
B
R

IC
S

R
S

-95-6
I.W

alukiew
icz:

A
C

om
plete

D
eductive

S
ystem

fortheµ
-C

alculus

BRICS
Basic Research in Computer Science

A Complete Deductive System
for the µ-Calculus

Igor Walukiewicz

BRICS Report Series RS-95-6

ISSN 0909-0878 January 1995

Copyright c© 1995, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recentpublications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone:+45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through WWW and
anonymous FTP:

http://www.brics.dk/
ftp ftp.brics.dk (cd pub/BRICS)

A Complete Deductive System for the µ-Calculus

Igor Walukiewicz1,2

BRICS3

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

The propositional µ-calculus as introduced by Kozen in [12] is consid-
ered. In that paper a finitary axiomatisation of the logic was presented
but its completeness remained an open question. Here a different finitary
axiomatisation of the logic is proposed and proved to be complete. The
two axiomatisations are compared.

1 Introduction

It is now common to view computer programs as state transformers, that is ac-
tions that can change one state of computer hardware to another. In contrast
with classical logics the notion of change is intrinsic in modal logics. Within
modal logic, one can speak about multiple possible worlds and relations between
them, as, for example, the changes of an environment during time. This prop-
erty makes the modal logic a valuable tool for description of program behaviour
that is itself observable through the changes of computer states.

The properties of logic we should consider, when we have program verifi-
cation in mind, are expressiveness, completeness and decidability. The more
expressive is the logic, the more properties of the systems we can describe. A
complete axiom system allows us to reason about the properties. This facilitates
“proof theoretic” approach to specification and verification. Decidability and
particularly computational complexity of the decision procedure is important
for machine aided verification. Finally, there is a question of model checking,
i.e., establishing the truth of a formula in a given state of a (usually very large)
structure, which describes a behaviour of a complex program.

We consider propositional µ-calculus in the form introduced by Kozen in [12].
It turned out that this logic is very well suited for specification and verification
purposes. First it is very expressive and most of the other logics of programs

1This work was partially supported by Polish KBN grant No. 2 1192 91 01
2On the leave from: Institute of Informatics, Warsaw University, Banacha 2,
02-097 Warsaw, POLAND

3Basic Research in Computer Science, Centre of the Danish National Research Foundation.

1

can be encoded into the µ-calculus. On binary trees the logic is as expressive
as monadic second order logic of two successors [18, 6]. On the other hand
the logic is manageable. Satisfiability problem for the logic was shown to be
EXPTIME-complete [15, 23, 4] which means that it is of the same complex-
ity as for many much less expressive logics. The best known upper bound for
the model checking problem is exponential but it is polynomial if nesting of
fixpoints is bounded [3, 1].

One of lacking elements in this picture was finitary complete axiomatisation
of the logic (infinitary axiomatisation was given in [13]). There exist finitary
axiomatisations for many weaker propositional logics of programs like PDL [8,
19, 14, 11, 16], CTL∗ [5] or Process Logic [9]. Completeness proofs for these
logics use the so called Henkin method which consists of constructing a model
for a non refutable formula. The use of this method depends on the ability
of syntactic model construction which is provided by collapsed model theorem
or a result of similar kind. For several more expressive logics of programs
like: PDL∆, PAL, temporal µ-calculus (see [10, 22]) the completeness problem
remains open. One of the reasons for this is that these logics, as well as the
µ-calculus, do not enjoy the collapsed model property (see for example [10]),
hence known methods do not work in this case.

In [12] Kozen proposed a natural axiom system and showed that it can prove
all valid formulas satisfying some syntactic restrictions. In the present paper
a different finitary axiomatisation is proposed and shown to be complete for
the whole logic. The systems differ only in one, the most important, rule. The
original system has Park’s rule:

α(ϕ) ⇒ ϕ

µX.α(X) ⇒ ϕ

which expresses the property that the least fixpoint is the least pre-fixpoint. The
rule proposed here is derived from Knaster-Tarski characterisation of the least
fixpoint as the limit of a chain of approximations. We show that Park’s rule is
derivable in our system but our rule is not derivable in Kozen’s system. Hence
the presented completeness result cannot be used to prove the completeness of
the, weaker, Kozen’s axiomatisation.

Although our rule may seem to be less natural than Park’s rule we think
that our proof system has some advantages.

First we think that it is easy to prove the facts in this system mainly due
the strength of our rule. Although we have a cut rule in the system, the
completeness proof gives an algorithm for constructing a proof of a given valid
formula. Hence there is a way of controlling cut’s.

We believe that the system can be naturally integrated with a decidability
algorithm. This allows construction of a tool which given a formula will con-
struct either a proof of it or a counterexample model. Moreover this tool should
also allow interaction with the user who can speed up some proving steps.

For propositional modal logics of programs reduction to ω-automata is a
general method of model construction. As our method of proving completeness
is closely related to this technique we hope that it can be also generalised to
other logics.

2

The outline of the paper is as follows. We begin by giving basic definitions
and recalling a result from [17] which we will use. Next we present our axioma-
tisation, prove some of its properties and relate it to Kozen’s system. Finally
we present the completeness proof.

Acknowledgements

I am very grateful to Dexter Kozen for his introduction to the µ-calculus and
sharing with me his understanding of the subject. Damian Niwiński was the
one from whom I learned automata theory. Long discussions with him made
development of this material possible. Results presented here come from my
PhD thesis. Jerzy Tiuryn guided development of the thesis and was always
ready with help and advice. I would also like to thank my PhD referees: Dexter
Kozen, Andrzej W. Mostowski and Pawe l Urzyczyn for their valuable comments.
I am indebted to my first two supervisors: Leszek Holenderski and Grażyna
Mirkowska, without whom I would not have started the subject at all.

2 Preliminary definitions

In this section we will give basic definitions and recall a result from [17] which
we will use in the completeness proof.

Let Prop = {p, q, . . .} be a set of propositional letters, Var = {X, Y, . . .} a
set of variables and Act = {a, b, . . .} a set of actions. Formulas of the µ-calculus
over this three sets can be defined by the following grammar:

F := Var | Prop | ¬F | F ∨ F | F ∧ F | 〈Act〉F | [Act]F | µVar .F |νVar .F

Additionally we require that in formulas of the form µX.α(X) and νX.α(X),
variable X occurs in α(X) only positively, i.e., under even number of negations.
We will use σ to denote µ or ν. We use ff as an abbreviation for a formula
p ∧ ¬p for some propositional constant p.
Formulas are interpreted in Kripke models of the form M = 〈S, R, ρ〉, where:

• S is a nonempty set of states,

• R : Act → P(S ×S) is a function assigning a binary relation on S to each
action in Act .

• ρ : Prop → P(S) is a function assigning a set of states to each proposi-
tional letter in Prop.

For a given model M and a valuation Val : Var → P(S), the set of states
in which a formula α is true, ‖ α ‖MV al is defined inductively as follows (we will
omit superscript M when it causes no ambiguity):

‖ X ‖V al = V al(X)
‖ p ‖V al = ρ(p)

‖ ¬α ‖V al = S − ‖ α ‖V al

3

‖ α ∧ β ‖Val = ‖ α ‖Val ∩ ‖ β ‖V al

‖ α ∨ β ‖V al = ‖ α ‖V al ∪ ‖ β ‖V al

‖ 〈a〉α ‖V al = {s : ∃s′.(s, s′) ∈ R(a) ∧ s′ ∈ ‖ α ‖V al}
‖ [a]α ‖V al = {s : ∀s′.(s, s′) ∈ R(a) ⇒ s′ ∈ ‖ α ‖V al}

‖ µX.α(X) ‖V al =
⋂

{S ′ ⊆ S : ‖ α ‖V al[S′/X] ⊆ S ′}

‖ νX.α(X) ‖V al =
⋃

{S ′ ⊆ S : S ′ ⊆ ‖ α ‖V al[S′/X]}

When we write M, s, Val |= α we mean that s ∈ ‖ α ‖MV al. For a set of
formulas Γ and a formula β, we write Γ |= β to mean that for any structure M,
state s and valuation Val : if M, s, Val |= Γ then M, s, Val |= β. If Γ = {α} is
one element set we just write α |= β.

A sequent is pair of finite sets of formulas which we write Γ ` ∆. The
meaning of such a sequent is that a conjunction of formulas from Γ implies a
disjunction of formulas from ∆, in other words it is equivalent to a formula
¬(
∧

Γ)∨∨∆. We use
∧

Γ and
∨

Γ for respectively conjunction and disjunction
of formulas from Γ. Conjunction of the empty set is true and disjunction of the
empty set is false.

Definition 2.1 We call a formula positive iff all negations in the formula ap-
pear only before propositional constants and free variables.

Variable X in µX.α(X) is guarded iff every occurrence of X in α is in the
scope of some modality operator 〈〉 or []. We say that a formula is guarded iff
every bound variable in the formula is guarded.

Proposition 2.2 (Kozen) Every formula is equivalent to a positive guarded
formula.

Proof
Let ϕ be arbitrary formula. We first show how to obtain an equivalent guarded
formula. The proof proceeds by induction on the structure of the formula with
the only difficult case for fixpoint formulas.

Let ϕ be of the form µX.α(X) with α(X) a guarded formula. Suppose X
is unguarded in some subformula of α(X) of the form σY.β(Y, X). As α(X)
is guarded, Y must be guarded in σY.β(Y, X). Equivalence σY.β(Y, X) ≡
β(σY.β(Y, X),X) gives us a formula with all unguarded occurrences of X out-
side the fixpoint operator. Repeating this process we obtain a formula equiva-
lent to α(X) with all unguarded occurrences of X not in the scope of a fixpoint
operator.

Now using the laws of classical propositional logic we can transform this for-
mula to a conjunctive normal form (considering fixpoint formulas and formulas
of the form 〈a〉γ and [a]γ) as propositional constants. This way we obtain a
formula

(X ∨ α1(X)) ∧ . . . ∧ (X ∨ αi(X)) ∧ β(X) (1)

where all occurrences of X in α1(X), . . . , αi(X), β(X) are guarded. Variable
X occurs only positively in (1) because it did so in our original formula. For-
mula (1) is equivalent to

(X ∨ (α1(X) ∨ . . . ∨ αi(X))) ∧ β(X)

4

We will show that µX.(X ∨ ᾱ(X))∧ β(X) is equivalent to µX.ᾱ(X)∧ β(X). It
is obvious that

(µX.ᾱ(X) ∧ β(X)) ⇒ (µX.(X ∨ ᾱ(X)) ∧ β(X))

Let γ(X) stand for ᾱ(X)∧β(X). To prove the other implication it is enough to
observe that µX.γ(X) is a prefixpoint of µX.(X∨ᾱ(X))∨β(X) as the following
calculation shows:

((µX.γ(X))∨ ᾱ(µX.γ(X)))∧ β(µX.γ(X)) ⇒
((ᾱ(µX.γ(X))∧ β(µX.γ(X)))∨ ᾱ(µX.γ(X)))∧ β(µX.γ(X)) ⇒

ᾱ(µX.γ(X)∧ β(µX.γ(X))

If ϕ is a guarded formula then we use dualities of the µ-calculus like ¬[a]α ≡
〈a〉¬α or ¬µX.α(X) ≡ νX.¬α(¬X) to produce an equivalent positive formula.
It is easy to see that it will still be a guarded formula.

In our completeness proof we will need a result from [17] which gives a
characterisation of the validity of the µ-calculus formulas by means of infinite
tableaux. We will briefly recall the result here.

First we introduce the concept of a definition list [21] which will name the
fixpoint subformulas of a given formula in order of their nesting.

We extend vocabulary of the µ-calculus by a countable set Dcons of fresh
symbols that will be referred to as definition constants and usually denoted
U, V, . . . These new symbols are now allowed to appear positively in formulas,
like propositional variables.

A definition list is a finite sequence of equations :

D = ((U1 = σ1X.α1(X)), . . . , (Un = σnX.αn(X)) (2)

where U1, . . . , Un ∈ DCons and σiX.αi(X) is a formula such that all definition
constants appearing in αi are among U1, . . . , Ui−1. We assume that Ui 6= Uj

and αi 6= αj, for i 6= j. If i < j then Ui is said to be older than Uj (Uj younger
than Ui) with respect to the definition list D.

We construct a definition list for a formula γ by means of the contraction
operation [〉γ〈] which is defined recursively as follows:

1. [〉p〈] = [〉¬p〈] = [〉X〈] = [〉U〈] = ∅;

2. [〉¬α〈] = [〉〈a〉α〈] = [〉[a]α〈] = [〉α〈];

3. [〉α ∧ β〈] = [〉α ∨ β〈] = [〉α〈] ◦ [〉β〈], operation ◦ is defined below;

4. [〉µX.α(X)〈] = ((U = µX.α(X)), [〉α(U)〈]) where U is new;

5. [〉νX.α(X)〈] = ((U = νX.α(X)), [〉α(U)〈]) where U is new.

