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Logical Specification of Operational Semantics ?

Peter D. Mosses

BRICS and Department of Computer Science, University of Aarhus
Ny Munkegade, bldg. 540, DK-8000 Aarhus C, Denmark

Home page: http://www.brics.dk/~pdm/

Abstract. Various logic-based frameworks have been proposed for spec-
ifying the operational semantics of programming languages and concur-
rent systems, including inference systems in the styles advocated by
Plotkin and by Kahn, Horn logic, equational specifications, reduction
systems for evaluation contexts, rewriting logic, and tile logic.
We consider the relationship between these frameworks, and assess their
respective merits and drawbacks—especially with regard to the modular-
ity of specifications, which is a crucial feature for scaling up to practical
applications. We also report on recent work towards the use of the Maude
system (which provides an efficient implementation of rewriting logic) as
a meta-tool for operational semantics.

1 Introduction

The designers, implementors, and users of a programming language all need to
acquire an intrinsically operational understanding of its semantics. Programming
language reference manuals attempt to provide such an understanding using
informal, natural language; but they are prone to ambiguity, inconsistency, and
incompleteness, and totally unsuitable as a basis for sound reasoning about the
effects of executing programs—especially when concurrency is involved.

Various mathematical frameworks have been proposed for giving formal de-
scriptions of programming language semantics. Denotational semantics generally
tries to avoid direct reference to operational notions, and its abstract domain-
theoretic basis remains somewhat inaccessible to most programmers (although
modelling programs as higher-order functions has certainly given useful insight to
language designers and to theoreticians). Operational semantics, which directly
aims to model the program execution process, is generally based on familiar
first-order notions; it has become quite popular, and has been preferred to deno-
tational semantics for defining programming languages [28] and process algebras
[26].

Despite the relative popularity of operational semantics, there have been
some “semantic engineering” problems with scaling up to descriptions of full
practical programming languages. A significant feature that facilitates scaling-up
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is good modularity: the formulation of the description of one construct should
not depend on the presence (or absence) of other constructs in the language.
Recently, the author has proposed a solution to the modularity problem for the
structural approach to operational semantics [31, 33].

There are different ways of specifying operational semantics for a program-
ming language: an interpreter for programs—written in some (other) program-
ming language, or defined mathematically as an abstract machine—is an algo-
rithmic specification, determining how to execute programs; a logic for inferring
judgements about program executions is a declarative specification, determining
what program executions are allowed, but leaving how to find them to logical
inference. Following Plotkin’s seminal work [38], much interest has focussed on
logical specification of operational semantics.

In fact various kinds of logic have been found useful for specifying operational
semantics: arbitrary inference systems, natural deduction systems, Horn logic,
equational logic, rewriting logic, and tile logic, among others. Sections 2 and 3
review and consider the relationship between these applied logics, pointing out
some of their merits and drawbacks—especially with regard to the modularity
of specifications. The brief descriptions of the various logics are supplemented
by illustrative examples of their use. It is hoped that the survey thus provided
will be useful as an introduction to the main techniques available for logical
specification of operational semantics.

The inference of a program execution in some logic is clearly not the same
thing as the inferred execution itself. Nevertheless, a system implementing log-
ical inference may be used to execute programs according to their operational
semantics. Section 4 reports on recent work towards the use of the Maude system
(which provides an efficient implementation of rewriting logic) as a meta-tool for
operational semantics.

2 Varieties of Structural Operational Semantics

The structural style of operational semantics (SOS) is to specify inference rules
for steps (or transitions) that may be made not only by whole programs but
also by their constituent phrases: expressions, statements, declarations, etc. The
steps allowed for a compound phrase are generally determined by the steps al-
lowed for its component phrases, i.e., the steps are defined inductively according
the (abstract) syntax of the described programming language. An atomic as-
sertion of the specified logic (such as γ −→ γ′) asserts the possibility of a step
from one configuration γ to another γ′. Some configurations are usually distin-
guished as terminal, and have no further steps, whereas initial and intermediate
configurations have phrases that remain to be executed as components.

Small-step SOS: In so-called small-step SOS [38], a single step for an atomic
phrase often gives rise to a single step for its enclosing phrase (and thus ulti-
mately for the whole program). A complete program execution is modelled as a
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succession—possibly infinite—of these small steps. During such a program exe-
cution, phrases whose execution has terminated get replaced by the values that
they have computed.

