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Bisimulations for asynchronous mobile processes

Martin Hansen Hans Hüttel Josva Kleist

BRICS∗

Department of Computer Science
University of Aalborg

Fredrik Bajersvej 7E, 9220 Aalborg Ø, Denmark

Abstract

Within the past few years there has been renewed interest in the
study of value-passing process calculi as a consequence of the emer-
gence of the π-calculus. Here, [MPW89] have determined two variants
of the notion of bisimulation, late and early bisimilarity. Most recently
[San93] has proposed the new notion of open bisimulation equivalence.

In this paper we consider Plain LAL, a mobile process calculus
which differs from the π-calculus in the sense that the communication
of data values happens asynchronously. The surprising result is that
in the presence of asynchrony, the open, late and early bisimulation
equivalences coincide – this in contrast to the π–calculus where they
are distinct. The result allows us to formulate a common equational
theory which is sound and complete for finite terms of Plain LAL.

1 Introduction

An important question in the theory of process calculi is when two processes
can be said to exhibit the same behaviour and a number of behavioural
equivalences have been proposed. Traditionally, the emphasis has been on
studying the equivalences for ‘pure’ processes where communication does not
involve the passing of data values. However, within the past few years there
has been renewed interest in the study of value-passing as a consequence
of the emergence of the π-calculus. Here [MPW89] have determined two
∗Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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variants of the notion of bisimulation, late and early bisimilarity, differing in
the assumption of when a data value is instantiated. Most recently [San93]
has proposed a new notion of bisimulation equivalence which he calls open
bisimilarity. Sangiorgi formulates a sound and complete equational theory
for open bisimilarity on finite (i.e. non-recursive) π-calculus terms.

An important theorem is that the three notions of bisimilarity are dis-
tinct within the π-calculus, with open bisimulation being strictly finer than
late bisimulation which in turn is strictly finer than early bisimulation. The
late/early distinction has been studied for the much coarser testing equiv-
alence of Hennessy and De Nicola and it has been shown by [Ing94] and
[BN92] that the late and early testing equivalences coincide, both for a pro-
cess calculus with simple data values and conditional expression and for the
π-calculus.

In this paper we consider Plain LAL, a mobile process calculus which
differs from the π-calculus in the sense that the communication of data val-
ues happens asynchronously. Previously, [HT91] and [Bou92] have described
so-called asynchronous π-calculi. In [Ode95] it is shown how familiar pro-
gramming constructs can be encoded in a straightforward fashion within an
asynchronous π-calculus, thus confirming the naturalness of the combination
of asynchrony and mobility.

The main result of the present paper is that in the presence of asyn-
chrony, the open, late and early bisimulation equivalences coincide. A
related results was established by [HY93]; however this result was shown
for another asynchronous calculus, the simpler so-called γ-calculus. As the
equivalences are one and the same in Plain LAL, this leads us to formulate
an equational theory which is sound for finite terms of Plain LAL. Most
proofs of theorems have been omitted; they can be found in [HK94].

2 Plain LAL

The process calculus that we shall consider here uses a notion of asyn-
chrony inspired by the Linda paradigm for parallel programming proposed
by [GB82]. In Linda, a program is viewed as a collection of concurrent
processes and data (‘tuples’) existing in a common ‘tuple space’. Tuples
communicate by depositing tuples in the ‘tuple space’ by using the out and
eval operators and retrieving them using the rd and in operators. When re-
trieving another tuple, a Linda tuple can specify which kinds of tuples that
may be retrieved by means of a notion of pattern matching.
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Plain LAL is a two-level calculus as we distinguish between processes
and systems. Processes correspond to tuples in a Linda ‘tuple space’ and
are deposited by a spawn operator at the level of processes. This is the only
means of introducing parallelism; Plain LAL has no explicit parallel compo-
sition operator for processes and is in this respect similar not only to out
and eval operators of Linda, but also to the fork calculus of [Hav94] and to
notions underlying the semantics of applicative languages with concurrency,
such as Concurrent ML ([BMT92]).

