

Basic Research in Computer Science

Linear Time Recognition of \boldsymbol{P}_{4}-Indifferent Graphs

Romeo Rizzi

Copyright (c) 1999, Romeo Rizzi.
BRICS, Department of Computer Science University of Aarhus. All rights reserved.

Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy.

See back inner page for a list of recent BRICS Report Series publications. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK-8000 Aarhus C
Denmark
Telephone: +45 89423360
Telefax: +45 89423255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide Web and anonymous FTP through these URLs:

http://www.brics.dk

ftp://ftp.brics.dk
This document in subdirectory RS/99/38/

Linear Time Recognition of P_{4}-Indifferent Graphs

Romeo Rizzi
BRICS*
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark
e-mail: romeo@cwi.nl

Abstract

A simple graph is P_{4}-indifferent if it admits a total order $<$ on its nodes such that every chordless path with nodes a, b, c, d and edges $a b, b c, c d$ has $a<b<c<d$ or $a>b>c>d . P_{4}$-indifferent graphs generalize indifferent graphs and are perfectly orderable. Recently, Hoàng, Maffray and Noy gave a characterization of P_{4}-indifferent graphs in terms of forbidden induced subgraphs. We clarify their proof and describe a linear time algorithm to recognize P_{4}-indifferent graphs. When the input is a P_{4}-indifferent graph, then the algorithm computes an order $<$ as above.

Key words: P_{4}-indifference, linear time, recognition, modular decomposition.

1 Introduction

A simple graph $G=(V, E)$ is called P_{4}-indifferent if it admits a P_{4}-indifferent order, that is, a total order $<$ on V with the following property: if $a, b, c, d \in$ V induce a chordless path with edges $a b, b c$ and $c d$ (in jargon, a P_{4}), then, either $a<b<c<d$, or $a>b>c>d$. The P_{4}-indifferent graphs were introduced in [6] as a polynomially recognizable subclass of perfectly orderable graphs. The interest in perfectly orderable graphs is motivated by the notable fact, pointed out by Chvátal [2], that the greedy coloring algorithm applied along the order always produces an optimal coloring. The interest in the subclass of P_{4}-indifferent graphs comes from the fact that the recognition of perfectly orderable graphs in general is $N P$-complete [8]. Recently, Hoàng, Maffray and Noy [5] gave a characterization of P_{4}-indifferent graphs in terms of forbidden induced subgraphs. We clarify their proof and give a linear time algorithm to recognize P_{4}-indifferent graphs. When the input of the algorithm is a P_{4}-indifferent graph, then a P_{4}-indifferent order is also

[^0]obtained. Our algorithm bases on the modular decomposition of the input graph.

After having completed the present work, we came to know that a linear time recognition algorithm had been recently obtained by Habib, Paul and Viennot in [4]. A main original contribution of this paper is however a slight simplification in the proof of the result of Hoàng, Maffray and Noy [5] with a more clear understanding of the properties and the relationships among certain subclasses of interval graphs. Apart the fact that we only state the well-known forbidden subgraph characterization of interval graphs [7], and only report the needed facts and notions about modular decompositions, our presentation is complete and should be accessible to the non-specialists also.

As usual, C_{k} denotes the chordless cycle on k vertices. If $S \subset V$, then $G[S]$ denotes the subgraph of G induced by S, i.e. $G[S]=(S,\{u v \in E$: $u, v \in S\}$). When we say " G contains (a graph) H," we mean " G contains H as induced subgraph." Note that, if G is P_{4}-indifferent, then every induced subgraph of G is P_{4}-indifferent. The starting point and main inspiration of the present work is the following forbidden induced subgraph characterization of P_{4}-indifferent graphs, due to Hoàng, Maffray and Noy [5].

Theorem 1.1 A graph is a P_{4}-indifferent graph if and only if it contains no C_{k} with $k \geq 5$ and none of the graphs F_{1}, \ldots, F_{8} shown in Fig. 1.

