
B
R

IC
S

R
S

-99-45
T.A

m
toft:

P
artialE

valuation
for

C
onstraint-B

ased
P

rogram
A

nalyses

BRICS
Basic Research in Computer Science

Partial Evaluation for
Constraint-Based Program Analyses

Torben Amtoft

BRICS Report Series RS-99-45

ISSN 0909-0878 December 1999



Copyright c© 1999, Torben Amtoft.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/45/



Partial Evaluation for

Constraint-Based Program Analyses

Torben Amtoft ∗

December, 1999

Abstract

We report on a case study in the application of partial evaluation, ini-
tiated by the desire to speed up a constraint-based algorithm for control-
flow analysis. We designed and implemented a dedicated partial evaluator,
able to specialize the analysis wrt. a given constraint graph and thus re-
move the interpretive overhead, and measured it with Feeley’s Scheme
benchmarks. Even though the gain turned out to be rather limited, our
investigation yielded valuable feed back in that it provided a better under-
standing of the analysis, leading us to (re)invent an incremental version.
We believe this phenomenon to be a quite frequent spinoff from using par-
tial evaluation, since the removal of interpretive overhead makes the flow
of control more explicit and hence pinpoints sources of inefficiency. Fi-
nally, we observed that partial evaluation in our case yields such regular,
low-level specialized programs that it begs for runtime code generation.

1 Introduction

Offline partial evaluation benefits much from static program analysis [5, 9],
but could the converse be true as well? In this work, we consider a “typical”
program analysis, essentially similar to the constraint-based control flow analysis
described in Nielson, Nielson, and Hankin’s textbook on program analysis [12,
Chap. 3], and use partial evaluation (a.k.a. program specialization) to eliminate
the interpretive overhead incurred by the analysis.

Control flow analysis (CFA) is an integral part of any analysis of higher-order
programs. In the 1990’s, the trend—pioneered by Palsberg & Schwartzbach [13]
and continued by, e.g., Henglein [8]—has been to take a constraint-based ap-
proach to flow analysis, so as to avoid iterating over (complex) source terms
and instead traverse a graph built from a set of constraints. (Gasser, Nielson &
Nielson’s ICFP’97 paper [7] illustrates how to convert an abstract specification

∗This work was initiated at BRICS in the fall of 1998, and continued in the Church project
with the support of NSF Grant EIA-9806747. Current address of the author: Department
of Computer Science, Boston University, 111 Cummington Street, Boston, MA 02215, USA.
E-mail: tamtoft@cs.bu.edu.
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of a flow analysis into a form implementable by constraints.) The virtue of this
approach, it is often said, is that “syntax disappears.” In the sense that the
analysis then does not depend on the peculiarities of the syntax of a particular
language, this claim is true. But in the sense that all interpretation overhead
is removed, this claim is actually false: the constraint graph is repeatedly ex-
amined and traversed until all constraints are satisfied. In Sect. 2 we shall see
that it is possible to produce constraint solvers that are specialized wrt. a given
control graph, and which therefore run without interpretive overhead.

Program specialization amounts to constant propagation together with un-
folding, and is therefore able to reduce run time by at most a constant factor
[1, 9]. Moreover, unless we are dealing with separate compilation (in which case
the initial condition of the “interface nodes” may vary), the residual program
will be run once only. One may therefore ask whether it really pays off to spe-
cialize a control flow analysis, since the cost of generating the residual program
may easily outweigh the gain in run time.

The answer is that eventually (for very large programs) it probably will, as
generation time grows asymptotically slower than run time (cf. the complexity
estimates in Sects. 2.2 and 3.1). Unfortunately, our current results (Sect. 4) do
not allow us to report on such a success story.

In another respect, however, partial evaluation turned out to beneficial also
in our case: it provided feedback on the control flow analysis presented in Sect. 2,
in that the structure of the residual code highlighted the inherent inefficiency of
the algorithm. As reported in Sect. 3, this led us to the design of an incremental
version with much better asymptotic behaviour (cf. Sect. 3.1).

The resulting algorithm is by no means new. Nevertheless, we believe our
case study indicates that a main virtue of doing partial evaluation is that it
assists the invention of clever and efficient algorithms. Support for this claim has
also been provided by Consel and Danvy [4] in the context of string matching.

