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Efficient Timed Reachability Analysis using Clock

Difference Diagrams

Gerd Behrmann1 Kim G. Larsen1 Justin Pearson2 Carsten Weise1

Wang Yi2
1BRICS∗, Aalborg University, Denmark

2Department of Computer Systems, Uppsala University, Sweden

Abstract

One of the major problems in applying automatic verification tools to industrial-size sys-
tems is the excessive amount of memory required during the state-space exploration of a
model. In the setting of real-time, this problem of state-explosion requires extra attention as
information must be kept not only on the discrete control structure but also on the values of
continuous clock variables.

In this paper, we present Clock Difference Diagrams, CDD’s, a BDD-like data-structure for
representing and effectively manipulating certain non-convex subsets of the Euclidean space,
notably those encountered during verification of timed automata.

A version of the real-time verification tool Uppaal using CDD’s as a compact data-
structure for storing explored symbolic states has been implemented. Our experimental results
demonstrate significant space-savings: for 8 industrial examples, the savings are between 46%
and 99% with moderate increase in runtime.

We further report on how the symbolic state-space exploration itself may be carried out
using CDD’s.

1 Motivation

In the last few years a number of verification tools have been developed for real-time systems (e.g.
[HHW95, DY95, BLLPW96]). The verification engines of most tools in this category are based
on reachability analysis of timed automata following the pioneering work of Alur and Dill [AD94].
A timed automaton is an extension of a finite automaton with a finite set of real-valued clock-
variables. Whereas the initial decidability results are based on a partitioning of the infinite state-
space of a timed automaton into finitely many equivalence classes (so-called regions), tools such as
Kronos and Uppaal are based on more efficient data structures and algorithms for representing
and manipulating timing constraints over clock variables. The abstract reachability algorithm
applied in these tools is shown in Figure 1. The algorithm checks whether a timed automaton
may reach a state satisfying a given state formula φ. It explores the state space of the automaton
in terms of symbolic states of the form (l, D), where l is a control–node and D is a constraint
system over clock variables {X1, . . . , Xn}. More precisely, D consists of a conjunction of simple
clock constraints of the form Xi op c, −Xi op c and Xi−Xj op c, where c is an integer constant and
op ∈ {<,≤}. The subsets of Rn which may be described by clock constraint systems are called
zones. Zones are convex polyhedra, where all edge-points are integer valued, and where border
lines may or may not belong to the set (depending on a constraint being strict or not).

∗BRICS: Basic Research in Computer Science, Centre of the Danish National Research Foundation
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Passed:= {}
Wait:= {(l0, D0)}
repeat

begin
get (l, D) from Wait

if (l, D) |= φ then return “YES”
else if D 6⊆ D′ for all (l, D′) ∈ Passed then

begin
add (l, D) to Passed (∗)
Next:={(ls, Ds) : (l, D); (ls, Ds) ∧Ds 6= ∅}
for all (ls′ , Ds′) in Next do

put (ls′ , Ds′) to Wait

end
end

until Wait={}
return “NO”

Figure 1: An algorithm for symbolic reachability analysis.

We observe that several operations of the algorithm are critical for efficient implementation. In
particular the algorithm depends heavily on operations for checking set inclusion and emptiness.
In the computation of the set Next, operations for intersection, forward time projection (future)
and projection in one dimension (clock reset) are required. A well-known data-structure for
representing clock constraint systems is that of Difference Bounded Matrices, DBM, [Dill87],
giving for each pair of clocks1 the upper bound on their difference. All operations required in the
reachability analysis in Figure 1 can be easily implemented on DBM’s with satisfactory efficiency.
In particular, the various operations may benefit from a canonical DBM representation with
tightest bounds on all clock differences computed by solving a shortest path problem. However,
computation of this canonical form should be postponed as much as possible, as it is the most
costly operation on DBM’s with time-complexity O(n3) (n being the number of clocks).

DBM’s obviously consume space of order O(n2). Alternatively, one may represent a clock con-
straint system by choosing a minimal subset from the constraints of the DBM in canonical form.
This minimal form [LPW95] is preferable when adding a symbolic state to the main global data-
structure Passed as in practice the space-requirement is only linear in the number of clocks.

