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A presheaf semantics of value-passing processes
Glynn Winskel

BRICS* – Computer Science Dept., University of Aarhus

Abstract

This paper investigates presheaf models for process calculi with
value passing. Denotational semantics in presheaf models are shown
to correspond to operational semantics in that bisimulation obtained
from open maps is proved to coincide with bisimulation as defined
traditionally from the operational semantics. Both “early” and “late”
semantics are considered, though the more interesting “late” semantics
is emphasised. A presheaf model and denotational semantics is pro-
posed for a language allowing process passing, though there remains
the problem of relating the notion of bisimulation obtained from open
maps to a more traditional definition from the operational seman-
tics. A tentative beginning is made of a “domain theory” supporting
presheaf models.

Introduction

The papers [12, 4] explore presheaf models for concurrency. Here begins an
investigation of the use of presheaves to model higher-order features, most
dramatic in the situation of process calculi where processes can be commu-
nicated as values.

Something of higher-order appears even in value-passing process calculi
where values lie in some discrete datatype like integers or booleans. As is
customary, for value-passing calculi, we draw a distinction between “early”
and “late” semantics. Early semantics coincides with that presented in [14]
where a value-passing calculus is reduced to a value-free one by immediately
instantiating the variable in an input action to its possible values, the re-
sulting processes being set together in a nondeterministic sum. According
to late semantics input actions contain bound variables which only become
instantiated when a communication is made. Generally (see e.g. [15, 6, 16]),
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a late semantics for value passing represents the result of input communica-
tion as an abstraction, denoting a function from values to processes. Whereas
the usual models for concurrency, transition systems, labelled Petri nets and
event structures and the like, accommodate early semantics for value-passing
directly, following [14, 7, 8], the late semantics seems accomplished most
smoothly in domain-theoretic settings, which readily support abstractions.

Two ways seem open to extending models for concurrency to higher-order
features. One is to take existing models, most of these transitions systems in
one disguise or another, and essentially decorate them with extra structure.
Another is to develop a new class of models, some of which can be seen to
correspond to existing models, and which at the same time are rich enough
to support constructions of the kind we are used to seeing in domain theory.
This paper follows the latter course in investigating presheaf models.

Presheaf models for concurrency have the advantage of including inter-
leaving models like synchronisation trees and independence models like la-
belled event structures, as well as contributing a general definition of bisimu-
lation based on open maps. As we will see, they also extend to higher-order,
though presently many questions remain, chief among them being the prob-
lem of simultaneously combining higher-order features with independence of
the kind seen in event structures and Petri nets. A more specific problem
is that of obtaining a characterisation in terms of the operational semantics
of the bisimulation obtained from open maps for a process-passing calculus.
On the positive side, the usual definition of “late bisimulation” and “early
bisimulation” for ordinary value-passing is reconciled with the definition of
bisimulation obtained on presheaves via open maps.

1 The language VProc

VProc is a process language for passing values along channels, inspired by
CCS. Its syntax:

t ::= nil | τ.t | a!e.t | a?x.t | t1 | t2 | t1 + t2 | [e1 = e2]t | X | recX.t

where x ranges over value-variables V ar, X over process-variables Pvar, a
over channel names C, and e, e1, e2 over value-expressions. We will not go
into the details of the form of value-expressions beyond remarking that they
may contain free value-variables and when evaluated yield values in a set V .
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For simplicity we assume that recursive definitions of processes recX.t are
guarded in the sense that all free occurrences of X in t lie under, though not
necessarily immediately under, a prefix τ.-, a!e.- or a?x.-.

1.1 Late transition semantics for VProc

We specify the transitions a closed term can perform. A transition t
α→ t′,

where t is a closed term, is understood to mean that the process t can perform
action α to become t′; actions α range over τ -actions τ , output actions a!v,
where a ∈ C and v ∈ V , and input actions a?x, where a ∈ C and x ∈ V ar.
τ rule: τ.t τ→ t
Output rule: a!e.t a!v→ t
where e, necessarily closed, evaluates to value v.
Input rule: a?x.t a?y→ t[y/x]
where y ∈ V ar is assumed not captured by its substitution for x in t.
Parallel rules:

t1
α→ t′1

t1|t2 α→ t′1|t2
t2

α→ t′2
t1|t2 α→ t1|t′2

In the first parallel rule t2 must have no free variables in common with action
α; a symmetric condition is enforced for the second parallel rule.

t1
a!v→ t′1 t2

a?y→ t′2
t1|t2 τ→ t′1|t′2[v/y]

t1
a?y→ t′1 t2

a!v→ t′2
t1|t2 τ→ t′1[v/y]|t′2

Sum rules:
t1

α→ t′1
t1 + t2

α→ t′1

t2
α→ t′2

t1 + t2
α→ t′2

Condition rule:
t α→ t′

[e1 = e2]t α→ t′

provided e1 and e2 evaluate to the same value.
Recursion rule:

t[recX.t/X] α→ t′

recX.t α→ t′

3



1.2 Late bisimulation

Definition: A late bisimulation is a binary relationR between closed process
terms such that whenever t1Rt2