2 CFA by solving constraints

We now embark on presenting our (initial) algorithm for control flow analysis.
As input the analysis takes a Scheme program, where each subexpression and
each bound variable is assigned a unique integer label—thus we can identify
subexpressions with their labels. (We shall use the letters l, p and q to range over
labels.) The program idid, depicted below, will serve as our running example.

((lambda (x2) x4)
3
(lambda (x5) x7)

6
)
1

The output of the analysis is a mapping D assigning a set of labels to each label,
with the following (informally stated) property: for each subexpression e (re-
spectively bound variable x) in the source program, if e at runtime may evaluate
to (respectively x may denote) a closure (l, E) (with l a lambda abstraction and
E some environment) then l ∈ D(e) (respectively l ∈ D(x)). This property can
be formalised by giving a small-step operational semantics for our Scheme sub-
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set, and then establishing a “flow preservation” property. This would be much
similar to what is done in, e.g., Nielson and Nielson’s POPL’97 paper [11].

We now consider our running example to see what will constitute a valid
D. Lambda abstractions evaluate to themselves, so we can take D(3) = {3}
and D(6) = {6}. By β-reduction x2 will be bound to (lambda (x5) x7)

6,
showing that D(2) = {6} is the least possible choice for D(2). Hence also
D(4) = {6}, implying that D(1) = {6} will do the job (as idid itself evaluates to
(lambda (x5) x7)

6). On the other hand, (lambda (x5) x7)
6 is never applied so

we can safely take D(5) = D(7) = ∅.
It is pretty straightforward to convert a source program into a set of con-

straints on the value of D, such that any solution will indeed satisfy the correct-
ness property stated above. The only interesting case is the one for applications
(l0 l1 . . . ln)

l where conditional constraints are needed: for each lambda ex-
pression (lambda (l′1 . . . l′n) l′)l′0 occurring in the whole program (note that
we only consider those whose arity match), we generate the constraints

l′0 ∈ D(l0) ⇒ D(l1) ⊆ D(l′1), . . .
l′0 ∈ D(l0) ⇒ D(ln) ⊆ D(l′n)

}
actuals flow to formals

l′0 ∈ D(l0) ⇒ D(l′) ⊆ D(l) body flows to result

Our example program idid gives rise to the constraints depicted below, and it
is easy to check that the D tabulated above is in fact the least solution of these
constraints.

{3} ∈ D(3), {6} ∈ D(6), D(2) ⊆ D(4), D(5) ⊆ D(7),
3 ∈ D(3) ⇒ D(6) ⊆ D(2), 3 ∈ D(3) ⇒ D(4) ⊆ D(1)
6 ∈ D(3) ⇒ D(6) ⊆ D(5), 6 ∈ D(3) ⇒ D(7) ⊆ D(1)

We now address the task of our constraint-based flow analysis: to compute the
least solution of a set of constraints. For that purpose we use the algorithm
presented in Nielson, Nielson and Hankin’s textbook on program analysis [12,
Chap. 3], our SML-implementation of which is listed1 in Fig. 1.

The solution D is computed by iteration, controlled by a work list W which
initially contains those q for which there is a constraint {q0} ∈ D(q). Once an
element q is extracted from the work list it is examined by the function iter,
and for all q′ such that D(q) has to be subset of D(q′) the function addD is called
on q′ and D(q) so as to if necessary augment D(q′)—if so, q′ is added to W so
that the updates can be further propagated.

To ensure that one from q can easily find the relevant q′ to update, the
function process ccs has constructed a graph E with the program labels as
nodes. An unconditional constraint D(q) ⊆ D(q′) has to be reexamined each
time q is updated so we add this constraint to E(q), in effect creating an edge
from q to q′. A conditional constraint l ∈ D(p) ⇒ D(q1) ⊆ D(q2) has to be

