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A Cook’s Tour of Equational Axiomatizations
for Prefix Iteration

Luca Aceto1?, Wan Fokkink2?? and Anna Ingólfsdóttir3? ? ?

1 BRICS (Basic Research in Computer Science),
Department of Computer Science, Aalborg University,
Fredrik Bajers Vej 7-E, DK-9220 Aalborg Ø, Denmark.

2 Department of Computer Science, University of Wales Swansea,
Singleton Park, Swansea SA2 8PP, Wales.

3 Dipartimento di Sistemi ed Informatica, Università di Firenze,
Via Lombroso 6/17, 50134 Firenze, Italy.

Abstract. Prefix iteration is a variation on the original binary version of the
Kleene star operation P ∗Q, obtained by restricting the first argument to be
an atomic action, and yields simple iterative behaviours that can be equation-
ally characterized by means of finite collections of axioms. In this paper, we
present axiomatic characterizations for a significant fragment of the notions
of equivalence and preorder in van Glabbeek’s linear-time/branching-time spec-
trum over Milner’s basic CCS extended with prefix iteration. More precisely, we
consider ready simulation, simulation, readiness, trace and language semantics,
and provide complete (in)equational axiomatizations for each of these notions
over BCCS with prefix iteration. All of the axiom systems we present are finite,
if so is the set of atomic actions under consideration.

1 Introduction

Equationally based proof systems play an important role in both the practice
and the theory of process algebras. From the point of view of practice, these
proof systems can be used to perform system verifications in a purely syntactic
way, and form the basis of axiomatic verification tools like, e.g., PAM [10]. From
the theoretical point of view, complete axiomatizations of behavioural equiva-
lences capture the essence of different notions of semantics for processes in terms
of a basic collection of identities, and this often allows one to compare seman-
tics which may have been defined in very different styles and frameworks. Some
researchers also measure the naturalness of a process semantics by using the
existence of a finite complete axiomatization for it over, say, finite behaviours
as an acid test.

An excellent example of the unifying role played by equational axiomatiza-
tions of process semantics may be found in [7]. Ibidem van Glabbeek presents
the so-called linear time/branching time spectrum, i.e., the lattice of all the
known behavioural equivalences over labelled transition systems ordered by
inclusion. The different identifications made by these semantic equivalences
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? ? ? Supported by a grant from the Danish National Research Foundation. Email:
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over finite synchronization trees are beautifully characterized by the author of
op. cit. in terms of a few simple axioms. This permits an illuminating com-
parison of these semantics within a uniform axiomatic framework. However,
despite the complete inference systems for bisimulation-based equivalences over
regular processes presented in, e.g., [11, 8] and years of intense research, little
is still known on the topic of effective complete axiomatizations of the notions
of semantics studied in [7] over iterative processes.

In this study, we shall present a contribution to this line of research by
investigating a significant fragment of the notions of equivalence and preorder
from [7] over Milner’s basic CCS (henceforth referred to as BCCS) [12] extended
with prefix iteration. Prefix iteration [6] is a variation on the original binary
version of the Kleene star operation P ∗Q [9], obtained by restricting the first
argument to be an atomic action, and yields simple iterative behaviours that
can be equationally characterized by means of finite collections of axioms. Fur-
thermore, prefix iteration combines better with the action prefixing operator
of CCS than the more general binary Kleene star. A significant advantage of
iteration over recursion, as a means to express infinite processes, is that it does
not involve a parametric process definition, because the development of process
theory is easier if parameterization does not have to be taken as primitive (see,
e.g., Milner [13, page 212]).

Our study of equational axiomatizations for BCCS with prefix iteration
has so far yielded complete equational axiomatizations for all the main no-
tions of bisimulation equivalence [6, 1]. In this paper, we continue this research
programme by studying axiomatic characterizations for more abstract seman-
tics over this language than those based on variations of bisimulation. More
precisely, we consider ready simulation, simulation, readiness, trace and lan-
guage semantics, and provide complete (in)equational axiomatizations for each
of these notions over BCCS with prefix iteration. All of the axiom systems
we present are finite, if so is the set of atomic actions under consideration. Al-
though the high level structure of the proofs of our main results follows standard
lines in the literature on process theory, the actual details of the arguments are,
however, rather subtle (cf., e.g., the proof of Thm. 4.6). To our mind, this shows
how the analysis of the collection of valid identities for the semantics consid-
ered in this paper already becomes difficult even in the presence of very simple
iterative behaviours, like those that can be expressed using prefix iteration.

