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Semantic Theory for Value–Passing Processes
Late Approach

Part II: A Behavioural Semantics and Full Abstractness

Anna Ingólfsdóttir

BRICS∗

Department of Mathematics and Computer Science
Aalborg University, Denmark

1 Introduction

This is the second of two companion papers on a semantic theory for communi-
cating processes with values based on the late approach. In the first one, [Ing95],
we explained the general idea of the late semantic approach. Furthermore we
introduced a general syntax for value-passing process algebra based on the late
approach and a general class of denotational models for these languages in the
Scott-Strachey style. Then we defined a concrete language, CCSL, which is
an extension of the standard CCS with values according to the late approach.
We also provided a denotational model for it, which is an instantiation of the
general class. This model is a direct extension of the model given by Abramsky
[Abr91] to model the pure calculus SCCS. Furthermore we gave an axiomatic
semantics by means of a proof system based on inequations and proved its
soundness and completeness with respect to the denotational semantics.

In this paper we will give a behavioural semantics to the language CCSL
in terms of a Plotkin style operational semantics and a bisimulation based
preorder. Our main aim is to relate the behavioural view of processes we present
here to the domain-theoretical one developed in the companion paper [Ing95].
In the Scott-Strachey approach an infinite process is obtained as a chain of finite
and possibly partially specified processes. The completely unspecified process
is given by the bottom element of the domain. An operational interpretation
of this approach is to take divergence into account and give the behavioural
semantics in terms of a prebisimulation or bisimulation preorder [Hen81, Wal90]
rather than by the standard bisimulation equivalence [Par81, Mil83].

One of the results in the pure case presented in [Abr91] is that the denota-
tional model given in that reference is fully abstract with respect to the “finitely
observable” part of the bisimulation preorder but not with respect to the bisim-
ulation preorder which turns out to be too fine. Intuitively this is due to the
∗Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1



algebraicity of the model and the fact that the finite elements in the model
are denotable by syntactically finite terms. The algebraicity implies that the
denotational semantics of a process is completely decided by the semantics of
its syntactically finite approximations, whereas the same can not be said about
the bisimulation preorder. In fact we need experiments of an infinite depth to
investigate bisimulation while this is not the case for the preorder induced by
the model as explained above. An obvious consequence of this observation is
that in general, a bisimulation preorder can not be expected to be modelled by
an algebraic cpo given that the compact elements are denotable by syntactically
finite elements.

In [Hen81] Hennessy defined a term model for SCCS. This model is ω-
algebraic and fails to be fully abstract with respect to the strong bisimulation
preorder. In the same paper the author introduces the notion of “the finitary
part of a relation” and “a finitary relation”. The finitary part of a relation R
over processes, denoted by RF , is defined by

pRFq iff ∀d.dRp⇒ dRq

where d ranges over the set of syntactically finite processes. A relation R is
finitary if RF = R. Intuitively this property may be interpreted as algebraicity
at the behavioural level provided that syntactically finite terms are interpreted
as compact elements in the denotational model; if a relation is finitary then it
is completely decided by the syntactically finite elements.

In both [Hen81] and [Abr91] the full abstractness of the respective denota-
tional semantics with respect to <

∼
F is shown. In [Abr91] it is also shown that

if the language is sort finite and satisfies a kind of finite branching condition,
then <

∼
F=<

∼ω, where <
∼ω is the strong bisimulation preorder induced by experi-

ments of finite depth, i.e. the preorder is obtained by iterated application of the
functional that defines the bisimulation. Note that in general the preorder <

∼ is
strictly finer than the preorder <

∼ω . However if the transition system is image
finite, i.e. if the number of arcs leading from a fixed state and labelled with a
fixed action is finite, then these two preorders coincide.

As mentioned above the main aim of this paper is to give a bisimulation
based behavioural semantics for our languageCCSL from [Ing95]. To reflect the
late approach the operational semantics will be given in terms of an applicative
transition system, a concept that is a modification of that defined in [Abr90].
We generalize the notion of bisimulation [Par81, Mil83] to be applied to ap-
plicative transition systems and introduce a preorder motivated by Abramsky’s
applicative bisimulation [Abr90]. For this purpose we first introduce the notion
of strong applicative prebisimulation and the corresponding strong applicative
bisimulation preorder. Following the standard practice this preorder is obtained
as the largest fixed point of a suitably defined monotonic functional. We show
by an example that this preorder is not finitary in the sense described above
and is strictly finer than the preorder induced by the model.

Next we define the strong applicative ω-bisimulation preorder in the stan-
dard way by iterative application of the functional that induces the bisimulation
preorder. This gives as a result a preorder which still is too fine to match the
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preorder induced by the denotational model. This will be shown by an exam-
ple. Intuitively the reason for this is that we still need infinite experiments to
decide the operational preorder, now because of an infinite breadth due to the
possibility of an infinite number of values that have to be checked.

Then we give a suitable definition of the notion of the “finitary part” of
the bisimulation preorder to meet the preorder induced by the denotational
model. We recall that in [Ing95] we defined the so-called compact terms as
the syntactically finite terms which only use a finite number of values in a non-
trivial way. We also showed that these terms correspond exactly to the compact
elements in the denotational model in the sense that an element in the model
is compact if and only if it can be denoted by a compact term. This motivates
a definition of the finitary part, <

∼
F , of the bisimulation preorder <

∼ by

p <
∼
F
q iff ∀c. c <

∼ p⇒ c <
∼ q

where c ranges over the set of syntactically compact terms. We also define
yet another preorder, <

∼
f
ω, a coarser version of <

∼ω in which we only consider a
finite number of values at each level in the iterative definition of the preorder.
Here it is vital that the set of values is countable and can be enumerated as
V al = {v1, v2, · · ·}. Thus in the definition of <

∼
f
1 we only test whether the

defining constraints of the preorder hold when the only possible input and
output value is v1, and in general in the definition of <

∼
f
n we test the constraints

for the first n values only. (Here we would like to point out that this idea
originally appears in [HP80].) It turns out that <

∼
f
ω is the finitary part of <

∼

in our new sense and that the model is fully abstract with respect to <
∼
f
ω . We

will prove both these results in this paper using techniques which are similar
to those used by Hennessy in the above mentioned reference [Hen81].

The structure of the paper is as follows: In Section 2 we give a short survey of
the result from the companion paper [Ing95] needed in this study. The definition
of the operational semantics and the notion of applicative bisimulation are the
subject of Section 3. Section 4 is devoted to the analysis of the preorder and the
definition of the value-finitary preorder <

∼
f
ω . In Section 5 we give a definition of

the notion of finitary part of a relation and a finitary relation over processes. In
the same section we prove that the preorder <

∼
f
ω is finitary and that it coincides

with the finitary part of the preorder <
∼. Finally we prove the soundness and

the completeness of the proof system with respect to the resulting preorder.
The full abstractness of the denotational semantics for CCSL, given in [Ing95],
then follows from the soundness and the completeness of the proof system with
respect to the denotational semantics. In Section 6 we give some concluding
remarks.

2 Preliminaries

In this section we will give a brief review of the definitions, notation and proved
results we need in this study from the companion paper [Ing95].
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2.1 Syntax

First we extend the standard notion of a signature, Σ, and that of Σ-terms used
for the pure calculus in order to model processes with value-passing based on the
late approach. We do this by introducing the notion of applicative signature as
a pair, (Σ, C), where Σ is a signature and C is a set (of channel names) and that
of (Σ, C)-terms. For motivation for these definitions we refer to the companion
paper [Ing95].

The general syntax is based on predefined expression languages for value
expressions and boolean expressions. Thus we assume some predefined syntactic
category of expression, Exp, ranged over by e including a countable set of values,
V al, ranged over by v, and a set of value variables, V ar, ranged over by x. We
also assume a predefined syntactic category, BExp, of boolean expressions,
ranged over by be. BExp should at least include a test for equality between the
elements of Exp. From such a predicate a test for membership of a finite set
can easily be derived. Value expressions are supposed to be equipped with a
notion of substitution of an expression for a value variable, denoted by e[e′/x],
and an evaluation function [[ ]] : Exp× V Env −→ V al, where V Env is the set
of value environments σ : V ar −→ V al. For closed expression we write [[e]]
instead of [[e]]σ. Further we preassume an infinite set of process names, PN ,
ranged over by P , Q, etc. The set of (Σ, C)-terms is now given as the triple

T(Σ,C) = (Proc(Σ,C), Fun(Σ,C), Pair(Σ,C))

of the sets generated by Σ and C according to the following syntax:

Proc(Σ,C) : p ::= op(p), op ∈ Σ c?.f c!.π τ.p be→ p, p′

Fun(Σ,C) : f ::= [x]p
Pairs(Σ,C) : π ::= (e, p)

where we use the notation p to denote a vector of terms in Proc(Σ,C) of the
appropriate length. If the process names in PN are added as primitives to the
syntax for T(Σ,C), we write T(Σ,C)(PN ) for the resulting triple of (Σ,C)-terms,
and T rec(Σ,C)(PN ) if the recursive binding rec . is also allowed.