2 Interval graphs which are P_{4}-indifferent

In this section, we give a linear time algorithm, which, given an interval graph G, returns either an F_{4} or an F_{7} contained in G, or a P_{4}-indifferent order of V. A consequence is the following fact, already implicit in [5].

Fact 2.1 An interval graph is P_{4}-indifferent if and only if it contains no F_{4} and no F_{7}.

Proof: Is easy to check that neither F_{4} nor F_{7} are P_{4}-indifferent. If an interval graph G with no F_{4} and no F_{7} is given as input to the algorithm, then a P_{4}-indifferent order is returned; hence G is P_{4}-indifferent.

An interval graph is any simple graph which admits an interval representation.

Figure 1: Forbidden subgraphs for P_{4}-indifferent graphs.

Definition 2.2 (interval representation) Let $G=(V, E)$ be a simple graph with n nodes. Two integers l_{v} and r_{v} with $l_{v}<r_{v}$ are associated to every node v of G so that $\left\{l_{v}: v \in V\right\} \cup\left\{r_{v}: v \in V\right\}=\{1, \ldots, 2 n\}$. The following property is the main requirement: $u v \in E$ if and only if $l_{u}<l_{v}<r_{u}$ or $l_{v}<l_{u}<r_{v}$.

Linear time algorithms to recognize interval graphs and compute interval representations of interval graphs are known [1]. Moreover, the following is a well-known [7] characterization of interval graphs in terms of excluded induced subgraphs.

Lemma 2.3 (Lekkerkerker and Boland [7]) A simple graph is an interval graph if and only if it contains none of the graphs shown in Fig. 2.

Our algorithm works on the interval representation of the input interval graph $G=(V, E)$. The algorithm scans the integers in the interval $[1,2 n]$ from left to right. During the scan, three lists of nodes L_{0}, L_{1} and L_{2} are maintained. For every node v, and for $j=0,1,2$, let t_{v}^{j} be the first instant

Figure 2: Forbidden subgraphs for interval graphs.
in the interval $[1,2 n]$ for which $v \in L_{j}$. (We let $t_{v}^{j}=+\infty$ if v never enters L_{j}). At every instant i, the lists L_{0}, L_{1} and L_{2} are as follows:
$L_{0}(i)$ contains those nodes v with $l_{v}<i<r_{v}$;
$L_{1}(i)$ contains those nodes $v \in L_{0}(i)$ such that there exists a node u with $l_{v}<r_{u} \leq i ;$
$L_{2}(i)$ contains those nodes $v \in L_{0}(i)$ such that there exists a node u with $r_{u} \leq i$ and $t_{u}^{1}<l_{v}$.
In practice, a node v is in $L_{0}(i)$ for $i \in\left[l_{v}, r_{v}\right]$. A node v, which ever enters L_{1}, will be in $L_{1}(i)$ for $i \in\left[t_{v}^{1}, r_{v}\right]$. A node v, which ever enters L_{2}, will be in $L_{2}(i)$ for $i \in\left[t_{v}^{2}, r_{v}\right]$.

When $i=r_{v}$, then we declare v to be a u-dangerous node for all those nodes $u \in L_{2}\left(r_{v}\right) \backslash\{v\}$ and such that $t_{u}^{2}<l_{v}$.

This is the first phase of our algorithm. Note that, by reversing an interval representation of G, a second interval representation of G is obtained. The second phase of our algorithm is identical to the first, only that it is performed on the reversed interval representation.

Claim 2.4 Assume a node v to be declared u-dangerous both in the forward phase and in the backward phase. Then G contains an F_{4}.

Proof: It suffices to show that if v is u-dangerous in the forward phase of the algorithm, then $r_{v}<r_{u}$ and there exists two nodes a and b such that $l_{b}<r_{a}<l_{u}<r_{b}<l_{v}$.