(i) t1
τ→ t′1 ⇒ ∃t′2. t2

τ→ t′2 & t′1 R t′2 and t2
τ→ t′2 ⇒ ∃t′1. t1

τ→ t′1 & t′1 R t′2

(ii) t1
a!v→ t′1 ⇒ ∃t′2. t2

a!v→ t′2 & t′1 R t′2 and t2
a!v→ t′2 ⇒ ∃t′1. t1

a!v→ t′1 & t′1 R t′2

(iii) t1
a?y→ t′1 ⇒ ∃t′2, z. t2

a?z→ t′2 & ∀v ∈ V. t′1[v/y] R t′2[v/z] and
t2

a?y→ t′2 ⇒ ∃t′1, z. t1
a?z→ t′1 & ∀v ∈ V. t′1[v/y] R t′2[v/z].

Say closed process terms t1, t2 are late bisimilar iff there is a late bisimu-
lation R such that t1Rt2.

2 Open maps and bisimulation on presheaves

Let P be a small category. It is to be thought of as a category of path objects
(or path shapes) in which morphisms stand for an extension of one path by
another. Let P̂ = [Pop,Set], the category of presheaves over P. Recall, a
morphism h : X → Y , between presheaves X, Y , is open iff for all morphisms
m : P → Q in P, the square

X(P ) X(Q)

Y (P ) Y (Q)

hP
��

Xmoo

hQ
��

Ymoo

is a quasi-pullback, i.e. whenever p ∈ X(P ) and q ∈ Y (Q) satisfy hP (p) =
(Ym)(q), then there exists p′ ∈ X(Q) such that (Xm)(p′) = p and hQ(p′) =
q. (This definition of open map, translates via the Yoneda Lemma to an
equivalent path-lifting property of h—see [12].)

Say presheaves X, Y are bisimilar iff there is a span of surjective open
maps between them, equivalently, iff there is R ↪→ X × Y such that the
compositions with the projections R ↪→ X × Y π1→ X and R ↪→ X × Y π2→ Y
are surjective open.

In [12, 4] we defined bisimulation between rooted presheaves, presheaves
X, over a category assumed to have an initial object I , for which X(I) is a
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singleton. For rooted presheaves bisimulation is defined merely through the
presence of a open maps (not requiring surjectivity). This is because open
maps between rooted presheaves are necessarily surjective.

We can cast further light on rooted presheaves with the help of a “lifting”
construction which will be important later, as is to be expected from tradi-
tional domain theory. For P, a small category, define its lifting P⊥ to consist
of P with a new initial object (called ⊥) adjoined freely. Given X ∈ P̂,
define lift(X) ∈ P̂⊥ to be the rooted presheaf which acts as X on copies of
P ∈ P and yields a singleton, {∗} say, on ⊥. The lift operation extends in
the obvious way to a functor which gives an equivalence between P̂ and the
subcategory of rooted presheaves over P⊥; on maps h in P̂, lift(h) is open
iff h is surjective open. These remarks are useful in another context, that of
algebraic set theory—see [10], p. 72.

3 A domain-theoretic setting

In proposing categories of presheaves as our “domains” of processes we are
leaving domain theory as traditionally understood; processes are denoted by
presheaves, objects in a category rather than elements of a partial order.
This is not new; several proposals have been made for generalisation of pow-
erdomains that leave the category of partial orders, for instance [13, 1, 18],
and presheaves, being a way to introduce nondeterministic branching to com-
putation paths, have much in common with powerdomains.

We sketch a setting, generalising traditional domain theory, in which we
can place the work on presheaf models. The category analogue of algebraic
cpo’s is finitely accessible categories [2] in which the role of the basis of fi-
nite/isolated/compact elements is replaced by that of a small subcategory
of finitely presentable objects; every object of a finitely accessible category
is a directed colimit of finitely presentable objects. This is analogous to the
fact that an algebraic cpo is the ideal completion of its finite elements. Mor-
phisms between finitely accessible categories are functors preserving directed
colimits, the analogue of continuous functions.

A way to introduce nondeterminism to a finitely accessible category C is
via a construction on the “basis” of finitely presentable objects C0: Freely
close C0 under all finite colimits to get a new basis (in which nondeterministic
branching has been introduced). The finitely accessible category with this

5



new category as basis, got by closing under directed colimits, can be thought
of as the nondeterministic computations of C. This “ideal completion” is
equivalent to the category of presheaves over C0 (by results of [9], ch.VI). So
taking presheaves combines two operations, adding branching to a basis (the
part that takes us outside partial orders), and then completing to a finitely
accessible category. Viewed in this way, taking presheaves over the basis of a
finitely accessible category yields a “monad” on finitely accessible categories,
reminiscent of powerdomain monads.1

