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Abstract

We revisit Bondorf and Palsberg’s compilation of actions using
the offline syntax-directed partial evaluator Similix (FPCA’93,
JFP’96), and we compare it in detail with using an online type-
directed partial evaluator. In contrast to Similix, our type-
directed partial evaluator is idempotent and requires no “binding-
time improvements.” It also appears to consume about 7 times
less space and to be about 28 times faster than Similix, and to
yield residual programs that are perceptibly more efficient than
those generated by Similix.
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1 Introduction

The first Futamura projection is probably one of the most celebrated ap-
plications of partial evaluation: specializing an interpreter [for a defined
language and written in a defining language] with respect to a program
yields the effect of compiling this program from the defined language to the
defining language [6, 11, 12]. Along with its cousin the second Futamura
projection, which requires a self-applicable partial evaluator, the first Futa-
mura projection has been applied to many interpreters embodying a number
of programming-language paradigms. Both compiling by specializing an in-
terpreter and the result of this compilation (i.e., specialized interpreters)
have sometimes proven to outperform handwritten compilers, e.g., for Ac-
tion Semantics [15].

In action semantics, one (1) expands a source program into the cor-
responding action, (2) analyzes and transforms this action, and then (3)
translates it into a target program:

source
language

expansion (1)
//

&&MMMMMMMMMMM

action
notation

BCED analysis and
transformation

(2)GF��
translation (3)

��
target

language

(1) Expanding a source program into an action is usually performed by
dedicated translators (ASD tools, etc.). It can, however, also be
achieved using the first Futamura projection, by specializing an in-
terpreter for the source language written in action notation.

(2) The dashed arrow could be directly obtained using the first Futamura
projection, by specializing an interpreter for the source language writ-
ten in the target language. It is our experience that this dashed arrow
is more efficient in practice than composing (1), (2) and (3), espe-
cially in the absence of (2). In effect, the dashed arrow “deforests” an
intermediate result. However, (2) is one of the raisons d’être of ac-
tion semantics, which offers an algebra for analyzing and transforming
actions [15].
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(3) The target language of existing actions compilers is C [5] or assembly
language [16, 18]. Compiling action notation can also be achieved
using the first Futamura projection, as described below.

Bondorf and Palsberg compile action notation by specializing an action
interpreter written in Scheme [3, 4]. Their result is comparable in efficiency
to the results of other systems [5, 16], both in terms of compile time and in
terms of run time.

Bondorf and Palsberg’s result is significant in two ways:

• extensionally: Along with Jørgensen’s Futamura projections of an in-
terpreter for a lazy functional language [13], it is one of the most
successful applications of the Similix partial evaluator.

• intensionally: Compiling action notation is a non-trivial affair, which
required modifying both Similix and the action interpreter. The action
interpreter was subjected to extensive “binding-time improvements”
(i.e., local program transformations making a partial evaluator yield
better results; Bondorf and Palsberg dedicate a third of their article to
them), and a second pass of partial evaluation on one residual program
was observed to yield another speedup factor of 2.

This work: Instead of using Similix, we compile action notation using a
type-directed partial evaluator [7]. Type-directed partial evaluation is:

• simpler: no binding-time improvements are necessary, and the result
is obtained in one pass;

• at least as effective: the output is perceptibly more efficient than Sim-
ilix’s output; and

• more efficient: type-directed partial evaluation appears to use about
7 times less space and to be about 28 times faster than Similix.

This article: Section 2 compares and contrasts Similix and our type-
directed partial evaluator. Section 3 revisits Bondorf and Palsberg’s bench-
marks. Section 4 reports further benchmarks. Section 5 concludes.

5



2 Syntax-Directed vs. Type-Directed Partial Evaluation

2.1 Syntax-directed partial evaluation (sdpe)

The Similix partial evaluator is offline, syntax-directed, polyvariant, and
self-applicable [1]. In general, it is not idempotent.

• Offline: Similix performs a number of analyses over the source pro-
gram to optimize specialization (and enable self-application). These
analyses include a binding-time analysis.

