
B
R

IC
S

R
S

-96-54
I.W

alukiew
icz:

P
ushdow

n
P

rocesses:
G

am
es

and
M

odelC
hecking

BRICS
Basic Research in Computer Science

Pushdown Processes:
Games and Model Checking

Igor Walukiewicz

BRICS Report Series RS-96-54

ISSN 0909-0878 December 1996

Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/54/

Pushdown processes:

games and model checking1

Igor Walukiewicz

Institute of Informatics
Warsaw University

Banacha 2
02-097 Warsaw, POLAND
e-mail: igw@mimuw.edu.pl

Abstract

Games given by transition graphs of pushdown processes are con-
sidered. It is shown that if there is a winning strategy in such a
game then there is a winning strategy that is realized by a pushdown
process. This fact turns out to be connected with the model checking
problem for the pushdown automata and the propositional µ-calculus.
It is show that this model checking problem is DEXPTIME-complete.

1 Introduction

Pushdown processes are, at least in this paper, just another name for a push-
down automata. The different name is used to underline the fact that we
are mainly interested in the graph of configurations of a pushdown process
and not in the language it recognises. This graph can be considered as a
transition system. In general such a transition system may not be regular,
i.e., may not be an unwinding of a finite transition system. Given a prior-
ity function mapping states of the automaton to natural numbers, such a

1This work was done at Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

2This work was partially supported by Polish KBN grant No. 2 P301 009 06

1

transition system defines a two player parity game. In the game, moves of
the players alternate. In a move, a player picks a state reachable by an edge
from the current one. The result of a game is a finite or infinite path. The
path is finite if one of the players cannot make a move; in this case the other
player wins. If the path is infinite we find the smallest priority such that a
state of this priority appears infinitely often on the path. Player I wins if
this priority is even.

Pushdown processes are a generalisation of regular process which corres-
pond to finite automata or regular transition systems [6]. It is stated in [7]
that the extra expressive power of pushdown processes may be of use for
describing hierarchically structured systems, such as multi-level cashes, or
wide area networks. Considering pushdown games is interesting at least for
two reasons. First, as we will show here, there is a connection with model
checking for pushdown processes and the µ-calculus. The second reason is
the problem of synthesis of correct programs (see for example [14, 21]). The
conditions of a game may be seen as a specification, and the two players
as the program and environment respectively. In this approach the winning
strategy is identified with a reactive program satisfying the specification.
Hence it is important to know whether a strategy can be implemented as,
for example, a regular or pushdown process.

The decidability of the model checking for pushdown processes and the
propositional µ-calculus follows from [17]. An elementary model checking
procedure for pushdown processes and alternation free fragment of the cal-
culus was given in [3]. We are not aware of any such elementary decision
procedure for the whole µ-calculus. The decidability result mentioned above
as well as extensions of it (for example [8, 22]) deal with monadic second or-
der logic and reduce the problem to the decidability of S2S formulas, hence
give nonelementary algorithms.

Pushdown processes are a strict generalisation of processes from so called
basic process algebra BPA (see [6] for a short survey). The processes from
BPA can be considered as pushdown processes with only one state. If lan-
guage recognition is concerned pushdown automata with one state can recog-
nise the same languages as the general pushdown automata. This is not the
case when configuration graph is considered. It was shown in [4] that there
exists pushdown automaton which transition graph is not bisimilar to the
transition graph of any BPA process. BPA is a subclass of process algebra
(PA) [1]. For the other interesting subclass of PA, namely, basic parallel
processes, the model checking is undecidable [12]. The question whether

2

pushdown games have pushdown strategies was posed in [20].
The main results of this paper are the following.

• We show that for every pushdown gameG: if there is a winning strategy
in G then there is a pushdown winning strategy in G.

• We reduce a model checking problem for the pushdown process and the
whole µ-calculus to the model checking problem for finite transition
systems and the µ-calculus. The reduction gives a transition system of
size O((k2cmn1n2)) where m is the number of states of the pushdown
process, k the size of its stack alphabet, n1 is the size of the formula
and n2 is the alternation depth of the original formula. The formula
given by reduction is of size n2 and alternation depth n2. In particular
it turns out that the model checking problem for BPA and a fixed
formula is polynomial.

• We show that there exists a formula α such that the model checking
problem for a pushdown processes and this particular formula α is
DEXPTIME-hard.

Let us mention that the restriction to parity games is not essential. One can
use standard methods of translating Muller, Rabin or Streett conditions into
parity conditions to obtain appropriate results for this kind of conditions.

The plan of the paper is as follows. We start with a preliminary section
where we recall definitions of pushdown automata and the propositional µ-
calculus. In the following section we present some facts about games with
parity conditions. In the next section we prove that if there is a winning
strategy on a pushdown tree then there is one realized by a pushdown auto-
maton. In the last section we consider the model checking problem.

Acknowledgement: I would like to thank Damian Niwinski for his helpful
comments.

2 Preliminaries

2.1 Pushdown processes

The set of finite sequences over Σ is denoted Σ∗ and the set of finite nonempty
sequences over Σ is denoted Σ+. The empty sequence is denoted by ε. For

3

s, s′ ∈ Σ∗ we let ss′ denote concatenation of the two sequences.
For a given finite set Σs, let Com(Σs) = {skip, pop} ∪ {push(z) : z ∈ Σs}

be the set of stack commands over Σs. The command skip does nothing, the
meaning of the remaining two commands is standard.

A pushdown automaton (over one letter alphabet) is a tuple:

A = 〈Q,Σs, q0 ∈ Q,⊥ ∈ Σs, δ : Q× Σs → P(Q× Com(Σs))〉 (1)

where Q is a finite set of states and Σs a finite stack alphabet. State q0

is the initial state of the automaton and ⊥ is the initial stack symbol. A
configuration of an automaton is a pair (s, q) with s ∈ Σ+

s and q ∈ Q. The
initial configuration is (⊥, q0). We assume that ⊥ can be neither put nor
removed from the stack. We will sometimes write (s, q) → (s′, q′) if the
automaton in one step can go from the configuration (s, q) to (s′, q′). Let
→+,→∗ denote respectively the transitive closure of→ and the reflexive and
transitive closure of →.

We will use q to range over states and z to range over letters of the stack
alphabet.
Remark: In our definition of a pushdown automaton we have assumed
that the automaton can put at most one symbol on the stack in one move.
This is done only for convenience of the presentation. The main results also
hold for the more general form of automata which can push many symbols
on the stack in one move. Please note that we can simulate pushing more
symbols on the stack by extending the alphabet and the set of states but the
simulating automaton will be in general much bigger. This is because we are
interested not in the language recognised by the automaton but in the tree
of configurations it generates.

Definition 1 (Pushdown tree) A pushdown automatonA as in (1) defines
a tree TA ⊆ (Σ+

s ×Q)+ as follows:

• the root of the tree is (⊥, q0),

• for every node (s0, q0), . . . , (si, qi), if (si, qi)→ (s, q) then the node has
a son (s0, q0), . . . , (si, qi), (s, q).

We call (si, qi) the label of the node (s0, q0), . . . , (si, qi).

4

2.2 Propositional µ-calculus

Let Prop = {p1, p2, . . .} be a set of propositional constants and let Var =
{X, Y, . . .} be a set of variables. Formulas of the µ-calculus over these sets
can be defined by the following grammar:

F := Prop | ¬Prop | Var | F ∨ F | F ∧ F | 〈 〉F | []F | µVar .F |νVar .F

Note that we allow negations only before propositional constants. As we will
be interested in closed formulas this is not a restriction. In the following,
α, β, . . . will denote formulas.

Formulas are interpreted in transition systems of the formM = 〈S,R, ρ〉,
where: S is a nonempty set of states, R ⊆ S × S is a binary relation on S
and ρ : Prop → P(S) is a function assigning to each propositional constant
a set of states where this constant holds.