If v is u-dangerous w.r.t. the forward phase, then $u \in L_{2}\left(r_{v}\right) \backslash\{v\}$ (which accounts for $r_{v}<r_{u}$) and $t_{u}^{2}<l_{v}$. Therefore, there exists a node b with $r_{b}=t_{u}^{2}$ and $t_{b}^{1}<l_{u}$. Finally, there exists a node a with $l_{b}<r_{a}=t_{b}^{1}$. Obviously $t_{u}^{2}>l_{u}$. Summarizing, $l_{b}<r_{a}<l_{u}<r_{b}<l_{v}$.

The following relation $<^{*}$ on V is equivalent to the one introduced in [5] after Remark 2.

- Overlap rule. If $u, v \in V$ with $l_{u}<l_{v}<r_{u}<r_{v}$, then $u<{ }^{*} v$.
- Containment rule. If v is declared u-dangerous in the forward phase, then $u<^{*} v$. If v is declared u-dangerous in the backward phase, then $v<{ }^{*} u$.

Note that $u<^{*} v$ implies $u v \in E$. Moreover, by Claim 2.4, when G contains no F_{4}, then $<^{*}$ is antisymmetric.

Claim 2.5 If G contains no F_{7} and $<^{*}$ is antisymmetric, then the relation $<^{*}$ is acyclic.

Proof: The following relation is clearly acyclic: $u<^{\prime} v$ iff $l_{u}<l_{v}$. Therefore, in every cycle of $<^{*}$, a $v<^{*} u$ for which v is u-dangerous (backwards), must appear. Let z be the predecessor of v in the cycle. We assume that $z \nless^{*} u$ since otherwise, considering $z<^{*} u$ instead of $z<^{*} v$ and $v<^{*} u$, a shorter cycle of $<^{*}$ is obtained. Let a and b be two nodes which cause v to be u-dangerous, i.e., $r_{v}<l_{b}<r_{u}<l_{a}<r_{b}$.

Case 1: assume $r_{z}<l_{b}$. Since $v z \in E$, then $r_{z}>l_{v}$; hence $r_{z}>l_{u}$. If $l_{z}<l_{u}$ then $z<^{*} u$ by the overlap rule. Otherwise, if $l_{z}>l_{u}$ then z is u-dangerous as well as v. Again $z<^{*} u$.

Case 2: assume $l_{b}<r_{z}<r_{u}$. If $l_{z}<l_{u}$ then $z<{ }^{*} u$ by the overlap rule. Assume therefore $l_{z}>l_{u}$. Since $z<^{*} v$ and $r_{z}>r_{v}$, then the interval $\left[l_{z}, r_{z}\right]$ contains the interval $\left[l_{v}, r_{v}\right]$ and v is z-dangerous (forwards). However $r_{v}<l_{b}<r_{z}<l_{a}$. Therefore v is z-dangerous also in the backward phase, contrary to our assumptions.

Case 3: assume $r_{z}>r_{u}$. Since $z<^{*} v$ and $r_{z}>r_{v}$, then v must be z-dangerous (forwards). If $r_{z}<l_{a}$, then v is z-dangerous also in the backward phase, contrary to our assumptions. Assume therefore $r_{z}>l_{a}$. Let b^{\prime} and a^{\prime} be two nodes which cause v to be z-dangerous (forwards), i.e.,
$l_{b^{\prime}}<r_{a^{\prime}}<l_{z}<r_{b^{\prime}}<l_{v}$. If $r_{b^{\prime}}<l_{u}$, then also u is z-dangerous in the forward phase and by the containment rule $z<^{*} u$. Assume therefore $r_{b^{\prime}}>l_{u}$. If $r_{a^{\prime}}<l_{u}$, and since $r_{b^{\prime}}<l_{v}$, then v is u-dangerous also in the forward phase, contrary to our assumptions. Assume therefore $r_{a^{\prime}}>l_{u}$. But now, $u, v, z, a, b, a^{\prime}, b^{\prime}$ induce an F_{7}, contrary to our assumptions.

By Claims 2.4 and 2.5, when G contains no F_{4} and no F_{7}, then there exists a total order $<^{+}$on V containing $<^{*}$.