The paper is organized as follows. After a brief review of the basic notions
from process theory needed in the remainder of the paper (Sect. 2), we present
the language BCCS with prefix iteration and its labelled transition system
semantics (Sect. 3). Sect. 4 is devoted to a guided tour of our completeness
results. The paper concludes with a mention of further results that will be
presented in a full account of this work, and a discussion of ongoing research
(Sect. 5).

2 Preliminaries

In this section we present the basic notions from process theory that will be
needed in the remainder of this study.
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2.1 Labelled Transitions Systems

A labelled transition system is a triple (Proc,Lab,
{
`→| ` ∈ Lab

}
), where:

– Proc is a set of states, ranged over by s, possibly subscripted or super-
scripted;

– Lab is a set of labels, ranged over by `, possibly subscripted;

–
`→⊆ Proc × Proc is a transition relation, for every ` ∈ Lab. As usual, we

shall use the more suggestive notation s
`→ s′ in lieu of (s, s′) ∈ `→, and write

s
`9 iff s

`→ s′ for no state s′.

All the labelled transition systems we shall consider in this paper will have a
special label X in their label set—used to represent successful termination—,

and will enjoy the following property: if s
X→ s′, then s′

`9 for every label `.
For n ≥ 0 and ς = `1 . . . `n ∈ Lab∗, we write s

ς→ s′ iff there exist states

s0, . . . , sn such that s = s0
`1→ s1

`2→ · · · sn−1
`n→ sn = s′. In that case, we say

that ς is a trace (of length n) of the state s. For a state s ∈ Proc we define:

initials(s)
∆
=
{
` ∈ Lab | ∃s′ : s

`→ s′
}
.

2.2 From Ready Simulation to Language Equivalence

Labelled transition systems describe the operational behaviour of processes in
great detail. In order to abstract from irrelevant information on the way pro-
cesses compute, a wealth of notions of behavioural equivalence or approximation
have been studied in the literature on process theory. A systematic investiga-
tion of these notions is presented in [7], where van Glabbeek studies the so-
called linear time/branching time spectrum, i.e., the lattice of all the known
behavioural equivalences over labelled transition systems ordered by inclusion.
In this study, we shall investigate a significant fragment of the notions of equiv-
alence and preorder from [7]. These we now proceed to present for the sake of
completeness.

Definition 2.1 (Simulation, Ready Simulation and Bisimulation).

– A binary relation R on states is a simulation iff whenever s1 R s2 and ` is
a label:

- if s1
`→ s′1, then there is a transition s2

`→ s′2 such that s′1 R s′2.

– A binary relation R on states is a ready simulation iff it is a simulation with
the property that, whenever s1 R s2 and ` is a label:

- if s1
`9, then s2

`9.

– A bisimulation is a symmetric simulation.

Two states s and s′ are bisimilar, written s↔ s′, iff there is a bisimulation that
relates them. Henceforth the relation ↔ will be referred to as bisimulation
equivalence. We write s @∼S s′ (resp. s @∼RS s′) iff there is a simulation (resp. a
ready simulation) R with s R s′.
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Bisimulation equivalence [14] relates two states in a labelled transition system
precisely when they have the same branching structure. Simulation (see, e.g.,
[14]) and ready simulation [3] relax this requirement to different degrees. The
following notion, which is based on a version of decorated traces, is induced by
yet another way of abstracting from the full branching structure of processes.

Definition 2.2 (Readiness Semantics). For a state s we define:

readies(s)
∆
=
{

(ς,X) | ς ∈ Lab∗,X ⊆ Lab and ∃s′ : s ς→ s′ and initials
(
s′
)

= X
}

For states s, s′ we write s @∼R s′ iff readies(s) is included in readies
(
s′
)
.

The classical notion of language equivalence for finite state automata may be
readily defined over labelled transition systems. To this end, it is sufficient
to consider the states from which a X-labelled transition is possible as accept
states.

Definition 2.3 (Language and Trace Semantics).

– We say that a sequence of labels ς is accepted by a state s iff s
ςX→ s′ for

some state s′. For states s, s′ we write s @∼L s′ iff every sequence accepted
by s is also accepted by s′.

– For states s, s′ we write s @∼T s′ iff the set of traces of s is included in that
of s′.

