
B
R

IC
S

R
S

-98-39
D

.F
ridlender:

A
n

Interpretation
ofthe

F
an

T
heorem

in
Type

T
heory

BRICS
Basic Research in Computer Science

An Interpretation of the Fan Theorem in
Type Theory

Daniel Fridlender

BRICS Report Series RS-98-39

ISSN 0909-0878 December 1998

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233661766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/39/

An Interpretation of the Fan Theorem

in Type Theory?

Daniel Fridlender

BRICS??, Department of Computer Science, University of Aarhus
Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark

e-mail: daniel@brics.dk

Abstract. This article presents a formulation of the fan theorem in
Martin-Löf’s type theory. Starting from one of the standard versions of
the fan theorem we gradually introduce reformulations leading to a final
version which is easy to interpret in type theory. Finally we describe a
formal proof of that final version of the fan theorem.

Keywords: type theory, fan theorem, inductive bar.

1 Introduction

In informal constructive mathematics, the fan theorem is an easy
consequence of the rule of bar induction. Both are about infinite
objects which makes their interpretation in Martin-Löf’s type the-
ory non trivial. Bar induction can be represented in type theory, as
proposed in [Mar68] and shown also in this article. But still from
this interpretation it is not clear how to formulate and prove the fan
theorem formally in type theory.

This is because, whereas the usual informal language to treat bar
induction and the fan theorem is the same, the formal treatment of
the fan theorem in type theory is technically more involved than
that of bar induction. The concept of finiteness is difficult to han-
dle simultaneously in an elegant, completely formal and constructive
way; and it seems hard to avoid dealing explicitly with fans, whereas
spreads are avoided in the type-theoretic interpretation of bar induc-
tion.

? Partially developed during the author’s stay at Göteborg University, Sweden.
?? Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

The fan theorem is very important in constructive mathematics
since it makes possible to reconstruct large parts of traditional anal-
ysis. For explanations of the fan theorem and its role in constructive
analysis see for instance [Dum77] and [TvD88].

The goal in this article is to present a formulation and a proof of
the fan theorem in type theory. The type-theoretic version of the fan
theorem presented here has been used in [Fri97] to interpret in type
theory an intuitionistic proof of Higman’s lemma which uses the fan
theorem [Vel94]. However, in [Fri97] the type-theoretic fan theorem
is only mentioned and the proof is omitted. The importance of the
fan theorem justifies this more extended presentation.

Type theory here means Martin-Löf’s type theory, of which there
exist different formulations (for example, [Mar75], [Mar84], [NPS90]
and [Tas97]). The exposition here should suit all of them. The proof
of the fan theorem presented here has been written down in full
detail with the assistance of the proof-editor ALF [Mag94] which is
an implementation of the formulation of type theory given in [Tas97].

The rest of this article is organized as follows. Section 2 intro-
duces some notations and definitions to be used in the whole article,
and gives an informal presentation of bar induction and the fan the-
orem.

Section 3 shows a type-theoretic interpretation of bar induction
and some of its properties.

Finally, Section 4 formulates and proves the fan theorem in type
theory.

2 Bar induction and the fan theorem

2.1 Preliminaries

Notations:

N the set of the natural numbers. Variables: n,m, k.
A∗ the set of the lists (finite sequences) of elements of the set A.

Variables: u, v, w. Even u, v, w when A is a set of lists.

<a1, . . . , an> is the notation for lists.
u ∗ v is the concatenation between lists.
u • a is a notation for concatenations of the form u∗ <a>.

2

The variables α, β are used to denote infinite sequences of nat-
ural numbers. An initial segment <α(0), . . . , α(n−1)> of α is de-
noted α(n). Given a set S of finite sequences of natural numbers, if
∀n [α(n) ∈ S], then we write α ∈ S. We denote by Sc the set N ∗\S.

Definition 1 (tree). A tree is a set T of finite sequences of natural
numbers (intuitively, a set of finite branches) which satisfy

<>∈ T T is inhabited
∀u [u ∈ T ∨ u 6∈ T] T is decidable
∀u, n [u • n ∈ T ⇒ u ∈ T] T is closed under predecessor

Definition 2 (finitely branching). A finitely branching tree is a
tree T which satisfy

∀u ∈ T ∃m ∀n [u • n ∈ T ⇒ n < m].

