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Abstract

We investigate the synergy between type-directed partial evalua-
tion and run-time code generation for the Caml dialect of ML. Type-
directed partial evaluation maps simply typed, closed Caml values to
a representation of their long βη-normal form. Caml uses a virtual
machine and has the capability to load byte code at run time. Repre-
senting the long βη-normal forms as byte code gives us the ability to
strongly normalize higher-order values (i.e., weak head normal forms
in ML), to compile the resulting strong normal forms into byte code,
and to load this byte code all in one go, at run time.

We conclude this note with a preview of our current work on scal-
ing up strong normalization by run-time code generation to the Caml
module language.
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1 Introduction

1.1 Motivation

Strong normalization: Suppose one is given a strongly normalizable
(closed) λ-term. How does one normalize this term? Typically one parses it
into an abstract-syntax tree, one writes a strong normalizer over abstract-
syntax trees, and one translates (unparses) the resulting normal form into
whichever desired format (e.g., LATEX).

A solution in ML: ML, like all functional languages, provides a conve-
nient format for representing λ-terms: as an ML expression. Suppose thus
that we are given a strongly normalizable ML expression. How do we nor-
malize it? Type-directed partial evaluation [6] offers an efficient alternative
to writing a parser to represent this ML expression as an ML data structure
representing its abstract-syntax tree, writing a strong normalizer operating
over this abstract-syntax tree, and unparsing the resulting normal form into
an ML expression. Instead, the ML evaluator maps this ML expression into
an ML value, and the type-directed partial evaluator maps this ML value
into the abstract-syntax tree of its normal form. We can then either evaluate
this abstract-syntax tree (for immediate use) or unparse it (for later use).

Motivation: Type-directed partial evaluation entrusts the underlying pro-
gramming language with all the mechanisms of binding and substitution
that are associated with normalization. Higher-Order Abstract Syntax [17]
shares the same motivation, albeit in a Logical Framework instead of in a
functional setting.

Goal: Type-directed partial evaluation, as it is, maps an ML value into the
text of its normal form. We want instead to map it into the corresponding
ML value — and we want to do that in a lighter way than by invoking either
an interpreter or the whole compiler, after normalization.

An integrated solution in Objective Caml: Objective Caml [15] is a
byte-code implementation of a dialect of ML. This suggests us to represent
normal forms as byte code, and to load this byte code at run time for both
immediate and later use.
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module ChurchNumbers

= struct

let cz s z = z

let cs n s z = n s (s z)

let rec n2cn n = if n=0 then cz else cs (n2cn (n-1))

let cn2n n = n (fun i -> i+1) 0

end

Figure 1: Church numbers

1.2 Contribution

We report our experiment of integrating type-directed partial evaluation
within Caml, which in effect yields strong normalization by run-time code
generation. We list below what we had to do to achieve this integration:

• we wrote several type-directed partial evaluators in Caml, in various
styles and with various properties (listed below);

• we wrote a dedicated translator from normal forms to byte code;

• this required us to find the necessary (hidden) resources in the Caml
implementation and recompile the system to make them available, in
effect obtaining a more open implementation. These resources are
mainly the representation of types, the representation of byte code,
and the ability to load byte code at run time.

1.3 Non-contribution

Even though it is primarily inspired by theory, our work is experimental.
Indeed, neither the OCaml compiler nor the OCaml virtual machine are
formalized. We therefore have not formalized our byte-code translator ei-
ther. As for type-directed partial evaluation, only its call-by-name version
has been formalized so far [1, 2, 5].

In that sense our work is experimental: we want to investigate the syn-
ergy between type-directed partial evaluation and run-time code generation
for OCaml.
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1.4 An example: Church numbers

Let us illustrate strong normalization by run-time code generation to opti-
mize a computation over Church numbers, which we define in Figure 1. The
module ChurchNumbers defines zero (cz), the successor function (cs), and two
conversion functions to and from ML numbers and Church numbers.