We have three kinds of actions, input actions of the form c?, c ∈ C, output
actions of the form c!, c ∈ C and the silent action τ . We write C? for {c?|c ∈ C}
and C! for {c!|c ∈ C}. The set Act = C! ∪ C? is ranged over by a whereas
Actτ = C! ∪C? ∪ {τ} is ranged over by µ.

Prefixing by [x] binds the data variable x and the recursion construct is a
binding construct for process names. A value variable, x, is free if it is not
in the scope of a prefix, [x], and a process name P is free if it is not in the
scope of a recursion construct, rec P. . We assume a notion of substitution for
both data variables and process names in terms defined in the usual way. For
f = [x]p and v ∈ V al we use the convention f(v) = ([x]p)(v) = p[v/x].

The languageCCSL(PN ) = (CCSprocL (PN ),CCSfunL (PN ),CCSpairL (PN ))
is obtained by instantiating the signature Σ by the standard operator of CCS.
So we let Σ consist of the nullary operators NIL and Ω, the families of unary
operators \ c, c ∈ C and [R] where R is a finite permutation of the channel

4



CCSprocL (PN ) : p ::= NIL Ω p[R] p \ c p+ p p|p c?.f c!.π τ.p

be→ p, p P recP.p

CCSfunL (PN ) : f ::= [x]p
CCSpairL (PN ) : π ::= (e, p)

Figure 1: The Syntax for CCSL

names and the binary operators + and |. The syntax for CCSL(PN ) is given
in Figure 1. We let CCSL = (CCSprocL , CCSfunL , CCSpairL ) denote the closed
terms in CCSL(PN ). These will be referred to as processes, functions and pairs
ranged over by cp, cf and cπ.

2.2 Semantics

In the companion paper [Ing95] we gave two kinds of semantics to CCSL: deno-
tational semantics and an axiomatic semantics in terms of inequationally based
proof system. We also showed the equivalence between them. The proof of the
full abstractness of the behavioural semantics with respect to the behavioural
semantics presented in this second paper does not rely on the details of the
definition of the denotational model, but instead we use the properties of the
proof system. Therefore we just assume the existence of the denotational model
ACT and the related evaluation mapping but give a rather detailed description
of the proof system. In particular we know from [Ing95] that the compact ele-
ments of the model may be denoted in the syntax by the so-called syntactically
compact terms, CoTerms(PN ) = (CoProc(PN ),CoFun(PN ), CoPair(PN )),
which are defined below. Intuitively the syntactically compact terms are the
recursion-free terms which only use a finite number of values in a nontrivial way.
(Note that the number of channels used by the term is automatically finite.)
We start by introducing some notation.

Notation 2.1 Let wn = (w1, . . . , wn) and p
n

= (p1, . . . , pn) be vectors of values
and processes respectively. We write x : wn −→ p

n
for x = w1 −→ p1, (x =

w2 −→ p2, (. . . x = wn −→ pn,Ω) . . .). (Intuitively x : wn −→ pn stands for the
function that maps wi to pi for i = 1, . . . , n and all the other values w ∈ V al
into Ω.) Further we let {wn} = {wi|wn = (w1, . . . , wn)} and similarly for {pn}.

Definition 2.2 [Syntactically Compact Terms] The set of syntactically
compact terms is the triple

CoTerms(PN ) = (CoProc(PN ),CoFun(PN ), CoPairs(PN ))

where the sets CoProc(PN ), CoFun(PN ) and CoPairs(PN ) are the least sets
satisfying:

1. NIL,Ω ∈ CoProc(PN ) and P ∈ CoProc(PN ) for all P ∈ PN

2. p ∈ CoProc(PN ) implies op(p) ∈ CoProc(PN ), op = |, +, \, [R] , τ.
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(+1) X + (Y + Z) = (X + Y ) + Z
(+2) X + Y = Y +X
(+3) X +X = X
(+4) X +NIL = X
(res+) (X + Y ) \ c = X \ c+ Y \ c

(res in) (a?.[x]X) \ c =

{
a?.[x](X \ c) if c 6= a
NIL otherwise

(res out) (a!.(e,X)) \ c =

{
a!.(e,X \ c) if c 6= a
NIL otherwise

(resNIL) NIL \ c = NIL
(res div) Ω \ c = Ω
(ren+) (X + Y )[R] = X [R] + Y [R]
(ren in) (a?.[x]X)[R] = R(a)?.[x](X [R])
(ren out) (a!.(e,X))[R] = R(a)!.(e,X [R])
(renNIL) NIL[R] = NIL
(ren div) Ω[R] = Ω
(NILpar) NIL |X = X |NIL = X
(div) Ω v X

Figure 2: Equations

3. π ∈ CoPair(PN ), c ∈ C implies c!π ∈ CoProc(PN )

4. f ∈ CoFun(PN ) and c ∈ CR implies c?f ∈ CoProc(PN )

5. p ∈ CoProc(PN ) and e ∈ Exp implies (e, p) ∈ CoPairs(PN )

6. {pn} ⊆ CoProc(PN ), {wn} ⊆ V al and x ∈ V ar implies [x]. x : wn −→
pn ∈ CoFun(PN ).

We use the convention CoTerms = CoTerms(∅), CoProc = CoProc(∅), etc.
and let them be ranged over by Cot, Cop, etc. We say that a term is compact
if it belongs to CoTerms(PN ). 2

Note that CoTerms = (CoProc,CoFun, CoPair) ⊆ CCSL is closed under
sub-terms. The proof system is based on the inequations in Figures 2–3. The
inference rules, Figure 4, describe the structure of the model and its preorder
and their interaction with the operators. In the interleaving law the summation
notation is justified by equations (+1)-(+4) and an empty sum is understood
as NIL. {+Ω} indicates that Ω is an optional summand of a term and Ω is a
summand of the right hand side if it is a summand of X or Y on the left hand

6



Let X =
∑
i τ.Xi +

∑
j a
′
j?.[x]X ′j +

∑
k a
′′
k!.(vk,X

′′
k ){+Ω} and Y =

∑
l τ.Yl +∑

m b
′
m?.[y]Y ′m +

∑
n b
′′
n!.(vn, Y ′′n ){+Ω}. Then

X | Y = INTL(X,Y ) +COMM(X,Y ){+Ω}

where

INTL(X,Y ) = INTLτ(X,Y ) + INTLin(X,Y ) + INTLout(X,Y )

where

INTLτ(X,Y ) =
∑
i τ.(Xi|Y ) +

∑
l τ.(X |Yl)

INTLin(X,Y ) =
∑
j a
′
j?.[x](X ′j|Y ) +

∑
m b
′
m?.[y](X |Y ′m)

INTLout(X,Y ) =
∑
k a
′′
k!.(vk,X ′′k |Y ) +

∑
n b
′′
n!.(v′n, X |Y ′′n )

and

COMM(X,Y ) =
∑
j,n:a′j=b

′′
n
τ.X ′j[vn/x]|Y ′′n +

∑
k,m:a′′k=b′m τ.X

′′
k |Y ′m[vk/y]

Figure 3: Interleaving Law
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(ref) p v p

(trans)
p v q, q v r

p v r

(sub)
pi v qi

op(p) v op(q)
op ∈

∑

(pre)
p v q

µ.p v µ.q

(rec)
recP.p = p[recP.p/P ]

(inst)
pσ v qσ

for every inequation p v q and closed instantiation σ

(ω− rule) p(n) v q for all n
p v q

(cond1)
[[be]] = T

be −→ p, q = p

(cond2)
[[be]] = F

be −→ p, q = q

(pair)
[[e]] = [[e′]], p v q

(e, p) v (e′, q)

(fun)
p[v/x] v q[v/x] for every v ∈ V

[x]p v [x]q

(α− red)
[x]p = [y]p[y/x]

if y not free in p

Figure 4: The Proof System Erec
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side. To simplify the notation we assume that i, j etc. in the sums
∑
i,
∑
j,

etc. range over finite index sets I , J, etc.
We refer to the whole system as Erec, to the full system minus the ω-

rule as E−ωrec and as E if both the ω-rule and the rule (rec) are omitted. The
respective preorder are denoted by vErec , vE−ωrec and vE. The syntactically
compact approximations used in the ω-rule of the proof system are defined as
follows.