Definition 3 (spread, fan). A spread is a tree in which every node
has at least one successor, that is, a tree S satisfying

∀u ∈ S ∃n [u • n ∈ S].

A finitely branching spread is called a fan.

Definition 4 (bar). Given a set U ⊆ N ∗ and a spread S, U is a
bar on S if

∀α ∈ S ∃n [α(n) ∈ U].

When S = N ∗, S is called the universal spread and U is said to be
a bar.

Proposition 1. Given a spread S and a bar U on S, then V = U∪Sc
is a bar.

We can prove that V is a bar by letting α be an arbitrary infinite
sequence of natural numbers and finding n such that α(n) ∈ V. To
this end, we determine a sequence of natural numbers β whose initial
segments are the same as those of α as long as they belong to S.
As soon as an initial segment of α does not belong to S, β deviates

3

from α. From that point, the initial segments of β are arbitrary
segments in S. That is,

β(i) =

{
α(i) if α(i+1) ∈ S
k if α(i+1) 6∈ S, for some k such that β(i) • k ∈ S

As β ∈ S, and U is a bar on S, we can obtain n such that β(n) ∈ U .
Now, either α(n) ∈ S, in which case α(n) = β(n) ∈ U ⊆ V, or
α(n) 6∈ S, hence α(n) ∈ Sc ⊆ V. Therefore, V is a bar.

2.2 Bar induction

Bar induction is the following rule, which is an axiom of intuitionistic
logic

∀u ∈ X u ∈ Y X is included in Y
∀u ∈ X ∀n [u • n ∈ X] X is monotone
∀u {[∀n u • n ∈ Y]⇒ u ∈ Y} Y is hereditary
∀α ∃n [α(n) ∈ X] X is a bar

<>∈ Y BI

for X ,Y ⊆ N ∗. For other formulations of the rule of bar induction
and their justification see [Dum77].

2.3 Fan theorem

The most important consequence of the rule of bar induction is the
fan theorem.

Theorem 1 (fan theorem). Given a fan F , and a monotone bar U
on F , then

∃n ∀α ∈ F [α(n) ∈ U].

Intuitively, the fan theorem states that for any finitely branching
tree all whose branches are finite, there is an upper bound on the
length of the branches. The tree, not explicit in the statement of the
theorem, is the set F \ U (when U is decidable and <> 6∈ U).

The fan theorem can also be read as stating that every finitely
branching tree all whose branches are finite is itself finite, that is,

4

has a finite number of nodes. This is so, since for a finitely branching
tree, the existence of an upper bound on the length of the branches
is equivalent with it being finite.

A proof of the fan theorem can be obtained using the rule of bar
induction with Y = {u | ∃n ∀α ∈ F [α starts with u⇒ α(n) ∈ U]}
and X = U ∪ F c. Proposition 1 guarantees that X is a bar. The
monotonicity of X follows from those of U and F c. The inclusion
of X in Y can be proved by letting u ∈ X be arbitrary and choosing n
as the length of u. To prove that Y is hereditary we assume that, for
an arbitrary u, ∀k u•k ∈ Y holds, and prove that u ∈ Y also holds.
If u 6∈ F , then u ∈ Y clearly holds, since no α ∈ F starts with u.
Otherwise, as F is finitely branching there exists m such that for
all k, u • k ∈ F ⇒ k < m. As for each k, u • k ∈ Y , it is possible
to determine n0, . . . nm−1 such that for each k < m and α ∈ F if α
starts with u • k, then α(nk) ∈ U . To show that u ∈ Y , we choose n
to be max {nk | k < m} and use the monotonicity of U .

2.4 Other formulations of the fan theorem

So far, we have used the terminology which is standard in the lit-
erature. It is possible to give alternative presentations of the fan
theorem, some of which, are actually not formulated in terms of fans
but in terms of arbitrary finitely branching trees.

In this section, we explore other formulations of the fan theorem
with the purpose of obtaining one which is easier to represent in type
theory. We shall see that there is no need to introduce notions like
fan or tree in type theory, since the fan theorem can be reformulated
without explicit use of those notions.