The operation [〉α〈] ◦ [〉β〈] is defined as follows. First we make sure that the
definition constants used in [〉α〈] are disjoint form those used in [〉β〈]. Then if
it happens that (U = γ) ∈ [〉α〈] and (V = γ) ∈ [〉β〈], we delete the definition
from list [〉β〈] and replace V with U in [〉β〈]. This may cause other formulas to
be doubly defined and we deal with them in the same way.

5

We will say that U is a µ-constant if (U = µX.β(X)) ∈ D, if (U =
νX.β(X)) ∈ D, constant U will be called a ν-constant. Observe that every
constant occurring in D is either µ or ν-constant.

For a formula α and a definition list D containing all definition constants
occurring in α we define the expansion operation 〈[α]〉D, which subsequently
replaces definition constants appearing in the formula by the right hand sides
of the defining equations,

〈[α]〉D = [σnX.αn(X)/Un] . . . [σ1X.α1(X)/U1] , where D is as in (2)

A tableau sequent is a pair (Γ, D), where D is a definition list and Γ is a set
of tableau formulas such that the only constants that occur in them are those
from D. We will denote (Γ, D) by Γ D̀ . A tableau sequent Γ D̀ will be called
tableau axiom iff p, ¬p ∈ Γ for some propositional letter or variable p.
Remark: We have two kinds of sequents. Ordinary ones are two sided sequents
of formulas without definition constants. In a tableau sequent Γ D̀ formulas
may contain definition constants from definition list D. Index D also allows us
to distinguish between an ordinary sequent Γ` which happens to have empty
right hand side and a tableau sequent Γ D̀ .

Definition 2.3 Let S be the following set of tableau rules :

(∧t)
α, β, Γ D̀

α ∧ β, Γ D̀

(∨t)
α, Γ D̀ β, Γ D̀

α ∨ β, Γ D̀

(const)
α(U), Γ D̀

U, Γ D̀
(U = σX.α(X)) ∈ D

(σt)
U, Γ D̀

σX.α(X), Γ D̀
(U = σX.α(X)) ∈ D

(〈〉t)
α, {β : [a]β ∈ Γ} D̀

〈a〉α, Γ D̀

Notice that if we assume that a tableau sequent Γ D̀ denotes ordinary
sequent {〈[γ]〉D : γ ∈ Γ}` then tableau rules become sound logical rules.

Definition 2.4 Given a positive guarded formula γ and definition list D = [〉γ〈],
a tableau for γ is any labeled tree 〈K, L〉, where K is a tree and L a labeling
function, such that

1. the root of K is labeled with γ D̀ ,

2. if L(n) is a tableau axiom then n is a leaf of K,

3. if L(n) is not an axiom then the sons of n in K are created and labeled
according to the rules of the system S, i.e. in such a way that L(n) is the
conclusion and the labels of the sons assumptions of a rule from S.

6

Remark: We see applications of rules as a process of reduction. Given a finite
set of formulas Γ we want to derive, we look for the rule the conclusion of which
matches our set. Then we apply the rule and obtain the assumptions of the
instance of the rule in which Γ is the conclusion.

Definition 2.5 Let T = 〈K, L〉 be a tableau for a formula γ with D = [〉γ〈].
Let P = (v1, v2, . . .) be an infinite path in the tree K, i.e. each vi+1 is a son
of vi. A trace on the path P is any sequence of formulas (α1, α2, . . .) such that
αn ∈ L(vn) and αn+1 is either: (i) αn if the formula αn is not reduced by the
rule applied in vn or (ii) if αn is reduced in vn then αn+1 is one of the resulting
formulas.

This last notion should be clear for all the rules other then (〈〉t). For the
rule:

(〈〉t)
α, {β : [a]β ∈ Γ} D̀

〈a〉α, Γ D̀

we have: αn+1 = α if αn = 〈a〉α, and αn+1 = β if αn = [a]β for some β; in all
other cases the trace ends on αn.

Definition 2.6 A constant U regenerates on the trace (α1, α2, . . .) if for some
i, αi = U and αi+1 = α(U), where (U = σX.α(X)) ∈ D. A trace is called µ-
trace iff it is an infinite trace on which the oldest constant regenerated infinitely
often is a µ-constant.

Definition 2.7 A tableau T for γ is called a refutation of γ iff every leaf of T
is labeled with a tableau axiom and on every infinite path of T there exists a
µ-trace.

Theorem 2.8 (Characterisation) For every positive guarded formula γ: γ
is not satisfiable iff there is a refutation of γ

3 Axiomatisation

This section is divided into three parts. In the first subsection we present a
finitary axiom system for the µ-calculus. Next we prove some basic properties
of the system. In the third subsection we relate the axiomatisation to the one
proposed by Kozen in [12].

3.1 The system

We will present the system in a sequent calculus form. We prefer this formali-
sation because sequent calculus rules closely correspond to the tableau rules.

It will be convenient to introduce one piece of notation. For a finite set of
atomic actions P = {a1, . . . , an} ⊆ Act and a µ-calculus formula α we let 〈P ∗〉α
to be an abbreviation of the formula µX.〈a1〉X ∨ . . . ∨ 〈an〉X ∨ α. Intuitively
such a formula says that a state satisfying α is reachable by sequence of actions
from P .

7

Our system consists of two groups of rules and some additional axioms.
First we take the rules of the simple propositional modal logic.

(¬)
Γ`∆, α

Γ, ¬α`∆
Γ, α`∆
Γ`¬α, ∆

(∧)
α, β, Γ`∆
α ∧ β, Γ`∆

Γ`α, ∆ Γ`β, ∆
Γ`α ∧ β, ∆

(∨)
α, Γ`∆ β, Γ`∆

α ∨ β, Γ`∆
Γ`α, β, ∆

Γ`α ∨ β, ∆

(〈〉) α, {β : [a]β ∈ Γ}`{γ : 〈a〉γ ∈ ∆}
〈a〉α, Γ`∆

(cut)
Γ`∆, γ Σ, γ `Ω

Γ, Σ`∆, Ω

Then we add the rules concerning fixpoints

(µ)
Γ`α(µX.α(X)), ∆

Γ`µX.α(X), ∆

(ind)
ϕ(ff)`∆ ϕ(α(µX.Z ∧ α(X)))`∆, 〈P ∗〉ϕ(µX.Z ∧ α(X))

ϕ(µX.α(X))`〈P ∗〉∆

Z 6∈ FV (ϕ(µX.α(X)), ∆)

In the last rule P ⊆ Act is a finite set of actions, 〈P ∗〉∆ is an abbreviation
of {〈P ∗〉δ : δ ∈ ∆} and Z is a new propositional variable not occurring free in
ϕ(µX.α(X))`∆.

In the above notation ϕ(µX.α(X)) stands for the result of the substitution
ϕ[µX.α(X)/[]] where [] is a distinguished variable. A substitution ϕ[α/X] is
legal only if no free variable of α becomes bound in ϕ[α/X].

Finally because we had chosen to include constructions [a]α and νX.α(X)
into the language we have to define them using other connectives by adding the
following sequents as specific axioms:

([]L) [a]α`¬〈a〉¬α ([]R) 〈a〉α`¬[a]¬α

(νL) νX.α(X)`¬µX.¬α(¬X) (νR) µX.α(X)`¬νX.¬α(¬X)

Definition 3.1 A finite tree constructed with the use of the above rules will
be called diagram. A proof will be a diagram whose all leaves are labeled with
axioms , i.e., instances of the axiom sequents above or sequents with the same
formula on both sides.

Remark: Observe the difference between diagrams and tableaux. The first
are always finite while the second not necessary so. They are also constructed
using different, although similar, sets of rules.

8

Let us give some intuitions about rule (ind). Especially we would like to
hint what well ordered set we are interested in and what kind of induction
stands behind the rule. First let us consider the following rule:

ϕ(ff)`∆ ϕ(αn+1(ff))`∆, 〈P∗〉ϕ(αn(ff))
ϕ(µX.α(X))`〈P ∗〉∆

(3)

where n ranges over the natural numbers and αn(ff) stands for n-unfolding:
α(. . . α(ff) . . .). Of course because n is treated as a variable, this rule is not a
finitary rule of the µ-calculus.

Suppose that the assumptions of rule (3) are valid in a finite structure M.
We would like to show that the conclusion of the rule is valid. This follows from
two observations. First using the assumptions and induction on n we can show
that ϕ(αn(ff)) ` 〈P∗〉∆ is valid for any n. Then it is enough to observe that
in a finite structure M with, say k, states, formula µX.α(X) is equivalent to
αk(ff).

Rule (3) would be sufficient for our purposes but it is not a rule of the
µ-calculus. We can easily weaken the rule to:

ϕ(ff)`∆ ϕ(α(Z))`∆, 〈P ∗〉ϕ(Z)
ϕ(µX.α(X))`〈P ∗〉∆

(4)

where Z is a fresh variable. This rule is much weaker because the second
assumption is much stronger. In (3) we required the property to hold only for
the approximations of µX.α(X) in present rule we want it to be true for all
sets of states. We don’t know whether the system with this rule is complete.
Our rule (ind) is the stronger version of (4) which is still a finitary rule of the
µ-calculus. Instead of taking just free variable Z we take µX.Z ∧ α(X). The
following fact shows that for Z being a finite approximation of µX.α(X) the
two formulas are equivalent. Nevertheless in general the assumption of (ind)
rule is much weaker than that of rule (4)

Fact 3.2 For any structure M, formula µX.α(X) and valuation Val such that
Val(Z) = ‖ αk(ff) ‖V al for some k ∈ N and Z 6∈ FV (α(ff)) we have:

‖ µX.Z ∧ α(X) ‖V al = Val(Z)

Proof: Let Val(Z) = ‖ αk(ff) ‖V al then

‖ µX.Z ∧ α(X) ‖V al = ‖ µX.αk(ff) ∧ α(X) ‖V al = ‖ αk(ff) ‖V al

Inclusion of a cut rule into our system also deserves a comment. Since the
rule (ind) has the specific shape of reducing connective which can be “hidden”
deep into the formula, the addition of the cut rule seems to be a reasonable way
to make the system usable. The completeness proof will give us an algorithm
for constructing a proof of a valid formula and as we will see this proof will
have some kind of subformula property even though cuts will be used in it.
The conclusion is that cuts in the proof can be used in a very restricted way

9

and one can substitute them by appropriate rules which may be added to the
system. Addition of the cut rule makes the system simpler and since we have
an algorithm for automatic construction of a proof of a valid sequent we prefer
the presented formulation.

The next proposition states soundness of the system. There are at least
three possible notions of soundness of a rule in a modal logic:

• The strongest will be to require that if the assumptions of a rule are
satisfied in a state of a structure with a given valuation then the conclusion
must be satisfied in this state and valuation. It is easy to see that rules
(neg), (and), (or), (cut) and (µ) are sound in this sense.

• The other would be to require that for any structure M, if all assumptions
of the rule are valid in the structure (i.e. satisfied in every state and every
valuation) then the conclusion must be valid in this structure. The rule
(〈〉) is sound in this sense. We will show in the next subsection that all
the rules of Kozen’s axiomatisation are also sound in this sense.

• The weakest of the three is the condition that if all the assumptions of
the rule are valid then the conclusion is valid. The rule (ind) is sound in
this sense and as we will show in the next subsection it is not sound in
the sense of any of the two preceding notions of soundness. Of course this
type of soundness is all that we need for an axiomatisation of the validity
relation. In the following by soundness we will always understand this
weak notion of soundness.

Proposition 3.3 All the rules of our system are sound and all the axioms are
valid

Proof
Validity of the axioms is standard. Also standard is validity of all the rules
except (ind) which soundness we prove below.

Let us assume conversely that the rule (ind) is not sound. Then from the
finite model property we have a finite structure M such that the sequents:

ϕ(ff)`∆ ϕ(α(µX.Z ∧ α(X)))`∆, 〈P ∗〉ϕ(µX.Z ∧ α(X))

are valid in M and ϕ(µX.α(X))` 〈P ∗〉∆ is not. We assume that the variable
Z does not appear free in ϕ(µX.α(X)) or ∆. Let k be the smallest integer for
which there exists a state s of M and valuation Val satisfying: M, s, Val |=
ϕ(αk(ff)) and for all δ ∈ ∆, M, s, Val 6|= 〈P ∗〉δ.

We have two cases depending on whether k = 0 or not.
If k = 0 then M, s, Val |= ϕ(ff) hence from the assumption that ϕ(ff)`∆

is valid in M we have that M, s, Val |= δ for some δ ∈ ∆, contradiction.
If k > 0 then let Val ′ be identical to Val except that for the variable Z and

let Val ′(Z) = ‖ αk−1(ff) ‖V al. Hence M, s, Val′ |= ϕ(α(Z)) and from Fact 3.2 it
follows that M, s, Val′ |= ϕ(α(µX.Z ∧ α(X))). From the validity of the second
premise we have that either: M, t, Val′ |= ϕ(µX.Z ∧ α(X)) for some state t

10

reachable from s by P , or M, s, Val |= δ for some δ ∈ ∆. The second case is
impossible by assumption.

