
B
R

IC
S

R
S

-99-52
H

enriksen
etal.:

Tow
ards

a
T

heory
ofR

egular
M

S
C

Languages

BRICS
Basic Research in Computer Science

Towards a Theory of
Regular MSC Languages

Jesper G. Henriksen
Madhavan Mukund
K. Narayan Kumar
P. S. Thiagarajan

BRICS Report Series RS-99-52

ISSN 0909-0878 December 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233662187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1999, Jesper G. Henriksen & Madhavan Mukund &
K. Narayan Kumar & P. S. Thiagarajan.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/52/

Towards a Theory of Regular MSC Languages

Jesper G. Henriksen

BRICS∗, Dept. of Comp. Sci., University of Aarhus, Denmark
Email: gulmann@brics.dk

Madhavan Mukund, K. Narayan Kumar, P. S. Thiagarajan

Chennai Mathematical Institute, Chennai, India
Email: {madhavan, kumar, pst}@smi.ernet.in

December, 1999

Abstract

Message Sequence Charts (MSCs) are an attractive visual forma-
lism widely used to capture system requirements during the early
design stages in domains such as telecommunication software. It is
fruitful to have mechanisms for specifying and reasoning about col-
lections of MSCs so that errors can be detected even at the require-
ments level. We propose, accordingly, a notion of regularity for col-
lections of MSCs and explore its basic properties. In particular, we
provide an automata-theoretic characterization of regular MSC lan-
guages in terms of finite-state distributed automata called bounded
message-passing automata. These automata consist of a set of se-
quential processes that communicate with each other by sending and
receiving messages over bounded FIFO channels. We also provide a
logical characterization in terms of a natural monadic second-order
logic interpreted over MSCs.

A commonly used technique to generate a collection of MSCs is
to use a Message Sequence Graph (MSG). We show that the class of
languages arising from the so-called locally synchronized MSGs consti-
tute a proper subclass of the languages which are regular in our sense.
In fact, we characterize the locally synchronized MSG languages as
the subclass of regular MSC languages that are finitely generated.

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

1 Introduction

Message sequence charts (MSCs) are an appealing visual formalism often
used to capture system requirements in the early stages of design. They are
particularly suited for describing scenarios for distributed telecommunication
software [11, 20]. They also appear in the literature as timing sequence dia-
grams, message flow diagrams and object interaction diagrams and are used
in a number of software engineering methodologies [4, 10, 20]. In its basic
form, an MSC depicts the exchange of messages between the processes of a
distributed system along a single partially-ordered execution. A collection of
MSCs is used to capture the scenarios that a designer might want the system
to exhibit (or avoid).

Given the requirements in the form of a collection of MSCs, one can
hope to do formal analysis and discover errors at the early stages of design.
One question that naturally arises in this context is the following: What
constitutes a reasonable collection of MSCs on which one can hope to do
formal analysis? A related issue is how one should go about representing
such collections.

A standard way to generate a collection of MSCs is to use a Hierarchi-
cal (or High-level) Message Sequence Chart (HMSC) [14]. An HMSC is a
finite directed graph in which each node is labelled, in turn, by an HMSC.
The HMSCs labelling the vertices may not refer to each other. The collec-
tion of MSCs represented by an HMSC consists of all MSCs obtained by
tracing a path in the HMSC from an initial vertex to a terminal vertex and
concatenating the MSCs that are encountered along the path.

Because of the restrictions on the labelling of HMSCs, we can derive an
equivalent Message Sequence Graph (MSG) by flattening out the hierarchical
labelling in an HMSC. In other words, an MSG is a graph where each node
is labelled by a simple MSC. Like an HMSC, an MSG defines a collection
of MSCs obtained by concatenating the MSCs labelling each path from an
initial vertex to a terminal vertex. Though HMSCs provide more succinct
specifications than MSGs, they are only as expressive as MSGs. Thus, one
often restricts one’s attention to characterizing structural properties of MSGs
rather than of HMSCs [2, 17, 19].

In [2], Alur and Yannakakis study the restricted class of locally synchro-
nized (or bounded) MSGs. They show that the collection of MSCs generated
by a locally synchronized MSG can be represented as a regular string lan-
guage. As a result, the behaviours captured by a locally synchronized MSG
can be, in principle, realized as a finite-state automaton. It is easy to see
that not every MSG-definable collection of MSCs is realizable in this sense.

The main goal of this paper is to pin down this notion of realizability in

2

terms of a notion of regularity for collections of MSCs and explore its basic
properties. One consequence of our study is that our definition of regularity
provides a general and robust setting for studying collections of MSCs. A sec-
ond consequence is that locally synchronized MSGs define a strict subclass of
regular collections of MSCs. A final consequence is that our notion leads to a
state-based representation that is one step closer to an implementation than
the description of system requirements using MSGs. Stated differently, our
work also addresses the issue, raised in [7], of converting inter-process descrip-
tions at the level of requirements, as specified by MSCs, into intra-process
executable specifications in terms of a reasonable model of computation.

Yet another motivation for focussing on regularity is that the classical
notion of a regular collection of objects has turned out to be very fruitful
in a variety of settings including finite (and infinite) strings, trees and re-
stricted partial orders known as Mazurkiewicz traces [8, 23, 24]. In all these
settings there is a representation of regular collections in terms of finite-state
devices. There is also an accompanying monadic second-order logic which
usually induces temporal logics using which one can reason about such col-
lections [23]. One can then develop automated model-checking procedures
for verifying properties specified in these temporal logics. In this context,
the associated finite-state devices representing the regular collections often
play a very useful role [25]. We show here that our notion of regular MSC
languages fits in nicely with a related notion of a finite-state device, as also
a monadic second-order logic.

We fix a finite set of processes P and consider M, the universe of MSCs
that the set P gives rise to. An MSC in M can be viewed as a labelled
partial order in which the labels come from a finite alphabet Σ which is
canonically fixed by P. Our proposal for L ⊆ M to be regular is that the
collection of all linearizations of all members of L should together constitute
a regular subset of Σ∗. A crucial point is that, unlike the classical setting
of strings (or trees or Mazurkiewicz traces), the universe M is itself not
regular according to our definition. This fact has a strong bearing on the
automata-theoretic and logical formulations in our work. It turns out that
regular MSC languages can be stratified using the concept of bounds. An
MSC is said to be B-bounded for a natural number B if at every “prefix” of
the MSC and for every pair of processes (p, q) there are at most B messages
that p has sent to q which have yet to be received by q. A language of MSCs
is B-bounded if every member of the language is B-bounded. Fortunately,
for every regular MSC language L we can effectively compute a (minimal)
bound B such that L is B-bounded. This leads to our automaton model
called B-bounded message-passing automata. The components of such an
automaton correspond to the processes in P. The components communicate

3

with each other over (potentially unbounded) FIFO channels. We say that a
message-passing automaton is B-bounded if, during its operation, it is never
the case that a channel contains more than B messages. We establish a
precise correspondence between B-bounded message-passing automata and
B-bounded regular MSC languages. In a similar vein, we formulate a natural
monadic second-order logic MSO(P, B) interpreted over B-bounded MSCs.
We then show that B-bounded regular MSC languages are exactly those that
are definable in MSO(P, B).

In related work, a number of studies are available which are concerned
with individual MSCs in terms of their semantics and properties [1, 12].
As pointed out earlier, a nice way to generate a collection of MSCs is to
use an MSG. A variety of algorithms have been developed for MSGs in the
literature—for instance, pattern matching [13, 17, 19] and detection of pro-
cess divergence and non-local choice [3]. A systematic account of the various
model-checking problems associated with MSGs and their complexities is
given in [2].

In general, the language defined by an MSG is not regular. Conversely, we
exhibit a regular MSC language which cannot be represented by an MSG, let
alone a locally synchronized MSG. We then characterize the class of regular
MSC languages which can be defined by message sequence graphs. We first
observe that the MSC languages defined by MSGs are finitely generated. It
turns out that there are regular MSC languages which consist of an infinite
number of “atomic” MSCs and are hence not finitely generated.

We give a decision procedure to determine when a regular MSC language
is finitely generated. Following this, we establish that the class of finitely
generated regular MSC languages coincides with the class of languages de-
fined by locally synchronized MSGs. In one direction, this characterization
hinges crucially on elements of Mazurkiewicz trace theory [8, 26].

In this paper we confine our attention to finite MSCs. We feel however
that our results will serve as a good launching pad for a similar account
concerning infinite MSCs. This should then lead to the design of appropriate
temporal logics and automata-theoretic solutions (based on message-passing
automata) to model-checking problems for these logics.

The paper is structured as follows. In the next section we introduce MSCs
and regular MSC languages. In Section 3 we establish our automata-theoretic
characterization and, in Section 4, the logical characterization. While doing
so, we borrow one basic result and a couple of proof techniques from the
theory of Mazurkiewicz traces [8]. However, we need to modify some of these
techniques in a non-trivial way (especially in the setting of automata) due
to the asymmetric flow of information via messages in the MSC setting, as
opposed to the symmetric information flow via handshake communication in

4

the trace setting.
We define Message Sequence Graphs in Section 5. We survey the existing

body of theory for this class of labelled graphs and bring out the notion of lo-
cally synchronized MSGs. In Section 6 we define finitely generated languages
and provide an effective procedure to decide whether a regular MSC language
is finitely generated. Following this, we establish our characterization result
for locally synchronized MSG languages.

2 Regular MSC Languages

Let P = {p, q, r, . . .} be a finite set of processes (or agents) which commu-
nicate with each other through messages via reliable FIFO channels. For

each p ∈ P we define Σp
def
= {p!q | p 6= q} ∪ {p?q | p 6= q} to be the set of

communication actions in which p participates. The action p!q is to be read
as p sends to q and the action p?q is to be read as p receives from q. At our
level of abstraction, we shall not be concerned with the actual messages that
are sent and received. We will also not deal with the internal actions of the
agents. We set Σ =

⋃
p∈P Σp and let a, b range over Σ. We also denote the

set of channels by Ch = {(p, q) | p 6= q} and let c, d range over Ch.
A Σ-labelled poset is a structure M = (E,≤, λ) where (E,≤) is a poset

and λ : E → Σ is a labelling function. For e ∈ E we define ↓e def
= {e′ | e′ ≤ e}.

For p ∈ P and a ∈ Σ, we set Ep
def
= {e | λ(e) ∈ Σp} and Ea

def
= {e | λ(e) = a},

respectively. For each c ∈ Ch, we define the relation Rc
def
= {(e, e′) | λ(e) =

p!q, λ(e′) = q?p and |↓e ∩ Ep!q| = |↓e′ ∩ Eq?p|}. Since messages are assumed
to be read in FIFO fashion, e R(p,q) e′ implies that the message read by q at
the receive event e′ is the one sent by p at the send event e. Finally, for each

p ∈ P, we define the relation Rp
def
= (Ep × Ep) ∩ ≤.

An MSC (over P) is a finite Σ-labelled poset M = (E,≤, λ) which satisfies
the following conditions1:

(1) Each Rp is a linear order.

(2) If p 6= q then |Ep!q| = |Eq?p|.

(3) ≤ = (RP ∪ RCh)
∗ where RP =

⋃
p∈P Rp and RCh =

⋃
c∈Ch Rc.

In diagrams, the events of an MSC are presented in visual order. The
events of each process are arranged in a vertical line and the members of

1Our definition captures the standard partial-order semantics associated with MSCs
in, for instance, [1, 20].

5

(p)
_

(q)
_

(r)
_

•e1 //• e2

•e′2 • e3oo

•e′1 • e′3oo

Figure 1: An example MSC over {p, q, r}.

the relation RCh are displayed as horizontal or downward-sloping directed
edges. We illustrate the idea with an example, depicted in Figure 1. Here
P = {p, q, r}. For x ∈ P, the events in Ex are arranged along the line
labelled (x) with earlier (relative to ≤) events appearing above the later
events. The RCh-edges across agents are depicted by horizontal edges—for
instance e3 R(r,q) e′2. The labelling function λ is easy to extract from the
diagram—for example, λ(e′3) = r!p and λ(e2) = q?p.

Henceforth, we will identify an MSC with its isomorphism class. We let
M(P) be the set of MSCs over P. An MSC language is a subset L ⊆ M(P).
From now on, whenever there is no confusion we omit P and denote M(P)
by M and ΣP by Σ.

