
B
R

IC
S

R
S

-99-46
M

iltersen
etal.:

H
alf-E

xponentialC
ircuitS

ize
in

the
E

xponentialH
ierarchy

BRICS
Basic Research in Computer Science

Super-Polynomial Versus Half-Exponential
Circuit Size in the Exponential Hierarchy

Peter Bro Miltersen
Vinodchandran N. Variyam
Osamu Watanabe

BRICS Report Series RS-99-46

ISSN 0909-0878 December 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233662172?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1999, Peter Bro Miltersen & Vinodchandran N.
Variyam & Osamu Watanabe.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/46/

Super-polynomial versus half-exponential
circuit size in the exponential hierarchy

Peter Bro Miltersen∗ N. V. Vinodchandran∗

Osamu Watanabe †

December, 1999

Abstract

Lower bounds on circuit size were previously established for func-
tions in Σp

2, ZPPNP, Σexp
2 , ZPEXPNP and MAexp. We investigate

the general question: Given a time bound f(n). What is the best cir-
cuit size lower bound that can be shown for the classes MA-TIME[f],
ZP-TIMENP[f], . . . using the techniques currently known? For the
classes MAexp, ZPEXPNP and Σexp

2 , the answer we get is “half-
exponential”. Informally, a function f is said to be half-exponential if
f composed with itself is exponential.

1 Introduction

One of the main issues of complexity theory is to investigate how powerful
non-uniform (e.g. circuit based) computation is, compared to uniform (ma-
chine based) computation. In particular, a 64K dollar question is whether
exponential time has polynomial size circuits. This being a challenging open
question, a series of papers have looked at circuit size of functions further up

∗BRICS, Department of Computer Science, University of Aarhus.
bromille,vinod@brics.dk. Supported by the ESPRIT Long Term Research Programme
of the EU under project number 20244 (ALCOM-IT). Part of N. V. Vinodchandran’s
work was done while he was a Junior Research Fellow at the Institute of Mathematical
Sciences, Chennai 600 113, India.

†Department of Mathematical and Computing Sciences, Tokyo Institute of Technology.
Meguro-ku Ookayama, Tokyo 152-8552. watanabe@is.titech.ac.jp. Supported in part
by JSPS/NSF International Collaboration Grant.

1

the exponential hierarchy. In the early eighties, Kannan [10] established that
there are languages in Σ

exp
2 ∩ Π

exp
2 which do not have circuits of polyno-

mial size. Later, using methods from learning theory, in particular Bshouty
et al [6], Köbler and Watanabe [12] improved Kannan’s result and showed
that in fact ZPEXPNP contains languages which do not have polynomial
size circuits. Recently, Buhrman, Fortnow and Thierauf [7] improved it fur-
ther to show that even the exponential version of the interactive class MA
does not have polynomial size circuits. More precisely, they showed that
MAexp ∩ coMAexp 6⊆ P/poly. This is an improvement since it follows from
the result MA ⊆ ZPPNP (due to Arvind and Köbler [1], and independently,
to Goldreich and Zuckerman [8]) using padding that MAexp ⊆ ZPEXPNP. In
contrast to the previous results, their proof uses non-relativizable techniques.

Some of the lower bounds mentioned above have analogous versions in the
polynomial hierarchy. For instance Kannan showed that for any k, Σp

2 ∩ Πp
2

contains a language that does not have circuits of size nk. Köbler and Watan-
abe showed the same statement with Σp

2∩Πp
2 replaced with ZPPNP. However,

interestingly, it is not known if MA has linear sized circuits. So there the
analogy seemingly stops. It seems interesting to understand the scenario bet-
ter, so we consider the following question. What is the smallest time bound
for which MA-TIME[f] is known not to have linear sized circuits? Also, it is
natural to ask how far the techniques can be extended if one is not happy with
just super-polynomial bounds. For example, do the techniques of Kannan
in fact show that there are languages in Σ

exp
2 that require exponential size

circuits? In general, we can ask the following question: Given a time bound
f . What is the best circuit size lower bound we can show for functions in
MA-TIME[f], ZP-TIMENP[f], Σf

2? One of the main objectives of this paper
is to investigate these questions.

