Λω, for n ≥
0. We set Σ0 = Π0 = Λ0, where Λ0 is the least class which contains∨
k and

∧
k, k ≥ 0, and which is closed under substitution (rule 3 of

definition 3.1). Suppose that Σn and Πn have been defined. We define
Σn+1 to be the least class of terms which contains Σn ∪ Πn and which is
closed under substitution and the µ-operation (rule 4 of definition 3.1).
Similarly, we define Πn+1 to be the least class of terms which contains
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Σn ∪ Πn and which is closed under substitution and the ν-operation
(rule 5 of definition 3.1). We let Λn = Πn+1 ∩ Λn+1 and observe that
Λω =

⋃
n≥0 Σn =

⋃
n≥0 Πn =

⋃
n≥0 Λn.

Definition 3.5 We say that a lattice is a Σn-model if for every φ ∈ Σn

|φ| : La(φ) - L is defined. Let L1, L2 be two Σn-models, an order
preserving function f : L1

- L2 is a morphism of Σn-models if for
every φ ∈ Σn the equality f ◦ |φ| = |φ| ◦ fa(φ) holds. We let Sn be
the category of Σn-models and morphisms of Σn-models. We define in a
similar way a Πn-model, a morphism of Πn-models and the category Pn,
a Λn-model, a morphism of Λn-models and the category Ln.

Clearly L0 is the category of lattices and we have inclusion of categories

L0

S1

��
Oo��

P1

__
/ O??

L1

__
/ O??

��
Oo��

. . . oo ? _ Ln−1

Sn
��

Oo��

Pn

__
/ O??

Ln

__
/ O??

��
Oo��

. . . oo ? _ Lω

The alternation hierarchy problem for the theory of µ-lattices can
be stated in the following way: is there a number n ≥ 0 and a category
Cn among Sn,Pn,Ln such that the inclusion functor Lω ⊂ - Cn is an
equivalence of categories? If such a Cn exists, then Cn = Lω, since if P
is a partially ordered set which is order-isomorphic to a µ-lattice, then it
is itself a µ-lattice; as a consequence for every m > n all the Sm,Pn and
Ln are equal to Lω.

Theorem 3.6 The alternation hierarchy for the theory of µ-lattices is
strict, i.e. there is no positive integer n such that Ln = Lω.

Proof. For every n ≥ 0, we exhibit in 4.12 a sub-Λn-model Jn,P of the
free µ-lattice JP over the partially ordered set P . The Λn-model Jn,P
is the free Λn-model over the partially ordered set P , in particular it
is generated by P and the inclusion in,P : Jn,P ⊂ - JP preserves the
generators. If Ln = Lω, then in,P has to be an isomorphism; however, we
show in 6.2 that in,P is a proper inclusion for every n ≥ 0 if P contains
an antichain of cardinality six. �
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The alternation hierarchy problem for a class K of µ-lattices can be stated
as follows. Let Kω be the quasi-variety generated by the class of µ-
lattices K in Lω, by which we mean the closure of the full sub-category
determined by objects in K under products, sub-objects and regular epis.
Similarly let Kn be the quasi-variety generated by the class K in Ln. The
inclusion functors Lω ⊂ - Ln restrict to inclusions Kω

⊂ - Kn and
the problem is to determine whether there exists a number n ≥ 0 such
that the above inclusion is an equivalence. The above theorem has the
following consequence.

Theorem 3.7 The alternation hierarchy for the class of complete lat-
tices is strict.

Proof. Let K be the class of complete lattices. Since every free µ-lattice
can be embedded in a complete lattice by a morphism of µ-lattices, as
proved in [San00a, San00b], then Kω = Lω. Similarly Kn = Ln, since
Jn,P is the free Λn-model, so that free Λn-models can be embedded into
complete lattices. However Ln 6= Lω. �

The theory of µ-lattices has an equivalent presentation by means of a
class J of partial games, cf. 2.2, which are a sort of combinatorial terms.
A partial game G in this class comes always with its set of partial final
positions XG; given a lattice L we can define the partial interpretation of
games G ∈ J as order preserving functions |G| : LXG - L. A lattice
L turns out to be a µ-lattice if and only if the interpretation of a partial
game G ∈ J is always defined.

Definition 3.8 A partial gameG is in the class L if and only if 〈G0, G1, g0〉
is a finite tree with back edges and moreover γ ∈ Wσ if and only if
ε(rγ) = π. If G ∈ L, we denote by R(G) the set of positions which are
returns of 〈G0, G1, g0〉 and by χ(G) the number cardG0 + cardR(G).

When specifying a partial game G ∈ L we shall omit to give the set Wσ,
since this is determined by the underlying tree with back edges and the
coloring ε.

Definition 3.9 On the class L the following constants and operations
are defined.
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0. x is the partial game with just one partial final position, which we
call again x.

1. Let I be a finite set, the partial game
∧
I has starting position

∧0 6∈ I, ε(∧0) = π, partial final positions i and moves ∧0 → i for
every i ∈ I.

2. Let I be a finite set, the partial game
∨
I is defined in a similar way:

it has starting position ∨0 6∈ I, ε(∨0) = σ, partial final positions i
and moves ∨0 → i for every i ∈ I.

3. Substitution. Let G and H be partial games in L and let x ∈ XG.
The underlying pointed graph of the game G[H/x] is obtained by
substitution of the tree with back edges underlying H for x in
the tree with back edges underlying G. The coloring ε is defined
accordingly, i.e. if g 6= x is a position coming from G0, then ε(g) is
as in G, otherwise, for a position h coming from H0, ε(h) is as in
H .

4. µ-operation. Let G ∈ L be a partial game and let x ∈ XG. The
underlying graph of the game µx.G[x] is the same as the underlying
graph of G with one more move x → g0. The initial position of
µx.G[x] is x and we let ε(x) = σ.

5. ν-operation. Let G ∈ L be a partial game and let x ∈ XG. The
underlying pointed graph of νx.G[x] is the same as the underlying
graph of µx.G[x], however we let ε(x) = π.

It is useful to have a picture of those operations.

0. The game x is

x?>=<89:;

1. 2. Let I = {i1, . . . , in} be a finite set. The games
∧
I and

∨
I are:

π?>=<89:;

i1?>=<89:;
����

��
��

�

i2?>=<89:;
��

. . . in?>=<89:;''OOOOOOOOOOOOO σ?>=<89:;

i1?>=<89:;
����

��
��

�

i2?>=<89:;
��

. . . in?>=<89:;''OOOOOOOOOOOOO
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3. Let G,H be partial games in L and let x ∈ XG. We represent those
games as:

��
��
��
��
��

//
//

//
//

//

G

x?>=<89:;
��/

// ��
��
��
��
��

//
//

//
//

//

H

The game G[H/x] can be represented as:

��
��
��
��
��

//
//

//
//

//

G

��/
//

//

��
��
��
��
��

//
//

//
//

//

H

4. 5. Let G be a partial game in L and let x ∈ XG. This game can be
represented as above. We represent the games µx.G[x] and νx.G[x]
as:

σ?>=<89:;
��

��
��
��
��
��

//
//

//
//

//

G BC

ee π?>=<89:;
��

��
��
��
��
��

//
//

//
//

//

G BC

ee

Definition 3.10 We let J be the class of games G ∈ L for which the
following two conditions hold, for every r ∈ R(G):

1. there exists a unique back edge P (r) → r,

2. there exists a unique move r → S(r).

We let K be the class of games G ∈ L for which only the first of the two
conditions above holds, for any r ∈ R(G).
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We have the inclusion of classes J ⊆ K ⊆ L, but those classes are
essentially the same. A more detailed account of the equivalence between
J and K is given in the proof of theorem 5.2.

We shall write G = H if G,H are partial games and there exists an
isomorphism of structure between them. This means that there exists an
isomorphism f of the underlying pointed graphs such that ε = ε ◦ f0 and
such that γ ∈ Wσ if and only if f ◦ γ ∈ Wσ. Substitution satisfies the
commutativity rule (G[H/x])[K/y] = (G[K/y])[H/x] if x, y ∈ XG and
x 6= y. Hence if {Hx }x∈XG is a collection of games in L, we shall write
by G[Hx/x ]x∈XG for any sequence of substitutions.