1Here NodeIncl (q1,q2) denotes the constraint D(q1) ⊆ D(q2), DataIncl (l,p) denotes
the constraint {l} ∈ D(p), and CondNodeIncl (l,p,q1,q2) denotes the constraint l ∈ D(p) ⇒
D(q1) ⊆ D(q2). Sets of labels are manipulated by the operations prefixed by Data, such
as empty, union, is subset, print. The program uses arrays which are initialized by ArrI,
updated by ArrU, and examined by ArrL.
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fun CFA1 (size,ccs) = let

val E = ArrI (size,[]:Constr list)

fun addE q cc = ArrU (E,q,cc::(ArrL (E,q)))

val W = ref ([]:int list)

val D = ArrI (size,Data.empty)

fun addD q d = let val Dq = ArrL (D,q)

in if Data.is_subset (d,Dq) then ()

else ( ArrU (D,q, Data.union (d,Dq))

; W := (q::(!W))) end

fun process_ccs [] = ()

| process_ccs ((cc as NodeIncl (q1,q2))::ccs) =

(addE q1 cc; process_ccs ccs)

| process_ccs (DataIncl (l,p) :: ccs) =

(addD p (Data.mk_singleton l); process_ccs ccs)

| process_ccs ((cc as CondNodeIncl (l,p,q1,q2)) :: ccs) =

(addE q1 cc; addE p cc; process_ccs ccs)

val _ = process_ccs ccs

fun iter q = iter’ (ArrL (E,q))

and iter’ [] = iterate ()

| iter’ (NodeIncl (p1,p2)::ccs) =

(addD p2 (ArrL (D,p1)); iter’ ccs)

| iter’ (CondNodeIncl (l,p,p1,p2)::ccs) =

( (if Data.is_member (l,ArrL (D,p))

then addD p2 (ArrL (D,p1)) else ())

; iter’ ccs)

and iterate () = case !W of [] => ()

| (q::W’) => (W := W’; iter q)

val _ = iterate ()

in fn q => (print ((Data.print (ArrL (D,q)))^"\n"); ()) end

Figure 1: The constraint-solving approach: the interpreter

reexamined each time p or q1 is updated so we add this constraint to E(p) and
E(q1), in effect creating edges from p to q2 and from q1 to q2.

For our example program idid, W initially contains 3 and 6 with D(3) = {3}
and D(6) = {6}. The value of E is depicted below:

E(2) = {D(2) ⊆ D(4)} E(5) = {D(5) ⊆ D(7)}
E(4) = {3 ∈ D(3) ⇒ D(4) ⊆ D(1)} E(7) = {6 ∈ D(3) ⇒ D(7) ⊆ D(1)}
E(6) = {3 ∈ D(3) ⇒ D(6) ⊆ D(2), 6 ∈ D(3) ⇒ D(6) ⊆ D(5)}
E(3) = {3 ∈ D(3) ⇒ D(6) ⊆ D(2), 3 ∈ D(3) ⇒ D(4) ⊆ D(1),

6 ∈ D(3) ⇒ D(6) ⊆ D(5), 6 ∈ D(3) ⇒ D(7) ⊆ D(1)}

2.1 Removing interpretation overhead

The constraint-based flow analysis in Fig. 1 contains some interpretation over-
head. In particular, iter has to examine the constraints in E in order to find out
which action to take. It would be preferable if this “next action” were encoded
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as control, rather than as data.
It is in fact possible to achieve this goal: we have written a dedicated partial

evaluator (a “generating extension” [9]) that from a constraint set produces a
residual program where this layer of interpretation has been removed. To be
more precise, we classify as static the construction of E by process ccs and the
dispatch on the value of E(q) by iter. On the other hand, e.g., all calls to addD
are classified as dynamic and are therefore present in the residual program.

As the generating extension basically operates by evaluating the static op-
erations and producing code for the dynamic operations, one can easily be con-
vinced of its correctness: the residual program will evaluate to the same result
as does the interpreter when applied to the constraints.

The result of applying the generating extension to idid is depicted2 in Fig. 2.
As desired, this residual program evaluates without interpretation overhead: the
edges in E have been “hard-wired” into the code. Nevertheless, one can spot
some other sources of inefficiency; we will return to that issue in Sect. 3.

2.2 Complexity estimates

We now informally provide some complexity bounds, for the interpreter as well
as for the generated residual programs. We shall assume that all operations
associated with Data can be done in constant time, and do not count the time
used for converting the source program into a set of constraints.