Claim 2.6 If $<^{*}$ is antisymmetric and acyclic, then $<^{+}$is a P_{4}-indifferent order.

Proof: Let a, b, c and d be four nodes inducing a chordless path with edges $a b, b c$ and $c d$. By eventually exchanging b with c and a with d, we can always assume that $l_{b}<l_{c}$. Hence, $l_{b}<l_{c}<r_{b}<r_{c}$, for otherwise d could not be adjacent to c without being adjacent to a. Therefore $l_{b}<r_{a}<l_{c}<r_{b}<$ $l_{d}<r_{c}$ and $b<^{+} c$.

If $r_{c}<r_{d}$ then $c<^{+} d$. Otherwise, if $r_{c}>r_{d}$, then d is c-dangerous in the forward phase and $c<^{+} d$ anyhow.

If $r_{a}<r_{b}$ then $a<^{+} b$. Otherwise, if $r_{a}>r_{b}$, then a is b-dangerous in the backward phase and $a<^{+} b$ anyhow.

2.1 Running time and general outline of the algorithm

The forward phase (and hence the backward phase) of the algorithm is easily implemented to run in linear time. After that, if a node v turns out to be u-dangerous both in the forward and in the backward phase, then the proof of Claim 2.4 shows how to produce an F_{4} contained in G in constant time. Assume therefore $<^{*}$ to be antisymmetric. Testing the acyclicity of $<^{*}$ amounts to test the acyclicity of a digraph with V as vertex-set and with at most $|E|$ arcs. (Remember that $u<^{*} v$ implies $u v \in E$). It is well known that this can be done in linear time, while at the same time computing a total order $<^{+}$on V which contains $<^{*}$. (Every acyclic digraph contains a source. Keep removing source nodes one after the other. If all nodes get removed, then let $<^{+}$be the order in which the nodes have been removed. Otherwise, if at a certain point no node is source, then a cycle is obtained in at most n steps, going backwards starting from any node. Moreover, a chordless cycle can be easily obtained in linear time). If a chordless cycle C is returned, then the proof of Claim 2.5 shows that the nodes in C induce
an F_{7} in G. If the antisymmetric relation $<^{*}$ is acyclic, then the total order $<^{+}$is P_{4}-indifferent by Claim 2.6.

3 Modules

If u is adjacent to v in a graph G, we say that u sees v in G, otherwise we say that u misses v in G. A module of an undirected simple graph $G=(V, E)$ is a non-empty set X of nodes such that every node $v \in V \backslash X$ either sees all nodes in X or no node in X. By definition, all singletons and V itself are modules - called the trivial modules of G. A graph is prime if it has no nontrivial modules.

In Subsection 3.1, we describe a linear time algorithm to decide if a given prime graph is P_{4}-indifferent. In Subsection 3.2, we report some basic facts in modular decomposition theory and show how to reduce the recognition of P_{4}-indifferent graphs to the special case when the input graph is prime.

3.1 Prime graphs

In this subsection, we show that every prime graph is an interval graph, provided it contains no C_{k} with $k \geq 5$ and none of the graphs F_{1}, \ldots, F_{8} shown in Fig. 1. This result was first given in [5], while the key Lemma 3.1 already appeared in $[6,10]$. Combining this with the algorithm in Section 2, we obtain a linear time algorithm to decide if a given prime graph is $P_{4^{-}}$ indifferent.

Lemma $3.1([6,10])$ If G is a prime graph containing no F_{1}, F_{2}, F_{3}, then G contains no C_{4}.