The complexity (in the uniform setting) of functions with exponential
circuit complexity is of particular interest (note that a random function will
have exponential circuit complexity). In this direction, the only previous
work seems to be done by Kannan [10]. Indeed, Kannan shows that the third
level of the exponential hierarchy, and in fact, Σe

3 ∩ Πe
3, contains a function

with maximum circuit size. As was shown by Shannon and Lupanov, this
happens to be Θ(2n/n).

2

In [10], the author also makes claim to the following statement (*) [10,
Theorem 4, page 48], apparently answering one of the questions we asked in
the beginning of this paper:
(*) There is a universal constant l such that for any time-constructible func-

tion f(·) satisfying nl ≤ f(n) ≤ 2n/20∀n, there is a language in Σ
f(n)
2 ∩Π

f(n)
2

that does not have O((f(n))1/l)-size circuits.
In particular, statement (*) implies that the second level of the exponen-

tial hierarchy does not have 2o(n) sized circuits.
Though statement (*) is very likely to be a true, it is not clear to us that

it was, in fact, given a proof in [10]. Nor do we know how to prove it. We
suggest that the statement is reopened and considered an open problem. We
analyse this issue in Section 3. In this context, we note that the bound of
Σe

3 ∩ Πe
3 for functions requiring maximum size, can be improved to ∆e

3 by
using a binary search approach. This may be a folklore, but does not seem
to be explicitly mentioned anywhere in the literature. Also, we need this
improvement for some of the statements we prove later.

2 Notations, definitions and results

We assume the definitons of standard compelxity classes. Please refer to
[5, 14] for these and other standard complexity-theoretic definitions.

Let f(n) ≥ n be a time constructible function. Then the complex-
ity classes of interest to us (with time bound f) are TIME[f], Σf

k , Π
f
k , ∆

f
k ,

ZP-TIMENP[f] (class of languages recognized by a randomized Turing ma-
chine with an NP-oracle, running in expected time f(n) and always return-
ing the right answer) and MA-TIME[f] (class of languages recognized by
a Merlin-Arthur game, where the length of Merlin’s proof and the time of
Arthur’s computation is bounded by f(n)). For any class of time bounds F
and any of the the above-mentioned complexity class C, we denote the class
∪f∈FC by C[F]. The polynomial and exponential versions of these classes are
of special interest. For polynomial versions the notations are standard. The
notations for the exponential versions that we use are EXP, Σexp

k , Πexp
k , ∆exp

k ,
ZPEXPNP and MAexp, respectively . SIZE[f] denotes the class of languages
accepted by circuit families of size bounded by f(n) for sufficiently large n.

Furthermore, we let Σe
k (Πe

k, ∆
e
k) denote the class ∪fΣ

f
k (∪fΠ

f
k ,∪f∆

f
k re-

spectively) where the union is over all f ∈ 2O(n).

3

2.1 Fractionally exponentially growing functions

First we motivate the definition of such functions. One of the main difficul-
ties in answering the questions posed in the introduction is that the “best”
lower bounds to be obtained are not easily expressible in terms of conven-
tional mathematical notation. Usually, lower bounds in complexity theory
can be described with expressions involving the operations {+,−, ∗, exp, log}
only. Growth rates so expressible are called L-functions by Hardy [9]. Un-
fortunately, the answers we get to the questions posed in the introduction
involves functions that are not approximated well by any L-function. For
instance, the best lower bound that can be shown using current techniques
for the classes MAexp, ZPEXPNP, or Σ

exp
2 seems to be “half-exponential”,

i.e. it is a bound that, composed with itself, becomes exactly exponential.
Any L-function with a smaller growth rate (making it a valid substitute in a
lower bound statement) will have, in fact, much, much smaller growth rate,
and thus make the statement much weaker.