Suppose that an abstract syntax for expressions e includes also values v:

e ::= v | if e0 then e1 else e2 | . . .

v ::= true | false | . . .

Here are a couple of typical examples of inference rules for small-step SOS, to
illustrate the above points:

e0 −→ e′0
if e0 then e1 else e2 −→ if e′0 then e1 else e2

(1)

if true then e1 else e2 −→ e1 if false then e1 else e2 −→ e2 (2)

In the lack of further rules for if e0 then e1 else e2, it is easy to see that the
intended operational semantics has been specified: the sub-expression e0 must
be executed first, and if that execution terminates with a truth-value, only one
of e1, e2 will then be executed.

Big-step SOS: In big-step SOS [17], a step for a phrase always corresponds to
its entire (terminating) execution, so no iteration of steps is needed. A step
for a compound phrase thus depends on steps for all those component phrases
that have to be executed. (Big-step SOS has been dubbed Natural Semantics
since the inference rules may resemble those of Natural Deduction proof systems
[17].) Here is an example, where the notation e ⇓ v asserts the possibility of the
evaluation (i.e., execution) of e terminating with value v:

e0 ⇓ true e1 ⇓ v1

if e0 then e1 else e2 ⇓ v1

e0 ⇓ false e2 ⇓ v2

if e0 then e1 else e2 ⇓ v2

(3)

The intended operational semantics, where e0 is supposed to be executed before
e1 or e2, is not so evident here as it is in the small-step SOS rules. In other
examples, however, explicit data dependencies may indicate the flow of control
more clearly.

Big-step SOS cannot express the possibility of non-terminating executions,
and thus it appears ill-suited to the description of reactive systems. However,
the possibility of non-termination may be specified separately [8].

Note that small- and big-step SOS may be used together in the same de-
scription, e.g. big-step for modelling expression evaluation and small-step for
modelling statement execution. Moreover, the transitive closure of the small-
step relation (restricted to appropriate types of arguments) provides the big-step
relation between phrases and their computed values.
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Substitution: Binding constructs of programming languages, such as declarations
and formal parameters, give rise to open phrases with free variables; however,
these phrases do not get executed until the values to be bound to the free vari-
ables have actually been determined. Thus one possibility is to replace the free
variables by their values, producing a closed phrase, using a substitution oper-
ation (here written [v/x]e). However, the definition of substitution itself can be
somewhat tedious—in practice, it is often left to the reader’s imagination (as
here):

e1 −→ e′1
let x = e1 in e2 −→ let x = e′1 in e2

(4)

let x = v1 in e2 −→ [v1/x]e2 (5)

There is obviously no need to give a rule for evaluating a variable x to its value
when using substitution.

Environments: An alternative approach, inspired by the treatment of binding
constructs in denotational semantics and in Landin’s work [18], is to use environ-
ments ρ: a judgement then has the form ρ ` γ −→ γ′. In effect, the environment
keeps track of the relevant substitutions that could have been made; the com-
bination (often referred to as a closure) of an open phrase and an appropriate
environment is obviously equivalent to a closed phrase. Environments are par-
ticularly simple to use in big-step SOS, but in small-step SOS, auxiliary syntax
for explicit closures may have to be added to the described language (Plotkin
managed to avoid adding auxiliary syntax in [38] only because the example lan-
guage that he described already had a form of local declaration that was general
enough to express closures). Here is the same example as described above, but
now using environments instead of substitution:

ρ ` e1 −→ e′1
ρ ` let x = e1 in e2 −→ let x = e′1 in e2

(6)

ρ[x 7→ v1] ` e2 −→ e′2
ρ ` let x = v1 in e2 −→ let x = v1 in e′2

(7)

ρ ` let x = v1 in v2 −→ v2 (8)

Here, in contrast to when using substitution, a rule is needed for evaluating the
use of a variable x occurring in an expression e:

ρ(x) = v

ρ ` x −→ v
(9)