Considering once again the reachability algorithm in Figure 1, we see that a symbolic state (l, D)
from the waiting-list Wait is freed from being explored (the inner box) provided some symbolic
state (l, D′) already in Passed ’covers’ it (i.e. D ⊆ D′). Though clearly a sound rule and provably
sufficient for termination of the algorithm, exploration of (l, D) may be avoided under less strict
conditions. In particular, it suffices for (l, D) to be ’covered’ collectively by the symbolic states in
Passed with location l, i.e.:

D ⊆
⋃
{D′ | (l, D′) ∈ Passed} (1)

However, this requires handling of unions of zones, which complicates things considerably. Using
DBM’s, finite unions of zones – which we will call federations in the following – may be represented
by a list of all the DBM’s of the union. However, the more “non-convex” the zone becomes, the
more DBM’s will be needed. In particular, this representation makes the inclusion-check of (1)
computational expensive.

1For uniformity, we assume a special clock X0 which is always zero. Thus Xi op c and −Xi op c can be rewritten
as the differences Xi −X0 op c and X0 −Xi op c.
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In this paper, we introduce a more efficient BDD-like data-structure for federations, Clock Dif-
ference Diagrams, CDD’s. A CDD is a directed acyclic graph, where inner nodes are associated
with a given pair of clocks and outgoing arcs state bounds on their difference. This data-structure
contains DBM’s as a special case and offers simple boolean set-operations and easy inclusion-
and emptiness-checking. Using CDD’s, the Passed-list may be implemented as a collection of
symbolic states of the form (l, F ), where F is a CDD representing the union of all zones for which
the location l has been explored2. Thus, the more liberal termination condition of (1) may be
applied, potentially leading to faster termination of the reachability algorithm. As any BDD-like
data-structure, CDD’s eliminate redundancies via sharing of substructures. Thus, the CDD repre-
sentation of F is likely to be much smaller than the explicit DBM-list representation. Furthermore,
sharing of identical substructures between CDD’s from different symbolic states may be obtained
for free, opening for even more efficient storage-usage.

Having implemented a CDD-package and used it in modifying Uppaal, we report on some very
encouraging experimental results. For 8 industrial examples found in the literature, significant
space-savings are obtained: the savings are between 46% and 99% with moderate increase in
run-time (in average an increase of 17%).

To make the reachability algorithm of Figure 1 fully symbolic, it remains to show how to compute
the successor set Next based on CDD’s. In particular, algorithms are needed for computing
forward projection in time and clock-reset for this data-structure. Similar to the canonical form
for DBM’s these operation are obtained via a canonical CDD form, where bounds on all arcs are
as tight as possible.

Related Work

The work in [Bal96] and [WTD95] represent early attempts of applying BDD-technology to the
verification of continuous real-time systems. In [Bal96], DBM’s themselves are coded as BDD’s.
However, unions of DBM’s are avoided and replaced by convex hulls leading to an approximation
algorithm. In [WTD95], BDD’s are applied to a symbolic representation of the discrete control
part, whereas the continuous part is dealt with using DBM’s.

The Numerical Decision Diagrams of [ABKMPR97, BMPY97] offer a canonical representation of
unions of zones, essentially via a BDD-encoding of the collection of regions covered by the union.
[CC95] offers a similar BDD-encoding in the simple case of one-clock automata. In both cases,
the encodings are extremely sensitive to the size of the in-going constants. As we will indicate,
NDD’s may be seen as degenerate CDD’s requiring very fine granularity.

CDD’s are in the spirit of Interval Decision Diagrams of [ST98]. In [Strehl’98], IDD’s are used for
analysis in a discrete, one-clock setting. Whereas IDD’s nodes are associated with independent
real-valued variables, CDD-nodes – being associated with differences – are highly dependent. Thus,
the subset- and emptiness checking algorithms for CDD’s are substantially different. Also, the
canonical form requires additional attention, as bounds on different arcs along a path may interact.

The CDD datastructure was first introduced in [LPWW98], where a thorough study of various
possible normalforms is given.

2 Timed Automata

Timed automata were first introduced in [AD94] and have since then established themselves as
a standard model for real–time systems. We assume familiarity with this model and only give a
brief review in order to fix the terminology and notation used in this paper.