Intuitively, the notions of 1
2
-exponentially, or even 1

k
-exponentially grow-

ing functions are clear. One naive approach of defining them is as follows:
We say that a “nice” function f has at most, say, half-exponential growth
if f(f(n)) ≤ 2p(n) for some polynomial p and all n. With an appropriate
interpretation of “nice”, such a definition would be adequate for some of the
statements we prove, such as “For any half-exponential function f , there is
a problem g in MAexp, so that g does not have circuits of size f”. However,
it is not obvious how to generalize this approach to meaningfully express
and prove statements such as “For any (7/8)-exponential function f , there is
problem g in MA-TIME[exp14/8], so that g does not have circuits of size f”.
Also, suppose we want to express our lower bounds in terms of a statement
such as “There are function in complexity class C requiring circuit size at
least f(n)” for some specific function f . Then it is not obvious how to pick
such function f in a way close to optimal, i.e., as fast growing as possible.
This seems unsatisfactory: To get any feeling for what the lower bound really
means, it seems desirable to have concrete examples of functions of exactly,
say, half-exponential growth in mind.

With these issues in mind, we take the following approach (see [16] for
a discussion). Let e(x) = ex − 1, where e denotes the base of the natural
logarithm. Consider the following functional equation (called Abel’s equation
in the mathematics literature).

A(e(x)) = A(x) + 1. (1)

4

Let A : R+ → R+ be a fixed solution to this (R+ denote the set of positive
real numbers). Then, with respect to this solution we can define the α-iterate
of e(x) as; eα(x) = A−1(A(x) + α). Now, define the class of time bounds

expα = {f : N → N | f is time constructible , ∃k∀n, f(n) ≤ eα(nk)}.

In order to use these class of functions as complexity bounds, we would
like the following robustness property to hold among these classes of func-
tions. Let α, β rationals. Then for f ∈ expα and g ∈ expβ, we would like
f(g(.)) to be in expα+β. There exist solutions for Equation 1 which give rise
to functions with this property. The one due to Szekeres [16] is an example
(please refer to [15] for a proof this). We use this property in many of our
proofs, often with out making any explicite reference to it.

Time constructibility of these functions is a more subtle issue. In [13], the
authors give a numerical procedure for approximating eα(x). We strongly
believe that a rigorous analysis of the procedure given in [13] will give us
the time constructibility of these functions also. This analysis may require
finding out the rate of convergence of the procedure given.

2.2 New results in this paper

We first show the extension of the lower bounds shown in [12] and [7] to get a
general lower bound result. More precisely, we show the following theorems.

Theorem 1 For any rational value c, 0 ≤ c < 1, and any k ≥ 1, there is
a language Lc,k in ZP-TIMENP[exp2c], so that, for infinitely many n, Lc,k ∩
{0, 1}n is not computed by a circuit of size ec(n

k). This holds relative to any
oracle.

Theorem 2 For any rational value c, 0 ≤ c ≤ 1
2
, and any k, there is a

language Lc,k in MA-TIME[expc+ 1
2
] ∩ coMA-TIME[expc+ 1

2
], and, for any

1
2

≤ c < 1, and any k, there is a language Lc,k in MA-TIME[exp2c] ∩
coMA-TIME[exp2c], so that, for infinitely many n, Lc,k ∩ {0, 1}n cannot be
computed by a circuit of size ec(n

k).

As Buhrman et al already established in [7] that there are oracles relative
to which MAexp has polynomial circuits, it is clear that Theorem 2 does not
relativize.

5

It is interesting to compare the bounds for MA-TIME and ZP-TIMENP.
The lower bounds we can prove for MAexp and ZPEXPNP are essentially
the same; namely, half-exponential. They are also the same for time bounds
bigger than exponential. But as soon as we consider time bounds smaller than
exponential, the lower bound for MA-TIME becomes weaker than the one for
ZP-TIMENP. In particular, addressing a question from the introduction, for
any k > 1, we can prove that MA-TIME[exp 1

2
] does not have circuits of size

nk, but we are unable to prove the same lower bound for MA-TIME[expσ] for
any value of σ < 1

2
. In contrast, we know that ZPPNP does not have circuits

of size nk. On the hand, we see that for any ε > 0, MA-TIME[exp 1
2
+ε] does

not have polynomial sized circuits, thus improving the result of [7] stating
that this is the case for MAexp.