If M, t, Val′ |= ϕ(µX.Z ∧ α(X)) then by Fact 3.2 M, t, Val ′ |= ϕ(Z), hence
M, t, Val |= ϕ(αk−1(ff)). By the choice of k there must exist δ ∈ ∆ s.t.
M, t, Val |= 〈P ∗〉δ. But then because t is reachable from s by a sequence
of actions from P we also have that M, s, Val |= 〈P ∗〉δ. Contradiction.

3.2 Some properties of the system

In this subsection we would like to prove some properties of the presented
system. First we show that a substitution of equals for equals is admissible.

Fact 3.4 Let ψ(X1, . . . , Xn) be a formula with variables X1, . . . , Xn occurring
only positively in ψ. If for any i = 1, . . . , n a sequent δi ` γi is provable then
the sequent ψ(δ1, . . . , δn)`ψ(γ1, . . . , γn) is provable.

This will follow from

Lemma 3.5 Let ~X and ~Y denote the sequences of variables X1, . . . , Xn and
Y1, . . . , Yn respectively. Let ϕ(~X) be a formula with free variables among ~X each
of them occurring only positively or only negatively in it. Let P = {a1, . . . , ai}
be the set of all the actions occurring in ϕ(~X). For any finite set of formulas
∆ there is a diagram of ϕ(~X) ` ϕ(~Y), 〈P ∗〉∆ in which the only leaves which
are not axioms are of the form Xi `Yi, 〈P ∗〉∆, if Xi occurs only positively, and
Yi `Xi, 〈P ∗〉∆, if Xi occurs only negatively in ϕ(X1, . . . , Xn).

Proof
We proceed by induction on the structure of ϕ.

— if ϕ is one of the free variables or some propositional constant then the lemma
is obvious.

— if ϕ = ¬ψ then the application of the derivable rule

ψ(~Y)`ψ(~X), 〈P ∗〉∆
¬ψ(~X)`¬ψ(~Y), 〈P ∗〉∆

gives us the desired conclusion.

— if ϕ = ψ1 ∧ ψ2 then we use the derivable rule

ψ1(~X)`ψ1(~Y), 〈P ∗〉∆ ψ2(~X)`ψ2(~Y), 〈P ∗〉∆
ψ1(~X) ∧ ψ2(~X)`ψ1(~Y) ∧ ψ2(~Y), 〈P ∗〉∆

— if ϕ = 〈a〉ψ then the rule to use is (〈〉)

ψ(~X)`ψ(~Y), 〈P ∗〉∆
〈a〉ψ(~X)`〈a〉ψ(~Y), 〈P ∗〉∆

11

— if ϕ = µV.β(V) then we use rule (ind) to the sequent

µV.β(V, ~X), νV.¬β(¬V, ~Y)`〈P ∗〉∆ (5)

from which the sequent

µV.β(V, ~X)`µV.β(V, ~Y), 〈P ∗〉∆

can be obtained by a (cut) with an axiom. The sequents:

ff , νV .¬β(¬V , ~Y) ` 〈P ∗〉∆ (6)
β(µV.Z ∧ β(V, ~X), ~X), νV.¬β(¬V, ~Y) `

〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆ (7)

are assumptions of the instance of (ind) rule in which (5) is the conclusion.

Clearly (6) is provable so it has a diagram with all the leaves labeled by axioms.
Sequent (7) can be obtained by cut rule from an axiom and the sequent:

β(µV.Z ∧ β(V, ~X), ~X) `
β(µV.β(V, ~Y), ~Y), 〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆ (8)

By induction hypothesis there is a diagram for (8) which leaves are labeled by
axioms or sequents of one of the forms:

Xi`Yi, 〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆ (9)
Yi `Xi, 〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆ (10)

µV.Z ∧ β(V, ~X)`
µV.β(V, ~Y), 〈P ∗〉((µV.Z ∧ β(V, ~X)) ∧ νV.¬β(¬V, ~Y)), 〈P ∗〉∆ (11)

Sequents of the form (9) and (10) can be put into the desired form after appli-
cation of weakening to the right side. Sequent (11) is clearly provable hence it
has a diagram with all the leaves labeled by axioms.

— in cases when ϕ = ψ1 ∨ ψ2, ϕ = [a]ψ or ϕ = νV.β(V) we can just use
the fact that these connectives are defined by the connectives we have already
considered.

The next proposition allows us to restrict attention to positive guarded
formulas.

Proposition 3.6 Any formula is provably equivalent to some positive guarded
formula

Proof
The proof is a repetition of the arguments from Proposition 2.2. Fact 3.4
allows us to show that all the steps use provable equivalences. One can show
that µX.(X ∨ ᾱ(X)) ∧ β(X) is provably equivalent to µX.ᾱ(X) ∧ β(X) using
Lemma 3.5.

12

3.3 Comparison with Kozen’s axiomatisation

Here we would like to relate presented axiomatisation to Kozen’s axiom system
from [12]. Let us call this system Kµ here.

The system Kµ uses a different form of judgement. It has the form of
equality ϕ = ψ with the meaning that the formulas ϕ and ψ are semantically
equivalent. Inequality ϕ ≤ ψ is considered as an abbreviation of ϕ ∨ ψ = ψ.

Apart from the axioms and rules of equational logic (including substitution
of equals by equals) there are the following axioms and rules:

(K1) axioms for Boolean algebra

(K2) 〈a〉ϕ ∨ 〈a〉ψ = 〈a〉(ϕ ∨ ψ)

(K3) 〈a〉ϕ ∧ [a]ψ ≤ 〈a〉(ϕ ∧ ψ)

(K4) 〈a〉ff = ff

(K5) α(µX.α(X)) ≤ µX.α(X)

(K6)
α(ϕ) ≤ ϕ

µX.α(X) ≤ ϕ

Our sequent Γ`∆ corresponds to inequality
∧

Γ ≤ ∨
∆ in this notation. We

will call a rule derivable in system Kµ iff there is a way to derive the conclusion
of the rule, assuming all the premises of the rule.

Proposition 3.7 Every rule derivable in the system Kµ must have the prop-
erty: for any structure M, if all the premises of the rule are valid in M (i.e.
true in every state of M) then the conclusion is valid in M

The proposition follows directly from the observation that all the rules of
Kµ have this property. We will show that the rule (ind) of our system does
not have this property hence it cannot be derived in Kµ.

Proposition 3.8 There is a structure M and an instance of (ind) rule such
that the premises are true in M but the conclusion is not.

Proof
Consider a structure M = 〈S, R, ρ〉 such that:

• S = N ∪ {∞}

• R(a) = {(i + 1, i) : i ∈ N} ∪ {(∞, i) : i ∈ N}

• ρ(p) = {∞}

Here a is some action, p is some propositional constant and N is the set of
natural numbers.

Consider a sequent:
p ∧ [a]µX.[a]X`

13

which is not valid in M because M, ∞ |= p ∧ [a]µX.[a]X . If we were to prove
this sequent we could use rule (ind) directly and have the premises:

p, [a]ff ` (12)
p, [a]([a]µX.Z ∧ [a]X)`p ∧ [a]µX.Z ∧ [a]X (13)

Clearly sequent (12) is true in M. To see why sequent (13) is true in M suppose
that for some valuation Val we have M, ∞, Val |= p ∧ [a][a](µX.Z ∧ [a]X) then
clearly N ⊆ Val(Z) hence also by Fact 3.2, N ⊆ ‖ µX.Z ∧ α(X) ‖V al which
means that M, ∞, Val |= p ∧ [a](µX.Z ∧ [a]X).

Of course Proposition 3.8 does not imply incompleteness of the system Kµ
even though our system is strictly stronger than Kµ as the following proposition
shows.

Proposition 3.9 All the axioms of the system Kµ are provable in our system.
All the rules of Kµ are derivable in our system

Proof
Provability of the axioms is easy, so is also deriveability of all the rules other
then (K6) and substitution of equals by equals. This second rule is derivable
by Fact 3.4.

For rule (K6) let us assume α(ϕ) ` ϕ. We will show how to prove ¬ϕ ∧
µX.α(X) ` . Let P = {a1, . . . , ai} be the set of all the actions occurring in
α(ϕ).

We can obtain ¬ϕ ∧ µX.α(X)` from (ind) rule if we prove

ff ∧ ¬ϕ` and ¬ϕ ∧ α(µX.Z ∧ α(X))`〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

The first sequent is clearly provable. Using assumption that α(ϕ) ` ϕ we will
have a proof of the second sequent if we only prove:

¬α(ϕ) ∧ α(µX.Z ∧ α(X))`〈P∗〉¬ϕ ∧ µX.Z ∧ α(X)

This in turn is equivalent to proving

α(µX.Z ∧ α(X))`α(ϕ), 〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

By Lemma 3.5 there is a diagram for this sequent in which the only leaves which
are not axioms are of the form

µX.Z ∧ α(X)`ϕ, 〈P ∗〉¬ϕ ∧ µX.Z ∧ α(X)

But such sequent is easily provable.

14

4 Completeness

In this section we will prove completeness of our system. Let us fix an un-
satisfiable positive guarded formula ϕ0 of the µ-calculus. We also fix Dϕ0 to
denote the definition list [〉ϕ0〈] = (W1 = σX.γ1(X)) . . . (Wd = σX.γd(X)). We
will consider only definition constants from Dϕ0 and when we will say that a
definition constant is older (younger) than the other we will mean that it is
older (younger) with respect to the definition list Dϕ0 . Our goal in this section
will be to construct a proof of the sequent ϕ0 ` in our system.

4.1 Overview of the proof method

Let us now give an overview of the proof method we will use. We would like to
show that it is an extension of a very natural method of proving completeness
for system K of modal logic.

Let us consider only positive formulas of simple modal logic, that is positive
formulas of the µ-calculus without fixpoint operators. We consider sequents of
such formulas of the form Γ`. The interpretation of such a sequent is standard,
i.e., that the conjunction of formulas in Γ is not satisfiable. For such sequents
of this simple logic the system consisting of one side versions of (∧), (∨) and
(〈〉) rules is sufficient. This are exactly rules (∧t), (∨t) and (〈〉t) of our tableau
system as there are no definition constants in this case.

A proof of a sequent Γ ` in this system is a diagram obtained using the
rules mentioned above with the root labeled by Γ` and all the leaves labeled
by sequents containing some propositional letter and its negation.

For completeness proof we will use tableaux which will be constructed with
the above rules except (〈〉t)-rule which is replaced by:

(all〈〉) {α, {β : [a]β ∈ Γ}` : 〈a〉α ∈ Γ}
Γ`

This rule has as many assumptions as the number of formulas of the form 〈a〉α
in Γ. When there are no such formulas at all then we cannot apply this rule.
Rule (all〈〉) can be seen as a very weak logical rule but it is probably better not
to look at it this way. It is rather different type of rule, because it is enough
to prove only one of the assumptions of the rule to prove the conclusion, while
for other rules we have to prove all the assumptions. This distinction will be
elaborated below.

Given a sequent Γ ` of positive formulas, we construct a tableau for it in
this tableau system. We would like tableaux to be maximal in a sense that
rule (all〈〉) is used only to sequents Σ` such that each formula in Σ is either
a propositional constant, its negation or a formula of the form 〈b〉β or [b]β for
some action b and a formula β. A tableau constructed in this way is obviously
finite. Some of the leaves are axioms and others are unreducible sequents which
are not axioms.

The general property of such a tableau for Γ` is that one can either find
a proof of Γ ` in the tableau or one can read a finite model for the formula∧

Γ from it. To see this let us apply the following simple marking procedure.

15

We mark all the leaves labeled with axiom sequents with 1 and all other leaves
with 0. Then if in a node of the tableau rule (∧t) was used we mark it by the
same number as its only son. If (∨t) was used in a node and both sons are
labeled by 1 then we mark the node by 1 otherwise we mark it by 0. For each
node where (all〈〉) was used we mark it with 0 if all the sons of it are marked
with 0, otherwise we mark it with 1. It should be obvious that if the root of
the tableau is marked with 1 then there is a proof of Γ ` in the tableau. If
the root of the tableau is labeled by 0 then we can find a model for

∧
Γ in the

tableau.
When we try to apply the above method to the full µ-calculus we meet one

complication. It seems that the only obvious rules we can add for dealing with
fixpoints are unwinding rules of the form:

α(µX.α(X)), Γ`
µX.α(X), Γ`

But tableaux constructed with this rule may not be finite and finiteness of
tableaux was crucial for the above completeness proof.

In case of the full µ-calculus Theorem 2.8 takes the place of the marking
procedure. In system K for any unsatisfiable formula the marking procedure
gave us a finite tree designated by 1’s. By Theorem 2.8 any unsatisfiable formula
of the µ-calculus has a refutation. Refutation is very similar to the tree obtained
from the marking procedure except that it may have infinite paths. While
marking procedure gave us a proof right away here we will have to work hard
to transform a refutation into a proof which must be a finite tree.