• Syntax-directed: Similix operates on the text of the source program.
As pointed out below, the corresponding interpretive overhead is elim-
inated by self-application. Similix manages its own environment and
represents values symbolically. For example, it represents higher-order
functions as closures.

• Polyvariant: some source program points are selected as “specializa-
tion points.” They give rise to several (mutually recursive) specialized
instances in the residual program.

• Self-applicable: rather than running Similix on a source program,1 one
can first specialize Similix with respect to this source program,2 and
use the resulting dedicated specializer. As illustrated here, the result
of the second Futamura projection is about 3 times more efficient than
the first Futamura projection, both in time and space.

• Not idempotent: a second pass of partial evaluation on the binding-
time improved action interpreter yields programs that are 3.0 times
faster and use 9.9 times less space than the output of the first pass.
Iterating this experiment, we have observed that a stable residual pro-
gram is obtained after the third pass. Subsequent passes usually yield
essentially the same programs as the third pass, modulo renaming, the
order of parameters in residual procedures, and the occasional trivial
let-binding — and sometimes also modulo unfolding one more itera-
tion of a residual loop per extra pass. Programs beyond the third pass
appear to have the same time and space behaviour. These observations
also hold for the original, unimproved action interpreter.

1When the source program is an interpreter, this instance of partial evaluation is known
as “the first Futamura projection.”

2When the source program is an interpreter, this instance of self-application is known
as “the second Futamura projection.”
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In addition, Similix includes a post-processing phase, which performs resid-
ual constant folding and unfolds residual functions that are called only once.
This post-processing phase essentially performs online monovariant partial
evaluation.

2.2 Type-directed partial evaluation (tdpe)

The partial evaluator we use here is online, type-directed, monovariant, self-
applicable, and idempotent [7, 8].

• Online: primitive operators probe their operands to decide whether to
proceed with a static computation or residualize the operation.

• Type-directed: the source program is already compiled, and its type
is the only information supplied to the partial evaluator. The par-
tial evaluator relies on the underlying representations of values. In
particular, it does not use an environment.

• Monovariant: our type-directed partial evaluator only unfolds or resid-
ualize calls — it does not “clone” them. To use the partial-evaluation
jargon, there is no polyvariant program-point specialization [6, 11].

• Self-applicable: the partial evaluator can be specialized with respect
to a type. The resulting improvement is insignificant.

• Idempotent: a second pass of partial evaluation yields programs that
are textually identical to the output of the first pass.

There is no post-processing phase.

2.3 Comparing the input to syntax-directed partial evaluation
and the input to type-directed partial evaluation

2.3.1 Similarities

The input to Similix and the input to type-directed partial evaluation are
essentially the same action interpreter written in Scheme.

2.3.2 Differences

Similix expects the name of a function to specialize, the static arguments
with respect to which this function should be specialized, and a textual
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representation of the action interpreter. Type-directed partial evaluation
expects a higher-order value and a representation of its type.

The input to Similix uses Scheme’s underlying recursion, whereas the
input to type-directed partial evaluation uses a fixed-point operator to im-
plement dynamic loops. Similarly, the input to Similix uses Scheme’s un-
derlying conditional expressions, whereas the input to type-directed partial
evaluation uses a function expecting a boolean and two thunks to implement
tests.

2.3.3 Lambda count

There are one dynamic loop and five dynamic tests in each action inter-
preter. The following table displays the number of lambda-abstractions in
each interpreter.

action interpreter lambda-abstractions

original for sdpe 43
improved for sdpe 43

raw for tdpe 78
cooked for tdpe 48

In the “raw” row, we use higher-order functions for conditional expressions,
recursive definitions, etc. We have tried to compensate for the higher-order
overhead by macro-expanding these forms into native conditional expres-
sions, recursive definitions, etc. The resulting numbers are displayed in the
“cooked” row.

2.4 Comparing the output of syntax-directed partial evaluation
and the output of type-directed partial evaluation

2.4.1 Similarities

The output of Similix (both after one pass and after a second pass) and the
output of type-directed partial evaluation share the same overall structure,
which is inherited from the source program.