Definition 2.3 [Compact Approximations] The n-th compact approxima-
tion of a term is defined inductively by :

I. i) p(0) = Ω
ii) 1. P (n+1) = P

2. (op(p))(n+1) = op(p(n+1))
3. (µ.u)(n+1) = µ.u(n+1)

4. (recP.p)(n+1) = p(n+1)[(recP.p)(n)/P ]

5. (be −→ p, q)(n+1) =

{
p(n+1) if [[be]] = T

q(n+1) if [[be]] = F

II. ([x]p)(n+1) = [x](x ∈ Vn+1 −→ p(n+1),Ω)

III.((e, p))(n+1) =

{
([[e]], p(n+1)) if [[e]] ∈ Vn+1
([[e]],Ω) otherwise

2

We remind the reader that Vn = {v1, . . . , vn} is the set of the n first values. The
syntactically compact approximations have the following fundamental proper-
ties:

Theorem 2.4 For all natural numbers n, t ∈ CCSL(PC) and ct ∈ CCSL
and ρ : PN −→ ACT

1. t(n) ∈ CoTerms(PN ), i.e. t(n) is a syntactically compact term.

2. ct(n) v
E−ωrec

ct.

3. ACT[[t]]ρ =
⊔
n ACT[[t(n)]]ρ.

The soundness and completeness of the proof system Erec with respect to the
denotational semantics is stated in the following theorem, whose proof may be
found in [Ing95].

Theorem 2.5 [Soundness and Completeness] For all closed terms ct, cu
in CCSL we have

ct vErec cu if and only if ACT[[ct]] v ACT[[cu]],

i.e. the proof system Erec is sound and complete with respect to the denotational
semantics.
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In the theory to follow we need the following notion of Ω-normal forms and
a corresponding normalization theorem.

Definition 2.6 [Ω-normal form] A compact term, nt ∈ CoTerms, is said to
be in a Ω-normal form if the following hold:

1. If nt = np ∈ CoProc then np has the form

nt =
∑
i

µi.nti{+Ω}

where Ω is an optional summand and where nti is in an Ω-normal form.
The empty sum is interpreted as NIL.

2. If nt = (e, np) ∈ CoPairs then e = v ∈ V al and np is in an Ω-normal
form.

3. If nt = [x]x : vn −→ npn ∈ Fun then npi is in an Ω-normal form for
i ≤ n.

2

Lemma 2.7 For all Cot ∈ CoTerms there is an Ω-normal form n(Cot) such
that n(Cot) =E Cot.

As a consequence of the soundness and completeness theorem above we get the
following useful corollary.

Corollary 2.8 For all Cot ∈ CoTerms and cu ∈ CCSL

Cot vErec cu implies Cot vE cu(n) for some n

and therefore
Cot vErec cu iff Cot vE−ωrec cu.

Proof First we note that for Cou,Cot ∈ CoTerms

Cou vErec Cot iff Cou vE Cot. (1)

Now we proceed as follows

Cot vErec cu

implies ACT [[Cot]] vACT ACT [[cu]]
as Erec is sound wrt. ACT

implies ∃n. ACT [[Cot]] vACT ACT [[cu(n)]] vACT ACT [[cu]]
by Thm. 2.4 as ACT [[Cot]] is compact

implies ∃n. Cot vErec cu(n) vErec cu
as Erec is complete wrt. ACT

10



implies ∃n. Cot vE cu(n) v
E−ωrec

cu

by (1) and Thm. 2.4.
2

In the proof for the full abstractness of the model with respect to our rep-
resentant for the behavioural preorder we will use some standard techniques
which are used to prove similar full abstractness results in the literature [Hen88,
AH92, HI93]. This gives us some guidelines about properties our behavioural
interpretation of the preorder induced by the model should satisfy. This is
formulated in the following lemma:

Theorem 2.9 Assume that �⊆ CCSL × CCSL satisfies the following condi-
tions:

1. Finitariness: For all ct, cu ∈ CCSL

ct � cu iff ∀Cot. Cot � ct⇒ Cot � cu.

2. Partial soundness: The proof system E−ωrec is sound with respect to �.

3. Partial completeness: For all Cot ∈ CoTerms and ct ∈ CCSL

Cot � ct implies Cot vErec ct.

Then for all ct, cu ∈ CCSL

ct � cu if and only if ct vErec cu if and only if ACT[[ct]] vACT ACT[[cu]].

Proof First we have:

ct � cu

iff ∀Cot. Cot � ct⇒ Cot � cu by 1.

iff ∀Cot. Cot vErec ct⇒ Cot vErec cu by 2., 3. and Cor. 2.8.

Now we proceed as follows: Assume ct � cu and therefore that

∀Cot. Cot vErec ct⇒ Cot vErec cu. (2)

As ct(n) vErec ct and ct(n) ∈ CoTerms then (2) implies that ct(n) vErec cu. As
this holds for all n, the ω-rule implies that ct vErec cu.

Next assume that ct vErec cu. To prove that ct � cu it is sufficient to prove
that (2) holds. So assume that Cot vE−ωrec ct. Then, by transitivity of vErec,
Cot vErec cu and therefore we get that ct � cu. 2

11



3 Operational Semantics

The aim of this section is to define an operational semantics and a suitable
notion of preorder to describe the behaviour of our language. The operational
semantics is given in terms of an applicative transition system, a slight modi-
fication of a notion originally suggested by Abramsky [Abr90]. An applicative
transition system models the idea of looking at an input term as a prefixing of a
function which is ready to receive values along the prefixing channel. Further-
more it reflects the idea of looking at an output term as a prefixing of a pair of
the value and the resulting process. For further motivations of this approach
we refer to the companion paper [Ing95].

Definition 3.1 An applicative labelled transition system (ALTS) is a five tuple

AT = 〈Con, V al,Act,−→, ↓〉

where

• Con is a set of configurations

• V al is a set of Values

• Act = ActCon ]ActPairs ]ActFun is a set of actions.

• −→ is a transition relation

−→⊆ (Con× ActCon × Con)∪
(Con× ActPairs × (V al ×Con))∪
(Con× ActFun × (V al −→ Con)).

• ↓⊆ Con is a convergence predicate.

We refer to States = Con∪ (V al×Con)× (V al −→ Con) as the set of possible
states. 2

Now we will define the so-called strong applicative prebisimulation (sa-prebi-
simulation) as a further abstraction on the applicative transition system. More
precisely we define it as the greatest fixed point to a monotonic endofunction on
the complete lattice P(Con× Con). In order to obtain this we have to extend
our notion of relation over configurations. Given a binary relation over Con we
extend it pointwise to V al× Con by:

For all c1, c2 ∈ Con and v1, v2 ∈ V al, (v1, c1)Rpair(v2, c2) iff c1Rc2
and v1 = v2.

and to V al −→ Con by:

For all f1, f2 ∈ V al −→ Con, f1Rfun f2 iff f1(v)Rf2(v) for all
v ∈ V al.

12



For any s, s′ ∈ States we write sRs′ if sRs′ or sRpairs′ or sRfuns′ depending
on the type of s and s′.

Definition 3.2 Let AT = 〈Con, V al,Act,−→, ↓〉 be an ALTS. We define
F : P(Con× Con) −→ P(Con× Con) by:

If R ⊆ Con×Con then c1F(R)c2 iff for all µ ∈ Act

(i) c1
µ−→ s1 implies c2

µ−→ s2 for some s2 such that s1Rs2,

(ii) c1 ↓ implies (c2 ↓ and whenever c2
µ−→ s2 then c1

µ−→ s1 for
some s1 such that s1Rs2).

where s1, s2 ∈ States.

2

Obviously F defined this way is a monotonic endofunction over the complete lat-
tice (P(Con×Con),⊆). Thus the Knaster-Tarski fixed point theorem, [Tar55],
applies and the greatest fixed point to F exists. We may therefore give the
following definition:

Definition 3.3 (Strong Applicative Prebisimulation)
Let AT = 〈Con, V al,Act,−→, ↓〉 be an applicative labelled transition system
and F be defined as in Definition 3.2. Then R ⊆ P(Con× Con) is called a
prebisimulation if it is a post-fixed point to F , i.e. if R ⊆ F(R). We define the
strong applicative bisimulation preorder <

∼ as the greatest fixed point to F , i.e.