For Θ ∈ {S,RS,L,R, T }, the relation @∼Θ is a preorder over states of an arbi-
trary labelled transition system; its kernel will be denoted by 'Θ.

3 BCCS with Prefix Iteration

We begin by presenting the language of Basic CCS (henceforth often abbrevi-
ated to BCCS) with prefix iteration [6], together with its operational semantics.

3.1 The Syntax

We assume a non-empty alphabet Act of atomic actions, with typical elements
a, b, c. The language BCCSp∗ of Basic CCS with prefix iteration is given by the
following BNF grammar:

P ::= 0 | 1 | a.P | P + P | a∗P .

We shall use P,Q,R, S, T to range over BCCSp∗. In writing terms over the
above syntax, we shall always assume that the operator a. binds stronger than
+. We shall use the symbol ≡ to stand for syntactic equality of terms. The
expression P [+Q] will be used to denote the fact that Q is an optional summand.
The size of a term is the number of operators occurring in it.

Remark 3.1. The reader might have noticed that the syntax for the language
BCCSp∗ presented above includes two distinguished constants, viz. 0 and 1.
Intuitively, the term 0 will stand for a deadlocked process, whereas 1 will stand
for a process that can only terminate immediately with success. Our choice of
notation is in keeping with a standard one for regular expressions, cf., e.g., [5].
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3.2 Operational Semantics

Let X be a distinguished symbol not contained in Act. We shall use X to stand
for the action performed by a process as it reports its successful termination.
The meta-variable ξ will range over the set Act∪{X}. The operational semantics
for the language BCCSp∗ is given by the labelled transition system(

BCCSp∗,Act ∪ {X},
{

ξ→| ξ ∈ Act ∪ {X}
})

where the transition relations
ξ→ are the least binary relations over BCCSp∗

satisfying the rules in Table 1. Intuitively, a transition P
a→ Q means that the

system represented by the term P can perform the action a, thereby evolving

into Q. On the other hand, P
X→ Q means that P can terminate immediately

with success; the reader will immediately realize that, in that case, Q ≡ 0.

a.P
a→ P 1

X→ 0

P
ξ→ P ′

P +Q
ξ→ P ′

Q
ξ→ Q′

P +Q
ξ→ Q′

a∗P
a→ a∗P

P
ξ→ P ′

a∗P
ξ→ P ′

Table 1. Transition Rules

With the above definitions, the language BCCSp∗ inherits all the notions
of equivalence and preorder over processes defined in Sect. 2.2. The following
result is standard.

Proposition 3.2. For Θ ∈ {RS,S,L,R, T}, the relations @∼Θ and 'Θ are pre-
served by the operators in the signature of BCCSp∗. The same holds for bisim-
ulation equivalence.

4 Equational Axiomatizations

The study of equational axiomatizations of behavioural equivalences and pre-
orders over BCCSp∗ was initiated in the paper [6]. In op. cit. it is shown that the
axiom system in Table 2 completely axiomatizes bisimulation equivalence over
the language of 1-free BCCSp∗ terms. Our aim in the remainder of this study
will be to extend this result to the semantics in the linear-time/branching-time
spectrum discussed in Sect. 2.2.
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A1 x+ y = y + x

A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x

A4 x+ 0 = x

PA1 a.(a∗x) + x = a∗x
PA2 a∗(a∗x) = a∗x

Table 2. The axiom system F

For an axiom system T , we write T ` P ≤ Q iff the inequation P ≤ Q

is provable from the axioms in T using the rules of inequational logic. An
equation P = Q will be used as a short-hand for the pair of inequations P ≤ Q
and Q ≤ P . Whenever we write an inequation of the form P [+1] ≤ Q[+1], we
mean that if the 1 summand appears on the left-hand side of the inequation,
then it also appears on the right-hand side. P =AC Q denotes that P and Q are
equal modulo associativity and commutativity of +, i.e., that A1,A2 ` P = Q.
For a collection of (in)equations X over the signature of BCCSp∗, we write

P
(X)

≤ Q as a short-hand for A1,A2,X ` P ≤ Q. For I = {i1, . . . , in} a finite
index set, we write

∑
i∈I Pi for Pi1 + · · ·+ Pin . By convention,

∑
i∈∅ Pi stands

for 0.
Henceforth process terms will be considered modulo associativity and com-

mutativity of the +-operation, i.e., modulo axioms A1–2.
We begin the technical developments by noting that the proof of the com-

pleteness of the axiom system F with respect to bisimulation equivalence over
the language of 1-free BCCSp∗ terms applies mutatis mutandis to the whole of
the language BCCSp∗.