Some of the formulations that we will introduce are in terms of
a special kind of tree, which we call independent-choice trees.

Definition 5 (independent-choice). An independent-choice tree
is a tree I such that for all u, v ∈ I of equal length,

∀n [u • n ∈ I ⇔ v • n ∈ I].

There is a one-to-one correspondence between independent-choice
fans and infinite sequences of nonempty finite subsets of N . An
independent-choice fan I is determined by a sequence I0, I1, . . . of

5

nonempty finite subsets of N . The branches of I of length n are ob-
tained by choosing one element from each of the sets I0, I1, . . . , In−1

in that order. Every choice is independent of the other choices done
to determine the branch. Similarly, there is a one-to-one correspon-
dence between independent-choice finitely branching trees and (not
necessarily infinite) sequences of nonempty finite subsets of N .

We list a few statements equivalent to the one of the fan theorem.

Theorem 2 (alternatives to fan theorem). The fan theorem is
equivalent to the validity of

∀ monotone bar U ∃n ∀α ∈ T [α(n) ∈ U]

in any of the following cases:

1. for all fan T ,

2. for all finitely branching tree T ,

3. for all independent-choice fan T ,

4. for all independent-choice finitely branching tree T .

The only difference between the fan theorem and item 1 is that
in the latter U runs over bars on the universal spread, rather than
over bars on the fan. With this modification, the fan theorem can
be formulated for finitely branching trees as well (item 2). On the
other hand, it is enough to restrict attention to independent-choice
fans or trees (items 3 and 4).

To prove Theorem 2 notice that the domain on which T ranges
in item 2 includes the one on which it ranges in item 1, and so
item 2 ⇒ item 1. Analogously, item 2 ⇒ item 4, item 1 ⇒ item 3,
and item 4 ⇒ item 3. Similarly, the domain on which U ranges in
the fan theorem includes the one on which it ranges in Theorem 2,
so Theorem 1 ⇒ item 1.

To finish the proof of Theorem 2 it is enough to prove that
item 3 ⇒ item 2 and item 1 ⇒ Theorem 1. For the former, let T
be an arbitrary finitely branching tree and U an arbitrary monotone
bar. Let I be the least independent-choice fan containing T . Deter-
mine n such that ∀α ∈ I [α(n) ∈ U]. As α ∈ T ⇒ α ∈ I, we obtain
∀α ∈ T [α(n) ∈ U].

6

Finally, to prove that item 1⇒ Theorem 1, let F be an arbitrary
fan and U an arbitrary bar on F . Define V = U ∪ F c. By Proposi-
tion 1, V is a bar. Then, by item 1 there is an n such that for all
α ∈ F , α(n) ∈ V. As α(n) ∈ F , α(n) ∈ U .

Theorem 3 (more alternatives to fan theorem). The fan the-
orem is equivalent to the validity of

∀ monotone bar U ∃n ∀u ∈ T [length(u) = n ⇒ u ∈ U]

in any of the following cases:

5. for all fan T ,
6. for all finitely branching tree T ,
7. for all independent-choice fan T ,
8. for all independent-choice finitely branching tree T .

Just as in the proof of Theorem 2, it is easy to obtain that
item 6 ⇒ item 5, item 6 ⇒ item 8, item 5 ⇒ item 7, and that
item 8 ⇒ item 7. Item 6 follows from item 7 in the same way as
item 2 followed from item 3 in Theorem 2.

Finally, the equivalence between item 5 and item 1 of Theorem 2
is also easy, since given a fan T , all u ∈ T of length n is equal
to α(n), for some α ∈ T .

Theorem 4 (one more alternative to fan theorem). For all
monotone bar U and all infinite sequence I0, I1, . . . of finite subsets
of N ,

∃n [I0 × . . .× In−1 ⊆ U],

where I0 × . . .× In−1 = {<a0, . . . , an−1> | ∀i ai ∈ Ii}.

Theorem 4 is equivalent to the fan theorem.
Let T be the set

⋃{I0 × . . . × Ii−1 | i ∈ N}. Clearly, T is a
finitely branching tree. By item 6 of Theorem 3, there is a natural
number n such that all the sequences in T of length n belong to U .
Those sequences are exactly the elements in the set I0 × . . .×In−1.