The difficulty we face is as follows. On any infinite path of a refutation for ϕ0
there is a µ-trace, i.e., there is an occurrence of a µ-formula which regenerates
i.o. and never disappears. It was already shown by Kozen [12] how to use some
derivable rules of his system in such a clever way that it is possible to “cut”
such a path, i.e., arrive at an axiom sequent after a finite number of steps. We
can of course apply such a cutting strategy to each path of a refutation. The
problem is that we will obtain a set of finite paths, each of them ending with
an axiom, but usually it would be impossible to compose them back to a tree.

There is a similar problem in automata theory, when one wants to con-
struct a tree automaton recognising trees the paths of which are accepted by
a nondeterministic Büchi automaton. The solution there is to determinize the
automaton first. In our case it means that we need a deterministic strategy of
transforming a path of a refutation into a path of a proof. Here deterministic
means that the actions we perform in a node depend only on the predecessors
of the node and not on the whole path.

First step of the proof is construction of a deterministic Rabin automaton
on infinite words Aϕ0 recognising paths of a tableau for ϕ0 with µ-trace on
them. Later states of Aϕ0 will be used to guide our converting procedure
hence the simpler automaton we construct the simpler will be our procedure.
This is why we do not use any standard determinization constructions but
define Aϕ0 from the scratch. The construction is nevertheless based on Safra’s
determinization [20].

16

From Aϕ0 we construct an appropriate Rabin automaton over one letter
alphabet TAϕ0 whose runs closely correspond to refutations of ϕ0. This allows
us to conclude that there is a small graph Gϕ0 , with states of TAϕ0 as nodes,
which unwinds to an accepting run of TAϕ0 .

Next step is to examine the structure of Gϕ0. It turns out that in this graph
special nodes, which we call loop nodes, can be distinguished. This nodes can
be seen as “witnesses” that unwinding of Gϕ0 is accepted by the automaton. On
every cycle there is exactly one loop node which “confirms” that the unwinding
of the cycle is accepted by Aϕ0 . Another important thing is that there is a
natural partial order on loop nodes. In this way we can put some order of
“importance” on different loops we have in Gϕ0 .

We use this ordering to unwind Gϕ0 into Tϕ0 which is a finite tree with back
edges, i.e., edges from some of the leaves to their ancestors. The last step is
construction of a sound sequent assignment for Tϕ0; that is assign ϕ0 ` to the
root, assign an easily provable sequent to every leaf of Tϕ0, and for any other
node assign a sequent which is provable from the sequents assigned to its sons.

The rest of this section is organised as follows. In the next subsection we
describe the construction of the automaton Aϕ0. Subsection 4.3 is devoted to
the construction of Tϕ0. Finally we define a sound sequent assignment for Tϕ0.

4.2 Automaton

Our goal here is to construct a special Rabin automaton TAϕ0 on trees over
one letter alphabet, which accepting runs closely correspond to the refutations
of ϕ0. We do this by constructing a special deterministic Rabin automaton Aϕ0

on paths, which recognises exactly the paths of a tableau for ϕ0 with µ-trace
on them.

Let us first observe that the set of formulas which can appear in a refutation
for ϕ0 is finite. Let us call this set FL(ϕ0) as it is almost Fisher-Ladner clo-
sure [7] of ϕ0. It is not exactly the closure because we have definition constants
around.

Definition 4.1 For any formula ϕ, possibly with definition constants, we define
the FL-closure of ϕ, FL(ϕ) as the set of all formulas which can occur in a
sequent Σ D̀ϕ0

obtainable from ϕ D̀ϕ0
by application of some number of the

tableau rules.

Lemma 4.2 For any formula ϕ the size of FL(ϕ) is linear in the size of 〈[ϕ]〉Dϕ0
,

which is ϕ with all definition constants replaced by appropriate formulas.

There is of course simple nondeterministic Büchi automaton recognising the
paths with a µ-trace. This automaton goes along a path and picks one formula
from each tableau sequent in such a way that the sequence of chosen formulas
forms a trace. Acceptance conditions are such that this chosen trace is accepted
iff it is a µ-trace. Obviously this automaton is nondeterministic because of the
tableau rule (and). If we have chosen formula α ∧ β in a sequent α ∧ β, Γ D̀
then after application of rule (and) we obtain a sequent α, β, Γ D̀ and we may
choose either α or β as the next formula in the trace being constructed.

17

Instead of determinizing this Büchi automaton we will construct Aϕ0 from
the scratch. This construction is an adaptation of the Safra’s determinization
construction to the special case we are to deal with. We have to adapt the
construction to avoid some redundancies which we would get if we applied
Safra’s construction directly.

As in Safra’s construction states of our automaton will be labeled trees.
Since we will quickly arrive at trees labeled with states which are itself trees,
we will always call nodes of states vertices and nodes of trees of states just
nodes.

The idea of Safra’s construction was to construct for a given nondeter-
ministic automaton a deterministic automaton which, for an infinite word σ,
calculates during the run the set of states S which has the special property that
there are positions k1, k2, . . . such that:

• every state from S is reachable on the word σ[1, k1], (σ[i, j] stands for the
part of σ between positions i and j),

• for any i = 1, 2, . . . and any state s ∈ S there is a state s′ ∈ S such
that the automaton started in s′ will reach s on word σ[ki, ki+1] and go
through a green state on the way.

Obviously if there is such a nonempty set of states then there is an accepting
run of the original automaton. It turns out that the converse also holds.

We will use the same idea in our case. We will design an automaton which
given a path of a tableau (Γ1 D̀ϕ0

, Γ2 D̀ϕ0
, . . .) will calculate a set of formulas

Ω and a µ-constant U from Dϕ0 such that there are integers k1, k2, . . . with the
property that:

• Ω ⊆ Γk1 ,

• for any i = 1, 2, . . . and any α ∈ Ω there is β ∈ Ω and a trace from
occurrence of β in Γki to the occurrence α in Γki+1 on which U is the
oldest regenerated constant.

We are now going to construct such an automaton Aϕ0 for a formula ϕ0.
Its states will be trees labeled with formulas. As we have to calculate definition
constant we introduce also labeling of the edges with definition constants.

States of the automaton Aϕ0 will be labeled ordered trees, i.e., tuples T =
〈N, r, p,≺, nl, el〉 where:

• N is a set of vertices,

• r ∈ N is a root of the tree,

• p : (N \ {r}) → N is a parenthood function,

• ≺ is a sibling ordering, i.e., partial ordering relation which linearly orders
nodes with a common father,

• nl(v), for any vertex v ∈ N , is a non-empty subset of FL(ϕ0) called a
node label of v.

18

• el(v), for any vertex v ∈ N \ {r}, is a definition constant from Dϕ0 called
an edge label of v.

Additionally each vertex can be colored white or green and the following con-
ditions hold:

1. For any vertex v and its son w the label of w is contained in the label of
v.

2. For any vertex v the union of the node labels of those sons of v which
edge labels are equal el(v) is a proper subset of nl(v).

3. Any two sons of the same vertex have disjoint node labels.

4. If w is a son of v then el(w) is not older than el(v) with respect to the
definition list Dϕ0.

5. If el(v) is a ν-constant then v has no ν-sons, i.e., sons with the edge label
being a ν-constant.

6. For any two sons, v and w, of the same vertex, if el(v) is older than el(w)
with respect to Dϕ0 , then v ≺ w.

Ordering ≺ can be extended to an ordering between not necessarily ancestral
vertices. We say that v is to the left of w iff some (maybe not proper) ancestor
of v is smaller in ≺ ordering than some (maybe not proper) ancestor of w. If v
is a son of w and el(v) = W then we say that v is a W -son of w. Conditions
1 and 3 guarantee that for any formula ψ occurring in a state s there is the
lowest vertex v such that ψ ∈ nl(v). We will call such a vertex the ψ-vertex of
s.

The initial state of the automaton will be a tree consisting only of the root
labeled {ϕ0}.

Next we describe the deterministic transition function of the automaton. It
will be always the case that after reading a sequent Σ D̀ϕ0

the automaton will
enter a state with the root labeled by Σ. Suppose the automaton is in a state
s after reading Σ D̀ϕ0

and the next input is Σ′ D̀ . The next state is obtained
by applying to the tree s the following sequence of actions:

1. Set the color of all the vertices to white.

2. Look at the next sequent Σ′ D̀ϕ0
on the path and locally transform

the labels of some vertices, depending on the rule applied to obtain this
sequent:

— for all the rules other then (const), in all vertices of s replace the reduced
formula with the resulting formulas appearing in Σ′. This means that for
all the rules other then (〈〉t) the reduced formula is replaced by at most
two resulting formulas and the other formulas remain intact. In case of
the (〈〉t) rule:

〈a〉α, Σ D̀
α, {β : [a]β ∈ Σ} D̀ϕ0

19

we first delete all formulas not of the form [a]β, for some β, except the
formula 〈a〉α. Then we replace 〈a〉α with α and [a]β with β in each node
label of s

— Suppose we apply regeneration rule (const):

U, Γ D̀ϕ0

α(U), Γ D̀ϕ0

Let v be the lowest vertex of s such that U ∈ nl(v) and el(v) is not younger
(older or equal with respect to Dϕ0) than U . If there is no such vertex
then let v be the root of s. First replace U with α(U) in the node label of
v and in the labels of all ancestors of v. Next delete U from node labels of
all proper descendants of v. Additionally, if U or el(v) is not a ν-constant,
create a son w of v, with labels el(w) = U and nl(w) = {α(U)}. Finally
make w ≺-bigger than all its brothers with edge labels not younger than
U and smaller from all other brothers.

3. For any vertex v, if a formula ϕ occurs already in a vertex to the left of
v then delete ϕ from the node label of v.

4. Delete all vertices with empty labels.

5. For any vertex v such that el(v) = U is a µ-constant and nl(v) is equal to
the sum of the labels of its U -sons, light v green and delete all descendants
of v from the tree.

A run of automaton Aϕ0 is accepting iff there is a vertex which disappears
only finitely many times and lights green infinitely many times on the run.

One word must be said about “vertex management”. In clause 2 of the
definition of the transition function we are at some point required to add a new
vertex to a state, i.e., one not occurring in it already. Clearly we cannot have
an infinite supply of vertices because the number of states of the automaton
must be finite. The solution is to “reuse” vertices, i.e., when a vertex is deleted
we put it into a common pool and when a new vertex is needed just take any
vertex from the pool. If we put initially into the pool more vertices then the
size of the largest possible state then we would be sure that there is always
something in the pool when needed. Hence our first step is to find the bound
on the size of the states of Aϕ0.

Lemma 4.3 The size of a state tree is bounded by n ∗ m + 1 where n is the
number of formulas in FL(ϕ0) and m is the number of definition constants in
Dϕ0. The number of states is finite.

Proof
Let s be any state of Gϕ0. With every vertex v of s, except the root, we can
assign a pair (el(v), ϕ), where ϕ ∈ nl(v) is a formula not occurring in any el(v)-
son of v. This shows the upper bound on the number of states because the
assignment is injective.

20

The second part of the lemma follows directly from the first if we apply the
strategy for “reusing vertices” described above.

Hence what we have described is a Rabin automaton on strings. Before
proving correctness of the construction let us focus on one more specialised
property of the Aϕ0 which we will need in the future.

Lemma 4.4 For any µ-constant Ui = µX.αi(X) in Dϕ0 , state s reachable from
the start state of the automaton Aϕ0 and vertex v of s such that el(v) = Ui,
the formula µX.αi(X) does not belong to nl(v).

Proof
Let us take a µ-constant Ui as above and define the set of formulas Cl as the
smallest set such that:

• α(Ui) belongs to Cl,

• if ψ ∈ Cl then all subformulas of ψ belong to Cl,

• if σX.β(X) ∈ Cl and there is a definition constant W such that (W =
σX.β(X)) is in Dϕ0 then β(W) belongs to Cl.

Observe that µX.αi(X) 6∈ Cl because all formulas in Cl are shorter. For
any state s and its vertex v, s.t. el(v) = Ui we show by induction on the number
of steps needed to reach state s, that nls(v) ⊆ Cl.

The base step is when the vertex v is created in a state s. It’s label is then
exactly {α(Ui)}. The induction step is straightforward.

Finally we show correctness of the construction

Proposition 4.5 The automaton accepts a path P of a tableau for ϕ0 iff there
exists an infinite µ-trace on P .

The proof of the proposition is very similar to the proof of correctness of
the Safra’s construction. First let us prove left to right implication.

Lemma 4.6 If the automaton Aϕ0 accepts a path P of a tableau for ϕ0 then
there exists an infinite µ-trace on the path.

Proof
Consider an accepting run of the automaton s0, s1, ... We will denote by nli, el i
the node labeling and the edge labeling of the state si respectively. Let v be
a vertex which lights green i.o. in this run and disappears only finitely many
times. Consider two positions i, j, after v disappears last time, such that v
lights green in si and next time it lights green in sj .