We define regular MSC languages in terms of their linearizations. For an

MSC M = (E,≤, λ), we let lin(M)
def
= {λ(π) | π is a linearization of (E,≤)}.

By abuse of notation, we have used λ to also denote the natural extension of
λ to E∗. For an MSC language L ⊆ M, we set lin(L) =

⋃
{lin(M) | M ∈ L}.

In this sense, the string p!q r!q q?p q?r r!p p?r is one linearization of the MSC
in Figure 1.

In the literature (e.g. [1, 18, 19]) one sometimes considers a more generous
notion of linearization where two adjacent receive actions in a process cor-
responding to messages from different senders are deemed causally indepen-
dent. For instance, p!q r!q q?r q?p r!p p?r would also be a valid linearization
of the MSC in Figure 1. This is called the causal order of the MSC (as op-
posed to the visual order). Our results go through with suitable modifications
even in the presence of this more generous notion of linearization.

To directly characterize the subsets of Σ∗ that correspond to MSC lan-
guages, we proceed as follows. Let Com = {(p!q, q?p) | (p, q) ∈ Ch}. We say
that σ ∈ Σ∗ is proper if for every prefix τ of σ and every pair (a, b) ∈ Com,
|τ |a ≥ |τ |b. We say that σ is complete if σ is proper and |σ|a = |σ|b for ev-

6

ery (a, b) ∈ Com. Next we define a context-sensitive independence relation
I ⊆ Σ∗ × (Σ×Σ) as follows: (σ, a, b) ∈ I if σab is proper, a ∈ Σp and b ∈ Σq

for distinct processes p and q, and if (a, b) ∈ Com then |σ|a > |σ|b. Observe
that if (σ, a, b) ∈ I then (σ, b, a) ∈ I.

Let Σ◦ = {σ | σ ∈ Σ∗ and σ is complete}. We then define ∼ ⊆ Σ◦ × Σ◦

to be the least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and
(σ1, a, b) ∈ I then σ ∼ σ′. It is important to note that ∼ is defined over Σ◦

(and not Σ∗). It is easy to verify that for each M ∈ M, lin(M) is a subset
of Σ◦ and is in fact a ∼-equivalence class over Σ◦.

We define L ⊆ Σ∗ to be a string MSC language if there exists an MSC
language L ⊆ M(P) such that L =

⋃
{lin(M) | M ∈ L}. It is easy to see

that L ⊆ Σ∗ is a string MSC language iff L is a subset of Σ∗ such that every
string in L is complete and L is ∼-closed (that is, for each σ ∈ L, if σ ∈ L
and σ ∼ σ′ then σ′ ∈ L).

Just as a trace can be identified with its linearizations in Mazurkiewicz
trace theory [8], we can identify each MSC with the set of its linearizations.
To formalize this, we construct representation maps sm : Σ◦/∼ → M and
ms : M → Σ◦/∼ and sketch briefly that these maps are “inverses” of each
other.

We first define sm : Σ◦ → M. Let σ ∈ Σ◦. Then sm(σ) = (E,≤, λ),
where

• E = {τa | τa ∈ prf(σ)}, where prf(σ) is the set of prefixes of σ. Thus
E = prf(σ) − {ε}.

• ≤ = (RP ∪ RCh)
∗ where RP =

⋃
p∈P Rp, RCh =

⋃
c∈Ch Rc. The con-

stituent relations are defined as follows. For each p ∈ P, (τa, τ ′b) ∈
Rp iff a, b ∈ Σp and τa ∈ prf(τ ′b). Moreover, for each c ∈ Ch,
(τa, τ ′b) ∈ Rc iff a = p!q and b = q?p for some p, q ∈ P and fur-
thermore |τa|a = |τ ′b|b.

• For τa ∈ E, λ(τa) = a.

One can show that σ ∼ σ′ implies sm(σ) = sm(σ′). We can thus extend sm
to a map sm′ : Σ◦/∼ → M given by sm′([σ]∼) = sm(σ). Henceforth, we shall
write sm to denote both sm and sm′.

Conversely, we define the map ms : M → Σ◦/∼ as: ms(M) = lin(M) and
it is not hard to show that ms is well-defined. We can also show that for every
τ ∈ Σ◦, ms(sm(σ)) = [σ]∼ and for every M ∈ M, sm(ms(M)) = M . This
justifies our claim that Σ◦/∼ and M are two equivalent ways of representing
the same class of objects. Hence, abusing terminology, we will write “MSC
language” to mean “string MSC language”. From the context, it should be

7

clear whether we are working with MSCs from M or complete strings over
Σ∗. As a rule of thumb, we will use L to denote the former and L to denote
the latter, but this distinction is not always firm.

We can now finally define our notion of a regular collection of MSCs. We
will say that L ⊆ M is a regular MSC language if the corresponding string
MSC language is a regular subset of Σ∗. Thus, a language L of MSCs is
regular in case lin(L) is regular in the classical sense. Note that, unlike the
settings of strings (or trees or Mazurkiewicz traces), the universe M is itself
not regular according to our definition. This fact has a strong bearing on
the automata-theoretic and logical formulations in our work, as will become
apparent later.

Given a regular subset L ⊆ Σ∗, we can decide whether L is a regular MSC
language. We say that a state s in a finite-state automaton is live if there
is a path from s to a final state. Let A = (S, Σ, sin, δ, F) be the minimal
DFA representing L. Then it is not difficult to see that L is a regular MSC
language iff we can associate with each live state s ∈ S, a channel-capacity
function Ks : Ch → N which satisfies the following conditions.

(1) If s ∈ {sin} ∪ F then Ks(c) = 0 for every c ∈ Ch.

(2) If s, s′ are live states and δ(s, p!q) = s′ then Ks′((p, q)) = Ks((p, q))+1
and Ks′(c) = Ks(c) for every c 6= (p, q).

(3) If s, s′ are live states and δ(s, q?p) = s′ then Ks((p, q)) > 0, Ks′((p, q)) =
Ks((p, q))−1 and Ks′(c) = Ks(c) for every c 6= (p, q).

(4) Suppose δ(s, a) = s1 and δ(s1, b) = s2 with a ∈ Σp and b ∈ Σq, p 6= q.
If (a, b) /∈ Com or Ks((p, q)) > 0, there exists s′1 such that δ(s, b) = s′1
and δ(s′1, a) = s2.

Item (4) has useful consequences. As usual, we extend δ to words and
let δ(sin, u) denote the (unique) state reached by A on reading an input
u. Let u be a proper word and let a, b be communication actions such that
(u, a, b) belongs to the context-sensitive independence relation defined earlier.
Item (4) guarantees that δ(sin, uab) = δ(sin, uba). From this, we can conclude
that if v, w are complete words such that v ∼ w, then δ(sin, v) = δ(sin, w).

These conditions can be checked in time linear in the size of δ. We
conclude this section by introducing the notion of B-bounded MSC lan-
guages. Let B ∈ N be a natural number. We say that a complete word
σ is B-bounded if for each prefix τ of σ and for each channel (p, q) ∈ Ch,
|τ |p!q − |τ |q?p ≤ B. We say that L ⊆ Σ◦ is B-bounded if every word σ ∈ L is
B-bounded. Let L be a regular MSC language and let A = (S, Σ, sin, δ, F)

8

be its minimal DFA, as described above, with capacity functions {Ks}s∈S.

Let BL
def
= maxs∈S,c∈Ch Ks(c). Then it is easy to see that L is BL-bounded

and that BL can be effectively computed from A. In particular, we have:

Proposition 2.1 Let L be a regular MSC language. There is a bound B ∈ N

such that L is B-bounded.

Finally, we shall say that the MSC M is B-bounded if every string in
lin(M) is B-bounded. A collection of MSCs is B-bounded if every member
of the collection is B-bounded.

3 An Automata-Theoretic Characterization

In what follows we assume the terminology and notation developed in the
previous section. Recall that the set of processes P determines the communi-
cation alphabet Σ and that for p ∈ P, Σp denotes the actions which process
p participates in.

Definition 3.1 A message-passing automaton over Σ is a structure A =
({Ap}p∈P , ∆, sin, F) where:

• ∆ is a finite alphabet of messages.

• Each component Ap is of the form (Sp,−→p) where

– Sp is a finite set of p-local states.

– −→p ⊆ Sp × Σp × ∆ × Sp is the p-local transition relation.

• sin ∈
∏

p∈P Sp is the global initial state.

• F ⊆
∏

p∈P Sp is the set of global final states.

2

The local transition relation −→p specifies how the process p sends and
receives messages. The transition (s, p!q, m, s′) specifies that when p is in
the state s, it can send the message m to q (by executing the communi-
cation action p!q) and go to the state s′. The message m is, as a result,
appended to the queue of messages in the channel (p, q). Similarly, the tran-
sition (s, p?q, m, s′) signifies that at the state s, the process p can receive the
message m from q by executing the action p?q and go to the state s′. The

9

message m is removed from the head of the queue of messages in the channel
(q, p).

The set of global states of A is given by
∏

p∈P Sp. For a global state s, we
let sp denote the pth component of s. A configuration is a pair (s, χ) where s is
a global state and χ : Ch → ∆∗ is the channel state which specifies the queue
of messages currently residing in each channel c. The initial configuration of
A is (sin, χε) where χε(c) is the empty string ε for every channel c. The set
of final configurations of A is F × {χε}.

We now define the set of reachable configurations ConfA and the global
transition relation =⇒ ⊆ ConfA × Σ × ConfA inductively as follows:

• (sin, χε) ∈ ConfA.

• Suppose (s, χ) ∈ ConfA, (s′, χ′) is a configuration and (sp, p!q, m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P.

– χ′((p, q)) = χ((p, q)) · m and for c 6= (p, q), χ′(c) = χ(c).

Then (s, χ)
p!q

=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.

• Suppose (s, χ) ∈ ConfA, (s′, χ′) is a configuration and (sp, p?q, m, s′p) ∈
−→p such that the following conditions are satisfied:

– r 6= p implies sr = s′r for each r ∈ P.

– χ((q, p)) = m · χ′((q, p)) and for c 6= (q, p), χ′(c) = χ(c).

Then (s, χ)
p?q
=⇒ (s′, χ′) and (s′, χ′) ∈ ConfA.

Let σ ∈ Σ∗. A run of A over σ is a map ρ : prf(σ) → ConfA such
that ρ(ε) = (sin, χε) and for each τa ∈ prf(σ), ρ(τ)

a
=⇒ ρ(τa). The run

ρ is accepting if ρ(σ) is a final configuration. We define L(A)
def
= {σ |

A has an accepting run over σ}. It is easy to see that every member of L(A)
is complete and L(A) is ∼-closed in the sense that if σ ∈ L(A) and σ ∼ σ′

then σ′ ∈ L(A).
Unfortunately, L(A) need not be regular. Consider, for instance, a message-

passing automaton for the canonical producer-consumer system in which the
producer p sends an arbitrary number of messages to the consumer q. Since
we can reorder all the p!q actions to be performed before all the q?p ac-
tions, the queue in channel (p, q) can grow arbitrarily long. Hence, the set of

10

(p) : GFED@ABCs1

p!q

��

=⇒ (q) : GFED@ABCt1

q!p

q?p

��

=⇒

GFED@ABC?>=<89:;s2

p!q

GFED@ABCt2

q?p

JJ

GFED@ABC?>=<89:;t3

GFED@ABCs3

p?q

JJ

Figure 2: A 3-bounded message-passing automaton.

reachable configurations of this system is not bounded and the corresponding
language is not regular.

For B ∈ N, we say that a configuration (s, χ) of the message-passing
automaton A is B-bounded if for every channel c ∈ Ch, it is the case that
|χ(c)| ≤ B. We say that A is a B-bounded automaton if every reachable
configuration (s, χ) ∈ ConfA is B-bounded. It is not difficult to show that
given a message-passing automaton A and a bound B ∈ N, one can decide
whether or not A is B-bounded. Figure 2 depicts an example of a 3-bounded
message-passing automaton with two components, p and q. The initial state
is (s1, t1) and there is only one final state, (s2, t3). (the message alphabet is
a singleton and hence omitted). The automaton accepts the infinite set of
MSCs L = {Mi}ω

i=0, where Mi is displayed in Figure 3 for i = 2.
This automaton accepts an infinite set of MSCs, none of which can be

expressed as the concatenation of two or more non-trivial MSCs. As a result,
this MSC language cannot be represented using MSGs, as formulated in [2].