Conversely, to prove that item 8 of Theorem 3 follows from The-
orem 4, let T be an arbitrary independent-choice finitely branching
tree. Let Ii be the set {k ∈ N | ∃u [length(u) = i ∧ u • k ∈ T]}.
Given u ∈ T of length n, we have u ∈ I0 × . . .× In−1 ⊆ U .

7

The advantage of the formulation of the fan theorem as in Theo-
rem 4 is that it avoids the notions of fan and finitely branching tree.
Also, if we extend the definition of bar to sets of finite sequences
of finite subsets of natural numbers, rather than only sets of finite
sequences of natural numbers, then we may write the fan theorem in
the following way. Let I range over finite sequences of finite subsets
of N , and

⊗
denote the operation to obtain the Cartesian product

of such a finite sequence, that is,
⊗
<I0, . . . , In−1> = I0×. . .×In−1.

Theorem 5 (fan theorem, final reformulation). Given a mono-
tone set U of finite sequences of natural numbers, if U is a bar, then
so is {I | ⊗ I ⊆ U}.
This is the formulation which is represented in type theory by The-
orem 6.

3 Inductive bars

Following the Curry-Howard isomorphism ([CF58] and [How80]) ev-
ery proposition is represented in type theory by the set of its proofs.
Predicates, subsets and families of sets are identified with each other,
in the sense that every predicate over the elements of a set A, every
subset of A, and every family of sets indexed by the elements of A,
is represented by a function which when applied to an element of A
returns a set.

Given a predicate U over a set A and a list u in A∗, we let
∧
u U

or ∧
u

U

mean that all the elements in the list u satisfy U . In type theory, it
can be defined inductively with the following introduction rules.

∧
<> U

∧
u U U(a)∧

u•a U
Notice that

∧
u∗v U is equivalent to

∧
u U ∧

∧
v U . Associated to the

definition of
∧
u U we have the following principle of induction, for

every predicate X over A∗.∧
u U X (<>) ∀v [X (v) ∧ U(a)⇒ X (v • a)]

X (u)

8

When using this principle we refer to it as induction on “the” proof
that

∧
u U , where “the” proof is the proof of

∧
u U available at that

moment.

In type theory, we formulate the definition of bar for predicates
over lists of elements of an arbitrary set, rather than only for pred-
icates over lists of natural numbers. The following definition is a
variation on an idea taken from [Mar68].

Definition 6 (inductive bars). Given a set A and a predicate U
over A∗, U is an inductive bar if U | <> (to be read U bars the
empty sequence), where this is inductively defined with the following
introduction rules.

U(u)

U | u
U | u
U | u • a

∀a ∈ A [U | u • a]
U | u

Notice that if U(u)⇒ V(u) for every u ∈ A∗, then also U | u⇒ V | u
for every u ∈ A∗. Associated to the definition of U | u we have the
following principle of induction, for every predicate Y over A∗.

U | u
∀v ∈ A∗ [U(v)⇒ Y(v)]
∀v ∈ A∗ ∀a ∈ A [Y(v)⇒ Y(v • a)]
∀v ∈ A∗ {[∀a ∈ A Y(v • a)]⇒ Y(v)}

Y(u)

When using this principle we refer to it as induction on “the” proof
that U | u, where “the” proof is the proof of it available at that
moment.

With this principle of induction it is possible to prove in type
theory that the rule BI —with inductive bars instead of bars, and
arbitrary sets instead of natural numbers— is derivable. For that
proof it is convenient to define the following reverse-append function,
which is denoted ←↩.

u←↩ <> = u
u←↩ (v • a) = (u • a)←↩ v

9

An interpretation in type theory of the rule BI is:

∀u ∈ A∗ [X (u)⇒ Y(u)] X is included in Y
∀u ∈ A∗ ∀a ∈ A [X (u)⇒ X (u • a)] X is monotone
∀u ∈ A∗ {[∀a ∈ A Y(u • a)]⇒ Y(u)} Y is hereditary
X | u X bars u

Y(u)
BITT

This rule can be derived by showing ∀v ∈ A∗ Y(u ←↩ v) by induc-
tion on the proof that X | u.