First we would like to show that for every formula in nl j(v) there exists a
trace from some formula in nl i(v) such that the oldest constant regenerated on
the trace is el i(v) = el j(v). Clearly el i(v) is a µ-constant.
To do this we show that for any sk, between si and sj , and any formula ϕ ∈
nlk(v):

21

• if ϕ ∈ nlk(w) for some son w of v, then there is a part of a trace to ϕ from
some formula in nli(v) such that the highest regeneration on it is that of
elk(w)

• otherwise there is a part of a trace to ϕ from some formula in nl i(v)
without any regeneration at all.

The proof is by induction on the distance from si

• Base step when k = i is trivial.

• All steps except of regenerations are rather straightforward.

• If the last step was regeneration of a constant V then we have two cases.
The first is when V 6∈ nlk(v) or V is older than elk(V). This case is easy
because the only thing which can happen is that some formula can be
removed from the labels of all the vertices in the subtree of v.

In the other case when V ∈ nlk(v) and elk(v) is not younger than V we
have two possibilities

– If there is a son w of v, such that V ∈ nlk(w) and elk(w) is not
younger than V then no new son of v is created and V is replaced
by an appropriate α(V) in the label of w. This is sound as there
is a trace to α(V) with the oldest regeneration being that of elk(w)
because there was one to V by induction hypothesis.

– If, on the other hand, V is older than elk(w) or there is no w at all
then from the induction hypothesis there is a trace to V on which
no constant older than V was regenerated. Hence there is a trace to
α(V) where V is the oldest regenerated constant. According to the
definition of the transition function a new son w′ of v is created with
the node label {α(V)} and edge label V . Additionally V is deleted
from the label of w. These are exactly the steps which must be done
to make the induction thesis satisfied.

Observe that vertices with edges labeled with ν-constants were needed in the
last step of the above induction.

Now consider a graph with the set of nodes

{(ϕ, k) : ϕ ∈ nlk(v), v lights green in sk}

and an edge from (ϕ1, k1) to (ϕ2, k2) whenever there is a trace from ϕ1 in sk1

to ϕ2 in sk2 on which el(v) is the oldest regenerated constant. Here v is our
node which lights green infinitely often on the run. From what we have shown
above it follows that at for any (ϕ, k) there is an edge leading to it from some
(ϕ′, k′). This is because v lights green only when the sum of the labels of its
el(v)-sons is equal nl(v). This means that at least a part of this graph is an
infinite connected directed acyclic graph. The degree of every vertex of it is of
course finite hence there must exist an infinite path in this graph. This path is
a µ-trace we were looking for.

22

Lemma 4.7 If there is a µ-trace on a path P of a tableau for ϕ0 then the
automaton Aϕ0 accepts P .

Proof
Let us consider a path P with a µ-trace and the run of the automaton, s0, s1, . . .
on it. The trace on P is a sequence of formulas {αi}i∈N , s.t. αi occurs in the i-th
tableau sequent of P . On the other hand the automaton Aϕ0 has the property
that after reading a tableau sequent Σ D̀ϕ0

, the root of its current state is
labeled by Σ. Hence αi is always present in the root of the state si.

From some moment j0, the oldest constant regenerated on the trace is some
µ-constant U . We can assume, without loss of generality, that αj0 occurs in
a son of the root with edge label, not younger than U . Indeed, otherwise we
just have to wait, in the worst case, for the next regeneration of U . From that
moment formulas from the trace can only move to the left according to clause
3 of the description of the transition function. But because they can do it only
finitely many times, after some time the trace must settle in some son of the
root, say v0, forever.

If v0 lights green i.o. then we are done. If not then let j1 be the last moment
v0 lights green. Not later than the next regeneration of U the formula from
the trace will appear in some W1-son of v0 where W1 is not younger than U .
After some moves to the left it must settle in some v1 forever. If v1 lights green
i.o. we are done if not we repeat the reasoning and find a son of v1, v2 an so
on. Observe that we cannot go this way forever because each state is a tree of
bounded size.

Together Lemmas 4.7 and 4.6 prove Proposition 4.5 thereby showing cor-
rectness of the construction.

Automaton Aϕ0 expands to a nondeterministic automaton on trees over
one letter alphabet TAϕ0, such that its accepting runs closely correspond to the
refutations of ϕ0. Automaton TAϕ0 nondeterministically constructs a refutation
for ϕ0 and runs Aϕ0 on each path. There is no need to remember refutation
separately because sequents which are read by Aϕ0 are remembered in the roots
of the corresponding states. Hence states of TAϕ0 are exactly the states of Aϕ0.
The roots of the states of an accepting run of TAϕ0 give us a refutation of ϕ0.
Other way around given a refutation of ϕ0 we can run the path automaton Aϕ0

on each path of the refutation separately and because it is deterministic we will
obtain a tree which is an accepting run of TAϕ0 .

In [2] the following theorem is (implicitly) stated

Theorem 4.8 (Emerson) Suppose A is a Rabin automaton over a single let-
ter alphabet. If A accepts some tree then there is a graph G with states of A as
nodes which unwinds to an accepting run of A.

Because we know that there is a refutation of ϕ0, from this theorem we
conclude that there is a graph Gϕ0, with states of Aϕ0 as nodes, which unwinds
to an accepting run of TAϕ0. In the next sections we will show how to construct
a proof of ϕ0 ` from this graph.

23

4.3 Constructions on the graph

In this section we investigate the properties of the graph Gϕ0 . We define several
concepts which in turn will allow us to define an unwinding of Gϕ0 into a finite
tree with “back edges” Tϕ0.

Let us examine the structure of Gϕ0 . Since the unwinding of Gϕ0 is accepted
by TAϕ0, we know that on any infinite path of it there is a confirming vertex,
i.e., a vertex which lights green i.o. and disappears only finitely many times.
The crucial observation is that for any state s of Gϕ0 and any path P passing
i.o. through s, a confirming vertex of P belongs to s. Moreover we can linearly
order such confirming vertices. Intuitively, if we have this ordering Ord(s) =
(v1, . . . , vk) we know that on any cycle going through s, some vi lights green
and none of v1, . . . , vi−1 disappears.

More formally let us start by fixing some arbitrary linear ordering on the
set of all the vertices occurring in Gϕ0, then Ord(s) can be described as follows:

Definition 4.9 For any node s of Gϕ0 we define an ordering of some of the
vertices from s. Let Ord(s) be the list (v1, . . . , vk) such that for each i =
1, . . . , k, vi is defined by the following rule:

Consider a graph obtained from Gϕ0 by deleting all the nodes where
one of the vertices v1, . . . , vi−1 lights green. Let Ci be the nontriv-
ial strongly connected component of this graph containing node s.
Then vi is the smallest vertex, in our fixed linear ordering on all ver-
tices, such that vi does not disappear in any node of Ci and lights
green in some node of Ci.

It easy to check that we can always find a vertex vi required in the above
definition. If there were no such vertex then we would take a cycle through
all the nodes of the strongly connected component and unwind it to an infinite
path which would not be accepted by the automaton Aϕ0 . This would be a
contradiction with the assumption that Gϕ0 unwinds to an accepting run of
TAϕ0.

The ordering Ord(s) allows us to distinguish some special nodes of Gϕ0,
namely such that a vertex from Ord(s) lights green in s. Observe that such a
vertex must be the last vertex in Ord(s).

Definition 4.10 A node s of Gϕ0 is called a loop node if Ord(s) = (v1, . . . , vi)
and vi lights green in s. Vertex vi will be called the green vertex of s.

Loop nodes are the nodes where we will apply our induction rule. This is
why we duplicate each loop node in the definition of Tϕ0 below.

Definition 4.11 We will unwind graph Gϕ0 to a finite tree with back edges
Tϕ0. Nodes of Tϕ0 will be sequences consisting of nodes from Gϕ0 and pairs
(node, 0 or 1). For any sequence n and a node or a pair x we denote by nx a
path obtained by concatenating x to the end of n; we denote the last element
of the sequence by n ↓. Hence nx ↓= x. It will be also convenient to extend
the definition of Ord, we let Ord((s, 1)) = Ord((s, 0)) = Ord(s). Tree Tϕ0 is
defined as follows:

24

• The root of Tϕ0 is the sequence consisting only of the initial node of Gϕ0.

• A node n of Tϕ0 is final iff one of the conditions holds:

1. There is a prefix m(m ↓, 0) of n such that for the green vertex v of
m↓ we have: (i) definition constant el(v) appears in the node label
of v in n ↓, and (ii) v appears in Ord(m′ ↓), for any prefix m′ of n
longer than m.

2. There is a prefix m(n↓, 1) of n with the property that for any longer
prefix m′ of n, Ord(n↓) is a prefix of Ord(m′ ↓). In this case we will
say that there is a back edge from n to m.

Finial nodes will have no prolongation in Tϕ0.

• If not final node n belongs to Tϕ0 and n↓ is not a loop node then for any
son s in Gϕ0 of the last state in n we add a node ns.

• If not final node n belongs to Tϕ0, and n↓ is a loop node then we add two
nodes n(n↓, 0) and n(n↓, 1).

Fact 4.12 Tree Tϕ0 constructed above is finite.

Proof
Suppose that there is an infinite path P in Tϕ0 without taking a back edge. Let
us take any node s of Gϕ0 which occurs infinitely often on this path. Consider
Ord(s) = (v1, . . . , vk). By definition of Ord(s) on any path of Gϕ0 between any
two occurrences of s some vertex from v1, . . . , vk must light green. Let us take
the smallest i s.t. vi lights green i.o. on P .

Let s′ be the state which occurs i.o. on the path and where vi lights green.
Because from some point v1, . . . , vi−1 don’t light green on P there must be a
cycle in Gϕ0 from s to s′ and back to s on which none of v1, . . . , vi−1 lights green.
It follows from the definition of Ord(s) that none of v1, . . . , vi disappears on
such a cycle. Hence Ord(s′) = (v1, . . . , vi). So s′ is a loop node and vi is its
green vertex.

Let ms′ and ns′ be two nodes of P such that none of v1, . . . , vi−1 lights
green in the nodes in between. It should be clear that for any node o between
ms′ and ns′, Ord(s′) is a prefix of Ord(o↓). To light green vi must have at least
one el(vi)-son and this may be created only when el(vi) ∈ nd(vi). If the next
node after ms′ were ms′(s′, 0) then between ms′ and ns′ we could find a final
node of the first type. So the next node after ms′ is ms′(s′, 1). But in this case
ns′ is a final node of the second type.

The next concept is very important although quite straightforward. We will
need to assign provable sequents to final nodes. To do this for any node n we
need to know all its ancestors to which we may come by taking a back edge.
This set will be called the set of active nodes of a node. We will use it for final
nodes of the second type. For final nodes of the first type it is enough to keep
track of all the prefixes which may cause some descendant of a node to become
a final node. This gives us the set AN0.

25

Definition 4.13 For any node n of Tϕ0 we define the set of active nodes of n,
AN (n), as the smallest set such that:

• if there is a back edge from n or some descendant of n to some proper
ancestor m of n then m ∈ AN (n),

• if m ∈ AN (n) then AN (m) ⊆ AN (n).

Let AV (n) = {v : m ∈ AN (n), v the green vertex of m↓}. We call it the
set of active vertices of n. Observe that only nodes m with m ↓ being a loop
node can belong to AN (n).

Let AN 0(n) be the set of nodes m such that m(m ↓, 0) is a, maybe not
proper, prefix of n and the green vertex of m ↓ appears in Ord(m′ ↓) for any
prefix m′ of n longer than m.

Let AV 0(n) = {v : m ∈ AN 0(n), v the green vertex of m↓}.

Final lemma of this subsection presents the properties of active sets we will
use in the last step of the proof.

Lemma 4.14 For any node n of Tϕ0 and v ∈ AV (n), v is a vertex of n↓. For
any node nx of Tϕ0:

• if x is not a pair then AN (n) ⊆ AN (nx) and AN 0(n) ⊆ AN 0(nx),

• otherwise

AN (n(n↓, 0)) ⊆ AN (n) AN (n(n↓, 1)) ⊆ AN (n) ∪ {n}
AN 0(n(n↓, 0)) = AN 0(n) ∪ {n} AN 0(n(n↓, 1)) = AN 0(n)

Proof
To prove the first part of the lemma observe that if m is an ancestor of n to
which leads a back edge from some descendant of n then Ord(m ↓) is a prefix
of Ord(n↓). From this follows that for any m ∈ AN (n) sequence Ord(m↓) is a
prefix of Ord(n↓). Of course all vertices from Ord(n↓) appear in n↓.

The second part of the lemma follows directly from the definition of Tϕ0

and sets of active nodes.

4.4 Overview of the sequent assignment

The last step in the completeness proof is to construct a proof of ϕ0 ` from Tϕ0.
This will be done by assigning a sequent to every node of Tϕ0 in such a way that
leaves will be assigned provable sequents and a sequent assigned to a father will
be provable from the sequents assigned to its sons. Here we would like to give
some intuitions about the way it is done. For n a node of Tϕ0 we will use Γn to
denote the set of all the formulas appearing in the last state of n. We will use
〈[Γ]〉D as an abbreviation of {〈[γ]〉D : γ ∈ Γ}, that is a set of formulas obtained
from Γ by replacing definition constants with their definitions form D.

