v

View metadata, citation and similar papers at core.ac.uk brought to you byj: CORE

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

BRICS

Basic Research in Computer Science

Encoding Types in ML-like Languages

(Preliminary Version)

Zhe Yang

sabenbue] a)i-7IA Ul sadAL Buipoou3 :Buep 'Z 6-86-SH SOIYd

BRICS Report Series RS-98-9
ISSN 0909-0878 April 1998

https://core.ac.uk/display/233661738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright (© 1998, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS

Department of Computer Science
University of Aarhus

Ny Munkegade, building 540
DK-8000 Aarhus C

Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLS:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/98/9/

Encoding Types in ML-like Languages
(preliminary version)

Zhe Yang
Department of Computer Science
New York University *
E-mail: zheyang@cs.nyu.edu

April 1998

Abstract

A Hindley-Milner type system such as ML’s seems to prohibit type-
indexed values, i.e., functions that map a family of types to a family
of values. Such functions generally perform case analysis on the in-
put types and return values of possibly different types. The goal of
our work is to demonstrate how to program with type-indexed values
within a Hindley-Milner type system.

Our first approach is to interpret an input type as its corresponding
value, recursively. This solution is type-safe, in the sense that the ML
type system statically prevents any mismatch between the input type
and function arguments that depend on this type.

Such specific type interpretations, however, prevent us from com-
bining different type-indexed values that share the same type. To meet
this objection, we focus on finding a value-independent type encoding
that can be shared by different functions. We propose and compare
two solutions. One requires first-class and higher-order polymorphism,
and, thus, is not implementable in the core language of ML, but it
can be programmed using higher-order functors in Standard ML of
New Jersey. Its usage, however, is clumsy. The other approach uses
embedding/projection functions. It appears to be more practical.

We demonstrate the usefulness of type-indexed values through ex-
amples including type-directed partial evaluation, C printf-like format-
ting, and subtype coercions. Finally, we discuss the tradeoffs between
our approach and some other solutions based on more expressive typing
disciplines.

*Address: 251 Mercer Street, New York, NY 10012, USA

1 Introduction

Over the last two decades, the Hindley-Milner type system [14, 20| has
been widely used. For example, it underlies several major statically typed
functional programming languages, such as ML [21] and Haskell [24]. Among
other reasons, this popularity can be attributed to static typing (which
serves as a static debugging facility,) and implicit polymorphism allowed by
the principal typing scheme (which removes the burden of pervasive explicit
type annotations). The simplicity of the type system, however, also restricts
the class of typeable programs. For example, one cannot examine the type
of a value at run-time, as in a dynamically typed language such as Scheme
[4].

Functions that take type arguments and accordingly return values of
possibly different types are used frequently in abstract formulations of cer-
tain algorithms. Such functions form an interesting class of programs that
seem to be forbidden by the Hindley-Milner type system. In this article,
we formulate such a function as a type-indezed value, viewing it as a value
indexed by one or more type(s). Figure 1 illustrates a type-indexed value v
indexed by one type argument: given a type 7, the corresponding value is
v, of type T.. Usually, the family of types 7 is inductively specified using
a set of type constructors. Consequently, the type-indexed value v is natu-
rally defined by case analysis on the type constructions. Since all types are
implicit in a language with Hindley-Milner type system, one can only hope
to use type encodings instead of types as the arguments of an ML function
fv that represents a type-indexed value v. We can reduce case analysis on
type constructions to case analysis on value constructions, by encoding type
arguments using a datatype. This, however, does not solve the problem,
because different branches of the case analysis might have different types,
and hence may not be typeable. A common strategy in such cases is to have
tagged inputs and outputs of some user-defined datatype. However, this
requires users to tag input values themselves, which is not only inconvenient
and even unreasonable for cases when verbatim values are required, but also
‘type-unsafe’ in the sense that a run-time exception might be raised due to
unmatched tags.

This problem has exposed the limitations of the Hindley-Milner type
system and has motivated a lot of research exploring more expressive type
systems. This article investigates what can be done within the framework of
the Hindley-Milner type system; in particular, we demonstrate our methods
with ML, though the techniques are equally applicable to any other lan-
guage based on the Hindley-Milner type system. We show how interpreting
types T using corresponding values v, gives a type-safe solution to the prob-
lem. Based on our approach to type encodings, examples ranging from a

A family of types 7 Corresponding values v, : T

A type-indexed value v is a function mapping a family of
types 7 to a family of values v, of types 1.

Figure 1: A type-indexed value

printf-like formatting function' to type-directed partial evaluation can be
programmed in ML successfully. As for their type safety, it is automatically
ensured by the ML type system, statically.

The above type encoding is value-dependent. It is not suitable in mod-
ular programming practice when different type-indexed values sharing the
same family of type indices need to be programmed separately and com-
bined later. It is thus interesting to find a method of type encoding that
is independent of any particular type-indexed value. A value-independent
encoding of a specific type can be combined with the specification of a type-
indexed value (which itself has a fixed type) to deliver the value at this type
index. We present two methods of creating such a value-independent type
encoding:

1. A type-indexed value is specified as a tuple of value constructions
for all possible type constructors, and the encoding of a specific type
recursively selects and applies components from the tuple. This gives
rise to a Martin-Lof-style encoding of inductive types. The encoding
uses first-class polymorphism and higher-order polymorphism, and can
be implemented using the higher-order module language of Standard
ML of New Jersey [3].

2. A type is encoded as the embedding and projection functions between
verbatim values of that type and tagged values of a universal datatype.
To encode a specific value v, of a type-indexed value v, we can first
define its equivalent value, replacing types 7 by the corresponding
datatypes, and then coerce it to the specific value of the indexed type.

nitially devised by Olivier Danvy [6].

We show that this type encoding is universal, i.e., the coercion func-
tion can always be constructed from the embedding and projection
functions of the indexed types.

In Section 2, we formalize the notion of type-indexed values, give exam-
ples, and discuss why it is difficult to program with them. In Section 3, with
an understanding of type encodings as type interpretations, we characterize
requirements for correct implementations of type-indexed values, and give
an ad hoc approach to programming type-indexed values in ML. In Section 4,
we present two approaches to value-independent type encodings, namely 1
and 2 above, and argue that the second approach is universal and more
practical. We discuss related work in Section 5 and conclude in Section 6.

2 Type-Indexed Values

Type-indexed values are used in the formulation of algorithms in a type-
indexed (or type-directed) fashion. Depending on input type arguments,
specific values could have different types. For brevity, we mainly consider
programs indexed by only one type argument. Multiple type arguments
can be dealt with by bundling all type indices into one type index. This
technique, however, could lead to code explosion. We will come back to a
practical treatment for dealing with multiple type arguments in section 4.4.
A type-indexed value is defined by

vr=e

where expression e is a case expression whose value depends on the form
of type 7, and is defined using the values indexed at the component types
of type 7. The family of types 7 is inductively constructed in the following

form:
- Cl(Tlh ceey Tl'ml)
!

cn(Tnla ceey Tnmn)

T

where ¢;’s are type constructors, representing a type construction in the
underlying language (ML in our case), which builds type 7 using component
types T;1 through 7;y,,. Without loss of generality, we assume that the case-
analysis in expression e occurs at the outer-most level, which enables us to
rewrite the specification of the type-indexed value v in the following pattern-
matching form:

Yei(ri1,sTimy) el(vﬁn“"vﬁml)

Ven(TniseoyTnmn) en(anl""7anmn)

2.1 Running examples

We use the following two running examples to demonstrate the challenges
posed by type-indexed values, and later to illustrate our methods for pro-
gramming with them.