Given a source program, we let N denote its size (i.e., the number of labels),
we let A denote the number of function applications, and we let L denote the
number of lambda abstractions. With these entities as parameters, we want to
estimate

• I , the time spent by the interpreter when applied to the constraints gen-
erated from the source program;

• S , the size of the residual program produced by the generating extension;

• and R, the time required to run this residual program.

First observe that the number of constraints is in O(N + AL) (assuming that
there is a maximal arity for functions), and as each constraint appears at most
twice in E also the size of E is in O(N + AL). From this we infer that also S is
in O(N + AL). Using only N as parameter, we thus have S ∈ O(N2).

To give a tight estimate of R, we introduce an extra entity H denoting the
maximal size of any D(q) (if we were to calculate average computation times,
we would be interested in the average size). Observe that for all nodes q it
holds that q is inserted into W only when something is added to D(q), i.e.,
at most H times; therefore each “clause” in the body of iter (cf. the sample
residual program in Fig. 2) is called at most H times. This demonstrates that
R ∈ O(HS ) ⊆ O(H(N + AL)), implying R ∈ O(N3) (since H ≤ N , trivially).

2Note that instead of generating a function iterq for each q, it generates (so as to optimise
performance) a single function iter which then selects the appropriate code by binary search.
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fun RCFA1idid () = let

val W = ref ([]:int list)

val D = ArrI (8,Data.empty)

fun addD q d = ... (* as in interpreter *)

val _ = (addD 6 (Data.mk_singleton 6) ; addD 3 (Data.mk_singleton 3) )

fun iter n =

if n < 5 then

if n < 3 then

if n < 2 then iterate ()

else (addD 4 (ArrL (D,2)) ; iterate () )

else if n < 4 then

( if Data.is_member (3,ArrL(D,3)) then addD 2 (ArrL(D,6)) else ()

; if Data.is_member (3,ArrL(D,3)) then addD 1 (ArrL(D,4)) else ()

; if Data.is_member (6,ArrL(D,3)) then addD 5 (ArrL(D,6)) else ()

; if Data.is_member (6,ArrL(D,3)) then addD 1 (ArrL(D,7)) else ()

; iterate ())

else

( if Data.is_member (3,ArrL(D,3)) then addD 1 (ArrL(D,4)) else ()

; iterate ())

else if n < 7 then

if n < 6 then (addD 7 (ArrL(D,5)) ; iterate () )

else

( if Data.is_member (3,ArrL(D,3)) then addD 2 (ArrL(D,6)) else ()

; if Data.is_member (6,ArrL(D,3)) then addD 5 (ArrL(D,6)) else ()

; iterate ())

else

( if Data.is_member (6,ArrL(D,3)) then addD 1 (ArrL(D,7)) else ()

; iterate ())

and iterate () = case !W of [] => ()

| (q::W’) => (W := W’; iter q)

val _ = iterate ()

in fn q => (print ((Data.print (ArrL (D,q)))^"\n"); ()) end

Figure 2: The constraint-solving approach: the residual code for idid

By similar considerations (observing that the time spent by process ccs is
bounded by the number of constraints and therefore in O(N + AL)), we infer
that I ∈ O(H(N + AL)) also.

We have thus provided cubic time bounds for our closure analyses. This is
in fact the well-known complexity of 0CFA “with inclusions”. (For CFA “with
equalities”, a technique introduced by Henglein [8], the complexity is almost
linear but at the price of slightly less precise results.)

3 CFA by solving constraints: an incremental
approach

In Sect. 2.2 we estimated the size of the residual program to be in O(N + AL),
indicating that the approach taken so far does not scale up well. In fact, looking
at Fig. 2 should convince the reader that the residual code in general mostly
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consists of tests where the condition takes the form Data.is member (l,ArrL
(D,q)). Worse yet, for typical programs only a few lambda abstractions will
reach any given function application (i.e., H will be much smaller than L), and
hence the large majority of these tests will always be false.