Remark 3.11 It is possible to show that the class J is the least subclass
of L which is closed under the constants and the operations of definition
3.9. Indeed, a stronger result holds: a partial game G ∈ J has a unique
form x,

∧
I [Hi/i]i∈I ,

∨
I [Hi/i]i∈I , µx.H [x], νx.H [x], where H or the Hi

satisfy χ(H) < χ(G) and χ(Hi) < χ(G). Hence, in what follows, we shall
be able to define by induction on the structure of partial games in J .

In a similar way as we did before, we define a partial interpretation for
games in J .

Definition 3.12 Let L be a lattice. We define an interpretation of par-
tial games G ∈ J as order preserving functions |G| : LXG - L. The
correspondence sending G to |G| is in general only a partial function, i.e.
|G| could sometime be undefined.

0. Let G = x so that XG = {x}. We let |G|(λ) = λ(x).

1. Let G =
∧
I [Hi/i]i∈I , so that XG =

∑
i∈I XHi . If the { |Hi| }i∈I are

defined, then we define

|G|(λ) =
∧

i∈I
|Hi|(λHi) ,

where λHi is the restriction of λ to XHi. Otherwise |G| is undefined.

2. As in 1, but substituting each symbol
∧

with the symbol
∨

.

4. Let G = µx.H [x] so that XH = XG ∪ {x}. If |H| is defined and if
also for each collection λ ∈ LXG there exists the least prefix-point
of the unary order preserving function

φ( l ) = |H|(λl) ,

14



where λl(y) = λ(y) if y 6= x and λl(x) = l, then we define

|G|(λ) = µz.φ( z ) .

Otherwise |G| is undefined.

5. As in 4, but substituting each symbol µ with the symbol ν, and
the word least prefix-point with the word greatest postfix-point.

Proposition 3.13 A lattice L is a µ-lattice if and only if |G| is defined
on L for every game G ∈ J . An order preserving function f : L1

- L2

is a µ-lattice morphism if for all G ∈ J we have f ◦ |G| = |G| ◦ fXG , i.e.

f( |G|(λ) ) = |G|( f ◦ λ ) ,

for every λ ∈ LXG1 .

Proof. Using the correspondence between the rules of definition 3.1 and
the operations defined in 3.9, inductively define for each φ ∈ Λω a pair
〈Gφ, λφ〉 where Gφ ∈ J and λφ : a(φ) - XGφ is a bijection, with the
following property: for each lattice L, Gφ is defined on L if and only if φ
is defined and moreover

|φ|(λ) = |Gφ|(λ ◦ λφ) .
This shows that if L is a lattice such that |G| is defined on L for every
G ∈ J , then L is a µ-lattice. The above formula leads to show that if f
preserves the interpretation of games, then it is a µ-lattice morphism:

f ◦ |φ|(λ) = f ◦ |Gφ|(λ ◦ λφ)
= |Gφ|(f ◦ λ ◦ λφ)
= |φ|(f ◦ λ) .

On the other hand, assign to each G ∈ J a pair 〈φG, λG〉 where φG ∈ Λω

and λG : a(φG) - XG is a bijection, so that for each lattice L, |φG| is
defined on L if and only if |G| is defined on L; moreover

|φG|(λ) = |G|(λ ◦ λG) .

This is done by induction on the structure of games in J , cf. 3.11. The
game x is sent to

∧
1, the game

∧
I [Gi/i]i∈I is sent to

∧
k ◦(φGψ(1)

, . . . , φGψ(k)
),
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where ψ : k - I is a bijection, and µx.G[x] is sent to µs.φG where s =
λ−1
G (x). Similar definitions are given for games of the form

∨
I [Gi/i]i∈I

and νx.G[x].

The above assignment leads to show that if L is a µ-lattice, i.e. if for
each φ ∈ Λω |φ| is defined on L, then for every G ∈ J |G| is defined on L
too. A morphisms which preserves the interpretation of terms will also
preserve the interpretation of games:

f ◦ |G|(λ) = f ◦ |G|(λ ◦ λ−1
G ◦ λG)

= f ◦ |φG|(λ ◦ λ−1
G )

= |φG|(f ◦ λ ◦ λ−1
G )

= |G|(f ◦ λ ◦ λ−1
G ◦ λG)

= |G|(f ◦ λ) .

�

Definition 3.14 We define by induction classes of partial games Sn,Pn,
Ln, for n ≥ 0. We set S0 = P0 = L0, where L0 is the least class which
contains x,

∨
I and

∧
I , where I is a finite set, and which is closed under

substitution. Suppose that Sn and Pn have been defined. We define Sn+1

to be the least class of games which contains Sn ∪Pn and which is closed
under substitution and the µ-operation. Similarly, we define Pn+1 to be
the least class of games which contains Sn∪Pn and which is closed under
substitution and the ν-operation. We let Ln = Sn+1 ∩ Pn+1 and observe
that J =

⋃
n≥0 Sn =

⋃
n≥0 Pn =

⋃
n≥0 Ln.

Proposition 3.15 A lattice is a Σn-model if and only if for every G ∈ Sn
|G| : LXG - L is defined. Let L1, L2 be two Σn-models, an order
preserving function f : L1

- L2 is a morphism of Σn-models if and only
if for every G ∈ Sn we have f ◦ |G| = |G| ◦ fXG . Analogous results hold
for the classes Pn and Ln, Πn-models, and Λn-models, Πn-morphisms
and Λn-morphisms, respectively.

Proof. The transformation of terms into partial games φ - 〈Gφ, λφ〉,
which we defined in the proof of proposition 3.13, restricts to a transfor-
mation Σn

- Sn, so that if G is defined on L for every G ∈ Sn, then L
is a Σn-model, and a lattice morphism which preserves the interpretation
of every partial game in Sn is a morphism of Σn-models.
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In a similar way the transformation G - 〈φG, λG〉 carries partial games
in Sn into terms in Σn. �

In the rest of this section we give a combinatorial characterization of the
classes Sn,Pn,Ln.

Definition 3.16 Let G ∈ L. A chain C in G is a totally ordered subset
{r0 < . . . < rk} ⊆ R(G) such that:

1. ε(ri) 6= ε(ri+1), for i = 0, . . . , k − 1,

2. for i = 0, . . . , k − 1, there is a cycle γ of G such that rγ = ri and
ri+1 lies on γ.

We say that C is a σ-chain if ε(r0) = σ, otherwise we say that C is a
π-chain. We shall write C @ G if C is a chain in G, C @σ G if C is
σ-chain in G and C @π G if C is a π-chain in G.

Definition 3.17 Let G ∈ L, we define

L(G) = max{ cardC |C @ G } ,
Lσ(G) = max{ cardC |C @σ G } ,
Lπ(G) = max{ cardC |C @π G } .

For every n ≥ 0, we define the class Ln ⊆ J by saying that G ∈ Ln if
and only if L(G) ≤ n. We let S0 = P0 = L0. For every n ≥ 1 we define
the classes Sn, Pn by saying that

G ∈ Sn if and only if Lσ(G) ≤ n and Lπ(G) ≤ n− 1 ,

G ∈ Pn if and only if Lσ(G) ≤ n− 1 and Lπ(G) ≤ n .

Proposition 3.18 We have equalities Ln = Ln, for n ≥ 0 and Sn = Sn,
Pn = Sn, for n ≥ 1.

Proof. We prove the proposition for n = 0. Observe that G ∈ L0 if and
only if every chain has cardinality less or equal to 0, i.e. the only chain
is the empty set. This happens if and only if there are no returns in G,
since a return r gives rise to a chain {r}. It is clear that G ∈ L0 if and
only if R(G) = ∅.
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Suppose that Sn = Sn and that Pn = Pn.

We shall show first that Sn ∪ Pn ⊆ Sn+1 and that Sn+1 is closed under
substitution and the µ-operation.

It is clear from the definition that Sn∪Pn ⊆ Sn+1, so that Sn∪Pn ⊆ Sn+1.
The class Sn+1 is closed under substitution: every chain in G[H/x] is
either a chain from G[x] or a chain of H , since if g ∈ G0 and h ∈ H0, then
there is no cycle γ of G[H/x] on which both g and h lie. It is also closed
under the µ-operation. Let G[x] be in Sn+1 and let C = {r0, . . . , rk} be
a chain in µx.G[x]. Observe first that if r0 6= x then {r0, . . . , rk} is also
a chain of G[x]. This is because a cycle γi such that rγi = ri does not
contain the transition x → S(x), otherwise rγi = x. If C is a π-chain,
then r0 6= x so that C is a π-chain of G[x] and cardC ≤ n. If C is a
σ-chain, we distinguish two cases: either r0 6= x, so that C is also a chain
of G[x] and cardC ≤ n + 1; or r0 = x, then {r1, . . . , rk} is a π-chain in
G[x], so that k ≤ Lπ(G[x]) ≤ n and cardC = k + 1 ≤ n+ 1.