The Kleisli category of the monad associated with taking presheaves is
Prof, the bicategory of profunctors (see e.g. [3] where they are called distrib-
utors). Profunctors and their categorical constructions provide a convenient
setting in which to provide semantics to process calculi with value and pro-
cess passing. The bicategory Prof has small categories as objects and as
morphisms F : P p→Q, where P and Q are small categories, we take functors
F : P→ Q̂. Composition in Prof, say of F : P p→Q and G : Q p→R, is given
to within isomorphism by G† ◦F : P p→R—here G† is the left Kan extension
LanyQG of G with respect to the Yoneda embedding yQ : Q → Q̂. Left
Kan extensions and so composition are only determined up to isomorphism;
thus the fact that Prof is really a bicategory, and not a category. Note that
profunctors, or more properly their left Kan extensions, preserve (surjective)
open maps and so bisimulation by [4] Lemma 3—the extra preservation of
surjectivity is easy to show. Cat the category of small categories embeds
in Prof: A functor F : P → Q is sent to the composition yQ ◦ F with the
Yoneda embedding yQ : Q → Q̂. The embedding Cat → Prof preserves
small colimits.

Prof forms a model of classical linear logic. To see its monoidal closed
structure, for small categories P,Q, define

P( Q = Pop ×Q and P⊗Q = P×Q ,

where product × on the right is the usual product of categories, and observe
the natural bijection:

Prof (P, [Q( R]) ∼= Prof (P⊗Q,R)

The unit of ⊗ is 1, the category with a single object and morphism. Prof has
products and coproducts which coincide on objects, where both are given by

1In this motivational section, we won’t be distracted by the constructions more properly
taking place in a 2-category/bicategory—thus the quotes around “monad”.
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coproduct in Cat. As a model of classical linear logic there is the same kind
of degenerary familiar from the category of relations; par (℘) coincides with
tensor (⊗), and ⊥ with 1 (so Prof is compact-closed). Linear involution
P⊥ is isomorphic to P( 1 and so to Pop.

Morphisms 1 p→(P( Q) correspond to presheaves over Pop ×Q and so
to profunctors P p→Q. They correspond to colimit-preserving functors from
P̂ to Q̂.

When we attend to presheaf semantics we are involved with various sorts
of functors. Certainly we quickly encounter functors from P to Q̂ corre-
sponding, to within isomorphism, to colimit-preserving functors from P̂ to
Q̂, between presheaves. We also meet more general “continuous” functors
P̂ → Q̂, for example to cope with processes which can receive processes as
values. As usual in linear logic we can recover these with the help of an ex-
ponential (!). Define !P, to be a completion of P under finite colimits; more
precisely we can take !P to be a skeletal subcategory of the subcategory of
P̂ consisting of finitely presentable objects. Then profunctors !P p→Q corre-
spond, to within isomorphism, to functors P̂ → Q̂ which are continuous in
the sense that they preserve directed colimits.

Prof provides us with a rich repertoire of constructions on categories of
presheaves. We pause to ask how the constructions are reflected in notions
of open maps and bisimulation.

It is clear when a map is (surjective) open in a coproduct P+Q in Prof:
h : X → Y is (surjective) open in P̂ + Q iff the two components h1 : X1 → Y1

and h2 : X2 → Y2 are (surjective) open in P̂ and Q̂ respectively. Because
products in Prof are given by the same construction on objects, the same
holds for products.

Let h : X → Y be a map in P̂⊗Q. For P ∈ P, define hP to be the natural
transformation hP : X(P,−) → Y (P,−) with component (hP )Q = hP,Q at
Q ∈ Q. In a similar way, define hQ : X(−, Q) → Y (−, Q) for any Q ∈ Q.
Now, we can observe: h : X → Y is (surjective) open in P̂⊗Q iff
∀P ∈ P. hP is (surjective) open in Q̂ and ∀Q ∈ Q. hQ is (surjective) open
in P̂.

There is a similar characterisation of open maps in P̂( Q because
P ( Q = Pop × Q. A map h : X → Y in P̂( Q is (surjective) open
iff
∀P ∈ P. hP is (surjective) open in Q̂ and ∀Q ∈ Q. hQ is (surjective) open in P̂op.
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Note openness and bisimilarity in P̂( Q involves openness and bisimilarity
in P̂op! However, in the situation where P is a discrete category, h is open
iff hP is open for all P ∈ P.

This proposal of a domain theoretic framework in which to understand
presheaf models cannot be definitive at present. We would, for instance,
expect to work within some cartesian-closed subcategory of finitely accessible
categories. But, more importantly, until the aim of bringing independence
models within a domain-theoretic framework is carried out fully we should
remain open-minded.

4 A late path category

We seek a path category P with respect to which closed process terms of
VProc denote presheaves. Its objects should reflect that a compution path
of a process may begin with a τ -action, an output action a!v or an input
action a?, when it may either resume with a computation path, or, in the case
where it has first performed an input action, input a value before resuming
the computation path. This guides us to wishing to denote closed terms of
VProc by presheaves over path category P, which is an initial solution to

P ∼= P⊥ +
∑

(a,v)∈C×V
P⊥ +

∑
a∈C

(V ( P)⊥

in Prof—here we treat the set V as a discrete category. The solution is easy
to construct, firstly because it is sufficient to find an initial solution to

P ∼= P⊥ +
∑

(a,v)∈C×V
P⊥ +

∑
a∈C

(V op ×P)⊥

in Cat (where V op = V as V is discrete), and secondly because all the
operations used preserve the property that the category is a partial order.
This means an initial solution has the form of a partial order