2.1.1 List flattening

The flatten program, which flattens arbitrary nested lists with integer el-
ements, is a toy example often used to illustrate the intricacy of typing
“typecase” (case study on types) in languages with Hindley-Milner type
systems, and to motivate the use of datatypes. It can be written in an
untyped language like Scheme (where type testing is allowed) as:

flatten z = [z] (where z is atomic)
flatten [z1,...,z,] = (flatten x;)@- .- Q(flatten x,,)

where @ is the list concatenation operator. To write this function in ML,
a natural solution is to use the ML datatype mechanism to define a “list”
datatype, and use pattern matching facilities for case analysis. However,
this requires a user to tag all the values, making it somewhat inconvenient
to use. Is it possible to use verbatim values directly as the arguments?
The term “verbatim values” refers to values whose types are formed using
only native ML type constructors, and are hence free of user-defined value
constructors.

Due to restrictions of the ML type system, a verbatim value of nested
list type must be homogeneous, i.e., all members of the list must have the
same type (in the case that members are lists themselves, they must have
the same nesting depth). Possible types 7 of the argument of function flatten
form the family Fh4st of types generated by the following grammar.?

T = int |7 list

The type-indexed function flatten is specified as:

flatten : A7 € Fmblist o int list
flattenipx = [z]
flatteny jist[z1, ..., zn] = (flatteng z1) + - - - + (flatteny)

Before trying to write the function flatten, let us analyze how it might be
used. A first attempt is to make the input value (of some arbitrary homo-
geneous nested list type) be the only argument. This requires that both
expression flatten 5 and expression flatten [6] type-check, so the func-
tion argument should be polymorphic and should generalize both type int

2It is only for brevity that we use int as the base type, instead of a universally quantified
type variable.

(reify) J/base v o= v
7y = A ™ (vQ(17, 21))

(where z; is a fresh variable)

(reflect) Thase € = €
Trnome = Avy. TTz (e@(iﬁ 7)1))

Figure 2: Type-directed partial evaluation

and type int list, which must be a type variable a. But ML’s parametric
polymorphism disallows ‘looking into’ the type structure of a polymorphic
value. Consequently it is impossible to write function flatten with the value
to be flattened as the only argument.

The next attempt is to have an extra argument describing the input type,
i.e., a value that encodes the type. We expect to rewrite the aforementioned
function invocations as flatten Int 5 and flatten (List Int) [6], respec-
tively. One might try to encode the type using a datatype as:

datatype TypeExp = Int | List of TypeExp

The fixed type TypeExp of the type encoding, however, also makes the result
of applying function flatten to the type encoding have a fixed ML type. As
before, a simple argument shows that it is impossible to give a typeable
solution in ML.

2.1.2 Type-directed partial evaluation

Type-directed partial evaluation, a surprisingly concise alternative to the
traditional syntax-directed partial evaluation, offers a much more interesting
and practical example of type-indexed values. In its simplest form, Danvy’s
type-directed partial evaluation (TDPE) is formulated in Figure 2. Here,
we consider the family Fbase:func of types T generated inductively by the
following grammar.

T = base| 1 — 1

The two functions | (reify) and 1 (reflect) are type-indexed, recursively
calling each other for the contravariant function argument. At first glance,
their definitions do not fit into our canonical form of type-indexed values;
however, pairing the two functions at each type index puts the definition
into the standard form of a type-indexed value (Figure 3).

In his article [5], Danvy presents the Scheme code for this algorithm,
where the type index is encoded as a value, thus reducing type analysis to
case analysis. However, a direct transcription of that program into an ML

(L1) : AT € FPele (7 Exp) x (Exp — 7)
(4, Pbase = (Av.v, Aece)
G Dnon = let (™ 1n) = (b D
(17, 1m) = (1 D
in (AvAzi. ™ (vQ(T, x1)),
Ae vy, T, (eQ(L™ v1)))
(where z; is a fresh variable)

Figure 3: TDPE in the general form of type-indexed values

program that requires its input arguments being tagged is not satisfactory
for the following reasons:

e Using type-directed partial evaluation, we expect to normalize a pro-
gram in the source language and get the corresponding text. It is
cumbersome for the user to tag/untag all the program constructs, so
a verbatim program is much preferable in this case.

e Unlike the case of function flatten, here the type argument must be
explicit. The type index 7 only appears as the codomain of the function
T (reflect), whereas its domain is always of type Exp. For the same
input expression, varying the type argument results in different return
values.

Since explicit type arguments must be present, the consistency of the
type argument and the real tags of the input values cannot be guar-
anteed by static type checking of ML, and run-time ‘type error’ can
arise in the form of pattern-mismatching exception. This problem is
also present in the Scheme program.

3 Type-Indexed Values as Type Interpretations

Our first approach to programming type-indexed values v is based on inter-
preting specific types 7 in the program as the values v, indexed by these
types.

As we argued in the list flattening example (section 2.1.1), if verbatim ar-
guments are required for an ML function representing a type-indexed value,
a type encoding must be explicitly provided as an argument to the func-
tion, but this type encoding cannot have a fixed type. Now that the type
encoding F. itself must have different types, a reasonable choice of these
types should make them reflect the types 7 being encoded. For each type

construction c¢ that constructs a type 7 from types 7, ..., 7, its program
encoding F, is a function that transforms the type encodings E,,..., E,
to the type encoding E;. In other words, the encodings of inductively con-
structed types form a particular interpretation of the types in value domains;
if we use [u] instead of E, to denote the interpretation, we can write down
the requirements for the encodings:

If T = (11, -y Tm)

then [7] = [c]([m],...,[mm])

This can be understood as requiring the interpretations of type and type
constructors to form a homomorphism, i.e.,

[e(rr, -y)] = [l ([l - - T7m]) (3)

A function f, that represents a type-indexed value v using the above encod-
ing should satisfy

vr = ful7] (4)

for all types 7 in family F. Equations (3) and (4) precisely characterize
program encodings of type-indexed values.

Definition 1 The encodings [c;] of type constructors c¢;, along with function
fv, are said to implement type-indexed value v, if and only if they satisfy
equations (3) and (4).

The task of finding the type encodings now boils down to finding in-
terpretations for the type constructors ¢;. Observing the similarities of the
general form of type-indexed values in the set of equations given by (2) and
the interpretation of type constructors in Equation (3), it is not difficult to
imagine the following approach to programming a type-indexed value: we
interpret a type 7 as the corresponding value v, and interpret the type
construction ¢; using the value construction e; in the set of equations given
by (2), i.e.:

[l =v;

[ci] =ei
Using the set of equations given by (2), it follows immediately that this
interpretation satisfies equation (3). With this type encoding, the function
that maps type encodings to the values is simply the identity function:

folrl =171

Theorem 1 A given type-indexed value v is implemented by interpretations
[ei] = ei of type constructors and function f, = Ax.x.