Proposition 3.2 Let A be a B-bounded automaton over Σ. Then L(A) is
a B-bounded regular MSC language.

This result follows from the definitions and it constitutes the easy half of
the characterization we wish to obtain. The second half of our characteriza-
tion says that every B-bounded regular MSC language can be recognized by
a B-bounded message-passing automaton. This is much harder to establish.

Let L ⊆ Σ∗ be a regular MSC language. As observed at the end of
Section 2, the minimum DFA for L yields a bound B such that L is B-
bounded. We first view L as a regular Mazurkiewicz trace language and
apply Zielonka’s theorem [26] to obtain a so-called asynchronous automaton
Z for L. We then convert Z into the desired B-bounded message-passing
automaton A with the property L(A) = L.

11

(p)
_

(q)
_

•p!q

$$JJJJJJJJJJ • q!p

����������������

i

•p!q

��77777777777777 • q?p
i

•p?q • q!p

����������������

•p!q

$$JJJJJJJJJJ • q?p

•p?q • q?p





Figure 3: The Mi’s accepted by the automaton in Figure 2.

Let {Σc}c∈Ch be given by Σc
def
= {p!q, q?p} for c = (p, q). We let X =

P∪Ch . For a ∈ Σ, we define the locations of a as loc(a)
def
= {x ∈ X | a ∈ Σx}.

The distributed alphabet {Σx}x∈X induces the Mazurkiewicz trace alphabet
(Σ, IX), where IX = {(a, b) | a, b ∈ Σ, loc(a) ∩ loc(b) = ∅} is an irreflexive
and symmetric independence relation. We can then define ≈ ⊆ Σ∗ × Σ∗ to
be the least equivalence relation such that if σ = σ1abσ2, σ′ = σ1baσ2 and
(a, b) ∈ IX then σ ≈ σ′. We say that L ⊆ Σ∗ is a regular (Mazurkiewicz)
trace language over (Σ, IX) if L is a regular subset of Σ∗ and L is ≈-closed—
that is, for each σ ∈ Σ∗, if σ ∈ L and σ ≈ σ′ then σ′ ∈ L.

Let L ⊆ Σ∗ be a regular MSC language. It is not difficult to verify that
L is a regular trace language over (Σ, IX)—the independence relation IX

corresponds to the static (context-insensitive) kernel of the context-sensitive
independence relation I defined in Section 2.

In order to apply Zielonka’s theorem we need to first introduce asyn-
chronous automata. An asynchronous automaton over the distributed alpha-
bet {Σx}x∈X is a structure Z = ({Sx}x∈X , {−→a}a∈Σ, sin, F) where each Sx is
a finite set of local states of the component x. Let S =

∏
x∈X Sx denote the set

of global states of Z. Then sin ∈ S is the global initial state and F ⊆ S is the
set of global final states. Let a = p!q. Then −→a ⊆ (Sp×S(p,q))×(Sp×S(p,q)).
The pair ((s1, s

′
1), (s2, s

′
2)) ∈ −→a denotes the fact that the p-component in

state s1, and the channel (p, q)-component in state s′1 can together execute
p!q and move to the joint state (s2, s

′
2). Similarly, for a receive action b = q?p,

12

−→b ⊆ (S(p,q)×Sq)×(S(p,q)×Sq) defines joint moves of the channel (p, q) and
process q when q receives messages from p. To define the global transition
relation −→ ⊆ S ×Σ× S, we let sx denote the xth component of the global
state s. Suppose s, s′ ∈ S, a = p!q and c = (p, q). Then (s, a, s′) ∈ −→ if
((sp, sc), (s

′
p, s
′
c)) ∈ −→a and sx = s′x for every x ∈ X \ {p, c}. Transitions of

the form (s, b, s′) with b = q?p are defined in a similar fashion. The notions
of runs and accepting runs are formulated in the obvious way. We let L(Z)
be the subset of Σ∗ accepted by Z.

Zielonka’s theorem [26] asserts that from a regular trace language L, we
can construct a deterministic asynchronous automaton Z such that L(Z) =
L. We have already observed that a regular MSC language L ⊆ Σ∗ is a
regular trace language over (Σ, IX). It follows that from a regular MSC
language L ⊆ Σ∗ we can effectively construct a deterministic asynchronous
automaton Z over the distributed alphabet {Σx}x∈X such that L = L(Z).

Fix a B-bounded regular MSC language L and let Z = ({Sx}x∈X ,
{−→a}a∈Σ, sin, F) be a deterministic asynchronous automaton such that L =
L(Z). We claim that we can effectively transform Z into a B-bounded
message-passing automaton A over Σ such that L(A) = L.

This transformation is complicated by the following fact. In Z, for each
pair p, q ∈ P, the actions p!q and q?p are performed by the channel com-
ponent (p, q) and are hence dependent on each other in all contexts. As a
result, the transition relations −→p!q and −→q?p do not reflect the context-
sensitive independence of the actions p!q and q?p, even though the language
accepted by Z is a regular MSC language and is hence closed with respect to
the context-sensitive independence relation I on Σ. This means that for two
inputs σ and σ′ such that σ ∼ σ′, Z will, in general, admit drastically differ-
ent runs on σ and σ′. On the other hand, the structure of message-passing
automata is such that the moves of any message-passing automaton over Σ
can be reordered with respect to the independence relation I. This implies
that the simulation of Z by A should not depend on the order in which in-
dependent occurrences of actions of the form p!q and q?p are linearized in a
given input.

To get around this, we simulate the component (p, q) of Z in A using the
components p and q such that for each input σ, p and q keep track the moves
of (p, q) along a canonical reordering σ′ ∼ σ. This simulation is coordinated
using the messages sent from p to q.

The key technical input for this simulation comes from [15] where it is
shown how each process p in a message-passing system can use a bounded
time-stamping protocol to keep track of the latest information about every
other process in the system. The protocol does not add extra messages to
the system. This protocol also allows each process p to locally keep track

13

of the messages sent on each channel (p, q) for which p has not received an
“acknowledgment”, directly or indirectly, from q. This list of “unacknowl-
edged” messages yields an upper bound for the number of messages currently
resident in each outgoing channel from p. (A more detailed description of
the time-stamping protocol is presented in Appendix A.)

The desired automaton A will be of the form ({A′p}p∈P , ∆, s′in, F
′), where

A′p = (S ′p, p). For each process p, each state in S ′p is of the form 〈sp, s̄p, τp〉
where sp records a local state of p in Z, s̄p records a local state sc in Z for
each incoming channel c = (q, p) at p, and τ is a time-stamp generated by
protocol of [15].

The message alphabet is ∆ = Ev × T where Ev =
⋃

a∈Σ −→a and T is
the set of time-stamps used by the protocol of [15]. (Recall that −→a is the
set of a-transitions specified in Z for each a.) The initial state and the final
states are defined in the expected manner using the initial and final states of
Z.

The transitions of A are arranged as follows. The tuple (〈sp, sp, τp〉, p!q,
(e, τ), 〈s′p, s′p, τ ′p〉) belongs to the p-local transition relation p provided the
following hold. First, τ = τ ′p and τ ′p is the time-stamp generated from τp

by the protocol of [15]. Let c = (p, q). The e-component of the message
is a move ((sp, sc), (s

′
p, s
′
c)) ∈ −→p!q for some sc, s

′
c ∈ Sc. Finally, according

to τp there are at most B−1 “unacknowledged” messages in the channel c,
indicating that sending this message will not violate the B-boundedness of
A.

The tuple (〈sp, sp, τp〉, p?q, (e, τ ′), 〈s′p, s′p, τ ′p〉) belongs to p provided the
following hold. From the time-stamp τ ′ on the incoming message, p collects
the latest information from each process r ∈ P about new r!p events that
have been sent by r but not yet received by p. For each such event, the time-
stamp τ ′ also records the move ((sr, sc), (s

′
r, s
′
c)) guessed by r when the event

occurred. Process p updates the (r, p)-component of sp by applying this move
guessed by r. If this guess is not permitted by the current state of (r, p) as
recorded in sp, p gets stuck. If there is more than one such r!p event then p
processes each of them in the order in which they were sent. Let the resulting
states corresponding to the channel components {(r, p) | r ∈ P} be ŝp. Let

c = (q, p). Now, p simulates the unique p?q move (ŝc, sp)
p?q
=⇒ (s′c, s

′
p) of Z

(recall that Z is deterministic). With this, p has updated the components sp

and s̄p of its state to s′p and s′p. Finally, it uses the time-stamps τp and τ ′ to
generate a new time-stamp τ ′p as specified by the protocol of [15].

It is easy to show that L(Z) ⊆ L(A). To show the converse, let σ ∈ L(A)
and let ρ be an accepting run of A over σ. From the way A simulates Z, we
can show that there is a canonical reordering σ′ ∼ σ such that there is an

14

accepting run ρ′ of A over σ′ where ρ′ is just a reordered version of ρ. The
word σ′ has the property that each message is received as soon as possible,
subject to causality constraints. For instance, if σ = p!q p!q q?p q?p then
σ′ = p!q q?p p!q q?p, and if σ = p!q p!q p!r r?p r!q q?r q?p q?p, then σ′ = σ.
In the second example, the messages via r ensure that p will have sent both
messages to q before q receives the first one. From ρ′ it is easy to extract an
accepting run of Z over σ′. The language accepted by Z is ∼-closed because
L is ∼-closed. Consequently, σ is also accepted by Z.

Filling in the details of this proof skeleton leads to the following result.

Lemma 3.3 Let L ⊆ Σ∗ be a B-bounded regular MSC language. Then there
exists a B-bounded message-passing automaton A over Σ such that L(A) =
L.

We say that A is a bounded message-passing automaton if A is B-
bounded for some B ∈ N. The main result of this section is an easy conse-
quence of the previous result.

Theorem 3.4 Let L ⊆ Σ∗. Then L is a regular MSC language if and only
if there exists a bounded message-passing automaton A over Σ such that
L(A) = L.

The automaton A constructed above is nondeterministic because each
send-action requires guessing a move of Z. In [16], a direct construction is
presented to generate a deterministic bounded message-passing automaton
for each regular MSC language.

4 A Logical Characterization

We formulate a monadic second-order logic which characterizes regular B-
bounded MSC languages for each fixed B ∈ N. Thus our logic will be param-
eterized by a pair (P, B). For convenience, we fix B ∈ N through the rest
of the section. As usual, we assume a supply of individual variables x, y, . . .,
a supply of set variables X, Y, . . ., and a family of unary predicate symbols
{Qa}a∈Σ. The syntax of the logic is then given by:

MSO(P, B) ::= Qa(x) | x ∈ X | x ≤ y | ¬ϕ | ϕ1 ∨ ϕ2 | (∃x)ϕ | (∃X)ϕ.

Thus the syntax does not reflect any information about the bound B or the
structural features of an MSC. These aspects will be dealt with in the seman-
tics. Let M(P, B) be the set of B-bounded MSCs over P. The formulas of

15

our logic are interpreted over the members of M(P, B). Let M = (E,≤, λ)
be an MSC in M(P, B) and I be an interpretation which assigns to each
individual variable a member I(x) in E and to each set variable X a subset
I(X) of E. Then M |=I ϕ denotes that M satisfies ϕ under I. This notion is
defined in the expected manner—for instance, M |=I Qa(x) if λ(I(x)) = a,
M |=I x ≤ y if I(x) ≤ I(y) etc. For convenience, we have used ≤ to de-
note both the predicate symbol in the logic and the corresponding causality
relation in the model M .

As usual, ϕ is a sentence if there are no free occurrences of individual or
set variables in ϕ. With each sentence ϕ we can associate an MSC language

Lϕ
def
= {M ∈ M(P, B) | M |= ϕ}. We say that L ⊆ M(P, B) is MSO(P, B)-

definable if there exists a sentence ϕ such that Lϕ = L. For convenience,
we often use “definable” to mean “MSO(P, B)-definable”. We wish to argue
that L ⊆ M(P, B) is definable iff it is a B-bounded regular MSC language.
It turns out the techniques used for proving a similar result in the theory of
traces [9] can be suitably modified to derive our result.