For example, we can convert the ML number 5 to a Church number,
increment it, and convert the result back to ML as follows:

# ChurchNumbers.cn2n(ChurchNumbers.cs (ChurchNumbers.n2cn 5));;

- : int = 6

#

Thus equipped, let us define the function incrementing its argument with
1000:

# let cs1000 m = ChurchNumbers.n2cn 1000 ChurchNumbers.cs m;;

val cs1000 : ((’a -> ’a) -> ’a -> ’b) -> (’a -> ’a) -> ’a -> ’b

= <fun>

# ChurchNumbers.cn2n(cs1000 (ChurchNumbers.cz));;

- : int = 1000

#

If it were not for ML’s weak-normalization strategy, 1000 β-reductions could
be realized at definition time. We strongly normalize the value denoted by
cs1000 by invoking our function nip (for “Normalize In Place”) on the name
of the identifier cs1000:

# nip "cs1000";;

- : unit = ()

#

Now cs1000 denotes the strongly normalized value, as reflected by its execu-
tion time: applying cs1000 to the Church number 0 is 4800 times faster now.
Depending on the version of the type-directed partial evaluator, normaliza-
tion takes between 0.1 and 18 seconds. In this example, cs1000 then needs to
be applied between 5 and 1000 times to amortize the cost of normalization.

1.5 Overview

The rest of this article is organized as follows. We first review type-directed
partial evaluation (Section 2), independently of run-time code generation,
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and with two simple examples: the Hilbert combinators and Church num-
bers. We then describe run-time code generation in OCaml (Section 3).
Putting them together, we report the measures we have collected (Section
4) and we assess the overall system (Section 5). The Caml implementa-
tion of modules suggests a very simple extension of our system to handling
both first-order and higher-order modules, and we describe this extension in
Section 6. After reviewing related work (Section 7), we conclude.

2 Type-Directed Partial Evaluation

Type-directed partial evaluation strongly normalizes closed values of para-
metric type, by two-level η-expansion [6, 8]. Let us take two concrete ex-
amples, a simple one first, and a second one with Church numbers. We
represent residual lambda-terms with the data type of Figure 2.

2.1 The Hilbert combinators

As is well-known, the identity combinator I can be defined with the Hilbert
combinators S and K. This is often illustrated in ML with the functions cS

and cK defined in Figure 3:

# let cI x = SK.cS SK.cK SK.cK x;;

val cI : ’a -> ’a = <fun>

# cI 42;;

- : int = 42

It is the point of type-directed partial evaluation that can visualize the
text of cI by two-level η-expansion. In the present case, all we need is to
η-expand cI with a dynamic introduction rule (the construction of a residual
lambda-abstraction) and a static elimination rule (an ML application):

# let ee_id f = Lam("x", f (Var "x"));;

val ee_id : (exp -> exp) -> exp = <fun>

# ee_id (SK.cS SK.cK SK.cK);;

- : exp = Lam ("x", Var "x")

#

where in the definition of ee id, x is fresh. The result of applying ee id to
the ML identity function is its text in normal form.
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type exp = Var of string

| Lam of string * exp

| App of exp * exp

Figure 2: Abstract syntax of the λ-calculus

module type SK_sig

= sig

val cS : (’a -> ’b -> ’c) -> (’a -> ’b) -> ’a -> ’c

val cK : ’a -> ’b -> ’a

end

module SK : SK_sig

= struct

let cS f g x = f x (g x)

let cK a b = a

end

Figure 3: Hilbert’s Combinatory Logic basis

2.2 Church numbers

Let us play the same game with Church numbers. The type of a Church
number is

(’a -> ’a) -> ’a -> ’a

Since it is composed with three arrows, we need to η-expand it three
times. Since the two outer arrows occur positively, we η-expand a Church
number cn with two dynamic introduction rules and two static elimination
rules:

Lam("s", Lam("z", cn (...(Var "s")...) (Var "z")))

where s and z are fresh.
Since the inner arrow occurs negatively, we η-expand the corresponding

variable s with one static introduction rule (an ML abstraction) and one
dynamic elimination rule (the construction of a residual application):

fun v -> App(Var "s", v)
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〈type〉 ::= 〈covariant-type〉