For a given model M and an assignment V : Var → P(S), the set of
states in which a formula ϕ is true, denoted ‖ ϕ ‖MV , is defined inductively
as follows:

‖ p ‖MV = ρ(p)S ‖ ¬p ‖MV = S − ρ(p)

‖ X ‖MV =Val(X)

‖ α ∨ β ‖MV =‖ α ‖MV ∪ ‖ β ‖
M
V

‖ α ∧ β ‖MV =‖ α ‖MV ∩ ‖ β ‖
M
V

‖ 〈 〉α ‖MV ={s : ∃s′.R(s, s′) ∧ s′ ∈ ‖ α ‖MV }
‖ []α ‖MV ={s : ∀s′.R(s, s′)⇒ s′ ∈ ‖ α ‖MV }

‖ µX.α(X) ‖MV =
⋂
{S ′ ⊆ S : ‖ α ‖MV al[S′/X] ⊆ S ′}

‖ νX.α(X) ‖MV =
⋃
{S ′ ⊆ S : S ′ ⊆ ‖ α ‖MV al[S′/X]}

here V [S ′/X] is the valuation such that, V [S ′/X](X) = S ′ and V [S ′/X](Y) =
V (Y) for Y 6= X. We shall writeM, s, V � ϕ when s ∈ ‖ ϕ ‖MV andM, s � ϕ
if M, s, V � ϕ for arbitrary V .

We will use the following well known equivalences. They define the neg-
ation of arbitrary closed formula.

¬〈 〉α = []¬α ¬[]α = 〈 〉¬α
¬µX.α(X) = νX.¬α(¬X) ¬νX.α(X) = µX.¬α(¬X) (2)

5

A model checking problem is to decide whether for a given model M,
state s and formula α without free variables, the relation M, s � α holds.
Here we will be interested in the case when M is a pushdown tree and s is
the root of it.

3 Parity games and canonical strategies

In this section we recall the notion of parity games. We give an explicit
description of winning strategies in parity games. We describe the set of
winning positions by a fixpoint expression and derive a winning strategy
from this expression using the concept of signatures. It turns out that this
strategy is canonical in some sense.

The notion of signature was proposed by Streett and Emerson [19]. The
proof of the existence of memoryless strategies in parity games was given in-
dependently by Mostowski [16] and by Emerson and Jutla [10]. Klarlund [13]
proves a more general fact that a player has a memoryless winning strategy
in a game if he has a winning strategy and his winning conditions are given
as a Rabin condition.

Let G = 〈V = VI ∪ VII , E ⊆ V × V,Ω : V → {1, . . . , n}〉 be a bipartite
graph with vertices labelled by priorities from {1, . . . , n}.

A game from some vertex v1 ∈ VI is played as follows: first player I
chooses a vertex v2 with E(v1, v2), then player II chooses a vertex v3 with
E(v2, v3), and so on ad infinitum unless one of the players cannot make a
move. If a player cannot make a move he looses. The result of an infinite
play is an infinite path v1, v2, v3, . . . This path is winning for player I if in
the sequence Ω(v1),Ω(v2),Ω(v3), . . . the smallest number appearing infinitely
often is even. The play from vertices of VII is defined similarly but this time
player II starts.

A strategy σ for player I is a function assigning to every sequence of ver-
tices ~v ending in a vertex from VI a vertex σ(~v) ∈ VII , such that, E(v, σ(~v)).
A strategy is memoryless iff σ(~v) = σ(~w) whenever ~v and ~w end in the same
vertex. A strategy is winning iff it guarantees a win for player I whenever
he follows the strategy. Similarly we define a strategy for player II .

We will often consider strategies which are partial functions. To fit our
definition one can assume that these are total functions which values for some
elements don’t matter.

Our main goal is the following theorem:

6

Theorem 2 (Forgetful determinacy)
Let G be a parity game. From every node of G one of the players has a
forgetful winning strategy.

The idea of the proof is the following. First we define a set of nodes WI

of G by a special fixpoint formula. Having this formula, for every vertex in
WI we associate a signature which intuitively says how far is the vertex from
something good. We use signatures to define a winning memoryless strategy
for player I from vertices in WI . Finally it turns out that the complement
of WI is defined by a formula of exactly the same shape as the one defining
WI . This gives us a memoryless winning strategy for player II from vertices
not in WI .

For the rest of this section let us fix a game graph:

G = 〈V = VI ∪ VII , E,Ω : V → {1, . . . , n}〉

In particular we assume that the range of Ω is {1, . . . , n} and that n is even.
Clearly we can do so without a loss of generality. The graph G can be
represented as a Kripke structure G = 〈V,E, {IG, 1G, . . . , nG}〉, where: V is
now considered to be a set of states; E defines an edge relation between states
and {I , 1, . . . , n} are propositions. Proposition IG denotes the set of vertices
of player I , i.e., the set VI . Each proposition iG ∈ {1G, . . . , nG} denotes the
set of nodes with priority i, i.e., the set {v : Ω(v) = i}.

Consider the formula:

ϕI (Z1, . . . , Zn) =
(
I ⇒

∧
i∈{1,...,n}

(i⇒ 〈 〉Zi)
)
∧
(
¬I ⇒

∧
i∈{1,...,n}

(i⇒ []Zi)
)

We will be interested in the set:

WI = ‖ µZ1.νZ2. . . . µZn−1.νZn.ϕI (Z1, . . . , Zn) ‖G

(in the formula µ is used to close variables with odd indices and ν is used for
even indices; n is even by our assumption).

Definition 3 When applied to n-tuples of ordinals symbols =, <, ≤ stand
for corresponding relations in the lexicographical ordering. For every i ∈
{1, . . . , n} we use =i to mean that both arguments are defined and when
truncated to first i positions the two vectors are equal; similarly for <i and
≤i.

7

Definition 4 (Consistent signature assignment) A signature is a n-
tuple of ordinals. An assignment S of signatures to nodes from some set
U ⊆ V will be called consistent if for every v ∈ U ∩ VI there is a vertex
w ∈ U with E(v, w) and such that:

S(w) ≤Ω(v) S(v) and the inequality is strict if Ω(v) is odd. (3)

similarly if v ∈ U ∩ VII then for all vertices w with E(v, w) we have w ∈ U
and the condition (3) holds.

We extend the syntax of the formulas by allowing constructions of the
form µτZ.α(Z), where τ is an ordinal and α(Z) is a formula from the extended
syntax. The semantics is defined as follows:

‖ µ0Z.α(Z) ‖MV = ∅ ‖ µτ+1Z.α(Z) ‖MV = ‖ α(Z) ‖MV [‖µτZ.α(Z)‖MV /Z]

‖ µτZ.α(Z) ‖MV =
⋃
ρ<τ

‖ µρZ.α(Z) ‖MV (τ a limit ordinal)

By Knaster-Tarski theorem ‖ µZ.α(Z) ‖MV =
⋃
τ ‖ µτZ.α(Z) ‖MV .

Definition 5 (Canonical signatures) A canonical signature, Sig(v), of a
vertex v ∈ V is the smallest in the lexicographical ordering sequence of
ordinals (τ1, . . . , τn) such that:

v ∈ ‖ ϕI(P1, . . . , Pn) ‖G

where:

Pi =µτiZi.νZi+1 . . . νZn.ϕI (P1, . . . , Pi−1, Zi, . . . , Zn) for i odd

Pi =νZi.µZi+1 . . . νZn.ϕI (P1, . . . , Pi−1, Zi, . . . , Zn) for i even

As for an even i the ordinal τi is not used, the definition implies that τi = 0
for every even i. We prefer to have this redundancy rather than to calculate
right indices each time.

Fact 6 A vertex v belongs to WI iff the canonical signature, Sig(v), is
defined.

8

Proof
Suppose v ∈ WI . Let τ be an ordinal of a cardinality bigger than the
cardinality of G. By Knaster-Tarski theorem we have:

WI = ‖ µτZ1.νZ2 . . . µ
τZn−1.νZn.ϕI (Z1, . . . , Zn) ‖G

Hence (τ, . . . , τ) is an upper bound on the canonical signature for v. So the
signature is defined.

Conversely, suppose Sig(v) is defined. For every ordinal ρ and every
formula α(X) we have ‖ µρX.α(X) ‖G ⊆ ‖ µX.α(X) ‖G. Thus v ∈ WI by
monotonicity. �
Fact 7 The assignment v 7→ Sig(v) is a consistent signature assignment.

Proof
We will consider only the case when v ∈ VI . Let (τ1, . . . , τn) be the canonical
signature of v and let i = Ω(v). Let us assume that i is odd. The case when
i is even is simpler.

By our assumptions we have v ∈ ‖ ϕI (P1, . . . , Pn) ‖G. Expanding the

definition of ϕI we obtain: v ∈ ‖ 〈 〉Pi ‖G. Hence there is a vertex w ∈ ‖ Pi ‖G
with E(v, w).