This unpleasant property of the residual programs clearly reflects that also
the interpreter spends most of its time on such “superfluous” tests. This (not
too deep) observation inspired us to (re)invent a better algorithm. The idea is to
avoid the explicit generation of conditional constraints, and instead to proceed
as follows: whenever addD adds a new element (lambda (l′1 . . . l′n) l′)l′0 to
D(l0), where l0 is the operand part of an application (l0 l1 . . . ln)

l, it calls
the function add newcls on l0 and {l′0} so as to generate the unconditional
constraints D(l1) ⊆ D(l′1), . . . , D(ln) ⊆ D(l′n), D(l′) ⊆ D(l). To represent such
constraints, we use an array Ed which can be viewed as the dynamic part of the
E from Fig. 1. Then we for i ∈ {1 . . . n} add l′i to Ed(li), and add l to Ed(l′).

An algorithm implementing this idea is depicted in Fig. 3. It takes as in-
put a set of unconditional constraints (from which it constructs Es, the static
counterpart of Ed), together with functions cl2inf and fnp2ra. The former
associates each lambda abstraction with its body and formal parameters; the
latter associates each operand with its call site and its actual parameters.

It turns out that we have essentially reinvented a well-known technique,
described, e.g., by Mossin [10, Sect. 4.1] and by Wright and Jagannathan (for a
polyvariant analysis) [15, Fig. 6]. We believe that this illustrates a major virtue
of the partial-evaluation approach: no matter how skillful one is, there exists
problems where the design of efficient algorithms may be greatly assisted by
looking at their residual code, since there the flow of control is more explicit so
that one can pinpoint sources of inefficiency.

Also for this interpreter, a generating extension can be written: for our
example program, this results in the residual program depicted in Fig. 4. We
observe that for iter, only a small amount of interpretation overhead has been
eliminated; this is because no constraints except those in Es (D(2) ⊆ D(4) and
D(5) ⊆ D(7)) are available before iter is actually run.

3.1 Complexity estimates

For the algorithm presented in this section, we now redo the complexity analysis
from Sect. 2.2. As there are O(N) unconditional constraints it is easy to see
that S ∈ O(N), i.e., the size of the residual code is linear in the size of the
source program. This is of course essential for all practical purposes!

Concerning I , first note that O(AH) elements are placed in Ed. Observe
that the total time spent in a call to addD is bounded by a function c1 + c2U ,
where U is the number of constraints inserted in Ed during the call (including
recursive invocations). So if we add O(AH) to the final time bound we can
assume that each call to addD takes time O(1). As in the previous analysis,
we see that each node q is inserted into W at most H times so for each q it
holds that iter and iter d is each called at most H times on q. The cost of
applying iter to q is bounded by the size of Es(q), and the cost of applying

7



fun CFA2 (size,lccs,(cl2inf,fnp2ra)) = let

val Es = ArrI (size,[]:int list)

fun addEs q q’ = ArrU (Es,q, q’::(ArrL (Es,q)))

val W = ref ([]:int list)

val Ed = ArrI (size,[]:int list)

val D = ArrI (size,Data.empty)

fun addD q d = let val Dq = ArrL (D,q)

val newcls = Data.set_diff (d,Dq)

in if Data.is_empty newcls then ()

else ( ArrU (D,q, Data.union (newcls,Dq))

; W := (q::(!W))

; add_newcls q newcls) end

and add_newcls q newcls = ...

(* updates Ed (using fnp2ra and cl2inf) *)

(* for each new constraint q1 <= q2

it calls addD q2 (ArrL(D,q1)) *)

fun process_lccs [] = ()

| process_lccs ((NodeIncl (q1,q2)) :: lccs) =

(addEs q1 q2; process_lccs lccs)

| process_lccs ((DataIncl (l,p)) :: lccs) =

(addD p (Data.mk_singleton l); process_lccs lccs)

val _ = process_lccs lccs

fun iter q = let fun iter_s [] = ()

| iter_s (q1::qs) = ( addD q1 (ArrL (D,q))

; iter_s qs)

in iter_s (ArrL (Es,q)) end

and iter_d q [] = iterate ()

| iter_d q (q1::qs) = (addD q1 (ArrL (D,q)); iter_d q qs)

and iterate () = case !W of

[] => ()

| (q::W’) => ( W := W’; iter q; iter_d q (ArrL (Ed,q)))

val _ = iterate ()

in fn q => (print ((Data.print (ArrL (D,q)))^"\n"); ()) end

Figure 3: The lazy constraint-solving approach

iter d to q is bounded by the size of Ed(q) (as we could assume addD ∈ O(1)).
This shows that I ∈ O(H(N + AH)). By similar considerations, we infer that
R ∈ O(H(N + AH)) also. This is still in O(N3), but recall that in Sect. 2.2 we
were only able to establish the bound R = I ∈ O(H(N + AL)). This indicates
that in practice, where H is far less than L, the algorithm presented in this
section is a substantial improvement over the one from Sect. 2.