Proposition 4.1. For every P,Q ∈ BCCSp∗, P ↔ Q iff F ` P = Q.

The collection of possible transitions of each process term P is finite, say {P ai→
Pi | i = 1, ...,m} ∪

{
P
X→ 0 | j = 1, . . . , n

}
. We call the term

exp(P )
∆
=

m∑
i=1

ai.Pi +

n∑
j=1

1

the expansion of P . The terms aiPi and 1 will be referred to as the summands
of P . A straightforward structural induction on terms, using axiom PA1, yields:

Lemma 4.2. Each process term is provably equal to its expansion.

We aim at identifying a subset of process terms of a special form, which will
be convenient in the proof of the completeness results to follow. Following
a long-established tradition in the literature on process theory, we shall refer
to these terms as normal forms. The set of normal forms we are after is the
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smallest subset of BCCSp∗ including process terms having one of the following
two forms: ∑

i∈I
ai.Pi[+1] or a∗(

∑
i∈I

ai.Pi[+1]),

where the terms Pi are themselves normal forms, and I is a finite index set.
(Recall that the empty sum represents 0, and the notation [+1] stands for
optional inclusion of 1 as a summand.)

Lemma 4.3. Each term in BCCSp∗ can be proven equal to a normal form using
equations A3, A4 and PA1.

4.1 Ready Simulation

We begin our tour of equational axiomatizations for prefix iteration by present-
ing a complete axiom system for the ready simulation preorder (cf. Defn. 2.1
for the definition of this relation). The axiom system ERS consists of the laws
for bisimulation equivalence (cf. Table 2) and of the inequations RS1–2 below:

RS1 a.x ≤ a.x+ a.y

RS2 a∗x ≤ a∗(x+ a.y) .

Theorem 4.4. For every P,Q ∈ BCCSp∗, P @∼RS Q iff ERS ` P ≤ Q.

Proof. We leave it to the reader to check the soundness of the axiom system
ERS , and concentrate on its completeness. In view of Lem. 4.3, it is sufficient
to show that if P @∼RS Q holds for normal forms P and Q, then ERS ` P ≤ Q.
This we now proceed to prove by induction on the sum of the sizes of P and Q.

We proceed by a case analysis on the form the normal forms P and Q may
take.

– Case: P =AC

∑
i∈I ai.Pi[+1] and Q =AC

∑
j∈J bj.Qj [+1].

As P @∼RS Q, we infer that:

1. for every i there exists an index ji such that ai = bji and Pi @∼RS Qji ,
2. 1 is a summand of P iff it is a summand of Q, and
3. the collections of actions {ai | i ∈ I} and {bj | j ∈ J} are equal.

The induction hypothesis and substitutivity yield that, for every i ∈ I,

ERS ` ai.Pi ≤ bji .Qji .

Again using substitutivity, we obtain that

ERS ` P ≤
∑
i

bji .Qji [+1] .

Note now that, for every index j that is not contained in the set {ji | i ∈ I},
there is an index jl (l ∈ I) such that bj = bjl . We can therefore apply axiom
RS1 as necessary to infer that

ERS `
∑
i

bji .Qji [+1] ≤ Q .

The provability of the inequation P ≤ Q from the axiom system ERS now
follows immediately by transitivity.
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– Case: P =AC

∑
i∈I ai.Pi[+1] and Q =AC b

∗(
∑

j∈J bj .Qj [+1]).
To deal with this case, begin by applying PA1 to Q to obtain the equality

Q = b.Q+
∑
j∈J

bj .Qj[+1] .

We can now reason as in the first case of the proof to derive that

P ≤ b.Q+
∑
j∈J

bj.Qj [+1] .

Transitivity now yields the inequation P ≤ Q.
– Case: P =AC a

∗(
∑

i ai.Pi[+1]) and Q =AC

∑
j bj .Qj[+1].

Apply PA1 to P , and reason as in the previous case.
– Case: P =AC a

∗(
∑

i ai.Pi[+1]) and Q =AC b
∗(
∑

j bj .Qj[+1]).