<
∼=

⋃
{R|R ⊆ F(R)}.

We define the strong applicative bisimulation equivalence as ∼=<
∼ ∩ <

∼
−1.

2

Similar results as for the pure case also hold here and are simply restated in
the following lemma.

Lemma 3.4

1. <
∼ is a preorder

2. ∼ is an equivalence relation.

So far we have given a definition of <
∼ on an abstract ALTS. Now we define

a concrete ALTS by taking Con to be CCSprocL , as generated by the syntax
in Figure 2.1, −→ to be the least transition relation closed under the rules of
Figures 5-6 and the convergence predicate ↓ to be the least relation on CCSprocL

satisfying the rules in Figure 7. As usual the divergence predicate ↑ is defined
as the complement of ↓. The basic rule for input has the form

c?.[x]p c?−→ [x]p,
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(input) c?.cf c?−→ cf

(output) c!.(e, cp) c!−→ (v, cp) , [[e]] = v

(tau) τ.cp
τ−→ cp

(ren)
cp

c?−→ [x]p′

cp[R]
R(c)?−→ [x](p′[R])

cp
c!−→ (v, cp′)

cp[R]
R(c)!−→ (v, cp′[R])

cp
τ−→ cp′

cp[R] τ−→ cp′[R]

(res)
cp

c?−→ [x]p′

cp\c′ c?−→ [x](p′\c′)
, c 6= c′

cp
c!−→ (v, cp′)

cp\c′ c!−→ (v, cp′\c′)
, c 6= c′

cp
τ−→ cp′

cp\c′ τ−→ cp′\c′

Figure 5: Operational semantics for CCSL: Part 1
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(choice)
cp

µ−→ ct

cp+ cq
µ−→ ct

(par)
cp

c?−→ [x]p′

cp | cq c?−→ [x](p′ | cq)

cp
c!−→ (v, cp′)

cp | cq c!−→ (v, cp′ | cq)

cp
τ−→ cp′

cp | cq τ−→ cp′ | cq

(com)
cp

c?−→ [x]p′, cq c!−→ (v, cq′)
cp | cq τ−→ p′[v/x] | cq′

(cond)
cp

µ−→ ct

(be −→ cp, cq)
µ−→ ct

, [[be]] = T

cq
µ−→ ct

(be −→ cp, cq)
µ−→ ct

, [[be]] = F

(rec)
p[rec P.p/P ]

µ−→ cp′

rec P.p
µ−→ cp′

The
choice, par and com rules have symmetric counterparts.

Figure 6: Operational semantics for CCSL: Part 2

NIL ↓
cp ↓, cp′ ↓
cp+ cp′ ↓

cp ↓, cp′ ↓
cp | cp′ ↓

cp ↓
cp\c ↓

cp ↓
cp[R] ↓

p[Ω/P ] ↓
rec P.p ↓

[[be]] = T, cp1 ↓
be −→ cp1, cp2 ↓

[[be]] = F, cp2 ↓
be −→ cp1, cp2 ↓

Figure 7: The convergence predicate
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the one for output is
c!.(v, q) c!−→ (v, q)

and that for communication express the fact that synchronization takes the
form of functions application,

p
c?−→ [x]p′, q c!−→ (v, q′)
p|q τ−→ p′[v/x]|q′

.

The rules in Figure 5-6 are consistent in the following sense:

Lemma 3.5 For all cp ∈ CCSprocL

1. cp τ−→ ct implies ct ∈ CCSprocL ,

2. cp c?−→ ct implies ct ∈ CCSfunL ,

3. cp c!−→ ct implies ct ∈ CCSpairL .

Proof
An easy induction on the length of the derivation of cp

µ−→ ct. 2

The bisimulation preorder <
∼ defined on this ALTS satisfies:

Theorem 3.6

1. <
∼ is a pre-congruence with respect to the operators in Σ.

2. (a) For all cp1, cp2 cp1
<
∼ cp2 implies τ.cp1

<
∼ τ.cp2.

(b) For all c ∈ Chan and cπ1, cπ2, cπ1
<
∼ cπ2 implies c!.cπ1

<
∼ c!.cπ2.

(c) For all c ∈ Chan and cf1, cf2, cf1
<
∼ cf2 implies c?.cf1

<
∼ c?.cf2.

3. (a) For all p1, p2 ∈ CCSprocL (∅) with FV V (pi) ⊆ {x}, i = 1, 2, whenever
p1[v/x] <

∼ p2[v/x] for every v ∈ V al then [x]p1
<
∼ [x]p2.

(b) For all cp1, cp2 and v, cp1
<
∼ cp2 implies (v, cp1) <

∼ (v, cp2).

Proof

1. We have to prove that for any operator op ∈ Σ following holds:

cp <
∼ cq ⇒ op(cp) <

∼ op(cq).

We will only prove the statement for the case op = | , leaving the re-
maining cases to the interested reader to check.

So assume cp1
<
∼ cp2 and cq1

<
∼ cq2. This means that there are sa-

prebisimulations, Rp and Rq such that (cp1, cp2) ∈ Rp and (cq1, cq2) ∈
Rq. We define

Rp|Rq = {(cp′1|cq′1, cp′2|cq′2) (cp′1, cp
′
2) ∈ Rp, (cq′1, cq′2) ∈ Rq}.

As (cp1|cq1, cp2|cq2) ∈ Rp|Rq it is sufficient to show that Rp|Rq is a sa-
prebisimulation. We proceed as follows:
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(a) Assume that (cp′1|cq′1, cp′2|cq′2) ∈ Rp|Rq and that cp′1|cq′1
µ−→ cr1.

We have the following cases:

i. µ = τ , cp′1
τ−→ cp′′1 and cr1 = cp′′1|cq′1. Then there is a cp′′2 where

cp′2
τ−→ cp′′2 and (cp′′1, cp

′′
2) ∈ Rp. This implies that cp′2|cq′2

τ−→
cp′′2|cq′2 where (cp′′1|cq′1, cp′′2|cq′2) ∈ Rp|Rq.

ii. µ = c?, cp′1
c?−→ [x]p′′1 and cr1 = [x](p′′1|cq′1). Now there is a

[y]p′′2 where cp′2
c?−→ [y]p′′2 and ([x]p′′1, [y]p′′2) ∈ Rfun, i.e. for all

v ∈ V al, (p′′1[v/x], p′′2[v/y]) ∈ Rp. As cq′1 and cq′2 do not contain
free value-variables this implies that for all v ∈ V al

((p′′1|cq′1)[v/x], (p′′2|cq′2)[v/y]) = ((p′′1[v/x]|cq′1), (p′′2[v/y]|cq′2))
∈ Rp|Rq.

This shows that ([x](p′′1|cq′1), [y](p′′2|cq′2) ∈ Rp|Rfunq . Further-
more

cp′2|cq′2
c?−→ [y](p′′2|cq′2).

iii. µ = c!, cp′1
c!−→ (v, cp′′1) and cr1 = (v, cp′′1|cq′1). Now cp′2

c!−→
(v, cp′′2) for some cp′′2 where (cp′′1, cp

′′
2) ∈ Rp. Thus

(cp′′1|cq′1, cp′′2|cq′2) ∈ Rp|Rq

and therefore

((v, cp′′1|cq′1), (v, cp′′2|cq′2)) ∈ Rp|Rpairq .

Furthermore cp′2|cq′2
c!−→ (v, cp′′2|cq′2).

iv. The symmetrical cases µ = τ, c?, c! where the transition comes
from cq′1 instead of cp′1 may be treated in the same way.

v. µ = τ , cp′1
c?−→ [x]p′′1, cq′1

c!−→ (v, cq′′1) and cr1 = p′′1[v/x]|cq′′1.
Then cp′2

c?−→ [y]p′′2 where ([x]p′′1, [y]p′′2) ∈ Rfunp , i.e for all v ∈
V al, (p′′1[v/x], p′′2[v/y]) ∈ Rp. Furthermore cq′2

c!−→ (v′, cq′′2)
where ((v, cq′′1), (v′, cq′′2) ∈ Rpairq , i.e. where v = v′ and (cq′′1 , cq

′′
2) ∈

Rq. This implies that (p′′1[v/x]|cq′′1, p′′2[v/y]|cq′′2) ∈ Rp|Rq. Fur-
thermore cp′2|cq′2

τ−→ p′′2[v/y]|cq′′2.

vi. The symmetrical case where cp′1
c!−→ (v, cp′′1) and cq′1

c?−→ [x]q′′1
may be treated similarly.