We are unable to improve these lower bounds without going to the com-
plexity class ∆

f(n)
3 . In particular, we don’t know if a super-half-exponential

lower bounds can be proven for Σ
exp
2 .

Next, we consider how well circuits can approximate members of the uni-
form classes. We say that a function f on input domain {0, 1}n is approxi-
mated by a circuit C, if C(x) = f(x) for at least a 1

2
+ 1

p(n)
fraction of the

input domain1, for some polynomial p. In particular we show the following.

Theorem 3 For any rational value c, 0 < c ≤ 1
2
, and any k, there is a

language Lc,k in MA-TIME[expc+ 1
2
]∩ coMA-TIME[expc+ 1

2
], and, for any ra-

tional 1
2
≤ c < 1, and any k, there is a language Lc,k in MA-TIME[exp2c] ∩

coMA-TIME[exp2c], so that for infinitely many n, Lc,k ∩ {0, 1}n cannot be
approximated by circuits of size ec(n

k).

For proving this, we use the random-self reducibility properties of some
classes of high complexity along with known (by now standard) techniques for
increasing the hardness of functions. These techniques are heavily employed
in the context of pseudorandom generator constructions.

The oracle constructed in [7] witnesses the fact that this theorem does not
hold in all relativized world. However, by replacing MA-TIME∩coMA-TIME
with ZP-TIMENP, it is possible to prove a theorem that does hold relative
to any oracle.

1The setting of the desired level of approximation to inverse polynomial is somewhat
arbitrary; it avoids a third parameter besides time and circuit size in the theorem, thus
improving readability.

6

Note that, except for the fact that the case c = 0 is not covered, Theorem
3 improves Theorem 2 by replacing “computed” with “approximated”. In
contrast, the ZP-TIMENP-version of the theorem does not strictly improve
Theorem 1, as the lower bounds for subexponential time bounds become
worse. It would be interesting to remedy this, and, in particular, to show
that ZPPNP cannot be approximated by linear sized circuits.

3 Kannan revisited

In [10], Kannan proves that Σe
3 ∩Πe

3 contains a function with maximum cir-
cuit complexity. The argument used in the proof actually gives that Σf

3 ∩Πf
3

contains functions of superpolynomial circuit complexity for any superpoly-
nomial f .

In the paper, statement (*) of the Introduction, i.e., Theorem 4, page 48,
is also claimed.

In order to claim (*), the following lemma is proved (Lemma 4, page 47).

Lemma If f(n) is any increasing time-constructible super-polynomial func-

tion, then there is a language L in Σ
f(n)
2 ∩ Π

f(n)
2 that does not have small

circuits.

By small circuits are meant circuits of size O(nk) for some fixed k (page
41). The proof of the lemma proceeds as follows: If SAT (the problem of
deciding the satisfiability of boolean formulae) does not have polynomial cir-
cuits, then the lemma is true. In the case of SAT having polynomial circuits,
by Karp and Lipton’s theorem [11], the polynomial hierarchy collapses to

Σp
2∩Πp

2. This implies that Σf
3 can be simulated in ΣfO(1)

2 , and since it was al-
ready established that Σf

3 ∩Σf
3 contains functions of superpolynomial circuit

complexity for any superpolynomial f , the lemma follows.
After proving the above lemma, statement (*) is claimed. But if our

description above is accurate, it seems that what has actually been proven
is: Either SAT does not have polynomial sized circuits or statement (*) is
true. But this does not seem to imply (*), as the fact that SAT does not
have polynomial sized circuits does not imply that it has exponential sized
circuits.

In order to get a provable statement (†) of the same syntactic form as (*),
it seems necessary to make up a more “balanced” “Either A or B” statement
so that A as well as B implies (†).

7

To make up such as statement, we note that Karp and Lipton’s technique
actually gives the following lemma:

Lemma 4 Let f(n) ≥ n be any time constructible functions. There is a
constant c, so that if SAT has circuits of size f(n) then Σn

3 is included in

Σ
f(nc)c

2 .