P = P⊥ +
∑

(a,v)∈C×V
P⊥ +

∑
a∈c

(V op ×P)⊥

whose path objects are given inductively by:

• τ. ∈ P, and τ.P ∈ P if P ∈ P,
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• a!v. ∈ P, and a!v.P ∈ P if P ∈ P,

• a? ∈ P, and a?(v 7→ P ) ∈ P if P ∈ P,

where a ∈ C and v ∈ V , and whose morphisms (the partial order) are given
inductively by the following clauses, where P, P ′ ∈ P, a ∈ C and v ∈ V :

• P ≤ P ,

• τ. ≤ τ.P , and τ.P ≤ τ.P ′ if P ≤ P ′,

• a!v. ≤ a!v.P , and a!v.P ≤ a!v.P ′ if P ≤ P ′,

• a? ≤ a?(v 7→ P ), and a?(v 7→ P ) ≤ a?(v 7→ P ′) if P ≤ P ′.

Notation: We use (P,Q) to name the unique morphism from P to Q in P
when P ≤ Q.

We are using suggestive names for the objects of P to pick out to which
component of a sum they belong:

• τ. is the least element of the leftmost summand of P, other elements
of this component being of the form τ.P.

• a!v. is the least element of the output summand associated with out-
putting value v on channel a; other elements of this component have
the form a!v.P .

• a? is the least element of the summand associated with a commitment
to input on channel a; its other elements take the form a?(v 7→ P ) and
correspond to resuming a computation path after inputting value v.

We could have derived the above constructions on path objects systemati-
cally from operations associated with sums, lifting and product of categories.

5 Late presheaf semantics

We introduce operations on presheaves which capture the meaning of oper-
ations in VProc.

9



5.1 Prefixing

Let X ∈ P̂. We define τ.X ∈ P̂ by taking τ.X = Inτ ◦ lift(X). where
Inτ : P̂⊥ → P̂ takes a presheaf over P⊥ to the corresponding presheaf over
the left summand P⊥ in

P = P⊥ +
∑

(a,v)∈C×V
P⊥ +

∑
a∈C

(V op ×P)⊥ . (†)

Recalling our notation for path objects it follows that for X ∈ P̂ and a path
object Q ∈ P

τ.X(Q) =


X(P ) if Q = τ.P,
{∗} if Q = τ.,
∅ otherwise.

Similarly, for X ∈ P̂, a ∈ C and v ∈ V , we define a!v.X ∈ P̂ so that on a
path object Q ∈ P

a!v.X(Q) =


X(P ) if Q = a!v.P,
{∗} if Q = a!v.,
∅ otherwise.

Let F : V → P̂ and a ∈ C. We define a?F ∈ P̂ as follows. First
notice that F corresponds to a presheaf X over V op × P, and now define
a?F = Ina? ◦ lift(X) where Ina? : P̂⊥ → P̂ takes a presheaf over (V op ×P)⊥
to the corresponding presheaf over the a-summand in P (see (†) above). Now,
for F : V → P̂, a ∈ C and a path object Q ∈ P we obtain

a?F (Q) =


(Fv)(P ) if Q = a?(v 7→ P ),
{∗} if Q = a?,
∅ otherwise.

Notation: If G(v) ∈ P̂, for any v ∈ V , we can as usual write λv.G(v) for
the associated function V → P̂. We write a?v.G(v) for a?(λv.G(v)).

5.2 Sums

Coproducts of presheaves provide nondeterministic sums of processes.
If X1, X2, · · · , Xn ∈ P̂, we use X1 + · · ·+Xn to denote the presheaf which at
a path object P ∈ P takes the set-value

(X1 + · · · +Xn)(P ) = X1(P ) + · · ·+Xn(P ),
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the disjoint union of sets X1(P ), · · · , Xn(P ). For a morphism (P,Q) of P,
where P ≤ Q,

(X1,+ · · ·+Xn)(P,Q) = X1(P,Q) + · · · +Xn(P,Q),

making use of the functorial nature of disjoint union (= coproduct) of sets.
Similarly, if Xi, i ∈ I , is an indexed family of presheaves Xi ∈ P̂, we use∑

i∈I
Xi to denote their coproduct. If I = ∅ this is the empty presheaf ∅, with

empty set as value at each path object.

5.3 A decomposition result

We will now observe that every presheaf X ∈ P̂ decomposes into a sum of
disjoint components rooted at one of the minimal path objects τ., a!v., a?
where a ∈ C, v ∈ V . The notion of rooted component will play a key role.
Let M be a minimal object in P, Let X ∈ P̂. Any m ∈ X(M) determines a
sub-presheaf Cm of X as follows. Letting m ∈ X(M), define

Cm(P ) =
{
{p ∈ X(P ) | X(M,P )(p) = m} if M ≤ P,
∅ otherwise

for P ∈ P, and when P ≤ Q define the function Cm(P,Q) : Cm(Q)→ Cm(P )
by

Cm(P,Q)(q) = X(P,Q)(q) for q ∈ Cm(Q)

— because X is a contravariant functor it follows that

X(M,P )(X(P,Q)(q) = X(M,Q)(q) = m

so that X(P,Q)(q) ∈ Cm(P ). It is easily checked that Cm is a presheaf and
indeed a sub-presheaf of X because its action on morphisms (P,Q), when
P ≤ Q, restricts that of X.