(b) Next assume that cp′1|cq′1 ↓. This implies that cp′1 ↓ and cq′1 ↓ and
therefore that cp′2 ↓ and cq2 ↓. This in turn implies that cp′2|cq′2 ↓.
Now assume that cp′1|cq′1 ↓, cp′2|cq′2 ↓ and cp′2|cq′2

µ−→ cr2. In the
same way as in (a) we may show that cp′1|cq′1

µ−→ cr1 for some cr1
such that (cr1, cr2) ∈ Rp|Rq.

2. Here we will only prove the last case, i.e. that cf1
<
∼ cf2 implies c?.cf1

<
∼

c?.cf2. The remaining cases may be proved similarly. So assume that
cf1 = [x]p and cf2 = [y]q and that [x]p <

∼ [y]q. This implies that
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([x]p, [y]q) ∈ Rfun for some sa-prebisimulation R. We define c?.R =
R∪{(c?.f, c?.g) (f, g) ∈ Rfun}. Obviously (c?.[x]p, c?.[y]q) ∈ c?.R. It is
also easy to see that c?.R is an sa-prebisimulation.

3. This is just a rephrasing of the definition of the extension of the relations
from Proc to V al −→ Proc and V al× Proc.

2

4 Analysis of the Preorders

The subject of this section is to give an operational characterization of the
denotational semantics given in the companion paper [Ing95]. First we show
by an example, Example 4.1, that the bisimulation preorder, defined in Section
3, is too fine to coincide with the partial order in the model in the sense that
the model is not fully abstract with respect to this behavioural preorder. This
observation supports our intuition that bisimulation is in general too fine to
be completely characterized by any semantics induced by an algebraic cpo as
explained in the introduction to this paper.

Example 4.1 As we only need an example from the pure calculus we use the
notation a = c?x, a.p = c!.(v1, p) and \ a = \ c. Let

aω = recY.a.Y and p = [recX.(aω +X)|a] \ a.

Then the first unfolding of p is

p1 = [(aω + (recX.(aω +X)|a))|a] \ a,

and the n+ 1-th one

pn+1 = [(

n︷ ︸︸ ︷
aω + ((aω + ((aω + . . .+ ((aω +recX.(aω +X)|a))| a . . . |a.))|a︸ ︷︷ ︸

n

] \ a.

The reader may convince himself that the behaviour of p can be given by the
derivation tree described by the infinite sum Ω+

∑
i∈ω τ

i.NIL, i.e. a tree which
has an infinite number of branches which all have a finite depth. Then, because
of the algebraicity of the model, ACT [[p + recP.τ.P ]] = ACT [[p]]. On the other
hand the left hand side has the transition p + recP.τ.P

τ−→ recP.τ.P where
recP.τ.P can perform an infinite sequence of τ -moves. This move can therefore
never be matched by the right hand side p. This implies that p+ recP.τ.P 6<∼ p.

Obviously Example 4.1 rules out the possibility that the behavioural preorder
<
∼ characterizes the preorder of the model. Our second suggestion for a be-
havioural characterization of the model is the weaker version of <

∼, the strong
applicative ω-bisimulation preorder, derived from the function F by iterated
application.
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Definition 4.2 [Strong Applicative ω-Prebisimulation]
The kth sa-prebisimulation <

∼k is defined inductively by:

1. <
∼0= Con× Con,

2. <
∼n+1= F(<

∼n).

The sa-ω-prebisimulation <
∼ω is defined as <

∼ω=
⋂
k

<
∼k and ∼ω=<

∼ω ∩<
∼ω
−1. 2

For all k we have that <
∼⊆<

∼k+1⊆<
∼k which implies that <

∼⊆<
∼ω.

Again this preorder is too fine to match the preorder from the model as the
following example shows:

Example 4.3 Let AT = 〈Con,Act,−→, ↓〉 be an applicative transition system
and the process p be given by the derivation graph described by the infinite sum∑
n c?.[x]x ≤ n −→ NIL,Ω1. Now let

q = p+ c?.[x]NIL.

In any denotational semantics based on an algebraic cpo, D, it is clear that
D[[p]] = D[[q]]. On the other hand q has the derivation q

c?−→ [x].NIL which can
never be matched by p and consequently q 6<∼ω p.

Intuitively the reason for why <
∼ω is too fine for processes with values is that

the values give rise to a new kind of infinity. We recall from [Ing95] that in
the model the preorder is decided completely by the compact elements. We
also recall that the compact elements both have finite “depth” and “width”,
i.e. map all but finite number of values to ⊥. These considerations motivate the
following definition of value-finitary strong applicative ω-prebisimulation. This
definition is a slight modification of the one given in [HP80].

Definition 4.4 [Value-Finitary Strong Applicative ω-Prebisimulation]

Let AT = 〈Con, V al,Act,−→, ↓〉 be an applicative transition system, V ⊆ V al
and R ⊆ Con×Con. Then we define the V -restricted extension of R, R|V by

1. c1R|V c2 iff c1Rc2

2. (v1, c1)R|V (v2, c2) iff (v1 ∈ V or v2 ∈ V ) implies (v1 = v2 and c1Rc2).

3. f1R|V f2 iff f1(v)Rf2(v) for all v ∈ V .

The nth value-finitary sa-bisimulation preorder <
∼
f
n is defined by:

1. <
∼
f
0= Con×Con,

2. <
∼
f
n+1= (F(<

∼
f
n))|Vn+1.

1Whether this process can be expressed in the syntax of CCSL or a similar language is an
open question.
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The value-finitary sa-ω-bisimulation preorder, <
∼
f
ω , is defined by <

∼
f
ω=

⋂
k

<
∼
f
k

with the derived equivalence ∼fω=<
∼
f
ω ∩(<

∼
f
ω)−1. 2

From this definition we get that (v1, c2) <
∼
f
n (v2, c2) if and only if v1, v2 6∈ Vn or

v1 = v2 ∈ Vn and c1
<
∼
f
n c2.

We note that R|V is decreasing in V , i.e. V ⊆W implies R|V ⊇ R|W . This
implies that <

∼
f
n⊆<
∼
f
n+1 for all n. We also note that the only difference between

this definition and Definition 4.2 is the restriction on the values in the definition
of vfn+1. Obviously <

∼n⊆<
∼
f
n for all n which implies <

∼⊆<
∼ω⊆<

∼
f
ω. It is easy to prove

that <
∼
f
ω actually is a preorder and has all the properties stated in Theorem 3.6.

The proof for this is straightforward and is left to the reader. Now let us have
a further look at our previous example, Example 4.3.

Example 4.5 Let p and q be defined as in Example 4.3. Obviously p <
∼ q and

therefore p <
∼
f
ω q. We have also shown that q 6<∼ω p and thereby q 6<∼ p. On

the other hand one may show that q <
∼
f
ω p by showing that q <

∼
f
n p for all n by

induction.

We summarize these results of this section in the following lemma:

Lemma 4.6 <
∼⊆<

∼ω⊆<
∼
f
ω but <

∼
f
ω 6⊆<

∼ω 6⊆<
∼.

5 The Full Abstractness

In this last section we will prove the full abstractness of the model with respect
to the behavioural preorder <

∼
f
ω. As we explained in Section 2 the proof may

be reduced to proving the following three properties: the finitariness of the
preorder, the soundness of the proof system E−ωrec and the partial completeness
for the proof system Erec with respect to <

∼
f
ω.

5.1 The Finitary Part of the Preorders

In this section we will define a suitable notion of a “finitary part” of a relation
over processes and that of a “finitary relation”. The definition is based on
the same idea as the one given in [Hen81]. The only difference is that we use
syntactically compact terms in our definition whereas Hennessy uses recursion-
free terms. We will then show that the preorder <

∼
f
ω is the finitary part of the

preorders <
∼ and <

∼
f
ω and therefore that <

∼
f
ω is finitary in our sense. We start by

defining the finitary part of a relation over CCSL.

Definition 5.1 For any relation R over CCSL we define the finitary part of
R, RF , by

ctRF cu iff for all Cot ∈ CoTerms,CotRct implies CotRcu.

R is finitary if R = RF . 2
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Following [Hen81] next we will prove that on CoTerms× CCSL the pre-
orders, <

∼ and <
∼
f
ω, coincide. Consequently they both have the same finitary

part. To show this we need a measure on CoTerms that both measures the
structural depth of the term and the number of values it uses. We give the
following definitions.