Lemma 4.1 Let ϕ be a sentence in MSO(P, B). Then Lϕ is a B-bounded
regular MSC language.

Proof Sketch: The fact that Lϕ is B-bounded follows from the seman-
tics and hence we just need to establish regularity. Consider MSO(Σ), the
monadic second-order theory of finite strings in Σ∗. This logic has the same
syntax as MSO(P, B) except that, to avoid confusion, we will use the pred-
icate symbol � instead of ≤ and interpret � as the usual ordering relation
over the positions of a structure in Σ∗. Let L =

⋃
{lin(M) | M ∈ Lϕ}. We

exhibit a sentence ϕ̂ in MSO(Σ) such that L = {σ | σ |= ϕ̂}. The required
conclusion will then follow from Büchi’s theorem [5]. Let {K0,K1, . . . ,Kn}
be the set {K ∈ NCh | ∀c ∈ Ch. K(c) ≤ B}. Without loss of generality,
assume that K0(c) = 0 for every c ∈ Ch. For K ∈ NCh and c ∈ Ch, let K+c

to be the member of NCh where K+c(c) = K(c)+1 and K+c(d) = K(d) for all
d 6= c. Similarly, for K ∈ NCh and c ∈ Ch such that K(c) > 0, K−c is given
by K−c(c) = K(c) − 1 and K−c(d) = K(d) for all d 6= c.

The required sentence ϕ̂ will be of the form:

(∃XK0)(∃XK1) · · · (∃XKn)(COMP ∧ ||ϕ||)

where COMP and ||ϕ|| are defined as follows. We provide these definitions in
textual form to enhance readability. They can be easily converted to formulas
in MSO(Σ).

First we define COMP to be the conjunction of the following formulas.

16

(1) Every position x belongs to exactly one of the sets in {XK0 , . . . , XKn}.

(2) If x is the first position then x ∈ XK0.

(3) If x is the last position then Qq?p(x) for some c = (p, q). Moreover x
belongs to XKm such that Km(c) = 1 and Km(d) = 0 for d 6= c.

(4) If y is the successor of x, Qp!q(x), x ∈ XKi
and y ∈ XKj

, then Kj = K+c
i ,

where c = (p, q).

(5) If y is the successor of x, Qq?p(x), x ∈ XKi
and y ∈ XKj

, then Ki(c) > 0
and Kj = K−c

i , where c = (p, q).

The formula ||ϕ|| is given inductively as follows:

• ||Qa(x)|| def
= Qa(x).

• ||x ∈ X|| def
= x ∈ X.

• ||¬ϕ′|| def
= ¬||ϕ′||.

• ||ϕ1 ∨ ϕ2|| def
= ||ϕ1|| ∨ ||ϕ2||.

• ||(∃x)ϕ′|| def
= (∃x)||ϕ′||.

• ||(∃X)ϕ′|| def
= (∃X)||ϕ′||.

• Finally, ||x ≤ y|| def
= x v y where we shall first define v in terms of @·

and then define @·. This translation is based on the fact that in an
MSC M = (E,≤, λ), ≤ = (RP ∪ RCh)

∗.

The formula x v y asserts existence of non-empty subsets {p1, p2, . . . , pm}
of processes and {x1, y1, x2, y2, . . . , xm, ym} of positions such that x = x1 and
ym = y. Further, xi � yi and xi and yi are both in Σpi

for 1 ≤ i ≤ m. In
addition, yi @· xi+1 for 1 ≤ i < m.

The predicate x @· y is given by: x ≺ y and there is a channel c = (p, q)
such that Qp!q(x) and Qq?p(y). Further, if x ∈ XKm then there are exactly
Km(c) occurrences of the symbol q?p between the positions x and y (and
not including y). It is now straightforward to show that ϕ̂ has the required
property. 2

Lemma 4.2 Let L ⊆ M(P, B) be a regular MSC language. Then L is
definable in MSO(P, B).

17

Let L =
⋃
{lin(M) | M ∈ L}. Then L is a regular (string) MSC language

over Σ. Hence by Büchi’s theorem [5] there exists a sentence ϕ in MSO(Σ)
such that L = {σ | σ |= ϕ}. An important property of ϕ is that one
linearization of an MSC satisfies ϕ iff all linearizations of the MSC satisfy
ϕ. We then define the sentence ϕ̂ = ||ϕ|| in MSO(P, B) inductively such that
the language of MSCs defined by ϕ̂ is precisely L. The key idea here is to
define a canonical linearization of MSCs and show that the underlying linear
order is expressible in MSO(P, B). As a result, we can look for a formula ϕ̂
which will say “along the canonical linearization of an MSC, the sentence ϕ
is satisfied”. We present below the main ideas and constructions involved in
arriving at ϕ̂.

Throughout what follows, we fix a strict linear order ≺ ⊆ Σ×Σ. Consider
an MSC M = (E,≤, λ). For e ∈ E, let ↑e = {e′ | e ≤ e′}. For events
e, e′ ∈ E, we define e co e′ if e 6≤ e′ and e′ 6≤ e. For X ⊆ E, let λ(X) =
{λ(e) | e ∈ X}. Next, suppose that ∅ 6= Σ′ ⊆ Σ. Then min(Σ′) is the
least element of Σ′ under ≺. Finally, suppose e, e′ ∈ E with e co e′. Then
Σee′ = λ(↑e \ ↑e′).

Let M = (E,≤, λ) be an MSC. Then the ordering relation ≺ induces the
ordering relation ≺M ⊆ E × E given by e ≺M e′ if e < e′ or (e co e′ and
min(Σee′) ≺ min(Σe′e)).

Claim 4.3 Let M = (E,≤, λ) be an MSC. Then (E,≺M) is a strict linear
order and ≺M is a linearization of ≤.

Proof: Same as the proof of [22, Lemma 15], which asserts an identical result
in the setting of (infinite) Mazurkiewicz traces. 2

We next exhibit a formula in MSO(P, B) (for any B ∈ N) which captures
the relation ≺M for each B-bounded MSC M . First we define the formula
min(z1, z2, a) where z1 and z2 are individual variables and a ∈ Σ via:

min(z1, z2, a) = (∃z)[z1 ≤ z ∧ ¬(z2 ≤ z) ∧ Qa(z)∧
(∀z′)

(
(z1 ≤ z′ ∧ ¬(z2 ≤ z′)) ⇒ Qa(z

′) ∨
∨

a≺a′ Qa′(z′)
)
]

The formula Lex(x, y) is now given by:

Lex(x, y) = (x < y) ∨
(

co(x, y) ∧
∨
a≺b

min(x, y, a) ∧ min(y, x, b)

)

where co(x, y) is an abbreviation for ¬(x ≤ y) ∧ ¬(y ≤ x).
Turning now to the proof of Lemma 4.2, let L =

⋃
{lin(M) | M ∈ L}.

Then L is a regular (string) MSC language over Σ. Hence by Büchi’s theorem

18

[5] there exists a sentence ϕ in MSO(Σ) such that L = {σ | σ |= ϕ}. We now
define the formula ϕ̂ = ||ϕ|| in MSO(P, B) inductively as follows:

||Qa(x)|| = Qa(x) and ||x � y|| = (x ≤ y ∧ y ≤ x) ∨ Lex(x, y)

The remaining clauses are the natural ones. It is now straightforward to
verify that Lϕ̂ = L. The key step in the proof is to show the following:
Suppose M ∈ M(P, B) and σ is the the linearization of M dictated by ≺M .
Then M is a model of ϕ̂ iff σ is a model of ϕ. This follows easily by structural
induction on ϕ. The required conclusion can now be derived by exploiting
the fact that L is ∼-closed.

Since MSO(Σ) is decidable, it follows that MSO(P, B) is decidable as
well. We can now summarize the results characterizing regularity as follows.

Theorem 4.4 Let L ⊆ Σ∗, where Σ is the communication alphabet associ-
ated with a set P of processes. Then, the following are equivalent.

(i) L is a regular MSC language.

(ii) L is a B-bounded regular MSC language, for some B ∈ N.

(iii) There exists a bounded message-passing automaton A such that L(A) =
L.

(iv) L is MSO(P, B)-definable, for some B ∈ N.

5 Message Sequence Graphs

The standard method to describe multiple communication scenarios is to
generate collections of MSCs by means of Hierarchical Message Sequence
Charts (HMSCs). As described in the introduction, to analyze HMSCs, it
suffices to flatten out them out to obtain Message Sequence Graphs (MSGs).
As a consequence, henceforth we concentrate on MSGs rather than HMSCs.

An MSG allows the protocol designer to write a finite specification which
combines MSCs using basic operations such as branching choice, composition
and iteration. Such MSGs are finite directed graphs with designated initial
and terminal vertices. Each vertex in an MSG is labelled by an MSC. The
edges represent the natural operation of MSC concatenation. The collection
of MSCs represented by an MSG consists of all those MSCs obtained by
tracing a path in the MSG from an initial vertex to a terminal vertex and
concatenating the MSCs that are encountered along the path.

19

(p)
_

(q)
_

(r)
_

(s)
_

• //• • //•
• •oo • •oo

M1 M2

ONMLHIJKM1
,,

=⇒ ONMLHIJKGFED@ABCM2ll

Figure 4: An example MSG.

Formally, the (asynchronous) concatenation of MSCs is defined as follows.
Let M1 = (E1,≤1, λ1) and M2 = (E2,≤2, λ2) be a pair for MSCs such that E1

and E2 are disjoint. For i ∈ {1, 2}, let Ri
c and {Ri

p}p∈P denote the underlying
communication and process causality relations in Mi. The (asynchronous)
concatenation of M1 and M2 yields the MSC M1 ◦ M2 = (E,≤, λ) where
E = E1 ∪E2, λ(e) = λi(e) if e ∈ Ei, i ∈ {1, 2}, and ≤ = (RP ∪RCh)

∗, where
Rp = R1

p∪R2
p∪{(e1, e2) | e1 ∈ E1, e2 ∈ E2, λ(e1) ∈ Σp, λ(e2) ∈ Σp} for p ∈ P,

and Rc = R1
c ∪ R2

c for c ∈ Com.
We can now formally define MSGs. A Message Sequence Graph (MSG)

is a structure G = (Q,−→, Qin, F, Φ), where:

• Q is a finite and nonempty set of states.

• −→ ⊆ Q × Q.

• Qin ⊆ Q is a set of initial states.

• F ⊆ Q is a set of final states.

• Φ : Q → M is a (state-)labelling function.

A path π through an MSG G is a sequence q0−→q1−→· · ·−→qn such that

(qi−1, qi) ∈ −→ for i ∈ {1, 2, . . . , n}. The MSC generated by π is M(π)
def
=

M0 ◦M1 ◦M2 ◦ · · ·◦Mn, where Mi = Φ(qi). A path π = q0−→q1−→· · ·−→qn

is a run if q0 ∈ Qin and qn ∈ F . The language of MSCs accepted by G is
L(G) = {M(π) ∈ M | π is a run through G}.

An example of an MSG is depicted in Figure 4. It is not hard to see that
the language L defined is not regular. To see this, we note that L projected
to {p!q, r!s}∗ is {σ ∈ {p!q, r!s}∗ | |σ|p!q = |σ|r!s ≥ 1}, which is not a regular

20

string language. (Recall that regular languages are closed under arbitrary
projections.)

A number of studies are available which are concerned with individual
MSCs in terms of their semantics and properties [1, 12]. The rest of the
work in the area consists of checking specific properties of communication
scenarios specified as MSGs. We briefly survey these results here.

Muscholl, Peled, and Su [19] investigate various matching problems for
MSCs and MSGs, where matching denotes embedding one partial order in
another. More specifically, they show that given MSGs G1 and G2, it is NP-
complete to decide whether there exist MSCs M1 ∈ L(G1) and M2 ∈ L(G2)
such that M1 matches M2. The universal counterpart to this problem—
that is, does there exists some M1 ∈ L(G1) such that M1 matches every
M2 ∈ L(G2)—is also NP-complete.

Muscholl [17] defines “and-or” versions of MSGs, reminiscent of alter-
nating automata. Given an “and-or” MSG G1 and a conventional MSG G2,
she considers the problem of deciding whether G1 admits a run-tree such
that each MSC generated by a path in this run-tree matches an MSC in
L(G2). She shows that this problem is PSPACE-complete, and moreover
that a similar problem of matching LTL-definable properties and MSGs is
PSPACE-complete as well.