Proof: Assume G contains a C_{4}. Then, there exists a pair of disjoint subsets X_{1}, X_{2} of V with $\left|X_{1}\right|,\left|X_{2}\right| \geq 2$ and such that $\bar{G}\left[X_{1}\right]$ and $\bar{G}\left[X_{2}\right]$ are connected graphs but $\bar{G}\left[X_{1} \cup X_{2}\right]$ is disconnected. (Here, \bar{G} is the complement graph of G, i.e. $\bar{G}=(V,\{u v: u v \notin E\}))$. Let us choose X_{1} and X_{2} for which $X_{1} \cup X_{2}$ is maximal among all such pairs of subsets. We claim that one of X_{1}, X_{2} is a module of G, hence G is not prime, contrary to our assumptions. Suppose on the contrary that for each $i=1,2$ there exists a node $x_{i} \notin X_{i}$ which sees a node $y_{i} \in X_{i}$ and misses a node $z_{i} \in X_{i}$. As $\bar{G}\left[S_{i}\right]$ is connected, we can choose y_{i} and z_{i} to be adjacent in \bar{G}. Since $\bar{G}\left[X_{1} \cup X_{2}\right]$ is disconnected, then $x_{1}, x_{2} \notin X_{1} \cup X_{2}$. Note that x_{1} misses some node in X_{2}, for otherwise the pair $X_{1} \cup\left\{x_{1}\right\}, X_{2}$ would contradict the maximality of X_{1}, X_{2}. If x_{1} saw any node in X_{2}, then we could find nonadjacent nodes
$y, z \in X_{2}$ with $x_{1} y \in E$ end $x_{1} z \notin E$; but then $x_{1}, y_{1}, z_{1}, y, z$ induces an F_{1}. So x_{1} misses every node in X_{2}. By symmetry, x_{2} misses every node in X_{1}. Now, $x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}$ induce an F_{2} (if x_{1} sees x_{2}) or an F_{3} (if x_{1} misses x_{2}).

Corollary 3.2 ([5]) Let G be a prime graph containing no C_{k} with $k \geq 5$ and none of the graphs F_{1}, \ldots, F_{8}. Then G is an interval graph.

Proof: By Lemma 3.1, G contains no C_{4}. Check that each one of the forbidden induced subgraphs for interval graphs, given in Fig. 2, contains a C_{k} $(k \geq 4)$ or one of F_{4}, \ldots, F_{8}.

Let G be the prime graph given as input. Thanks to the algorithm of Booth and Lueker [1], we can decide in linear time if G is an interval graph. If G is not an interval graph, then the algorithm of Booth and Lueker returns (in linear time) one of the graphs shown in Fig. 2. Hence, by Corollary 3.2, we can produce in linear time a C_{k} with $k \geq 5$ or one of F_{1}, \ldots, F_{8}. Note that none of these graphs is P_{4}-indifferent. Therefore, G is not P_{4}-indifferent.

If G is an interval graph, then the algorithm of Booth and Lueker returns (in linear time) an interval representation of G. Now we apply the algorithm given in Section 2. This linear time algorithm will (1) either return an F_{4} or an F_{7} contained in G, hence proving the G is not P_{4}-indifferent; (2) or return a P_{4}-indifferent order for G.

3.2 Modular decomposition

In this subsection, we show how to reduce the recognition of P_{4}-indifferent graphs to the special case when the input graph is prime. This reduction bases on the notion of modular decomposition of an undirected graph as introduced by Gallai in [3]. Only mentioning the relevant facts about modular decompositions would be out of scope here. (The decomposition is also known as substitution decomposition, prime tree decomposition, and X-join decomposition. See [9] for a survey). Therefore, the few properties needed are given 'de facto' in Definition 3.2 here below. The existence of a linear time algorithm to compute the modular decomposition of the input graph G is fundamental to our solution. In 1994, McConnell and Spinrad [12, 11] gave a linear time algorithm to compute the modular decomposition of any graph. We will not go into the details of their algorithm either, and assume the modular decomposition of G to exist and to be given as part of the input.

The following observation points out the role of modules in recognizing P_{4}-indifferent graphs and in computing P_{4}-indifferent orders.