2.4.2 Differences

Type-directed partial evaluation outputs one lambda-abstraction, whereas
Similix outputs several (mutually recursive) definitions. Similix is polyvari-
ant and thus the same function may be called from several places in the
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residual program, possibly recursively. At specialization points, Similix uses
static projections to extract the dynamic components of higher-order values
and partially static structures; because of this extraction, the arity of resid-
ual definitions differs from the arity of source definitions. To obtain a similar
effect using type-directed partial evaluation, the user would need to include
such projections explicitly, in a way comparable to “type specialization” [9].

2.4.3 Lambda count

The following table displays the number of lambda-abstractions in the resid-
ual programs considered in this article. As a consequence of the different
ways of implementing dynamic tests and dynamic loops, the output of type-
directed partial evaluation contains many more lambda-abstractions than
the output of Similix.

output from bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe (1st pass) 104 142 107 63
sdpe (2nd pass) 23 30 22 16
sdpe (3rd pass) 22 30 26 14
sdpe (4th pass) 22 32 34 15
tdpe (raw) 273 329 259 168
tdpe (cooked) 171 239 216 131

3 Benchmarks and Assessments

Bondorf and Palsberg’s experiments took place on a SPARC 1 using SCM.
We reproduced these experiments on a Silicon Graphics Iris4d running IRIX
6.3, using Chez Scheme version 5.0, Similix 5.0 [2], and an online type-
directed partial evaluator [8]. Besides the definitional action interpreter
written in Scheme, the experiments involved two interpreters written in
action notation: one for Lee’s HypoPL [14] and one for a “substantial”
subset of Ada [16]. The four test programs were a bubblesort program
(both in HypoPL and in Ada), Eratosthenes’s sieve (in Ada), and Euclid’s
algorithm (in Ada).

As illustrated by the diagram of Section 1, we first derived an action
out of one of the two interpreters and one of the four test programs, and
then we specialized the action interpreter with respect to this test action.
For Similix, we used the binding-time improved action interpreter, since it
yields the best results. For type-directed partial evaluation, we used the
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original action interpreter. (Section 4.1 describes the results of specializing
the original interpreter with Similix and of specializing the binding-time
improved interpreter with type-directed partial evaluation.)

We ran three series of experiments: two with Similix and one with type-
directed partial evaluation.

1. First Futamura projection with Similix: we directly specialize the ac-
tion interpreter with respect to each of the test actions.

2. Result of the second Futamura projection with Similix: we use the
second Futamura projection to obtain a specializer dedicated to the
action interpreter, and we then (indirectly) specialize this interpreter
with respect to each of the test actions.

3. Type-directed partial evaluation: we directly specialize the action in-
terpreter with respect to each of the test actions.

Each of the numbers below is the average of 10 runs. We should stress that
a garbage collector such as Chez Scheme’s makes it difficult to benchmark
the timings of a computation — we have zero control on the layouts of the
heap and of the code and their incidence on the processor cache(s). For
example, in Sections 3.1 and 3.2, the timings of Similix’s post-processing
phase differ by about 9%, even though the computations are the same and
yield identical results. On the other hand, the space measures are identical.
To reduce environmental hazards, we have conducted all these measures off
hours and on a little-loaded machine.

3.1 First Futamura projection with Similix

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 645 668 673 664
Process 2 518 2 975 2 266 1 391

Postprocess 582 751 547 286

Total 3 745 4 394 3 486 2 341

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 1.03 1.03 1.03 1.03
Process 8.39 9.89 7.74 4.48

Postprocess 1.08 1.42 0.91 0.52

Total 10.50 12.34 9.68 6.03
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3.2 Result of the second Futamura projection with Similix

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 516 624 569 305
Postprocess 581 819 542 303

Total 1 097 1 443 1 111 608

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 2.33 2.90 2.37 1.21
Postprocess 1.08 1.42 0.91 0.52

Total 3.41 4.32 3.28 1.73

3.3 Type-directed partial evaluation

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 41 50 38 21

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 0.49 0.59 0.44 0.27

3.4 Assessment of the compilers

• On the average, using the result of second Futamura projection yields
results that are 3.4 times more efficient in time and 3.1 times more
efficient in space than the first Futamura projection.