In a type-theoretic context, by bar induction we refer to the rule
BITT. When applying bar induction we will refer by monotonicity
condition (of X), hereditary condition (of Y), and inclusion condition
(that is, X ⊆ Y) to the instances corresponding to the premises of
the rule.

Proposition 2. Given a set A, a monotone predicate U over A∗
and a list u of elements of A, then

U | u ⇐⇒ Vu | <>,

where Vu = λv U(u ∗ v).

The ⇐ part is easy, and is left to the reader. Hint: use bar in-
duction with X = Vu and Y = λv [U | u ∗ v]; or, for another proof
which does not use monotonicity of U , by induction on the proof
that Vu | <>.

We sketch a proof of the ⇒ part, which is by bar induction with
X = U and Y = λu [Vu | <>]. The monotonicity condition is hy-
pothesis of the proposition and the inclusion condition is trivial. It
remains to prove the hereditary condition. Assume that for all a ∈ A,
Vu•a | <>. We have to show Vu | <>. In order to do so, we prove
that for all a ∈ A, Vu | <a>. Now, this follows from Vu•a | <> by
bar induction with X = Vu•a and Y = λv [Vu | <a> ∗ v].

Proposition 3. Given a set A, two monotone predicates U ,V over
A∗ and a list u of elements of A, then

U | u ∧ V | u =⇒ W | u,

where W = λu [U(u) ∧ V(u)].

10

We sketch a proof of Proposition 3 by bar induction with X = U
and Y = λu [V | u ⇒ W | u]. The monotonicity condition is hy-
pothesis of the proposition. The hereditary condition follows from
the facts that λu [W | u] is hereditary and λu [V | u] is monotone.
Finally, the inclusion condition can be proved by bar induction with
X = V and Y = λu [U(u)⇒W | u], repeating the previous reason-
ing, except that the new inclusion condition is trivial.

4 Fan theorem in type theory

The result we present here is a type-theoretic version of the fan the-
orem as formulated in Theorem 5, except that it will be expressed
for an arbitrary set A rather than only for natural numbers. Finite
subsets Ii of A will be represented by lists ui of elements of A. Fi-
nite sequences I of such subsets, by lists u of lists. The function

⊗
occurring in the statement of Theorem 5 will be represented by a
function which when applied to a list of lists <u1, . . . , un−1> com-
putes another list representing the Cartesian product I1× . . .×In−1.

To define
⊗

we first define the binary Cartesian product ×f
parametrized with a function f . Then, the finite Cartesian product⊗f
b also parametrized. Finally we instantiate it to obtain

⊗
.

Given a function f : A → B, we denote by f : A∗ → B∗ the
function which maps f on every element of its argument.

f(<>) =<>

f(u • a) = f(u) • f(a)

Example 1. f(<a0, . . . , an−1>) =<f(a0), . . . , f(an−1)>.

Now, the function ×f , which given a function f : A → B → C,
and two lists u ∈ A∗ and v ∈ B∗ returns a variation of the Cartesian
product of u and v. Instead of returning a list in (A× B)∗, it returns
a list in C∗ by applying the function f to the components of each
possible pair.

<> ×f v = <>

(u • a) ×f v = u×f v ∗ f(a)(v)

Example 2. u ×f <> = <> , for every u.

11

Example 3.

<a0, a1> ×f <b0, b1> = <f(a0, b0), f(a0, b1), f(a1, b0), f(a1, b1)>.

The function
⊗f

b , given a function f : B → A → B, a base value
b ∈ B, and u ∈ A∗∗, returns a list in B∗, each of whose values is the
result of iterating the function f along one tuple, assigning b to the
empty tuple. Each tuple consists of one element from the first list
of u, one from the second, etc. in the style of the Cartesian product.⊗f

b (<>) = ⊗f
b (u • u) =

⊗f
b (u)×f u

Example 4.⊗f
b (<<a0, a1>,<b0, b1>>)
= <f(f(b, a0), b0), f(f(b, a0), b1), f(f(b, a1), b0), f(f(b, a1), b1)>.