The pattern matching of Linda used to retrieve tuples is modelled by
Plain LAL processes having names. A Plain LAL agent (or system) S, T, . . . ∈
Agent is the parallel composition of a set of named processes, each of the
form (α,P ) where α, β, γ . . . ∈ Name range over names and P,Q, . . . ∈
Proc range over processes. The only data that can be communicated in
Plain LAL are names; a process (α,P ) can obtain the name γ from another
process (β, γ) via the name β, called the location of γ.

2.1 Syntax

Expressions in Plain LAL are given by the following syntax:

S ::= (α,P ) | (α)S | S1|S2 | •

P ::=
∑
i∈I
ai.Pi | (α)P | α | ξ(P )

a ::= α!P | α?β | τ

The chief operators of Plain LAL are the prefixing operators. In Plain LAL,
the ‘output’ prefix α!P assumes the role of the spawn operator – it creates a
parallel component (α,P ), i.e. a process P located at α. The ‘input’ prefix
α?β asks for a name from any parallel component whose location is α and
binds the name to β. The τ prefix denotes silent moves.

Names can be made local using the restriction operator; (α)S denotes
that α is a name local to S. We define (L)P resp. (L)S where L ⊆ Name
as P resp. S restricted by all names in L. Input prefixing and restriction
work as binding operators on names and give rise to the familiar definitions
of free and bound names.

Processes can be built using sums of prefixed processes, restriction and
values α. ξ(P ) is the replication operator of the π-calculus; we need this to
be able to express infinite behaviours (alternatively, we could have added a
recursion operator to the syntax; the two notions are inter-expressible.)
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Systems are the parallel composition of processes and can themselves be
composed in parallel. We let Πi∈ISi denote the parallel composition of a
number of systems where I is an index set. In the rest of this paper, we
shall assume that any such index set is finite; we sometimes omit the index
set and indices when they are clear from the context. We write 0 for

∑
∅ a.P

and a for a.0; further we use + for binary sum.

2.2 Semantics

Our operational semantics for Plain LAL consists of three levels: The ba-
sis is a commitment semantics for processes which describes which actions
processes can commit to. At the system level we have a labelled transition
system which, based on the commitments of the processes, controls which
interactions can occur. To simplify the rules we have a structural congruence
which lets us manipulate agents by their structure.

The commitment semantics for processes is given by:

[action�] a.P � a.P

[sum�]
Pj � a.P∑
I Pi � a.P

if j ∈ I

[res�]
P � a.P ′

(α)P � a.(α)P ′
if α 6∈ fn(a)

The structural congruence ≡ is defined as the smallest congruence relation
satisfying:

S ≡ T if S and T are α-convertible

(α)(β,0) ≡ (β,0)

(α,0) ≡ •
(β)(α)S ≡ (α)(β)S

(α)((β, P )|(γ,Q)) ≡ (α)(β, P )|(γ,Q) if α 6∈ fn(Q) ∪ {γ}
(α, (β)P ) ≡ (β)(α,P ) if α 6= β

(α, ξ(P )) ≡ (α.P )|(α, ξ(P ))

(S/ ≡, |, •) is a symmetric monoid

Finally, the labelled transition system takes labels m ∈ Label given by the
following syntax:
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[input]
P � α?β.P ′

(α,P )
α?β- (α,P ′)

[value] (α, β)
β@α- •

[open]
S

β@α- S ′

(β)S
(β)@α- S ′

[com1]
S

β@α- S ′ T
α?γ- T ′

S|T τ- S ′|T ′{β/α}

[com2]
S

(β)@α- S ′ T
α?γ- T ′

S|T τ- (β)(S ′|T ′{β/α})
if β 6∈ fn(T )

[spawn]
P � α!Q.P ′

(β, P ) τ- (β, P ′)|(α,Q)

[internal]
P � τ.P ′

(α,P ) τ- (α,P ′)

[par]
S

m- S ′

S|T m- S ′|T
if bn(m) ∩ fn(T ) = ∅

[res]
S

m- S ′

(α)S m- (α)S ′
if α 6∈ fn(m)

[struct]
S ≡ S ′ S ′

m- T ′ T ′ ≡ T
S

m- T

Table 1: The labelled transition semantics of Plain LAL

m ::= τ | α?β | α@β | (α)@β

The first two indicate internal and input actions respectively, the third
means that the agent contains the free name α at the free name β and
the last means that the agent contains the bound name α at the free name
β. The transition relation - ⊆ (Agent×Label×Agent) is the smallest
relation satisfying the rules in Table 1.
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3 Bisimulations

For value passing calculi several formulations of bisimulations have been
proposed, among these early, late and open bisimulation. In this section we
shall define these for Plain LAL and study their relationship.