The equation ρ(x) = v above is formally regarded as a side-condition on the
inference rule, although for notational convenience it is written as an antecedent
of the rule. It restricts the conclusion of the rule to the case that the environment
ρ does indeed provide a value v for x. Note that proofs of steps do not explicitly
involve proofs of side-conditions.
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Stores: For describing imperative programming languages, where the values last
assigned to variables have to be kept for future reference, configurations are
usually pairs of phrases and stores. Thus a judgement might have the form
ρ ` e, s −→ e′, s′. Stores themselves are simply (finite) maps from locations to
stored values. Unfortunately, adding stores to configurations invalidates all our
previous rules, which should now be reformulated before being extended with
rules for imperative phrases. For instance:

ρ ` e1, s −→ e′1, s′

ρ ` let x = e1 in e2, s −→ let x = e′1 in e2, s
′ (10)

ρ[x 7→ v1] ` e2, s −→ e′2, s
′

ρ ` let x = v1 in e2, s −→ let x = v1 in e′2, s
′ (11)

ρ ` let x = v1 in v2, s −→ v2, s (12)

ρ(x) = v

ρ ` x, s −→ v, s
(13)

The need for this kind of reformulation reflects the poor inherent modularity of
SOS. Later in this section, however, we shall see how the modularity of SOS can
be significantly improved.

The following rules illustrate the SOS description of variable allocation, as-
signment, and dereferencing (assuming that locations l are not values v):

l 6∈ dom(s)
ρ ` ref v, s −→ l, s[l 7→ v]

(14)

l ∈ dom(s)
ρ ` l := v, s −→ ( ), s[l 7→ v]

(15)

ρ(x) = l s(l) = v

ρ ` x, s −→ v, s
(16)

Conventions: A major example of an operational semantics of a programming
language is the definition of Standard ML (SML) [28]. It is a big-step SOS, us-
ing environments and stores. A couple of “conventions” have been introduced
to abbreviate the rules: one of them allows the store to be elided from configu-
rations, relying on the flow of control to sequence assignments to variables; the
other caters for raised exceptions preempting the normal sequence of evaluation
of expressions. Although these conventions achieve a reasonable degree of con-
ciseness, the need for them perhaps indicates that the big-step style of SOS has
some pragmatic problems with scaling up to languages such as SML. Moreover,
they make it difficult to exploit the definition of SML directly for verification or
prototyping.

Recently, an alternative definition of SML has been proposed [15], without
the need for the kind of conventions used in the original definition. SML is first
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translated into an “internal language”, which is itself defined by a (small-step)
reduction semantics, see Sect. 3. (The translation of SML to the internal language
is itself specified using a big-step SOS, but that aspect of the approach seems to
be inessential.) A similar technique is used in the action semantics framework
[29, 30], where programs are mapped to an action notation that has already been
defined using a (small-step) SOS.

Process Calculi: Small-step SOS is a particularly popular framework for the se-
mantic description of calculi for concurrent processes, such as CCS. There, steps
are generally labelled, and judgements have the form γ

α−→ γ′. For CCS, labels
α range over atomic “actions”, and for each action l there is a complementary
action l̄ for synchronization; there is also an unobservable label τ , representing
an internal synchronization. Here are some of the usual rules for CCS [26]:

α.p
α−→ p (17)

p1
α−→ p′1

p1 | p2
α−→ p′1 | p2

p2
α−→ p′2

p1 | p2
α−→ p1 | p′2

(18)

p1
l−→ p′1 p2

l̄−→ p′2
p1 | p2

τ−→ p′1 | p′2
(19)

Also programming languages with constructs for concurrency, for instance Con-
current ML [41, 40], can be described using small-step SOS. Unfortunately, the
SOS description proposed for ML with concurrency primitives in [2] is not in-
ductive in the syntax of the language, and the need to reformulate inference
rules previously given for the purely functional part of the language is again
a sign of the poor inherent modularity of the SOS framework. Also the more
conventional SOS descriptions given in [12, 16] have undesirably complex rules
for the functional constructs.

Syntactic Congruence: When using SOS to describe process calculi, it is common
practice to exploit a syntactic congruence on phrases, i.e., the syntax becomes a
set of equivalence classes. For instance, the processes p1 | p2 and p2 | p1 might be
identified, removing the need for one of the symmetric rules given in (18) above.