We shall now prove that if C ⊆ J is a class such that Sn ∪Pn ⊆ C which
is also closed under substitution and the µ-operation, then Sn+1 ⊆ C. If
G ∈ Sn+1 we let ζ(G) be the number

card {C @σ G | cardC = n + 1},
and prove that G ∈ C by induction on ζ(G).

Suppose that ζ(G) = 0. Then all chains of G have cardinality less than
n so that G ∈ Ln.

Lemma 3.19 The class Ln is the closure under substitution of Sn ∪Pn.

Proof. Indeed, given G ∈ Ln, if we can pick up a return r which is a
complete vertex distinct from the root, then we can write G = G↓

r [G
r
↓/r]

and deduce that G belongs to the closure of Sn ∪ Pn under substitution
by the inductive hypothesis that this property holds for both G↓

r and Gr
↓.

If this is not possible, then every return of G lies on the same strongly
connected component. Indeed it suffices to observe that if there is a
return, then there is a unique minimal return; which, being a complete
vertex, is then the root. For every other return, we can find a cycle on
which both r and the root lie. Indeed, a return r is either the root, or else
we can find a path γ from r to a return r′ 6= r which lies on γr. In this
way we construct by induction a path from r to the root, and therefore
a cycle on which both r and the root lie.
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To prove the lemma, it is then enough to observe that if G ∈ L is
such that L(G) = n and every return of G lies on the same strongly
connected component, then G ∈ Sn ∪ Pn. Suppose we can find a σ-
chain {r0, . . . , rn−1} as well as a π-chain {r′0, . . . , r′n−1} in G, both of
cardinality n. Choose a cycle γ on which both r0, r

′
0 lie. If ε(rγ) = π,

then {rγ, r0, . . . , rn−1} is a π-chain of cardinality n+1. If ε(rγ) = σ, then
{rγ, r′0, . . . , r′n−1} is a σ-chain of cardinality n + 1. This contradicts the
hypothesis that G ∈ Ln. �

Using the lemma we conclude that if G ∈ Sn+1 and ζ(G) = 0, then G ∈ C,
since C contains Sn ∪ Pn = Sn ∪ Pn and is closed under substitution.

So suppose that ζ(G) ≥ 1. Consider the following order on σ-chains C
such that cardC = n+ 1:

{r0, . . . , rn} ≤ {r′0, . . . , r′n} if and only if

{r1, . . . , rn} = {r′1, . . . , r′n} and r0 is an ancestor of r′0.

Choose a σ-chain C = {r0, . . . , rn} which is minimal with respect to this
order. We claim that r0 is a complete vertex, i.e. we can represent G as
G↓
r0[G

r0
↓ /r0], so that Gr0

↓ = µr0.H [r0].

Suppose that r0 is not a complete vertex. We can find a return r which
is a proper ancestor of r0 and a cycle γ on which r, r0 lie and such that
rγ = r. If ε(r) = π then {r, r0, . . . , rn} is a π-chain in G of cardinality
n+ 2, against the assumptions. If ε(r) = σ, then {r, r2, . . . , rn+1} is a σ-
chain which is strictly smaller than C in the previous order, contradicting
again the hypothesis.

Since ζ(G↓
r0

[r0]) < ζ(G) and similarly ζ(H [r0]) < ζ(G), by the induction
hypothesis, we have G↓

r0
[r0] ∈ C and H [r0] ∈ C. Since C is closed under

substitution and the µ-operation, we see that G = G↓
r0 [µr0.H [r0]/r0] ∈ C.

A similar argument shows that Pn+1 = Pn+1.

By definition it is also clear that Ln = Sn+1 ∩ Pn+1, so that Ln = Ln.
This ends the proof of proposition 3.18. �

4 Free µ-lattices and free Λn-models

The goal of this section is to review the characterization of free µ-lattices.
We shall then describe a canonical sub-Λn-model of a free µ-lattice JP
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and argue that it is the free Λn-model over the partially ordered set P .

Definition 4.1 Let P be a partially ordered set. A game over P is a
pair 〈G, λ〉 where G is a game in K and λ : XG

- P is a valuation
of the partial final positions in P . We write K(P ) for the class of games
over P and J (P ) for the subclass of pairs 〈G, λ〉 such that G ∈ J .

We can understand a game over P as a game with complete information
with a payoff function taking values in the partially ordered set P . Player
σ is trying to maximize his payoff, while his opponent π is trying to
minimize the payoff; however, we can also adopt the opponent’s view
and think of G as a game over P op, so player π is also trying to maximize
the payoff but in the dual poset.

We shall use the simplified notation G for a game 〈G, λ〉 over P , leaving
in the background the valuation λ : XG

- P . In particular, let G ∈ K,
let {〈Hx, λx〉}x∈XG be a collection of elements of K(P ), and observe that
the set XG[Hx/x]x∈XG is the disjoint union of the sets XHx for x ∈ XG; the
notation G[Hx/x]x∈XG will abbreviate 〈G[Hx/x]x∈XG, λ〉, where λ(y) =
λx(y) whenever y ∈ XHx .

We describe now a preorder on the class K(P ). This is done by construct-
ing a game 〈G,H〉, where G,H ∈ K(P ), and by saying that G ≤ H
if one of the players, Mediator, has a winning strategy in this game,
cf. 2.3. This game, which is essentially the same game described in
[Bla92, Joy97], is played on the two boards G and H at the same time.
One player, the one we call Mediator and denote by the letter M , is a
team composed by player π on G and player σ on H ; the other player,
whom we call the Opponents and denote by the letter O, is formed out of
player σ on G and player π on H . Mediator, in order to choose a move,
must wait for the Opponents to have exhausted their moves on both
boards. Mediator’s goal is to reach a pair of positions (x, y) ∈ XG×XH ,
such that λ(x) ≤ λ(y); in the case of an infinite play, his goal is to win
on at least one board. We picture the game as follows:

σ :
��
��
��
��
��

//
//

//
//

//

G : π −M − σ :
��
��
��
��
��

//
//

//
//

//

H : π
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The frame around Mediator’s team is meant to suggest that Mediator
can behave like a single player, like a master playing on different chess
boards, where the Opponents are indeed two distinct players, since they
do not get any advantage from sharing information. We formally define
the game 〈G,H〉 as follows.

Definition 4.2 Let G,H ∈ K(P ). The game 〈G,H〉 is defined as:

• Positions of 〈G,H〉 are pairs of positions from G and H . The initial
position is (g0, h0).

• The coloring ε(g, h) is calculated as ε(g) · ε(h) ∈ {?,M,O}, where
the product is given by the table:

· π σ 0
σ O O O
π O M M
0 O M ? .

If ε(x) · ε(y) =?, i.e. if x ∈ XG and y ∈ XH , then ε(x, y) = O if
and only if λ(x) ≤ λ(y): the pair (x, y) becomes a winning final
position for Mediator exactly when λ(x) ≤ λ(y).

• Moves of 〈G,H〉 are either left moves (g, h) → (g′, h), where g →
g′ ∈ G1, or right moves (g, h) → (g, h′), where h → h′ ∈ H1;
however, the Opponents can play only with σ on G or with π on
H . This means that the set of moves is obtained from the set
G1 ×H0 +G0 ×H1 by removing right moves (g, h) → (g, h′) when-
ever (ε(g), ε(h)) = (σ, σ) and left moves (g, h) → (g′, h) whenever
(ε(g), ε(h)) = (π, π).