Definition 5.2 For syntactically finite terms, d, we define the structural depth,
sd(d), by:

1. sd(NIL) = sd(Ω) = 0,

2. sd(µ.d) = 1 + sd(d),

3. sd(op(d1, . . . , dn) = 1 +
∑n
i=1 sd(di), op ∈ Σ,

4. sd([x]d) = sd(e, d) = 1 + sd(d),

5. sd(be −→ d1, d2) = 1 + sd(d1) + sd(d2).

2

From this definition we can easily derive that if cd
µ−→ ct then sd(ct) ≤

sd(cd)−1. Also for all v ∈ V al, sd(d[v/x]) = sd(d) and therefore sd(([x]d)(v)) =
1 + sd(d).

The support of a compact term is the set of values the term uses in a non-
trivial way. Formally this is defined as follows:

Definition 5.3 The support of the term Cot ∈ CoTerms, Supp(Cot), is de-
fined by structural recursion as:

1. Supp(NIL) = Supp(Ω) = ∅,

2. Supp(op(p1, . . . , pn)) =
⋃n
i=1 Supp(pi),

3. Supp(pre.t) = Supp(t),

4. Supp(e, p) = Supp(p) ∪ {[[e]]},

5. Supp([x] (x : wn −→ p
n
)) = {wn} ∪

⋃n
i=1 Supp(pi).

Note that Supp(Cot) is a finite set. We define the value-depth of Cot, vd(Cot)
by vd(Cot) = min{n|Supp(Cot) ⊆ Vn}. 2

Now we prove the following.

Proposition 5.4 For all Cot ∈ CoTerms and ct ∈ CCSL,

Cot <
∼
f
ω ct if and only if Cot <

∼ ct.

and therefore
(<
∼
f
ω)F =<

∼
F
.
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Proof As the “if” part is already known it is sufficient to prove the “only if”

part. We do this by proving the following stronger result.

For all Cot ∈ CoTerms and ct ∈ CCSL

Cot <
∼
f
m ct⇒ Cot <

∼ ct

for all m where m ≥ m(Cot) = sd(Cot) + vd(Cot).

The proof of this statement proceeds by induction on m(Cot).

m(Cot) = 0: We have two cases: Cot = Ω, which is trivial, and Cot = NIL
which we will have a further look at. Now, as NIL ↓, the definition of
<
∼
f
m implies that ct ↓. Furthermore as NIL 6 µ−→ for all µ this is also true

for ct. This proves that Cot = NIL <
∼ ct.

m(Cot) = k+1: Assume we have proved the result for all Cot′ with m(Cot′) ≤
k and we will prove that it is true for Cot where m(Cot) = k + 1. We
assume that Cot <

∼
f
m ct, where m ≥ m(Cot) = k + 1. As F(<

∼) =<
∼ it is

sufficient to show that CotF(<
∼)ct. We proceed by case analysis on the

structure of Cot.

Cot ∈ CoProc:
1. Assume Cot

µ−→ cu. By definition of <
∼
f
m, ct

µ−→ cu′ for some cu′

such that cu <
∼
f
m−1 cu

′. Also, by definition of CoTerms, cu ∈
CoTerms. Now vd(cu) ≤ vd(Cot) and sd(cu) ≤ sd(Cot) − 1.
Thus m− 1 ≥ k ≥ m(cu) and by the induction cu <

∼ cu′.

2. Now assume Cot ↓, by definition of the preorder <
∼
f
ω also ct ↓.

Furthermore assume that Cot ↓, ct ↓ and that ct µ−→ cu′. Then
Cot

µ−→ cu for some cu such that cu <
∼
f
m−1 cu

′. In a similar way
as before the induction implies cu <

∼ cu′, which completes the
proof in this case.

Cot ∈ CoFun: Then ct and Cot have the form ct = [x]t′ where x ∈ V ar,
t′ ∈ Proc and Cot = [y]t for some y ∈ V ar where t = y : wn −→
Cot′n, for some wn and Cot′n. Our assumption is that [y]t <

∼
f
m [x]t′,

i.e. that t[v/y] <
∼
f
m t′[v/x] for all v ∈ Vm. We have to prove that

[y]t <
∼ [x]t′. i.e. that t[v/y] <

∼ t′[v/x] for all v ∈ V al. This is
obviously true for v 6∈ {wn} as in that case t[v/y] ∼ Ω. So assume
that v ∈ {wn}. As m ≥ vd(Cot), {wn} ⊆ Vm. Furthermore we
know from the assumption that for all wi, i ≤ n, t[wi/y] <

∼
f
m t′[wi/x]

and t[wi/y] ∼ Cot′i. This implies that Cot′i <
∼
f
m t′[wi/x]. Now we

have that m(Cot′i) < m(Cot) = k + 1, i.e. m(Cot′i) ≤ k. As m ≥
k + 1 > k ≥ m(Cot′i) the induction applies and we may conclude
that Cot′i <

∼ t′[wi/x]. Again, as Cot′i ∼ t[wi/x], this implies that
t[wi/y] <

∼ t′[wi/y] as we wanted to prove.

Cot ∈ CoPair: Now Cot = Coπ = (v′, Cot′) and ct = cπ = (v′′, ct′′). By
the definition of the preorder and the assumption on m, v′ = v′′ ∈ Vm
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and Cot′ <
∼
f
m ct. As before m > k ≥ m(Cot′) and the result follows

from the induction.

2

We will now show that the preorder <
∼
f
ω is finitary and therefore that it is the

finitary part of <
∼. Again following closely [Hen81], we introduce the so called

compact projections and show some of their properties. The remainder of this
section is devoted to this. We adopt Abramsky’s definition of the sort of a
term, t, Sort(t), as the set of channel names it uses.

Definition 5.5 The sort of ct ∈ CCSL is given by

1. Sort(cp) = {c ∈ Chan|cp a−→, chan(a) = c} ∪ ⋃{Sort(cu)|∃µ.cp µ−→ cu}

2. Sort([x]t) =
⋃{Sort(t[v/x])|v ∈ V al}

3. Sort(e, cq) = Sort(cq).

2

Note that, because of our restriction to finite renamings, Sort(ct) is finite for
all ct [Abr91, AH92].

Definition 5.6 [Compact Projections] We define the n-th projection of ct
on CoTerms inductively as follows:

1. (a) cp[0] = Ω

(b) cp[n+1] =
∑{µ.ct[n]|cp µ−→ ct}+ {Ω|cp ↑}

2. (a) ([x]p)[0] = [x]Ω

(b) ([x]p)[n+1] = [x]x : (v1, · · · , vn+1)→((p[v1/x])[n+1], · · · ,(p[vn+1/x])[n+1])

3. (a) (v, cp)[0] = (v1,Ω),

(b) (v, cp)[n+1] =

{
(v, cp[n+1]) if v ∈ Vn+1
(vn+2,Ω) otherwise

.

Note that the sum in 1.(b) only makes sense as we are summing over a finite
set (up to commutativity, absorption and α-congruence). That this is the case
may be proved by induction on n. 2

The syntactically compact projections have the following properties:

Lemma 5.7 For all ct and all n,

1. ct[n] ∈ CoTerms,

2. ct[n] ∼fn ct.
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Proof

1. A simple induction on n, using a case analysis on the structure of ct for
the inductive step.

2. First we prove ct <
∼
f
n ct

[n] by induction on n.

n = 0 : Trivial.

n = k + 1 : Let us assume that ct <
∼
f
k ct[k]. We have to prove that

ct <
∼
f
k+1 ct

[k+1]. We proceed by a case analysis on the structure of ct.

ct = cp ∈ CCSprocL :

(a) Assume cp
µ−→ cu. By the definition of cp[i], cp[k+1] µ−→

cu[k]. From the induction we get that cu <
∼
f
k cu

[k] and the
first clause of the definition for <

∼
f
k+1 is met.

(b) First we note that cp ↓ if and only if cp[i] ↓ for all i. Thus cp ↓
implies cp[k+1] ↓. Furthermore assume that cp ↓, cp[k+1] ↓
and that cp[k+1] µ−→ cu′. Then cp

µ−→ cu such that cu[k] =
cu′. Again, by the induction, cu <

∼
f
k cu

′.

ct ∈ CCSpairL s,CCSfunL : Follows easily from the previous case.

It remains to prove that ct[n] <
∼
f
n ct. The proof of this fact is similar to

the previous one and is left to the reader.

2

The following results investigate the relationship between a term, ct, and
its syntactically compact projections in more detail.