2Thus D is simply unioned with F , when a new symbolic state (l,D) is added to the Passed-list (cf. Fig. 1, line
(∗)).
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X ≤ 4

l0 l1

X ≥ 1 Y := 0

∧
Y ≤ 3

X ≤ 5

X := 0;Y := 0

Figure 2: A Timed Automaton.

Consider the timed automaton of Figure 2. It has two control nodes l0 and l1 and two real–valued
clocks X and Y . A state of the automaton is of the form (l, s, t), where l is a control node, and s
and t are non–negative reals giving the value of the two clocks X and Y . A control node is labelled
with a condition (the invariant) on the clock values that must be satisfied for states involving this
node. Assuming that the automaton starts to operate in the state (l0, 0, 0), it may stay in node
l0 as long as the invariant X ≤ 4 of l0 is satisfied. During this time the values of the clocks
increase synchronously. Thus from the initial state, all states of the form (l0, t, t), where t ≤ 4,
are reachable. The edges of a timed automaton may be decorated with a condition (guard) on
the clock values that must be satisfied in order to be enabled. Thus, only for the states (l0, t, t),
where 1 ≤ t ≤ 4, is the edge from l0 to l1 enabled. Additionally, edges may be labelled with simple
assignments reseting clocks. E.g. when following the edge from l0 to l1 the clock Y is reset to 0
leading to states of the form (l1, t, 0), where 1 ≤ t ≤ 4.

A timed automaton is a standard finite-state automaton extended with a finite collection of real-
valued clocks C = {X1, . . . , Xn}. We use B(C) ranged over by g and D to denote the set of clock
constraint systems over C.

Definition 1 A timed automaton A over clocks C is a tuple 〈N, l0, E, Inv〉 where N is a finite
set of nodes (control-nodes), l0 is the initial node, E ⊆ N ×B(C)× 2C ×C corresponds to the set
of edges, and finally, Inv : N → B(C) assigns invariants to nodes. In the case, 〈l, g, r, l′〉 ∈ E, we

write l
g,r−→ l′.

Formally, we represent the values of clocks as functions (called clock assignments) from C to the
non–negative reals R≥. We denote by V the set of clock assignments for C. A semantical state
of an automaton A is now a pair (l, u), where l is a node of A and u is a clock assignment for C,
and the semantics of A is given by a transition system with the following two types of transitions
(corresponding to delay–transitions and edge–transitions):

• (l, u)−→(l, u+ d) if Inv(l)(u) and Inv(l)(u+ d)

• (l, u)−→(l′, u′) if there exist g, r such that l
g,r−→ l′, u ∈ g, u′ = [r 7→ 0]u, Inv(l)(u) and

Inv(l′)(u′)

where for d ∈ R≥, u+ d denotes the time assignment which maps each clock X in C to the value
u(X) + d, and for r ⊆ C, [r 7→ 0]u denotes the assignment for C which maps each clock in r to
the value 0 and agrees with u over C\r. By u ∈ g we denote that the clock assignment u satisfies
the constraint g (in the obvious manner).

Clearly, the semantics of a timed automaton yields an infinite transition system, and is thus not
an appropriate basis for decision algorithms. However, efficient algorithms may be obtained using
a finite–state symbolic semantics based on symbolic states of the form (l, D), where D ∈ B(C)
[HNSY94, YPD94]. The symbolic counterpart to the standard semantics is given by the following
two (fairly obvious) types of symbolic transitions:

• (l, D);

(
l, (D ∧ Inv(l))↑ ∧ Inv(l)

)
• (l, D);

(
l′, r(g ∧D ∧ Inv(l)) ∧ Inv(l′)

)
if l

g,r−→ l′

4



where time progress D↑ = {u + d |u ∈ D ∧ d ∈ R≥} and clock reset r(D) = {[r 7→ 0]u |u ∈ D}.
It may be shown that B(C) (the set of constraint systems) is closed under these two operations
ensuring the well–definedness of the semantics. Moreover, the symbolic semantics corresponds
closely to the standard semantics in the sense that, whenever u ∈ D and (l, D) ; (l′, D′) then
(l, u) −→ (l′, u′) for some u′ ∈ D′.