A morphism of graphs from (the graph underlying) 〈G,H〉 to the
free category on (the graph underlying) G, is defined as follows:
(g, h)G = g and if τ = (g, h) → (g′, h) is a left move, then τG =
g → g′, if τ = (g, h) → (g, h′) is a right move, then τG = 1g. This
morphism is extended to a convex functor from the free category on
〈G,H〉 to the free category on G and to a correspondence sending
infinite paths in 〈G,H〉 to finite or infinite paths in G. We call
all these three correspondences left projection and denote them by
( )L or ( )G. The right projection, denoted by ( )R or ( )H , is
defined in an analogous way.
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• An infinite play γ is a win for Mediator if and only if either its
left projection γG is an infinite play and ε(rγG) = σ, or its right
projection γH is an infinite play and ε(rγH ) = π.

Definition 4.3 Let G,H ∈ K(P ) be games over P . We declare that
G ≤ H if and only if Mediator has a winning strategy in the game
〈G,H〉.

We remark that if Mediator has a winning strategy in the game 〈G,H〉,
then he has also a bounded memory winning strategy, cf. 2.4. This
follows from [San00a, §4] and from well known facts of the theory of
games played on finite graphs [Tho97, Zie98].

Proposition 4.4 Let G,H,K ∈ K(P ) be games over P . Then G ≤ G
and if G ≤ H and H ≤ K, then G ≤ K.

Definition 4.5 Let G,H ∈ J (P ). We write G ≡ H if G ≤ H and
H ≤ G, so that ≡ is an equivalence relation. We shall denote by [G] the
equivalence class of G and by JP the set of those equivalence classes.

The following is the main achievement of [San00b].

Theorem 4.6 For every ordered set P , JP is a µ-lattice, where if G ∈ J
and { [Hx] }x∈XG ∈ J XG

P , then

|G|{ [Hx] }x∈XG = [G[Hx/x]x∈XG ] .

The µ-lattice JP is free over P , i.e. it comes with an embedding ηP :
P- - JP with the following universal property: if f : P - L is an
order preserving function from P to a µ-lattice L, then there exists a
unique morphism of µ-lattices f̃ such that f̃ ◦ ηP = f .

We shall review here the concepts developed to prove proposition 4.4,
since we will need them later.

We proved that G ≤ G by exhibiting the copycat strategy in 〈G,G〉. It
is played as follows. From a position of the form (g, g) it is always the
case that the Opponents have to move just on one board. When they
stop moving, if they do, Mediator will have the opportunity to copy all
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the moves played by the Opponents so far on the other board until the
play again reaches a position of the form (g′, g′).

We proved that if G ≤ H and H ≤ K then G ≤ K, by describing a game
〈G,H,K〉 with the two following properties: given two winning strategies
R and S on 〈G,H〉 and 〈H,K〉 there exists a winning strategy R||S on
〈G,H,K〉; given a winning strategy T on 〈G,H,K〉 there exists a winning
strategy T\H on 〈G,K〉. The game 〈G,H,K〉 is obtained by gluing the
games 〈G,H〉 and 〈H,K〉 along the center board H . One player, whom
we call the Mediators and denote by the letter M , is a team composed
by Mediator on 〈G,H〉 and Mediator on 〈H,K〉; the other player, called
the Opponents and denoted by the letter O, is formed out of player σ on
G and player π on K. The Mediators can exchange information through
the center board H . The game can be pictured as follows:

σ :
��
��
��
��
��

//
//

//
//

//

G : π − σ :
��
��
��
��
��

//
//

//
//

//

H : π − σ :
��
��
��
��
��

//
//

//
//

//

K :π

Definition 4.7 Let G,H,K ∈ K(P ). The game 〈G,H,K〉 is defined as
follows:

• Positions of 〈G,H,K〉 are triples of positions (g, h, k) ∈ G0 ×H0 ×
K0. The initial position is (g0, h0, k0).

• The coloring ε(g, h, k) is calculated as ε(g) ·ε(k) ∈ {?, O,M}, where
the product is given by the table of page 21. If ε(x) · ε(z) =?, i.e.
if x ∈ XG and z ∈ XK , then if ε(h) 6= 0, then ε(x, h, z) = M ,
otherwise, if also h = y ∈ XH , then ε(x, y, z) = O if and only if
λ(x) ≤ λ(y) ≤ λ(z).

• Moves of 〈G,H,K〉 are either left moves (g, h, k) → (g′, h, k), where
g → g′ ∈ G1, or central moves (g, h, k) → (g, h′, k), where h →
h′ ∈ H1, or right moves (g, h, k) → (g, h, k′), where k → k′ ∈ K1;
however, the Opponents can play only with σ on G or with π on
K. Several kind of projections on subsets of the three boards can
be defined as in definition 4.2; they will be denoted ( )G, ( )H ,
( )K , ( )〈G,H〉, ( )〈H,K〉, ( )〈G,K〉. Observe that for every path γ,
finite or infinite, (γ〈G,H〉)G = (γ〈G,K〉)G = γG and similar equalities
hold in the other cases.
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• An infinite play γ is a win for the Mediators if and only if its
left projection γG is an infinite play and ε(rγG) = σ, or its right
projection γK is an infinite play and ε(rγK ) = π.

Definition 4.8 Let R be a winning strategy for Mediator in 〈G,H〉 and
let S be a winning strategy for Mediator in 〈H,K〉. A strategy R||S for
the Mediators in the game 〈G,H,K〉 is described by the formula

R||S = { γ | γ〈G,H〉 ∈ R and γ〈H,K〉 ∈ S } .
Let T be a winning strategy for the Mediators in the game 〈G,H,K〉.
A strategy T\H for Mediator in the game 〈G,H,K〉 is defined by the
formula

T\H = { γ〈G,K〉 | γ ∈ T } .

Proposition 4.9 The strategy R||S is a winning strategy for the Medi-
ators in the game 〈G,H,K〉.

Proof. We check that all the conditions of definition 2.3 are satisfied.

If γ ∈ R||S then γ〈G,H〉 ∈ R and γ〈H,K〉 ∈ S, so that dom γ〈G,H〉 =
(g0, h0) and dom γ〈H,K〉 = (h0, k0). Let dom γ = (g, h, k), then (g, h) =
(dom γ)〈G,H〉 = dom γ〈G,H〉 = (g0, h0), similarly (h, k) = (h0, k0), so that
dom γ = (g, h, k) = (g0, h0, k0).

Suppose that γ ? τ ∈ R||S. From γ〈G,H〉 ? τ〈G,H〉 = (γ ? τ)〈G,H〉 ∈ R, we
argue that γ〈G,H〉 ∈ R; similarly γ〈H,K〉 ∈ S, so that γ ∈ R||S.

Let γ be a path in R||S and let (g, h, k) = cod γ.

Firstly, let us assume that ε(g, h, k) = O. If τ is a move available to
the Opponents from this position, then it is either a left move or a right
move. Suppose it is a left move, say τ = (g, h, k) → (g′, h, k). We
deduce that ε(g) = σ, which in turn implies that ε(g, h) = O. Since
γ〈G,H〉 ∈ R and cod γ〈G,H〉 = (g, h), then the path γ〈G,H〉 ? τ〈G,H〉 ∈ R. We
deduce that γ ? τ ∈ R||S, since ( γ ? τ )〈G,H〉 = γ〈G,H〉 ? τ〈G,H〉 ∈ R and
( γ ? τ )〈H,K〉 = γ〈H,K〉 ∈ S. If τ is a right move, then a similar argument
shows that γ ? τ ∈ R||S.

Suppose now that ε(g, h, k) = M . If ε(h) = 0 then either ε(g) = π or
ε(k) = σ, suppose ε(g) = π. In this case ε(g, h) = M , and we can find a
transition τ of 〈G,H〉 such that γ〈G,H〉 ?τ ∈ R. Since τ = (g, h) → (g′, h)
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is a left move, we can lift it to a left move τ ′ = (g, h, k) → (g′, h, k), so
that γ ? τ ′ ∈ R||S since (γ ? τ ′)〈G,H〉 = γ〈G,H〉 ? τ ∈ R and (γ ? τ ′)〈H,K〉 =
γ〈H,K〉 ∈ S. We can reason similarly if ε(k) = σ.

Suppose that ε(h) ∈ {σ, π}, say ε(h) = σ. In this case ε(g, h) = M , and
we can find a transition τ of 〈G,H〉 such that γ〈G,H〉 ?τ ∈ R. If τ is a left
move, then we lift it to τ ′ as before and conclude that γ?τ ′ ∈ R||S. Hence
suppose that τ = (g, h) → (g, h′) is a right move. Since ε(h) = σ, we
deduce that ε(h, k) = O, so that γ〈H,K〉?τ̃ ∈ S, where τ̃ = (h, k) → (h′, k).
If we set τ ′ = (g, h, k) → (g, h′, k), we deduce that γ ? τ ′ ∈ S||R, since
(γ ? τ ′)〈G,H〉 = γ〈G,H〉 ? τ ∈ R and (γ ? τ ′)〈H,K〉 = γ〈H,K〉 ? τ̃ ∈ S. We can
reason similarly if ε(h) = π.