3.1 Examples

The definition of function flatten gives rise to the following interpretations
of type constructions:

[1 : Arc Fnbhst o s int list
[int] = Az.[z]
[alist] = Azi,...,z].Je]z1@- - Q[a]x,

A direct coding of these interpretations of type construction into ML func-
tions gives the following program:

val Int = fn x => [x]
fun List T = fn 1 => foldr (op @) [] (map T 1)
fun flatten T1 =T 1

Since we choose the ML function names to be the type constructions they
interpret, a type argument List (List Int) already has the value of

[(int list) list] = flatten(ine ist) fists

and function flatten is defined as the identity function. The function deals
with verbatim values, e.g., expression

flatten (List (List Int)) [[1, 21, [1, [3], [4, 5]]

evaluates to [1,2,3,4,5].
We apply the same method to program type-directed partial evaluation
(Figure 4) using the type interpretation [7] = ({,1), defined in Figure 3.
As an example, the expression

reify (Base --> Base)
((fn x => fny => x y) (fn x => x) (fn x => x))

evaluates to a first-order representation of Ax.x such as LAM ("x7",VAR "x7").

3.2 Assessment of the approach

A type encoding in the above approach is essentially the type-indexed value
specialized to the particular type index. There are several advantages to
this approach:

e Type safety is automatically ensured by the ML type system: case-
analysis on types, though it appears in the formulation, does not really
occur; the encoding and also the value [7] = v; of a particular type
index 7 already has the required type 7. If the value [7] is a function,
taking some argument whose type depends on type 7, then the specific
type of this argument will be manifested in the type T’.. Hence, input
arguments of illegal types would be rejected.

For example, the expression

datatype Exp = VAR of string
| LAM of string * Exp
|

APP of Exp * Exp

infixr 5 -->
val Base

(fn v => v,
fn e => e)
fun (T1 as (reify_1, reflect_1)) -->
(T2 as (reify_2, reflect_2)) =
let fun reify v =
let val x1 = Gensym.fresh "x" in
LAM(x1, reify_2 (v (reflect_1 (VAR x1))))
end
fun reflect e =
fn vl => reflect_2 (APP(e, reify_1(v1)))
in
(reify, reflect)
end
fun reify (T as (reify_T, reflect_T)) v = reify T v

Figure 4: Type-directed partial evaluation in ML

reify (Base --> Base) (fn x => fn y => x)
will cause a type error in ML, because expression
reify (Base --> Base)

has the domain type (Exp -> Exp), which does not match type scheme
Aa.AB.(a — (B — «)). If we use the expression

reify (Base --> Base --> Base)

instead, which has the domain type (Exp -> Exp -> Exp), then the
whole expression evaluates to a textual representation of Ax.Ay.z like
LAM ("x7",LAM ("x8",VAR "x7")).

e In some other approaches that do not make the type argument ex-
plicit (e.g., using classes of an object-oriented language), one would
need to perform case-analysis on tagged values (including dynamic
dispatching), which would require the type index to appear at the in-
put position. In our approach, however, the type index 7 could appear
at any arbitrary position in type T-..

But this simple solution has a major drawback: the loss of composability.
One should be able to decompose the task of writing a large type-indexed

10

super_reverse
[] []
flatten flatten
[] []
reverse
Figure 5: Composing function super_reverse and function flatten

function into writing several smaller type-indexed functions and then com-
bining them. This would require that the encoding of a type be sharable by
these different functions, each of which uses the encoding to get a specific
value. However, the above simple solution of interpreting every type directly
as the specific value would result in each type-indexed function having a dif-
ferent set of interpretations of type constructors, thereby disallowing sharing
of the type encodings.

Consider the following toy example: on the family F™4st of types,
we define yet another type-indexed function super_reverse, which recursively
reverses a list at each level. The function is defined through the following
type interpretation:

[] : AreFintlst o1
[intf = Az
lalist] = Azy,...,z,).[[a]zn, ..., [a]z]

which is implemented in ML as,

fun Int x = x
fun List T = rev o (map T)
fun super_reverse T 1 =T 1

Each of function flatten and function super_reverse can be used separately,
but we cannot use an expression such as

fn T => (flatten T) o (super_reverse T)

to combine them. We cannot reverse a list recursively and then flatten the
result, because the functions Int and List are defined differently in the two
programs. (Notice that the effect of composing function super_reverse and
function flatten amounts to reversing the flattened form of the original list
(Figure 5).)

11

This problem can be evaded in a non-modular fashion, if we know in
advance all possible type-indexed values v, v’ ... indexed by the same family
of types, by tupling all the values together as the type interpretation. Ev-
ery function f,, simply projects the appropriate component from the type
interpretation. Our previous program of type-directed partial evaluation
(Figure 4) illustrates such a tupling.

3.3 Other applications of the approach

Sometimes, the types of certain function arguments are determined by other
arguments which embody related type information. In these cases, extra
type arguments are redundant, and it is sufficient to interpret the arguments
determining types.

As an example, a C printf-style formatting function specifies the type
of its arguments through its formatting specification, which is a sequence
of field specifiers, represented here as a list. The (simplified) grammar of a
formatting specification is given below:

Spec ::=NIL | Field :: Spec
Field ==1LIT s|% 7

where s is a string literal and % 7 specifies an input field argument of type 7.
We want to write a function format such that, for instance, the expression

format (% Str ++ LIT " is " ++ 7 Int ++ LIT "-year old.")
"Mickey" 80

evaluates to the string "Mickey is 80-year old.".

Our function is indexed by a formatting specification fs. A specialized
formaty, has type 71 — 7 ... — 7, — string, where 7;’s are from all the
field specifiers “/% 7;” in the specification fs in the order of their appearance.
We make use of an auxiliary function format’, which introduces one extra
argument b as a string buffer; the function will append its output to the end
of this input string buffer to get the output string. The functions format
and format’ can be formulated as follows.

formaty, : string — T'(fs)
where
T(NIL) = string

T(LIT s fs) = T(fs)
TCh mfs) = 7—=T(fs)

formaty b = b
formatyrr 5.0 = formati (b s)
formaty, . b = A(x:7).format} (b toStr.x)
formaty, @ T'(fs)
formats, = formatj,(“”)

12

In these declarations, each function toStr. : 7 — string converts a value
of type T to its string representation. Since format’ is inductively defined
over the formatting specification, we can make it the interpretation of the
formatting specification. Each individual field specification f can be viewed
as a constructor for formatting specifications, similar to the type construc-
tors in the previous section. Therefore [f] should be a transformer from
[fs] = formaty, to [f == fs] = format’; 4, i.e.,

format..;, = [f] format,
It is now easy to give the interpretation of different individual field specifiers:

[LIT s] = Mormaty,. \b.format, (b"s)
[% 7] = [%] toStr,
= Mormat, . Ab.A(z : 7).format}, (b”toStr z)

To complete the construction, we define a function ++ to compose such
transformers (similar to the function append for lists), and we can define a
function format, which supplies the interpretation of the empty field speci-
fication [NIL] = formatyy, to a transformer, along with an empty string as
the initial buffer. Let us move directly to the ML code:

infix 5 ++

fun LIT s p = fn b => p (b ~ s)

fun % toStr_t p = fn b => fn x => p (b ~ toStr_t x)
fun f1 ++ £f2 = f1 o £2

fun format fs = fs (fn b => b) ""

fun Int n = Int.toString n
fun Str s s

Unlike the C printf function, the above ML implementation is type-safe;
for example, the type of the expression

format (% Int ++ LIT ": " ++ % Str)

is int — string — string, thus ensuring that exactly two arguments, one of
type int, the other of type string, can be supplied.