• Discounting preprocessing, using the result of the second Futamura
projection yields results that are 2.7 times more efficient in time and
space than the first Futamura projection, on the average.

• On the average, type-directed partial evaluation is 28.5 times more
efficient in time and 7.0 times more efficient in space than the result
of Similix’s second Futamura projection.

3.5 Assessment of the residual programs

The residual programs are textually identical for the two instances of Similix,
and have about the same size as the result of type-directed partial evaluation.

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 51 224 150 50
raw tdpe 63 197 175 90

cooked tdpe 17 182 80 10
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Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 0.70 1.31 2.03 0.67
raw tdpe 1.03 1.92 2.27 1.26

cooked tdpe 0.09 0.42 0.42 0.15

• On the average, raw type-directed partial evaluation yields programs
that are 1.3 times less efficient in time and 1.5 times less efficient in
space than the output of Similix.

• On the average, cooked type-directed partial evaluation yields pro-
grams that are 2.8 times more efficient in time and 5.0 times more
efficient in space than the output of Similix.

3.6 Assessment of the interpreters

Since we have just compared the performances of the specialized versions of
the action interpreter, it seems natural to report the performances of these
interpreters. Here are the measures, both for the original interpreter and the
binding-time improved interpreter (for syntax-directed partial evaluation),
and both for the raw and the cooked versions of the original interpreter.

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

original for sdpe 8 001 11 864 16 865 6 820
improved for sdpe 8 307 11 832 14 925 6 850

raw for tdpe 8 199 11 531 14 090 6 170
cooked for tdpe 7 440 11 432 14 250 5 260

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

original for sdpe 29.72 41.42 51.77 23.70
improved for sdpe 30.73 42.87 53.51 24.81

raw for tdpe 31.72 43.81 54.82 25.21
cooked for tdpe 29.06 40.41 50.33 22.90

• On the average, the binding-time improvements tax the action inter-
preter by about 2% in time and 4% in space.

• On the average, cooking improves the action interpreter by about 7%
in time and 9% in space.

• On the average, the [cooked] original interpreter for type-directed par-
tial evaluation is marginally more efficient than the original interpreter
for syntax-directed partial evaluation (15% in time and 3% in space).
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The comparisons between the source interpreters and the residual programs
do not match: the source interpreters are essentially comparable in efficiency
(15% in time and 3% in space), whereas the residual programs are not
comparable (280% in time and 500% in space).

To conclude this section, let us indulge in the traditional effectiveness
measure of partial evaluation [11]:

• On the average, syntax-directed partial evaluation [of the improved
interpreter] yields a program that runs 115 times faster and consumes
34 times less space than running the original interpreter.

• On the average, type-directed partial evaluation yields a program that
runs 301 times faster and consumes 173 times less space than running
the original interpreter.

4 Further Benchmarks and Assessments

This section briefly describes some of the most significant other benchmarks
we conducted [17, Chapter 5].

4.1 On Similix’s binding-time improvements

Bondorf and Palsberg need to improve the binding times of the action inter-
preter to specialize it better. The binding-time improvements exert a cost
during specialization, but they yield better residual programs.

• On the average, the first Futamura projection over the binding-time
improved action interpreter is about 1.2 times slower than over the
original, unimproved interpreter, and consumes about 1.4 times more
space.

• On the average, the result of the second Futamura projection over
the binding-time improved action interpreter is about 1.8 times slower
than over the original interpreter, and consumes about 1.4 times more
space.

• As for the residual programs, they are 1.6 times smaller, about 1.9
times faster, and consume about 1.8 times less space, on the average.
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We have also specialized the binding-time improved action interpreter
using type-directed partial evaluation. On the average, specialization con-
sumes about 2% more time and 6% more space. The residual programs only
differ because some variables bound to the empty tuple are replaced by a
call to the primitive function constructing an empty tuple. They have thus
essentially the same size and they use the same space and the same time.

4.2 On Similix’s polyvariance

Similix performs polyvariant program-point specialization, cloning selected
source specialization points in residual programs. The action interpreter
contains 5 such specialization points. Each of the source programs gives
rise to the following number of residual specialized points. Similix then
post-unfolds those called only once.