In [3] Ben-Abdallah and Leue identify and characterize two properties
which are intuitively undesirable from an implementation point of view and
give algorithms to detect such anomalies. The first of them is that of process
divergence signifying that the specification allows some process to have an
unbounded number of unreceived messages in its buffer. This can be detected
in time linear in the total number of messages in the specification. We will
note here that though related, the notion of divergence-freeness is implied by
our notion of regularity, but does not coincide with it. Figure 4 provides a
simple counter-example, because the language of the MSG is divergence-free
but not regular.

The second underspecification detected by Ben-Abdallah and Leue is that
of nonlocal choice. Intuitively, this denotes the existence of branching choices
where different processes have the possibility of taking conflicting routes in
the MSG specification. To prevent such consistency problems, additional
messages or history variables have to be introduced into the system. Thus,
it is desirable for an MSG to not permit nonlocal choice. Once again, Ben-
Abdallah and Leue give an algorithm to detect the existence of nonlocal
choice in an MSG which runs in time linear in the total number of messages
in the specification. We note that the language of an MSG G might be a
regular MSC language and still exhibit nonlocal choice, as the two notions
are not related to each other. It is also worth pointing out that the problem

21

p // q p ((qhh

r

OO ??�������
r ((shh

Figure 5: CGM of Figure 1 (left) and CGM1◦M2 of Figure 4 (right).

of nonlocal choice is limited to specification formalisms such as MSGs and is
not an issue in specifications based on message-passing automata.

Alur and Yannakakis [2] consider model checking problems for systems
modeled as MSGs with respect to various semantics. In their setup, au-
tomata are used to describe undesirable linearizations. Thus, the property
to be checked captures the complement of the intended behaviour. In this
framework, the decision problems essentially reduce to checking emptiness
for products of automata, as the constituent automata need not be com-
plemented. They show that for synchronous concatenation of MSCs on the
paths of the MSG, the problem is coNP-complete, while the problem is un-
decidable in general for asynchronous concatenation.

Following this negative result, they then define the notion of a locally
synchronized MSG. For an MSC M = (E,≤, λ), let CGM , the communication
graph of M , be the directed graph (P, 7→) where:

• P is the set of processes of the system.

• (p, q) ∈ 7→ iff there exists an e ∈ E with λ(e) = p!q.

M is then said to be com-connected if CGM consists of one nontrivial strongly
connected component and isolated vertices. An MSC language L ⊆ M is
com-connected in case each MSC M ∈ L is com-connected.

The MSG G is locally synchronized2 if for every loop π = q−→q1−→
· · ·−→qn−→q, the MSC M(π) is com-connected. In our terminology, we will
say that an MSC language L is a locally synchronized MSG-language if there
exists a locally synchronized MSG G with L = L(G). Figure 5 illustrates the
communication graphs of the example MSCs encountered thus far. It is easy
to see that neither M nor M1 ◦ M2 are com-connected.

Interestingly, Alur and Yannakakis [2] then show that the asynchronous
model checking problem becomes PSPACE-complete for locally synchronized
MSGs. Clearly, the MSG of Figure 4 is not locally synchronized. This is no
coincidence, as it follows as a corollary of their proof sketch [2, Thm. 7] that
every locally synchronized MSG-language is indeed regular.

2This notion is called “bounded” in [2]. The terminology “locally synchronized” is
taken from [18].

22

We conclude this section by pointing out that Muscholl and Peled [18]
also consider two decision problems related to locally synchronized MSGs.
The first such problem is that of checking for race conditions. This essentially
consists of checking whether the causal order allows more linearizations than
the visual order. Recalling our discussion of linearizations in Section 2 we
see that in Figure 1 there is a race on process q between the receive events
for the messages from p and r, respectively.

The other problem is to detect confluence of MSG specifications. An
MSG G is said to be confluent in case for any two prefixes M1, M2 of MSCs
in L(G) that are consistent (in the sense that both are prefixes of some
common MSC), there does indeed exist such a completed MSC M in L(G)
of which both M1 and M2 is a prefix.

Muscholl and Peled show that both the problem of deciding whether an
MSG has race conditions and the problem of checking whether it is conflu-
ent are undecidable in general. However, they emphasize the importance of
locally synchronized MSGs by additionally proving that both problems are
EXPSPACE-complete for locally synchronized MSGs.

6 Finitely Generated Regular MSC Languages

A key feature of MSG languages is that for each such language there is a fixed
finite set X of MSCs such that each MSC in the language can be expressed
as a concatenation of MSCs (with multiple copies) taken from X . Such
languages are said to be finitely generated. In this section we investigate the
important connection between MSGs and finitely generated regular MSC
languages. More precisely, we characterize the locally synchronized MSG-
languages as precisely constituting the class of MSC languages that are both
regular and finitely generated.

Let L1,L2 ⊆ M be two sets of MSCs. As usual, L1 ◦ L2 denotes the
pointwise concatenation of L1 and L2, as defined out in the previous section.
For X ⊆ M, we define X 0 = {ε}, where ε denotes the empty MSC, and for
i ≥ 0, X i+1 = X ◦ X i. The asynchronous iteration of X is then defined by
X~ =

⋃
i≥0 X i. Now, let L ⊆ M. We say that L is finitely generated if there

is a finite set of MSCs X ⊆ M such that L ⊆ X~.
We first observe that not every regular MSC language is finitely generated.

As an example, the automaton in Figure 2 accepts a regular language which
is not finitely generated. By inspection of Figure 3 one readily verifies that
none of the MSCs in this language can be expressed as the concatenation of
two or more nontrivial MSCs. Hence, this language is not finitely generated.

Our interest in finitely generated languages stems from the fact that these

23

arise naturally from standard high-level descriptions of MSC languages such
as message sequence graphs. However, as we saw earlier, Figure 4 provides
an example showing that, conversely, not all finitely generated languages are
regular.

The first question we address is that of deciding whether a regular MSC
language is finitely generated. To do this, we need to introduce atoms. Let
M, M ′ ∈ M be nonempty MSCs. Then M ′ is a component of M in case
there exist M1, M2 ∈ M such that M = M1 ◦M ′ ◦M2. We say that M is an
atom if the only component of M is M itself.

Thus, an atom is a nonempty message sequence chart that cannot be de-
composed into non-trivial subcomponents. For an MSC M , we let Atoms(M)
denote the set {M ′ | M ′ is an atom and M ′ is a component of M}. For an
MSC language L ⊆ M, Atoms(L) =

⋃
{Atoms(M) | M ∈ L}. It is clear

that the question of deciding whether L is finitely generated is equivalent to
that of checking whether Atoms(L) is finite.

Theorem 6.1 Let L be a regular MSC language. It is decidable whether L
is finitely generated.

Proof Sketch: Let A = (S, Σ, sin, δ, F) be the minimum DFA for L. From
A, we construct a finite family of finite-state automata which together accept
the linearizations of the MSCs in Atoms(L). It will then follow that L
is finitely generated if and only if each of these automata accepts a finite
language. We sketch the details below.

We know that for each live state s ∈ S, we can assign a capacity function
Ks : Ch → N which counts the number of messages present in each channel
when the state s is reached. We say that s is a zero-capacity state if Ks(c) = 0
for each channel c. The following claims are easy to prove.

Claim 6.2 Let M be an MSC in Comp(L) (in particular, in Atoms(L)) and
w be a linearization of M . Then, there are zero-capacity live states s, s′ in
A such that s

w−→ s′.

If M is in Comp(L), then there are MSC’s M1, M2 such that M1MM2 ∈
L. Thus, if w1, w2 are some linearizations of M1 and M2, then w1ww2 is
accepted by A. Thus, there is an accepting run sin

w1−→ s
w−→ s′ w2−→ t.

w1, w2 and w are complete words as they arise as linearizations of MSCs.
Further, sin is a zero-capacity state and thus s and s′ must be zero-capacity
states. This proves Claim 6.2.

Claim 6.3 Let M be an MSC in Comp(L). M is an atom if and only if for
each linearization w of M and each pair (s, s′) of zero-capacity live states in
A, if s

w−→ s′ then no intermediate state visited in this run has zero-capacity.

24

Let M an atom and w be a linearization of M . Suppose w = w1w2

for nonempty words w1 and w2 and s
w1−→ s1

w2−→ s′, where s1 is a zero-
capacity state. w1 and w2 are nonempty complete words. Recall that every
complete word is the linearization of some MSC. Let M1 and M2 be the
MSCs corresponding to w1 and w2. Then, M = M1 ◦ M2 ◦ M3, where M3

is the empty MSC, contradicting the assumption that M is an atom. Thus,
the run can have no intermediate zero-capacity state.

Suppose M is not an atom. Then M = M1 ◦M2 ◦ M3 where at least two
of M1, M2, M3 are nonempty. Let w1, w2 and w3 be linearizations of M1, M2

and M3. All three are complete words. Thus, there are states s1, s2 such that
s

w1−→ s1
w2−→ s2

w3−→ s′. Since at least one of these words is nonempty, one of
the states s1 or s2 is a zero-capacity intermediate state. This completes the
proof of Claim 6.3.

Suppose s
w−→ s′ and w ∼ w′ . Then it is easy to see that s

w′
−→ s′ as

well. With each pair (s, s′) of live zero-capacity states we associate a language
LAt(s, s

′). A word w belongs to LAt(s, s
′) if and only if w is complete, s

w−→ s′

and for each w′ ∼ w the run s
w′
−→ s′ has no zero-capacity intermediate

states. From Claims 6.2 and 6.3 above, each of these languages consists of
all the linearizations of some subset of Atoms(L) and the linearizations of
each element of Atoms(L) is contained in some LAt(s, s

′). Thus, it suffices
to check for the finiteness of each of these languages.

Let Ls,s′ be the language of strings accepted by A when we set the initial
state to be s and the set of final states to be {s′}. Clearly LAt(s, s

′) ⊆ Ls,s′.
We now show how to construct an automaton for for LAt(s, s

′).
We begin with A and prune the automaton as follows:

• Remove all incoming edges at s and all outgoing edges at s′.

• If t /∈ {s, s′} and Kt = 0, remove t and all its incoming and outgoing
edges.

• Recursively remove all states that become unreachable as a result of
the preceding operation.

Let B be the resulting automaton. B accepts any complete word w on
which the run from s to s′ does not visit an intermediate zero-capacity state.
Clearly, LAt(s, s

′) ⊆ L(B). However, L(B) may also contain linearizations
of non-atomic MSCs that happen to have no nontrivial complete prefix. For
all such words, we know from Claim 6.3 that there is at least one equivalent
linearization on which the run passes through a zero-capacity state and which
would hence be eliminated from L(B). Thus, LAt(s, s

′) is the ∼-closed subset
of L(B) and we need to prune B further to obtain the automaton for LAt(s, s

′).

25

Recall that the original DFA A was structurally closed with respect to
the independence relation on communication actions in the following sense.
Suppose δ(s1, a) = s2 and δ(s2, b) = s3 with a, b independent at s1. Then,
there exists s′2 such that δ(s1, b) = s′2 and δ(s′2, a) = s3.

To identify the closed subset of L(B), we look for local violations of this
“diamond” property and carefully prune transitions. We first blow up the
state space into triples of the form (s1, s2, s3) such that there exist a and a′

with δ(s1, a) = s2 and δ(s2, a
′) = s3. Let S ′ denote this set of triples. We

obtain a nondeterministic transition relation δ′ = {((s1, s2, s3), a, (t1, t2, t3)) |
s2 = t1, s3 = t2, δ(s2, a) = s3}. Set Sin = {(s1, s2, s3) ∈ S ′ | s2 = sin} and
F ′ = {(s1, sf , s2) ∈ S ′ | sf ∈ F}. Let B′ = (S ′, Σ, δ′, Sin, F

′).
Consider any state s1 in B such that a and b are independent at s1,

δ(s1, a) = s2, δ(s2, b) = s3 but there is no s′2 such that δ(s1, b) = s′2 and
δ(s′2, a) = s3. For each such s1, we remove all transitions of the form
((t, s0, s1), a, (s0, s1, t

′)) and ((t, s2, s3), b, (s2, s3, t
′)) from B′. We then recur-

sively remove all states which become unreachable after this pruning.
Eventually, we arrive at an automaton C such that L(C) = LAt(s, s

′).
Since C is a finite-state automaton, we can easily check whether L(C) is
finite. This process is repeated for each pair of live zero-capacity states. 2

We will now bring out the intimate connection between message sequence
graphs and finitely generated regular MSC languages. As pointed out earlier,
Alur and Yannakakis noted that every locally synchronized MSG-language
is regular [2, Thm. 7]. One way to establish this result is — following [6]
— to show that the asynchronous iteration of a com-connected regular MSC
language is regular. The proof in [6] is based on grammars. A more direct,
automata-theoretic proof of the same result is described in Appendix B.