Each node of Tϕ0 is a sequence consisting of states of Aϕ0 and pairs of the
form (state, 0 or 1). There is a very easy way of assigning sequents. To every

26

node n of Tϕ0 assign 〈[Γ]〉Dϕ0
.̀ Expansion operation is used to remove possible

occurrences of definition constants. By definition of Aϕ0 for every internal
node n the set of formulas Γn is a conclusion in some tableau rule in which
sets of formulas occuring in the sons of n are the assumptions. Our simple
sequent assignment transforms such a rule into a rule of our system. Hence this
assignment is locally sound, that is a sequent assigned to some internal node of
Tϕ0 is provable from the sequents assigned to its sons. If all the leaves of Tϕ0

were labeled by axioms than the result would be a proof of ϕ0 .̀
In general in Tϕ0 we may have also final nodes which are not axioms and

after the simple assignment defined above this nodes will not be labeled by
axioms. We need more refined assignment to get axioms in finial nodes. Let us
describe its idea.

There are two types of final nodes. Let n be a final node of the first type.
This means that there is a prefix m(s, 0) of n such that for the green vertex v of
s definition constant el(v) appears in the node label of v in n↓ and v appears
in Ord(m′↓), for any prefix m′ of n longer than m.

Let U = el(v) and (U = µX.α(X)) ∈ Dϕ0 . For simplicity assume that nd(v)
is one element set, say, {ϕ(U)}. The simple assignment described above would
give us for node m the sequent 〈[Γm]〉Dϕ0

.̀ Now ϕ(U) ∈ Γm and 〈[ϕ(U)]〉Dϕ0
is

of the form ϕ′(µX.β(X)). We can apply (ind) rule to this sequent and assign
to m(s, 0) the assumption

ϕ′(ff), 〈[Γm \ {ϕ(U)}]〉Dϕ0
` (14)

we use \ to denote set subtraction. Let D0
ϕ0

be a definition list obtained from
Dϕ0 by replacing the definition of U by (U = ff). Sequent (14) can be presented
as 〈[ϕ(U)]〉D0

ϕ0
, 〈[Γ]〉Dϕ0

.̀ Let o be a descendant of m and let Γ′o be the node
label of v in o. We assign to o the sequent 〈[Γ′o]〉D0

ϕ0
, 〈[Γ\Γ′o]〉Dϕ0

.̀ This gives us
another locally sound assignment if only v does not disappear on the way from
m to o.

If v disappears on the path to o and reappears once again then there is no
way of restoring ff in formulas from the label of v. An example of a situation of
this kind is presented below. This is a schematic representation of a path from
m to o. The first row contains unexpanded sequents the second their expanded
versions; third row gives the names of the nodes on the path.

ϕ(U), Γ D̀ϕ0
ϕ′(ff), 〈[Γ]〉Dϕ0

` m(s, 0)

Γ′ D̀ϕ0
〈[Γ′]〉Dϕ0

` m(s, 0)s′

...
...

...
U, Γ′′ D̀ϕ0

µX.β(X), 〈[Γ′′]〉Dϕ0
`

α(U), Γ′′ D̀ϕ0
β(µX.β(X)), 〈[Γ′′]〉Dϕ0

` o

Suppose that v disappears in m(s, 0)s′. This means that in this node all the
formulas are expanded using Dϕ0 . Next when v reappears in o and has α(U)
in the label we cannot use D′ϕ0

for expanding α(U) and have a sound sequent

27

assignment at the same time. This is because the rule

β(ff), Σ `
µX.β(X), Σ`

is not sound.
We know that v does not disappear on the path from m to n and that U

appears in the node label of v in n. This means that a sequent assigned to n
is of the form ff , Σ ` for some Σ. As ff stands for p ∧ ¬p this sequent is easily
provable. This shows how to use induction rule to assign an axiom to a final
node of the first type.

Let n be a final node of the other type, i.e., the one with a back edge to
some m(m ↓, 1). In this case n↓ is a loop node, m ↓= n↓ and for every prefix
m′ of n longer than m, Ord(n↓) is a prefix of Ord(m′↓).

Let v be the green vertex of n↓ and let us assume as before that the node
label of v is {ϕ(U)} and 〈[ϕ(U)]〉Dϕ0

= ϕ′(µX.β(X)). Let Γ̃m denote Γm\{ϕ(U)}
and let P be the set off all the actions appearing in ϕ0. To m(m↓, 0) we have
assigned one assumption of the rule (ind) to m(m↓, 1) we will assign the other
one:

ϕ′(β(µX.Z ∧ β(X))), 〈[Γ̃m]〉Dϕ0
`〈P ∗〉(ϕ′(µX.Z ∧ β(X)) ∧

∧
〈[Γ̃m]〉Dϕ0

) (15)

Let D1
ϕ0

and D2
ϕ0

be definition lists obtained from Dϕ0 by replacing the definition
of U by (U = α(µX.Z ∧ α(X))) and by (U = µX.Z ∧ α(X)) respectively. With
this notation sequent (15) becomes

〈[ϕ(U)]〉D1
ϕ0

, 〈[Γ̃m]〉Dϕ0
`〈P ∗〉(〈[ϕ(U)]〉D2

ϕ0
∧
∧

〈[Γ̃m]〉Dϕ0
)

Let o be a descendant of m and let Γ1
o, Γ2

o be respectively the label of v in o and
the sum of the labels of the U -sons of v in o. We will assign to o the sequent:

〈[Γ2
o]〉D2

ϕ0
, 〈[Γ1

o\Γ2
o]〉D1

ϕ0
, 〈[(Γo\Γ1

o)\Γ2
o]〉Dϕ0

`〈P ∗〉(〈[ϕ(U)]〉D2
ϕ0

∧
∧

〈[Γ̃m]〉Dϕ0
) (16)

Compared to the previous case the new element this time is that we consider
also sons of v. A son of v is created when definition constant U appears in
the node label of v and rule (const) is applied. The previous case was simpler
because we terminated a path as soon as U appeared in the node label of v. To
see how sons of v come on the scene let us examine what happens when a new
son of v is created.

Let o be a node in which (const) rule is applied to U , and an U -son of v is
created in the result. Roughly speaking obtained state s is constructed from o↓
by adding a son of v with the node label {α(U)}. The only son of o is os. The
sequent assigned to o is of the form (16). Because a new son of v is created we
know that U ∈ Γ1

o \Γ2
o. Hence the sequent assigned to os is exactly the same as

the sequent assigned to o. In other words this application of (const) becomes
an identity under our assignment but a “category” of one of the formulas was
changed and this will allow us to prove a sequent assigned to n.

28

It is quite easy to check that such an assignment is sound for all the nodes o
such that on the path from m to o, vertex v does not disappear. This condition
on v is important for the same reasons as in the previous case.

We know that v does not disappear on the path from m to n and the last
states of m and n are the same. Moreover v lights green in n↓. By definition
of Aϕ0 this means that the label of v is equal to the sum of the labels of its
U -sons hence to all formulas in the label of v we can use D2

ϕ0
. Hence the sequent

assigned to n is:

〈[ϕ(U)]〉D2
ϕ0

, 〈[Γ̃m]〉Dϕ0
`〈P ∗〉(〈[ϕ(U)]〉D2

ϕ0
∧
∧

〈[Γ̃m]〉Dϕ0
)

which is easily provable.
Important point is that while describing this sequent assignment, we have

taken a leaf of Tϕ0 first and only then constructed a part of a proof. This
approach does not guarantee that if we transform every path of Tϕ0 separately
we will obtain a set of paths composing back to a tree. The simplest solution
seems to be to apply (ind) rule in every node m of Tϕ0 for which m ↓ is a
loop node and consequently m has two sons m(m ↓, 0) and m(m ↓, 1). Such a
strategy would be deterministic and this is what we will do but there is one
subtle point here.

Schematically our procedure looks like this. Each application of (ind) rule
allows us to remember one node ending in a loop node. Remembered informa-
tion is represented by variables Z added to µ-formulas. When arriving at a final
node we can use the information we remembered to obtain an axiom sequent.

�
�
�
�

A
A
A
A

�
�
�
�

A
A
A
A

m1

n

m2

Figure 1: An example

Suppose we have a situation as pictured in Figure 1. Nodes m1 and m2 are
places where we are to apply (ind) rule and there is a back edge from n to m2.
First we remember node m1 and, say, use Z1 for this. Next we remember m2
and use Z2. This means that m2 has assigned a sequent of the form

ϕ2(µX.β2(X)), Γ`〈P ∗〉∆

29

and we assign sequents

ϕ2(ff), Γ ` 〈P ∗〉∆
ϕ2(β(µX.Z2 ∧ β2(X))), Γ` 〈P ∗〉∆, 〈P ∗〉(ϕ2(µX.Z2 ∧ β(X)) ∧∧Γ)

to m2(m2 ↓, 0) and m2(m2 ↓, 1) respectively. We have used here without men-
tioning an equivalence of 〈P ∗〉∆ with 〈P ∗〉〈P ∗〉∆. Observe that Z1 may appear
in Γ as well as in ϕ2.

Arriving at n we hope to have something like

ϕ2(µX.Z2 ∧ β2(X)), Γ`〈P ∗〉(ϕ2(µX.Z2 ∧ β(X)) ∧
∧

Γ), 〈P ∗〉∆′ (17)

with Z1 occuring in Γ. But if the green vertex of m1 disappears on the way to
n then instead of Γ on the left side we would obtain set Γ with Z1 erased. Such
a sequent is not valid in general hence it is also not provable. In this situation
we can save ourself by forgetting about Z1 before applying rule (ind) in m2.
This can be done using (cut) rule. But what if there is a leaf below m2 where
we need Z1?

This is the place where sets of active nodes come to rescue. The solution
is to remember only active nodes. This means that we start our assignment
from the root of Tϕ0 and at a node m2 we first use weakening rule to remove all
Z’s connected with nodes which are not in AN (m2) and all ff connected with
nodes not in AN 0(m2). Only then we apply (ind) rule as described above.

In our example we either forget about Z1 before reaching m2 but then
we know by definition of Tϕ0 and AN that Z1 will not be needed below m2,
or we have Z1 around but then the green node of m1 will not disappear on
the path to n. By definition we have that AN (m2) = AN (n) ∪ {m2} and
AN 0(m2) ⊆ AN 0(n). This means that all Z’s we had in m2 are present in n
and at least the same occurrences of definition constants are replaced by ff .
Hence in n we get a sequent like (17) but maybe with even stronger left hand
side.

4.5 Construction of a proof

In this final subsection we will show that sequent ϕ0 ` is provable thereby
proving completeness of our axiomatisation. We will do it in two steps. First
we will define a sequent S(n) for very node n of Tϕ0. Next we will show that
such a sequent assignment is sound. That is we will show that sequents assigned
to the leaves are provable and for any other node n, sequent S(n) is provable
from the sequents assigned to the sons of n. As we will assign ϕ0 ` to the root
of Tϕ0 this will show that ϕ0 ` is provable.

Recall that Dϕ0 denotes the definition list [〉ϕ0〈]. In what follows we will use
the convention that Wi stands for i-th definition constant in Dϕ0 and γi for the
formula it defines. Similarly we denote by Ui the i-th µ-constant in Dϕ0 and
let αi(X) be such that (Ui = µX.αi(X)) ∈ Dϕ0 . Letters d and dµ will stand
for the number of definition constants in Dϕ0 and the number of µ-constants in
Dϕ0 respectively. Let P be the set of all the actions appearing in ϕ0. We will
assume that we have a fresh variable Zm for every node m of Tϕ0 such that m↓
is a loop node. This variables do not appear in ϕ0.

30

Definition of S(n) will be done in a several steps. With any node n of Tϕ0

is associated a set of formulas Γn which is the set of all the formulas in the
root of n↓ (n↓ being a state of Aϕ0 is itself a tree). We start with determining
a definition list for each vertex of n ↓, we call it signature of a vertex. Next
we define definition list D(n, ϕ) for every formula ϕ ∈ Γn. For every ϕ ∈ Γn

there is the lowest vertex in n↓ containing ϕ. Let us call it the ϕ-vertex of s.
We then define D(n, ϕ) from the signature of this vertex. The sequent S(n)
assigned to a node n will have a form {〈[ϕ]〉D(n,ϕ) : ϕ ∈ Γn}` 〈P ∗〉∆, where ∆
will be somehow defined from the structure of n↓ and AN (n).

Definition 4.15 Let n be a node of Tϕ0. For any vertex v of n ↓ we define
its signature, ‖ v ‖n, to be a sequence of formulas (δ1, . . . , δdµ) where for each
i = 1, . . . , dµ formula δi is defined as follows:

• First find the lowest ancestor u of v with el(u) = Ui.

• Let N be the set of nodes o ∈ AN (n) such that the green vertex of o is
an ancestor of u and has Ui as an edge label. Let m be the closest to n,
in Tϕ0, node from N .