Though quite similar in definition they all differ in the case of the π-
calculus. The main result of this article is that these in fact coincide in the
case of Plain LAL.

The notion of early bisimulation was first defined in [MPW89]; the idea
is that a transition can be matched in different ways, depending on the value
that is being communicated. In our setting we have:

Definition 1 Early bisimulation A relation R is an early bisimulation if it
is symmetric and S R T implies

• If S
α?γ- S ′ then for every name β ∈ Name there exists a T ′ such

that T
α?γ- T ′ and S ′{β/γ} R T ′{β/γ}.

• If S m- S ′ and m ∈ {τ, β@α, (β)@α} then there exists a T ′ s.t.
T

m- T ′ and S ′ R T ′.

Two programs S and T are early bisimilar, written S ∼ T , if S R T for
some early bisimulation R.

Late bisimulation was also defined in [MPW89]. Intuitively, the differ-
ence is that a transition must be matched by the same move, irrespective of
the value communicated. In Plain LAL, we get:

Definition 2 (Late bisimulation) A relation R is a late bisimulation if
it is symmetric and S R T implies

• If S
α?γ- S ′ then there exists a T ′ such that T

α?γ- T ′ and for every
name β S ′{β/γ} R T ′{β/γ}.

• If S m- S ′ and m ∈ {τ, β@α, (β)@α} then there exists a T ′ s.t.
T

m- T ′ and S ′ R T ′.

Two programs S and T are late bisimilar, written S ∼L T , if S R T for
some late bisimulation R.

Finally, open bisimulation, a notion of equivalence first studied by [San93].
The underlying idea is that one should consider matches for all possible in-
stantiations of variables.
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Definition 3 (Open bisimulation) A relation R is an open bisimulation
if it is symmetric and S R T implies that for all substitutions ϑ ∈ Name→
Name it holds that if Sϑ m- S ′ then there exists a T ′ such that Tϑ m-

T ′ and S ′ R T ′.
Two programs S and T are open bisimilar, written S ∼O T , if S R T

for some open bisimulation R.

By inspecting the definitions, it is easy to see that ∼O⊆∼L⊆∼. Further,
it is relatively easy to verify that all three are indeed equivalence relations
and also that they are congruence relations with respect to all operators but
prefixing. In fact they are also congruences with respect to prefixing; we
shall return to this later.

To prove our results in the following we shall exploit the techniques of
up-to bisimulations. It is quite simple to prove that this principle is also
sound for Plain LAL.

We shall now investigate how these 3 definitions of bisimulation relate to
each other. But first we need the following lemma which states an important
difference between synchronous and asynchronous communication

Lemma 1 S has a τ -transition, S τ- T , due to an internal communica-
tion on a free name α iff either

• S β@α- S ′
α?γ- S ′′ with T ≡ S ′′{β/γ}

• S (β)@α- S ′
α?γ- S ′′ with T ≡ (β)S ′′{β/γ}

Proof. We have either S ≡ S ′|(α, β) or S ≡ (β)(S ′|(α, β)). 2

Observe that the if part of the above lemma does not hold in a synchronous
calculus because in a synchronous calculus a sequential process cannot com-

municate with itself. For instance we have ᾱβ.α(γ) ᾱβ- α(γ)
α(γ)- 0 in

the π-calculus but clearly we cannot have internal communication on α.
Using Lemma 1 we can now state the following theorem which turns out

to be extremely important.

Theorem 2 If S ∼ T then S{α/γ} ∼ T{α/γ} for all α ∈ Name.