Observation 3.3 Let X be a module of G and let x be any node in X. If x_{1}, \ldots, x_{p} is a P_{4}-indifferent order w.r.t. $G[X]$ and $u_{1}, \ldots, u_{i}=x, \ldots, u_{q}$ is a P_{4}-indifferent order w.r.t. $G[V \backslash X \cup\{x\}]$, then $u_{1}, \ldots, u_{i-1}, x_{1}, \ldots, x_{p}$, u_{i+1}, \ldots, u_{q} is P_{4}-indifferent w.r.t. G.

Proof: If X is a module of G, then every P_{4} of G has either zero, or one, or four nodes in X, and if it has one, then this node is a leaf of the P_{4}. Clearly, every P_{4} that has zero or four nodes in X is properly ordered. Moreover, if $a b, b c, c d$ is a P_{4} of G with solely d in X, then $a b, b c, c d$ is properly ordered as well as $a b, b c, c x$.

Definition 3.4 (modular decomposition)

Let $G=(V, E)$ be an undirected graph. An out-directed tree T with root r is given. The leaves of T correspond to the nodes in V. Every non-leaf node has at least two children and is given a label in $\{0,1,2\}$. For every node t of T, let V_{t} be the set of those nodes in V which correspond to the leaves which can be reached from t in T. Let t_{1}, \ldots, t_{k} be the children of t. Let \hat{V}_{t} be any subset of V_{t} such that $\left|\hat{V}_{t} \cap V_{t_{1}}\right|=\ldots=\left|\hat{V}_{t} \cap V_{t_{k}}\right|=1$. We require the following properties to hold:

- V_{t} is a module of G for every node t of T;
- if t is labeled 2, then $G\left[\hat{V}_{t}\right]$ is prime;
- if t is labeled 1 , then $G\left[\hat{V}_{t}\right]$ is a complete graph;
- if t is labeled 0 , then $\bar{G}\left[\hat{V}_{t}\right]$ is a complete graph.

Computing a P_{4}-indifferent order for G corresponds to compute a P_{4} indifferent order for $G\left[V_{r}\right]$. By Observation 3.3, and by the properties expressed in Definition 3.4, this can be done recursively as follows. Let t be any node of T. Let $t_{1}^{\prime}, \ldots, t_{k}^{\prime}$ be a P_{4}-indifferent order for $G\left[\hat{V}_{t}\right]$. For $i=1, \ldots k$, let t_{i} be the child of t such that $t_{i}^{\prime} \in V_{t_{i}}$ and let $u_{1}^{i}, \ldots, u_{h_{i}}^{i}$ be a P_{4}-indifferent order for $G\left[V_{t_{i}}\right]$. Then a P_{4}-indifferent order for $G\left[V_{t}\right]$ is obtained by juxtaposing the P_{4}-indifferent orders for $G\left[V_{t_{1}}\right], \ldots, G\left[V_{t_{k}}\right]$ as follows: $u_{1}^{1}, \ldots, u_{h_{1}}^{1}, \ldots, u_{1}^{k}, \ldots, u_{h_{k}}^{k}$. It only remains to show how to compute a P_{4}-indifferent order for $G\left[\hat{V}_{t}\right]$ or find a forbidden subgraph in $G\left[\hat{V}_{t}\right]$ in linear time. If t is labeled 0 , then $\bar{G}\left[\hat{V}_{t}\right]$ is a complete graph and any total
order on \hat{V}_{t} is P_{4}-indifferent. The same conclusion holds if t is labeled 1 and $G\left[\hat{V}_{t}\right]$ is a complete graph. When t is labeled 2 , then $G\left[\hat{V}_{t}\right]$ is prime and we can resort on the linear time algorithm given in Subsection 3.1.

4 Acknowledgments

I thank Frédéric Maffray for informing me that other researchers had already obtained a linear time recognition algorithm, and Christophe Paul, Michel Habib, and Laurent Viennot, for sending me a copy of their manuscript [4].