Pi = µτiZi.νZi+1 . . . νZn.ϕI (P1, . . . , Pi−1, Zi, . . . , Zn)

If τi is a limit ordinal then, by the definition of µτ , there is a successor ordinal
ρ < τi such that:

w ∈ ‖ µρZi.νZi+1 . . . νZn.ϕI (P1, . . . , Pi−1, Zi, . . . , Zn) ‖G

Once again referring to the definition of µτ we have:

w ∈ ‖ νZi+1.µZi+2 . . . νZn.ϕI (P1, . . . , P
′
i , Zi+1, . . . , Zn) ‖G

where P ′i = µρ−1Zi.νZi+1 . . . νZn.ϕI (P1, . . . , Pi−1, Zi, . . . , Zn). This shows
that the canonical signature of w cannot be bigger than (τ1, . . . , ρ − 1) on
first i positions, for some ρ ≤ τi. Hence Sig(w) <i Sig(v). �

Definition 8 (Canonical strategy) A canonical strategy is a strategy tak-
ing for each node v ∈ WI ∩ VI a son which has the smallest canonical signa-
ture.

9

Remark: Despite the name, canonical strategies may not be uniquely de-
termined because a node may have many sons with the same signature.

The forgetful determinacy theorem follows from the next lemma.

Lemma 9 The canonical strategy is a winning memoryless strategy for player
I from every node inWI . From every node not inWI player II has a memory-
less winning strategy.

Proof
Suppose v0 ∈ WI . It should be clear that the canonical strategy is memory-
less. We show that it is winning. Let P = v0, v1, . . . be a history of a
play when player I uses the canonical strategy. To arrive at a contradiction
assume that P is winning for player II . In other words, that the smallest
priority appearing infinitely often on P is some odd number p.

Take an infinite sequence of positions j1 < j2 < . . . such that: no vertex
after vj1 has priority smaller than p, and Ω(vjk) = p for k = 1, . . . From
Fact 7 we obtain that Sig(vjk+1

) <p Sig(vjk). This is a contradiction because
the lexicographical ordering on sequences of ordinals of bounded length is a
well ordering.

To show the second statement of the theorem we use some propositional
logic. From equivalences (2), the complement of WI is the set:

‖ νZ1.µZ2. . . . νZn−1.µZn.¬ϕI (¬Z1, . . . ,¬Zn) ‖G

Using the propositional tautology

¬
(
(p⇒ q) ∧ (¬p⇒ r)

)
≡
(
(p⇒ ¬q) ∧ (¬p⇒ ¬r)

)
we obtain

¬ϕI (¬Z1, . . . ,¬Zn) =
(
I ⇒

∨
i∈{1,...,n}

(i ∧ []Zi)
)
∧
(
¬I ⇒

∨
i∈{1,...,n}

(i ∧ 〈 〉Zi)
)

Using the fact that in each vertex ofG exactly one of the propositions 1, . . . , n
holds, the formula above is equivalent to:(

I ⇒
∧

i∈{1,...,n}

(i⇒ []Zi)
)
∧
(
¬I ⇒

∧
i∈{1,...,n}

(i⇒ 〈 〉Zi)
)

Consider the game G′ = 〈V = VII ∪VI , E,Ω
′〉 obtained from G by interchan-

ging the vertices of player I and player II and letting Ω′(v) = Ω(v) + 1. It

10

is easy to see that the strategy for player I in G′ translates to a strategy for
player II in G and vice versa.

In the formulas above let us increase indices of the variables by one.
Adding two dummy variables Z1, Zn+2 we can see that in G′ the complement
of WI can be described by the formula:

µZ1.νZ2µZn+1.νZn+2.ϕ
′
I (Z1, . . . , Zn+2)

where

ϕ′I (Z1, . . . , Zn+2) =(
I ⇒

∧
i∈{2,...,n+1}

(i⇒ 〈 〉Zi)
)
∧
(
¬I ⇒

∧
i∈{2,...,n+1}

(i⇒ []Zi)
)

(observe that the variables Z1 and Zn+2 are not used). By the first statement
of the theorem we know that in G′ there exists a memoryless winning strategy
for player I from every node not inWI . This strategy translates to a winning
memoryless strategy for player II in G. �

Let us finish with a remark that points out an interesting property of
canonical signatures. One can show that every strategy induces a consistent
signature assignment and vice versa. Hence we can compare strategies by
comparing signatures. The next fact implies that the canonical strategy is
in some sense an optimal strategy.

Fact 10 The canonical signature assignment (v 7→ Sig(v)) is the least con-
sistent signature assignment. In other words, for every consistent signature
assignment S whenever for some node v, S(v) is defined then Sig(v) is defined
and Sig(v) ≤ S(v).

Proof
Assume conversely that there is a consistent signature assignment S for which
the set of vertices {w : S(w) < Sig(w)} is not empty. Consider vertices from
this set for which the difference is at the smallest possible position. Let v be
one of such vertices for which S(v) is the smallest possible up to this position.
More precisely v is a vertex such that for some i we have:

1. S(v) <i Sig(v),

2. for every w, S(w) =i−1 Sig(w),

11

3. for every w, if S(w) <i Sig(w) then S(v) ≤i S(w).

Given a set of vertices Q we consider the formula:

νZi+1 . . . µZn−1.νZn.ϕI(Q, . . . , Q, Zi+1, . . . , Zn)

We abbreviate this formula by
−→
σZ.ψ(Q, ~Z). Observe that, by the definition,

i must be odd.

Claim 10.1 Let u be a vertex and Q a set of vertices. If S(u) is defined

and u 6∈ ‖ −→σZ.ψ(Q, ~Z) ‖G then, when player I uses S, player II can force the
play into:

¬Q ∩ {w : S(w) <i S(u)} (4)

and the play visits only vertices of priority bigger than i before reaching this
set.

Proof: If u 6∈ ‖ −→σZ.ψ(Q, ~Z) ‖G then:

u ∈ ‖ µZi+1.νZi+2 . . . νZn−1.µZn.ϕI(¬Q, . . . ,¬Q,Zi+1, . . . , Zn) ‖G
(5)

where

ϕI (Z1, . . . , Zn) =
(
I ⇒

∧
i∈{1,...,n}

(i⇒ []Zi)
)
∧
(
¬I ⇒

∧
i∈{1,...,n}

(i⇒ 〈 〉Zi)
)

Let Sig(u) denote the signature of the formula in (5) in the node u.
Suppose Ω(u) > i. If u ∈ VI then it is the turn of player I . He chooses

a successor u′ of u with the smallest possible value of S. If u ∈ VII then
we let player II to choose a son u′ of u with the smallest possible value of
Sig. By consistency of S, in both cases we know that S(u′) ≤Ω(u) S(u) and
that S(u′) is strictly smaller if Ω(u) is odd. It is also easy to check that
Sig(u′) ≤Ω(u) Sig(u) and that Sig(u′) is strictly smaller if Ω(u) is even.

We claim that after a finite number of steps as the one above, we must
arrive to a vertex of priority not bigger than i. Suppose it is not the case
then the above play is infinite. Let p > i be the smallest priority such
that states with this priority appeared infinitely often during the play. This
priority cannot be odd because, by consistency of S, it would mean that the

12

prefix of length p of signatures given by S was decreased infinitely often and
increased only finitely often. Similarly it cannot be even because then the
prefix of length p of signatures given by Sig would be decreased infinitely
often and increased only finitely many times. A contradiction.

Hence the play eventually must reach a node w with Ω(w) ≤ i. From the
way the play was constructed it follows that S(w) ≤i S(u).

If w ∈ VI then player I chooses w′ with the smallest possible value of
S function. By consistency of S and the fact that i is odd we know that
S(w′) <i S(w) ≤i S(u). Because w satisfies the formula (5) we get w′ ∈ ¬Q.

If w ∈ VII then by consistency of S we know that for every w′ with
E(w,w′) we have S(w′) <i S(w). Because w satisfies the formula (5) we
know that there exists a vertex w′ ∈ ¬Q with E(w,w′). �

We proceed with the proof of the fact. Recall that the vertex v was fixed
at the beginning of the proof. It is a vertex from {u : S(u) <i Sig(u)} that
has the smallest S-signature up to position i.

We take Q = {w : Sig(w) <i Sig(v) − (0, . . . , 1, . . . , 0)}, where the
last vector has only one nonzero element on position i. We claim that

v 6∈ ‖ −→σZ.ψ(Q,Z) ‖G because otherwise v would have smaller signature.
By Claim 10.1 we can find a node w ∈ ¬Q with S(w) <i S(v). By
the definition w ∈ ¬Q means Sig(w) ≥i Sig(v) − (0, . . . , 1, . . . , 0). Hence
S(w) <i S(v) ≤i Sig(v) − (0, . . . , 1, . . . , 0) ≤i Sig(w). A contradiction with
the choice of v.