Proof. We show that R = {(S{α/γ}, T{α/γ}) | S ∼ T} is an early bisimula-
tion up to structural congruence.

The proof proceeds by inspecting the possible transitions from S{α/γ}.
We only consider two cases:
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S{α/γ} β?δ- S ′′: Then either S
β?δ- or S

γ?δ- with β = α.

For S
β?δ- S ′ we have S ′′ = S ′{α/γ}. Since S ∼ T we have for all

η ∈ Name that T
β?δ- T ′ such that S ′{η/δ} ∼ T ′{η/δ}. Further we

must have T{α/γ} β?δ- T ′{α/γ} since γ 6= β. Now for all η we have
S ′{α/γ}{η/δ} R T ′{α/γ}{η/δ} where we w.l.o.g. assume that δ 6= α,
δ 6= γ and η 6= γ.

For S
γ?δ- S ′ we have S ′′ = S ′{α/γ}. Since S ∼ T we have for

all η ∈ Name that T γ?δ- T ′ such that S ′{η/δ} ∼ T ′{η/δ}. Hence
T{α/γ} α?δ- T ′{α/γ} is a matching move.

S{α/γ} τ- V : Then either S τ- S ′ with V = S ′{α/γ} in which case
the proof is similar to the above, or the transition is due to internal
communication on α. We examine the latter case.

Since α is free we have by Lemma 1 one of two:

i. S{α/γ} β@α- V ′
α?δ- V ′′ and V ≡ V ′′{α/δ}.

ii. S{α/γ} (β)@α- V ′
α?δ- V ′′ and V ≡ (β)V ′′{β/δ}.

We shall only consider case ii. Assume w.l.o.g. that β 6= γ, δ 6= γ

and α 6= δ. It is fairly obvious that either S
(β)@α- S ′

γ?δ- S ′′ or

S
(β)@γ- S ′

α?δ- S ′′ with S ′{α/γ} = V ′ and S ′′{α/γ} = V ′′ since S
could not do the transition. We assume w.l.o.g. that it is the second

case. Then T
(β)@γ- T ′

α?δ- T ′′ with S ′ ∼ T ′ and S ′′{β/δ} ∼ T ′′{β/δ}.
Further we must have T{α/γ} (β)@α- T ′{α/γ} α?δ- T ′′{α/γ} and hence
by Lemma 1 T{α/γ} τ- (β)T ′′{α/γ}{β/δ}1. Now we have

V ≡ (β)S ′′{α/γ}{β/δ} = ((β)S ′′{β/δ}){α/γ} R (β)T ′′{α/γ}{β/δ}

A symmetric argument exists for T{α/γ} m- V . 2

As an immediate corollary we have that all our definitions of bisimulation
coincide.

Corollary 3 Early, late and open bisimilarity coincide.
1This does not hold in the π-calculus.
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Proof. Early bisimilarity implies open because by Theorem 2 we know that
if S ∼ T then for every substitution ϑ we have Sϑ ∼ Tϑ. Therefore we can
drop the substitution in the input case of the definition of early bisimulation.
We now have that for every transition Sϑ

m- S ′ there exists a T ′ such
that Tϑ m- T ′ with S ′ ∼ T ′, hence ∼ is an open bisimulation. 2

This result is really interesting, as in the π-calculus, even without the match
operator, early bisimulation is strictly coarser than late bisimulation which
in turn is strictly coarser than open bisimulation. This is evidence that the
expressive power of asynchronous communication is in fact less than that of
synchronous communication.

A more pragmatic consequence of Corollary 3 is that it does not matter
which definition of bisimilarity we use because we know that the underlying
equivalence is the same.

Corollary 4 (Congruence) ∼ is a congruence relation.

Proof. Since ∼ is an open bisimulation it is clear that ∼ must be a congru-
ence with respect to prefixing. 2

The result above does not hold for the π-calculus where neither early
nor late bisimulation is a congruence.