The power of a higher-order functional language with static typing like
ML also enables the construction of field specifiers for different types: for
the type-indexed function toStr, we can use the standard type interpretation
method to allow type constructions such as product types and list types.

fun Pair toStrl toStr2 =

fn (x1, x2)

=> "(" ~ (toStr1l x1) -~ ", " ~ (toStr2 x2) -~ ")"
fun List toStr 1 =

13

let fun mkTail []
= u] n
| mkTail [el
= (toStr e) =~ "1"
| mkTail (e :: el)
= (toStr e) -~ ", " ~ (mkTail el)
in "[" ~ (mkTail 1)
end

This enables us to construct field specifiers for compound types. The fol-
lowing example illustrates its usage:

format (%(List (Pair Str (List Str))))
[(IINII, ["Prince", "8", "14"]),
("P", ["Newport", "Christopher", "9"]1)]

It should be clear that for any given type 7, we can have different func-
tions to translate a value of type 7 to its string representation. It is easy
to define a more complicated field specifier which determines formatting is-
sues such as choosing various paddings or parameterizing the constructors
of compound types over delimiters—i.e., a pretty-printer.

Danvy observed that such an implementation of format out-performs the
library version of formatting functions provided with SML/NJ and Objec-
tive Caml, without even applying partial evaluation to remove interpretive
overhead [6]. Intuitively, the efficiency comes from the elimination of case-
analysis by using function “dispatching” instead, which is similar to the
practice of eliminating conditionals by hardwiring data into code, or using
jump-tables in machine language.

Danvy also makes an interesting comparison of the type-indexed format-
ting function and the two formatting library functions of SML/NJ and of
OCaml. In SML/NJ, the user is required to embed all arguments into a
universal datatype and to collect the result in a list. Any mistake in the
embedding or in the size of the list results in a run-time error. In OCaml,
the formatting function is itself type-unsafe. Applying it to a formatting
specification, however, yields a type-safe curried function that can be used
on untagged values. Programming a formatting function as a type-indexed
value yields the same effect as in OCaml (convenience and verbatim val-
ues), but with the added benefit that the formatting function itself can be
statically type-checked in ML.

4 Value-Independent Type Encoding

In this section, we further develop two approaches to encode types indepen-
dent of the type-indexed values defined on them, i.e., we should be able to
define the encodings [7] of a family F' of types 7, so that given any value v
indexed by this family of types, a function f, that satisfies equation (4) can

14

be constructed. In contrast to the solution in the previous section, which
interprets types 7 using values v, directly and is value-dependent, a value-
independent type encoding enables different type-indexed values v,v/,... to
share a family of type encodings, resulting in more modular programs using
type-indexed values. We present the following two approaches to value-
independent type encoding:

e as an abstraction of the formulation of a type-indexed value, and

e as a universal interpretation of types as tuples of embedding and pro-
jection functions between verbatim values and tagged values.

4.1 Abstracting type encodings

If the type encoding is value-independent, the function f, representing type-
indexed value v should carry the information of the value constructions e; in
a specification in the form of the set of equations given in (2). This naturally
leads to the following approach to type encoding: a type-indexed value v is
specified as an n-ary tuple € = (eq,...,ey,) of the value constructions, and
the value-independent type interpretation [7] maps this specification to the
specific value v,.

[r]le=v- (5)
With Equation (3), we require the encoding of type constructors ¢; to satisfy
[e:](Im], - - [rm])E

= [ei(r1,...,™m)]€ by (3)
vci(Tl,...,Tm) by (5)
(2)
(5)

€i(Vryy. . yv7,) by
= ei([n]e, ..., [tm]é) by (5

By this derivation, we have

Theorem 2 The value-independent encodings of type constructors
lei] = A1, .., zm) . Aeei(x1€, . . ., Tp€)

and the function f,(x) = x(e1,...,e,) implement the corresponding type-
indexed value v.

This approach seems to be readily usable as the basis of programming
type-indexed values in ML. However, the restriction of ML type system that
universal quantifiers on type variables must appear at the top level again
makes this approach infeasible. For example, let us try to encode types in the
family Fbase-func and use them to program type-directed partial evaluation
in ML (Figure 6).

The definition of reify and reflect at higher types is as before and
omitted here for brevity. This program will not work, because the A-bound

15

val Base = fn (base_v, func_v) => base_v
fun T1 --> T2 = fn (spec_v as (base_v, func_v))
=> func_v (T1 spec_v) (T2 spec_v)

fun reify T =
let val (reify_T, _) =
T ((fn v => v, fn e => e), (* base_v *)

(* func_v *)

fn (reify_T1, reflect_T1) =>
fn (reify_T2, reflect_T2) =>

(x (reify_T, reflect_T) *)
)

in reify_T end

Figure 6: An unsuccessful encoding of Fbes¢:fun¢ and TDPE

variable spec_v can only be used monomorphically in the function body.
This forces all uses of func_v to have the same monotype; as an example,
the type encoding Base --> (Base --> Base) causes a type error, because
the two uses of variable func_v (one being applied, the other being passed
to lower type interpretations) have different monotypes.

Indeed, the type of the argument of reify, a type encoding [r] con-
structed using Base and -->, is somewhat involved:

[7] : Aobj:x — .
Abase_type : *.

(base_type obj x (* base_v x)
(A= *, 3 1 *.(a obj) — (B obj) = ((a — B) obj))) — (* func_v *)
T obj

Here, the type constructor obj constructs the type T’ of the specific value
v; from a type index 7, and the type base_type gives the base type index.
What we need here is first-class polymorphism, which allows nested quan-
tified types, as used in the type of argument func_v. Substantial work has
been done in this direction, such as allowing selective annotations of A-bound
variables with polymorphic types [23] or packaging of these variables using
polymorphic datatype components [16]. Moreover, higher-order polymor-
phism [15] is needed to allow parameterizing over a type constructor, e.g.,
the type constructor obj.

In fact, such type encodings are similar to a Martin-Lo6f-style encoding
of inductive types using the corresponding elimination rules in System F,,,
which does support both first-class polymorphism and higher-order poly-
morphism in an explicit form [10, 25].

16

4.2 Explicit first-class and higher-order polymorphism in
SML/NJ

The module system of Standard ML provides an explicit form of first-class
polymorphism and higher-order polymorphism. Quantifying over a type or
a type constructor is done by specifying the type or type constructor in a
signature, and parameterizing functors with this signature. To recast the
higher-order functions in Figure 6 into functors, we also need to use higher-
order functors which allows functors to have functor arguments or results.
Such higher-order modules are supported by Standard ML of New Jersey [3],
which extends Standard ML with higher-order functors [31]. Below we give
a program for type-directed partial evaluation using higher-order functors.

signature SpecValue =

sig

type ’a obj

type my_type

val v: my_type obj
end

signature IndValue =

sig

type ’a obj

type base_type

val Base : base_type obj

val Arrow: ’a obj -> ’b obj -> (’a -> ’b) obj
end

signature Type =
sig
functor F(Obj: IndValue): SpecValue
where type ’a obj = ’a 0Obj.obj
end

structure Base: Type =

struct
functor F(0Obj: IndValue): SpecValue =
struct
type ’a obj = ’a 0bj.obj
type my_type = Obj.base_type
val v = Obj.Base
end
end

functor Arrow(T1: Type) (T2: Type): Type =
struct
functor F(0Obj: IndValue): SpecValue =
struct
type ’a obj = ’a 0bj.obj

17

structure v_T1 = T1.F(0bj)

structure v_T2 = T2.F(0bj)

type my_type = v_Tl.my_type —>
v_T2.my_type

val v = 0Obj.Arrow v_Tl.v v_T2.v

end
end

structure reify_reflect: IndValue =
struct
type ’a obj = (’a -> Exp) * (Exp -> ’a)
type base_type = Exp
val Base = (fn v => v, fn v => v)
fun Arrow (reify_1, reflect_1)
(reify_2, reflect_2) =

end

Here, a Type encoding is a functor from a structure with signature
IndValue, which is a specification of type-indexed values, to a structure
with signature SpecValue, which denotes a value of the specific type. The
type my_type gives the particular type index 7, and the type base_type and
the type constructor obj are as described in the last section.