Suppose now that (g, h, k) = (x, y, z), x ∈ XG, y ∈ XH , z ∈ XK . Since
cod γ〈G,H〉 = (x, y), we deduce that ε(x, y) = O, so that λ(x) ≤ λ(y).
Since cod γ〈H,K〉 = (y, z), we deduce that ε(y, z) = O, so that λ(y) ≤ λ(z).

Consider an infinite play γ in 〈G,H,K〉 which is the result of playing in
this way. Either γ〈G,H〉 is an infinite play, or γ〈H,K〉 is an infinite play;
we suppose the first. If ε(γG) is not an infinite winning play for player
π in G, then γH is an infinite winning play for σ on H : indeed, the pair
(γG, γH) is the left and right projection of the infinite play γ〈G,H〉, which
has been played according to the winning strategy R. We can then argue
that γ〈H,K〉 is also an infinite play, moreover it has been played according
to the winning strategy S. Since γH is not an infinite winning play for
π on H , and the pair (γH , γK) is the left and right projection of γ〈H,K〉,
it follows that γK is an infinite winning play for σ on K. A similar
argument is used if γ〈H,K〉 is an infinite play. �

Proposition 4.10 The strategy T\H is a winning strategy for Mediator
in the game 〈G,K〉.

Proof. Let γ ∈ T , then dom γ = (g0, h0, k0), so that dom γ〈G,K〉 =
(dom γ)〈G,K〉 = (g0, k0). Similarly, if γ〈G,K〉 = γ1 ? τ , then we can find a
factorization γ = γ′1 ? γ

′
2 such that (γ′1)〈G,K〉 = γ1 and (γ′2)〈G,K〉 = τ . It

follows that γ1 ∈ T\H .

Choose a play γ ∈ T and suppose that cod γ = (g, h, k), so that cod γ〈G,K〉 =
(g, k).

Suppose that ε(g, k) = O and let τ be a move available to the Opponents
from (g, k). If τ = (g, h) → (g′, h) is a left move, then ε(g) = σ, and
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therefore ε(g, h, k) = O. The transition τ ′ = (g, h, k) → (g′, h, k) is a
move of 〈G,H,K〉, hence γ ? τ ′ ∈ T and γ〈G,K〉 ? τ = γ〈G,K〉 ? τ ′〈G,K〉 =

(γ ? τ ′)〈G,K〉 ∈ T\H .

Suppose that ε(g, k) = M , and observe that ε(g, h, k) = M ; we must find
a transition τ such that γ〈G,K〉 ? τ ∈ T\H . Suppose also that we have
constructed paths {γi}i=0,...,n with the following properties: |γj| = j, γi
is a prefix of γj if i ≤ j, γ ? γi ∈ T and (γ ? γi)〈G,K〉 = γ〈G,K〉. Since
ε(cod γ ? γn) = M , there exists a transition τ such that γ ? γn ? τ ∈ T .
If τ is a left or right transition, then τ〈G,K〉 is a transition of 〈G,K〉, so
that γ〈G,K〉 ? τ〈G,K〉 ∈ T\H , and we are done. If τ is a central transition,
then we extend the above collection by letting γn+1 = γn ? τ . Since we
cannot build an infinite collection {γn}n≥0 with the above properties –
the infinite path {γ ? γn}n≥0 is played according to the winning strategy
T , but it is not a win for the Mediators in 〈G,H,K〉 – we shall eventually
find n ≥ 0 and a right or left transition τ such that γ ? γn ? τ ∈ T .

Finally, consider an infinite path γ = {γn}n≥0 played according to the
strategy T\H . Consider the set of paths

T (γ) = { γ′ ∈ T | γ′〈G,K〉 ∈ {γn}n≥0 } .
The set T (γ) is closed under prefixes and it is infinite. Hence, it has the
structure of a finitely branching infinite tree and we can find an infinite
path γ′ = {γ′k} on this tree, which is a subtree of T , such that γ′〈G,K〉 = γ.

Since T is a winning strategy, we have that ε(rγG) = ε(rγ′G) = σ or
ε(rγK ) = ε(rγ′K ) = σ.

This concludes the proof of proposition 4.4. �

Definition 4.11 For every [G] ∈ JP , we define L[G] to be the number

min{n |L(H) = n ,H ∈ [G]}
and let

Jn,P = { [G] |L[G] ≤ n } .

Proposition 4.12 The set Jn,P is a sub-Λn-model of JP and the em-
bedding ηP : P- - JP restricts to an embedding ηn,P : P- - Jn,P .
With this structure Jn,P is free over of P , i.e. the above embedding has
the usual universal property with respect to order preserving functions
with codomain a Λn-model.
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Proof. Let G be a game in Ln and { [Hx] }x∈XG be a collection of elements
in Jn,P ; we must prove that |G|{ [Hx] }x∈XG ∈ Jn,P . For each x ∈ XG

choose H ′
x ∈ [Hx] such that L(H ′

x) ≤ n, so that [Hx] = [H ′
x]. The

equalities

|G|{ [Hx] }x∈XG = |G|{ [H ′
x] }x∈XG

= [G[H ′
x/x]x∈XG ]

shows that |G|{ [Hx] }x∈XG ∈ Jn,P , since G ∈ Ln, H ′
x ∈ Ln and Ln is

closed under substitution. Since ηP (p) = [x, λp], where λp(x) = p, it is
clear that ηP (p) ∈ Jn,P .

As a Λn-model, Jn,P is isomorphic to Ln,P , the antisymmetric quo-
tient of the preordered class Ln(P ) of pairs 〈G, λ〉 with G ∈ Ln, and
we shall prove freeness of Ln,P . Observe first that the correspondence
〈G, λ〉 - 〈G, f ◦ λ〉, induced by an ordered preserving function f :
P - Q, induces an order preserving correspondence Ln(f) :
Ln(P ) - Ln(Q), and a morphism of Λn-models Ln,f : Ln,P - Ln,Q.
This makes up a functor Ln and ηn is then a natural transformation in
the obvious sense.

On the other hand, if L is a Λn-model, then the correspondence EVn(L) :
Ln(L) - L, defined by EVn(L)〈G, λ〉 = |G|(λ), preserves also the
order, so that it induces an morphism of Λn-models EVL : Ln,L - L
such that EVn,L ◦ ηn,L = IdL. To prove this, the same argument as in
[San00a, §5.15] is used.

If f : P - L is an order preserving function with codomain a Λn-model,
then EVn,L ◦ Ln,f is the desired unique extension of f to a morphism of
Λn-models from Ln,P to L. �

We shall denote by in,P : Jn,P ⊂ - JP the inclusion, so that in,P is a
morphism of Λn-models and the equality ηP = in,P ◦ ηn,P holds.

5 Synchronizing games

The goal of this section is to give a general criterion by which to prove
that the inclusion in,P : Jn,P ⊂ - JP is proper.

Definition 5.1 Let A ∈ K(P ). We say that A is synchronizing if it is
bipartite and the only winning strategy for Mediator in the game 〈A,A〉
is the copycat strategy.
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The intuitions which have induced us to call these games synchronizing
are explained as follows: if Mediator is playing according to a winning
strategy in the game 〈G,H〉, then it is impossible for both the Opponents
to win, so that at least one must lose. We can imagine therefore that
there is a sort of asynchronous game going on between player σ on G and
player π on H , the asynchrony being induced by the mediating choices
of Mediator. However, if G = H = A and the only winning strategy
for Mediator in 〈A,A〉 is the copycat strategy, then there are very few
mediating choices. If moreover the game A is bipartite, then the resulting
game between player σ on the left and player π on the right is easily
recognized to be equivalent with the game A itself, in which the two
players act on a synchronous base.