Lemma 5.8

1. ct[0] <
∼
f
ω ct

[1] <
∼
f
ω · · · <∼

f
ω ct

[n] <
∼
f
ω · · · <∼

f
ω ct

2. If ct[0] <
∼
f
ω ct[1] <

∼
f
ω · · · <

∼
f
ω ct[n] <

∼
f
ω · · · <

∼
f
ω cu then ct <

∼
f
ω cu, i.e. ct is a

minimal upper bound 2 of the chain with respect to <
∼
f
ω.

3. The term ct is a minimal upper bound for the set App(ct) = {Cot ∈
CoTerms|Cot <

∼
f
ω ct} with respect to <

∼
f
ω.

Proof

1. We first prove that for all n

ct[n] <
∼
f
ω ct

[n+1].

In order to do that we prove a slightly stronger result:

∀m ≥ n. ct[n] <
∼
f
m ct[n+1].

2Note that a minimal upper bound of a preorder is unique up to the induced equivalence.
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We prove this by induction on n. The base case, n = 0, is immediate as
ct[0] <

∼
f
m ct[1] for all m is trivial. So assume

ct[k] <
∼
f
m ct[k+1] for m ≥ k

and we will prove that

ct[k+1] <
∼
f
m+1 ct

[k+2] for m ≥ k.

We proceed by a case analysis on the form of ct.

ct = cp ∈ CCSprocL : Assume cp[k+1] µ−→ ct, then cp
µ−→ cu for some cu

such that cu[k] = ct. Also cp[k+2] µ−→ cu[k+1] and by the induction ,
as m ≥ k, cu[k] <

∼
f
m cu[k+1]. Thus the first condition of the definition

of the preorder <
∼
f
m+1 is satisfied. We now note that cp ↓ if and only

if cp[i] ↓ for all i and the second condition of the definition can be
met in a similar way to the first one.

ct = [x]p ∈ CCSfunL : By definition

([x]p)[i+1] = [x]x : (v1, · · · , vi+1)→((p[v1/x])[i+1], · · · , (p[vi+1/x])[i+1])

We have to prove that

(([x]p)[k+1])(v) <
∼
f
m+1 ([x]p[k+2])(v)

for all v ∈ V al. First we note that for all v ∈ Vk+1

([x]p)[k+1](v) ∼ (p[v/x])[k+1]

and
([x]p)[k+2](v) ∼ (p[v/x])[k+2].

Now the result follows from the previous case, the transitivity and
the fact that <

∼⊆<
∼
f
m+1. Otherwise if v 6∈ Vk+1 then ([x]p)[k+1](v) ∼ Ω

and the result follows.

ct = (v, cp) ∈ CCSpairL : Similar.

Next we prove ct[n] <
∼
f
ω ct for all n. We know from Lemma 5.7 that

ct[k] <
∼
f
k ct for all k. Furthermore for any m ≥ n

ct[n] <
∼
f
ω ct

[m] <
∼
f
m ct.

Thus ct[n] <
∼
f
m ct for all m ≥ n which proves the statement.

2. To prove that ct is a minimal upper bound of the chain assume

ct[0] <
∼
f
ω ct

[1] <
∼
f
ω · · · ct[n] <

∼
f
ω · · · <∼

f
ω cu.

As ct ∼n ct[n] this implies ct <
∼
f
n cu for all n and therefore ct <

∼
f
ω cu.

3. Follows from statement 1., as {ct[n]|n = 1, · · ·} ⊆ App(ct).
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2The following theorem is a direct consequence of the lemma above.

Theorem 5.9

1. <
∼
f
ω= (<

∼
f
ω)F

2. The preorder <
∼
f
ω is the finitary part of <

∼, i.e. <
∼
F=<

∼
f
ω.

Proof

1. That <
∼
f
ω⊆ (<

∼
f
ω)F is obvious so we only have to prove the other inclusion.

Thus assume

∀Cot ∈ CoTerms. Cot <
∼
f
ω ct implies Cot <

∼
f
ω cu.

This is equivalent to saying that App(ct) ⊆ App(cu) and the result follows
from Lemma 5.8.

2. By Proposition 5.4, <
∼
F= (<

∼
f
ω)F and the result follows from part 1. of this

theorem.

2

5.2 The Partial Completeness and The Full Abstractness

This last subsection is devoted to the proof of the soundness of the proof sys-
tem E−ωrec and the partial completeness of Erec with respect to <

∼
f
ω. We start

by proving the soundness of the proof system E−ωrec , i.e the proof system that
consists of the system Erec where the ω-rule is omitted. This is the content of
the following Lemma.

Lemma 5.10 (Partial Soundness) The proof system E−ωrec is sound with re-
spect to the behavioural preorders <

∼ and <
∼
f
ω.

Proof The soundness of E−ωrec with respect to <
∼ can be shown by proving

ct vE−ωrec cu implies ct <
∼ cu

by induction on the depth of the proof tree for ct vE−ωrec cu. The soundness of

E−ωrec with respect to vfω follows from this as <
∼⊆<

∼
f
ω . The details of the proofs

are omitted. 2

Here we want to point out that the ω-rule is not sound with respect to the
preorder <

∼ as shown by Example 4.1. Furthermore proving the soundness of
the ω-rule for <

∼
f
ω directly is notationally quite complicated.
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Next we prove the mentioned partial completeness result, i.e. that for all Cot
and ct,

Cot <
∼ ct⇒ Cot vErec ct

This proof follows very much the same pattern as the proof for a similar partial
completeness result in [AH92]. First we introduce the notion of head normal
forms and prove a corresponding normalization theorem.

Definition 5.11 A process term is said to be in a head normal form if it has
the form

∑
i µiti.

2

Lemma 5.12 If cp ↓ then there is a head normal form, hnf(cp), such that
cp =E−ωrec

hnf(cp).

Proof We prove the Lemma by induction on the length of the derivation of
cp ↓ which we refer to as n. We proceed by a case analysis on the structure of
cp.

n = 1 : We have the two cases: cp = NIL and cp = µ.t which both are trivial.

n = m+ 1 : We proceed by structural induction on cp.

cp = NIL,µ.t: Already proven.
cp = Ω: Vacuous.
cp = cp1+cp2, cp1\c, cp1[R], be −→ cp1, cp2: Follows from the induction

and a simple use of the proof system.
cp = cp1|cp2: By induction cp1 and cp2 have head normal forms h1

and h2. If either h1 or h2 is NIL, the result follows from Equation
(NILpar) in Figure 2. Otherwise assume

h1 =
∑
i

µi.ti and h2 =
∑
i

γi.ui.

By substitutivity and the interleaving law in Figure 3

cp =E−ωrec
cp1|cp2 =E−ωrec

h1|h2 =E−ωrec

INTL(h1, h2) + COMM(h1, h2)

where each of the summands is in a Head normal form.
cp = recP.q: Then cp ↓ because q[recP.q/P ] ↓. Thus by the induction

q[recP.q/P ] has a head normal form and the result follows from (rec)
in Figure 4.

2

Here it is important that we only use the partial proof system E−ωrec in
normalization procedure as the soundness of the ω-rule with respect to the
preorder <

∼
f
ω has not been proved yet.
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Notation 5.13 Let p, q ∈ Proc and t, u ∈ Terms. To simplify the notation
we will in what follows use the following convention (where abs stands for ab-
straction and app for application):

1. abs(t|u) for

(a) abs(p|q) = p|q
(b) abs([x]t|p) = [x](t|p)
(c) abs(p|[x]t) = [x](p|t)
(d) abs((v, p)|q) = (v, p|q) = abs(p|(v,q)

2. app(t|u) for

(a) app([x]t|(v,p)) = t[v/x]|p
(b) app((v, p)|[x]t) = p|t[v/x]

Using this notation we get that if cp
µ−→ cp′ then cp|cq µ−→ abs(cp′|cq) and

cq|cp µ−→ abs(cq|cp′). Furthermore if cp c!−→ π and cq
c?−→ f then cp|cq τ−→

app(π|f) and cq|cp τ−→ app(f |π). We use this notation to formulate the follow-
ing lemma:

Lemma 5.14 For all closed terms cp, cq and ct

1. (cp+ µ.ct)|cq =Erec (cp+ µ.ct)|cq + µ.abs(ct|cq)

2. cq|(cp+ µ.ct) =Erec cq|(cp+ µ.ct) + µ.abs(cq|ct)

3. (cp+ a.ct)|(cq+ a.cu) =Erec (cp+ a.ct)|(cq+ a.cu) + τ.app(ct|cu).