As P @∼RS Q, we infer that:

1. there exists a Q′ such that Q
a→ Q′ and P @∼RS Q′,

2. for every i there exists a Q(i) such that Q
ai→ Q(i) and Pi @∼RS Q(i),

3. 1 is a summand of P iff it is a summand of Q, and
4. the collections of actions {ai | i ∈ I} ∪ {a} and {bj | j ∈ J} ∪ {b} are

equal.

Because of the form Q takes, Q′ and every Q(i) is either Q itself or one of
the Qj ’s. Therefore we may apply the inductive hypothesis to each of the
inequivalences Pi @∼RS Q(i) and substitutivity to infer that

ERS `
∑
i

ai.Pi ≤
∑
i

ai.Q(i) . (1)

We proceed with the proof by considering the following two sub-cases:

A. There is an index j such that a = bj and P @∼RS Qj ;
B. For no index j with a = bj it holds that P @∼RS Qj .

We consider these two cases in turn.

A. Assume that there is an index j such that a = bj and P @∼RS Qj. In this
case, we may apply the inductive hypothesis to derive that

ERS ` P ≤ Qj . (2)

We can now finish the proof of the inequation P ≤ Q from the axiom
system ERS as follows:

P
(PA1)
= a.P +

∑
i

ai.Pi[+1]

(1),(2)

≤ bj.Qj +
∑
i

ai.Q(i)[+1]

(RS1)

≤ bj.Qj +
∑
i

ai.Q(i) + exp(Q)[+1]

(A3),(PA1)
= Q .
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B. Assume that for no index j with a = bj it holds that P @∼RS Qj. In this
case, we infer that a = b. We can now reason as follows:

P ≡ a∗(
∑
i

ai.Pi[+1])
(1)

≤ a∗(
∑
i

ai.Q(i)[+1])

(RS1),(RS2)

≤ a∗(
∑
i

ai.Q(i) + a.Q+
∑
j

bj.Qj [+1])

(A3),(PA1)

≤ a∗Q
(PA2)
= Q .

This completes the proof of the theorem.

4.2 Simulation

The axiom system ES consists of the laws for bisimulation equivalence in Table 2
and of the axiom

S x ≤ x+ y .

Inequation S is well-known to characterize the simulation preorder over finite
synchronization trees. Unlike in the case of ready simulation, no extra law is
needed to deal with prefix iteration explicitly.

Theorem 4.5. For every P,Q ∈ BCCSp∗, P @∼S Q iff ES ` P ≤ Q.

4.3 Readiness

In this section we present a complete axiom system for prefix iteration with
respect to the readiness preorder. The axiom system ER consists of the collection
of laws for ready simulation and of those listed below:

R1 a.(b.x+ b.y + v) ≤ a.(b.x+ v) + a.(b.y + w)
R2 a.a∗(b.x+ b.y + v) ≤ a.a∗(b.x+ v) + a.a∗(b.y + w)
R3 a∗(b.x+ b.y + v + a.(b.y + w)) = a∗(b.x+ v + a.(b.y + w)) + b.y

Theorem 4.6. For every P,Q ∈ BCCSp∗, P @∼R Q iff ER ` P ≤ Q.

We focus on the completeness of ER, and leave soundness to the reader. Before
proving this completeness theorem, we introduce some auxiliary definitions and
results.

Definition 4.7. A term P is saturated if for each pair of derivations P
a→ Q

b→
Q′ and P

a→ R with b ∈ initials(R) we have R
b→ R′ with Q′ @∼R R′.

The following lemma stems from [2].

Lemma 4.8. If P @
∼R Q and P

a→ P ′ and Q is saturated, then Q
a→ Q′ with

P ′ @∼R Q′.

9



Definition 4.9. A normal form P is strongly saturated if:

1. P is saturated;

2. if P =AC

∑
i∈I ai.Pi[+1], then the term Pi is strongly saturated, for every

i ∈ I.

Axioms R1–R3 play a crucial role in the proof of the following key result.

Lemma 4.10. Each term is provably equal, by the axioms in ER, to a strongly
saturated normal form, in which each subterm of the form a∗R occurs in the
context a. .

Finally we are in a position to prove Thm. 4.6.

Proof. Suppose that P @
∼R Q; we prove that ER ` P ≤ Q. By Lem. 4.10 it

is not hard to see that it suffices to establish the claim under the following
assumptions:

1. P and Q are normal forms;

2. Q is strongly saturated;

3. proper subterms of P and Q of the form a∗R occur in the context a. ;

4. if P =AC a
∗R and Q =AC b

∗S, then a = b.