�

4 Existence of pushdown strategies

Let A be a pushdown automaton as in (1). For simplicity of the presentation
let us assume that the set Q of states of A is partitioned into two sets QI and
QII . We also assume that transitions from states in QI lead only to states
in QII and vice versa. More formally we require that for every q, q′, z, z′:
whenever (push(z′), q′) or (pop, q′) is in δ(z, q) then: q ∈ QI iff q′ ∈ QII .

The automaton A defines a pushdown tree TA. Together with a priority
function Ω : Q→ N this defines a parity game.

Definition 11 (Pushdown game) An automaton A and a priority func-
tion Ω define the pushdown game GA = 〈V,E,Ω : V → {0, . . . , n}〉 where
〈V,E〉 is a pushdown tree TA and Ω(v) = Ω(q) for q the state in the label of

13

v. A partition of V into VI and VII is defined by the partition of Q: v ∈ VI

iff the state occurring in the label of v belongs to QI .

Remark: From our assumption about partition of the states of A and as-
suming that the initial state belongs to QII we have that in the game GA
player II moves from the vertices on the even levels of TA and player I moves
from the vertices on odd levels. Observe that, as the game is played on a tree,
a strategy can be identified with the subset of the game tree. An important
point is what priority assignment functions we allow. We have chosen to
allow only functions which are defined in terms of states of the automaton.
This choice of the method of assigning priorities is motivated by the fact that
we are interested in the winning conditions definable in S1S.

Next let us try to make it precise what we mean by a pushdown strategy.
Such a strategy should be given by an automaton reading moves of player
II and outputting moves for player I . In the infinity, if player II moved
according to the rules then the obtained sequence of moves should determine
a path of TA which is winning for player I .

A move is an element of Q×Com(Σs), i.e., a pair consisting of a state ofA
and a stack command. A path of TA determines a sequence of moves that the
automaton made on this path. Other way around, a sequence of moves may
determine a sequence of configurations, i.e., a path of TA. Some sequences
of moves do not determine paths because they contain invalid moves. Let us
call valid, the sequences determining paths of TA.

A strategy automaton is a deterministic automaton with input and output:

B = 〈QB,Σi,Σo,Σs,B, q0,⊥,
δB : QB × Σs × (Σi × {τ})→ QB × Com(Σs)× (Σo × {τ})〉 (6)

where QB is a finite set of states; Σi,Σo,Σs,B are finite input, output and
stack alphabets respectively. State q0 is the initial state and ⊥ is the initial
stack symbol. If δB(q, z, a) = (q′, com, b) then in the state q with z on the
top of the stack and a on the input tape, the automaton changes the state
to q′, performs the stack command com, and outputs the symbol b. If a = τ
then the automaton does not read the input (and does not move the input
head). If b = τ , the automaton outputs nothing.

To be a strategy automaton, B should have the property that it should
output one move of player I after reading one move of player II . Moreover
it should output valid moves, i.e.: if m1, . . . ,mk is a sequence of read moves,
n1, . . . , nk−1 is a sequence of output moves and m1, n1, . . . ,mk−1, nk−1,mk is

14

a valid sequence of moves then B should output some move nk such that
m1, n1, . . . ,mk, nk is a valid sequence. Finally, in the infinity, if the obtained
sequence of moves is valid then it should determine a path of TA that is
winning for player I (see the definition on page 6).

We say that there is a pushdown strategy in GA if there is a strategy
automaton for A. Our goal in this section is the following theorem.

Theorem 12
If there is a winning strategy for player I in GA then there is a winning
pushdown strategy.

Let us now try to explain an idea of the construction of the strategy.
First, we know that if there is a strategy for player I then there is a ca-
nonical strategy. This strategy depends only on the current configuration
and consists of picking a configuration with the smallest possible signature.
Unfortunately, a strategy automaton cannot know the current configuration
as there are potentially infinitely many of them. Our strategy automaton,
looking at its state and the top of its stack, will be able to tell what is cur-
rently on the top of the stack of A and what is the current state of A. It will
also have some finite information about the rest of the stack of A as we try
to describe now.

Let us look at a run of the automaton A. Suppose that in a configuration
(s0, q0) one of the players performs (q, push(z)). Because the game is given by
a pushdown automaton, the part of the game from the obtained configuration
(sz, q) up to the nearest configurations where z is taken from the stack does
not depend on s. What depends on s is the rest of the play when z is taken
out from the stack and the current configuration becomes (s, q′) for some q′.
Hence it should be enough if player I iinstead of knowing the whole s just
knew which states he can reach when taking z from the stack. In general he
will need a sequence of sets of states ~A = {Ap}p=1,...,n, each set Ap containing
the states that can be reached provided the smallest priority met between
pushing and popping z is p.

The definition below formalises this intuition in the notion of subgame
G(~A, z, θ, q). The additional parameter θ is used to capture the situation
when some moves on the current level were already taken. In this case θ
would be the smallest priority among states met when z was on the stack.
Notation: We assume that {1, . . . , n} is the range of Ω. We use ~A to range
over n element vectors of sets of states and θ to range over {1, . . . , n}. We
also use z to range over stack symbols and q to range over states.

15

Definition 13 (Sub-game) For every quadruple ~A, z, θ, q we define the

game G(~A, z, θ, q) as follows. The arena of the game is a subtree of TA
starting from a node with the configuration (⊥z, q). Every node labelled
with a configuration (⊥, q′), for some q′, is marked winning or loosing. We
mark the node winning if q′ ∈ Amin(p,θ), where p is the lowest priority of a
state appearing on the path to the node (counting q but not q′). Otherwise
we mark the node loosing. Whenever a play reaches a marked node then:
player I wins if this node is marked winning otherwise player II is the winner.
If a play is infinite: player I wins iff the obtained path is winning (as defined
at the beginning of Section 3).

Remark: In our definition of the game we did not have the concept of
marking but we allowed vertices with no sons, and had the rule that the
player looses if he cannot make a move. Hence we can simulate marking
of vertices with cutting the paths. We find the metaphor of markings more
useful here.

Summarising, player I will have only partial information about the cur-
rent configuration, namely: the current state, the current symbol on the top
of the stack, the sets of states it is allowed to reach when popping this symbol
and the lowest priority met from the time when this symbol was pushed on
the stack. The size of this information is bounded. To accomplish his task
of winning the sub-game he can try to use the canonical signatures.

Definition 14 (Signature, Hint) Suppose that player I has a winning

strategy in a game G(~A, z, θ, q). Define Sig(~A, z, θ, q) to be the canonical
signature of the root of the game.

If q ∈ QI then let v be a son of the root having the smallest signature
(if there is more than one such son then fix one arbitrary). If v is labelled

by (⊥, q′) then let Hint(~A, z, θ, q) = (q′, pop). If v is labelled (⊥z, q′) then

let Hint(~A, z, θ, q) = (q′, skip). Otherwise v is labelled by (⊥zz′, q′) and let

Hint(~A, z, θ, q) = (q′, push(z′)).

Finally, when a new push operation is performed, player I should calcu-
late new sets of goal states just using the information he has at hand.

Definition 15 (Update function) Define Up(~A, z, θ, q) to be the sequence

of sets ~A1 = {Ap1}p∈{1,...,n}, where each Ap1 is the set of states q′ such that:

Sig(~A, z,min(Ω(q), p, θ), q′) ≤min(Ω(q),p) Sig(~A, z, θ, q)

16

in the case min(Ω(q), p) is even and

Sig(~A, z,min(Ω(q), p, θ), q′) <min(Ω(q),p) Sig(~A, z, θ, q)

otherwise.

Now we have all the components to define the strategy automaton.

Definition 16 (Strategy automaton) The strategy automaton B for GA
has the same set Q of states as A. Its input and output alphabets are the
moves of A, i.e., Σi = Σo = Q × Coms(Σs). Its stack alphabet Σs,B is
P(Q)n × Σs × {1, . . . , n}. Before defining the transition relation δB let us
introduce an abbreviation. We introduce a new stack command repmin(θ′)

which means: if on the top of the stack there is some triple ~Azθ, replace it
with ~Azθ1, where θ1 = min(θ, θ′). We also introduce a semicolon operation,

so δB(q, ~Azθ, a) = (q′, pop; repmin(θ′)) means that first ~Azθ is removed from
the stack, then possibly the third component of the triple currently at the
top of the stack is changed and the new state becomes q′. Hence, if we
had a configuration (s ~A1z1θ1

~Azθ, q) then after this operation we obtain the

configuration (s ~A1z1 min(θ1, θ
′), q′). Let us proceed with the definition of δB:

• If q ∈ QI then:

– δB(q, ~Azθ, τ) = (q′, skip, “(q′, skip)”) if Hint(~A, z, q, θ) = (q′, skip).