Notation: In this situation, we shall say Cm is a rooted component of X at
m.

Rooted components of X are pairwise disjoint in the sense that if M,M ′

are minimal objects of P and Cm is a rooted component at m ∈ X(M) and
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Cm′ is a rooted component at m′ ∈ X(M ′), then if at P ∈ P, Cm(P ) ∩
Cm′(P ) 6= ∅ then M = M ′ and m = m′. Thus, for any path object P ∈ P,

X(P ) =
⋃
M

⋃
m∈X(M)

Cm(P ) , (1)

a disjoint union, where M ranges over minimal objects of P. Consequently,
X is isomorphic to a sum of its rooted components:

X ∼=
∑
M

∑
m∈X(M)

Cm (2)

where M ranges over minimal objects of P and Cm is the rooted component
of X at m.

We analyse further the form of rooted components of X ∈ P̂.
A rooted component Ci at i ∈ X(τ.) is isomorphic to τ.Xi where Xi ∈ P̂

is given by

Xi(P ) = Ci(τ.P ), on objects P ∈ P, and
Xi(P,Q) = Ci(τ.P, τ.Q) : Xi(Q)→ Xi(P ), on morphisms P ≤ Q of P.

We write X τ→ X ′ when there is i ∈ X(τ.) such that X ′ = Xi. The assign-
ment i 7→ Xi is a bijection between the sets X(τ.) and {X ′ | X τ→ X ′}.

A rooted component Ci at i ∈ X(a!v), for a ∈ C and v ∈ V , is isomorphic
to a!v.Xj, where Xj ∈ P̂ is given by

Xj(P ) = Cj(a!v.P ), on objects P ∈ P, and
Xj(P,Q) = Cj(a!v.P, a!v.Q), on morphisms P ≤ Q of P.

We write X
a!v→ X ′ when there is j ∈ X(a!v) such that X ′ = Xj . The

assignment j 7→ Xj is a bijection between the sets X(a!v.) and {X ′ | X a!v→
X ′}.

Let Ck be a rooted component at K ∈ X(a?). Define

Xk(v)(P ) = Ck(a?(v 7→ P )), and
Xk(v)(P,Q) = Ck(a?(v 7→ P ), a?(v 7→ Q)) : Xk(v)(Q)→ Xk(v)(P ).

Then Xk is a function from values v ∈ V to presheaves Xk(v) ∈ P̂ such that
Ck is isomorphic to a?Xk. We write X a?→ F when there is k ∈ X(a?) such
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that F is isomorphic to Xk. The assignment k 7→ Xk is a bijection between
the sets X(a?) and {F | X a?→ F}.

Recalling (1) above and the definition of Xj for j ∈ X(a!v) and Xk for
k ∈ X(a?) we deduce:

X(τ.P ) =
⋃

i∈X(τ.)

Xi(P )

X(a!v.P ) =
⋃

j∈X(a!v.)

Xj(P )

X(a?(v 7→ P )) =
⋃

k∈X(a?)

Xk(v)(P )

with unions which are disjoint, where a ∈ C and v ∈ V .
Recalling the decomposition (2) above, we obtain the following decompo-

sition result:

Proposition 1 Let X ∈ P̂. Then

X ∼=
∑

i∈X(τ.)

τ.Xi +
∑

(a,v)∈C×V

∑
j∈X(a!v.)

a!v.Xj +
∑
a∈C

∑
k∈X(a?.)

a?Xk .

5.4 Guarded recursive definitions

Presheaf categories possess all colimits and so in particular ω-colimits for
building denotations of recursive definitions. In fact, because all our defini-
tions have been given concretely as operations on sets, we are able to show
that they are all continuous with respect to the sub-presheaf relation, and
the solution of recursive definitions reduces to finding fixed points of a con-
tinuous function on cpo’s; we obtain solutions up to equality and not just
isomorphism.

There is clearly a well-founded relation≺ on path objects P given by their
inductive definition. If a presheaf X say is a solution to a guarded recursive
definition then X will be equal to an expression in which each occurrence
of X lies under a prefix operation. Hence by the results of Section 5.3,
X(P ) is given in terms of X(Q) where Q ≺ P . Thus, by well-founded
induction any solution is uniquely determined. A similar argument applies
to an operation on presheaves, like parallel composition defined below, whose
values on presheaves is defined recursively in terms of the operation under
prefixes—it too is uniquely determined.