(In fact, according to Lem. 4.10, the last two conditions could be replaced by
the stronger condition that all subterms of P and Q of the form a∗R occur in
the context a. . However, we shall need the weaker formulation above to be able
to satisfy the induction hypothesis.) We derive the desired inequality P ≤ Q

from ER by induction with respect to the following lexicographic ordering on
pairs of process terms: (P,Q) < (R,S) if

- either size(P ) < size(R);

- or size(P ) = size(R) and size(Q) < size(S).

The next two cases distinguish the possible syntactic forms of P .

– Case 1: P =AC

∑
i∈I ai.Pi[+1].

Since P @∼R Q, P
ai→ Pi and Q is saturated, Lem. 4.8 implies that for each

i ∈ I we have Q
ai→ Qi for some Qi such that Pi @∼R Qi. According to

Lem. 4.10, ER ` Qi = Ri, with Ri a strongly saturated normal form, in
which each subterm of the form c∗S occurs in the context c. . Moreover,
each Pi is a normal form, in which all proper subterms of the form c∗S occur
in the context c. , with size(Pi) < size(P ). Hence, we can apply induction
to Pi @∼R Ri to derive ER ` Pi ≤ Ri. Therefore, for each i ∈ I,

ER ` ai.Pi ≤ ai.Ri = ai.Qi . (3)

By substitutivity, we have that

P =AC

∑
i∈I

ai.Pi[+1]
(3)

≤
∑
i∈I

ai.Qi[+1] . (4)
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Since P @∼R Q implies initials(P ) = initials(Q), it follows that initials(Q)\{X}
is equal to {ai | i ∈ I}. Furthermore, P @∼R Q implies that P has a summand

1 if and only if Q
X→ 0. Hence,∑
i∈I

ai.Qi[+1]
(RS1)

≤ exp(Q)
(Lem.4.2)

= Q

which together with equation (4) yields ER ` P ≤ Q.
– Case 2: P =AC a

∗(
∑

i∈I ai.Pi[+1]).
The next two cases distinguish the possible syntactic forms of Q.

– Case 2.1: Q =AC

∑
j∈J bj .Qj[+1].

Suppose that P
c→ P ′. Since P @∼R Q and Q is saturated, Lem. 4.8 implies

that there is a j ∈ J such that c = bj and P ′ @∼R Qj. Both P ′ and Qj
are normal forms, and since Q is strongly saturated, by Defn. 4.9(2) Qj is
strongly saturated too. Furthermore, if P ′ =AC d

∗R and Qj =AC e
∗S, then

c = d and bj = e, owing to property 3 of P and Q, and so d = c = bj = e.
Moreover, it is easy to see that property 3 of P and Q implies that the same
property holds for P ′ and Qj. Finally, size(P ′) ≤ size(P ) and size(Qj) <
size(Q). Hence, we can apply induction to P ′ @∼R Qj to derive ER ` P ′ ≤ Qj .
Substitutivity now yields

ER ` c.P ′ ≤ bj .Qj . (5)

Hence,

P
(Lem.4.2)

= exp(P )
(5)

≤
∑
j∈J0

bj.Qj [+1] (6)

for some J0 ⊆ J . It is easy to see that P @∼R Q implies initials(Q) \ {X} =

initials(P ) \ {X} = {bj | j ∈ J0}. Moreover, P
X→ 0 if and only if Q has a

summand 1. Hence,∑
j∈J0

bj .Qj[+1]
(RS1)

≤
∑
j∈J

bj.Qj [+1] =AC Q .

Together with equation (6) this yields ER ` P ≤ Q.
– Case 2.2: Q =AC a

∗(
∑

j∈J bj.Qj [+1]).

Since P @
∼R Q and P

ai→ Pi and Q is saturated, Lem. 4.8 implies that for
each i ∈ I
1. either ai = a and Pi @∼R Q,
2. or there is a j such that ai = bj and Pi @∼R Qj.