With this in mind, we now construct the statement (†):
(†) For any time-constructible function f(n) ≤ 2n, there is a language

in Σ
f(f(n)c)c

2 ∩ Π
f(f(n)c)c

2 that on infinitely many n does not have f(n)
1
2 -size

circuits.
We prove the statement (†). Let f(n) be given. Suppose SAT does not

have circuits of size f(n), then (†) follows. Otherwise SAT has circuits of

size f(n). Then, from Lemma 4, it follows that Σn
3 is included in Σ

f(nc)c

2 . By

padding, we conclude that Σ
f(n)
3 is included in Σ

f(f(n)c)c

2 . Then Σ
f(n)
3 ∩Π

f(n)
3

is included in Σ
f(f(n)c)c

2 ∩Π
f(f(n)c)c

2 . But since Σ
f(n)
3 ∩Π

f(n)
3 contains a function

that does not have circuits of size f(n)
1
2 , we are done.

In particular, the second level of the exponential hierarchy does not have
circuit size f(n) for any fixed half-exponential function f . The statement
(†) can certainly be improved a bit by polynomial fiddling, but we don’t see
how to get any essential improvement. In particular, we don’t see how to
establish that the second level of the exponential hierarchy does not have
σ-exponential circuits for any σ > 1

2
.

In the next two sections, the simple idea above is extended to ZP-TIMENP

and MA-TIME, proving the first two theorems of the introduction.
Before we move on to proving the theorems stated in the introduction,

we note that in fact ∆e
3 contains functions with maximum circuit complexity.

We give a proof of this fact here since we shall need this result to prove
Theorem 1. Let M(n) denote the maximum possible circuit complexity of a
function on n variables.

Lemma 5 There is a language L ∈ ∆e
3 so that, for all n, the circuit com-

plexity of L ∩ {0, 1}n is M(n).

Proof Let a truth table be a string over {0, 1} of length 2n for some n - such
a string can be interpreted as the truth table of a Boolean function on n
variables.

8

Let L1 be the language consisting of tuples 〈x, 12n
, 1s〉 so that x is a

Boolean string of length less than 2n that is the prefix of some truth table of
length 2n, so that the corresponding Boolean function cannot be computed by
a circuit of size of s. Clearly, L1 ∈ NPNP; we guess the truth table and verify
that no small circuit computes the same function. The procedure in figure 1
now generates on input n the lexicographically first truth table of a Boolean
function on n variables with maximum circuit complexity. The ∆e

3 language
L with maximum circuit complexity is L = {x|hard(|x|)index(x) = 1}, where
index(x) is the lexicographic index of x in {0, 1}2n

.

Procedure hard(int: n)
s := 2n;
repeat until 〈λ, 12n

, 1s〉 ∈ L1

s := s − 1;
t := λ;
while |t| < 2n do

if 〈t0, 12n
, 1s〉 ∈ L1 then t := t0 else t := t1 endif

return t

Figure 1: Generating the truth table of a hard function

Lemma 6 For any time constructible function n ≤ f(n) ≤ M(n), there is a

language Lf in ∆
f(n)2

3 so that for all n, the circuit complexity of Lf ∩ {0, 1}n

is at least f(n).

Proof By Shannon’s theorem, the Boolean function on g(n) = min{n,
d2 log f(n)e} variables with maximum circuit complexity has circuit com-
plexity at least f(n). Let L be the language of Lemma 5 and let x ∈ Lf if
and only if x1...g(n) ∈ L.

4 Zero error algorithms with an oracle for

NP

In this section, we prove Theorem 1. We shall follow the line of proof of
Köbler and Watanabe, showing that ZPPNP does not have linear circuits.

9

The difference of their proof to Kannan’s sketched in the previous section, is
in using an improved collapse of the polynomial hierarchy on the assumption
of SAT having small circuits. We state a result from [6, 12] as a lemma,
suitable for our application.

Lemma 7 ([6, 12]) Let f(n) ≥ n be any time constructible function. As-
sume that SAT has circuits of size f(n). Then, there is a randomized Turing
machine with access to an NP-oracle that on input 1n runs in expected time
polynomial in f(n), halts with probability 1, and outputs a circuit for SAT of
size f(n) when it does.