As stated in the proof of Corollary 3 we have by Theorem 2 that if we
omit the substitution in the input case of the definition of early bisimula-
tion we do not get a coarser relation. However, the definition we end up
with is the definition of ground bisimulation. Thus we have no less than
6 bisimulations which are different in the π-calculus and coincide in Plain
LAL. Despite this, by closer inspection it turns out that the only essential
limitation Plain LAL has to the π-calculus is a more limited type of summa-
tion, since it can be shown that all π-calculus operators except the general
operator can be encoded in plain LAL ([HK94]).

3.1 Weak Bisimulation

The proofs in the proof above are not dependent on dealing with strong
bisimulations and are easily generalized to weak bisimulation. Hence all
weak versions of the above bisimulations (save early and late congruence)
are equal to the weak bisimulation given by the following definition. We
define a weak transition as

9



Definition 4 The relation =⇒ ⊆ (Agent×Label∪{ε}×Agent) is given
by:

m=⇒ = τ- ∗ m-

ε=⇒ = τ- ∗

Definition 5 (Weak bisimulation) A relation R is a weak bisimulation
if it is symmetric and S R T implies If S m- S ′ then there exists a T ′

s.t. T m̂=⇒ T ′ and S ′ R T ′ where τ̂ = ε and m̂ = m for m 6= τ . Two
programs S and T are weak bisimilar, written S ≈̇ T , if S R T for some
weak bisimulation R.

4 Equational Theories for Finite Plain LAL

In the rest of the paper we shall present sound and complete axiomatizations
of strong and weak bisimulation for finite Plain LAL, i.e. Plain LAL without
replication. The usual way of proving completeness is by means of a normal
form to which all bisimilar agents can be converted. This is not immediately
possible in LAL as sum and parallel composition operate on two different
levels. To deal with this, we extend the syntax of programs with prefixing
and sum:

S ::=
∑
i∈I

mi.Si | · · · where m ::= τ | α?β

Observe that we do not have spawn prefixes at this level as these are seen
as τ -actions from the outside and can be modelled as such. Since the set
of prefixes at system level is a subset of the set of labels we use the same
letters as metavariables. With the extended syntax we get both sum and
composition at system level and this enables us to define expansion theorems.
We define the semantics of this new construct by extending the transition
relation - with the following rule:∑

i∈I
mi.Si

mj- Sj if j ∈ I

and we define
∑
∅ S = •.

4.1 Axiomatization of Strong Bisimulation

In this section we shall give a complete axiomatization of ∼ for Plain LAL
agents of the extended syntax.
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We shall need to decide whether a restricted name can become acces-
sible from outside, such that it can be used to get a value. Intuitively,
a name can become accessible if it is located at an unrestricted location.
With this definition α can become accessible in (α)((β,α)|(α, γ)) but not
in (α)(σ) ((β, σ)|(σ,α)|(α,γ)). But in the last expression α can clearly be-
come accessible through β and σ — we therefore need to be able to follow
a sequence of names and to this end we define a notion of reachability:

Definition 6 (Reachability) Let S = (L)
∏

(αi, βi). We say αj is reach-
able in S if either αj is free or there exists a sequence γ1, . . . , γn where for
1 ≤ i < n we have for some k: γi = αk and γi+1 = βk, further γ1 is free
and γn = αj. If α is not reachable in S we say that α is unreachable in S.

Observe that if α is not a location of a value we consider it unreachable.
Further observe that reachability of a name is a strictly syntactic predicate,
thus it is always decidable.

The axioms are given in Table 2
We shall denote by A this set of rules and axioms, and we write A `

S = T if S = T can be proven using equational reasoning over the rules of
A.

4.2 Soundness and Completeness

Theorem 5 (Soundness) If A ` S = T then S ∼ T

Proof. We just need to show that the axioms hold if we replace = by ∼. 2

Completeness is established through the concept of head normal forms
and the notion of depth of an agent. The depth of an agent is the maximal
length of any transition sequence that the agent can perform (a precise
definition can be found in [HK94].)

