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Linear Time Recognition of P4-Indifferent Graphs

Romeo Rizzi

BRICS∗

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

e-mail: romeo@cwi.nl

Abstract

A simple graph is P4-indifferent if it admits a total order < on
its nodes such that every chordless path with nodes a, b, c, d and edges
ab, bc, cd has a < b < c < d or a > b > c > d. P4-indifferent graphs gen-
eralize indifferent graphs and are perfectly orderable. Recently, Hoàng,
Maffray and Noy gave a characterization of P4-indifferent graphs in
terms of forbidden induced subgraphs. We clarify their proof and de-
scribe a linear time algorithm to recognize P4-indifferent graphs. When
the input is a P4-indifferent graph, then the algorithm computes an or-
der < as above.

Key words: P4-indifference, linear time, recognition, modular decomposition.

1 Introduction

A simple graph G = (V,E) is called P4-indifferent if it admits a P4-indifferent
order, that is, a total order < on V with the following property: if a, b, c, d ∈
V induce a chordless path with edges ab, bc and cd (in jargon, a P4), then,
either a < b < c < d, or a > b > c > d. The P4-indifferent graphs were
introduced in [6] as a polynomially recognizable subclass of perfectly order-
able graphs. The interest in perfectly orderable graphs is motivated by the
notable fact, pointed out by Chvátal [2], that the greedy coloring algorithm
applied along the order always produces an optimal coloring. The interest
in the subclass of P4-indifferent graphs comes from the fact that the recog-
nition of perfectly orderable graphs in general is NP -complete [8]. Recently,
Hoàng, Maffray and Noy [5] gave a characterization of P4-indifferent graphs
in terms of forbidden induced subgraphs. We clarify their proof and give a
linear time algorithm to recognize P4-indifferent graphs. When the input of
the algorithm is a P4-indifferent graph, then a P4-indifferent order is also

∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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obtained. Our algorithm bases on the modular decomposition of the input
graph.

After having completed the present work, we came to know that a linear
time recognition algorithm had been recently obtained by Habib, Paul and
Viennot in [4]. A main original contribution of this paper is however a slight
simplification in the proof of the result of Hoàng, Maffray and Noy [5] with
a more clear understanding of the properties and the relationships among
certain subclasses of interval graphs. Apart the fact that we only state the
well-known forbidden subgraph characterization of interval graphs [7], and
only report the needed facts and notions about modular decompositions, our
presentation is complete and should be accessible to the non-specialists also.

As usual, Ck denotes the chordless cycle on k vertices. If S ⊂ V , then
G[S] denotes the subgraph of G induced by S, i.e. G[S] = (S, {uv ∈ E :
u, v ∈ S}). When we say “G contains (a graph) H,” we mean “G contains H
as induced subgraph.” Note that, if G is P4-indifferent, then every induced
subgraph of G is P4-indifferent. The starting point and main inspiration of
the present work is the following forbidden induced subgraph characteriza-
tion of P4-indifferent graphs, due to Hoàng, Maffray and Noy [5].

Theorem 1.1 A graph is a P4-indifferent graph if and only if it contains
no Ck with k ≥ 5 and none of the graphs F1, . . . , F8 shown in Fig. 1.

2 Interval graphs which are P4-indifferent

In this section, we give a linear time algorithm, which, given an interval
graph G, returns either an F4 or an F7 contained in G, or a P4-indifferent
order of V . A consequence is the following fact, already implicit in [5].

Fact 2.1 An interval graph is P4-indifferent if and only if it contains no F4

and no F7.

Proof: Is easy to check that neither F4 nor F7 are P4-indifferent. If an inter-
val graph G with no F4 and no F7 is given as input to the algorithm, then
a P4-indifferent order is returned; hence G is P4-indifferent. 2

An interval graph is any simple graph which admits an interval repre-
sentation.
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Figure 1: Forbidden subgraphs for P4-indifferent graphs.

Definition 2.2 (interval representation) Let G = (V,E) be a simple
graph with n nodes. Two integers lv and rv with lv < rv are associated to
every node v of G so that {lv : v ∈ V } ∪ {rv : v ∈ V } = {1, . . . , 2n}.
The following property is the main requirement: uv ∈ E if and only if
lu < lv < ru or lv < lu < rv.

Linear time algorithms to recognize interval graphs and compute interval
representations of interval graphs are known [1]. Moreover, the following is
a well-known [7] characterization of interval graphs in terms of excluded
induced subgraphs.

Lemma 2.3 (Lekkerkerker and Boland [7]) A simple graph is an in-
terval graph if and only if it contains none of the graphs shown in Fig. 2.