4 Benchmarks

Using Standard ML of New Jersey3 [2], we have implemented the two versions
of CFA that were presented in Sects. 2 and 3. Our system is able to handle

3Version 110.0.3
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fun RCFA2idid () = let

fun cl2inf_idid 3 = SOME (BodyFormals (4,[2]))

| cl2inf_idid 6 = SOME (BodyFormals (7,[5]))

| cl2inf_idid n = NONE

fun fnp2ra_idid 3 = SOME (1,[6])

| fnp2ra_idid n = NONE

val W = ref ([]:int list)

val Ed = ArrI (8,[]:int list)

val D = ArrI (8,Data.empty)

fun addD q d = ... (* as in interpreter *)

and add_newcls q newcls = ... (* as in interpreter *)

val _ = ( addD 6 (Data.mk_singleton 6)

; addD 3 (Data.mk_singleton 3) )

fun iter n =

if n < 5 then

if n < 3 then

if n < 2 then ()

else (addD 4 (ArrL (D,2)) ; () ) (* n = 2 *)

else ()

else if n < 6 then (addD 7 (ArrL (D,5)) ; () ) (* n = 5 *)

else ()

and iter_d q [] = iterate ()

| iter_d q (q1::qs) = (addD q1 (ArrL (D,q)); iter_d q qs)

and iterate () =

case !W of [] => ()

| (q::W’) => (W := W’; iter q ; iter_d q (ArrL (Ed,q)))

val _ = iterate ()

in fn q => (print ((Data.print (ArrL (D,q)))^"\n"); ()) end

Figure 4: The lazy constraint-solving approach: the residual code for idid

source programs written in a large subset of the Scheme language: by means of
a front end4 such programs are parsed, labeled, and translated into a reduced
Scheme subset for which constraint generation is straightforward5.

We have considered Feeley’s Scheme benchmarks [3]:

conform A program that manipulates lattices and partial orders

earley A parser generator based on Earley’s algorithm

interp An environment-based call-by-need λ-calculus interpreter

lambda A substitution-based call-by-name λ-calculus interpreter

lex A generator of lexical analyzers
4Written by Daniel Damian.
5The treatment of primitive operators is somewhat crude: for an application (l0 l1 . . . ln)

l

we stipulate that if l0 may evaluate to a primitive operator then for each i ∈ {1 . . . n} it must
hold that D(li) ⊆ D(l). For this to be sound, we must demand that the user has priorly
eliminated all occurrences of higher-order primitive operators such as apply.
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N A L AL I (ms) G(sec) S(kb) R(ms) speedup
idid 8 1 2 2 .039 .0024 1.35 .023 40 %
S’id3 26 6 6 36 .41 .044 12.7 .35 15 %
factest 243 60 12 720 2.77 .256 121 1.38 50 %
conform 2234 476 103 49,028 306 26.9 7,737
earley 2748 489 79 38,631 311 18.5 5,057
interp 1422 308 84 25,872 238
lambda 2952 759 57 43,263 280
lex 4628 1041 126 131,166 715
ll1 2152 490 99 48,510 394
peval 2764 688 76 52,288 519
source 1566 339 57 19,323 142

Table 1: Experiments with the algorithm of Fig. 1

ll1 An LL(1) parser generator

peval A small partial evaluator for Scheme

source A parser for Scheme

Apart from these we have also included some smaller benchmarks: our run-
ning example idid, a program S’id3 that applies the combinator
λf.λy.λx.((fy)(fx)) to three copies of the identity function, and a program
factest that calls the factorial function in various ways.