Number of points bubble.hpl bubble.ad sieve.ad euclid.ad

Before post-unfolding: 176 212 166 111
After post-unfolding: 12 16 12 6

We have not been able to measure the cost of polyvariance in Similix’s
specializer: each access to its working list is too atomic.

In any case, regardless of polyvariance, we observe that on the average,
Similix’s post-processing phase takes 5.7 times more time and 1.5 times more
space than type-directed partial evaluation.

4.3 On Similix’s post-unfolding phase

Users can switch Similix’s post-unfolding (but not its post-constant folding)
on or off. On the average, switching post-unfolding off speeds up post-
processing by about 10% and makes it consume about 20% more space.
It yields residual programs that are 3.4 times bigger, run about 1.5 times
slower, and consume 1.4 times more space, on the average.

These measures hold both for the first and for the second Futamura
projections.

4.4 On Similix’s second pass

Bondorf and Palsberg mention that a second pass of partial evaluation on
one of their residual programs made it twice as fast, for a cost of ten times
the overall compile time. Here are the complete numbers.

14



Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 829 1 125 877 452
Process 344 6 681 2 434 179

Postprocess 391 174 476 42 482 95

Total 1 564 182 282 45 793 726

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 1.11 1.49 1.17 0.63
Process 0.82 9.60 5.21 0.37

Postprocess 0.93 840.70 186.53 0.16

Total 2.86 851.79 192.91 1.16

To terminate, the second pass requires one to hand-annotate the residual
program with a generalization directive. (The action interpreter is annotated
with a similar directive.)

On the average, but with much variance, the second pass is about 50
times slower than the result of the second Futamura projection and it uses
82 times as much space.

The second pass inlines several functions and unfolds one more loop.
Here are the sizes of the residual programs, counting the number of cons-
cells of their Scheme representation:

Size (pairs) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe (first pass) 2 803 3 463 2 662 1 599
sdpe (second pass) 2 183 15 389 8 579 999
tdpe 2 795 3 295 2 508 1 668

These numbers illustrate the tradeoff between unfolding and reducing during
the second pass.

The effect of Similix’s second pass is thus global, in that the code is re-
structured, and local, in that Similix performs additional peephole constant
optimizations (e.g., conditional expressions with a literal test). Here are the
numbers of program points before and after the second pass:

Number of points bubble.hpl bubble.ad sieve.ad euclid.ad

After the first pass: 12 16 12 6
After the second pass: 8 9 7 4

We have observed that the number of residual recursive definitions matches
the number of residual fixed-point operations in the output of type-directed
partial evaluation.
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On the average, the second pass yields residual programs that are 3.00
times faster and use 9.92 times less memory than the output of the first pass.
Here are the detailed performances of the residual programs, both after a
second pass of syntax-directed partial evaluation and after one pass of type-
directed partial evaluation. The raw and the cooked rows were described in
Section 3.5.

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 15 115 90 10
raw tdpe 63 197 175 90

cooked tdpe 17 182 80 10

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 0.05 0.18 0.23 0.07
raw tdpe 1.03 1.92 2.27 1.26

cooked tdpe 0.09 0.42 0.42 0.15

• On the average, raw type-directed partial evaluation yields programs
that are 4.21 times less efficient in time and 14.78 times less efficient
in space than the output of the second pass of Similix.

• On the average, cooked type-directed partial evaluation yields pro-
grams that are 1.15 times less efficient in time and 2.03 times less
efficient in space than the output of the second pass of Similix.

4.5 On Similix’s idempotence

As mentioned in Section 2, it is our observation that Similix is essentially
idempotent after three passes for the binding-time improved action inter-
preter. As for type-directed partial evaluation, it is idempotent after one
pass. For the record, here are the time and space performances of Similix’s
third and fourth passes, and of type-directed partial evaluation’s second
pass.