Our algorithm works on the interval representation of the input interval
graph G = (V,E). The algorithm scans the integers in the interval [1, 2n]
from left to right. During the scan, three lists of nodes L0, L1 and L2 are
maintained. For every node v, and for j = 0, 1, 2, let tjv be the first instant
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Figure 2: Forbidden subgraphs for interval graphs.

in the interval [1, 2n] for which v ∈ Lj. (We let tjv = +∞ if v never enters
Lj). At every instant i, the lists L0, L1 and L2 are as follows:

L0(i) contains those nodes v with lv < i < rv;

L1(i) contains those nodes v ∈ L0(i) such that there exists a node u with
lv < ru ≤ i;

L2(i) contains those nodes v ∈ L0(i) such that there exists a node u with
ru ≤ i and t1u < lv.

In practice, a node v is in L0(i) for i ∈ [lv, rv ]. A node v, which ever
enters L1, will be in L1(i) for i ∈ [t1v, rv]. A node v, which ever enters L2,
will be in L2(i) for i ∈ [t2v, rv].

When i = rv, then we declare v to be a u-dangerous node for all those
nodes u ∈ L2(rv) \ {v} and such that t2u < lv.

This is the first phase of our algorithm. Note that, by reversing an in-
terval representation of G, a second interval representation of G is obtained.
The second phase of our algorithm is identical to the first, only that it is
performed on the reversed interval representation.

Claim 2.4 Assume a node v to be declared u-dangerous both in the forward
phase and in the backward phase. Then G contains an F4.

4



Proof: It suffices to show that if v is u-dangerous in the forward phase of
the algorithm, then rv < ru and there exists two nodes a and b such that
lb < ra < lu < rb < lv.

If v is u-dangerous w.r.t. the forward phase, then u ∈ L2(rv)\{v} (which
accounts for rv < ru) and t2u < lv. Therefore, there exists a node b with
rb = t2u and t1b < lu. Finally, there exists a node a with lb < ra = t1b . Obvi-
ously t2u > lu. Summarizing, lb < ra < lu < rb < lv. 2

The following relation <∗ on V is equivalent to the one introduced in [5]
after Remark 2.

• Overlap rule. If u, v ∈ V with lu < lv < ru < rv, then u <∗ v.

• Containment rule. If v is declared u-dangerous in the forward phase,
then u <∗ v. If v is declared u-dangerous in the backward phase, then
v <∗ u.

Note that u <∗ v implies uv ∈ E. Moreover, by Claim 2.4, when G
contains no F4, then <∗ is antisymmetric.

Claim 2.5 If G contains no F7 and <∗ is antisymmetric, then the relation
<∗ is acyclic.

Proof: The following relation is clearly acyclic: u <′ v iff lu < lv. Therefore,
in every cycle of <∗, a v <∗ u for which v is u-dangerous (backwards), must
appear. Let z be the predecessor of v in the cycle. We assume that z 6<∗ u
since otherwise, considering z <∗ u instead of z <∗ v and v <∗ u, a shorter
cycle of <∗ is obtained. Let a and b be two nodes which cause v to be
u-dangerous, i.e., rv < lb < ru < la < rb.

Case 1: assume rz < lb. Since vz ∈ E, then rz > lv; hence rz > lu.
If lz < lu then z <∗ u by the overlap rule. Otherwise, if lz > lu then z is
u-dangerous as well as v. Again z <∗ u.

Case 2: assume lb < rz < ru. If lz < lu then z <∗ u by the overlap
rule. Assume therefore lz > lu. Since z <∗ v and rz > rv, then the interval
[lz, rz ] contains the interval [lv , rv] and v is z-dangerous (forwards). However
rv < lb < rz < la. Therefore v is z-dangerous also in the backward phase,
contrary to our assumptions.

Case 3: assume rz > ru. Since z <∗ v and rz > rv, then v must be
z-dangerous (forwards). If rz < la, then v is z-dangerous also in the back-
ward phase, contrary to our assumptions. Assume therefore rz > la. Let
b′ and a′ be two nodes which cause v to be z-dangerous (forwards), i.e.,

5



lb′ < ra′ < lz < rb′ < lv. If rb′ < lu, then also u is z-dangerous in the for-
ward phase and by the containment rule z <∗ u. Assume therefore rb′ > lu.
If ra′ < lu, and since rb′ < lv, then v is u-dangerous also in the forward
phase, contrary to our assumptions. Assume therefore ra′ > lu. But now,
u, v, z, a, b, a′, b′ induce an F7, contrary to our assumptions. 2

By Claims 2.4 and 2.5, when G contains no F4 and no F7, then there
exists a total order <+ on V containing <∗.

Claim 2.6 If <∗ is antisymmetric and acyclic, then <+ is a P4-indifferent
order.