References

[1] K.S. Booth and G.S. Lueker, Linear algorithms to recognize interval graphs and test for the consecutive ones property. Seventh Annual ACM Symposium on Theory of Computing (Albuquerque, N. M., 1975), pp. 255-265. Assoc. Comput. Mach., New York, 1975.
[2] V Chvàtal, Perfectly ordered graphs. Topics on perfect graphs, 63-65, North-Holland Math. Stud., 88, North-Holland, Amsterdam-New York, 1984.
[3] T Gallai, Transitiv orientierbare Graphen. (German) Acta Math. Acad. Sci. Hungar 181967 25-66.
[4] M. Abib, C. Paul and L. Viennot, Linear time recognition of P_{4} indifference graphs. manuscript.
[5] C.T Hoàng, F. Maffray and M. Noy, A characterization of P_{4}-indifference graphs. J. Graph Theory 31 (1999), no. 3, 155-162.
[6] C.T Hoàng and B.A. Reed, Some classes of perfectly orderable graphs. J. Graph Theory 13 (1989), no. 4, 445-463.
[7] C.G. Lekkerkerker and J.Ch. Boland, Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51 1962/1963 45-64.
[8] M Middendorf and F. Pfeiffer, On the complexity of recognizing perfectly orderable graphs. Discrete Math. 80 (1990), no. 3, 327-333.
[9] R.H. Mőhring, Algorithmic aspects of comparability graphs and interval graphs. Graphs and order (Banff, Alta., 1984), 41-101. Also in: NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., 147, Reidel, Dordrecht-Boston, Mass., 1985.
[10] S Olariu, Weak bipolarizable graphs. Discrete Math. 74 (1989), no. 1-2, 159-171.
[11] R.M. McConnell, J.P. Spinrad, Modular decomposition and transitive orientation. Discrete Math. 201 (1999), no. 1-3, 189-241.
[12] R.M. McConnell, J.P. Spinrad, Linear-time modular decomposition and efficient transitive orientation of comparability graphs. Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms (Arlington, VA, 1994), 536-545, ACM, New York, 1994.

Recent BRICS Report Series Publications

RS-99-38 Romeo Rizzi. Linear Time Recognition of P_{4}-Indifferent Graphs. November 1999. 11 pp.
RS-99-37 Tibor Jordán. Constrained Edge-Splitting Problems. November 1999. 23 pp. A preliminary version with the title Edge-Splitting Problems with Demands appeared in Cornujols, Burkard and Wöginger, editors, Integer Programming and Combinatorial Optimization: 7th International Conference, IPCO '99 Proceedings, LNCS 1610, 1999, pages 273-288.

RS-99-36 Gian Luca Cattani and Glynn Winskel. Presheaf Models for CCS-like Languages. November 1999. ii+46 pp.
RS-99-35 Tibor Jordán and Zoltán Szigeti. Detachments Preserving Local Edge-Connectivity of Graphs. November 1999. 16 pp.
RS-99-34 Flemming Friche Rodler. Wavelet Based 3D Compression for Very Large Volume Data Supporting Fast Random Access. October 1999. 36 pp.

RS-99-33 Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. The MaxPlus Algebra of the Natural Numbers has no Finite Equational Basis. October 1999. 25 pp. To appear in Theoretical Computer Science.
RS-99-32 Luca Aceto and François Laroussinie. Is your Model Checker on Time? - On the Complexity of Model Checking for Timed Modal Logics. October 1999. 11 pp. Appears in Kutyłowski, Pacholski and Wierzbicki, editors, Mathematical Foundations of Computer Science: 24th International Symposium, MFCS '99 Proceedings, LNCS 1672, 1999, pages 125-136.
RS-99-31 Ulrich Kohlenbach. Foundational and Mathematical Uses of Higher Types. September 1999. 34 pp.
RS-99-30 Luca Aceto, Willem Jan Fokkink, and Chris Verhoef. Structural Operational Semantics. September 1999. 128 pp. To appear in Bergstra, Ponse and Smolka, editors, Handbook of Process Algebra, 1999.

RS-99-29 Søren Riis. A Complexity Gap for Tree-Resolution. September 1999. 33 pp .

[^0]: *Basic Research in Computer Science,
 Centre of the Danish National Research Foundation.