Definition 7 (Head normal form) S is on head normal form, abbrevi-
ated hnf., if

S = (L)
(∑

mi.Si
∣∣∣ ∏ (αj, βj)

)
where L ⊆ ⋃{βj}, L\⋃{βj} ∩ fn(mi) = ∅ and for all k in the index set is
αk reachable in (L)

∏
(αj, βj).
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C1 S = T if S ≡ T
C2 α?β.S = α?β.T if S = T

C3 τ.S = τ.T if S = T

C4 (α)S = (α)T if S = T

C5 S1|S2 = T1|T2 if S1 = T1 and S2 = T2

C6
∑
I mi.Si =

∑
I ni.Ti if ∀j ∈ I : mj .Sj = nj.Tj

S1
(
α,
∑

ai.Pi
)

=
∑

mi.Si where
{
mi = ai, Si = (α, Pi) if ai = τ, β?γ
mi = τ, Si = (α, Pi)|(β,Q) if ai = β!Q

S2
∑
I

Si =
∑
I\{k}

Si if Sj = Sk for some j ∈ I\{k}

S3 (α)
∑

mi.Si =
∑

mi.(α)Si if α 6∈
⋃

n(mi)

S4 (α)
∑

mi.Si = (α)
∑

mi 6=α?β

mi.Si

E1 S|T =
∑

mi.(Si|T ) +
∑

nj .(S|Tj)
if S =

∑
mi.Si, T =

∑
nj .Tj and bn(mi) ∩ fn(T ) = ∅ = bn(nj) ∩ fn(S)

E2 (L)
(∑

mi.Si | (α, β)|
∏

(αj, βj)
)

= (L)

 ∑
mi 6=α?γ

mi. (Si|(α, β))

+
∑

mi=α?γ

τ.Si{β/γ}
∣∣∣ ∏(αj, βj)


if α is unreachable in (L)

∏
(αj, βj)

Table 2: The equational theory for strong bisimilarity
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Lemma 6 If S if a finite Plain LAL process then there exists a hnf. H of
no greater depth s.t. A ` S = H.

Proof. Induction in the structure of S. 2

We can now prove completeness:

Theorem 7 (Completeness) Let S and T be finite Plain LAL terms. If
S ∼ T then A ` S = T

Proof. We have S ∼ T . The proof is by induction in the maximal depth of
S and T . 2

4.3 Axiomatization of Weak Bisimulation

It is well-known that weak bisimulation is not a congruence, not even if we
close it under substitutions, as it is not preserved by summation. For that
reason we shall introduce another bisimulation similar to Milner’s observa-
tion equality.

Definition 8 Two agents S and T are observation equivalent, written S �
T if

• Whenever S m- S ′ then there exists a T ′ s.t. T m=⇒ T ′ and S ′ ≈̇ T ′.

and vice versa.

Observe that if the first move is a τ transition it cannot be matched by an ε-
transition. However, after the first move we only require weak bisimulation
to hold. It can be shown that � is the induced congruence of ≈̇.

Observation equivalence is related to weak bisimulation as stated by the
following proposition:

Proposition 8 S ≈̇ T iff S � T , S � τ.T or τ.S � T .

Proof. As in [Mil89] 2

Normally, when defining normal forms for completeness proofs one elim-
inates parallel composition. In the previous section we saw that we could
allow a limited use of parallel composition and still be able to prove com-
pleteness in the case of strong bisimulation. We have not been able to
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accomplish this for weak bisimulation. To get around this we extend the
prefixes of agents to incorporate all labels of the labelled transition system;
this does not require any changes in the semantics.

The axiom system AA consists of the axioms C1, C3−C6 and S1− S2
from the axiom system A and the following six:

C2 α?γ.S = α?γ.T if S{β/γ} = T{β/γ} for all β ∈ fn(S|T ) ∪ {γ}
E1 (α, β) = β@α.0

E2 S|T =
∑

mi.(Si|T ) +
∑

nj.(S|Tj)+∑
mi = α?γ
nj = β@α

τ.(Si{β/γ}|Tj) +
∑

mi = β@α
nj = α?γ

τ.(Si|Tj{β/γ})

if S =
∑
mi.Si, T =

∑
nj.Tj and bn(mi) ∩ fn(T ) = ∅ = bn(nj) ∩ fn(S)