– δB(q, ~Azθ, τ) = (q′, pop; repmin(min(θ,Ω(q))), “(q′, pop)”)

if Hint(~A, z, q, θ) = (q′, pop).

– δB(~Azθ, q, τ) = (q′, repmin(Ω(q)); push(~A′z′n), “(q′, push(z′))”)

if Hint(~A, z, q, θ) = (q′, push(z′)) and ~A′ = Up(~A, z, θ, q)

• If q ∈ QII then:

– δB(q, ~Azθ, “(q′, skip)”) = (q′, skip, τ) if (q′, skip) ∈ δA(q, z)

– δB(q, ~Azθ, “(q′, pop)”) = (q′, pop; repmin(min(θ,Ω(q))), τ)
if (q′, pop) ∈ δA(q, z).

– δB(q, ~Azθ, “(q′, push(z′))”) = (q′, repmin(Ω(q)); push(~A′z′n), τ)

if (q′, push(z′)) ∈ δA(q, z) and ~A′ = Up(~A, z, θ, q).

17

Lemma 17 Suppose that player I can win in G(~A, z, θ, q). If

δB(q, ~Azθ, τ) = (q1, repmin(Ω(q)); push(~A1z
′
1n), “(push(z′), q)”)

or

δB(q, ~Azθ, “(q1, push(z1))”) = (q1, repmin(Ω(q)); push(~A1z1n), τ)

then Sig(~A1, z1, n, q1) ≤Ω(q) Sig(~A, z, θ, q) and it is strictly smaller if Ω(q) is
odd.

Proof
Consider the games G = G(~A, z, θ, q) and G1 = G(~A1, z1, n, q1). Define a
function F : G1 → G by F((⊥s′, q′) . . . (⊥s′′, q′′)) = (⊥zs′, q′) . . . (⊥zs′′, q′′),
i.e. to every configuration of the path we add z just after ⊥. It is an
injective function respecting descendancy relation and priorities of nodes.
This function assigns to the root of G1 the node v labelled (⊥zz1, q1). This
node is a son of the root of G.

Let σ denote the canonical strategy in G. Because v ∈ σ we can use the
function F to obtain a strategy σ1 = F−1(σ) in G1. We will show that this
strategy is winning.

Let P be a result of a play in the game G1 when player I uses σ1. If P is
infinite then F(P) is a result of a play in G when player I uses σ. Hence P
is winning for I . Suppose P is finite ending in some node w. The label of w
is (⊥, q′) for some state q′. We will show that this node is marked winning.
Let p be the minimum of priorities of states appearing on the path from v
to F(w). According to Definition 13 the node is winning if q′ ∈ ~Ap1. By

definition of the automaton B we know that ~A1 = Up(~A, z, θ, q). Hence we
have to show that:

Sig(~A, z,min(Ω(q), p, θ), q′) ≤min(Ω(q),p) Sig(~A, z, θ, q)

Let us use the subscript G in SigG(v) to stress that this is the canonical
signature in the game G.

Claim 17.1 SigG(F(w)) ≤min(Ω(q),p) Sig(~A, z, θ, q) and it is strictly smaller
if min(Ω(q), p) is odd.

Proof: As v is a son of the root of G on the path to F (w), by consistency
of canonical signatures (Fact 7) SigG(F(w)) ≤p SigG(v) and it is strictly

18

smaller if p is odd. By the same fact we have SigG(v) ≤Ω(q) Sig(~A, z, θ, q)
and is strictly smaller if Ω(q) is odd. �

Claim 17.2 SigG(F(w)) = SigG(~A, z,min(Ω(q), p, θ), q′)

Proof: We show that the game G(~A, z,min(Ω(q), p, θ), q′) is isomorphic to
the part of G issued from F(w). To see this, we have to check that a node

is marked winning in G(~A, z,min(Ω(q), p, θ), q′) iff it is marked winning in
G. Let q′′ be a state and u a node labelled by (⊥, q′′). Let also p′′ be the
minimum of priorities of states that appeared between F(w) and u. The
node u is marked winning in G iff q′′ ∈ Amin(min(Ω(q),p,p′′),θ). It is marked
winning in G(~A, z,min(Ω(q), p, θ), q′) iff q′′ ∈ Amin(p′′,min(Ω(q),p,θ)). �

Knowing that σ1 is winning in G1 we can define a signature assignment
by S(w) = Sig(F(w)) for every w reachable in a play of G1 when player
I uses σ1. This is a consistent signature assignment, hence by Fact 10 we
have that Sig(~A1, z1, θ1, q1) ≤ S(F−1(v)). By consistency of S we have that

S(F−1(v)) ≤Ω(q) SigG(~A, z, θ, q) and it is strictly smaller if Ω(q) is odd. �

Lemma 18 If a configuration (sz ~Aθ, q) is reachable from the initial config-

uration then Sig(~A, z, θ, q) is defined.

Proof
Induction on the length of the derivation with a help of Lemma 17. �

Lemma 19 Suppose that player I can win the game GA. Let (sz ~Aθ, q) be a
configuration of B reachable from the initial one. Suppose also that on some
finite input sequence w the automaton B goes from (sz ~Aθ, q) to a configur-

ation (sz ~Aθ′, q′) and sz ~A is always on the stack during this derivation. Let
p be the minimum of the priorities of the states appearing in the derivation.
We have:

1. θ′ = min(p, θ)

2. Sig(~A, z, θ′, q′) ≤p Sig(~A, z, θ, q) and it is strictly smaller if p is odd (in
particular both signatures are defined).

Proof
The proof proceeds by induction the length of derivation. The case (s ~Azθ, q)→a

(s ~Azθ, q′) follows directly from the construction of the automaton.

19

Suppose:

(s ~Azθ, q)→a (s ~Azθ′′ ~A1z1n, q1)→u (s ~Azθ′′ ~A1z1θ
′
1, q
′
1)→b (s ~Azθ′, q′)

and ~A1z1 was not popped while reading the sequence u. By induction as-
sumption, θ′1 is the minimum of priorities of states which appeared in the

part of the derivation when there was s ~Azθ′′ ~A1z1 on the stack. Let p1 =
min(θ′1,Ω(q′1)). From Lemma 18 we know that the signature Sig(~A1, z1, θ

′
1, q
′
1)

is defined. Hence q′ ∈ Ap1

1 . This, by definition, means:

Sig(~A, z,min(Ω(q), p, θ), q′) ≤min(Ω(q),p) Sig(~A, z, θ, q)

and the inequality is strict if min(Ω(q), p) is odd. It is easy to see that
θ′ = min(Ω(q), p, θ).

The remaining case is when (s ~Azθ, q)→u (s ~Azθ1, q1)→v (sAzθ′, q′). This
follows directly from two applications of the induction assumption. �

Lemma 20 B is a strategy automaton.

Proof
The automaton B is constructed in such a way that from the current config-
uration of B it is easy to extract the current configuration of A; it is enough
to throw away ~A and θ components from the stack. We have also the prop-
erty that whenever B read m1, . . . ,mi, outputed n1, . . . , ni and m1, ni, . . . ,mi

determines a path in TA then m1, n1, . . . ,mi, ni also determines a path in TA.
Moreover this path ends in a configuration of A which is extracted from the
current configuration of B.

Now, assume conversely that B is not a strategy automaton. Let wi =
m1,m2, . . . be an input word on which B outputs wo = n1, n2, . . . and the
sequence m1, n1, . . . determines a loosing (for player I) path in TA.

Suppose that P is finite, i.e., B cannot make a move from some configur-
ation. Say it is (sz ~Aθ, q). If q ∈ QII then, by the definition of B, it means
that the next move in the input sequence is invalid. Hence q ∈ QI . From
Lemma 18 it follows that Sig(~A, z, θ, q) is defined. Hence Hint(~A, z, θ, q) is
defined and B can make a move. A contradiction.

Suppose that P is infinite. This means that the smallest priority of a state
appearing i.o. on the path determined by m1, n1, . . . is odd. Call it p. From
what was said in the first paragraph, this means that p is the smallest priority
of a state appearing i.o. in the run of B on wi. Using these observations we

20

will construct a sequence of strictly decreasing signatures. This will be a
contradiction with the fact that the signatures are well ordered.