Evaluation to Committed Form: It is possible to describe the operational seman-
tics of CCS and other concurrent calculi without labelling steps [36]. The idea is
to give a big-step SOS for the evaluation of a process to its “committed forms”
where the possible actions are apparent (cf. reduction to “head normal form” in
the lambda-calculus). For example:

p1 ⇓ l.p′1 p2 ⇓ l̄.p′2 p′1 | p′2 ⇓ k

p1 | p2 ⇓ k
(20)

The technique relies heavily on a syntactic congruence between processes.
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Enhanced Operational Semantics: By labelling steps with their proofs, informa-
tion about features such as causality and locality can be provided. This idea
has been further developed and applied in the “enhanced” SOS style [9, 39],
where models taking account of different features of concurrent systems can be
obtained by applying relabelling functions (extracting the relevant details from
the proofs).

For a simple CCS-like process calculus, proofs may be constructed using
tags |1, |2 to record the use of the rules that let processes act alone, and pairs
〈|1 θ1, |2 θ2〉 to record synchronization. An auxiliary function l is used to extract
actions from proofs. The following rules illustrate the form of judgements:

p1
θ−→ p′1

p1 | p2
|1θ−→ p′1 | p2

p2
θ−→ p′2

p1 | p2
|2θ−→ p1 | p′2

(21)

p1
θ1−→ p′1 p2

θ2−→ p′2 l(θ1) = l(θ2)

p1 | p2
〈|1θ1,|2θ2〉−→ p′1 | p′2

(22)

Despite its somewhat intricate notation, enhanced operational semantics pro-
vides a welcome uniformity and modularity for models of concurrent systems.
By using substitution, the need for explicit environments can be avoided—but
if one wanted to add stores, it seems that a major reformulation of the inference
rules for steps would still be required. Or could labels be used also to record
changes to stored values? The next variety of SOS considered here suggests that
they can indeed.

Modular SOS: Recently, the author has proposed a solution to the SOS mod-
ularity problem [31, 33]. In Modular SOS (MSOS) the transition rules for each
construct are completely independent of the presence or absence of other con-
structs. When one extends or changes the described language, the description
can be extended or changed accordingly, without reformulation—even though
new kinds of information processing may be required.

The basic idea of MSOS is to incorporate all semantic entities as components
of labels. Thus configurations are restricted to syntax and computed values, and
judgements are always of the form γ

α−→ γ′.
In fact the labels in MSOS are regarded as the arrows of a category, and the

labels on adjacent steps have to be composable in that category. The labels are
no longer the simple atomic actions often used in studies of process algebra, but
usually have semantic entities—e.g. environments and stores—as components;
so do the objects of the label category, which correspond to the states of the
processed information.

Some basic label transformers for defining appropriate categories (starting
from the trivial category) are available; they correspond to some of the simpler
monad transformers used to obtain modularity in denotational semantics. Each
label transformer adds a fresh indexed component to labels, and provides no-
tation for setting and getting that component—independently of the presence
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or absence of other components. By using variables α ranging over arbitrary la-
bels, and ι ranging over arbitrary identity labels that remain in the same state,
rules can be expressed independently of the presence or absence of irrelevant
components of labels. For example:

e0
α−→ e′0

if e0 then e1 else e2
α−→ if e′0 then e1 else e2

(23)

if true then e1 else e2
ι−→ e1 if false then e1 else e2

ι−→ e2 (24)

The above rules remain both valid and appropriate when the category of labels
gets enriched with (e.g.) environment components, allowing the rules for binding
constructs to be added:

e1
α−→ e′1

let x = e1 in e2
α−→ let x = e′1 in e2

(25)

ρ = get(α, env) α′ = set(α, env, ρ[x 7→ v1]) e2
α′−→ e′2

let x = v1 in e2
α−→ let x = v1 in e′2

(26)

let x = v1 in v2
ι−→ v2 (27)

ρ = get(ι, env) ρ(x) = v

x
ι−→ v

(28)

The use of ι rather than α above excludes the possibility of any change of state.