Proof: Let a, b, c and d be four nodes inducing a chordless path with edges
ab, bc and cd. By eventually exchanging b with c and a with d, we can always
assume that lb < lc. Hence, lb < lc < rb < rc, for otherwise d could not be
adjacent to c without being adjacent to a. Therefore lb < ra < lc < rb <
ld < rc and b <+ c.

If rc < rd then c <+ d. Otherwise, if rc > rd, then d is c-dangerous in
the forward phase and c <+ d anyhow.

If ra < rb then a <+ b. Otherwise, if ra > rb, then a is b-dangerous in
the backward phase and a <+ b anyhow. 2

2.1 Running time and general outline of the algorithm

The forward phase (and hence the backward phase) of the algorithm is easily
implemented to run in linear time. After that, if a node v turns out to be
u-dangerous both in the forward and in the backward phase, then the proof
of Claim 2.4 shows how to produce an F4 contained in G in constant time.
Assume therefore <∗ to be antisymmetric. Testing the acyclicity of <∗

amounts to test the acyclicity of a digraph with V as vertex-set and with at
most |E| arcs. (Remember that u <∗ v implies uv ∈ E). It is well known
that this can be done in linear time, while at the same time computing a
total order <+ on V which contains <∗. (Every acyclic digraph contains a
source. Keep removing source nodes one after the other. If all nodes get
removed, then let <+ be the order in which the nodes have been removed.
Otherwise, if at a certain point no node is source, then a cycle is obtained
in at most n steps, going backwards starting from any node. Moreover, a
chordless cycle can be easily obtained in linear time). If a chordless cycle C
is returned, then the proof of Claim 2.5 shows that the nodes in C induce

6



an F7 in G. If the antisymmetric relation <∗ is acyclic, then the total order
<+ is P4-indifferent by Claim 2.6.

3 Modules

If u is adjacent to v in a graph G, we say that u sees v in G, otherwise we say
that u misses v in G. A module of an undirected simple graph G = (V,E)
is a non-empty set X of nodes such that every node v ∈ V \ X either sees
all nodes in X or no node in X. By definition, all singletons and V itself
are modules — called the trivial modules of G. A graph is prime if it has
no nontrivial modules.

In Subsection 3.1, we describe a linear time algorithm to decide if a given
prime graph is P4-indifferent. In Subsection 3.2, we report some basic facts
in modular decomposition theory and show how to reduce the recognition
of P4-indifferent graphs to the special case when the input graph is prime.

3.1 Prime graphs

In this subsection, we show that every prime graph is an interval graph,
provided it contains no Ck with k ≥ 5 and none of the graphs F1, . . . , F8

shown in Fig. 1. This result was first given in [5], while the key Lemma 3.1
already appeared in [6, 10]. Combining this with the algorithm in Section 2,
we obtain a linear time algorithm to decide if a given prime graph is P4-
indifferent.

Lemma 3.1 ([6, 10]) If G is a prime graph containing no F1, F2, F3, then
G contains no C4.

Proof: Assume G contains a C4. Then, there exists a pair of disjoint sub-
sets X1,X2 of V with |X1|, |X2| ≥ 2 and such that G[X1] and G[X2] are
connected graphs but G[X1 ∪ X2] is disconnected. (Here, G is the comple-
ment graph of G, i.e. G = (V, {uv : uv /∈ E})). Let us choose X1 and X2

for which X1 ∪ X2 is maximal among all such pairs of subsets. We claim
that one of X1,X2 is a module of G, hence G is not prime, contrary to our
assumptions. Suppose on the contrary that for each i = 1, 2 there exists a
node xi /∈ Xi which sees a node yi ∈ Xi and misses a node zi ∈ Xi. As G[Si]
is connected, we can choose yi and zi to be adjacent in G. Since G[X1 ∪X2]
is disconnected, then x1, x2 /∈ X1 ∪ X2. Note that x1 misses some node in
X2, for otherwise the pair X1 ∪ {x1},X2 would contradict the maximality
of X1,X2. If x1 saw any node in X2, then we could find nonadjacent nodes

7



y, z ∈ X2 with x1y ∈ E end x1z /∈ E; but then x1, y1, z1, y, z induces an F1.
So x1 misses every node in X2. By symmetry, x2 misses every node in X1.
Now, x1, y1, z1, x2, y2, z2 induce an F2 (if x1 sees x2) or an F3 (if x1 misses
x2). 2

Corollary 3.2 ([5]) Let G be a prime graph containing no Ck with k ≥ 5
and none of the graphs F1, . . . , F8. Then G is an interval graph.