Let x0 be a position in the run such that: (i) after x0 no state with a
priority smaller than p appears on the run, (ii) on the position x0 in the run

there is a configuration (sz ~Aθ, q) and for every position after x0 we have sz ~A
on the stack.

Suppose there is a position x1 after x0 with a configuration (sz ~Aθ1, q1)
and a state of the priority p occurs in a configuration between x0 and x1.
By Lemma 19 we have that Sig(~A, z, θ1, q1) <p Sig(~A, z, θ, q). Next from x1

we can look for a position x2 with a configuration (sz ~Aθ2, q2) such that a
state of the priority p appears between x1 and x2. This way we construct
a sequence of positions x0, x1, . . . , xi. Because the signatures decrease, this
sequence must be finite. Hence form some position, say xi, we will not
be able find a bigger position with the required properties. As a state of
priority p appears infinitely often on the run, there must be a position xi+1

after xi with a configuration (sz ~Aθiz
′ ~A′n, qi+1) such that (sz ~Aθiz

′ ~A′) is on
the stack of every configuration after xi+1. By Lemmas 17 and 19 we have
Sig(~A′, z′, n, qi+1) ≤p Sig(~A, z, θi, qi) and the inequality is strict if a state of
priority p appeared between xi and xi+1. From xi+1 we can repeat exactly the
same construction as from x0. Repeating this reasoning infinitely often we
obtain an infinite sequence of strictly decreasing signatures. A contradiction.
�
Remark: The automaton B is exponentially larger than A. One can show
that in general the strategy automaton must be exponentially larger, al-
though it is not clear that the exponent must be O(n|Q|) as it is in the case
of B. This situation is different from the situation for parity games on finite
transition systems where no memory is need.

An example of a game that has only big strategies is the following. Player
II starts by choosing a sequence of n symbols: 0 or 1. Then player II chooses
a position i ∈ {1, . . . , n} and asks what symbol stands on this position.
Player I has to answer correctly. Then Player II asks about another position
and Player I wins if he answers correctly also this time. It is easy to see that
the graph of such a game can be defined by a pushdown automaton of size
O(n). Every strategy automaton must have the size O(2n).

21

5 Model checking for pushdown trees

We consider a problem of checking whether a given pushdown tree satisfies
a given formula of the propositional µ-calculus. We will reduce this problem
to the problem of establishing existence of a winning strategy in a game on
a pushdown tree. Next we will use results from the previous section to show
how one can solve this later problem. Finally we will show the lower bound
on the complexity of the model checking problem

5.1 Reduction to games

We will show how to reduce a model checking problem to a problem of
establishing existence of a winning strategy in a game on a pushdown tree.
Let us start with some technical definitions concerning µ-calculus formulas.
These will facilitate the description of the reduction.

Definition 21 (Binding) We call a formula well named if every variable is
bound at most once in the formula and free variables are distinct from bound
variables. For a variable X bound in a well named formula ϕ there exists a
unique subterm of ϕ of the form µX.β(X) or νX.β(X), from now on called
the binding definition of X in ϕ and denoted Dϕ(X). We call X a µ-variable
when Dϕ(X) = µX.β(X) for some β, otherwise we call X a ν-variable.

The function Dϕ assigning to every bound variable its binding definition
in ϕ will be called the binding function associated with ϕ.

Definition 22 (Dependency order) Given a formula ϕ we define the de-
pendency order over the bound variables of ϕ, denoted ≤ϕ, as the least partial
order relation such that if X occurs free in Dϕ(Y) then X ≤ϕ Y . We will say
that a bound variable Y depends on a bound variable X in ϕ when X ≤ϕ Y .

Definition 23 (Fisher-Ladner closure) For a given formula α we denote
by FL(α) (Fisher-Ladner closure) the set of subformulas of α (including α
itself).

Let ϕ be a µ-calculus formula without free variables. Without a loss of
generality we may assume that it is well named. Let X1, . . . , Xn be some
linearisation of the dependency order ≤ϕ, i.e., if Xi ≤ϕ Xj then i ≤ j.
We will assume that the variables with even indices are ν-variables and the
variables with odd indices are µ-variables. If it is not the case, we can add

22

dummy variables to the list. This assumption is not essential but simplifies
the presentation as the index immediately determines whether it is a µ or a
ν-variable.

Let:

A = 〈Q,Σs, q0 ∈ Q,⊥ ∈ Σs, δ : Σs ×Q→ Com(Σs)×Q〉

be a pushdown automaton as in (1).
In the previous section we have assumed that the states of the automaton

defining a game are partitioned into QI and QII and transitions from states
in one set lead to states in the other set. Here we will still assume the that
the set of states is partitioned but it may now happen that a transition leads
to a state from the same set. We can avoid this by adding some dummy
states. The number of added states will be at most linear in the size of the
automaton.

Now we define our target pushdown game. Consider the automaton:

C = 〈Q× FL(ϕ),Σs, q0,⊥, δC〉

where δC is defined as follows:

δC((q, α ∨ β), z) ={((q, α), skip), ((q, β), skip)}
δC((q, α ∧ β), z) ={((q, α), skip), ((q, β), skip)}

δC((q, µX.α(X)), z) =δC((q, νX.α(X)), z) = {((q,X), skip)}
δC((q,X), z) ={((q, α(X)), skip)} if Dϕ(X) = σX.α(X)

((q′, α), push(z′)) ∈δC((q, 〈 〉α), z) = δC(z, (q, []α))

if δ(q, z) = (q′, push(z′))

((q′, α), push(z′)) ∈δC((q, 〈 〉α), z) = δC((q, []α), z)

if δ(q, z) = (q′, pop)

It remains to define in which nodes player I is to move and what is the
priority of each state. Player I moves when the game is in a node which label
contains a state: (q, α ∨ β), (q, µX.α(X)), (q, νX.α(X)), (q,X), or (q, 〈 〉α);
for some q ∈ Q and some formulas α, β. In the remaining nodes player II is to
move. Priority function Ω is defined by: Ω((q,Xi)) = i and Ω((q, α)) = n+1,
for α not a variable and q ∈ Q.

Theorem 24
TA � ϕ iff there is a winning strategy for player I in the game TC with the
priority function Ω.

23

For finite transition systems a very similar theorem was shown by Emer-
son, Jutla and Sistla in [9]. For left to right implication one can use signatures
of ϕ. For right to left implication assume conversely and show that player II
has a winning strategy. See for example [19] or [18] for similar arguments.

5.2 Establishing existence of winning strategies

Let A be a pushdown automaton as in (1) and let Ω : Q → {1, . . . , n} be
an indexing function. These define the game on GA. Here we are concerned
with the problem: given A and Ω establish whether there exists a winning
strategy for player I in GA. We will reduce this problem to the problem of
establishing existence of a winning strategy in a game on some finite graph.
Let A and Ω be fixed for the rest of this subsection.

Definition 25 (Game MA) LetMA = 〈VA,→,ΩA〉 be a game on a finite

graph defined as follows. For every ~A, ~A1, z, z1, θ, q, q1 and p ∈ {1, . . . , n}
we have nodes:

Check(~A, z, θ, p, q) Push(~A, z, θ, q)

Move((~A, z, θ, q), (?, z1, q1)) Move((~A, z, θ, q), (~A1, z1, q1))
Pop(q) Err(q)

Here ‘?’ is a special symbol. We have the following transitions between the
nodes:

Check(~A, z, θ, p, q)→ Check(~A, z, θ, p, q′) if (q′, skip) ∈ δ(q, z)
Check(~A, z, θ, p, q)→ Pop(q′) if (q′, pop) ∈ δ(q, z) and q′ ∈ Amin(Ω(q),θ)

Check(~A, z, θ, p, q)→ Err(q′) if (q′, pop) ∈ δ(q, z) and q′ 6∈ Amin(Ω(q),θ)

Check(~A, z, θ, p, q)→ Move((~A, z, θ, q), (?, z1, q1))
if (q1, push(z1)) ∈ δ(q, z)

and exactly the same transitions from Push(~A, z, θ, q), moreover we have:

Move((~A, z, θ, q), (?, z1, q1))→ Move((~A, z, θ, q), (~A1, z1, q1))

Move((~A, z, θ, q), (~A1, z1, q1))→ Push(~A1, z1, n, q1)

Move((~A, z, θ, q), (~A1, z1, q1))→ Check(~A, z,min(θ, p), p, q′′)
if p ≤ Ω(q) and q′′ ∈ Ap1

24

The set VI of nodes where Player I makes a move consists of nodes:

Check(~A, z, θ, p, q), Push(~A, z, θ, q), Move((~A, z1, θ, q1), (?, z2, q2))

for q ∈ QI and arbitrary ~A, z, z1, z2, θ, p, q1, q2

The set VII of nodes where Player II makes a move consists of nodes:

Check(~A, z, θ, p, q), Push(~A, z, θ, q), Move((~A, z, θ, q), (~A1, z1, q1))

for q ∈ QII and arbitrary ~A, z, z1, z2, θ, p, q1, q2

Priority function ΩM is defined by:

ΩM(Check(~A, z, θ, p, q)) = p ΩM(Push(~A, z, θ, q)) = Ω(q)

ΩM (m) = n+ 1 for all other nodes m of MA

Player I wins in the game MA if either:

• after finitely many steps player II cannot make a move or a node la-
belled Pop(q), for some q, is reached.