All languages arising from MSGs are finitely generated, so the language
accepted by the message-passing automaton on Figure 2 shows that not all
regular MSC languages can be described by MSGs. It turns out that locally
synchronized MSGs generate precisely those MSC languages that are both
regular and finitely generated.

Theorem 6.4 Let L be an MSC language. Then L is a finitely generated reg-
ular MSC language if and only if L is a locally synchronized MSG-language.

Proof Sketch: From the remarks above, it suffices to show that any finitely
generated regular MSC language can be accepted by some locally synchro-
nized MSG.

Suppose L is a regular MSC language accepted by the minimal DFA
A = (S, Σ, sin, δ, F). Let Atoms(L) = {a1, a2, . . . , am}. For each atom ai, fix

26

a linearization ui ∈ lin(ai). Define an auxiliary DFA B = (S0,Atoms(L), sin,

δ̂, F̂) as follows:

• S0 is the set of states of A which have zero-capacity functions.

• F̂ = F .

• δ̂(s, ai) = s′ iff δ(s, ui) = s′ in A. (Note that u, u′ ∈ lin(ai) implies
δ(s, u) = δ(s, u′), so s′ is fixed independent of the choice of ui ∈ lin(ai).)

Thus, B accepts the (regular) language of atoms corresponding to L(A).
We can define a natural independence relation IA on atoms as follows: atoms
ai and aj are independent if and only if the set of active processes in ai is
disjoint from the set of active processes in aj . (The process p is active in the
MSC (E,≤, λ) if Ep is non-empty.)

It follows that L(B) is a regular Mazurkiewicz trace language over the
trace alphabet (Atoms(L), IA). As usual, for w ∈ Atoms(L)∗, we let [w]
denote the equivalence class of w with respect to IA.

We now fix a strict linear order ≺ on Atoms(L). This induces a (lexi-
cographic) total order on words over Atoms(L). Let LEX ⊆ Atoms(L)∗ be
given by: w ∈ LEX iff w is the lexicographically least element in [w].

For a trace language L over (Atoms(L), IA), let lex (L) denote the set
L ∩ LEX .

Fact 6.5 ([8], Sect. 6.3.1)

(1) If L is a regular trace language over (Atoms(L), IA), then lex(L) is a
regular language over Atoms(L). Moreover, L = {[w] | w ∈ lex (L)}.

(2) If w1ww2 ∈ LEX , then w ∈ LEX .

(3) If w is not a connected3 trace, then ww /∈ LEX .

From (1) we know that lex(L(B)) is a regular language over Atoms(L).
Let C = (S ′,Atoms(L), s′in, δ

′, F ′) be the DFA over Atoms(L) obtained by
eliminating the (unique) dead state, if any, from the minimal DFA for
lex (L(B)). It is easy to see that an MSC M belongs to L if and only if
it can be decomposed into a sequence of atoms accepted by C. Using this
fact, we can derive an MSG G from C such that L(G) = L. We define
G = (Q,−→, Qin, F, Φ) as follows:

3A trace is said to be connected if, when viewed as a labelled partial order, its Hasse
diagram consists of a single connected component. See [8] for a more formal definition.

27

• Q = S ′ × (Atoms(L) ∪ {ε}).

• Qin = {(s′in, ε)}.

• (s, b)−→(s′, b′) iff δ′(s, b′) = s′.

• F ′ = F × Atoms(L).

• Φ(s, b) = b.

Clearly G is an MSG and the MSC language that it defines is L. We
need to show that G is locally synchronized. To this end, let π = (s, b)−→
(s1, b1)−→· · ·−→(sn, bn)−→(s, b) be a loop in G. We need to establish that
the MSC M(π) = b1 ◦ · · · ◦ bn ◦ b defined by this loop is com-connected. Let
w = b1b2 . . . bnb.

Consider the corresponding loop s
b1−→ s1

b2−→ · · · bn−→ sn
b−→ s in C.

Since every state in C is live, there must be words w1, w2 over Atoms(L) such
that w1w

kw2 ∈ lex(L(B)) for every k ≥ 0.
From (2) of Fact 6.5, wk ∈ LEX . This means, by (3) of Fact 6.5, that

w describes a connected trace over (Atoms(L), IA). From this, it is not
difficult to see that the underlying undirected graph of the communication
graph CGM(π) = (P, 7→) consists of a single connected component C ⊆ P
and isolated processes. We have to argue that the component C is, in fact,
strongly connected. We show that if C is not strongly connected, then the
regular MSC language L is not B-bounded for any B ∈ N, thus contradicting
Proposition 2.1.

Suppose that the underlying graph of C is connected but C not strongly
connected. Then, there exist two processes p, q ∈ C such that p 7→ q, but
there is no path from q back to p in CGM(π). For k ≥ 0, let M(π)k = (E,≤, λ)
be the MSC corresponding to the k-fold iteration M(π) ◦ M(π) ◦ · · · ◦ M(π)︸ ︷︷ ︸

k times

.

Since p 7→ q in CGM(π), it follows that there are events labelled p!q and q?p
in M(π). Moreover, since there is no path from q back to p in CGM(π), we
can conclude that in M(π)k, for each event e with λ(e) = p!q, there is no
event labelled q?p in ↓e. This means that M(π)k admits a linearization v′k
with a prefix τ ′k which includes all the events labelled p!q and excludes all
the events labelled q?p, so that |τ |p!q − |τ |q?p ≥ k.

By Proposition 2.1, since L is a regular MSC language, there is a bound
B ∈ N such that every word in L is B-bounded—that is, for each v ∈ L,
for each prefix τ of v and for each channel (p, q) ∈ Ch, |τ |p!q − |τ |q?p ≤ B.
Recall that w1w

kw2 ∈ lex(L(B)) for every k ≥ 0. Fix linearizations v1 and
v2 of the atom sequences w1 and w2, respectively. Then, for every k ≥ 0,

28

ONMLHIJKGFED@ABCM1
,,

��
=⇒ ONMLHIJKGFED@ABCM2ll

��

(p)
_

(q)
_

(r)
_

(s)
_

• //• • //•
• •oo • •oo

M1 M2

Figure 6: An non-locally synchronized MSG whose language is regular.

uk = v1v
′
kv2 ∈ L where v′k is the linearization of M(π)k defined earlier.

Setting k to be B+1, we find that uk admits a prefix τk = v1τ
′
k such that

|τk|p!q − |τk|q?p ≥ B+1, which contradicts the B-boundedness of L.
Hence, it must be the case that C is a strongly connected component,

which establishes that the MSG G we have constructed is locally synchro-
nized.

2

It is easy to see that local synchronicity is not a necessary condition for
regularity. Consider the MSG in Figure 6, which is not locally synchronized.
It accepts the regular MSC language M1 ◦ (M1 + M2)

~.
Thus, it would be useful to provide a characterization of the class of

MSGs representing regular MSC languages. Unfortunately, the following
result shows that there is no (recursive) characterization of this class.

Theorem 6.6 The problem of deciding whether a given MSG represents a
regular MSC language is undecidable.

Proof Sketch: It is known that the problem of determining whether the
trace-closure of a regular language L ⊆ A∗ with respect to a trace alphabet
(A, I) is also regular is undecidable [21]. We reduce this problem to the
problem of checking whether the MSC language defined by an MSG is regular.

Let Ã = (A1, . . . , An) be a distributed alphabet implementing the trace
alphabet (A, I) [8]. We will fix a set of processes P and the associated
communication alphabet Σ and encode each letter a by an MSC Ma over P.

For each i, we create 1+ |Ai| processes which we will denote by pi, p
a1
i , pa2

i ,
. . . , pak

i , where Ai = {a1, a2, . . . , ak}. Suppose now that the letter a appears

in the components Ai1 , Ai2, . . . , Aik of the distributed alphabet Ã with 1 ≤

29

(pi1)_
(pa

i1)_
(pi2)_

(pa
i2)_

. . . (pik−1
)

_
(pa

ik−1
)

_
(pik)_

(pa
ik

)
_

• //•
• //•

• //•
• ____

�
�

//____ •
• //•

• //•
• //•
• •oo

• •oo

• •oo

�
� •_ _ _ _

•oo_ _ _ _

• •oo

• •oo

• •oo

. . .

Figure 7: The MSC Ma encoding the letter a ∈ A.

i1 < i2 < . . . < ik ≤ n. The MSC Ma representing a is then given in
Figure 7. It is easy to see that the communication graph CGMa is strongly
connected. Moreover, if (a, b) ∈ I, then the sets of active processes of Ma and
Mb are disjoint. The encoding ensures that we can construct a finite-state
automaton to parse any word over Σ and determine whether it arises as the
linearization of an MSC of the form Ma1 ◦ Ma2 ◦ · · · ◦ Mak

. If so, the parser
can uniquely reconstruct the corresponding word a1a2 . . . ak over A.

Let A be the minimal DFA corresponding to a regular language L over A.
We construct an MSG G from A as described in the proof of Theorem 6.4.
Given the properties of our encoding, we can then establish that the MSC
language L(G) is regular if and only if the trace-closure of L is regular, thus
completing the reduction. 2

30

7 Discussion

In this report, we have first introduced a notion of regularity for collections
of MSCs and provided both automata-theoretic and logical characterizations
of regular MSC languages. We can summarize these results as follows.

Theorem 7.1 Let L ⊆ Σ∗, where Σ is the communication alphabet associ-
ated with a set P of processes. Then, the following are equivalent.

(1) L is a regular MSC language.

(2) L is a B-bounded regular MSC language, for some B ∈ N.

(3) There exists a bounded message-passing automaton A such that L(A) =
L.

(4) L is MSO(P, B)-definable, for some B ∈ N.

Following this, we have shown that the class of regular MSC languages
properly subsumes the class of languages defined by locally synchronized
MSGs, as studied in [2]. In fact, we precisely characterize the class of lan-
guages definable by locally synchronized MSGs in terms of finitely generated
regular MSC languages. One way to phrase our characterization is as follows.

Theorem 7.2 Let L be a regular MSC language. Then L can be described
by an MSG if and only if L is finitely generated.

Finally, we have also shown that it is decidable whether a given regular
MSC language is finitely generated but it is undecidable, in general, whether
a given MSG defines a regular MSC language.