Proof of Theorem 1. According to Lemma 6, there is a language L in ∆
expc
3

which does not have circuits of size ec(n
k). Let M be the machine accepting

this language, running in time f for some f ∈ expc, using an NPNP-oracle.
The NPNP-oracle can be simulated by a polynomial time non-deterministic
machine M1 with an oracle for SAT. On an input x, the machine M queries
M1 which queries its SAT oracle. The longest query to the SAT oracle, when
M is given a input of length n, has length at most some polynomial in f ,
say f d. Now, f d ∈ expc. We can assume, without loss of generality, that all
queries have length f d.

Suppose SAT does not have circuits of size ec(n
k). Then we are done. So

let us assume that SAT has circuits of size ec(n
k). Then we will show how

to simulate the machine M (accepting L) by a ZP-TIMENP[g] algorithm for
some g ∈ exp2c. This simulation works in two steps.

The first step is to find a SAT circuit for instances of length f d. By
assumption, there is such a circuit of size at most h, for some h ∈ exp2c.
Hence, according to Lemma 7, we can find the circuit by a ZP-TIMENP[exp2c]
computation.

Now, having found the circuit, the second step is to simulate the ma-
chine M using M1 as oracle, but with M1 using the circuit in place of its
SAT-oracle (We can easily modify M and M1 so that the circuit is given as
input). Since a circuit of size h has already been found, this simulation can
be done in TIMENP[exp2c]. The two steps together form a ZP-TIMENP[exp2c]
computation.

Furthermore, it is easy to verify that the above proof and also Lemma 7
relativises. Hence we have the Theorem.

10

5 Merlin-Arthur games

In this section, we prove Theorem 2. In [7], for showing that MAexp contains
languages without polynomial size circuits, the authors make use of a theorem
due to Babai et al [4] which states; “EXP ⊆ P/poly ⇒ EXP = MA”.
We follow the same line of argument as in [7], but we need the following
refinement of the result of Babai et al [4], stated with a more general range
of time and size bounds. The result essentially follows from a theorem in [2]
on transparent proofs.

Lemma 8 Let g(n) ≥ n and s(n) ≥ n are increasing time constructible
functions. Then there is a constant c > 1 so that the following holds.
If g(n) ≤ 2n then

TIME[g(n)c] ⊆ SIZE[s(n)] ⇒ TIME[g(n)] ⊆ MA-TIME[s(3n)c].
If g(n) > 2n then

TIME[2cn] ⊆ SIZE[s(n)] ⇒ TIME[g(n)] ⊆ MA-TIME[s(3 log g(n))c].

Proof Given a Turing machine T operating in g(n) steps, we can construct
a Turing transducer T ′, operating in g(n)c steps which on input x outputs
a transparent proof [2] of the fact that T accepts (or rejects) on input x.
Also, we can make a Turing machine T ′′ operating in g(|x|)c steps which
on input 〈x, i〉, outputs the i’th bit of the output string of T ′ on input x.
We now construct an Arthur-Merlin game accepting the same language as
T , as follows: Merlin sends Arthur the description of a circuit of size s(n)
computing the same function of as T ′′. By the assumption, such a circuit
exists. Note that this circuit is a succinct representation of the transparent
proof for the computation. Arthur, following the protocol in [2], now verifies
that the circuit indeed is a succinct encoding of a string close to a transparent
proof of the correct computation.

The statement of the theorem now follows; note that the two cases of
the theorem corresponds to which part of the input 〈x, i〉 is the larger. The
factor 3, occurring twice in the statement of the theorem, is an upper bound
on the ratio of the length of 〈x, y〉 and the length of x or y for a reasonable
pairing function 〈x, y〉.
Proof of Theorem 2. We divide the proof into two cases, according to
whether c ≤ 1

2
or c > 1

2
.

Case 1 c ≤ 1
2
: We need to show that MA-TIME[expc+ 1

2
] does not have

circuits of size ec(n
k). Clearly, we can assume that TIME[expc+ 1

2
] does have

11

circuits of size ec(n
k), otherwise we are done. But then according to Lemma

8, TIME[expc+ 1
2
] is included in MA-TIME[expc]. By padding, TIME[expc+1]

is included in MA-TIME[expc+ 1
2
]. But TIME[expc+1] contains a language

that cannot be computed by circuits of size ec(n
k), and we are done.