4.5.1 Syntax-directed partial evaluation (third pass)

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 553 18 048 5 887 271
Process 159 3 583 1 577 119

Postprocess 234 41 074 11 242 99

Total 946 62 705 18 706 489
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Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 0.63 0.67 0.35 0.31
Process 0.32 0.53 0.27 0.18

Postprocess 0.52 16.08 4.59 0.21

Total 1.47 17.28 5.21 0.70

4.5.2 Syntax-directed partial evaluation (fourth pass)

Time ms bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 610 19 163 6 706 486
Process 267 4 077 1 924 324

Postprocess 273 41 963 11 886 196

Total 1 150 65 203 20 516 1 006

Space Mb bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 0.63 6.97 3.91 0.39
Process 0.31 4.56 2.92 0.23

Postprocess 0.53 161.54 46.34 0.24

Total 1.47 173.07 53.17 0.86

4.5.3 Type-directed partial evaluation (second pass)

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 13 18 13 9

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 0.19 0.22 0.17 0.11

4.5.4 Assessment

The numbers in Sections 4.5.2 and 4.5.3 describe the overhead of a “no-
op,” since source and residual programs are the same (stable for Section
4.5.2 and textually identical for Section 4.5.3). Let us take these numbers
as indicative of the standard overhead of partial evaluation for the action
interpreter. Subtracting this overhead from the earlier numbers accounting
for the original partial evaluation gives us a measure of the actual static
computation performed by each partial evaluator.
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Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe (1st pass) -53 -63 760 -19 405 -398
sdpe (2nd pass) 414 117 079 25 277 -280
sdpe (3rd pass) -204 -2 498 -1 810 -517
tdpe 28 32 25 12

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe (1st pass) 1.94 -168.75 -49.89 0.87
sdpe (2nd pass) 1.39 678.72 139.74 0.30
sdpe (3rd pass) 0.00 -155.79 -47.96 -0.16
tdpe 0.30 0.37 0.27 0.16

Negative numbers indicate that Similix sometimes uses less than its standard
overhead.

According to these measures, type-directed partial evaluation performs
static computations in a way that is more economical than syntax-directed
partial evaluation.

4.6 On Similix’s binding-time improvements, revisited

Repeatedly specializing the original (unimproved) action interpreter yields
a stable residual program essentially as quickly as specializing the binding-
time improved one. Three passes are sufficient to yield a fixed point for the
HypoPL bubble-sort program. For the Ada bubble-sort program, however,
Similix unfolds one iteration of a loop at each step. As for the two other Ada
programs, they yield a stable program after four iterations. This experiment
was quite time consuming,3 but it shows that binding-time improvements,
by making source programs specialize better, actually do not contribute to
accelerating the convergence of repeated partial evaluation. At any rate,
binding-time improvements are not monotonic: for example, their complete
opposite, which amounts to classifying every component of the source pro-
gram as dynamic, also yields a stable (and trivial) residual program, in one
pass (modulo post-processing).

3Iterating partial evaluation with Similix is not completely trivial since one needs to
hand-annotate each of the successive specialized programs to ensure that the next pass
terminates.
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5 Conclusion and Issues

Our work stems from comparing syntax-directed and type-directed partial
evaluation [17, Chapter 5]. We have taken what has been presented as a
significant application of an offline syntax-directed partial evaluator [3, 4],
we have reproduced it, we have explored it further, and we have compared
it to using an online type-directed partial evaluator.

5.1 Executive summary

The following comparative tables summarize our results. They display the
proportion of time and space consumed, relative to the best instance of using
type-directed partial evaluation.

5.1.1 Compiling source actions

Time Space

1st FP, Similix (original) 71.49 15.41
2nd FP, Similix (original) 23.09 5.71
1st FP, Similix (improved) 95.61 21.67
2nd FP, Similix (improved) 28.45 7.04
Similix 2nd pass (improved) 1230.86 473.07
tdpe 1.00 1.00

5.1.2 Running target programs

Time Space

from Similix (original) 5.32 9.00
from Similix (improved) 2.80 5.00
from Similix 2nd pass 0.87 0.49
from tdpe (raw) 3.66 7.28
from tdpe (cooked) 1.00 1.00

5.1.3 Running interpreters

Time Space

for Similix (original) 1.15 1.03
for Similix (improved) 1.17 1.07
for tdpe (raw) 1.07 1.09
for tdpe (cooked) 1.00 1.00
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5.1.4 Effect of Similix