References

[1] Alur, R., Holzmann, G. J., Peled, D.: An analyzer for message sequence
charts. Software Concepts and Tools 17(2) (1996) 70–77

[2] Alur, R., Yannakakis, M.: Model checking of message sequence charts.
Proceedings of the 10th International Conference on Concurrency The-
ory (CONCUR’99), Lecture Notes in Computer Science 1664, Springer-
Verlag (1999) 114–129

31

[3] Ben-Abdallah, H., Leue, S.: Syntactic detection of process divergence
and non-local choice in message sequence charts. Proceedings of the 3rd
Workshop on Tools and Algorithms for the Construction and Analy-
sis of Systems (TACAS’97), Lecture Notes in Computer Science 1217,
Springer-Verlag (1997) 259–274

[4] Booch, G., Jacobson, I., Rumbaugh, J.: Unified Modeling Language User
Guide. Addison-Wesley (1997)

[5] Büchi, J. R.: Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundl. Math. 6 (1960) 66–92

[6] Clerbout, M., Latteux, M.: Semi-commutations. Information and Com-
putation 73(1) (1987) 59–74

[7] Damm, W., Harel, D.: LCSs: Breathing life into message sequence
charts. Proceedings of the 3rd IFIP International Conference on For-
mal Methods for Open Object-Based Distributed Systems (FMOODS’99),
Kluwer Academic Publishers (1999) 293–312

[8] Diekert, V., Rozenberg, G. (Eds.): The Book of Traces. World Scientific
(1995)

[9] Ebinger, W., Muscholl, A.: Logical definability on infinite traces. The-
oretical Computer Science 154(1) (1996) 67–84

[10] Harel, D., Gery, E.: Executable object modeling with statecharts. IEEE
Computer, July 1997 (1997) 31–42

[11] ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, Geneva (1997)

[12] Ladkin, P. B., Leue, S.: Interpreting message flow graphs. Formal As-
pects of Computing 7(5) (1995) 473–509

[13] Levin, V., Peled, D.: Verification of message sequence charts via tem-
plate matching. Proceedings of the 7th International Conference on The-
ory and Practice of Software Development (TAPSOFT’97), Lecture
Notes in Computer Science 1214, Springer-Verlag (1997) 652–666

[14] Mauw, S., Reniers, M. A.: High-level message sequence charts, Proceed-
ings of the 8th SDL Forum, SDL’97: Time for Testing — SDL, MSC
and Trends, Elsevier (1997) 291–306

32

[15] Mukund, M., Narayan Kumar, K., Sohoni, M.: Keeping track of the lat-
est gossip in message-passing systems. Proceedings of Structures in Con-
currency Theory (STRICT), Workshops in Computing Series, Springer-
Verlag (1995) 249–263

[16] Mukund, M., Narayan Kumar, K., Sohoni, M.: Synthesizing distributed
finite-state systems from MSCs. Proceedings of the 11th International
Conference on Concurrency Theory (CONCUR 2000), Lecture Notes in
Computer Science, Springer-Verlag (to appear)

[17] Muscholl, A.: Matching specifications for message sequence charts. Pro-
ceedings of the 2nd International Conference on Foundations of Software
Science and Computation Structures (FOSSACS’99), Lecture Notes in
Computer Science 1578, Springer-Verlag (1999) 273–287

[18] Muscholl, A., Peled, D.: Message sequence graphs and decision prob-
lems on Mazurkiewicz traces. Proceedings of the 24th International Sym-
posium on Mathematical Foundations of Computer Science (MFCS’99),
Lecture Notes in Computer Science 1672, Springer-Verlag (1999) 81–91

[19] Muscholl, A., Peled, D., Su, Z.: Deciding properties for message
sequence charts. Proceedings of the 1st International Conference on
Foundations of Software Science and Computation Structures (FOS-
SACS’98), Lecture Notes in Computer Science 1378, Springer-Verlag
(1998) 226–242

[20] Rudolph, E., Graubmann, P., Grabowski, J.: Tutorial on message se-
quence charts. In Computer Networks and ISDN Systems — SDL and
MSC 28 (1996).

[21] Sakarovitch, J.: The “last” decision problem for rational trace languages.
Proceedings of the 1st Latin American Symposium on Theoretical Infor-
matics (LATIN’92), Lecture Notes in Computer Science 583, Springer-
Verlag (1992) 460–473

[22] Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear
time temporal logic for Mazurkiewicz traces. Proceedings of the 12th An-
nual IEEE Symposium on Logic in Computer Science (LICS’97), IEEE
Computer Society Press (1997) 183–194

[23] Thomas, W.: Automata on infinite objects. In van Leeuwen, J. (Ed.):
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Semantics, Elsevier Science Publishers (1990) 133–191

33

[24] Thomas, W.: Languages, automata, and logic. In Rozenberg, G., Sa-
lomaa, A. (Eds.): Handbook of Formal Language Theory, Volume III,
Springer-Verlag (1997) 389–455

[25] Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic
program verification. Proceedings of the 1st Annual IEEE Symposium on
Logic in Computer Science (LICS’86), IEEE Computer Society Press
(1986) 332–345

[26] Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. In-
formatique Théorique et Applications 21 (1987) 99–135

34

A Bounded Time-stamps

Partial computations Let u ∈ Σ∗ be a complete word and let sm(u) =
(Eu,≤u, λu) be the MSC associated with u. A set of events I ⊆ Eu is called
an (order) ideal if I is closed with respect to ≤—that is, e ∈ I and f ≤ e
implies f ∈ I as well. The ideal I ⊆ Eu is said to be complete if I is itself
an MSC. We denote the set of ideals of M = (E,≤, λ) by Ideals(M).

Ideals denote consistent partial computations of u—notice that any lin-
earization of an ideal forms a proper word, which we will sometimes refer to
as a communication sequence. If an ideal I is complete, then its linearizations
are also complete.

We can extend the map sm to the domain of proper words. If u is proper
but not complete, sm(u) will not be an MSC because some send events will
not have matching receive events. However, it is easy to observe that the
labelled partial order sm(u) corresponds to an ideal in the MSC sm(v) for
any complete word v which extends u. In this section, we shall work with
this extended definition of the map sm. Henceforth, for a proper word u,
we shall refer to the labelled partial order sm(u) as Mu = (Eu,≤u, λu). In
particular, Eu always refers to the set of events associated with the MSC
sm(u) generated from a proper word u.

p-views For an ideal I, the ≤-maximum p-event in I is denoted maxp(I),
provided there is at least one p-event in I. The p-view of I, ∂p(I), is the
ideal ↓maxp(I). Thus, ∂p(I) consists of all events in I which p can “see”.
(By convention, if maxp(I) is undefined—that is, if there is no p-event in I—
the p-view ∂p(I) is empty.) For P ⊆ P, we use ∂P (I) to denote

⋃
p∈P ∂p(I).

Latest information Let I ⊆ Eu be an ideal and p, q ∈ P. Then latest(I)
denotes the set of events {maxp(I) | p ∈ P}. For p ∈ P, we let latestp(I)
denote the set latest(∂p(I)). A typical event in latestp(I) is of the form
maxq(∂p(I)) and denotes the ≤-maximum q-event in ∂p(I). This is the
latest q-event in I that p knows about. For convenience, we denote this
event latestp←q(I). (As usual, if there is no q-event in ∂p(I), the quantity
latestp←q(I) is undefined.)

It is clear that for q 6= p, latestp←q(I) will always correspond to a send
action from Σq. However latestp←q(I) need not be of the form q!p; the latest
information that p has about q in I may have been obtained indirectly.

Message acknowledgments Let I ⊆ Eu be an ideal and e ∈ I an event
of the form p!q. Then, e is said to have been acknowledged in I if the

35

corresponding receive event f such that eR(p,q)f exists and, moreover, belongs
to ∂p(I). Otherwise, e is said to be unacknowledged in I.

Notice that it is not enough for a message to have been received in I to
deem it to be acknowledged. We demand that the event corresponding to
the receipt of the message be “visible” to the sending process.

For an ideal I and a pair of processes p, q, let unack p→q(I) be the set of
unacknowledged p!q events in I.

B-bounded computations Let u ∈ Σ∗ be a proper word and let Mu =
(Eu,≤u, λu). We say that u is B-bounded, for B ∈ N, if for every pair of
processes p, q and for every ideal I ⊆ Eu, unack p→q(I) contains at most B
events.

The following result is immediate.

Proposition A.1 Let u ∈ Σ∗ be proper. The word u is B-bounded iff for
every linearization v of Mu, for every prefix w of v and for every pair of
processes p, q, |w|p!q − |w|q?p ≤ B.

It is easy to see that during the course of a B-bounded computation,
none of the message buffers ever contains more than B undelivered mes-
sages, regardless of how the events are sequentialized. Thus, if each com-
ponent Ap of a message-passing automaton is able to keep track of the sets
{unackp→q(Eu)}q∈P for each word u, this information can be used to inhibit
sending messages along channels which are potentially saturated. This would
provide a mechanism for constraining an arbitrary message-passing automa-
ton to be B-bounded.

Primary information Let I ⊆ E be an ideal. The primary information
of I, primary(I), consists of the following events in I:

• The set latest(I) = {maxp(I) | p ∈ P}.

• The collection of sets unack(I) = {unack p→q(I) | p, q ∈ P}.

For p ∈ P, we denote primary(∂p(I)) by primaryp(I). Thus, primaryp(I)
reflects the primary information of p in I. Observe that for B-bounded
computations, the number of events in primary(I) is bounded.

In [15], a protocol is presented for processes to keep track of their primary
information during the course of an arbitrary computation.4 This protocol

4In [15], the primary information of an ideal I is defined to include more events than
just latest(I)∪unack (I). However, for our purposes, it suffices to treat events in latest(I)∪
unack(I) as primary.

36

involves appending a bounded amount of information to each message in the
underlying computation, provided the computation is B-bounded. To ensure
that the message overhead is bounded, the processes use a distributed time-
stamping mechanism which consistently assigns “names” to events using a
bounded set of labels.

Consistent time-stamping Let T be a finite set of labels. For a proper
communication sequence u, we say that τ : Eu → T is a consistent time-
stamping of Eu by T if for each pair of (not necessarily distinct) processes p, q
and for each ideal I the following holds: if ep ∈ primaryp(I), eq ∈ primaryq(I)
and τ(ep) = τ(eq) then ep = eq.

In the protocol of [15], whenever a process p sends a message to q, it first
assigns a time-stamp to the new message from a finite set of labels. Process p
then appends its primary information to the message being sent. Notice that
the current send event will form part of the primary information since it is
the latest p-event in ∂p(Eu). When q receives the message, it can consistently
update its primary information to reflect the new information received from
p.

The two tricky points in the protocol are for p to decide when it is safe
to reuse a time-stamp, and for q to decide whether the information received
from p is really new. In order to solve these problems, the protocol of [15]
requires processes to also maintain additional time-stamps, corresponding
to secondary information. Though we do not need the details of how the
protocol works, for completeness we define secondary information.

Secondary information Let I be an ideal. The secondary information of
I is the collection of sets primary(↓e) for each event e in primary(I). This
collection of sets is denoted secondary(I). As usual, for p ∈ P, secondaryp(I)
denotes the set secondary(∂p(I)).

In our framework, the protocol of [15] can now be described as follows.

Theorem A.2 For any B ∈ N, we can construct a B-bounded message-
passing automaton AB = ({AB

p }p∈P , ∆B, sB
in, F

B) such that for every B-
bounded proper communication sequence u, AB inductively generates a con-
sistent time-stamping τ of Eu. Moreover, for each component AB

p of AB, the
local state of AB

p at the end of u records the information primaryp(Eu) and
secondaryp(Eu) in terms of the time-stamps assigned by τ .

37

B Asynchronous Iteration

In this section, we give an automata-theoretic proof that the asynchronous
iteration of a com-connected regular MSC language remains regular. A proof
of this result in terms of grammars appears in [6].

We begin with a simple characterization of asynchronous iteration that
follows from the definition in Section 6.

Proposition B.1 Let L ⊆ M be an MSC language. The MSC M =
(E,≤, λ) belongs to L~, the asynchronous iteration of L, iff there is a se-
quence of complete ideals ∅ = I0 ⊂ I1 ⊂ · · · ⊂ In = E such that for each
j ∈ {1, 2, . . . , n}, the partial order Ij \ Ij−1 is isomorphic to some M ′ ∈ L.

The ideals I0I1 . . . In define an L-factorization of M—that is, a factorization
of M into MSCs from L.

B.1 An infinite-state automaton for L~

Let L be a regular MSC language. From the automata-theoretic character-
ization of Section 3, it follows that there is a B-bounded message-passing
automaton A such that L(A) = L. To construct a (sequential) automaton
for L~, our strategy will be to guess a factorization of the input and simulate
A to verify that each factor belongs to L. We first construct an infinite-state
automaton for L~ for an arbitrary regular MSC language L and then de-
scribe the conditions under which we can restrict the automaton for L~ to
be a finite-state device.

The new automaton A~ that we construct uses natural numbers to label
the factors. Since not every process participates in every factor, A~ records
the sequence of factors that each process p ∈ P participates in and ensures
that the sequence in which the factors are processed is consistent across the
system. In addition, A~ simulates a copy of A on each factor. Initially, each
factor is labelled by the initial configuration of A. The simulation succeeds
if the global state associated with each factor is a final configuration of A.

More formally, A~ = (S ′, s′in,−→′, F ′) where each state in S ′ is a pair
(µ, ν) with µ : P → N∗ and ν : N → ConfA such that µ satisfies the following
condition:

• For any pair of processes p and q (not necessarily distinct) and any pair
of distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does
not appear before ` in µ(q).