13



5.5 Parallel composition

Let X, Y ∈ P̂ have the decompositions :

X ∼=
∑
i∈I

τ.Xi +
∑

(a,v)∈C×V

∑
j∈Ja,v

a!v.Xj +
∑
a∈C

∑
k∈Ka

a?Xk

Y ∼=
∑
l∈L

τ.Yl +
∑

(a,v)∈C×V

∑
m∈Ma,v

a!v.Ym +
∑
a∈C

∑
n∈Na

a?Yn

Their parallel composition X | Y is defined recursively to be∑
i∈I

τ.(Xi | Y ) +
∑

(a,v)∈C×V

∑
j∈Ja,v

a!v.(Xj | Y ) +
∑
a∈C

∑
k∈Ka

a?v.(Xk(v) | Y )

+
∑
l∈L

τ.(X | Yl) +
∑

(a,v)∈C×V

∑
m∈Ma,v

a!v.(X | Ym) +
∑
a∈C

∑
n∈Na

a?v.(X | Yn(v))

+
∑

(a,v)∈C×V

∑
j∈Ja,v

∑
n∈Na

τ.(Xj | Yn(v)) +
∑

(a,v)∈C×V

∑
m∈Ma,v

∑
k∈Ka

τ.(Xk(v) | Ym) .

5.6 Late denotational semantics

Suppose t is a process term with free process-variables within U1, · · · , Um and
free value-variables within x1, · · · , xn (possibly empty lists). The denotation
of t in this context, written [[t[U1, · · · , Um; x1, · · · , xn]]], is a function (extend-
able to a functor) P̂m × V n → P̂, given by structural induction on t in the
usual fashion, matching syntactic constructs with the appropriate semantic
operations:
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[[nil[
→
U;
→
x]]]

→
X
→
v= ∅, the empty presheaf.

[[τ.t[
→
U;
→
x ]]]

→
X
→
v= τ.([[t[

→
U;
→
x ]]]

→
X
→
v )

[[a!e.t[
→
U;
→
x ]]]

→
X
→
v= a!w.([[t[

→
U;
→
x ]]]

→
X
→
v )

where e evaluates to w in environment
→
v /

→
x .

[[a?y.t[
→
U;
→
x]]]

→
X
→
v= a?w.([[t[

→
U;
→
x, y]]]

→
X
→
v w)

[[t1 | t2[
→
U ;
→
x ]]]

→
X
→
v= [[t1[

→
U ;
→
x ]]]

→
X
→
v | [[t2[

→
U;
→
x ]]]

→
X
→
v

[[t1 + t2[
→
U ;
→
x]]]

→
X
→
v= [[t1[

→
U ;
→
x]]]

→
X
→
v + [[t2[

→
U ;
→
x]]]

→
X
→
v

[[[e1 = e2]t[
→
U;
→
x ]]]

→
X
→
v

=
{

[[t[
→
U;
→
x ]]]

→
X
→
v if e1, e2 evaluate to a common value in

→
v /

→
x .

∅, the empty presheaf, otherwise.

[[Ui[
→
U ;
→
x ]]]

→
X
→
v= Xi

[[recY.t[
→
U;
→
x ]]]

→
X
→
v= R, the unique solution of R = [[t[

→
U, Y ;

→
x ]]]

→
X R

→
v .

Lemma 2 Let t be a process term with free process-variables among U1, · · · , Um
and free value-variables among x1, · · · , xn. Suppose s1, · · · , sm are closed
process-terms and that v1, · · · , vn are values in V . Then,

[[t[
→
U;
→
x]]][[

→
s ]] = [[t[

→
s /

→
U ][
→
v /

→
x]]].

6 The late semantics related

The decomposition result and the preparatory discussion suggest that we
view a presheaf over P as a transition system. In particular, it is sensible
to view a relation X

τ→ X ′ holding between presheaves X,X ′ as meaning
that the process represented by the presheaf X can make a τ -transition to a
process represented by the presheafX ′. There is a similar reading ofX a!v→ X ′,
while X a?→ F means X can receive a value on channel a when, depending on
the value v received, it will resume as process F (v).

Thus, a closed process term is associated with two transition systems,
one from the transition semantics and one from its denotation as a presheaf.
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The next lemma asserts, essentially, that the relation

{([[t]], t) | t a closed process term}

is a late-bisimulation between the two transition systems.

Lemma 3 Let t be a closed process term. Then,

[[t]] τ→ Xiff ∃t′. t τ→ t′ & [[t′]] = X ,

[[t]] a!v→ Xiff ∃t′. t a!v→ t′ & [[t′]] = X ,

[[t]] a?→ F iff ∃t′, y. t ay→ t′ & [[t′[y]]] = F .

Proof: For W ∈ P̂ and t a closed process term define W ≈ t iff

∀Z. W τ→ Z ⇔ ∃t′. t τ→ t′ & [[t′]] = Z,

∀Z, a, v. W a!v→ Z ⇔ ∃t′. t a!v→ t′ & [[t′]] = Z, and

∀F, a. W a?→ F ⇔ ∃t′, y. t a?y→ t′ & [[t′[y]]] = F.

The proof proceeds by structural induction an process terms t with induction
hypothesis:

If t has free process-variables withinX1, · · · , Xn, free value-variables
within x1, · · · , xn, and S1, · · · , Sn are closed process-terms such
that

Xi is guarded in t or [[Si]] ≈ Si, whenever 1 ≤ i ≤ m,

then for all v1, · · · , vn ∈ V ,

[[t[
→
X;
→
x]]]

→
[[s]]
→
v≈ t[

→
s /

→
X;
→
v /

→
x]

—using an obvious vector notation.