〈covariant-type〉 ::= 〈base-type〉
| variable
| 〈contravariant-type〉 -> 〈covariant-type〉
| 〈covariant-type〉 * ... * 〈covariant-type〉

〈contravariant-type〉 ::= bool

| variable
| 〈covariant-type〉 -> 〈contravariant-type〉
| 〈contravariant-type〉 * ... * 〈contravariant-type〉

〈base-type〉 ::= unit | int | float | bool | string

Figure 4: Abstract syntax of types

The result reads as follows:

# let ee_cn cn

= Lam("s",

Lam("z",

cn (fun v -> App(Var "s", v)) (Var "z")));;

val ee_cn : ((exp -> exp) -> exp -> exp) -> exp = <fun>

#

We are now equipped to visualize the normal form of a Church number, e.g.,
3:

# ee_cn (ChurchNumbers.n2cn 3);;

- : exp = Lam("s",

Lam("z",

App(Var "s",

App(Var "s",

App(Var "s", Var "z")))))

#

The result of applying ee cn to the ML Church number 3 is the text of
this Church number in normal form.
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2.3 Summary and conclusion

We have illustrated type-directed partial evaluation in ML with two very
simple examples: the Hilbert combinators and Church numbers. We have
defined them in ML and we have constructed the text of their normal form,
by two-level η-expansion.

Type-directed partial evaluation directly constructs two-level η-redices,
given a representation of the type of the value to normalize. It also handles
more types, such as base types (in restricted position), and can interpret
function types as having a computational effect (in which case it inserts a
residual let expression, using continuations). Figure 4 displays our grammar
of admissible types.

We therefore implemented several type-directed partial evaluators:

• inserting or not inserting let expressions; and

• in a purely functional way, i.e., implementing two-level eta-expansion
directly in ML, using Filinski’s strategy,1 or with an explicit represen-
tation of two-level terms as the abstract-syntax tree of an ML expres-
sion (which is then compiled).

In the following section, instead of constructing a normal form as an
abstract-syntax tree, we construct byte code and load it in place, thereby
obtaining the effect of strong normalization by type-directed partial evalu-
ation and run-time code generation.

3 Run-Time Code Generation

We therefore have written a translator mapping a term in long βη-normal
form into equivalent byte code for the OCaml virtual machine. And we load
this byte code and update in place the value we have normalized.

3.1 Generating byte code

We do not generate byte code by calling the Caml compiler on the text
of the normal forms. The language of normal forms is a tiny subset of
ML, and therefore we represent it with a dedicated abstract syntax. Since
normal forms are well typed, we also shortcut the type-checking phase of
the compiler. Finally, we choose not to use the resident byte-code generator:
instead, we use our own translator from normal forms to byte code.

1Personal communication, spring 1995.
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3.2 Loading byte code

For this we need to access OCaml’s byte-code loader, which required us to
open its implementation. We have thus added more entry points in some of
the modules that are available at the user level (i.e., Caml’s toplevel). We
have also made several interfaces available, by copying them in the OCaml
libraries.

We essentially needed access to functions for loading byte code, and
access to the current environment and its associated access functions. As
a side benefit, our user does not need to specify the type of the value to
optimize, since we can retrieve this information in the environment.

3.3 Updating in situ

Finally, being given the name of a variable holding a value to optimize, and
being able to find its type in the environment, nothing prevents us to update
the binding of this variable with the optimized value — which we do. We
illustrated the whole process in Section 1.4, by

• defining a variable cs1000 denoting 1000 compositions of Church’s suc-
cessor function, and

• normalizing it in place with our function nip.

4 Applications

We have tested our system with traditional partial-evaluation examples, the
biggest of which are definitional interpreters for programming languages.
The results are consistent with the traditional results reported in the partial-
evaluation literature [13]: the user’s mileage may vary, depending (in the
present case) on how much strong normalization is hindered by ML’s weak-
normalization strategy.