When running our programs on the benchmarks, we have measured I , R
and S as defined in Sect. 2.2; additionally we have included G, the time used
by the generating extension to produce the residual code. (When interpreting
the figures, keep in mind that we are only interested in relative numbers; as to
be expected, G turns out to be roughly proportional to S .) We do not count
the time spent on compiling the residual program, since we can imagine that
the generating extension would output machine code directly.

For the original algorithm (Fig. 1), the result of running selected benchmarks
is depicted in Table 1. It turns out that only the small benchmarks give rise
to residual programs with a manageable (compilable) size; in these cases the
speedup factor (the relationship between R and I ) seems to be slightly less
than 2.

We might also test our estimates from Sect. 2.2, where we predicted that
S ∈ O(N + AL) and that I ∈ O(H(N + AL)). For the Feeley benchmarks
N is much less than AL, and apparently H is a small constant (often even 1).
Therefore we may expect I and S to be proportional to AL, and this seems to
be pretty much the case.

For the improved algorithm from Sect. 3, the result of running the bench-
marks is depicted in Table 2. Observe that now all residual programs are small
and thus can be easily compiled.

Again, we might like to test our complexity estimates, this time from Sect. 3.1.
Here we predicted that S ∈ O(N) and that I ,R ∈ O(H(N + AH)). Assuming
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N A L AL I (ms) G(ms) S(kb) R(ms) speedup
idid 8 1 2 2 .042 1.21 1.4 .034 20 %
S’id3 26 6 6 36 .24 3.0 2.0 .21 12 %
factest 243 60 12 720 1.16 35.8 9.7 1.08 7 %
conform 2234 476 103 49,028 15.6 270 91 14.0 10 %
earley 2748 489 79 38,631 41.9 412 127 44.1 −5 %
interp 1422 308 84 25,872 28.7 165 58 27.7 3 %
lambda 2952 759 57 43,263 21.1 302 105 19.3 8 %
lex 4628 1041 126 131,166 34.6 690 208 32.1 7 %
ll1 2152 490 99 48,510 14.3 256 89 12.9 10 %
peval 2764 688 76 52,288 20.6 306 107 18.0 12 %
source 1566 339 57 19,323 8.9 193 67 8.8 1 %

Table 2: Experiments with the algorithm of Fig. 3

that H is so small that AH is less than N , this means that I , R and S all are
in O(N). And indeed, this seems pretty much to be the case.

Concerning the relationship between I and R, observe that we typically
experience the expected minor speedup. For a single benchmark, however, we
experience a slowdown. This might not have been the case if the generating
extension did output machine code directly, rather than relying on a compiler
which is general purpose (able to deal with the full language SML and tuned
for typical handwritten programs) and therefore by necessity not too efficient
on automatically generated, low-level specialized programs.

5 Conclusion

Partial evaluation is generally applicable for program analysis since all program
analyses share the common property of traversing a source program (or some
representation derived from it) repeatedly whenever they have to compute fixed
points. On the other hand, partial evaluation only contributes to eliminating
the interpretive overhead of program analysis; the other dynamic operations
remain—such as set operations in CFA. At any rate, partial evaluation provides
a linear improvement: it does not change the complexity of the analysis.

The benefits of partial evaluation are both conceptual and practical. Con-
ceptual: residual programs often provide a better comprehension of the source
analysis, perhaps enabling one to optimize it, as illustrated by this case study.
And practical: the resulting analysis is more efficient, assuming that partial
evaluation and compiling the residual programs do not take too long. It has
been our consistent observation that residual programs in our case are very low
level and regular, thus making a strong case for runtime code generation—a
future work.

For the CFA in Sect. 3, which essentially uses dynamic programming, there
is little benefit in applying static partial evaluation. One might rather perform
dynamic partial evaluation, i.e., incremental runtime code generation.
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April 1996. Springer-Verlag.

[4] Charles Consel and Olivier Danvy. Partial evaluation of pattern matching
in strings. Information Processing Letters, Vol. 30, No. 2, pages 79–86,
January 1989.

[5] Charles Consel and Olivier Danvy. Tutorial notes on partial evalua-
tion. In Susan L. Graham, editor, Proceedings of the Twentieth Annual
ACM Symposium on Principles of Programming Languages, pages 493–501,
Charleston, South Carolina, January 1993. ACM Press.