Clearly, when t is closed the induction hypothesis amounts to [[t]] ≈ t, as
required. 2

As will be seen, the bisimilarity induced by spans of open maps in P̂
coincides with the natural translation of late bisimulation to presheaves.
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Definition: A late bisimulation on presheaves consists of a binary relation
R on presheaves P̂ such that whenever X R Y ,

X
τ→ X ′ ⇒ ∃Y ′. Y τ→ Y ′ & X ′ R Y ′,

Y
τ→ Y ′ ⇒ ∃X ′. X τ→ X ′ & X ′ R Y ′,

X
a!v→ X ′ ⇒ ∃Y ′. Y a!v→ Y ′ & X ′ R Y ′,

Y
a!v→ Y ′ ⇒ ∃X ′. X a!v→ Y & X ′ R Y ′,

X
a?→ F ⇒ ∃G. Y a?→ G & ∀v ∈ V. F (v) R G(v),

Y
a?→ G⇒ ∃F. X a?→ F & ∀v ∈ V. F (v) R G(v).

Say X, Y ∈ P̂ are late bisimilar iff X R Y for some late bisimulation on
presheaves R.

That surjective open maps induce late bisimulations on presheaves follows
directly from the next lemma.

Lemma 4 Assume f : X → Y is an open map P̂.
Let M be a minimal object of P̂. If Cm is a rooted component of X at

m ∈ X(M) then the image fCm is a rooted component of Y at fM(m); the
restriction fCm of f to Cm is an open map fCm : Cm → fCm.

Moreover, if f is surjective then any rooted component of Y is the image
of a rooted component of X under f , and each restriction fCm , where Cm is
a rooted component of X, is a surjective open map.

Proof: Direct consequence of the definition of open map. 2

Corollary 5 If h : X → Y is a surjective open map in P̂, then X, Y are
late bisimilar.

Proof: Define R a relation on presheaves by:

W R Z iff ∃f : W → Z surjective and open in P̂.

Then R is a late bisimulation on presheaves by Lemma 4. 2
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Corollary 6 If X, Y are bisimilar in P̂, i.e. they are related by an span of
surjective open maps, then X, Y are late bisimilar as presheaves.

Proof: ¿From Corollary 5, as late bisimilarity on presheaves is easily seen
to be an equivalence relation. 2

Thus a span of surjective open maps yields a late bisimulation between
presheaves. We now show the converse. For the presheaves X, Y and a late-
bisimulation R which relates them we construct a sub-presheaf of RXY ⊆
X × Y whose projections to X and Y are surjective open maps.

For X ∈ P̂, recall from Section 5.3, the bijections between

• i ∈ X(τ.) and transitions X τ→ Xi ,

• j ∈ X(a!v) and transitions X a!v→ Xj ,

• k ∈ X(a?) and transitions X a?→ Xk .

They are used in the next definition.

Definition: Let R be a late bisimulation. Define, by induction on the struc-
ture of path objects P ∈ P, sets RXY (P ) whenever X R Y :

RXY (τ.) = {(i, l) ∈ X(τ.)× Y (τ.) | Xi R Yl}
RXY (τ.P ) =

⋃{RXiYl(P ) | (i, l) ∈ RXY (τ.)}

RXY (a!v.) = {(j,m) ∈ X(a!v.)× Y (a!v.) | Xj R Ym}
RXY (a!v.P ) =

⋃{RXjYm(P ) | (j,m) ∈ RXY (a!v.)}

RXY (a?) = {(k, n) ∈ X(a?)× Y (a?) | ∀v ∈ V. Xk(v) R Yn(v)}
RXY (a?(v 7→ P )) =

⋃{RXk(v)Yn(v)(P ) | (k, n) ∈ RXY (a?)}

Lemma 7 Let R be a late bisimulation on presheaves. If X R Y , then

(i) RXY extends to a sub-presheaf of X × Y .

(ii) The compositions RXY ↪→ X × Y
π1→ X and RXY ↪→ X × Y

π2→ Y
are surjective open, where π1, π2 are the projections associated with the
product X × Y .
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Proof: (i) It is first necessary to show that RXY (P ) ⊆ X(P ) × Y (P ). This
follows by induction on the structure of P ∈ P̂. For instance consider a path
object of the form a?(v 7→ P ). Suppose X

a?→ Xk, k ∈ X(a?), and Y
a?→

Yn, n ∈ Y (a?), with ∀v ∈ V. Xk(v) R Yn(v). Now,

RXk(v)Yn(v)(P ) ⊆ Xk(v)(P )× Yn(v)(P ) by induction,
⊆ X(a?(v 7→ P ))× Y (a?(v 7→ P )) by Section 5.3.

Thus
RXY (a?(v 7→ P )) ⊆ X(a?(v 7→ P ))× Y (a?(v 7→ P )).