Finally, the Cartesian product is obtained by giving • as the
function to iterate, and <> as the base value.⊗

(u) =
⊗•

<> (u)

Example 5.
⊗

(<>) = <<>>.

Example 6.
⊗

(u • <>) =<> , for every u.

Example 7.⊗
(<<a0, a1>,<b0, b1>>)=<<a0, b0>,<a0, b1>,<a1, b0>,<a1, b1>>.

The set {I | ⊗ I ⊆ U} in Theorem 5 can be interpreted as a
predicate P on lists u of lists which is true when

⊗
(u) is “included”

in U . As
⊗

(u) is actually not a set but a list, by it being “included”
in U we mean that every element in the list

⊗
(u) satisfies U , that is,∧⊗

(u) U . Thus, the predicate P is in fact interpreted by the function

λu
[∧⊗

(u) U
]
. Hence, in type theory Theorem 5 becomes:

Theorem 6 (fan theorem in type theory). Given a set A and
a monotone predicate U over A∗, then if U is an inductive bar, so is
the predicate

λu

 ∧⊗
(u)

U

 .

12

Lemma 1. The following properties hold for every u, v, w, and u

1. u ∗ v ×f w = (u×f w) ∗ (v ×f w)
2. <a> ×f u ∗ v = (<a>×fu) ∗ (<a>×fv)
3.
⊗

(<w • a> ∗u) =
⊗

(<w> ∗u) ∗⊗(<<a>> ∗u)
4.
∧⊗

(u) [λu U(<a> ∗u)] =⇒ ∧⊗
(<<a>>∗u) U

Item 1 can be proved by induction on v. Item 2 follows from the
fact that g(u∗ v) = g(u) ∗ g(v) (letting g be f(a)), which can also be
proved by induction on v. Item 3 can be proved by induction on u,
using Example 6 in the base case and item 1 in the inductive case.

Though technically laborious, item 4 is intuitively clear since all
the tuples in

⊗
(<<a>> ∗u) are of the form <a> ∗u with u a tuple

in
⊗

(u). We omit that proof here.
For the proof of Theorem 6, we define, for u ∈ A∗,

Vu = λu

 ∧⊗
(u)

(λv U(u ∗ v))

 .
We give a proof by bar induction with X = U and Y = λu {Vu | <>}.

The inclusion condition is U(u) ⇒ Vu | <>, which is easy, since
when U(u) holds, even Vu(<>) holds because

⊗
(<>) = <<>> by

Lemma 1. The monotonicity condition is hypothesis of the theorem.
The hereditary condition is (∀a ∈ A [Vu•a | <>]) ⇒ Vu | <>. We
assume

∀a ∈ A [Vu•a | <>] (1)

and given an arbitrary v we prove Vu | <v> by induction on v.
If v =<> , then Vu | <<>> is direct since Vu(<<>>) holds

because of the facts that
⊗

(<<>>) =<> holds by Lemma 1 and
that

∧
<> is trivially true regardless of the predicate.

If v = w • a for some w ∈ A∗ (such that Vu | <w>) and a ∈ A,
then we know by (1) that

Vu•a | <> and Vu | <w>

and still have to prove

Vu | <w • a> .

13

By Proposition 2 it can be written like this: we know

Vu•a | <> and [λu Vu(<w> ∗u)] | <>,

(hence, by Proposition 3 we know also that

[λu [Vu•a(u) ∧ Vu(<w> ∗u)]] | <> (2)

holds) and have to prove

[λu Vu(<w • a> ∗u)] | <> . (3)

To prove that (2)⇒ (3), it is enough to prove that for every u ∈ A∗∗,

Vu•a(u) ∧ Vu(<w> ∗u) =⇒ Vu(<w • a> ∗u)

holds. By the definition of Vu and item 3 of Lemma 1, the right-hand
side is equivalent to

Vu(<w> ∗u) ∧ Vu(<<a>> ∗u)

which follows from the left-hand side because, by item 4 of Lemma 1,
Vu•a(u) implies Vu(<<a>> ∗u).

Acknowledgements

I am grateful to Marc Bezem, Thierry Coquand, Monika Seisen-
berger, Jan Smith and Wim Veldman for fertile discussions about
the fan theorem.