3 Clock Difference Diagrams

While in principal DBM’s are an efficient implementation for clock constraint systems, especially
when using canonical form only when necessary and minimal form when suitable, they are not very
good athandling unions of zones. In this section we will introduce a more efficient data structure
for federations: clock difference diagrams or short CDD’s. A CDD is a directed acyclic graph with
two kinds of nodes: inner nodes and terminal nodes. Terminal nodes represent the constants true
and false, while inner nodes are associated with a type (i.e. a clock pair) and arcs labeled with
intervals giving bounds on the clock pair’s difference. Figure 3 shows examples of CDD’s.

A CDD is a compact representation of a decision tree for federations: take a valuation, and
follow the unique path along which the constraints given by type and interval are fulfilled by the
valuation. If this process ends at a true node, the valuation belongs to the federtaion represented
by this CDD, otherwise not. A CDD itself is not a tree, but a DAG due to sharing of isomorphic
subtrees.

A type is a pair (i, j) where 1 ≤ i < j ≤ n. The set of all types is written T , with typical element
t. We assume that T is equipped with a linear ordering v and a special bottom element (0, 0) ∈ T ,
in the same way as BDD’s assume a given ordering on the boolean variables. By I we denote the
set of all non-empty, convex, integer-bounded subsets of the real line. Note that the integer bound
may or may not be within the interval. A typical element of I is denoted I. We write I∅ for the
set I ∪ {∅}.
In order to relate intervals and types to constraint, we introduce the following notation:

• given a type (i, j) and an interval I of the reals, by I(i, j) we denote the clock constraint
having type (i, j) which restricts the value of Xi −Xj to the interval I.

• given a clock constraint D and a valuation v, by D(v) we denote the application of D to v,
i.e. the boolean value derived from replacing the clocks in D by the values given in v.

Note that typically we will use the notation jointly, i.e. I(i, j)(v) expresses the fact that v fulfills
the constraint given by the interval I and the type (i, j).

As an example, if the type is (2, 1) and I = [3, 5), then I(2, 1) would be the constraint 3 ≤
X2 −X1 < 5. For v where v(X2) = 9 and v(X1) = 5.2 we would find that I(2, 1)(v) is true, while
for v′ with v′(X2) = 3 and v′(X1) = 4 we would have I(2, 1)(v′) is false.

This allows us to give the definition of a CDD:

Definition 2 (Clock Difference Diagram) A Clock Difference Diagram (CDD) is a directed
acyclic graph consisting of a set of nodes V and two functions type : V −→ T and succ : V −→ 2I×V

such that

• V has exactly two terminal nodes called True and False, where type(True) = type(False) =
(0, 0) and succ(True) = succ(False) = ∅.

• all other nodes n ∈ V are inner nodes, which have attributed a type type(n) ∈ T and a finite
set of successors succ(n) = {(I1, n1), . . . , (Ik, nK)}, where (Ii, ni) ∈ I × V .

We shall write n
I−→ m to indicate that (I,m) ∈ succ(n). For each inner node n, the following

must hold:
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X

Y

X

Y Y Y

X

Y

X − Y X − Y

Y

1 2 3 4 5 6
X

1

2

3

(b)

(a)

(c)

Y

1 2 3 4 6
X

1

2

3

5

Y

1 2 3 4 5 6
X

1

2

3

True

[4,6]

[1,3]

[3,4]

[2,4]

[2,3]

[0,1]

[0,2]

True

True

[0,0]

[0,1]

[1,3]

[1,2]

[1,4]

]2,3[

[1,3]

Figure 3: Three example CDD’s. Intervals not shown lead implitely to False; e.g. in (a) there are
arcs from the X-node to False for the three intervals ]−∞,1[, ]3,4[, and ]6,∞[.

• the successors are disjoint: for (I,m), (I ′,m′) ∈ succ(n) either (I,m) = (I ′,m′) or I∩I ′ = ∅,

• the successor set is an R-cover:
⋃
{I | ∃m.n I−→ m} = R,

• the CDD is ordered: for all m, whenever n
I−→ m then type(m) v type(n)

Further, the CDD is assumed to be reduced, i.e.