It is however cumbersome and time-consuming to use such functor-
based encodings. The following example illustrates how to partially evaluate
(residualize) the function Az.z with type (base — base) — (base — base).

local structure T = Arrow(Arrow(Base) (Base))
(Arrow(Base) (Base))
T.F(reify_reflect)

structure v_T
in

val result = #1(v_T.v) (fn x => x)
end

Furthermore, since ML functions cannot take functors as arguments, we
must define functors to use such functor-encoded type arguments. Therefore,
even though this approach is conceptually simple and gives clean, type-safe
and value-independent type encodings, it is not very practical for program-
ming in ML.

4.3 Embedding/projection functions as type interpretation

The alternative approach to value-independent type encodings is (maybe
somewhat surprisingly) based on programming with tagged values of user-
defined universal datatypes. Before describing this approach, let us look at
how tagged values are often used to program functions with type arguments.

First of all, for a type-indexed value v whose type index 7 appears at the
position of input arguments, the tags attached to the input arguments are

18

enough to guide the computation. For examples, the tagged-value version
of functions flatten and super_reverse is as follows:

datatype tagIntlList =
INT of int
| LST of taglntList list

fun flattenTg (INT x)
= [x]
| flattenTg (LST 1)
= foldr (op @ [] (map (fn x => flattenTg x) 1)
fun super_reverseTg (INT v)
= INT v
| super_reverseTg (LST 1)
= LST (rev (map super_reverseTg 1))

In more general cases, if the type index 7 can appear at any position
of the type T, of specific values v,, then a description of type 7 using a
datatype must be provided as a function argument. However, this approach
suffers from several drawbacks:

1. Verbatim values cannot be directly used.

2. If an explicit encoding of a type 7 is provided, one cannot ensure at
compile time its consistency with other input arguments whose types
depend on type 7; in other words, run-time ‘type-errors’ can happen
due to unmatched tags.

Can we avoid these problems while still using universal datatypes? To
solve the first problem, we want the program to automatically tag a verbatim
value according to the type argument. To solve the second problem, if all
tagged values are generated from verbatim values under the guidance of type
arguments, then they are guaranteed to conform to the type encoding, and
run-time ‘type-errors’ can be avoided.

The automatic tagging process that embeds values of various types into
values of a universal datatype is called an embedding function. Its inverse
process, which removes tags and returns values of various types, is called
a projection function. Interestingly, these functions are type-indexed them-
selves, thus they can be programmed using the ad hoc method described in
Section 3. Using the embedding function and projection function of a type
T as its encoding gives another value-independent type encoding method for
type-indexed values.

For each family T of types 7 inductively defined in the form of equa-
tion (1), we first define a datatype U of tagged values, as well as a datatype
type Exp (type expression) to represent the type structure. Next, we use the

19

following interpretation as the type encoding:

[r] = (emb,,proj ., tE;)
emb, : 7T—U (embedding function) (6)
proj, : U — 7 (projection function)

tE; : typeExp (type expression)

Finally, we use the embedding and projection functions as basic coercions
to convert a value based on a universal datatype to type T corresponding
to the type index 7.

The important question that remains is how we can define the embed-
ding/projection function pair of a type 7 in terms of those of its component
types 7;. In general, for a covariant component type 7;, emb, and proj .
should be defined in terms of emb,, and proj,,, respectively; for a con-
travariant component type 7;, emb, and proj,. should be defined in terms
of proj, and emb;,, respectively. More involved cases of embedding and
projection functions between special types and universal tagged datatypes
are studied in detail in [13].

4.3.1 Examples
Taking the family F™4st of types, we can encode the type constructors as:

datatype typeExpL = tInt | tLst of typeExpL
val Int = (fn x => INT x, fn (INT x) => x, tInt)
fun List (T as (emb_T, proj_T, tE_T)) =

(fn 1 => LST (map emb_T 1),

fn LST 1 => map proj_T 1,

tLst tE_T)

and then the functions flatten and super_reverse are defined as

fun flatten (T as (emb, _, _)) v = flattenTg (emb v)
fun super_reverse (T as (emb, proj, _)) v =
proj (super_reverseTg (emb v))

Now that the type encoding is neutral to different type-indexed values, they
can be combined, sharing the same type argument. For example, the func-
tion

fn T => (flatten T) o (super_reverse T)

defines a type-indexed function that composes flatten and super_reverse.

The other component of the interpretation, the type expression tE is used
for those functions where the type indices do not appear at the input argu-
ment positions, such as the reflect function. In these cases, a tagged-value
version of the type-indexed value must perform case analysis on the type
expression tE. As an example, the code of type-directed partial evaluation
using this new type interpretation is presented below.

20

datatype ’base tagBaseFunc =
BASE of ’base
| FUNC of (’base tagBaseFunc) -> (’base tagBaseFunc)
datatype typeExpF =
tBASE
| tFUNC of typeExpF * typeExpF

val Base = (fn x => (BASE x), fn (BASE x) => x, tBASE)
fun ((T1 as (I_T1, P_T1, tE1)) -—>
(T2 as (I_T2, P_T2, tE2))) =
(fn £ => FUNC (fn tag_x => I_T2 (f (P_T1 tag_x))),
fn FUNC f => (fn x => P_T2 (f (I_T1 x))),
tFUNC (tE1,tE2))

val rec reifyTg =
fn (tBASE, BASE v) => v
| (tFUNC(tE1,tE2), FUNC v) =>
let val x1 = Gensym.fresh "x" in
LAM(x1, reifyTg
(tE2, v (reflectTg (tEl, (VAR x1)))))
end
and reflectTg =
fn (tBASE, e) => BASE(e)
| (tFUNC(tE1,tE2), e) =>
FUNC(fn vl => reflectTg
(tE2, APP (e, reifyTg (tE1, v1))))

fun reify (T as (emb, _, tE)) v = reifyTg(tE, emb v)

Recall that the definition of functions reifyTg and reflectTg will cause
matching-inexhaustive compilation warnings, and invoking them might cause
run-time exceptions. Function reify is safe, however, in the sense that if
the argument v type-checks with the domain type of the embedding func-
tion emb, then, the resulting tagged expression must comply with the type
expression tE. This value-independent type encoding can be used for the
‘type specialization’ described in [7], where the partial evaluator and the
projection function are type-indexed by the same family of types.

4.3.2 Universality

In this section, we argue that the above approach based on embedding and
projection functions is universal, in the sense that the type index 7 can
appear at any position of the type T of the value v,. Formally, let Q) be a
type with occurrences of type variable 7, we want to program a type-indexed
value v with type AT € T.Q.

We assume the following conditions about the types:

1. All the type constructions ¢; build a type only from component types
covariantly and/or contravariantly. As shown in the TDPE example,

21

the same component type can be used both covariantly and contravari-
antly.