Case 2 c > 1
2
: We need to show that MA-TIME[exp2c] does not have cir-

cuits of size ec(n
k). We can again assume that TIME[exp2c] does have cir-

cuits of size ec(n
k). In particular, this is the case for EXP, and by Lemma

8, we conclude that TIME[exp2c] is included in MA-TIME[expc−1+2c]. By
padding, TIME[exp2c+(1−c)] is included in MA-TIME[expc−1+2c+(1−c)] which
is the class MA-TIME[exp2c]. But TIME[exp2c+(1−c)] = TIME[expc+1] con-

tains a language that cannot be computed by circuits of size ec(n
k) and we

are done.

6 Non-Approximability

In this section, we show Theorem 3 of the introduction. We need a result
from [4]. We state it as a lemma in a form convenient for our application.

Lemma 9 [4] There is a constant ε > 0 so that the following holds. There is
a deterministic quasi-polynomial time procedure harden, taking as input the
truth table of a Boolean function f on n variables, and outputting the truth
table of a Boolean function harden(f) on n2 variables, with the following
property. Let s > n1/ε. If f cannot be computed by circuits of size s, then
any circuit of size sε taking n2 inputs, will agree with harden(f) on at most
a 1

2
+ s−ε fraction of the input domain {0, 1}n2

.

Proof of Theorem 3. We divide the proof into two cases.
Case 1. c ≥ 1

2
: According to Theorem 2, there is a language L in

MA-TIME[exp2c]∩ coMA-TIME[exp2c] that cannot be computed by circuits
of size (ec(n

2k))1/ε. We now define a new language fulfilling the requirements
of the theorem. As the language only needs to satisfy the desired prop-
erty on infinitely many input lengths, we shall only consider input lengths
of the form n2. The following computation defines the language. Since
2c ≥ 1, we can, on input x of length n2, compute the truth table t of the
characteristic function of L ∩ {0, 1}n, without leaving the complexity class
MA-TIME[exp2c] ∩ coMA-TIME[exp2c], as this class is closed under expo-
nential time Turing reductions. Now, compute the truth table t′ =harden(t),

12

and look up x in t′. This is the result of the computation. The language so
defined full-fills the requirements of the theorem and we are done.
Case 2. c < 1

2
: Let c = 1

2
−δ. We already know that MAexp∩coMAexp con-

tains a language that cannot be approximated by circuits of size e 1
2
(nk). More

than that, from the proof we see that we can ensure that any circuit of this
size will actually err on at least a 1

2
− e1/2(n)−1 fraction of the input domain

for infinitely many n. By padding, MA-TIME[exp1−δ]∩coMA-TIME[exp1−δ]
contains a language, so that any circuit of size e 1

2
−δ(n

k) has to err on at least

a 1
2
− e1/2(e−δ(n))−1 = 1

2
− ec(n)−1 fraction of the input domain. As c > 0,

this means that no circuit of size e 1
2
−δ(n

k) approximates the language, and
we are done.

References

[1] V. Arvind and J. Köbler. On resource-bounded measure and pseudo-
randomness. Proceedings of the 17th conference on the Foundations of
Software Technology and Theoretical Computer Science, LNCS Vol. 1346,
(1997), pp. 235–249.

[2] L. Babai, L. Fortnow, L. Levin and M. Szegedy. Checking computations
in polylogarithmic time. Procedings of the 23rd ACM Symposium on the
Theory of Computation, (1991), pp. 21–31.

[3] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential
Time has Two-Prover Interactive Protocols. Computational Complexity,
1, (1990), pp. 3–40.

[4] L. Babai, L. Fortnow, N. Nisan and A. Wigdersen. BPP has subexpo-
nential time simulations unless EXPTIME has publishable proofs. Com-
putational Complexity, 3, (1993), pp. 307–318.