Since a strategy in the game 〈A,A〉 is morally an endomorphism of A,
and the copycat strategy plays the role of the identity, we may consider
a synchronizing game to be a particular kind of asymmetric object. We
remark that if A ∈ J (P ) is such that L(A) = 0, then A can be identified
with a term for the the free lattice over P . In this case, A is synchronizing
if and only if it is in normal form as a free lattice term [FJN95, Whi41].
It is an open problem whether this notion of synchronizing game leads to
a normal form for µ-lattice terms. Examples of synchronizing games are
given in section 6. Their remarkable property is stated in the following
proposition.

Theorem 5.2 Let A ∈ K(P ) be a synchronizing game such that L(A) =
n. Then we can construct a game A• ∈ J (P ) such that L[A•] = n.

Corollary 5.3 In order to show that the inclusion in,P : Jn,P ⊂ - JP
is proper, it is enough to find a synchronizing game A in K(P ) such that
L(A) > n.

Proof. In the following let A = 〈A0, A1, a0, ε, λ〉 be such a synchronizing
game.

The game A• is obtained from A by forcing property 2 in definition 3.10
to hold. If we let A• be 〈A• 0, A• 1, a• 0, ε•, λ•〉, this game is formally
defined as follows.

• The set of positions is

A• 0 = R(A) × { 0 } ∪ A0 × { 1 } .
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The initial position a• 0 is (a0, 0) if a0 is in R(A), otherwise the
initial position is (a0, 1).

• The set of moves is

A• 1 = { (g, 1) → (g′, 1) | g → g′ ∈ A1, g
′ 6∈ R(A) }

∪ { (g, 1) → (r, 0) | g → r ∈ A1, r ∈ R(A) }
∪ { (r, 0) → (r, 1) | r ∈ R(A) } .

• We let ε•(g, i) = ε(g), and observe that if ε•(g, i) = 0, then i = 1
and ε(g) = 0; hence, we define λ•(x, i) = λ(x) if ε•(x, i) = 0.

Observe that this construction preserves the essential structure of cycles
and the color of the returns, from which we deduce that L(A) = L(A•).
It is easily seen that A• ∈ J (P ), so that L[A•] ≤ L(A•) = L(A) = n.

In order to argue that L[A•] ≥ n, choose an arbitrary H ∈ [A•]. A
copycat-like strategy can be used by Mediator to win in both the games
〈A,A•〉 and 〈A•, A〉, so that, by transitivity, we obtain A ≤ H and
H ≤ A. By the analysis of possible plays in the game 〈A,H,A〉, we
shall construct a chain C in H such that cardC = n; it will follow that
L(H) ≥ n and L[A•] ≥ n. If θ is a path in 〈A,H,A〉 or 〈A,A〉, we shall
use θL and θR for the left and right projections, since the notation θA
would be ambiguous.

The lemma 5.4 below has the following interpretation: if the Opponents
know that the Mediators are playing according to a winning strategy, then
they can choose a path γ of A and force the Mediators to play on 〈A,H,A〉
so that the chosen path is played on the left board as well as on the right
board. In this case, we informally say that the Opponents play along the
path γ. We let T be any winning strategy for the Mediators in the game
〈A,H,A〉.

Lemma 5.4 Let γ be a path of A and let a = dom γ. Suppose that
there is a position h of H such that the position (a, h, a) of 〈A,H,A〉 has
been reached using T . We can lift γ to a play θγ of 〈A,H,A〉 with the
following properties:

• dom θγ = (a, h, a),

• the left projection ( θγ )L as well as the right projection ( θγ )R are
both equal to γ,
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• the play θγ has been played according to the strategy T by the
Mediators.

Proof. Firstly, we prove the lemma in case γ = a → a′ is a transition of
A; we also suppose that ε(a) = σ; if ε(a) = π we can reason by duality.
From position (a, h, a) it is the Opponents’ turn to move, on the left, so
that they can choose the move τ on the left.

Since A is bipartite, we have ε(a′) 6= ε(a), and in position (a′, h, a) it
is the Mediators’ turn to move. From this position, the strategy T will
suggest to play a finite path on H (a′, h, a) →∗ (a′, h′, a), possibly of zero
length, and then it will suggest to play on an external board. An infinite
path played only on H cannot arise, since T is a winning strategy, and
such an infinite path would not be a win for the Mediators. T cannot
suggest a move on the left board - otherwise the strategy T\H would
not be the copycat strategy - hence it will suggest a move on the right
board. Since T\H is the copycat strategy, the only suggested move will
be (a′, h′, a) → (a′, h′, a′).

The generalization of the statement to paths is obtained by induction on
the length. If |γ| = 0, then we lift γ to 1(a,h,a). If γ = γ′ ? τ , then we
define θγ to be θγ′ ? θτ , where θγ′ is obtained by the induction hypothesis
and θτ is obtained as in the previous paragraph from position cod θγ′ ,
observing that ( cod θγ′ )L = dom τ = ( cod θγ′ )R. �

Lemma 5.5 Let θ be a path of 〈A,H,A〉, which has been played ac-
cording to the winning strategy T , such that θL = θR. If γ = θL = θR
has a factorization γ = γ1?γ2, then there exists a factorization θ = θ1 ?θ2
such that (θ1)L = (θ1)R = γ1 and (θ2)L = (θ2)R = γ2.

Proof. We shall prove that if δ is a path of 〈A,A〉, which has been played
according to the winning strategy T\H , i.e according to the copycat strat-
egy, for which the equalities δL = δR = γ hold, then we can lift a
factorization γ = γ1 ? γ2 to a factorization δ = δ1 ? δ2 in 〈A,A〉 such
that (δi)L = (δi)R = γi, for i = 1, 2. To obtain the statement of the
lemma, it will be enough to let δ = θ〈A,A〉, and then lift the factorization
θ〈A,A〉 = δ1 ? δ2 to a factorization θ = θ1 ? θ2, which is possible since the
functor ( )〈A,A〉 is convex.

The statement is proved by induction on the length of γ2. If |γ2| = 0, the
result is obvious; suppose therefore that |γ2| > 0. Since |δ| = |δL|+|δR| =
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2|γ| ≥ 2, we can write δ = δ′ ? τ ′ where |τ ′| = 2. Since T\H is the copycat
strategy and A is bipartite, we deduce that δ′L = δ′R = γ′, τ ′L = τ ′R = τ so
that |τ | = 1, and write γ = γ′ ? τ . Let γ2 = γ′2 ? τ and γ′ = γ1 ? γ

′
2. Since

|γ′2| < |γ2|, we can use the induction hypothesis and let δ′ = δ1?δ
′
2 be such

that (δ1)L = (δ1)R = γ1 and (δ′2)L = (δ′2)R = γ′2. Then δ = δ′1 ? (δ′2 ? τ
′)

is the desired factorization. �

The lifting property of the previous lemma can be generalized: if θL =
θR = γ1 ? . . . ? γn, where n ≥ 0, then we can find a factorization θ =
θ1 ? . . . ? θn such that (θi)L = (θi)R = γi for i = 1, . . . , n.

We have observed that A ≤ H and H ≤ A, hence we shall fix two
winning bounded memory strategies for Mediator in the games 〈A,H〉
and 〈H,A〉, say (R,ψ) and (S, φ), respectively. We let

K = max(cardR0, cardS0) ,

and consider the strategy ψR||φS in the game 〈A,H,A〉, the definition
of which is found in 2.5 and 4.8.

The following lemma can be interpreted as follows: if the Opponents play
enough time along a cycle γ of A, then they can force the Mediators to
play in a cycle of H of the same color as γ.

Lemma 5.6 Let γ be a proper cycle of A and let θ be a path of 〈A,H,A〉,
played according to the strategy ψR||φS, such that θL = θR = γK . It is
possible to find a factorization

θ = Θ0 ?Θ ?Θ1

such that ΘL, ΘH and ΘR are all proper cycles. Moreover, ΘL = ΘR =
γk, with 1 ≤ k ≤ K, and ε(rΘH ) = ε(rγ).

Proof. Let θ be a path of 〈A,H,A〉, played according to the strategy
ψR||φS, such that θL = θR = γK , where γ is proper cycle of A such that
ε(rγ) = π; if ε(rγ) = σ, a dual argument – with the strategy φS instead
of ψR – can be used. According to lemma 5.5, we can factor θ as

θ = θ1 ? . . . ? θK ,

so that, for each i = 1, . . . , K, the relations (θi)L = (θi)R = γ hold.
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By the definition of the strategies ψR and ψR||φS, there exists a path ρ
in R such that ψ ◦ ρ = θ〈A,H〉. Consider the factorization in 〈A,H〉

ψ ◦ ρ = θ〈A,H〉
= (θ1 ? . . . ? θK)〈A,H〉
= (θ1)〈A,H〉 ? . . . ? (θK)〈A,H〉 .