• Finally let V =
∧{Zo : o ∈ N} and V ′ =

∧{Zo : o ∈ N, o 6= m}. We
define δi by cases:

1. if u ∈ AV 0(n) then δi = ff

2. if u ∈ AV (n) then δi = V ′ ∧ αi(µX.V ∧ αi(X))

3. otherwise δi = µX.V ∧ αi(X)

For n ↓ being a loop node we define ‖ v ‖n and ‖̂ v ‖n to be identical to
‖ v ‖n if v is not the green vertex of n ↓. In case v is the green vertex of
n↓ then el(v) = Ui for some µ-constant Ui in Dϕ0 and the difference between
‖ v ‖n and ‖ v ‖n or ‖̂ v ‖n is only at index i, we let δi = µX.V ∧ αi(X) and
δ̂i = µX.V ∧ Zn ∧ αi(X).

Definition 4.16 Let n be a node of Tϕ0, ϕ ∈ Γn and let v be the ϕ-vertex
of m ↓. Let (δ1, . . . , δdµ) = ‖ v ‖n. We define D(n, ϕ) to be a definition list
obtained from Dϕ0 by replacing for every i = 1, . . . , dµ a definition of i-th µ-
constant Ui by (Ui = δi). Similarly we define D(n, ϕ) and D̂(n, ϕ) but using
‖ v ‖n and ‖̂ v ‖n respectively.

For any formula ϕ ∈ Γn we define ‖ ϕ ‖n, ‖ ϕ ‖n and ̂‖ ϕ ‖n to be 〈[ϕ]〉D(n,ϕ),
〈[ϕ]〉D(n,ϕ) and 〈[ϕ]〉D̂(n,ϕ) respectively.
For a node n we define three formulas

F (n) =
∧{‖ ϕ ‖n : ϕ ∈ Γn}, F (n) =

∧{‖ ϕ ‖n : ϕ ∈ Γn}
F̂ (n) =

∧
{ ̂‖ ϕ ‖n : ϕ ∈ Γn}

Finally we associate a sequent with every node n of Tϕ0. If n ↓ is not a loop
node then S(n) is

F (n)`{〈P ∗〉F̂ (m) : m ∈ AN (n)}

31

and if n↓ is a loop node we let S(n) to be

F (n)`{〈P ∗〉F̂ (m) : m ∈ AN (n)}

Probably a few more words is needed to justify this definition of the sequent
assignment. The right hand side of the sequent is used to keep the labels of
the nodes to which we may return. The real work is done on the left hand side
using formulas F (n). These are expansions of Γn with Z-variables in places
designated by n and AN (n). Formula F (n) is different from F (n) only when
n ↓ is a loop node and the green vertex v of n ↓ belongs to AV (n). In this
situation F (n) is a stronger version of F (n). It is possible to have this stronger
formula because we know that v lights green in n↓ hence its label was equal to
the sum of the labels of its el(v)-sons. Formula F̂ (p) is what we would obtain on
the right hand side of the longer assumption if we applied (ind) rule to F (m).
The left hand side of the assumption will be just F (m(m↓, 1)) hence we don’t
need special symbol for this one.

Having defined sequent assignment for Tϕ0 we are ready to prove its proper-
ties. In a sequence of lemmas we will prove that if m is a leaf then S(m) is prov-
able and if m has sons m1, . . . , mk then S(m) is provable form S(m1), . . . , S(mk).
Let us first show why all the leaves of Tϕ0 are easily provable.

Lemma 4.17 Every leaf of Tϕ0 has assigned a provable sequent.

Proof
There are three kinds of leaves in Tϕ0. First there are nodes n such that n↓ has
no son in Gϕ0. In this case we know that some propositional constant p and its
negation occur in Γn. By definition of F (n), we have p, ¬p ∈ F (n).

Next case is when n is a final node from which there is no back edge. This
means that there is a prefix m(m ↓, 0) of n and the green vertex v of m ↓
such that: (i) definition constant el (v) appears in the node label of v in n ↓,
and (ii) for any prefix m′ of n longer than m, v appears in Ord(m′ ↓). Hence
v ∈ AV 0(n).

Now el(v) = Ui is some, say i-th, µ-definition constant form Dϕ0 and by
definition i-th component of ‖ v ‖n is ff . It is easy to see that v cannot have
any Ui-sons so v is the Ui-vertex of n↓. Hence we have that ‖ Ui ‖n = ff and
ff ∈ F (n).

The last case is when n is a final node from which there is a back edge to
some node m. Because n↓ is a loop node, S(n) is of the form:

F (n)`{〈P ∗〉F̂ (m) : m ∈ AN (n)}

We know that m ↓= n↓ and for any prefix m′ of n longer than m, Ord(n↓) is
a prefix of Ord(m′ ↓). From definition it follows that AN (n) = AN (m) ∪ {m}
and AN 0(m) ⊆ AN 0(n). It is easy to check that for every vertex v of n↓, every
j ∈ {1, . . . , dµ} and δm

j , δn
j j-th components of ‖̂ v ‖m and ‖ v ‖n respectively

the sequent δn
j `δm

j is provable. Because all occurrences of definition constants
are positive we have by Lemma 3.4 that F (n) ` F̂ (m) is provable. Hence
F (n)`〈P ∗〉F̂ (m) is provable.

32

Next our goal is to prove that the sequent associated with a father is provable
from the sequents associated with its sons. Let us start by showing a few
technical lemmas.

Lemma 4.18 Let n be a node of Tϕ0 and let v, w be two vertices of n↓, such
that v is an ancestor of w. Suppose δi, δ′i are i-th components of ‖ v ‖s and
‖ w ‖s respectively for some i = 1, . . . , dµ, then the sequent δ′i `δi is provable.

Proof
Let us choose any i ∈ {1, . . . , dµ}. If wi, the lowest ancestor of w s.t. el (wi) =
Ui, is also an ancestor of v then δi = δ′i and we are done. Otherwise let vi be
either the lowest ancestor of v s.t. el(vi) = Ui or the root if there is no such
ancestor.

• if wi ∈ AN 0(n) then δ′i = ff and of course δ′i `δi is provable.

• if wi ∈ AN (n) then

δ′i = V ′ ∧ α(µX.V ∧ α(X))
V =

∧{Zo : o ∈ N} V ′ = ∧{Zo : o ∈ N, o 6= m}

where N is the set of nodes o ∈ AN (n) such that some ancestor u′ of wi

with el(u′) = Ui is the green vertex in o↓, and m is the closest to n node
form N .

There are two possibilities for δi

δi = V ′1 ∧ α(µX.V1 ∧ α(X)) or δi = µX.V1 ∧ α(X)
where

V1 =
∧

{Zo : o ∈ N1} V ′1 =
∧

{Zo : o ∈ N1, o 6= m1}

and N1, m1 are defined as above but with respect to vi. Because wi is a
proper descendant of vi and wi ∈ AN (n), we have N1 ⊆ N \ {m}. Hence
V ′`V1 is provable. Because all occurrences of V , V ′, V1, V ′1 are positive we
have the proof of δ′i `δi by Lemma 3.4.

• In case wi 6∈ AN (n) the argument is very similar.

Lemma 4.19 The notion of a signature of a vertex v from a state n↓ depends
on the sets AN (n) and AN 0(n). It is easy to generalise the notion to arbitrary
sets of nodes R, R0 such that R ∩ R0 = ∅. So we can have something like
‖ v ‖R,R0

n . This way we can also define FR
R0

(n). If we do so then FR
R0

(n)`F (n)
will be provable for any R ⊇ AN (n), R0 ⊇ AN 0(n).

Proof
Let v be a vertex of m↓ and R ⊇ AN (n), R0 ⊇ AN 0(n). It is enough to show
that for any i and δr , δ being i-th elements of ‖ v ‖R,R0

n and ‖ v ‖n respectively,
the sequent δr `δ is provable.

33

If δr = ff then it is obvious. Suppose δr = V ′r ∧ αi(µX.Vr ∧ αi(X)) where
Vr =

∧{Zo : o ∈ N}, V ′r =
∧{Zo : o ∈ N, o 6= m} and N is the set of nodes

o ∈ R such that the green vertex of o is an ancestor of v and has Ui as an edge
label; m is the closest to n node from N . According to Definition 4.15

δ = V ′ ∧ αi(µX.V ∧ αi(X)) or δ = µX.V ∧ αi(X)

where V and V ′ are defined similarly but with respect to AN (n). Because
R ⊇ AN (n) it should be clear that V ′r ` V is provable hence also δr ` δ is
provable. The remaining case is similar.

Lemma 4.20 Let n be a node of Tϕ0. Suppose a state r is obtained from n↓
by applying all but the fifth step of the transition function and t is the state
resulting after the application of this last step, i.e., some of the vertices of r
might light green in t and have all its sons deleted. For sequence nr we can
define F (nr) in a similar way we defined F (nt). The sequent F (nr)`F (nt) is
provable and moreover if t is a loop node then F (nr)`F (nt) is provable.

Proof
Let Γ be the label of the root of r which is the same as the label of the root
of t. By the construction of the states, Γ is also the set of all the formulas
occurring in r as well as in t. For any formula ψ ∈ Γ, the ψ-vertex in t, call
it vt, is either an ancestor of the ψ-vertex in r, denoted vr, or vertices vt and
vr are the same. If they are the same then ‖ ψ ‖nr = ‖ ψ ‖nt. Otherwise let
(δ1, . . . , δdµ) = ‖ vt ‖nr = ‖ vt ‖nt and (δ′1, . . . , δ

′
dµ) = ‖ vr ‖nr . Because vr is a

descendant of vt in r then from Lemma 4.18 it follows that δ′i ` δi is provable
for i = 1, . . . , dµ. Hence the sequent ‖ ψ ‖nr `‖ ψ ‖nt is provable by Lemma 3.4
because all occurrences of definition constants are positive. This shows that
F (nr)`F (nt) is provable.

To see why F (nr) ` F (nt) is provable when t is a loop node, first observe
that ‖ ψ ‖nt = ‖ ψ ‖nt if the ψ-vertex of t is not the green vertex of t.

Let u be the green vertex of t, ψ ∈ nl(u) and let el(u) = Ui be i-th µ-
definition constant in Dϕ0 . Because u lights green in t there must be a de-
scendant u′ of u, in r s.t. ψ ∈ nl(u′) and el(u′) = el(u). The only difference
between ‖ u ‖nt = (δ1, . . . , δdµ) and ‖ u′ ‖nr = (δ′1, . . . , δ

′
dµ) may be at position

i. But from the definition of signatures it follows that δ′i `δi is provable. Then
using once again Lemma 3.4 we have that ‖ ψ ‖nr `‖ ψ ‖nt is provable.

We are now ready to prove that the sequent associated with a father node is
provable from the sequents associated with its sons. We do it by cases depending
on the rule which was used in the node.

Lemma 4.21 Suppose that the only son m′ of m was obtained from m by
application of (∧t) rule:

α, β, Γ D̀ϕ0

α ∧ β, Γ D̀ϕ0

that is Γm = {α∧β}∪Γ and automaton Aϕ0 goes from m↓ to m′ ↓ after reading
α, β, Γ D̀ϕ0

. In this case sequent S(m) is provable from S(m′).

34

Proof
Let r be a state obtained from m↓ by applying all but the last fifth step of the
transition function on the input α, β, Γ D̀ϕ0

. This means that r was obtained
from m ↓ by first setting the color of all the vertices in m ↓ to white. Then
formula α ∧ β was replaced by two formulas, α and β. Next, if a formula α
or β occured in a vertex v and in a vertex to the left of it then the formula
was deleted from the label of v. Finally the vertices with empty labels were
removed. Observe that in r there may still occur vertices which would light
green and have all its sons removed if the last step of transition function were
applied. We will show that

F (m)`F (mr)

is provable.
For any formula ϕ ∈ Γ, ϕ 6= α, ϕ 6= β we have ‖ ϕ ‖m = ‖ ϕ ‖mr because

ϕ-vertices in m↓ and r are the same.
If also α∧β-vertex in m↓ is the same as α-vertex in r then clearly ‖ α ∧ β ‖m `

‖ α ‖mr. If it is not the case then it must be because α ∈ Γ and α occurs to
the left of α ∧ β in m ↓. But then α-vertices in m ↓ and r are the same and
‖ α ‖m = ‖ α ‖mr. We can use similar argument for formula β.

This shows that the sequent F (m) ` F
AN (m)
AN 0(m)(mr) is provable. We know

from Lemma 4.14 that AN (mr) ⊆ AN (m) and AN 0(mr) ⊆ AN 0(m) hence
by Lemma 4.19 the sequent F (m)`F (mr) is provable. From Lemma 4.20 we
obtain that either F (m) ` F (mt) or F (m) ` F (mt) is provable depending on
whether t is a loop node or not. This shows that we can prove S(m) from
S(mt).

Similar arguments also work in case of the other tableau rules. This is
summarised in the following lemma.