The definitional interpreters we have considered are traditional in partial
evaluation: they range from a simple while language [3] to an Algol-like
language with subtyping and recursion [9]. Our interpreters are written in
Caml. Some use continuation-passing style (CPS), and the others direct
style. In the definitional interpreters, iteration and recursion are handled
with fixed-point operators.

All our examples clearly exhibit a speedup after normalization. The
specialized version of an interpreter with respect to a program, for example,
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is typically 2.5 times faster after normalization. On some other examples
(e.g., Section 1.4), the residual programs are several thousand times faster
than the (unnormalized) source program.

The computational resources mobilized by type-directed partial evalua-
tion vary wildly, depending on the source program. For example, specializ-
ing a direct-style interpreter with respect to a 10000-lines program takes 45
seconds and requires about 170 runs to be amortized. Specializing a CPS
interpreter with respect to a 500-lines program, on the other hand, takes
20 minutes. We believe that this low performance is due to an inefficient
handling of CPS in OCaml. Essentially the same implementation takes a
handful of seconds in Chez Scheme for a 1000-lines program, with less than
0.5 seconds for type-directed partial evaluation proper, and with a fairly
small difference if the interpreter is in direct style or in CPS.

We also experimented with the resident OCaml byte-code generator,
which is slower by a factor of at least 3 than our dedicated byte-code gen-
erator. This difference demonstrates that using a special-purpose byte-code
generator for normal forms is a significant optimization.

5 Assessment

Although so far we are its only users, we believe that our system works
reasonably well. In fact, we are in the process of writing a users’s manual.

Our main problem at this point is the same as for any other partial eval-
uator: speedups are completely problem-dependent. In contrast with most
other partial evaluators, however, we can quantify this statement: because
(at least in its pure form) type-directed partial evaluation strongly normal-
izes its argument, we can state that it provides all the (strong) normalization
steps that are hindered by ML’s weak-normalization strategy.

Our secondary problem is efficiency: because OCaml is a byte-code im-
plementation, it is inherently slower than a native code implementation such
as Chez Scheme [11], which is our reference implementation. Therefore our
benchmarks in OCaml are typically measured in dozens of seconds whereas
they are measured in very few seconds in Chez Scheme.2 Efficiency be-
comes even more of a problem for the continuation-based version of the

2For comparison, an interpreter-based and optimized implementation of type-directed
partial evaluation in ML consistently performs between 1000 and 10000 times slower than
the implementation in Chez Scheme [18]. The point here is not byte code vs. native code,
but interpreted code vs. compiled code.
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type-directed partial evaluator: whereas Chez Scheme represents continua-
tions very efficiently [12], that is not the case at all for OCaml. Conversely,
the continuation-based partial evaluator yields perceptibly better residual
programs (e.g., without code duplication because of let insertion).

Caveat: If our system is given a diverging source program, it diverges as
well. In that it is resource-unbounded [7, 10].

6 Towards Modular Type-Directed Partial Evalu-
ation

In a certain sense, ML’s higher-order modules are essentially the simply
typed lambda-calculus laid on top of first-order modules (“structures”) [16].
Looking under the hood, that is precisely how they are implemented. This
suggests us to extend our implementation to part of the Caml module lan-
guage.

Enabling technology: After type-checking, first-order modules (“struc-
tures”) are handled as tuples and higher-order modules (“functors”) are
handled as higher-order functions. Besides, enough typing information is
held in the environment to be able to reconstruct their type. Put together,
these two observations make it possible for us to reuse most of our existing
implementation.

Achievements and limitations: We handle a subset of the Caml module
language, excluding polymorphism and sharing constraints.