Axiomatic Specifications: For proof-theoretic reasoning about SOS descriptions—
especially when establishing bisimulation and other forms of equivalence—it is
convenient that steps can only occur when proved by just the specified inference
rules. For other purposes, however, it may be an advantage to reformulate the
inference rules of SOS as ordinary conditional formulae, i.e., Horn clauses, and
use the familiar inference rules for deduction, such as Modus Ponens. The close
correspondence between inference rules and Horn clauses has been used in the
implementation of big-step SOS by compilation to Prolog [17].

The axiomatic reformulation of SOS requires side-conditions on rules to be
treated as ordinary conditions, along with judgements about possible steps. It
has been adopted in the SMoLCS framework [1], which combines SOS with
algebraic specifications. It has also been exploited in the modular SOS of action
notation [35], where CASL, the Common Algebraic Specification Language [7],
is used throughout (CASL allows the declaration of total and partial functions,
relations, and subsorts, which is just what is needed in the side-conditions of
SOS descriptions).
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3 Varieties of Reduction Semantics

Many of the inference rules specified in the structural approach to operational
semantics merely express that execution steps of particular components give rise
to execution steps of the enclosing phrases. The notion of reduction in term
rewriting systems enjoys a similar property, except that there is a priori no
restriction on the order in which component phrases are to be reduced. Thus
for any term constructor f , the following inference rule may be specified for the
reduction relation t −→ t′:

ti −→ t′i
f(t1, . . . , ti, . . . , tn) −→ f(t1, . . . , t′i, . . . , tn)

(29)

The above rule is subsumed by the following somewhat more elegant rule, where
C ranges over arbitrary one-hole term contexts, and C[t] is the term obtained
by filling the unique hole in the context C with the term t:

t −→ t′

C[t] −→ C[t′]
(30)

It is straightforward to define the arbitrary one-hole contexts for any ranked al-
phabet of (constant and) function symbols; similarly for many-sorted and order-
sorted signatures—introducing a different sort of context for each pair of argu-
ment and result sorts.

Several frameworks for operational semantics are based on variations of the
basic notion of reduction, and are reviewed below.

Reduction Strategies: The problem with using ordinary reduction to specify op-
erational semantics is the lack of control concerning the order of reduction steps:
the entire sequence of reductions might be applied to a part of the program that
in fact should not be executed at all.

For instance, consider the λ-expressions with constants, which may be re-
garded as a simple functional programming language:

e ::= v | e1 e2

v ::= b | f | x | λx.e

where the basic constants b and function constants f are left unspecified. The
execution steps for evaluating λ-expressions are δ-reductions, concerned with
applications of the form f b, and β-reductions:

(λx.e)(e′) −→ [e′/x]e (31)

where the substitution of expressions e′ for variables x, written [e′/x]e, is as-
sumed to avoid capture of free variables. An expression such as

(λy.b)((λx.xx)(λx.xx))
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has both terminating and non-terminating reduction sequences: the one that
takes the leftmost, outermost β-reduction corresponds to “call-by-name” seman-
tics for λ-expressions; that which always applies β-reduction to (λx.xx)(λx.xx)
corresponds to “call-by-value” semantics.

Standard reduction sequences are those which always make the leftmost
outermost reduction at each step. For λ-expressions, restricting reductions to
standard δ- and β-reductions ensures call-by-name operational semantics. Re-
markably, also call-by-value semantics can be ensured by restricting to standard
reductions—provided that the β-reduction rule is itself restricted to the case
where the argument of the application is already a value v [37, 11]:

(λx.e)(v) −→ [v/x]e (32)

Standard reduction sequences with this restricted notion of β-reduction corre-
spond to an operational semantics for λ-expressions defined by an SECD machine
[37].

By adopting the restriction to standard reductions, it might be possible to
give reduction semantics for other programming languages. However, the follow-
ing technique not only subsumes this approach, but also has the advantage of
admitting an explanation in terms of inference systems.

Evaluation Contexts: An alternative way of controlling the applicability of re-
ductions is to require them to occur in evaluation contexts [10]. It is convenient
to specify evaluation contexts E in the same way as the abstract syntax of pro-
grams, using context-free grammars. The symbol [ ] represents the hole of the
context; the grammar must ensure that exactly one hole occurs in any evaluation
context.