Since the functor ψ ◦ is convex, we can lift this factorization to a fac-
torization in R

ρ = ρ1 ? . . . ? ρK

such that ψ ◦ ρi = (θi)〈A,H〉, for i = 1, . . . , K. Consider also the set

{ dom ρi , cod ρi | i = 1, . . . , K } ,

and observe that there exist i0, i1 ∈ {1, . . . , K} such that i0 ≤ i1 and
dom ρi0 = cod ρi1 , since cardR0 ≤ K. Let

Υ = ρi0 ? . . . ? ρi1 ,

then Υ is a cycle, and if we let k = i1 − i0 + 1, then

(ψ ◦ Υ)L = (ψ ◦ ( ρi0 ? . . . ? ρi1 ))L

= ( (ψ ◦ ρi0) ? . . . ? (ψ ◦ ρi1) )L

= ( (θi0)〈A,H〉 ? . . . ? (θi1)〈A,H〉 )L
= ((θi0)〈A,H〉)L ? . . . ? ((θi1)〈A,H〉)L
= (θi0)L ? . . . ? (θi1)L

= γk .

Observe also that r(ψ◦Υ)L = rγk = rγ and that ε(rγ) = π. Since ψR is
a winning strategy, we argue that (ψ ◦ Υ )H is a proper cycle and that
ε(r(ψ◦Υ)H ) = π. Otherwise Υ would give rise, by infinite iteration, to the
infinite path Υω in the graph R such that ψ ◦ Υω = (ψ ◦ Υ )ω is not a
win for Mediator in the game 〈A,H〉.
In order to conclude the argument, let

Θ = θi0 ? . . . ? θi1 ,
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and find Θ0,Θ1 so that the relation θ = Θ0 ? Θ ? Θ1 is satisfied. Then
ΘL = ΘR = γk with k ≥ 1 by construction. We have also

ΘH = (Θ〈A,H〉)H
= ( (θi0)〈A,H〉 ? . . . ? (θi1)〈A,H〉 )H

= ( (ψ ◦ ρi0) ? . . . ? (ψ ◦ ρi1) )H

= (ψ ◦ Υ)H ,

so that we can conclude that ΘH is a proper cycle such that ε(rΘH ) =
π = ε(rγ). �

The following lemma can be interpreted as follows: if the Opponents play
enough time along a chain C of A, then they can force the Mediators to
play along a chain of H of the same length and color as C.

Lemma 5.7 Let C = {a0, . . . , an−1} be a chain in A. For j = 0, . . . , n−
2, let γj be proper cycles such that rγj = aj and aj+1 lie on γj. Factor

γj as γj = γ↓j ? γ
↑
j , where dom γ↓j = aj and cod γ↓j = aj+1. Similarly, let

γn−1 be a proper cycle of A such that rγn−1 = an−1 = dom γn−1. For
j = n− 1, . . . , 0, define cycles Γj in A as follows:

Γn−1 = γKn−1 ,

Γj−1 = (γ↓j−1 ? Γj ? γ
↑
j−1)

K .

Let θ be a path in 〈A,H,A〉, played according to the strategy ψR||φS,
such that θL = θR = Γj . We can find a factorization

θ = Θ0 ?Θ ?Θ1,

with the property that ΘH is a proper cycle visiting a chain {rΘH =
rj, . . . , rn−1 }. Moreover ε(rj) = ε(aj).

Proof. We prove the proposition by induction on j = n− 1, . . . , 0.

If j = n − 1, apply lemma 5.6 to θ and γn−1: it is possible to find a
factorization

θ = Θ0 ?Θ ?Θ1

such that ΘH is a proper cycle and ε(rΘH ) = ε(rγn−1) = ε(an−1).
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Suppose that we have proven the assertion for j; we prove it for j − 1.
Let θ be a path such that θL = θR = (γ↓j−1 ? Γj ? γ

↑
j−1)

K . Apply lemma

5.6 to θ and γ↓j−1 ? Γj ? γ
↑
j−1 and find a factorization

θ = Θ0 ?Θ ?Θ1

such that ΘH is a proper cycle and ε(rΘH ) = ε(aj−1), since r(γ↓j−1?Γj?γ
↑
j−1) =

rγj−1
= aj−1. Moreover, there exists k ≥ 1 such that

ΘL = ΘR = ( γk−1 ? γ↓j−1 ) ? Γj ? γ
↑
j−1 ,

where γ = γ↓j−1 ? Γj ? γ
↑
j−1. By lemma 5.5, we can lift the above factor-

ization to a factorization

Θ = δ0 ? δ ? δ1 ,

so that δL = δR = Γj. Using the induction hypothesis, there is a factor-
ization

δ = ∆0 ?∆ ?∆1 ,

such that ∆H is a proper cycle visiting a chain { r∆H
= rj, . . . , rn−1 };

moreover ε(rj) = ε(aj). Since

ΘH = (δ0 ?∆0)H ?∆H ? (∆1 ? δ1)H ,

we deduce that ΘH visits rj , . . . , rn−1. If we let rj−1 = rΘH , then the
desired chain visited by ΘH is {rj−1, rj, . . . , rn−1}, since ε(rj) = ε(aj) 6=
ε(aj−1) = ε(rj−1). This concludes the proof of lemma 5.7. �

In order to prove theorem 5.2, choose a chain C of A, the cardinality of
which is maximal, i.e. it is n. Define Γ0 as it has been done in lemma
5.7, and let γ be the unique simple path from the initial position a0 to
dom Γ0. Using lemma 5.4, we can lift the path γ ?Γ0 of A to a path θγ?Γ0

of 〈A,H,A〉, played according to the strategy ψR||φS by the Mediators,
such that both (θγ?Γ0)L and (θγ?Γ0)R are equal to γ?Γ0. Using lemma 5.5,
we can also lift the given factorization to a factorization θγ?Γ0 = θγ ? θΓ0

so that in particular (θΓ0)L = (θΓ0)R = Γ0. Using lemma 5.7, the center
projection (θΓ0)H visits a chain in H of cardinality n which is, moreover,
of the same color of the given chain C of A. This concludes the proof of
theorem 5.2. �
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6 Generalized Whitman polynomials

In this section we let X = {a0, a1, a2, b0, b1, b2} be a set of six generators
and define a bunch of synchronizing games W n ∈ K(X), n ≥ 1, such
that L(W n) = n. We can argue that [W n

• ] 6∈ Jm,X if n > m, as in 5.3.

Theorem 6.1 For every n ≥ 1, the inclusion in,X : Jn,X ⊂ - JX is
proper, where X is a set of six generators.

Corollary 6.2 If P contains an antichain {a0, a1, a2, b0, b1, b2}, then the
inclusion im,P : Jm,P ⊂ - JP is proper.

The strictness of the alternation hierarchy will follow as explained in 3.6.
The construction of the games W n has been suggested by the Whitman
polynomial

p(x) = a ∨ (b ∧ (c ∨ (a ∧ (b ∨ (c ∧ x))))) .
Earlier in Birkhoff’s paper [Bir35], a partition lattice and an infinite chain
of the form pn(a) are exhibited, so that the free lattice on three generators
is shown to be infinite. A more functional interpretation to p(x) is given
in [Whi42]. P. Whitman proved that the free lattice on three generators
is not complete by showing that free lattices are continuous – so that
if the join of the infinite chain pn(a) exists, then it has to be a fixed
point of p(x) – and by proving that this polynomial has no fixed point.
Later, Crawley and Dean [CD59] characterized free lattices with infinite
operations and used the above polynomial to give lower bounds on the
cardinality of those lattices, and a similar technique was used by Hales
[Hal64] to show that the free complete lattices do not exist in general.
Philip Whitman’s result, also documented in the monography [FJN95],
can be used to show that the inclusion i0,X : J0,X

⊂ - JX is proper when
cardX ≥ 3, where we recall that J0,X coincides with the free lattice on
the set X.