• it has maximal sharing: for all n,m ∈ V , whenever succ(n) = succ(m) then n = m,

• it has no trivial edges: whenever n
I−→ m then I 6= R,

• all intervals are maximal: whenever n
I1−→ m,n

I2−→ m then I1 = I2 or I1 ∪ I2 6∈ I

Note that we do not require a special root node. Instead each node can be chosen as the root node,
and the sub-DAG underneath this node is interpreted as describing a (possibly non-convex) set of
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X

Y

[0,0]

[1,4]

[1,3]

[0,0]

[1,3]

[1,3]

TrueTrue

Figure 4: Two reduced CDD’s for the same zone

clock valuations. This allows for sharing not only within a representation of one set of valuations,
but between all representations. Figure 3 gives some examples of CDD’s. The following definition
makes precise how to interprete such a DAG:

Definition 3 Given a CDD (V, type, succ), each node n ∈ V is assigned a semantics [[n]] ⊆ V ,
recursively defined by

• [[False]] := ∅, [[True]] := V ,

• [[n]] := {v ∈ V | n I−→ m, I(type(n))(v) = true, v ∈ [[m]]} where n is an inner node

For BDD’s and IDD’s, testing for equality can be achieved easily due to their canonicity: the
test is reduced to a pure syntactical comparison. However, in the case of CDD’s canonicity is not
achieved in the same straightforward manner.

To see this, we give an example of two reduced CDD’s in Figure 4 describing the same set. The
two CDD’s are however not isomorphic. The problem with CDD’s – in contrast to IDD’s – is that
the different types of constraints in the nodes are not independent, but influence each other. In
the above example obviously 1 ≤ X ≤ 3 and X = Y already imply 1 ≤ Y ≤ 3. The constraint on
Y in the CDD on the right hand side is simply too loose. Therefore a step towards an improved
normal form is to require that on all paths, the constraints should be the tightest possible. We
turn back to this issue in the final section.

4 Operation on CDD’s

4.1 Simple Operations

Three important operations on CDD’s, namely union, intersection and complement, can be defined
analogously to IDD’s. All use a function makenode which for a given type t and a successor set
S = {(I1, n1), . . . , (Ik, nK)} will either return the unique node in the given CDD C = (V, type, succ)
having these attributes or, in case no such exists, add a new node to the CDD with the given
attributes. This operation – shown in Figure 5 – is important in order to keep reducedness of the
CDD. Note that using a hashtable to identify nodes already in V , makenode can be implemented
to run in constant time. Then union can be defined as in Figure 6. Intersection is computed by
replacing “union” by “intersect” everywhere in Figure 6, and additonally adjusting the base cases.
The complement is computed as given in Figure 7.3

3As for the BDD apply-operator, using a hashed operation-cache is needed to avoid recomputation of the same
operation for the same arguments.
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makenode(t, S):
if (∃n ∈ V.type(n) = t ∧ succ(n) = S) return n
else

V := V ∪ {n} // where n is a fresh node
type := type ∪ {n 7→ t}
succ := succ ∪ {n 7→ S}
return n

endif

Figure 5: Finding a node for a CDD

union(n1, n2)
if n1 = True or n2 = True then return True
elseif n1 = False then return n2

elseif n2 = False then return n1

else
if type(n1) = type(n2) then

return makenode
(
type(n1), {(I1∩I2,union(n′1, n

′
2)) |n1

I1−→ n′1, n2
I2−→ n′2, I1∩I2 6= ∅}

)
elseif type(n1) v type(n2) then

return makenode
(
type(n1), {(I1, union(n′1, n2)) | n1

I1−→ n′1}
)

elseif type(n2) v type(n1) then

return makenode
(
type(n2), {(I2, union(n1, n

′
2)) | n2

I2−→ n′2}
)

endif
endif

Figure 6: Union of two CDD’s

4.2 From constraint systems to CDD’s

The reachability algorithm of Uppaal currently works with constraint systems (represented either
as canonical DBM’s or in the minimal form). The desired reachability algorithm will need to
combine and compare DBM’s obtained from exploration of the timed automaton with CDD’s
used as a compact representation of the Passed-list.

For the following we assume that a constraint system D holds at most one simple constraint for
each pair of clocks Xi, Xj (which is obviously true for DBM’s and the minimal form). Let D(i, j)
be the set of all simple constraints of type (i, j), i.e. those for Xi−Xj and Xj−Xi. The constraint
system D(i, j) gives an upper and/or a lower bound for Xi − Xj. If not present, choose −∞ as
lower and +∞ as upper bound. Denote the interval defined thus by ID(i,j).