The restriction to evaluation contexts corresponds to simply replacing the
general context rule for reduction (30) above by:

t −→ t′

E[t] −→ E[t′]
(33)

For example, to obtain the call-by-value semantics of λ-expressions, let eval-
uation contexts E be defined by the grammar:

E ::= [ ] | v E | E e

It is easy to see that when an expression is of the form E[e1 e2], a standard
reduction step can only reduce e1 e2 or some sub-expression of it. Similarly, it
appears that call-by-name semantics can be obtained by reverting to ordinary
β-reduction (31) and letting evaluation contexts be defined as follows:

E ::= [ ] | f E | E e

(where f ranges over function constants).
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The following specification of evaluation contexts would be appropriate for
the intended operational semantics of the illustrative language constructs con-
sidered in Sect. 2:

E ::= [ ] | if E then e1 else e2 | let x = E in e2

(where the grammar for expressions e and values v is as before). Notice the
close correspondence between the productions of the above grammar and the
previously-given small-step SOS rules (1) and (4). The above grammar is clearly
more concise than the inference rules for expressing the allowed order of execu-
tion; this economy of specification may account for at least some of the popularity
of the evaluation context approach.

Assuming that reductions are restricted to occur only in evaluation contexts,
the following rules may now be given:

if true then e1 else e2 −→ e1 if false then e1 else e2 −→ e2 (34)

let x = v1 in e2 −→ [v1/x]e2 (35)

where [v/x]e is substitution, as before. As the reader may have noticed, these
are exactly the same as the small-step SOS rules (2) and (5).

An alternative technique with evaluation contexts is to combine (33) above
with the reduction rules themselves—now insisting that reductions are always
applied to the entire program. With the same definition of evaluation contexts,
the above reduction rules would then be written:

E[if true then e1 else e2] −→ E[e1] (36)

E[if false then e1 else e2] −→ E[e2] (37)

E[let x = v1 in e2] −→ E[[v1/x]e2] (38)

This seemingly innocent reformulation in fact provides a significant new possi-
bility, which is perhaps the forte of the evaluation context approach: reductions
may depend on and/or change the structure of the context itself. For example,
we may easily add a construct that is intended to stop the execution of the entire
program, and specify the reduction:

E[stop] −→ stop (39)

To specify the same semantics in small-step semantics would require giving an
explicit basic rule for the propagation of stop out of each evaluation context
construct:

if stop then e1 else e2 −→ stop (40)

let x = stop in e2 −→ stop (41)

In a big-step semantics, one would have to provide extra inference rules, e.g.:

e0 ⇓ stop

if e0 then e1 else e2 ⇓ stop
(42)
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Moreover, evaluation contexts can be used to specify the operational semantics
of advanced control constructs, such as those manipulating continuations [11].
Although it may be possible to specify continuations in SOS, the appropriateness
of the use of evaluation contexts here cannot be denied.

An evaluation context may contain more than just the syntactic control con-
text: for instance, it may also contain a store, recording the values assigned to
variables. A store s is represented syntactically as a sequence of pairs of lo-
cations l and values v, with no location occurring more than once. It is quite
straightforward to give reduction rules for variable allocation, assignment, and
dereferencing [4]:

s E[ref v] −→ s, (l, v) E[l] if l is not used in s (43)

s, (l, v), s′ E[l := v′] −→ s, (l, v′), s′ E[( )] (44)

s, (l, v), s′ E[l] −→ s, (l, v), s′ E[v] (45)

The previously given rules for functional constructs using explicit evaluation
contexts (e.g. (36)) remain valid, so the modularity of the approach appears to
be good—also when adding concurrency primitives to a functional language, as
illustrated in [40, 41]. However, it appears that it would not be so straightforward
to add explicit environments to evaluation contexts, and the reliance on syntactic
substitution may complicate the description of languages with “dynamic” scope
rules.

One significant potential problem when using evaluation contexts for mod-
elling the operational semantics of concurrent languages is how to define and
prove equivalence of processes. In particular cases “barbed” bisimulation can be
defined [27, 42]; also, a rather general technique for extracting labelled transition
systems (and hence bisimulations) from evaluation context semantics has been
proposed [43].