Lemma 4.22 If m1, . . . , mk are the sons of m and one of the rules: (∨t), (µ),
(ν), (const) or (〈〉t) was applied in m then the sequent S(m) is provable from
S(m1), . . . , S(mk). (Actually k = 1 or k = 2.)

Proof
Let us just show one case. This is the case where Lemma 4.4 is needed. Assume
that the rule applied was:

Ui, Γ D̀ϕ0

µX.αi(X), Γ D̀ϕ0

then, as before, let r be a state obtained form m↓ by applying all but the last
fifth step of the transition function on the input Ui, Γ D̀ϕ0

. We will show that
the sequent

F (m)`F (mr)

is provable.

35

For any ϕ ∈ Γ, ϕ 6= Ui, ϕ-vertices in m↓ and r are the same hence ‖ ϕ ‖m =
‖ ϕ ‖mr . For formula Ui we have two possibilities. The first possibility is that
Ui-vertices in m↓ and r are the same. In this case also ‖ Ui ‖m = ‖ Ui ‖mr.

Otherwise the Ui-vertex in r is a µX.α(X)-vertex in m ↓, call it v. By
Definition 4.16, ‖ µX.αi(X) ‖m = µX.αi(X)[γ ′d/Wd] . . . [γ ′1/W1] where each γ ′i
is determined using the signature ‖ v ‖m. Now ‖ Ui ‖mr = Ui[γ ′d/Wd] . . . [γ ′1/W1]
for the same formulas γ ′j, j = 1, . . . , d, because v is the Ui-vertex in r.

By construction of the definition list, only constants older then Ui can
appear in µX.αi(X). From Lemma 4.4 it follows that neither v nor any of
its ancestors have Ui as its edge label. This means that in the signature
‖ v ‖m = (δ1, . . . , δdµ), its i-th coordinate δi is µX.αi(X). Hence

‖ µX.αi(X) ‖m = µX.αi(X)[γj/Wj] . . . [γ1/W1]
‖ Ui ‖mr = Ui[µX.αi(X)/Ui][γj/Wj] . . . [γ1/W1]

where Wj is the youngest definition constant older than Ui.
Having shown that F (m)`F (mr) is provable it is enough to use Lemma 4.20

to complete this case.

Finally we have to take care of the situation when m ↓ is a loop node and
m has two sons m(m ↓, 0) and m(m ↓, 1). This is the only situation when the
set of active nodes can increase and we get new nodes to “remember”.

Lemma 4.23 Suppose m ends in a loop node and has two sons m(m↓, 0) and
m(m↓, 1) then we can prove S(m) from S(m(m↓, 0)) and S(m(m↓, 1)).

Proof
Suppose v is the green node of m↓ and i, l are such that Ui = Wl = el(v). Let
µX.β(X) be i-th element of ‖ v ‖m and let {ψ1, . . . , ψk} be the node label of v
in m↓. We take definition list D(m, ψ1) = (W1 = γ ′1) . . . (Wd = γ ′d) as described
in Definition 4.16 and set

ψ′j = ψj[γ ′n/Wn] . . . [γ ′l+1/Wl+1][γ ′l−1/Wl−1] . . . [γ ′1/W1]; j = 1, . . . , k

ψ =
∧

{ψ′j : j = 1, . . . , k}
δ(X) = β(X)[γ ′l−1/Wl−1] . . . [γ ′1/W1]

γ =
∧

{‖ φ ‖n : φ ∈ Γm \ {ψ1, . . . , ψk}}

Sequent S(m) is by definition F (m) ` {〈P ∗〉F̂ (n) : n ∈ AN (m)} and with
the notation introduced above F (m) can be presented as ψ[µX.δ(X)/Ui] ∧ γ.
Hence S(m) is of the form of the conclusion of (ind) rule with the assumptions:

ψ[ff /Ui] ∧ γ ` {〈P ∗〉F̂ (n) : n ∈ AN (m)}
ψ[δ(µX.Zm ∧ δ(X))/Ui] ∧ γ ` {〈P ∗〉F̂ (n) : n ∈ AN (m)},

〈P ∗〉(ψ[µX.Zm ∧ δ(X)/Ui] ∧ γ)

Because v is the Ui-vertex on m↓, the first sequent is just

F
AN (m)
AN 0(m)∪{m}(m(m↓, 0))`{〈P ∗〉F̂ (n) : n ∈ AN (m)}

36

and we can prove it from S(m(m↓, 0)) using Lemma 4.19 because by Lemma 4.14
AN (m(m↓, 1)) ⊆ AN (m) and AN 0(m(m↓, 1)) = AN 0(m) ∪ {m}.
Similarly the second sequent is

F
AN (m)∪{m}
AN 0(m) (m(m↓, 1))`{〈P ∗〉F̂ (n) : n ∈ AN (m)} ∪ {〈P ∗〉F̂ (m)}

and by Lemmas 4.14 and 4.19 we can prove it from S(m(m↓, 1)).

Let us summarise the development of this section in the completeness the-
orem.

Theorem 4.24 (Completeness) For any unsatisfiable formula ϕ0, the se-
quent ϕ0 ` is provable.

Proof
By Proposition 3.6 we can assume that ϕ0 is positive and guarded. For this
formula we construct an automaton Aϕ0 as described in Section 4.2. From it
we obtain a tree Tϕ0 defined in Section 4.3. Then we associate a sequent S(n)
with every node n of Tϕ0 in a way described in Definition 4.16. By Lemma 4.17
we know that all the leaves of Tϕ0 have associated provable sequents. Using
induction on the height of a node and Lemmas 4.21, 4.22 and 4.23 we show that
the sequent associated with the root of Tϕ0 is provable. But it is just ϕ0 .̀

5 Conclusions

We have presented a finitary proof system for the propositional µ-calculus and
proved its completeness. The system is stronger than original Kozen’s system.
We think that this is an advantage of this system as it is easier to prove facts
in it. Of course original system is so natural that its completenes is still a very
interesting question.

The presented system has also this advantage that it is closely connected
with a decision procedure for the logic. This shows a possibility of integrating
the two in the way we now describe.

Essentially the only know method for checking satisfiability of the µ-calculus
formulas comes from the tableau method and the use of automata theory [23].
For a given formula the algorithm constructs an automaton over infinite trees
which accepts models of the formula. Then, if formula is satisfiable, a model
is constructed from an accepting run of the automaton. In [17] it was shown
that the process of checking satisfiability can be viewed as a game between
two players. The strategy for one player gives a model for a formula. The
strategy for the second gives a refutation. Moreover it was show that for a
given formula there is an algorithm which in exponential time constructs a
model or a refutation. This gives a complete setting for analysing µ-calculus
formulas: given a formula the algorithm either gives an example of a model in
which the formula holds or gives “proof” that this formula is unsatisfiable. Our
completeness proof gives an algorithm of converting a refutation of a formula
into a proof of the negation of the formula. Moreover the rules of the system

37

are closely connected with construction of refutations. This means that it may
be possible to interfere with the algorithm to help it in what is essentially task
of exponential complexity.

As we have shown our completeness proof is an extension of some complete-
ness proof method for modal system K. This method is really two methods
put together as it can be also used for model construction. Conversions to
ω-automata are general method of model construction for propositional logics
of programs. Such conversions can be seen as an extensions of the model con-
struction technique for system K. Our proof technique seams to be “the other
side of the coin” for this conversions. One can expect that it should also work
for other logics. It would be particularly interesting to apply the method to the
temporal µ-calculus.

References

[1] J.R. Brunch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information & Com-
putation, 98(2):142–170, 1992.

[2] E. Allen Emerson. Automata, tableaux and temporal logic. In Colledge
Conference on Logic of Programs, volume 193 of LNCS. Springer-Verlag,
1985.

[3] E. Allen Emerson and C.L.Lei. Efficient model checking in fragments of
propositional mu-calculus. In First IEEE Symp. on Logic in Computer
Science, pages 267–278, 1986.

[4] E. Allen Emerson and Charanjit S. Jutla. The complexity of tree automata
and logics of programs. In 29th IEEE Symp. on Foundations of Computer
Science, 1988.

[5] E.Allen Emerson and J.Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time. Journal of Computer and System
Sciences, 30(1):1–24, 1985.

[6] E.Allen Emerson and C.S. Jutla. Tree automata, mu calculus and deter-
minacy. In Proc. FOCS 91, 1991.

[7] M.J. Fisher and R.E. Ladner. Propositional modal logic of programs. In
9th ACM Ann. Aymp. on Theory of Computing, pages 286–294, 1977.

[8] D. Gabbay. Axiomatizations of logics of programs. Unpublished
manuscript, Bar-Ilan Univ., 1977.

[9] D. Harel, D Kozen, and R. Parikh. Process logic: Expressiveness, de-
cidability and completeness. Journal of Computer and System Sciences,
25:144–201, 1982.

[10] David Harel. Dynamic logic. In Handbook of Philosophical Logic Vol II,
pages 497–604. D.Reidel Publishing Company, 1984.

38

[11] P.M.W. Knijnenburg and J. van Leeuwen. On models for propositional
dynamic logic. Theoretical Computer Science, 91:181–203, 1991.

[12] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[13] Dexter Kozen. A finite model theorem for the propositional µ-calculus.
Studa Logica, 47(3):234–241, 1988.

[14] Dexter Kozen and R. Parikh. An elementary proof of the completeness of
the PDL. Theoretical Computer Science, 14:113–118, 1981.

[15] Dexter Kozen and R.J.Parikh. A decision procedure for the propositional
mu-calculus. In Second Workshop on Logics of Programs, 1983.

[16] Dexter Kozen and Jerzy Tiuryn. Logics of programs. In J.van Leeuven,
editor, Handbook of Theoretical Computer Science Vol.B, pages 789–840.
Elsvier, 1990.

[17] D. Niwiński and I. Walukiewicz. Games for µ-calculus. Technical Re-
port TR 94-03(192), Institute of Informatics, Warsaw Univeristy, February
1994.

[18] Damian Niwiński. Fixed points vs. infinite generation. In Proc. 3rd. IEEE
LICS, pages 402–409, 1988.

[19] R. Parikh. The completeness of propositional dynamic logic. In Proc 7th
Symp on Mathematical Foundations of Computer Science, volume 64 of
LNCS, pages 403–415, 1978.

[20] Shmuel Safra. On the complexity of ω-automata. In 29th IEEE Symp. on
Foundations of Computer Science, 1988.

[21] Colin P. Stirling and David J. Walker. Local model checking in the modal
mu-calculus. In International Joint Conference in Theory and Practice
of Software Development, volume 351 of LNCS, pages 369–382. Springer-
Verlag, 1989.

[22] C.S. Stirling. Modal and temporal logics. In S.Abramsky, D.Gabbay, and
T.Maibaum, editors, Handbook of Logic in Comuter Science, pages 477–
563. Oxford University Press, 1991.

[23] Robert S. Street and E. Allan Emerson. An automata theoretic procedure
for the propositional mu-calculus. Information & Computation, 81:249–
264, 1989.

39

Recent Publications in the BRICS Report Series

RS-95-6 Igor Walukiewicz. A Complete Deductive System for the
µ-Calculus. January 1995. 39 pp.

RS-95-5 Luca Aceto and Anna Inǵolfsdóttir. A Complete Equa-
tional Axiomatization for Prefix Iteration with Silent Steps.
January 1995. 27 pp.

RS-95-4 Mogens Nielsen and Glynn Winskel.Petri Nets and Bisim-
ulations. January 1995. 36 pp. To appear in TCS.

RS-95-3 Anna Inǵolfsdóttir. A Semantic Theory for Value–Passing
Processes, Late Approach, Part I: A Denotational Model
and Its Complete Axiomatization. January 1995. 37 pp.

RS-95-2 François Laroussinie, Kim G. Larsen, and Carsten Weise.
From Timed Automata to Logic - and Back. January 1995.
21 pp.

RS-95-1 Gudmund Skovbjerg Frandsen, Thore Husfeldt, Pe-
ter Bro Miltersen, Theis Rauhe, and Søren Skyum.Dy-
namic Algorithms for the Dyck Languages. January 1995.
21 pp.

RS-94-48 Jens Chr. Godskesen and Kim G. Larsen.Synthesizing
Distinguishing Formulae for Real Time Systems. Decem-
ber 1994. 21 pp.

RS-94-47 Kim G. Larsen, Bernhard Steffen, and Carsten Weise.A
Constraint Oriented Proof Methodology based on Modal
Transition Systems. December 1994. 13 pp.

RS-94-46 Amos Beimel, Anna Ǵal, and Mike Paterson. Lower
Bounds for Monotone Span Programs. December 1994.
14 pp.

RS-94-45 Jørgen H. Andersen, K̊are J. Kristoffersen, Kim G.
Larsen, and Jesper Niedermann. Automatic Synthesis
of Real Time Systems. December 1994. 17 pp.

RS-94-44 Sten Agerholm.A HOL Basis for Reasoning about Func-
tional Programs. December 1994. PhD thesis. viii+224
pp.