Further, given an interval I ∈ I, let lo(I) := {r ∈ R | ∀r′ ∈ I.r < r′} be the set of lower bounds
and hi(I) := {r ∈ R | ∀r′ ∈ I.r > r′} the set of upper bounds. Note that always lo(I), hi(I) ∈ I∅.
Using this notation, a simple algorithm for constructing a CDD from a constraint system can be

complement(n)
if n = True return False
elseif n = False return True
elseif return makenode

(
type(n), {(I, complement(m)) | n I−→ m}

)
endif

Figure 7: Computing the complement

8



given as in Figure 8. Using this, we can easily union zones to a CDD as required in the modified
reachability algorithm of Uppaal (cf. footnote on page 3). Note that for this asymmetric union
it is advisible to use the minimal form representation for the zone, as this will lead to a smaller
CDD, and subsequently to a faster and less space-consuming union-operation.

makeCDD(D)
n := True
for t ∈ T \ {(0, 0)} do // use ordering v

I := ID(t)

if I 6= R then
if lo(I) = ∅ then

n := makenode(t, {(I, n), (hi(I),False)})
elseif hi(I) = ∅ then

n := makenode(t, {(I, n), (lo(I),False)})
else

n := makenode(t, {(I, n), (hi(I),False), (lo(I),False)})
endif

endif
endfor
return n

Figure 8: Generating a CDD from a constraint system

4.3 Crucial Operations

Testing for equality and set-inclusion of CDD’s is not easy without utilizing a normal form. Looking
at the test given in (1) it is however evident that all we need is to test for inclusion between a zone
and a CDD. Such an asymmetric test for a zone Z and a CDD n can be implemented as shown in
Figure 9 without need for canonicity.

subset(D,n)
if D = false or n = True then return true
elseif n = False then return false
else return

∧
n
I−→m

subset(D ∧ I(type(n)),m)

endif

Figure 9: Deciding set inclusion for a zone and a CDD

Note that when testing for emptiness of a DBM as in the first if-statement, we need to compute
its canonical form. If we know that the DBM is already in canonical form, the algorithm can be
improved by passing D ∧ I(type(n)) in canonical form. As D ∧ I(type(n)) adds no more than two
constraints to the zone, computation of the canonical form can be done faster than in the general
case, which would be necessary in the test D = true.

The above algorithm can also be used to test for emptiness of a CDD using

empty(n) := subset(true, complement(n))

where true is the empty set of constraints, fullfilled by every valuation.

As testing for set inclusion C1 ⊆ C2 of two CDD’s C1, C2 is equivalent to testing for emptiness of
C1 ∩ C2, also this check can be done without needing canonicity.

9



Current CDD
System Proc. Clocks Prop. Time Const. Time Nodes Edges
Philips 4 2 6 0.68 1,072 0.71 130 298
Philips Col 7 5 9 90.38 173,065 124.26 18,495 48,829
B&O 9 3 1 149.04 160,156 170.13 1,222 4,486
BRP 6 4 10 86.18 238,406 124.81 3,886 15,641
PowerDown1 10 2 1 129.70 81,220 132.06 5,215 21,920
PowerDown2 8 1 3 52.11 35,696 53.59 57 114
Dacapo 6 5 4 278.82 243,337 334.35 34,792 98,622
Gearbox 5 5 46 47.58 157,886 64.56 7,277 17,291

Table 1: Performance Statistics

5 Implementation and Experimental Results

We have implemented a CDD-package and used it to obtain a modified, CDD-based reachability
algorithm for Uppaal. As indicated in previous sections, the CDD-based reachability algorithm
uses DBM’s for exploration of symbolic states and CDD’s in the representation of the Passed-list.

In this section we present the results of an experiment where both the current version of Uppaal
4

and the CDD-based version of Uppaal were applied to the verification of 8 industrial examples
found in the literature. The examples include a gearbox controller [LPY98], various communication
protocols used in Philips audio equipment [BPV94, DKRT97, BGK+96], and in B&O audio/video
equipment [HSLL97, HLS98], and the start-up algorithm of the DACAPO protocol [LPY97].