Rewriting Logic: The framework of Rewriting Logic (RL) [21] generalizes con-
ventional term rewriting in two main directions:

– rewriting may be modulo a set of equations between terms (i.e., it applies to
arbitrary equationally-specified data structures); and

– rewriting may be concurrent (i.e., non-overlapping sub-terms may be rewrit-
ten simultaneously).

Moreover, no assumptions about confluence or termination are made: the rules
are understood not as equations, but as transitions.

The inference rules for RL are as follows, where rewriting from between
equivalence classes of terms is written [t] −→ [t′]. Rewriting is taken to be
reflexive:

[t] −→ [t] (46)

which allows one or more of the arguments to remain the same in concurrent
rewriting:

[t1] −→ [t′1] . . . [tn] −→ [t′n]
[f(t1, . . . , tn)] −→ [f(t′1, . . . , t

′
n)]

(47)
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The following inference rule combines replacement of variables x1, . . . , xm by
terms t1, . . . , tm in a specified rule r : [t(x1, . . . , xm)] −→ [t′(x1, . . . , xm)] with
the possibility of rewriting the terms in the same step:

[t1] −→ [t′1] . . . [tn] −→ [t′n]
[t(t1/x1, . . . , tn/xn)] −→ [t′(t′1/x1, . . . , t

′
n/xn)]

(48)

Finally, rewriting is taken to be transitive:

[t1] −→ [t2] [t2] −→ [t3]
[t1] −→ [t3]

(49)

Specified rewriting rules are also allowed to be conditional, which requires a
further inference rule for discharging conditions.

RL has been used as a unifying model for concurrency [23] and as a logical
framework [20]. It has also been proposed as a semantic framework, as an al-
ternative to frameworks such as SOS [20]. RL has been efficiently implemented
in the Maude system [5], which makes its use as a semantic framework partic-
ularly attractive in connection with the possibilities for prototyping semantic
descriptions (see Sect. 4).

Two techniques for expressing SOS descriptions in RL have been proposed
[20]. The first is a special case of a general technique for representing sequent
systems in unconditional RL, with the rewriting relation corresponding to prov-
ability; the second is more specific to SOS, and uses conditional rewriting rules.
Let us illustrate both techniques with the same example: the SOS rules (17)–(19)
for concurrency in CCS (Sect. 2).

To start with, term constructors for the abstract syntax of processes and
labels are needed; we shall only make use of the binary process constructor p | p′,
which is now specified to be both associative and commutative (corresponding
to a syntactic congruence in SOS).

For the first technique, we also introduce a term constructor S(p, α, p′) rep-
resenting the assertion of an SOS step from process p to process p′ with label
α; and an infix term constructor s1&s2 representing the conjunction of such
assertions, specified to be associative, commutative, with unit ⊥.

The SOS rules are then expressed in RL as follows:

[⊥] −→ [S(α.p, α, p)] (50)

[S(p1, α, p′1)] −→ [S(p1 | p2, α, p′1 | p2)] (51)

[S(p1, l, p
′
1)&S(p2, l̄, p

′
2)] −→ [S(p1 | p2, τ, p

′
1 | p′2)] (52)

The relationship between the SOS steps and the rewriting relation is that p
α−→

p′ in the SOS iff [⊥] −→ [S(p, α, p′)] is provable in RL. Note that the rewrit-
ing relation is highly non-deterministic, and in practice a goal-directed strategy
would be needed in order to use the Maude implementation of RL for proving
[⊥] −→ [S(p, α, p′)] for some particular process p.

13



For the second technique, we introduce only a term constructor α; p that
combines the label α with the process p, representing the “result” of some SOS
step. The result sort of α; p is regarded as a supersort of the sort of processes,
and rewriting is always of the form [p] −→ [α; p′], i.e. it is sort-increasing. The
SOS rules are then expressed in RL as follows:

[α.p] −→ [α; p] (53)

[p1 | p2] −→ [α; p′1 | p2] if [p1] −→ [α; p′1] (54)

[p1] | p2] −→ [τ ; p′1 | p′2] if [p1] −→ [l; p′1] ∧ [p2] −→ [l̄; p′2] (55)

The relationship between the SOS steps and the rewriting relation is now that
given a process p, there are processes p1, . . . , pn−1 and labels α1, . . . , αn such
that p

α1−→ p1
α1−→ . . . pn−1

αn−→ p′ in SOS iff [p] −→ [α1; . . . ; αn; p′] in RL.