38

The function µ records the order in which each process observes the L-
factors of the input word. The function ν keeps track of the current config-
uration of A on each factor.

The initial state s′in of A~ is the pair (µin, νin) where µin(p) = ε for each
process p and νin(`) = (sin, χε) for each ` ∈ N (where ε is the empty word
and (sin, χε) is the initial configuration of A).

A state (µ, ν) of A~ is in F ′ whenever:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of
A.

• If ` does not appear in µ(p) for any process p, ν(`) = (sin, χε).

Consider states (µ, ν) and (µ′, ν ′) and a letter a such that a ∈ Σp. Then,

(µ, ν)
a−→′ (µ′, ν ′) provided:

• For q 6= p, µ′(q) = µ(q).

• Either µ′(p) = µ(p) or µ′(p) = µ(p) · ` for some ` ∈ N.

• Let the last label in µ′(p) be `. Then, ν(`)
a

=⇒ ν ′(`) and for `′ 6= `,
ν′(`′) = ν(`′) (where =⇒ ⊆ ConfA×Σ×ConfA is the global transition
relation of A).

The following is easy to verify from the definition of A~.

Theorem B.2 Let A be a message-passing automaton for a regular MSC
language L. Then, the automaton A~ accepts the language L~.

To describe when we can restrict A~ to a finite-state device, we extend the
definition of A~ so that each state has one more component. A state of A~
is now a triple of functions (µ, ν, τ), where µ : P → N∗ and ν : N → ConfA
are as before. The new component τ : N → 2P specifies the type of each
label.

As before, µ records the sequence in which each process observes L-factors
while ν keeps track of the current configuration of each factor. The new
component τ records the set of processes that participate in each factor.

The states of A~ are those triples (µ, ν, τ) that satisfy the following con-
ditions:

• For any pair of processes p and q (not necessarily distinct) and any pair
of distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does
not appear before ` in µ(q).

39

• If τ(`) 6= ∅ then ` appears in µ(p) for some p ∈ P. Moreover, if `
appears in µ(p) then p ∈ τ(`).

The initial state s′in of the extended version of A~ is the triple (µin, νin, τin)
where µin(p) = ε for each process p, νin(`) = (sin, χε) for each ` ∈ N and
τin(`) = ∅ for each ` ∈ N.

A state (µ, ν, τ) of A~ is in F ′ whenever:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of
A.

• If ` does not appear in µ(p) for any process p, ν(`) = (sin, χε).

• If τ(`) = P then ` appears in µ(p) for each p ∈ P .

Consider states (µ, ν, τ) and (µ′, ν ′, τ ′) and a letter a such that a ∈ Σp.

Then, (µ, ν, τ)
a−→′ (µ′, ν ′, τ ′) provided:

• For q 6= p, µ′(q) = µ(q).

• Either µ′(p) = µ(p) or µ′(p) = µ(p) · ` for some ` ∈ N.

• Let the last label in µ′(p) be `. Then, ν(`)
a

=⇒ ν ′(`) and for all `′ 6= `,
ν′(`) = ν(`).

• Let the last label in µ′(p) be `. Then τ ′(`) ⊃ {p} and for `′ 6= `,
τ ′(`′) = τ(`′). Moreover, if ` already appears in µ(q) for some q ∈ P,
then τ ′(`) = τ(`). (This captures the fact that when ` is first used, τ(`)
records a nondeterministic guess for the processes which will participate
in the factor labelled ` and this guess cannot be changed.)

Once again, we can establish that L(A~) = L(A)~.

B.2 If L is com-connected, L~ is regular

Recall the definition of a com-connected MSC language from Section 5. The
main result we want to prove is the following.

Theorem B.3 Let L be a regular and com-connected MSC language. Then,
L~ is regular.

In the previous section, we saw how to construct an infinite-state au-
tomaton A~ for L~ from a message-passing automaton A for L. To prove
Theorem B.3, we shall argue that if L is com-connected, A~ can in fact be
cut down to a finite-state automaton.

40

Definition B.4 Let G = (V, E) be a directed graph. For X ⊆ V , define
nbd(X), the neighbourhood of X, to be X ∪ {v′ | ∃v ∈ X : (v′, v) ∈ E}.

2

Proposition B.5 Let G = (V, E) be a directed graph such that all non-
isolated vertices form a single strongly connected component. Let C ⊆ V
be the vertices in this strongly connected component. Then, for any proper
subset C ′ (C, nbd(C ′) has at least one vertex in C \ C ′.

Proof: Suppose that C ′ (C but there is no vertex v ∈ (C \ C ′) ∩ nbd(C ′).
This means there is no path from any vertex in C \ C ′ to any vertex in C ′.
This contradicts the assumption that C is a strongly connected component
of G. 2

Definition B.6 Consider a state (µ, ν, τ) of the extended automaton A~
described in the previous section. The label ` is said to be dead in (µ, ν, τ)
if for every p ∈ τ(`), µ(p) = w · ` · w′, where w′ is a nonempty string over N.
A label that is not dead is said to be live. 2

Lemma B.7 Let A be a message-passing automaton for a com-connected
MSC language L. In any state (µ, ν, τ) of A~ only a bounded number of
labels are not dead.

Proof: Let (µ, ν, τ) be a state of A~ and let p ∈ P. Suppose that µ(p) is
of the form u0`0u1`1 . . . `kuk`k+1uk+1, where each ui, i ∈ {0, 1, . . . , k+1}, is
a string over N, τ(`0) = τ(`1) = · · · = τ(`k+1) = P and |P | = k. Then, `0

must be dead.
Recall that for each `, τ(`) records the set of processes that participate

in the factor M` labelled `. Since L is com-connected, τ(`) defines a strongly
connected set of processes in CG(M`).

Consider the graph GM`k
. Let Pk = nbd(p) in this graph. For each process

q ∈ Pk, there is an edge from q to p in GM`k
. Thus, there is at least one

action p?q in the factor M`k
. Since p has progressed from the factor M`k

to the factor M`k+1
, the corresponding q-action q!p in M`k

must also have
occurred already. Thus, q has also observed the factor `k and `k must appear
in µ(q) as well.

Let Pk−1 = nbd(Pk) in GM`k
. By a similar argument, `k−1 must appear

in µ(q) for each q ∈ Pk−1.
In this vein, we can construct Pk−2, Pk−3, . . . such that for each j ∈

{k, k−1, . . . , 1}, Pj−1 = nbd(Pj) in GM`j
and argue that `j−1 must ap-

pear in µ(q) for each q ∈ Pj−1. By Proposition B.5, Pj−1 \ Pj 6= ∅ and

41

Pk ⊂ Pk−1 ⊂ · · · ⊆ P . Recall that |Pk| ≥ 2, since p ∈ Pk as well as the
witness q such that q?p ∈ M`k

. Since |P | = k, we must thus have P2 = P . In
other words, `1 appears in µ(q) for each q ∈ P2 = P . From Definition B.6, it
follows that `0 is dead in (µ, ν, τ). 2

Let (µ, ν, τ) be a state of A~. For any process p and any P ⊆ P, there are
at most |P | live labels in µ(p) of type P . Thus, the number of live labels in
µ(p) is bounded by |P| · 2|P| and the number of live labels overall in (µ, ν, τ)
is bounded by |P|2 · 2|P|.

A finite-state version of A~ From this, we can derive a finite-state ver-
sion of A~ when the language accepted by A is com-connected. Instead of
using the infinite set of labels N to name factors, we fix a finite set of labels
T such that |T | > |P|2 · 2|P|. Thus, a state of A~ now consists of functions
(µ, ν, τ) where µ : P → T ∗, ν : T → ConfA and τ : T → 2P .

A state of A~ is a triple (µ, ν, τ) that satisfies the following conditions:

• For any pair of processes p and q (not necessarily distinct) and any pair
of distinct labels ` and `′, if ` appears before `′ in µ(p), then `′ does
not appear before ` in µ(q).

• If τ(`) 6= ∅ then ` appears in µ(p) for some p ∈ P. Moreover, if `
appears in µ(p) then p ∈ τ(`).

• For each p ∈ P, µ(p) contains at most |P | labels of type P for each
P ⊆ P.

The last condition ensures that A~ is finite-state.
In the initial state (µin, νin, τin), µin(p) = ε for each p ∈ P, νin(`) =

(sin, χε) for each ` ∈ T and τ(`) = ∅ for each ` ∈ T .
Let (µ, ν, τ) and (µ′, ν ′, τ ′) be two states of A~ and let a ∈ Σp. Then

(µ, ν, τ)
a−→′ (µ′, ν ′, τ ′) provided we can construct an intermediate triple of

functions (µ′′, ν ′′, τ ′′) such that:

• For q 6= p, µ′′(q) = µ(q).

• Either µ′′(p) = µ(p) or µ′′(p) = µ(p) · ` for some ` ∈ T .

• Let the last label in µ′′(p) be `. Then, ν(`)
a

=⇒ ν ′′(`) and for `′ 6= `,
ν′′(`′) = ν(`′).

• Let the last label in µ′′(p) be `. Then τ ′′(`) ⊃ {p} and for `′ 6= `,
τ ′′(`′) = τ(`′). Moreover, if ` already appears in µ(q) for some q ∈ P,
then τ ′(`) = τ(`).

42

For p ∈ P and P ⊆ P, suppose that µ(p) is of the form u0`0u1`1 . . .
`kuk`k+1uk+1, where each ui, i ∈ {0, 1, . . . , k+1}, is a string over T , τ(`0) =
τ(`1) = · · · = τ(`k+1) = P and |P | = k.

Then, it is the case that `0 is dead in (µ′′, ν ′′, τ ′′) and ν ′′(`0) is a final
configuration of A. (Observe that since exactly one process moves on each
input, at most one dead label is generated with each move).

• (µ′, ν ′, τ ′) is obtained from (µ′′, ν ′′, τ ′′) by deleting the dead label `0, if
any, from µ(q) for each q ∈ τ ′′(`0) and then resetting τ ′(`0) = ∅. If
there are no dead labels in (µ′′, ν ′′, τ ′′), then (µ′, ν ′, τ ′) is the same as
(µ′′, ν ′′, τ ′′).

A state (µ, ν, τ) of A~ is in F ′ provided:

• If ` appears in µ(p) for some process p, ν(`) is a final configuration of
A.

• If ` does not appear in µ(p) for any process p, ν(`) = sin.

• If τ(`) = P then ` appears in µ(p) for each p ∈ P .

From Lemma B.7, it is easy to argue that if L is com-connected, then
the finite-state version of A~ accepts L~. This completes the proof of The-
orem B.3.

43

Recent BRICS Report Series Publications

RS-99-52 Jesper G. Henriksen, Madhavan Mukund, K. Narayan Kumar,
and P. S. Thiagarajan.Towards a Theory of Regular MSC Lan-
guages. December 1999. 43 pp.

RS-99-51 Olivier Danvy.Formalizing Implementation Strategies for First-
Class Continuations. December 1999. Extended version of an
article to appear in Smolka, editor, Programming Languages
and Systems: Ninth European Symposium on Programming,
ESOP ’00 Proceedings, LNCS 1782, 2000.

RS-99-50 Gerth Stølting Brodal and Srinivasan Venkatesh. Improved
Bounds for Dictionary Look-up with One Error. December
1999. 5 pp.

RS-99-49 Alexander A. Ageev and Maxim I. Sviridenko.An Approxima-
tion Algorithm for Hypergraph Maxk-Cut with Given Sizes of
Parts. December 1999. 12 pp.

RS-99-48 Rasmus Pagh.Faster Deterministic Dictionaries. December
1999. 14 pp. Appears in Shmoys, editor,The Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00 Pro-
ceedings, 2000, pages 487–493.

RS-99-47 Peter Bro Miltersen and Vinodchandran N. Variyam. Deran-
domizing Arthur-Merlin Games using Hitting Sets. December
1999. 21 pp. Appears in Beame, editor,40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99 Proceed-
ings, 1999, pages 71–80.

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy. December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference, COCOON ’99 Proceedings, LNCS 1627, 1999, pages
210–220.

RS-99-45 Torben Amtoft. Partial Evaluation for Constraint-Based Pro-
gram Analyses. December 1999. 13 pp.