An induction on the clauses for deriving morphisms P ≤ Q in P̂ (see Sec-
tion 4) shows X(P,Q)×Y (P,Q) restricts to a function RXY (Q)→ RXY (P ),
making RXY a sub-presheaf of X × Y .

(ii) Write ρ1, ρ2 for the restriction of the projections RXY ↪→ X×Y π1→ X
and RXY ↪→ X × Y

π2→ Y . That each component ρ1P , ρ2P is surjective is
proved by induction on the structure of path objects P . The quasi-pullback
conditions providing the openness of ρ1 and ρ2 are shown to hold by induction
on the clauses for deriving morphisms P ≤ Q in P̂. 2

Hence:

Theorem 8 Presheaves X, Y ∈ P̂ are late-bisimilar iff they are related by a
span of surjective open maps.

The next lemma links late-bisimilation on presheaves and late-bisimulation
on closed terms of VProc, and yields the main result of this section—the
equivalence of the operational and denotational formulations of bisimilarity.

Lemma 9 Let t1, t2 be closed process terms. The denotations [[t1]], [[t2]] are
late bisimilar as presheaves iff t1, t2 are late bisimilar.

Proof: Assuming R is a late-bisimulation on presheaves, it is claimed we
obtain a late-bisimulation S on (closed) process terms by defining

S = {(t1, t2) | [[t1]] R [[t2]]}.

Conversely, assuming S is a late-bisimulation on (closed) process terms, it is
claimed we obtain a late bisimulation on presheaves by defining

R = {([[t1]], [[t2]]) | t1 S t2}.
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The proof of these two claims rests on Lemma 3, with recourse to the Sub-
stitution Lemma 2.

For example, suppose S is obtained from a late-bisimulation on presheaves
as above. Suppose s1Ss2 and s1

a?y→ s′1. For S to be a late bisimulation we
are required to find a matching transition of s2. However, by Lemmas 3,
[[s1]]

a?→ [[s′1[y]]], so because [[s1]]R[[S2]] there is G : V → P̂ for which

[[s2]]
a?→ G and ∀v ∈ V. [[s′1[y]]](v)RG(v).

By Lemma 3 again, there are s′2, z for which

s2
a?z→ s′2 & [[s′2[z]]] = G.

By the Substitution Lemma 2,

∀v ∈ V. [[s′1[v/y]]]R[[s′2[v/z]]],

i.e. ∀v ∈ V. s′[v/y]Ss′2[v/z], as required. 2

Theorem 10 Closed process terms t1, t2 of VProc are late-bisimilar iff their
denotations [[t2]], [[t2]] are related by a span of surjective open maps.

Proof: Directly from Theorem 8 and Lemma 9. 2

7 Variations

A transition semantics and bisimulation for VProc with early value passing
can be obtained easily on the lines of [14]. An appropriate presheaf semantics
is obtained with a path category a partial order which is an initial solution
to:

P = P⊥ +
∑

(a,v)∈C×V
P⊥ +

∑
(a,v)∈C×V

P⊥

In fact P̂ is isomorphic to rooted presheaves over P⊥ which is readily seen
to be isomorphic to a category of synchronisation trees in which labels have
the form τ , a!v or a?v where a ∈ C and v ∈ V , a category STC×V in the no-
tation of [12, 4]. For such categories bisimulation obtained from open maps
has been shown to coincide with Park and Milner’s strong bisimulation [12].
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Furthermore, denotational semantics is given in [19] in which denotations
of terms as synchronisation trees are strong bisimilar to the transition sys-
tems from an operational semantics. Thus there is no difficulty in producing
a denotational semantics so that the denotation of closed terms in P̂ are
connected by a span of open surjections iff the terms are strong bisimilar.

A much greater challenge is provided by a process-passing language with
a syntax similar to that of VProc

t ::= nil | τ.t | a!t1.t2 | a?X.t | (t1 | t2) | t1 + t2 | X | recX.t

but where in contrast to VProc a process t1 can be sent along a channel a by
a process a!t1.t2 and an arbitrary process can be received on a and bound to
process-variable X in a process a?X.t. A transition semantics can be found,
for instance, in [16]. A path category for process-passing with late semantics
is reasonably taken to be an initial solution to the following isomorphism in
Prof

P ∼= P⊥ +
∑
a∈C

(P×P)⊥ +
∑
a∈C

(!P( P)⊥

or sufficiently an initial solution to

P ∼= P⊥ +
∑
a∈C

(P + P)⊥ +
∑
a∈C

((!P)op ×P)⊥

in Cat—the constructions one is led to by Section 3. There is little trou-
ble in giving a denotational semantics to a term with n free variables as
a functor P̂n → P̂. So closed terms, denoting presheaves in P̂, inherit a
notion of bisimulation from open maps in presheaf categories. But there is
a problem in understanding the bisimulation that arises, for example as a
coinductive definition based on a transition semantics, along the usual lines.
The difficulties are due to the function space component (!P( P).

On the other hand, there seem to be no fundamental difficulties in pre-
senting a presheaf model of the Pi-calculus, where following the lead of [17, 5]
we (Cattani,Stark,Winskel) move to ProfI, indexed by a category of name-
sets I.
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