Proof: By Lemma 3.1, G contains no C4. Check that each one of the for-
bidden induced subgraphs for interval graphs, given in Fig. 2, contains a Ck

(k ≥ 4) or one of F4, . . . , F8. 2

Let G be the prime graph given as input. Thanks to the algorithm of
Booth and Lueker [1], we can decide in linear time if G is an interval graph.
If G is not an interval graph, then the algorithm of Booth and Lueker returns
(in linear time) one of the graphs shown in Fig. 2. Hence, by Corollary 3.2,
we can produce in linear time a Ck with k ≥ 5 or one of F1, . . . , F8. Note that
none of these graphs is P4-indifferent. Therefore, G is not P4-indifferent.

If G is an interval graph, then the algorithm of Booth and Lueker returns
(in linear time) an interval representation of G. Now we apply the algorithm
given in Section 2. This linear time algorithm will (1) either return an F4

or an F7 contained in G, hence proving the G is not P4-indifferent; (2) or
return a P4-indifferent order for G.

3.2 Modular decomposition

In this subsection, we show how to reduce the recognition of P4-indifferent
graphs to the special case when the input graph is prime. This reduction
bases on the notion of modular decomposition of an undirected graph as
introduced by Gallai in [3]. Only mentioning the relevant facts about mod-
ular decompositions would be out of scope here. (The decomposition is also
known as substitution decomposition, prime tree decomposition, and X-join
decomposition. See [9] for a survey). Therefore, the few properties needed
are given ’de facto’ in Definition 3.2 here below. The existence of a linear
time algorithm to compute the modular decomposition of the input graph
G is fundamental to our solution. In 1994, McConnell and Spinrad [12, 11]
gave a linear time algorithm to compute the modular decomposition of any
graph. We will not go into the details of their algorithm either, and assume
the modular decomposition of G to exist and to be given as part of the input.

8



The following observation points out the role of modules in recognizing
P4-indifferent graphs and in computing P4-indifferent orders.

Observation 3.3 Let X be a module of G and let x be any node in X. If
x1, . . . , xp is a P4-indifferent order w.r.t. G[X] and u1, . . . , ui = x, . . . , uq is
a P4-indifferent order w.r.t. G[V \ X ∪ {x}], then u1, . . . , ui−1, x1, . . . , xp,
ui+1, . . . , uq is P4-indifferent w.r.t. G.

Proof: If X is a module of G, then every P4 of G has either zero, or one, or
four nodes in X, and if it has one, then this node is a leaf of the P4. Clearly,
every P4 that has zero or four nodes in X is properly ordered. Moreover, if
ab, bc, cd is a P4 of G with solely d in X, then ab, bc, cd is properly ordered
as well as ab, bc, cx. 2

Definition 3.4 (modular decomposition)
Let G = (V,E) be an undirected graph. An out-directed tree T with root r is
given. The leaves of T correspond to the nodes in V . Every non-leaf node
has at least two children and is given a label in {0, 1, 2}. For every node t
of T , let Vt be the set of those nodes in V which correspond to the leaves
which can be reached from t in T . Let t1, . . . , tk be the children of t. Let V̂t

be any subset of Vt such that |V̂t ∩ Vt1 | = . . . = |V̂t ∩ Vtk | = 1. We require
the following properties to hold:

• Vt is a module of G for every node t of T ;

• if t is labeled 2, then G[V̂t] is prime;

• if t is labeled 1, then G[V̂t] is a complete graph;

• if t is labeled 0, then G[V̂t] is a complete graph.

Computing a P4-indifferent order for G corresponds to compute a P4-
indifferent order for G[Vr]. By Observation 3.3, and by the properties ex-
pressed in Definition 3.4, this can be done recursively as follows. Let t
be any node of T . Let t′1, . . . , t′k be a P4-indifferent order for G[V̂t]. For
i = 1, . . . k, let ti be the child of t such that t′i ∈ Vti and let ui

1, . . . , u
i
hi

be a P4-indifferent order for G[Vti ]. Then a P4-indifferent order for G[Vt]
is obtained by juxtaposing the P4-indifferent orders for G[Vt1 ], . . . , G[Vtk ] as
follows: u1

1, . . . , u
1
h1

, . . . , uk
1 , . . . , u

k
hk

. It only remains to show how to com-
pute a P4-indifferent order for G[V̂t] or find a forbidden subgraph in G[V̂t]
in linear time. If t is labeled 0, then G[V̂t] is a complete graph and any total

9



order on V̂t is P4-indifferent. The same conclusion holds if t is labeled 1 and
G[V̂t] is a complete graph. When t is labeled 2, then G[V̂t] is prime and we
can resort on the linear time algorithm given in Subsection 3.1.
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