Definition 6.3 The game W n is defined as follows:

• The set of position is

{ gj, wj | j = 0, . . . , 6n− 1 }
and the initial position is g0.
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• The set of forward edges is

{ gj → gj+1 | j = 0, . . . , 6n− 2 } ∪ { gj → wj | j = 0, . . . , 6n− 1 }.

• The set of back edges is

{ g3(2n−k)−1 → g3k | k = 0, . . . , n− 1 }.

• ε(wj) = 0, for i = 1, . . . , 6n− 1 and ε(gj) = Qjmod 2, where Q0 = σ
and Q1 = π.

• Eventually, λ(wj) = ajmod 3, if j < 3n and λ(wj) = bjmod 3, if
j ≥ 3n.

For example, the games W 1 and W 2 are pictured as follows:

σ?>=<89:; a0?>=<89:;//

π?>=<89:;
��

a1?>=<89:;//

σ?>=<89:;
��

a2?>=<89:;//

π?>=<89:;
��

b0?>=<89:;//

σ?>=<89:;
��

b1?>=<89:;//

π?>=<89:;
��

b2?>=<89:;//BC@A

GF // σ?>=<89:; a0?>=<89:;//

π?>=<89:;
��

a1?>=<89:;//

σ?>=<89:;
��

a2?>=<89:;//

π?>=<89:;
��

a0?>=<89:;//

σ?>=<89:;
��

a1?>=<89:;//

π?>=<89:;
��

a2?>=<89:;//

σ?>=<89:;
��

b0?>=<89:;//

π?>=<89:;
��

b1?>=<89:;//

σ?>=<89:;
��

b2?>=<89:;//BC@A

GF //

π?>=<89:;
��

b0?>=<89:;//

σ?>=<89:;
��

b1?>=<89:;//

π?>=<89:;
��

b2?>=<89:;//BC@A

GF //
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We define W (a0, a1, a2)(x) to be

W (a0, a1, a2)(x) = a0 ∧ (a1 ∨ (a2 ∧ x)) ,

and draw this equality by diagrams as

π?>=<89:;

π?>=<89:;

W (a0, a1, a2)

x?>=<89:;
��

=

π?>=<89:; a0?>=<89:;//

σ?>=<89:;
��

a1?>=<89:;//

π?>=<89:;
��

a2?>=<89:;//

x?>=<89:;
��

Similarly we let W ∗(a0, a1, a2)(x) be the dual of W (a0, a1, a2)(x), i.e.

W ∗(a0, a1, a2)(x) = a0 ∨ (a1 ∧ (a2 ∨ x)) ,

or by diagrams

σ?>=<89:;

σ?>=<89:;

W ∗(a0, a1, a2)

x?>=<89:;
��

=

σ?>=<89:; a0?>=<89:;//

π?>=<89:;
��

a1?>=<89:;//

σ?>=<89:;
��

a2?>=<89:;//

x?>=<89:;
��
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Using these conventions, the game W n ∈ K({a0, a1, a2, b0, b1, b2}) can be
pictured as follows:

σ?>=<89:;

σ?>=<89:;
W ∗

0 (a0, a1, a2)

π?>=<89:;
��

π?>=<89:;
W1(a0, a1, a2)

...

��

σ?>=<89:;
��

σ?>=<89:;
W ∗
n−1(a0, a1, a2)

π?>=<89:;
��

π?>=<89:;
Wn(b0, b1, b2)

BC@A

GF //

...

��

σ?>=<89:;
��

σ?>=<89:;
W ∗

2n−1(b0, b1, b2)

BC@A

GF //

π?>=<89:;
��

π?>=<89:;
W2n−1(b0, b1, b2)

BC@A

GF //
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where we have supposed that n is an odd number. If n is even, W n is
pictured in a similar way.

Theorem 6.4 For each n ≥ 1, the game W n ∈ K(X) is synchronizing
and L(W n ) = n.

It is easy to see that the game W n is bipartite. Moreover:

Proposition 6.5 The unique strategy in the game 〈W n,W n〉 is the
copycat strategy.

Proof. In the proof, we shall use the following notation: if g is a position
of W n such that ε(g) 6= 0, we shall write wg for the unique g′ such that
g → g′ and ε(g′) = 0. We let Sn(g) be the set of elements g′ such that
ε(g′) 6= 0 for which there exists a path of length n from g to g′. We shall
use the notation Sng for any element g′ ∈ Sn(g), Sg will stand for S1

g and
we shall have g = S0

g ; with the above notation we must take care that
identities like Sng = Sng do not hold. The following lemma will prove to
be useful.

Lemma 6.6 If n 6≡ mmod 3, then λ(wSng ) 6= λ(wSmg ).

Proof. It is enough to observe that if gj → gj′ is an edge, then j′ ≡
j + 1 mod3. Hence, if g = gi, g

′ ∈ Sn(g) and g′′ ∈ Sm(g), then λ(wg′) ∈
{ai+nmod 3, bi+nmod 3} and λ(wg′′) ∈ {ai+mmod 3, bi+mmod 3}. However

{ai+nmod 3, bi+nmod 3} ∩ {ai+mmod 3, bi+mmod 3} = ∅ ,

since i+ n 6≡ i+mmod3. �

In order to prove proposition 6.5, we shall suppose that the game has
reached a position of the form (g, g), with ε(g) 6= 0. We shall suppose
that ε(g) = σ, and use a dual argument if ε(g) = π. Depending on the
Opponents’ choice, we shall analyse the moves available to Mediator and
show that the only possible reply is the one suggested by the copycat
strategy. We shall draw trees to represent possible moves as well as
winning strategies for the Opponents. Positions are labeled on the left
by the player who must move. Dotted transitions are used for Mediator’s
moves leading to winning positions for the Opponents.
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From (g, g), the Opponents have the following two types of moves:

O

M

(g, g)

(wg, g)
wwooooooooo

(Sg, g)
��

From position (wg, g), Mediator can play as follows:

M

O

(wg, g)

(wg, wg)
wwoooooooo

(wg, Sg)
��

Position (wg, Sg) is winning for the Opponents, since they can move
(wg, Sg) → (wg, wSg), were they win because of lemma 6.6.

From position (Sg, g), Mediator can play as follows:

M

O

(Sg, g)(wSg , g) oo

(S2
g , g)

}}
(Sg, Sg)

!!DD
DD

DD
(Sg, wg)//

We exhibit a winning strategy for the Opponents from position (wSg , g):

M

O

M

O

M

(wSg , g)(wSg , wg) oo

(wSg , Sg)
��

(wSg , S
2
g)

��
(wSg , wS2

g
) oo

(wSg , S
3
g)

��

(wSg , wS3
g
)

��
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We exhibit a winning strategy for the Opponents from position (S2
g , g):

O

M

O

M

(S2
g , g)

(wS2
g
, g)

��

(wS2
g
, Sg)
��

(wS2
g
, wSg)
��

(wS2
g
, wg)//

We exhibit a winning strategy for the Opponents from position (Sg, wg):

M

O

M

(Sg, wg)(wSg , wg) oo

(S2
g , wg)

��

(wS2
g
, wg)
��

To complete the argument, we must show that if (Sg, Sg) is a position
such that Sg 6= Sg, i.e. it is of the form (g3k, g3(2n−k)) or (g3(2n−k), g3k) with
k ∈ {1, . . . , n−1}, then the Opponents have a winning strategy. Suppose
that (Sg, Sg) = (g3k, g3(2n−k)), so that λ(w3k) = a0 and λ(w3(2n−k)) = b0;
the Opponents have the following strategy:

O

M

O

M

(g3k, g3(2n−k))

(g3k, w3(2n−k))
��

(w3k, w3(2n−k)) oo

(S2
g , wSg)

��

(wS2
g
, wSg)
��

Similarly, the Opponents have a winning strategy from position (g3(2n−k), g3k).
This concludes the proof of proposition 6.5 �

Proposition 6.7 The game W n contains a σ-chain of cardinality n.
Since cardR(W n) = n, we deduce that L(W n ) = n.
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Proof. Firstly, we observe that R(W n) = { g3k | k = 0, . . . , n − 1 }, and
then that R(W n) is itself a chain. For if 0 ≤ k < k′ ≤ n − 1, then
3k′ < 3(2n− k′) − 1 < 3(2n− k) − 1, so that g3k′ lies on the cycle going
from g3k down to g3(2n−k)−1 and back to g3k. �
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