• the game is infinite and the infinite path P which is the result of the
play is winning for I . Recall that this means that the minimal priority
of states appearing infinitely often on P is even.

Theorem 26
Player I has a winning strategy in the game GA iff he has a winning strategy
in the game MA from the node Check((∅, . . . , ∅),⊥, n, n, q0).

Proof
First, let us consider the left to right implication. We define a strategy σM
for player I onMA as follows.

• if q ∈ QI , Sig(~A, z, θ, q) is defined and Hint(~A, z, θ, q) = (q1, skip) then:

σM (Check(~A, z, θ, p, q)) = Check(~A, z, θ, p, q1)

σM (Push(~A, z, θ, q)) = Push(~A, z, θ, q1)

• if q ∈ QI , Sig(~A, z, θ, q) is defined and Hint(~A, z, θ, q) = (q1, pop) then:

σM (Check(~A, z, θ, p, q)) = σM(Push(~A, z, θ, q)) = Pop(q1)

25

• If q ∈ QI , Sig(~A, z, θ, q) is defined and Hint(~A, z, θ, q) = (q1, push(z1))
then:

σM(Check(~A, z, θ, p, q)) = σM(Push(~A, z, θ, q)) =

Move((~A, z, θ, q), (?, z1, q1))

• if q ∈ QI ∪ QII , Sig(~A, z, θ, q) is defined and ~A1 = Up(~A, z, θ, q) then
let:

σM (Move((~A, z, θ, q), (?, z1, q1))) = Move((~A, z, θ, q), (~A1, z1, q1))

Let →σM denote the subset of the transition relation of MA defined by
the strategy σM , i.e., →σM= {(m,n) : if m ∈ VI then σM(m) = n}∩ →. We
will show that every path along →σM is winning for player I .

The initial state ofMA is Check((∅, . . . , ∅),⊥, n, n, q0). From the assump-
tion that player I can win in the gameGA it follows that Sig((∅, . . . , ∅),⊥, n, q0)
is defined. Let us observe the following properties:

• There is always Pop(q1) as required in the first clause of the definition
of →σM .

• There is no →σM transition to Err(q1), for any q1.

• If Check(~A, z, θ, p, q)→σM Check(~A, z, θ, q1) then Sig(~A1, z1, n, q1) ≤Ω(q)

Sig(~A, z, θ, q) and it is strictly smaller if Ω(q) is odd. Similarly for Push
instead of Check .

• If Move((~A, z, θ, q), (~A1, z1, q1))→σM Push(~A1, z1, n, q1) then

Sig(~A1, z1, n, q1) ≤Ω(q) Sig(~A, z, θ, q) and it is strictly smaller if Ω(q) is
odd.

• If Move((~A, z, θ, q), (~A1, z1, q1))→σM Check(~A, z, θ2, p, q2) then

Sig(~A, z, θ2, q2) ≤p Sig(~A, z, θ, q) and it is strictly smaller if p is odd.

A standard argument about the signatures shows that every path in MA
starting from the initial vertex and proceeding along→σM transitions is win-
ning for player I .

For the right to left implication assume that there is a winning strategy
σM in MA. We construct a strategy automaton C:

C = 〈QC , Q× Com(Σ), Q× Com(Σ), SM , q0,Check((∅, . . . , ∅),⊥, n, n, q0), δC〉

26

Where QC is some set of auxiliary states needed to “implement” the necessary
behaviour of δC that we describe below. The automaton C will work in macro
steps. Each step will begin and end in the state q0 ∈ QC. It will be also the
case that at the beginning and end of each macro step there will be Check
or Push node on the top of the stack.

Assume that m is the current symbol at the top of the stack. Assume
also that m is of the form Check(~A, z, θ, p, q) or Push(~A, z, θ, q).

If q ∈ QI then for every transition m →σM u we add to δ(q0,m, τ) the
following transitions:

• If u is Check(~A, z, θ, p, q′) or Push(~A, z, θ, q′) then replace m by u on
the top of the stack and output “(q′, skip)”.

• If u is Pop(q′) then q′ ∈ Amin(Ω(q),θ). Pop elements from the stack until
a Push node is popped. The current top node of the stack becomes some
Move((~A, z, θ, q), (~A1, z1, q1)). Push the node Check(~A, z,min(θ, p), p, q′)
where p = min(Ω(q′), θ1,Ω(q)). Output “(q′, pop)”.

• If u is a Move((~A, z, θ, q), (?, z1, q1)) node then there are nodes u′, u′′

such that u→σM u′ →σM u′′. Moreover u′ is Move((~A, z, θ, q), (~A1, z1, q1))

and u′′ is Push(~A1, z1, n, q1). Add to δ(q0,m, τ) operations that push
u′ and u′′ on the stack and output “(q1, push(z1))”

If q ∈ QII then for every transition m →σM n we add the following
transitions:

• If u is Check(~A, z, θ, p, q′) or Push(~A, z, θ, q′) then on input “(q′, skip)”
replace m by u on the top of the stack. Do not produce any output.

• If u is Pop(q′) then q′ ∈ Amin(Ω(q),θ). Start from δ(q0,m, “(q′,Pop)”)
an operation which pops elements from the stack until a Push node
is popped. The current top node of the stack becomes some node
Move((~A, z, θ, q), (~A1, z1, q1)). Push the node Check(~A, z,min(θ, p), p, q′)
where p = min(Ω(q′), θ1,Ω(q)). Do not produce any output.

• If u is a Move((~A, z, θ, q), (?, z1, q1)) node then there are nodes u′, u′′

such that u →σM u′ →σM u′′, where u′ is Move((~A, z, θ, q), (~A1, z1, q1))

and u′′ is Push(~A1, z1, n, q1). Start from δ(q0,m, “(q1,Push(z1))”) an
operation that pushes u′ and u′′ on the stack. Do not produce any
output.

27

After the end of the macro step we arrive back at the configuration when
the state is q0 and the node on the top of the stack is either Push or Check
node.

To see that C is a strategy automaton, one uses the following observation.

Observation 26.1 Let m1, . . . ,mi be a sequence of moves of A. Suppose
the automaton C on this sequence goes from a configuration (sm, q0) to a
configuration (s′m′, q0) and outputs n1, . . . , ni in the process. If p is the
smallest priority of a state appearing in m1, n1, . . . ,mi, ni then the signature
of m′ is not bigger on positions up to p than the signature of m; the first
signature is strictly smaller if p is odd.

�
The size of the transition systemM is O(k2cmn) where k is the size of the

stack alphabet, m is the number of states of A, n is the range of the priority
function Ω and c is a constant. The task of establishing existence of a winning
strategy inM is equivalent to checking satisfiability of the specific µ-calculus
formula. Hence any model checking algorithm will solve the problem. Using
currently known algorithms [11, 15] we obtain that the whole problem can
be solved in time O((k2cmn)n). This is the estimation only for the problem
of establishing existence of a winning strategy. Putting it together with the
reduction from the previous subsection we obtain:

Corollary 27 For a given automaton A with m states and k stack symbols
and a formula ϕ of size n1 with alternation depth n2 there is an algorithm
deciding in timeO((k2cmn1n2)n2) whether ϕ holds in the root of the pushdown
tree TA.

5.3 The lower bound

Finally we show a deterministic exponential time lower bound on the model
checking problem for pushdown automata and (non alternating) µ-calculus.
It follows from a quite standard reduction by simulating alternating linear
space bounded Turing machines. The simulating automaton is very similar
to the one described by Chandra, Kozen and Stockmeyer in [5].