Tile Logic: Although Tile Logic (TL) is listed here together with other frame-
works for reduction semantics, due to its close relationship with Rewriting Logic
(translations both ways between the two frameworks have been provided [25, 3]),
it could just as well have been classified as a structural framework. In fact it is
a development of so-called context systems [19] where steps are specified much
as in SOS, except that phrases may be contexts with multiple holes, and the
actions that label the steps (the effects) may depend on actions to be provided
by the holes (the triggers). A context may be thought of as an m-tuple of terms
in n variables; there are operations, familiar from Lawvere’s algebraic theories,
for composing contexts sequentially (plugging the terms of one context into the
holes of another) and in parallel (concatenating tuples of terms over the same
variables), together with units and projections.

In TL, steps may affect the interfaces of contexts, and the steps themselves
have a rich algebraic structure; see [13, 14] for the details. Here we shall merely
introduce the notation of TL, and illustrate its use to express the operational
semantics of a familiar fragment of CCS.

The conventional algebraic notation for a tile is s
a−→
b t (ignoring the label of

the tile, for simplicity), where s −→ t is a context rewrite step, a is the trigger of
the step, and b is its effect. The tile requires that the variables of s are rewritten
with a cumulative effect a.

For appropriate arguments, sequential composition of contexts is written s; t,
with unit id, and parallel composition is written as s⊗ t. Duplicators are written
∇, and dischargers (or sinks) as ! (permuters are also provided). The operations
satisfy all the axioms that one might expect.

Two tiles can be composed in parallel (using ⊗), vertically (using ·), or hor-
izontally (using ∗), provided that their components have the appropriate types.

Finally, here are the tiles for some CCS constructs (where the variables x1,
x2 are actually redundant, and are usually omitted):

α.x1

id−→
α x1 (56)
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The above rule may be read operationally as: the context prefixes the hole x1

with the action α, and may become just the hole, emitting α as effect, without
any trigger.

x1 | x2

α⊗id−→
α x1 | x2 (57)

x1 | x2

id⊗α−→
α x1 | x2 (58)

x1 | x2

α⊗ᾱ−→
τ x1 | x2 (59)

Of course, this simple kind of SOS example does not nearly exploit the full
generality of the Tile Logic framework, which encompasses graph rewriting as
well as rewriting logic and context systems.

4 Prototyping

The Maude implementation of Rewriting Logic (RL) [5] has several features
that make it particularly attractive to use for prototyping operational semantics
of programming languages. For instance, it provides meta-level functions for
parsing, controlled rewriting, and pretty-printing; moreover, the Maude rewriting
engine is highly efficient. Maude also supports Membership Algebra [24], which
is an expressive framework for order-sorted algebraic specification.

Together with Christiano Braga at SRI International, the author has recently
been developing a representation of Modular SOS (MSOS) [31, 33] in RL and
implementing it in Maude; this involved first extending Maude with a new kind
of conditional rule, using the Maude meta-level. (Presently, MSOS rules are
translated manually to Maude rules, but later the translation is itself to be
implemented using Maude meta-level facilities.)

The translation process transforms an MSOS specification into an SOS-like
one [33]. MSOS rules are translated into Maude rules over configurations that
have a syntactic and a semantic component. Label formulae are translated into
equations dealing with the associated states. The MSOS of Action Notation
[35] is being prototyped this way—when completely implemented, together with
further meta-level functions for processing descriptions formulated in Action Se-
mantics [29, 30], it should enable the prototyping of action-semantic descriptions
of programming languages.

5 Conclusion

It is hoped that this survey of frameworks for the logical specification of opera-
tional semantics has provided a useful overview of much of the work in this area
(apologies to those whose favourite frameworks have been omitted). It would be
unwise to try to draw any definite conclusions on the basis of the remarks made
here about the various frameworks: both the SOS and the reduction semantics
approaches have their strengths, and are currently active areas of research—as
is Tile Logic, which is strongly related to the structural approach, as well as to

15



Rewriting Logic. However, it is clear that logic has been found to be a particu-
larly useful tool for specifying operational semantics, and appears to be preferred
in practice to approaches based on abstract machines and interpreters.
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