
B
R

IC
S

R
S

-97-10
H

ildebrandt&
S

assone:
Transition

S
ystem

s
w

ith
Independence

and
M

ulti-A
rcs

BRICS
Basic Research in Computer Science

Transition Systems with
Independence and Multi-Arcs

Thomas Troels Hildebrandt
Vladimiro Sassone

BRICS Report Series RS-97-10

ISSN 0909-0878 April 1997



Copyright c© 1997, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/97/10/



Transition Systems with Independence
and Multi-Arcs

Thomas T. Hildebrandt∗ , Vladimiro Sassone?,∗

* BRICS – Computer Science Dept., University of Aarhus
? Dipartimento di Informatica, Università di Pisa

Abstract

We extend the model of transition systems with independence in order to provide
it with a feature relevant in thenoninterleavinganalysis of concurrent systems, namely
multi-arcs. Moreover, we study the relationships between the category of transition sys-
tems with independence and multi-arcs and the category of labeled asynchronous transi-
tion systems, extending the results recently obtained by the authors for (simple) transition
systems with independence (cf.Proc. CONCUR’96), and yielding a precise characterisa-
tion of transition systems with independence and multi-arcs in terms of (event-maximal,
diamond-extensional) labeled asynchronous transition systems.

Introduction

Following the leading idea of CCS [12] and related process calculi [11, 2, 13, 9],
the behaviour of concurrent systems is often specifiedextensionallyby describing
their ‘state-transitions’ and the observable behaviours that such transitions pro-
duce. The simplest formal model of computation able to express naturally this
idea is that oflabeled transition systems, where the labels on the transitions are
thought of as the actions of the system at its ‘external ports’, or, more generally,
the observable part of its behaviour.

Transition systems are aninterleavingmodel of concurrency, which means
that they do not allow to draw a natural distinction between interleaved and con-
current execution of actions. More precisely, transition systems do not model
the fact that concurrent actions can overlap in time and reduce concurrency to
a nondeterministic choice of action interleavings, so loosing track of the casual
dependencies between actions and, consequently, of the fact that computations
that differ only for the order of independent actions represent, actually, the same
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behaviour. In other words, interleaving models abstract away from the difference
between the factualtemporaloccurrence order and the more conceptualcausalor-
dering of actions. The simplest exemplification of this situation is provided by the
CCS termsa | b anda.b+b.a, both described by the following transition system.

•

•

??b ~~~~
•

__ a@@@@

•

__

a

@@@@
??

b
~~~~

(1)

Although for many applications this level of abstraction is appropriate, for sev-
eral other kinds of analysis a model may be desirable that takes full account of
concurrency. For instance, apart from any philosophical consideration about the
semantic relevance of cause/ effect relationships, knowing that different interleav-
ings represent the same behaviour can reduce considerably the state-space explo-
sion problem when checking system properties such as safety [8] and liveness
properties [21, 17].

Several efforts have been devoted to the search of transition-basednoninter-
leaving models, e.g., transition systems enriched with additional features that
make expressing concurrency explicitly possible (cf., e.g., [18, 4, 6, 7, 5, 3]).
The present paper focuses on two such models, namelyasynchronous transition
systems, introduced independently by Bednarczyk [1] and Shields [20], andtran-
sitions systems with independence, proposed by Winskel and Nielsen [22]. These
two competing approaches are, among the others, those building on the simplest
idea: endow transition systems with some formal notion of ‘similarity’ of tran-
sitions that enables to distinguish whether or not the opposite edges in diagrams
such as (1) represent the same action. Intuitively, this is achieved in both ap-
proaches by thinking of transitions asoccurrencesof events, two transitions rep-
resenting the same event if they correspond to the same action. However, the dif-
ferences induced on the models by the different choices of how to assign events to
transitions are definitely not trivial. And so are the relationships that these models
bear to each other.

Getting to the details, asynchronous transition systems assign events to tran-
sitions explicitly and enrich the structure further by adding anindependence re-
lation on the events that describes their causal relationships. This clearly makes
distinguishing nondeterminism and concurrency possible;a.b+ b.a anda|b can
be represented respectively by, e.g., the followinglabeledasynchronous transi-
tion systems, where∼ indicates whether or not the eventse ande′ (labeled bya
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andb) are independent.

•

•

??be′ ~~~~
•

__ ea@@@@

•

__

ae

@@@@
??

e′b
~~~~

•

•

??be′ ~~~~ ∼ •

__ ea@@@@

•

__

ae

@@@@
??

e′b
~~~~

Observe that here and in the rest of the paper we considerlabeledasynchronous
transition systems [1, 22], i.e., asynchronous transition systems with a further
labeling of events, as the proper extension of labeled transition systems.

The expressive power of asynchronous transition systems is clearly not limited
to the example above; for instance, Bednarczyk [1] and Mukund and Nielsen [15]
have shown that noninterleaving related issues for CCS processes — such aslo-
calities — can be modeled faithfully using this model. However, it can be ar-
gued that assigning both the independence relation and the decoration of transi-
tions with events explicitly means assigning too much. In fact, this obviously
introduces someredundanciesin the model: there are, for instance, many non-
isomorphic variations of the asynchronous transitions systems above which can
still be reasonably thought as models ofa|b anda.b+ b.a. Moreover, although it
is usually easy to tell about independence of transitions, in many important cases
it is at leastnot immediate to assign events to transitions: it might very well be the
goal of the entire semantic analysis to understand what the events of the system
and their mutual relationships are. This consideration seems to indicate that asyn-
chronous transitions systems cannot have a significant impact in Plotkin’s SOS
style semantics, unless the independence relation is promoted to a greater role.

Transition systems with independenceare an attempt to answer to the previous
observation. Here events arenot introduced explicitly. They are ratherderived
from the structure of the ‘simply-labeled’ transitions, upon which the indepen-
dence relation is directly layered. In such a model, each of the CCS terms dis-
cussed above admits only one transition system which can faithfully represent it,
viz., respectively,

•

•

??b ~~~~
•

__ a@@@@

•

__

a

@@@@
??

b
~~~~