2. The type @ is constructed by covariant and/or contravariant type
constructions from type variable 7 exclusively.

The systematic method of implementing type-indexed value v involves
the following steps:

1. Define an ML datatype U, which distinctively represents all values of
different types in family 7'. In general, we simply tag all the branches
of type constructions, and parameterize U with type variables freely
occurring in the type constructions.

mi

——
datatype ('t; ... 't,) U = tag., of ci(U,...U)

| tag., of c,(U,...U)
——
Mn
We also define a datatype typeEzpU to describe the structure of a
particular type in the type family 7"

datatype typeExpU = tEc; of (typeExrpU)™

| tEc, of (typeEzpU)™n

2. Program the type interpretation in the form of equation (6). This
can be achieved because by Condition 1, all the type constructions are
covariant/contravariant in all their arguments. The embedding and
projection functions of a type 7 are inverse of each other, and they
witness the isomorphism between the set .o Val(7) and a subset
Ur of set Val(U), where set Val(7) denotes the value set associated
with type 7.

V1 € T.Yv € Val(T).proj .(emb,(v)) = v

In this regard, the embedding and projection functions serve as two
basic coercions between type 7 and type U:

emb, : T~U
proj, : U~s1

3. Write a function vV : typeExp — Q[U/7], the universal datatype

version of the type-indexed value v. Here, Q[U/7] is type @ with
all free occurrences of type variable 7 being substituted by universal

22

datatype U. This function is induced from the specification in the
form of Equation 2 as follows:

WW(tEci(tEs, ..., tE;) = YWY (tE,),...,

vU(tETml)

Tmq

where egj : U™ — U is a properly instrumented version of e; by
adding tagging and untagging operations. We have that for each type
7 € T, value vV (tE,) : Q[U/7] corresponds to the verbatim value v,
via a coercion of type Q[U/7] ~ @ which merely does tagging and
untagging.

4. Finally, define function f, as

fv<6mb7-,p’f’0j7., tET> = pT(vU(tET))

where coercion p, : Q[U/7] ~ @ is defined in terms of the basic co-
ercions emb, : 7 ~ U and proj, : U ~ 7. The fact that such a
coercion p, can always be constructed can be proved by a straightfor-
ward structural induction on Q). The induction hypothesis states that
both the coercion p@ : Q[U/7] ~ Q and its inverse i@ : Q ~» Q[U/7]
can be constructed. For the induction step, to construct the coercions
p? and i@, we use the respective coercions pf?/ and igl of covariant

component types @), and the respective coercions igl and pf_?/ of con-
travariant component types @’.

By the construction, we have

Theorem 3 The approach described above, based on interpreting types as
embedding/projection functions, gives a type-safe and value-independent so-
lution to type encodings and implementing type-indexed values.

4.3.3 Comments

The new approach to value-independent type encodings is general and prac-
tical. Though this approach is based on universal datatype solutions using
tagged values, it overcomes the two original problems of directly using uni-
versal datatypes:

e Though the universal datatype version of the indexed value is not
type-safe, the coerced value is type-safe in general. This is because
verbatim input arguments of various types are mapped into the uni-
versal datatype by the embedding function, whose type acts as a filter
of input types. Unmatched tags are prevented this way.

23

e Users do not need to tag the input and/or untag the output; this is
done automatically by the program f, using the embedding and pro-
jection functions. From another perspective, this provides a method
of external tagging using the type structure. Such external tags are
much smaller than the internal tags and are much easier to acquire
(in our case, one can simply use the result of type inference from the
compiler).

This approach is not as efficient as the ad hoc, value-dependent approach,
due to the lengthy tagging and untagging operations and the introduction
of extra intermediate data structures. This problem can be overcome us-
ing program transformation techniques such as partial evaluation [18], by
specializing the general functions with respect to certain type encodings at
compile time, and removing all the tagging/untagging operations. In par-
ticular, Danvy showed how it can be naturally combined with type-directed
partial evaluation to get a 2-level embedding/projection function [7].

4.4 Multiple Type Indices

Though our previous examples only demonstrate type-indexed values which
have only one type index, the embedding/projection-based approach can
be readily applied to implementing values indexed by more than one type
indices. Here let us take the example of writing an ML function that per-
forms subtype coercion [22]. Given a from-type, a to-type, a list of subtype
coercions at base types, and a value of the from-type, this function coerces
the value to the to-type and return it.

Following the general pattern, we first write a function univ_coerce,
which performs the coercions on tagged values. The function coerce then
wraps up function univ_coerce, by embedding the input argument and pro-
jecting the output. For brevity, we have omitted the obvious definition of
the related datatypes, and the type interpretations as embedding/projection
functions and type expressions of Int, Str, List, -—>, **, some of which have
already appeared in previous examples.

exception nonSubtype of typeExp * typeExp

fun lookup_coerce [] tEl tE2 = raise nonSubtype(tEl, tE2)
| lookup_coerce ((t, t’, t2t’)::0thers) tEl tE2 =
if t = tEl1 andalso t’ = tE2 then
t2t°
else
lookup_coerce Others tE1l tE2

fun univ_coerce cl (tFUN(tE1_T1, tE2_T1))

(tFUN(tE1_T2, tE2_T2)) (FUN v) =
FUN (fn x => univ_coerce cl tE2_T1 tE2_T2

24

(v (univ_coerce cl tE1_T2 tE1_T1 x)))
| univ_coerce cl (tLST tE_T1) (tLST tE_T2) (LST v)
LST (map (univ_coerce cl tE_T1 tE_T2) v)
| univ_coerce cl (tPR(tE1_T1, tE2_T1))
(tPR(tE1_T2, tE2_T2)) (PR (x, y))
PR (univ_coerce cl tE1_T1 tE1_T2 x,
univ_coerce cl tE2_T1 tE2_T2 y)
| univ_coerce cl x y v =
if x = y then
v
else
(lookup_coerce cl x y) v

fun coerce cl (T1 as (emb_T1, proj_Ti, tE_T1))
(T2 as (emb_T2, proj_T2, tE_T2)) v =
proj_T2 (univ_coerce cl tE_T1 tE_T2 (emb_T1 v))

The example below builds a subtype coercion C : string — string ~ int —
string, given a base coercion int ~» string, so that, for example, the expression
C (fn x => x ~ x) 123 evaluates to "123123".

val C = coerce [(tINT, tSTR,
fn (INT x) => STR (Int.toString x))]
(Str --> Str) (Int --> Str)

Again, this approach can be combined with type-directed partial evalu-
ation to obtain 2-level functions, as done by Danvy for coercion functions
and by Vestergaard for “a la Kennedy” conversion functions [19, 32].

5 Related work

5.1 Using more expressive type systems

The problem of programming type-indexed values in a statically typed lan-
guage like ML motivated several earlier works that introduce new features
to the type systems. In the following sections, we briefly go through some
of these frameworks that provide solutions to type-indexed values.

5.1.1 Dynamic typing

Realizing that static typing is too restrictive in some cases, there is a line
of work on adding dynamic typing [1, 2| to languages with static type sys-
tems. Such an approach introduces a universal type Dynamic along with two
operations for constructing values of type Dynamic and inspecting the type
tag attached to these values. A dynamic typing approach extends user-
defined datatypes in several ways: the set of type constructions does not
need to be known in advance—the type Dynamic is extensible; it also allows

25

polymorphism in the represented data. Processing dynamic values is how-
ever similar to processing tagged values of user-defined type—both require
operations that wrap values and case analysis that removes the wrapping.