An example: typed Combinatory Logic. Let us build on the example
of Section 2.1. We have located the definition of the Hilbert combinators
in a module defining our standard Combinatory Logic basis (see Figure 3).
We then define an alternative basis in another module, in terms of the first
one (see Figure 5). Because of ML’s weak-normalization strategy, using the
alternative basis incurs an overhead. We can eliminate this overhead by
normalizing in place the alternative basis:

# nip_module "BCWK";;

- : unit = ()

#

11



module type BCWK_sig

= sig

val cB : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b

val cC : (’a -> ’b -> ’c) -> ’b -> ’a -> ’c

val cW : (’a -> ’a -> ’b) -> ’a -> ’b

val cK : ’a -> ’b -> ’a

end

module BCWK : BCWK_sig

= struct

open SK

let cB f g x = cS (cK cS) cK f g x

let cC f x y = cS (cS (cK (cS (cK cS) cK)) cS) (cK cK) f x y

let cW f x = cS cS (cK (cS cK cK)) f x

let cK = cK

end

Figure 5: A Combinatory Logic basis of regular combinators

What happens here is that the identifier BCWK denotes a tuple with four
entries, each of which we already know how to process. Given the name of
this identifier, the implementation

1. locates it in the Caml environment;

2. accesses its type;

3. constructs the simple type of a tuple of four elements;

4. strongly normalizes it, using type-directed partial evaluation;

5. translates it into byte code, and loads it;

6. updates in place the environment to make the identifier BCWK denote
the generated code.

7 Related Work

Partial evaluation is traditionally defined as a source-to-source program
transformation [4, 13]. Type-directed partial evaluation departs from that
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tradition in that it is a compiled-to-source program transformation. Run-
time code generation completes the picture by providing a source-to-compiled
transformation at run time. It is thus a natural idea to compose both, and
this has been done in two settings, using offline partial-evaluation techniques:

For imperative languages: the Compose research group at Rennes is doing
run-time code generation for stock languages such as C, C++, and
Java.

For functional languages: Sperber and Thiemann have paired a traditional,
syntax-directed partial evaluator and a run-time code generator for a
byte-code implementation of Scheme [19].

Both settings use binding-time analysis. Sperber and Thiemann’s work
is the most closely related to ours, even though their partial evaluator is
syntax-directed instead of type-directed and though they consider an un-
typed and module-less language (Scheme) instead of a typed and modular
one (ML). A remarkable aspect of their work, and one our implementation
so far has failed to achieve, is that they deforest the intermediate repre-
sentation of the specialized program, i.e., their partial evaluator directly
generates byte code.

Alternative approaches to partial evaluation and run-time code genera-
tion include Leone and Lee’s Fabius system [14], which only handles “staged”
first-order ML programs but generates actual assembly code very efficiently.

8 Conclusion and Issues

We have obtained strong normalization in ML by pairing type-directed par-
tial evaluation and run-time code generation. We have implemented a sys-
tem in Objective Caml, whose byte code made it possible to remain portable.
The system can be used in any situation where strong normalization could
be of benefit. For example, we are considering to apply it for cut elimination
in formal proofs, in a proof assistant.

We are in the process of extending our implementation for a subset of
the Caml module language. This extension relies on the run-time treatment
of structures and of functors, which are represented as tuples and as higher-
order functions. Therefore, in a pre-pass, we assemble type information
about the module to normalize (be it first order or higher order), we coerce
it into simply typed tuple and function constructions, and we then reuse our
earlier implementation.

13



The practical limitations are the same as for offline type-directed partial
evaluation, i.e., source programs must be explicitly factored prior to special-
ization. The module language, however, appears to be a pleasant support
for expressing this factorization.
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conesi. On the Distributed Complexity of Computing Maxi-
mal Matchings. December 1997. 16 pp. To appear inThe
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’98.

RS-97-37 David A. Grable and Alessandro Panconesi.Fast Distributed
Algorithms for Brooks-Vizing Colourings (Extended Abstract).
December 1997. 20 pp. To appear inThe Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’98.

RS-97-36 Thomas Troels Hildebrandt, Prakash Panangaden, and Glynn
Winskel. Relational Semantics of Non-Deterministic Dataflow.
December 1997. 21 pp.

RS-97-35 Gian Luca Cattani, Marcelo P. Fiore, and Glynn Winskel. A
Theory of Recursive Domains with Applications to Concurrency.
December 1997. ii+23 pp. A revised version will appear in the
Proceedings of LICS’98.