Time Space

running interpreter (original) 114.67 33.74
running interpreter (improved) 116.96 35.09
running target program (original) 1.90 1.80
running target program (improved) 1.00 1.00

5.1.5 Effect of type-directed partial evaluation

Time Space

running interpreter (raw) 322.23 188.47
running interpreter (cooked) 301.15 172.91
running target program (raw) 3.99 7.46
running target program (cooked) 1.00 1.00

5.2 Syntax-directed vs. type-directed partial evaluation

Our conclusions are that:

• the full power of offline partial evaluation (binding-time analysis, bind-
ing-time improvements, and polyvariant specialization) is not needed
for compiling action notation; and

• for compiling action notation, the overhead of Similix is significant
compared to that of type-directed partial evaluation, especially if one
takes into account further passes.

5.3 Compile-time vs. run-time performances

On the other hand, we are only concerned with compile times: Bondorf
and Palsberg’s results are competitive with other compilers for action no-
tation, and we improve on these results by about one order of magnitude
in time. The partial-evaluation technology we are using is otherwise the
same, and the resulting compiled code is thus essentially the same. Such
Scheme code is considerably less efficient than, e.g., the assembly-language
output of Ørbæk’s optimizing action-based compiler generator Oasis [18].
On the other hand, Oasis’s compile times are considerably larger than those
of type-directed partial evaluation.
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5.4 Partial-evaluation optimality and multi-level specialization

Optimality is an elusive concept in partial evaluation [11]. For the purpose of
this conclusion, let us take idempotence as an optimality criterion: partial
evaluation is optimal if one more pass yields the same residual program.
This criterion is compatible with the usual concept of normalization and
normal forms, e.g., in the lambda-calculus.

According to this criterion, the fact that Similix is not idempotent in-
dicates that it is sub-optimal: its binding-time analysis is too conservative.
This conservativeness poses a challenge for extending Similix into a multi-
level partial evaluator [10].

The idea of multi-level partial evaluation is that static information be-
comes available in stages, and that correspondingly, specialization should
also occur in stages. The offline approach to multi-level partial evaluation
generalizes the offline approach to partial evaluation, where static informa-
tion becomes available in one stage. As such, it assumes that a multi-level
binding-time analysis can predict enough of the successive static data flows
to improve the corresponding successive specializations, without having to
perform successive binding-time analyses as the successive static data be-
come available. In that sense, a multi-level binding-time analysis factors the
successive single-level binding-time analyses out of the corresponding stages
of offline partial evaluation. However, our experiment demonstrates that a
single-level binding-time analysis can miss a significant portion of the static
data flow. It seems likely that these misses are compounded in a multi-level
binding-time analysis, and thus that an incremental strategy using online
type-directed partial evaluation constitutes a viable alternative solution to
offline multi-level partial evaluation.
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A Benchmarks with the original, unimproved interpreter

A.1 First Futamura projection with Similix

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 631 604 626 610
Process 1 803 1 933 1 387 925

Postprocess 530 573 424 299

Total 2 964 3 110 2 437 1 834

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Preprocess 0.98 0.98 0.98 0.98
Process 5.58 6.30 4.76 2.86

Postprocess 1.06 1.22 0.89 0.65

Total 7.62 8.50 6.63 4.49

A.2 Result of the second Futamura projection with Similix

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 429 474 372 245
Postprocess 534 602 441 300

Total 963 1 076 813 545

Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

Process 1.77 2.06 1.67 0.89
Postprocess 1.06 1.22 0.90 0.64

Total 2.83 3.28 2.57 1.53

A.3 Performance of the residual programs

Time (ms) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 129 286 275 100
tdpe (raw) 53 205 155 50
tdpe (cooked) 17 182 80 10

22



Space (Mb) bubble.hpl bubble.ad sieve.ad euclid.ad

sdpe 1.60 2.23 3.11 1.11
tdpe (raw) 1.03 1.92 2.30 1.30
tdpe (cooked) 0.09 0.42 0.42 0.15
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