[5] J. L. Balcázar, J. Dı́az and J. Gabarró. Structural Complexity – I & II.
Springer Verlag, Berlin Heidelberg, 1988.

[6] N.H. Bshouty, R. Cleve, R. Gavalda, S. Kannan, and C. Tamon. Oracles
and queries that are sufficient for exact learning. Journal of Computer and
System Sciences, 52, (1996), pp. 421-433.

13

[7] H. Buhrman, L. Fortnow and T. Thierauf. Nonrelativizing separations.
Proceedings of the 13th IEEE conference on Computational Complexity,
(1998), pp. 8–12.

[8] O. Goldreich and D. Zuckerman. Another proof that BPP ⊆
PH (and more). ECCC TR97-045, (1997). Available at
http://www.eccc.uni-trier.de/eccc/.

[9] G.H. Hardy. Orders of Infinity. Cambridge Tracts in Mathematics and
Mathematical Physics, No. 12. Second edition. Cambridge University
Press, Cambridge, 1924.

[10] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse
sets. Information and Control, 55, (1982), pp. 40–56.

[11] R. M. Karp and R. J. Lipton. Some connections between nonuniform
and uniform complexity classes. Proceedings of the 12th ACM Symposium
on Theory of Computing, (1980), pp. 302–309.

[12] J. Köbler and O. Watanabe. New collapse consequences of NP having
small circuits. Proceedings of the International Colloquium on Automata,
Languages and Programming, LNCS Vol. 944, (1995), pp. 196–207.

[13] K.W. Morris and G. Szekeres. Tables of the logarithm of iteration of
ex − 1. J. Australian Math. Soc. 2, (1962), pp. 321-327.

[14] C. Papadimitriou. Computational Complexity. Addison-Wesley Publish-
ing Company, 1994.

[15] P. B. Miltersen, N. V. Vinodchandran and O. Watan-
abe. Super-polynomial versus half-exponential circuit size in
the exponential hierarchy. Research Report c-130, Dept. of
Math. and Comput. Sc., Tokyo Inst. of Tech. Available at
http://www.is.titech.ac.jp/research/research-report/C/, 1999.

[16] G. Szekeres. Fractional iteration of exponentially growing functions. J.
Australian Math. Soc. 2, (1962), 301-320.

14

Recent BRICS Report Series Publications

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy. December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference, COCOON ’99 Proceedings, LNCS 1627, 1999, pages
210–220.

RS-99-45 Torben Amtoft. Partial Evaluation for Designing Efficient
Algorithms—A Case Study. December 1999.

RS-99-44 Uwe Nestmann, Hans Ḧuttel, Josva Kleist, and Massimo
Merro. Aliasing Models for Mobile Objects. December 1999.
ii+46 pp. To appear in a special FOOL6 issue ofInformation
and Computation. An extended abstract of this revision, enti-
tled Aliasing Models for Object Migration, appeared as Distin-
guished Paper in Amestoy, Berger, Dayd́e, Duff, Fraysśe, Gi-
raud and Daniel, editors, 5th International Euro-Par Confer-
ence, EURO-PAR ’99 Proceedings, LNCS 1685, 1999, pages
1353–1368, which in turn is a revised part of another paper
calledMigration = Cloning ; Aliasing that appeared in Cardelli,
editor, Foundations of Object-Oriented: 6th International Con-
ference, FOOL6 Informal Proceedings, 1999 and as such su-
persedes the corresponding part of the earlier BRICS report
RS-98-33.

RS-99-43 Uwe Nestmann.What is a ‘Good’ Encoding of Guarded Choice?
December 1999. ii+34 pp. To appear in a special EXPRESS ’97
issue ofInformation and Computation. This revised report su-
persedes the earlier BRICS report RS-97-45.

RS-99-42 Uwe Nestmann and Benjamin C. Pierce.Decoding Choice
Encodings. December 1999. ii+62 pp. To appear inJour-
nal of Information and Computation. An extended abstract ap-
peared in Montanari and Sassone, editors,Concurrency The-
ory: 7th International Conference, CONCUR ’96 Proceedings,
LNCS 1119, 1996, pages 179–194.