A recent approach along the line of dynamic typing, staged type inference
[28] proposes to defer the type inference of some expressions until run-time
when all related information is available. In particular, this approach is
naturally combined with the framework of staged computation [9, 30] to
support type-safe code generation at run-time. Staged programming helped
to solve some of the original problems of dynamic typing, especially those
concerning usages.

However, the way type errors are prevented at run-time is to require
users to provide ‘default values’ that have expected types of expressions
whose actual types are inferred at run-time; when type-inference fails, or
the inferred type does not match the context, the default values are used.
This is effectively equivalent to providing default exception handlers for
run-time exceptions resulting from type inference. The approach is still a
dynamic-typing approach, so that the benefit of static debugging offered
by a static typing system is lost. For example, the formatting function
in [28] will simply return an error when field specifiers do not match the
function arguments. On the other hand, it is also because of this possibility
of run-time ‘type error’ that dynamic typing disciplines give extra power, as
shown in applications such as meta-programming and higher-level data/code
transferring in distributed programming.

5.1.2 Intensional type analysis

Intensional type analysis [12] directly supports type-indexed values in the
language A\M% in order to compile polymorphism into efficient unboxed rep-
resentations. The language)\iw L extends a predicative variant of Girard’s
System F;,, with primitives for intensional type analysis, by providing facili-
ties to define constructors and terms by structural induction on monotypes.
However, the language)\f\/[L is explicitly polymorphic, requiring pervasive
type annotations throughout the program and thus making it inconvenient
to directly program in this language. Not surprisingly, the language)\f\/[Lig
mainly used as a typed-intermediate language.

5.1.3 Haskell type classes

The type-class mechanism in Haskell [11] also makes it easy to program
type-indexed values: the declaration of a type class should include all the
type-indexed value needed, and every value construction e; should be im-
plemented as an instance declaration for the constructed type, assuming the
component types are already instances of the type class. One way of imple-
menting type classes is to translate the use of type classes to arguments of

26

polymorphic functions (or in logic terms, to translate existential quantifiers
to universal quantifiers at dual position), leading to programs in the same
style as handwritten ones following the ad hoc approach of Section 3. The
type-class-based solution, like the ad hoc approach, is not value-independent,
because all indexed values need to be declared together in the type class.
Also, because each type can only have one instance of a particular type
class, it does not seem likely to support, e.g., defining various formatting
functions for the same types of arguments.

It is interesting to note that type classes and value-independent types
(or type encodings) form two dimensions of extensibility.

e A type class fixes the set of indexed values, but the types in the type
classes can be easily extended by introducing new instances.

e A value-independent type fixes the family of types, but new values
indexed by the family can be defined without changing the type dec-
larations.

It would be nice to allow both kinds of extensibility at the same time. But
this seems to be impossible—consider the problem of defining a function
when possible new types of arguments the function need to handle are not
known yet. A linear number of function and type definitions cannot result
in a quadratic number of independent variations.

5.1.4 Conclusion

The approaches above (described in section 5.1.1 through section 5.1.3) give
satisfactory solutions to the problem of type-indexed values. However, since
ML-like languages dominate large-scale program development in the func-
tional programming community, our approach is immediately usable and
pragmatic in common programming practice.

5.2 Type-directed partial evaluation

Partial evaluation is an automatic program transformation technique that
removes the run-time interpretive overhead of a general-purpose program
and generates an efficient special-purpose program. A traditional partial
evaluator is syntax-directed, intensionally working on the program text by
propagating constant values through the program text and carrying out
static computations to yield a simplified program. On the contrary, type-
directed partial evaluation is an extensional approach which amounts to
normalizing the expression through evaluating the given expression in a
suitable context, given the type of residual program. Guided by the type
information, the functions defined in Figure 2 eta-expand a value into a two-
level lambda expression. The underlined constructs are dynamic constructs,
which represent code-generating computations, while other constructs are

27

static constructs, which represent computations during partial evaluation
(hence the alternative name normalization by evaluation [8]).

Andrzej Filinski first implemented type-directed partial evaluation in
ML in 1995. In his presentations of type-directed partial evaluation, Danvy
always challenged the attendees to program it in a typed language such as
ML or Haskell. The author answered the challenge in 1996, which, according
to Danvy, is the first solution after Filinski’s. The third person to have solved
it is Morten Rhiger [26]. Since then, Kristoffer Rose has programmed it in
Haskell, using type classes [27].

An interesting common pattern shared by type-directed partial evalu-
ation and the embedding/projection-based approach is the use of types as
external tags (see section 4.3.3): loosely speaking, one external type tag in
type-directed partial evaluation replaces pervasive binding-time annotations
in the preprocessed program texts. The two-level eta-expansion process then
follows the external type tag to place appropriate binding-time annotations
to the program.

6 Conclusions

We have presented a notion of type-indexed values, which formalize functions
having type arguments. We have formulated type-encoding-based imple-
mentations of type-indexed values in terms of type interpretations. Accord-
ing to this formulation, we presented three approaches that enable type-safe
programming of type-indexed values in ML or similar languages.

e The first approach directly uses the specific values of a given type-
indexed value as the type interpretation. It gives value-dependent
type encodings, not sharable by different values indexed by the same
family of types. However, its efficiency makes it a suitable choice both
for applications where all type-indexed values using the same family
of types are known in advance, and for the target form of a translation
from a source language with explicit support for type-indexed values.

e The second approach is value-independent, abstracting the specifica-
tion of a type-indexed value from the first approach. Apart from its
elegant form, it is not very practical because it requires first-class and
higher-order polymorphism.

e The third approach applies the first approach to tune a usual tagged-
value-based, type-unsafe approach to give a type-safe and yet syn-
tactically convenient approach, by interpreting types as the embed-
ding/projection functions. Though it is less efficient than the first
approach due to all the tagging/untagging operations, it allows dif-
ferent type-indexed values to be combined. Therefore, we prefer this

28

approach to the other approaches for practical programming in a mod-
ular fashion.

On one hand, we showed in this article that with appropriate type encod-
ing, type-indexed values can be programmed in ML-like languages; on the
other hand, our investigation also feedbacks to the design of new features
of type systems. For example, implicit first-class and higher-order poly-
morphism seem to be useful in applications such as type encodings. The
question of what is an expressive enough and yet convenient type system
will only be answered by various practical applications.

Concerning programming methodologies, we note the similarity between
type-directed partial evaluation and our third approach in externalizing in-
ternal tags. Requiring only a single external tag not only alleviates the
burden of manually annotating the program or data with internal tags, but
also increases the consistency of these tags. We would like to generalize this
idea to other applications.

Acknowledgments

T especially thank Olivier Danvy for his challenge, and for his encouragement
that led to this article, and for productive discussions. I am also grateful
to Hseu-Ming Chen, Deepak Goyal, Fritz Henglein and Bob Paige for their
helpful comments. Thanks also go to other researchers from BRICS, from
the DIKU TOPPS group, and from New York University for fruitful discus-
sions.

Part of this work was carried out during a visit to the BRICS PhD
School? at the University of Aarhus in the fall of 1997 and during a visit to
the Department of Computer Science at the University of Copenhagen in
January and February 1998.

Figure 5 was drawn with Kristoffer Rose’s Xy-pic package.

References

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin.
Dynamic typing in a statically typed language. ACM Transactions on
Programming Languages and Systems, 13(2):237-268., April 1991.

[2] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Didier Rémy. Dy-
namic typing in polymorphic languages. Journal of Functional Pro-
gramming, 5(1):111-130, January 1995.

3Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
Home page: http://www.brics.dk

29

3]

Andrew W. Appel and David B. MacQueen. Standard ML of New
Jersey. In Jan Maluszyniski and Martin Wirsing, editors, Third In-
ternational Symposium on Programming Language Implementation and
Logic Programming, number 528 in Lecture Notes in Computer Science,
pages 1-13, Passau, Germany, August 1991. Springer-Verlag.

William Clinger and Jonathan Rees, editors. Revised* report on
the algorithmic language Scheme. LISP Pointers, IV(3):1-55, July-
September 1991.

Olivier Danvy. Type-directed partial evaluation. In Steele [29], pages
242-257.

Olivier Danvy. Formatting strings in ML. Research Series RS-98-5,
BRICS, Department of Computer Science, University of Aarhus, March
1998. To appear in the Journal of Functional Programming.

Olivier Danvy. A simple solution to type specialization. Research Se-
ries RS-98-1, BRICS, Department of Computer Science, University of
Aarhus, January 1998. To appear in the Proceedings of the 25th Inter-
national Colloguium on Automata, Languages, and Programming.

Olivier Danvy and Peter Dybjer, editors. Preliminary Proceedings of the
1998 APPSEM Workshop on Normalization by Evaluation, NBE 98,
(Goteborg, Sweden, May 8-9, 1998), number NS-98-1 in BRICS Notes
Series, BRICS, Department of Computer Science, University of Aarhus,
May 1998.

Rowan Davies and Frank Pfenning. A modal analysis of staged com-
putation. In Steele [29], pages 258-283.

Jean-Yves Girard. The system F of variable types, fifteen years later.
Theoretical Computer Science, 45(2):159-192, 1986.

Cordelia Hall, Kevin Hammond, Simon Peyton-Jones, and Philip
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems, 18(2):109-138, March 1996.

Robert Harper and Greg Morrisett. Compiling polymorphism using in-
tensional type analysis. In Peter Lee, editor, Proceedings of the Twenty-
Second Annual ACM Symposium on Principles of Programming Lan-
guages, pages 130—141, San Francisco, California, January 1995. ACM
Press.

Fritz Henglein. Dynamic typing: syntax and proof theory. Science of
Computer Programming, 22(3):197-230, June 1994.

30

[14]

[15]

J. Roger Hindley. The principal type-scheme of an object in combina-
tory logic. Transactions of the American Mathematical Society, 146:29—
60, 1969.

Mark P. Jones. A system of constructor classes: overloading and im-
plicit higher-order polymorphism. Journal of Functional Programming,
5(1):1-35, January 1995. An earlier version appeared in FPCA ’93.

Mark P. Jones. First-class polymorphism with type inference. In Jones
[17], pages 483-496.

Neil D. Jones, editor. Proceedings of the Twenty-Fourth Annual ACM
Symposium on Principles of Programming Languages, Paris, France,
January 1997. ACM Press.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evalua-
tion and Automatic Program Generation. Prentice Hall International,
International Series in Computer Science, June 1993.

Andrew Kennedy. Relational parametricity and units of measure. In
Jones [17], pages 442-455.

Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17:348-375, December 1978.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). The MIT Press, 1997.

John C. Mitchell. Coercion and type inference. In Ken Kennedy, editor,
Proceedings of the Eleventh Annual ACM Symposium on Principles of
Programming Languages, pages 175—185, Salt Lake City, Utah, January
1984.

Martin Odersky and Konstantin Laufer. Putting type annotations to
work. In Steele [29], pages 54-67.

John Peterson, Kevin Hammond, et al. Report on the pro-
gramming language Haskell, a non-strict purely-functional program-
ming language, version 1.4. Available at the Haskell homepage:
http://www.haskell.org, April 1997.

John C. Reynolds. Towards a theory of type structure. In Programming
Symposium, number 19 in Lecture Notes in Computer Science, pages
408-425, Paris, France, April 1974. Springer-Verlag.

Morten Rhiger. A study in higher-order programming languages. Mas-
ter’s thesis, DAIMI, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, December 1997.

31

[27]

[28]

[29]

[30]

[31]

[32]

Kristoffer Rose. Type-directed partial evaluation in a pure functional
language. In Danvy and Dybjer [8].

Mark Shields, Tim Sheard, and Simon Peyton Jones. Dynamic typing
as staged type inference. In Luca Cardelli, editor, Proceedings of the
Twenty-Fifth Annual ACM Symposium on Principles of Programming
Languages, pages 289-302, San Diego, California, January 1998. ACM
Press.

Guy L. Steele, editor. Proceedings of the Twenty-Third Annual ACM
Symposium on Principles of Programming Languages, St. Petersburg
Beach, Florida, January 1996. ACM Press.

Walid Taha and Tim Sheard. Multi-stage programming. In Mads
Tofte, editor, Proceedings of the 1997 ACM SIGPLAN International
Conference on Functional Programming, pages 321-321, Amsterdam,
The Netherlands, June 1997. ACM Press.

Mads Tofte. Principal signatures for higher-order program modules.
Journal of Functional Programming, 4(3):285-335, July 1994.

René Vestergaard. From proof normalization to compiler generation
and type-directed change-of-representation. Master’s thesis, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Den-
mark, May 1997.

32

Recent BRICS Report Series Publications

RS-98-9

RS-98-8

RS-98-7

RS-98-6

RS-98-5

RS-98-4

RS-98-3

RS-98-2

RS-98-1

Zhe Yang.Encoding Types in ML-like Languages (Preliminary
Version). April 1998. 32 pp.

P. S. Thiagarajan and Jesper G. HenriksenDistributed Ver-
sions of Linear Time Temporal Logic: A Trace Perspectiv&pril
1998. 49 pp. To appear in3rd Advanced Course on Petri Nets
ACPN '96 Proceedings, LNCS, 1998.

Stephen Alstrup, Thore Husfeldt, and Theis Rauhe Marked
Ancestor Problems (Preliminary Version)April 1998.

Kim Sunesen. Further Results on Partial Order Equivalences
on Infinite Systems March 1998. 48 pp.

Olivier Danvy. Formatting Strings in ML. March 1998. 3 pp.
This report is superseded by the later report BRICS RS-98-12.

Mogens Nielsen and Thomas S. HunBeciding Timed Bisimu-
lation through Open Maps February 1998.

Christian N. S. Pedersen, Rune B. Lyngsg, and Jotun Hein.
Comparison of Coding DNA January 1998. 20 pp. To ap-

pear in Combinatorial Pattern Matching: 9th Annual Sympo-
sium, CPM '98 Proceedings, LNCS, 1998.

Olivier Danvy. An Extensional Characterization of Lambda-
Lifting and Lambda-Dropping January 1998.

Olivier Danvy. A Simple Solution to Type Specialization (Ex-
tended Abstract)January 1998. 7 pp.

RS-97-53 Olivier Danvy. Online Type-Directed Partial Evaluation De-

cember 1997. 31 pp. Extended version of an article to appear
in Third Fuji International Symposium on Functional and Logic
Programming FLOPS 98 Proceedings (Kyoto, Japan, April 2—
4, 1998), pages 271-295, World Scientific, 1998.

RS-97-52 Paola Quaglia. On the Finitary Characterization of =-

Congruences December 1997. 59 pp.

RS-97-51 James McKinna and Robert Pollack.Some Lambda Calculus

and Type Theory FormalizedDecember 1997. 43 pp.