References

[CF58] H. Curry and R. Feys. Combinatory Logic, volume I. North-Holland, 1958.
[Dum77] M. Dummett. Elements of Intuitionism. Clarendon Press, Oxford, 1977.
[Fri97] D. Fridlender. Higman’s Lemma in Type Theory. In Types for proofs and

programs, Lecture Notes in Computer Science 1512, 1997.
[How80] W. Howard. The Formulae-as-Types Notion of Construction. In J. Seldin

and J. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 479–490. Academic Press, London, 1980.

[Mag94] L. Magnusson. The Implementation of ALF - a Proof Editor Based on Martin-
Löf ’s Monomorphic Type Theory with Explicit Substitution. PhD thesis, De-
partment of Computing Science, Chalmers University of Technology and Uni-
versity of Göteborg, 1994.

14

[Mar68] P. Martin-Löf. Notes on Constructive Mathematics. Almqvist & Wiksell,
1968.

[Mar75] P. Martin-Löf. An Intuitionistic Theory of Types: Predicative Part. In H. E.
Rose and J. C. Shepherdson, editors, Logic Colloquium 1973, pages 73–118,
Amsterdam, 1975. North-Holland Publishing Company.

[Mar84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Napoli, 1984.
[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s

Type Theory. An Introduction. Oxford University Press, 1990.
[Tas97] A. Tasistro. Substitution, Record Types and Subtyping in Type Theory, with

Applications to the Theory of Programming. PhD thesis, Department of
Computing Science at Chalmers University of Technology and University of
Göteborg, 1997.

[TvD88] A. Troelstra and D. van Dalen. Constructivism in Mathematics, An Intro-
duction, Volume I. North-Holland, 1988.

[Vel94] W. Veldman. Intuitionistic Proof of the General non-Decidable case of Hig-
man’s Lemma. Personal communication, 1994.

15

Recent BRICS Report Series Publications

RS-98-39 Daniel Fridlender. An Interpretation of the Fan Theorem in
Type Theory. December 1998. 15 pp. To appear inInternational
Workshop on Types for Proofs and Programs 1998, TYPES ’98
Selected Papers, LNCS, 1999.

RS-98-38 Daniel Fridlender and Mia Indrika. An n-ary zipWith in
Haskell. December 1998. 12 pp.

RS-98-37 Ivan B. Damg̊ard, Joe Kilian, and Louis Salvail. On the
(Im)possibility of Basing Oblivious Transfer and Bit Commit-
ment on Weakened Security Assumptions. December 1998.
22 pp. To appear inAdvances in Cryptology: International Con-
ference on the Theory and Application of Cryptographic Tech-
niques, EUROCRYPT ’99 Proceedings, LNCS, 1999.

RS-98-36 Ronald Cramer, Ivan B. Damg̊ard, Stefan Dziembowski, Mar-
tin Hirt, and Tal Rabin. Efficient Multiparty Computations
with Dishonest Minority. December 1998. 19 pp. To appear
in Advances in Cryptology: International Conference on the
Theory and Application of Cryptographic Techniques, EURO-
CRYPT ’99 Proceedings, LNCS, 1999.

RS-98-35 Olivier Danvy and Zhe Yang.An Operational Investigation of
the CPS Hierarchy. December 1998.

RS-98-34 Peter G. Binderup, Gudmund Skovbjerg Frandsen, Peter Bro
Miltersen, and Sven Skyum. The Complexity of Identifying
Large Equivalence Classes. December 1998. 15 pp.

RS-98-33 Hans Ḧuttel, Josva Kleist, Uwe Nestmann, and Massimo
Merro. Migration = Cloning ; Aliasing (Preliminary Version).
December 1998. 40 pp. To appear in6th International Work-
shop on the Foundations of Object-Oriented, FOOL6 Informal
Proceedings, 1998.

RS-98-32 Jan Camenisch and Ivan B. Damg̊ard. Verifiable Encryption
and Applications to Group Signatures and Signature Sharing.
December 1998. 18 pp.

RS-98-31 Glynn Winskel. A Linear Metalanguage for Concurrency.
November 1998. 21 pp.

RS-98-30 Carsten Butz.Finitely Presented Heyting Algebras. November
1998. 30 pp.