Let M be an alternating linear space bounded Turing machine. We will
assume that M has only one tape and on the input of size n it uses at most
n + 1 tape squares along any computation path. Let Q = Q∃ ∪ Q∀ be the

28

set of states of M which is partitioned into existential and universal sates.
Let Γ be a tape alphabet and let δ : Q × Γ → (Q × Γ × {left, right})2 be a
transition function. A configuration of M is a string wqw′ where w,w′ ∈ Γ∗

and q ∈ Q, moreover ww′ is of length n+ 1.
For a given machine M and a word w we construct a pushdown automaton

A such that player I can reach a leaf in the game TA iff w is accepted by M .
Initially the automaton A pushes on the stack the sequence of n+ 1 letters
from Q ∪ Γ with exactly one letter from Q. Then the pushdown automaton
arrives at an existential or universal state depending on whether the state
q which was pushed on the stack was existential or universal. In this state
pushdown automaton also remembers q and the letter a pushed on the stack
just after q. It consults the transition function and chooses an element from
the pair given by δ(q, a) or makes a universal branching to both elements.
He puts this element on the stack and repeats the whole process of putting
n+1 letters from Q∪Γ on the stack and deciding upon a next configuration.
This cycle stops if in the latest sequence of n + 1 letters an accepting state
was pushed on the stack. At this point the pushdown automaton goes to an
universal state Check and on the stack we have a sequence:

c0(q1, a1, d1)c1 . . . (qk, ak, dk)ck

The universal branching of A is used to check whether it is a sequence of
configurations of M provided for every i = 1, . . . , k, in the step i the move
(qi, ai, di) was taken. Using universal choice the automaton goes to a state
which checks whether ck can be reached from ck−1 in the step (qk, ak, dk) and
it also goes to another state which just takes (qk, ak, dk)ck from the stack and
starts checking lower configurations. This is repeated until the first config-
uration is reached. The automaton then checks that this first configuration
is of the form q0wB

i, where Bi is a sequence of blanks of appropriate length.
Please observe that checking that one configuration follows from the previous
one can be done using universal branching in finite memory linear in the size
of M . The automaton just checks each letter separately. It can do so as it
can count to n+ 5 in its finite control. If at some point one of the tests de-
scribed above fails then the automaton enters into an infinite loop otherwise
each of the tests stops in some final state. From this reduction we obtain.

Fact 28 There exists a formula α (without alternations) such that the prob-
lem “given a pushdown automaton A, is α satisfied in the root of TA” is

29

DEXPTIME-hard. (Formula α expresses the fact that player I can reach a
final state.)

Remark:This argument does not work for BPA processes as they correspond
to pushdown automata without states and we needed states in our reduction.
Indeed looking and the complexity of our algorithm we can see that if the
automaton has only one state and k stack symbols and the formula has size
n1 and alternation depth n2 then we can solve the model checking problem in
time O((k2n1n2)n2). Hence in polynomial time if n1, n2 are fixed. In the case
of alternation free formulas a similar complexity result was obtained in [2].
Remark: We conjecture that model checking is exponential also in the
second parameter. That is, there exists a fixed pushdown process A such
that the problem: “given a formula α, is α satisfied in the root of TA” is
DEXPTIME hard.

References

[1] J. Bergstra and J. Klop. Process theory based on bisimulation semantics.
volume 354 of LNCS, 1988.

[2] O. Burkart and B. Steffen. Model checking for context-free processes. In
CONCUR ’92, volume 630 of LNCS, pages 123–137, 1992.

[3] O. Burkart and B. Steffen. Pushdown processes: Parallel composition and
model checking. In CONCUR ’94, volume 836 of LNCS, 1994.

[4] D. Caucal and Monfort. On the transition graphs of automata and grammars.
In Graph-Theoretic Concepts in Computer Science, WG’90, volume 484 of
LNCS, 1991.

[5] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of
the ACM, 28(1):114–133, 1981.

[6] S. Christiensen and H. Huttel. Deciding issues for infinite-state processes – a
survey. Bulletin of EATCS, 51:156–166, October 1993.

[7] E. Clarke, O. Grumberg, and D. Long. Verification tools for finite-state con-
current systems. In A Decade of Concurrency, volume 803 of LNCS, pages
124–175. Springer-Verlag, 1993.

[8] B. Courcelle. On the extension to infinite graphs of properties of finite ones.
In preparation.

30

[9] E. A. Emerson, C. Jutla, and A. Sistla. On model-checking for fragments of
µ-calculus. In CAV’93, volume 697 of LNCS, pages 385–396, 1993.

[10] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy.
In Proc. FOCS 91, 1991.

[11] E. A. Emerson and C. Lei. Efficient model checking in fragments of proposi-
tional mu-calculus. In First IEEE Symp. on Logic in Computer Science, pages
267–278, 1986.

[12] J. Esparza and A. Kiehn. On the model checking problem for branching time
logics and basic parallel processes. In CAV ’95, volume 939 of LNCS, pages
353–366, 1995.

[13] N. Klarund. Progress measures, immediate determinacy and a subset con-
struction for tree automata. In LICS ’92, pages 382–393, 1992.

[14] H. Lescow. On polynomial–size programs winning finite–state games. In CAV
’95, volume 939 of LNCS, pages 239–252, 1995.

[15] D. E. Long, A. Browne, E. M. Clarke, S. Jha, and W. R. Marrero. An
improved algorithm for the evaluation of fixpoint expressions. In CAV’94,
volume 818 of LNCS, pages 338–350, 1994.

[16] A. W. Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991.

[17] D. Muller and P. Schupp. The theory of ends, pushdown automata and
second-order logic. Theoretical Computer Science, 37:51–75, 1985.

[18] D. Niwiński and I. Walukiewicz. Games for µ-calculus. Theoretical Computer
Science, 163:99–116, 1996.

[19] R. S. Streett and E. A. Emerson. An automata theoretic procedure for the
propositional mu-calculus. Information and Computation, 81:249–264, 1989.

[20] W. Thomas. On the synthesis of strategies in infinite games. In STACS ’95,
volume 900 of LNCS, pages 1–13, 1995.

[21] M. Y. Vardi. An automata-theoretic approach to fair realizability and syn-
thesis. In CAV ’95, volume 939 of LNCS, pages 267–278, 1995.

[22] I. Walukiewicz. Monadic second order logic on tree-like structures. In STACS
’96, volume 1046 of LNCS, pages 401–414, 1996.

31

Recent Publications in the BRICS Report Series

RS-96-54 Igor Walukiewicz. Pushdown Processes: Games and
Model Checking. December 1996. 31 pp. Appears in
Alur and Henzinger, editors, 8th International Confer-
ence on Computer-Aided Verification, CAV ’96 Proceed-
ings, LNCS 1102, 1996, pages 62–74.

RS-96-53 Peter D. Mosses.Theory and Practice of Action Semantics.
December 1996. 26 pp. Appears in Penczek and Szalas,
editors, Mathematical Foundations of Computer Science:
21st International Symposium, MFCS ’96 Proceedings,
LNCS 1113, 1996, pages 37–61.

RS-96-52 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses.Combining Algebraic and Set-Theoretic Specifica-
tions (Extended Version). December 1996. 26 pp. Appears
in Haveraaen, Owe and Dahl, editors,Recent Trends in
Data Type Specification: 11th Workshop on Specification
of Abstract Data Types, joint with 8th COMPASS Work-
shop, Selected Papers, LNCS 1130, 1996, pages 255–274.

RS-96-51 Claus Hintermeier, H́elène Kirchner, and Peter D.
Mosses. Rn- and Gn-Logics. December 1996. 19 pp.
Appears in Gilles, Heering, Meinke and Möller, edi-
tors, Higher-Order Algebra, Logic, and Term-Rewriting:
2nd International Workshop, HOA ’95 Proceedings,
LNCS 1074, 1996, pages 90–108.

RS-96-50 Aleksandar Pekěc. Hypergraph Optimization Problems:
Why is the Objective Function Linear?December 1996.
10 pp.

RS-96-49 Dan S. Andersen, Lars H. Pedersen, Hans Hüttel, and
Josva Kleist.Objects, Types and Modal Logics. December
1996. 20 pp. To be presented at the4th International
Workshop on the Foundations of Object-Oriented, FOOL4,
1997.

RS-96-48 Aleksandar Pekěc.Scalings in Linear Programming: Nec-
essary and Sufficient Conditions for Invariance. December
1996. 28 pp.