Proof We only prove the first statement as the second one follows by the
commutativity of | and substitutivity and the third is similar and is left to the
reader. First assume that cp and cq are syntactically compact. By Lemma 2.7
we may assume that they are in Ω-normal forms; cp =

∑
i µi.ti + {Ω|cp ↑} and

cq =
∑
j γj.uj +{Ω|cq ↑}. The result now follows as an easy consequence of the

interleaving law in Figure 3. Next assume that cp, cq and ct are any terms. It
is easy to see that

(abs(ct|cu))(n) = abs(ct(n)|cu(n))

for all n. Therefore we have that:

[(cp+ µ.ct)|cq](n) =

(cp(n) + µ.ct(n))|cq(n) =Erec

(cp(n) + µ.ct(n))|cq(n) + µ.abs(ct(n)|cq(n)) =Erec

[(cp+ µ.ct)|cq + µ.abs(ct|cq)](n)

for all n and the result follows from the ω-rule. 2

Now we can prove the following useful property:
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Proposition 5.15 For all cp, ct and µ we have that cp
µ−→ ct implies cp =Erec

cp+ µ.ct.

Proof The proof is by induction on the length of the derivation of cp µ−→ ct.
We proceed by a case analysis on the structure of cp. We only examine two
cases, leaving the remaining ones to the reader.

cp = recP.u: Now cp
µ−→ ct because u[recP.u/P ]

µ−→ ct. By induction
u[recP.u/P ] =Erec u[recP.u/P ] + µ.ct and by (rec) cp =Erec cp+ µ.ct.

cp = cp1|cp2: We have three cases:

1. cp1
µ−→ ct1 and ct = abs(ct1|cp2): By induction

cp1 =Erec cp1 + µ.ct1.

By the substitutivity and the first statement of Lemma 5.14, we have
that

cp1|cp2 =Erec (cp1 + µ.ct1)|cp2

=Erec (cp1 + µ.ct1)|cp2 + µ.abs(ct1|cp2)

=Erec cp1|cp2 + µ.abs(ct1|cp2)

= cp+ µ.ct.

2. cp2
µ−→ ct2 and ct = abs(cp1|ct2): This can be proved in the same

way as the previous case by using statement 2 of Lemma 5.14 instead
of Lemma 5.14(1).

3. cp1
a−→ ct1, cp2

a−→ ct2, µ = τ and ct = app(ct1|ct2): By induction

cp1 =Erec cp1 + a.ct1

and
cp2 =Erec cp2 + a.ct2.

By statement 3 of Lemma 5.14 and substitutivity, we then have that

cp1|cp2 =Erec (cp1 + a.ct1)|(cp2 + a.ct2)

=Erec (cp1 + a.ct1)|(cp2 + a.ct2) + τ.app(ct1|ct2)

=Erec cp1|cp2 + τ.app(ct1|ct2)

= cp+ µ.ct.

2

In the following we will state and prove the promised partial completeness

result for the proof system Erec.
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Theorem 5.16 For all compact terms Cot and all closed terms ct

Cot <
∼
f
ω ct if and only if

Cot vErec ct

Proof By Proposition 5.4 it is sufficient to prove the statement with <
∼
f
ω replaced

by <
∼ which we do as follows:.

Cot <
∼ ct implies Cot vErec ct: It is sufficient to prove the result for Cot in
Ω-normal form. The general result follows from the normalization result,
Lemma 2.7, and the soundness of E with respect to <

∼. We proceed by
a case analysis on the form of Cot but only give the details of the case
where Cot = Cotp ∈ CoProc. In this case ct = cp ∈ CCSprocL .

So assume np <
∼ cp where np is an Ω-normal form and we will prove that

np vErec cp. The proof proceeds by induction on sd(np), the structural
depth of np defined in Definition 5.2. So assume the theorem is true for
all np′ with sd(np′) ≤ k and that sd(np) = k + 1. We proceed by a case
analysis on the form of np.

np = NIL+ Ω: Then np =Erec Ω vErec cp.

np = NIL: NIL <
∼ cp implies cp ↓. Thus cp has a head normal form

h(cp) with h(cp) =E−ωrec
cp. As NIL 6 µ−→ then h(cp) 6 µ−→ for all µ

which implies that h(cp) = NIL. Therefore np =Erec h(cp) =Erec cp.

np =
∑
i µi.cpi{+Ω}: We prove this case in three steps.

1. cp+ np vErec cp: Assume np µ−→ cp′ then µ = µi and cp′ = cpi
for some i. As np <

∼ cp this implies that cp
µi−→ cqi where

cpi <
∼ cqi. By applying induction we have that cpi vErec cqi and,

by substitutivity, that µi.cpi vErec µi.cqi. Thus by substitutivity
and Proposition 5.15

cp+ µi.cpi vErec cp+ µi.cqi =Erec cp.

Repeated use of this result, substitutivity and transitivity im-
plies cp+ np vErec cp.

2. np vErec cp + np: If Ω is a summand of np then np vErec np +
Ω vErec np + cp. So assume that np ↓. As np <

∼ cp this implies
cp ↓ and therefore that cp has a head normal form cp =E−ωrec
h(cp) =

∑
j γj.cqj. As the proof system E−ωrec is sound with

respect to <
∼ then np <

∼ h(cp). Thus cp
γj−→ cqj implies that

γj = µij for some iJ and that np
µij−→ cpij for some cpij such

that cpij <
∼ cqj. Now by proceeding in a similar way as in the

previous case we get that

np = np +
∑
j

µij .cpij vErec np+
∑
j

γj.cqj vErec np+ cp.
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3. Finally 1. and 2. imply np vErec cp.

Cot vErec cp implies Cot <
∼
f
ω cp: By Corollary 2.8 we get that Cot vE−ωrec cp and

the result follows from the soundness of E−ωrec with respect to the preorder
vf
ω, stated in Lemma 5.10.

2

We are now ready to prove the main result of this section, namely the full ab-

stractness of the denotational semantics with respect to the finitary behavioural
semantics based on the preorder <

∼
f
ω. This is the content of the following theo-

rem.

Theorem 5.17 (Full Abstractness) For all closed terms, ct and cu, in CCSL

ct <
∼
f
ω cu if and only if ct vErec cu if and only if ACT[[ct]] v ACT[[cu]].

Proof The first equivalence follows from Theorem 2.9 as the conditions of the
theorem are ensure by Theorem 5.9, Lemma 5.10 and Theorem 5.16. The second
one follows from the soundness and the completeness of the proof system with
respect to the model stated in Theorem 2.5. 2

6 Conclusion

In this last section we will give a summary of the main result of this sequel of
two papers and suggest some directions for further work.

6.1 Summary of Results

In the first paper of this sequel of two paper we defined a general syntax for
value passing processes which reflects the late semantic approach. We also gave
a general class of denotational models to describe the semantics of languages
defined by the general syntactic class. Furthermore we defined a concrete lan-
guage, CCSL which is a direct extension of the standard CCS by adding values
to the language following the late semantic approach. We then defined a con-
crete denotational model which is a instantiation of the general class of models.
This model is a direct extension of the one given for the pure language SCCS
by Abramsky in [Abr91] and a slight modification of the model defined by Milne
and Milner in [MM79]. We finish the paper by defining a proof system based
on a set of inequation and proof its soundness and completeness with respect
to the denotational model model.

In this second paper of the sequel the main focus is on giving a Plotkin style
operational semantics [Plo81], and a suitable extension of the standard strong
prebisimulation [Hen81, Wal90] to take value-passing based on the late approach
into account. Thus we introduce the notion of applicative labelled transition
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system and the related notion of strong applicative bisimulation. One of the
main purposes with this second paper is to make the semantic description of
the language CCSL more complete by giving an operational characterization of
the preorder derived from the denotational model defined in [Ing95]. Therefore
we introduce a suitable notion of a finitary part of a relation and a finitary re-
lation over CCSL processes. Then we define a value-finite version of the strong
applicative ω-bisimulation preorder and show that it is finitary in our sense and
is exactly the finitary part of the strong applicative bisimulation preorder. Fi-
nally we show the soundness and completeness of the proof system with respect
to the value finite strong ω-bisimulation preorder. The full abstractness of the
denotational semantics with respect to the value finite strong ω-bisimulation
preorder follows directly from this and the soundness and the completeness of
the proof system with respect to the denotational semantics.

6.2 Future Work

The results in these papers may be extended in several directions. In the
following we will give some examples.

1. Giving a similar semantic description of a CCS-like language with focus
on the early semantic approach.

2. Extending the theory to the notion of weak bisimulation preorder and
observational congruence.

3. Extending the theory to higher order calculi.

4. Applying symbolic methods to the applicative prebisimulation.
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