[6] Daniel Damian. Partial evaluation for program analysis. Progress report,
BRICS PhD School, University of Aarhus, June 1999.

[7] Kirsten L. Solberg Gasser, Flemming Nielson, and Hanne Riis Nielson.
Systematic realisation of control flow analyses for CML. In Mads Tofte,
editor, Proceedings of the 1997 ACM SIGPLAN International Conference
on Functional Programming, pages 38–51, Amsterdam, The Netherlands,
June 1997. ACM Press.

6Another spinoff of this project is Daniel’s progress report [6], treating Shivers’ 0CFA [14].

12



[8] Fritz Henglein. Simple closure analysis. Technical Report Semantics Report
D-193, DIKU, Computer Science Department, University of Copenhagen,
1992.

[9] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation
and Automatic Program Generation. Prentice Hall International Series in
Computer Science. Prentice-Hall, 1993.

[10] Christian Mossin. Flow Analysis of Typed Higher-Order Programs. PhD
thesis, DIKU, Computer Science Department, University of Copenhagen,
1997. Technical Report DIKU-TR-97/1.

[11] Flemming Nielson and Hanne Riis Nielson. Infinitary control flow analy-
sis: a collecting semantics for closure analysis. In Neil D. Jones, editor,
Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles
of Programming Languages, pages 332–345, Paris, France, January 1997.
ACM Press.

[12] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of
Program Analysis. Springer Verlag, 1999.

[13] Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. In Proceedings of OOPSLA’91, the ACM SIGPLAN Sixth Annual
Conference on Object-Oriented Programming Systems, Languages and Ap-
plications, pages 146–161, Phoenix, Arizona, October 1991.

[14] Olin Shivers. Control-Flow Analysis of Higher-Order Languages or Tam-
ing Lambda. PhD thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, May 1991. Technical Report CMU-
CS-91-145.

[15] Andrew K. Wright and Suresh Jagannathan. Polymorphic splitting: an
effective polyvariant flow analysis. ACM Transactions on Programming
Languages and Systems, Vol. 20, No. 1, pages 166–207, January 1998.

13



Recent BRICS Report Series Publications

RS-99-45 Torben Amtoft. Partial Evaluation for Constraint-Based Pro-
gram Analyses. December 1999. 13 pp.
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raud and Daniel, editors, 5th International Euro-Par Confer-
ence, EURO-PAR ’99 Proceedings, LNCS 1685, 1999, pages
1353–1368, which in turn is a revised part of another paper
calledMigration = Cloning ; Aliasing that appeared in Cardelli,
editor, Foundations of Object-Oriented: 6th International Con-
ference, FOOL6 Informal Proceedings, 1999 and as such su-
persedes the corresponding part of the earlier BRICS report
RS-98-33.

RS-99-43 Uwe Nestmann.What is a ‘Good’ Encoding of Guarded Choice?
December 1999. ii+34 pp. To appear in a special EXPRESS ’97
issue ofInformation and Computation. This revised report su-
persedes the earlier BRICS report RS-97-45.

RS-99-42 Uwe Nestmann and Benjamin C. Pierce.Decoding Choice
Encodings. December 1999. ii+62 pp. To appear inJour-
nal of Information and Computation. An extended abstract ap-
peared in Montanari and Sassone, editors,Concurrency The-
ory: 7th International Conference, CONCUR ’96 Proceedings,
LNCS 1119, 1996, pages 179–194.

RS-99-41 Nicky O. Bodentien, Jacob Vestergaard, Jakob Friis, K̊are J.
Kristoffersen, and Kim G. Larsen. Verification of State/Event
Systems by Quotienting. December 1999. 17 pp. Presented at
Nordic Workshop in Programming Theory, Uppsala, Sweden,
October 6–8, 1999.

RS-99-40 Bernd Grobauer and Zhe Yang. The Second Futamura Pro-
jection for Type-Directed Partial Evaluation. November 1999.
Extended version of an article appearing in Lawall, editor,
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, PEPM ’00 Proceedings, 2000,
pages 22–32.