Clearly, each Pi is a normal form in which all proper subterms of the form
c∗S occur in the context c. , and with size(Pi) < size(P ).
In the first case, applying induction to Pi @∼R Q, we infer that ER ` Pi ≤ Q.
Therefore, by substitutivity,

ER ` ai.Pi ≤ a.Q . (7)
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In the second case, Lem. 4.10 implies ER ` Qj = Rj , with Rj a strongly
saturated normal form, in which each subterm of the form c∗S occurs in the
context c. . Then by induction Pi @∼R Rj implies ER ` Pi ≤ Rj . It follows,
by substitutivity, that

ER ` ai.Pi ≤ ai.Rj = bj .Qj . (8)

Hence, for some J0 ⊆ J :

P
(RS2)

≤ a∗(a.Q+
∑
i∈I

ai.Pi[+1])
(8),(7)

≤ a∗(a.Q+
∑
j∈J0

bj.Qj [+1]) . (9)

It is easy to see that P @
∼R Q implies that initials(Q) \ {X} = {bj | j ∈

J0} ∪ {a}, and that P
X→ 0 if and only if Q

X→ 0. Hence

a∗(a.Q+
∑
j∈J0

bj.Qj [+1])
(RS1)

≤ a∗(a.Q+
∑
j∈J

bj.Qj [+1])
(PA1),(PA2)

= Q .

Together with equation (9) this yields ER ` P ≤ Q.

The proof is now complete.

4.4 Traces

The axiom system ET consists of the laws for bisimulation equivalence in Table 2
and of

T1 a.(x+ y) = a.x+ a.y

T2 a∗(x+ y) = a∗x+ a∗y
T3 a∗(a.x) = a.(a∗x) .

Axiom T1 is a well-known equation used to characterize trace equivalence over
finite synchronization trees, and axiom T2 is the adaptation of this equation to
the case of prefix iteration. Finally, T3 is, to the best of our knowledge, a new
axiom.

Theorem 4.11. For every P,Q ∈ BCCSp∗,

1. P 'T Q iff ET ` P = Q;
2. P @∼T Q iff ET ∪ {(S)} ` P ≤ Q.

4.5 Language Semantics

The axiom system EL consists of the laws for bisimulation equivalence in Table 2,
T1–3 and the equations

L1 a.0 = 0
L2 a∗0 = 0 .

Axiom L1 is an adaptation to action prefixing of a well-known equation from
regular algebra, and axiom L2 is the generalization of this equation to the case
of prefix iteration.

12



Theorem 4.12. For every P,Q ∈ BCCSp∗,

1. P 'L Q iff EL ` P = Q;
2. P @∼L Q iff EL ∪ (S) ` P ≤ Q.

Proof. We leave it to the reader to check the soundness of the axiom system
EL ∪ (S), and concentrate on the completeness results.

1. Assume that P 'L Q. We shall prove that EL ` P = Q. A simple term
rewriting analysis (which is omitted here) shows that each process term is
provably equal to a term which is either 0-free, or of the form 0.
Suppose that two terms P and Q are language equivalent. We distinguish
two cases.

- Case 1: P ≡ 0. Then clearly also Q ≡ 0, so P ≡ 0 ≡ Q.
- Case 2: P is 0-free. Then clearly Q is also 0-free. Since P and Q are

0-free and language equivalent, it is not hard to see that they are also
trace equivalent. So, according to Thm. 4.11, the equation P = Q can
be derived from ET , which is included in EL.

2. Note that, for every P,Q ∈ BCCSp∗, the following holds:

P @∼L Q iff P +Q 'L Q .

Thus the completeness of the axiom system EL ∪ {(S)} with respect to @∼T
is an immediate consequence of the first statement of the theorem.

5 Further Work

The completeness results presented in this paper deal with a significant fragment
of the notions of semantics discussed in [7]. To our mind, the most important
omission is a complete proof system for failures semantics [4] over BCCS with
prefix iteration. We conjecture that a complete axiomatization for the failure
preorder can be obtained by adding the laws

a.(x+ y) ≤ a.x+ a.(y + z)
a.a∗(x+ y) ≤ a.a∗x+ a.a∗(y + z)

a.a∗x ≤ a∗a.(x+ y)
a∗(x+ y + a.(y + z)) ≤ a∗(x+ a.(y + z)) + y

a∗x ≤ a∗(x+ a.y)

to those for bisimulation equivalence (cf. Table 2), and we are currently working
on the details of such a proof. The crux of the argument is a proof to the
effect that the suggested inequations are sufficient to convexly saturate each
process term, in the sense of [2]. We have also obtained irredundancy results
for the axioms systems for ready simulation, simulation, trace and language
equivalence. These will be presented in the full version of this paper, together
with a characterization of the expressive power of BCCS with prefix iteration.
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