Current CDD
System Passed Wait Passed Wait
Philips 423 727 422 727
Philips Col. 21,254 52,402 9,526 52,402
B&O 38,351 154,530 17,401 154,530
BRP 34,639 72,329 4,618 72,329
PowerDown1 30,349 67,897 10,666 64,387
PowerDown2 36,255 82,469 36,255 82,469
Dacapo 37,685 172,265 20,056 172,064
GearBox 19,606 37,912 13,782 37,912

Table 2: Generated States

In Table 1 we present the space requirements (in number of constraints for the current implemen-
tation and number of CDD nodes and edges for the CDD based implementation) and runtime
(in seconds) of the examples on a Sun UltraSPARC 2 equipped with 512 MB of primary memory
and two 170 MHz processors. Each example was verified using the current purely DBM-based
algorithm of Uppaal (Current), and using the CDD-based modification (CDD). In addition the
number of processes, clocks and properties checked for each system is specified. As can be seen,
our CDD-based modification of Uppaal leads to truly significant space-savings ranging from 46%
to 99% (comparing the number of constraints used in the current Uppaal-version with the total
number of CDD-nodes and -edges) with only moderate increase in run-time (in average an increase
of 17%).

Table 2 shows for each system the final number of states in the Passed-list and the total number
of states that has passed through the Wait-list. The Wait-list number provides a good measure
for how frequent exploration of symbolic states in the CDD-based version has been avoided due
to use of the supposed less strict termination condition (1). Maybe unexpectedly, we note that
the CDD-based version only rarely leads to faster termination. In fact, in all but two cases, the
number of explored symbolic states is the same as for the current Uppaal-version. This offers a

4More precisely Uppaal version 2.19.2, which is the most recent version of Uppaal currently used in-house.
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good explanation for the lack of time-improvement; the moderate increase in run-time may partly
be explained by the prototypical nature of our CDD-based version.

6 Towards a fully symbolic timed reachability analysis

The presented CDD-version of Uppaal uses CDD’s to store the Passed-list, but zones (i.e. DBM’s)
in the exploration of the timed automata. The next goal is to use CDD’s in the exploration as well,
thus treating the continuous part fully symbolic. In combination with a BDD-based approach for
the discrete part, this would result in a fully symbolic timed reachability analysis, saving even
more space and time.

The central operations when exploring a timed automaton are time progress and clock reset.
Using tightened CDD’s, these operations can be defined along the same lines as for DBM’s. A
tightened CDD is one where along each path to True all constraints are the the tightest possible.
In [LPWW98] we have shown how to effectively transform any given CDD into an equivalent
tightened one.

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

X

Y Y Y

Y −XY −XY −X

Y

1 2 3 4 5 6
X

1

2

3

[3,4]
]2,3[

[1,2]

[1,3] [1,4] [2,4]

[-2,1[[-2,2]
]-1,2]

True

Figure 10: A tightened CDD

Figure 10 shows the tightened CDD-representation for example (b) from Figure 3. Given this
tightened version, the time progress operation is obtained by simply removing all upper bounds
on the individual clocks. In general, this gives a CDD with overlapping intervals, which however
can easily be turned into a CDD obeying our definition. More details on these operations can be
found in [LPWW98].

CDD’s come equipped with an obvious notion of being equally fine partitioned. For equally fine
partitioned CDD’s we have the following normal form theorem [LPWW98]:

Theorem 1 Let C1, C2 be two CDD’s which are tightened and equally fine partitioned. Then
[[C1]] = [[C2]] iff C1 and C2 are graph-isomorphic.

A drastical way of achieving equally fine partitioned CDD’s is to allow only atomic integer-
bounded intervals, i.e. intervals of the form [n, n] or (n, n + 1). This approach has been taken
in [ABKMPR97, BMPY97] demonstrating canonicity. However, this approach is extremely sensi-
tive to the size of the constants in the analysed model. In contrast, for models with large constants
our notion of CDD allows for coarser, and hence more space-efficient, representations.
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7 Conclusion

In this paper, we have presented Clock Difference Diagrams, CDD’s, a BDD-like data-structure
for effective representation and manipulation of finite unions of zones. A version of the real-time
verification tool Uppaal using CDD’s to store explored symbolic states has been implemented.
Our experimental results on 8 industrial examples found in the literature demonstrate significant
space-savings (46%–99%) with a moderate increase in run-time (in average 17%). As future work,
we want to experimentally pursue the fully symbolic state-space exploration of the last section
and [LPWW98].
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