S3 (β)
∑

mi.Si =
∑

β 6∈fn(mi)

mi.(β)Si +
∑

mi = β@αi
β 6= αi

(β)@αi.Si

T1 S + τ.S = S if S is a summation

T2 m.τ.S = m.S

The axioms T1 and T2 are similar to the well-known τ -laws of CCS;
the third CCS τ -law is concerned with τ -transitions after a visible action
and is thus not relevant in our case. The axiom C2 is necessary because in
the extended syntax we no longer have preservation of bisimulation under
substitution, as we now end up with a synchronous calculus. Alternatively
we could have limited the set of processes to processes which are bisimilar
to processes of Plain LAL.

Theorem 9 If AA ` S = T then S � T

Proof. The axioms hold then replacing = by �, and the rules preserve
soundness. 2

To prove completeness we introduce standard forms:

Definition 9 S is in standard form if

S =
∑

mi.Si

and the Si’s are in standard form.
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Lemma 10 For every finite agent S there there exists a standard form T
of no greater depth s.t. AA ` S = T .

Proof. The proof goes by induction in the structure of S. 2

As is usual, we need to refine the notion of standard form to full standard
form:

Definition 10 A standard form S is a full standard form if S m=⇒ S ′ im-
plies S m- S ′.

Lemma 11 For every finite agent S there there exists a full standard form
T of no greater depth s.t. AA ` S = T .

We now get

Theorem 12 (Completeness) If S � T then AA ` S = T .

Proof. By Lemma 11 we can assume that S and T are full standard forms.
The proof proceeds by induction in the depths of S and T . 2

We have now shown how to axiomatize �, though it was ≈̇ we really
wanted to axiomatize. However, by Proposition 8 we have S ≈̇ T iff either
AA ` S = T , AA ` S = τ.T or AA ` τ.S = T .

It is obvious that two processes can effectively be put in standard form.
Furthermore by inspection of the proof of Theorem 7 and Theorem 12 we
see that it can effectively be checked whether two processes in standard form
are bisimilar and weak bisimilar respectively. It now follows that S ∼ T is
decidable, furthermore S � T is decidable and hence S ≈̇ T is decidable.

Observe that we need to extend the calculus not because it is asyn-
chronous but because it is two-level. Compared to the axiomatization of the
π-calculus in [PS93] we see that we end up with almost the same axioms.
The main difference being that we have a simpler rule for input prexing in
the strong case.

5 Conclusions and Related Work

In this paper we have put forward an asynchronous process calculus, Plain
LAL, and defined the notions of early, late and open bisimulation equivalence
within the setting of the operational semantics provided. It turns out that
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these notions of bisimulation coincide here. We give a sound and complete
axiomatization of the common notion of bisimulation equivalence for finite
Plain LAL agents.

Plain LAL looks somewhat different from the calcui of [HT91] and [Bou92]
but it is in fact quite easy to come up with compositional encodings of these
calculi in Plain LAL. Although we have not persued this subject very further,
this leeds us to belive that our results will indeed also hold for asynchronous
versions of the π-calculus.

An interesting question is: How much can we extend Plain LAL before
the three definitions of bisimulation differ? For instance, if we introduce
the matching operator of the π-calculus, the two agents (α, τ.β! + τ) and
(α, τ.β! + τ + τ.[β = γ]β!) are late bisimilar but not open.

The ideas from Plain LAL can be extended to a higher-order calculus
which allows the passing of processes. This calculus, called LAL, is similar
to CHOCS ([Tho90]) and has been studied in [HK94]. It turns out that
Corollary 3 also holds for LAL. Further, there is an adequate translation of
LAL into Plain LAL – thus, the equational theory for Plain LAL can be used
in conjunction with the translation to provide equational reasoning for LAL
agents.

One should also note an important difference between our calculus and
the fork calculus studied by [Hav94] which seems to indicate that an implicit
parallel operator works better in the setting of asynchrony. For in the setting
of the fork calculus the formulation of the bisimulation congruence becomes
quite difficult, whereas the bisimulation congruence of Plain LALis entirely
straightforward, being the bisimulation equivalence itself.
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