•

•

??b ~~~~ ∼ •

__ a@@@@

•

__

a

@@@@
??

b
~~~~

The implicit information about events can be easily deduced from the presence
(or the absence) of∼, making the achieved expressive power comparable to that
of asynchronous transition systems. Moreover, avoiding a primitive notion of
event makes providing a‘noninterleaving’operational semantics in the SOS style
a relatively simple task (cf. [22]).

However, in order to be consistent with the computational intuition, the ax-
iomatics of transition systems with independence involves (apparently necessar-

3



ily [19]) onecondition expressed ‘globally’ in terms of all the transitions repre-
senting occurrences of the same event. This contrasts with the ‘local’ conditions
defining asynchronous transition systems (due to the globally identified events)
and can make hard checking that a given structure is a transitions system with
independence. Thus, the differences induced on the two models by the choice of
a primitive versus aderivednotion of event are far-reaching and seem to make
them suitable for different applications. This indicates that it is not wise to choose
once and for allbetween asynchronous transition systems and transition systems
with independence, which, in turn, opens the issue of investigatingformally their
analogies and differences.

An exhaustive analysis of this question was carried out by the authors in [10],
showing that transition systems with independence, besides being nicely related
to a class of asynchronous transition systems calledextensional, areequivalent
to the so-calledevent-maximalasynchronous transition systems. The results of
loc. cit. are summarized by the following diagram, whereTSI, LATS, eLATS,
andmeLATS are, respectively, the categories of transitions systems with indepen-
dence, labeled, extensional, and event-maximal asynchronous transitions systems,
and where↪→, ⊥, and∼= stand respectively for embeddings, coreflections, and
equivalences.

TSI
�

�

//
� v

))RR
RRR

RRR
RRR

RR
�

_

��

∼=

LATS

meLATS
?

�

OO

�
�

// eLATS
?

�

OO
ii

at
⊥

RRRRRRRRRRRR

Essentially, the extensionality condition refers to the existence of aunique
way to ‘complete’ pairs of independent transitions to ‘independence-diamonds’.
Also, it excludes multi-arcs, i.e., multiple transitions with the same label between
the same two states. Event-maximality, on the other hand, can be seen at the
same time as identifying those transition systems that make as few identifica-
tions of transitions as possible, i.e., contain no confusion about event identities,
and those in which such identities are derivable from the independence relation,
i.e., reduce the redundancy. It is worth noticing here thatat: eLATS→ TSI, the
right adjoint of the coreflection, complements and corrects a non-well-defined
construction sketched in [22]: as a matter of fact, due to the greater generality of
asynchronous transition systems,eLATS happens to be the largest subcategory of
LATS on which such a construction makes sense.

A question left open by [10] is whether or not the need to restrict to exten-
sional asynchronous transition systems is a consequence of the intrinsic differ-
ences between the two notions of events considered, i.e., if in order to be able to
model situations ruled out by the extensionality constraints it is necessary to as-
sign events explicitly. This paper addresses such a question; namely, we remove
the restriction to transition systems without multi-arcs, relaxing the definition of
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transition systems with independence, and yielding the new notion oftransition
systems with independence and multi-arcs(nonextensional transition systems with
independencewould probably be a better name, though).

This represents, in our view, an interesting enhancement of the model. In fact,
in noninterleaving semantics, to be able to treat multi-arcs is clearly very relevant.
In a sense, it can be seen as allowing ‘quotienting’ of the state-space while re-
taining full information about events and causality. As an example, consider the
CCS term(a|b) + a.b, traditionally described by the transition system below to
the left. It is common (see e.g. [13, 15] among others) toquotientthe state-space
by some structural congruence that, e.g., collapses the statesb andnil|b, obtaining
the more compact representation — with multi-arcs — shown to the right.

a|nil

!!

a
DD

DD
D

(a|b) +a.b

88b pppppp

&&

a
NN

NN
NN

��

a

==
==

==
==

==
==

∼ nil

nil|b

==b zzzzz

b

EE

b

�
�
�
�
�
�
�
�
�
�
�

a|nil

%%

a
JJ

JJ
JJ

(a|b) +a.b

66
b nnnnnnnn

##

a

**a

∼ nil

nil|b' b

::

b

tttttt

Observe that, contrarily to the interleaving case, it isvital here to havetwo
different a-transitions, since they rappresent different events: one is part of the
independence-diamond and is, therefore, independent ofb; the other is not.

In order to justify our definition, we prove that, except for the extensionality
condition, the categoryTSIm of transition systems with independence and multi-
arcs bears exactly the same relationships asTSI to LATS. More precisely, we
prove thatTSIm is coreflectivein the categorydLATS of thediamond-extensional
asynchronous transition systems — intuitively, those transition systems that make
no confusion about the identities of the events carried by transitions facing each
other in independence-diamonds. Similarly to the case ofTSI, dLATS is the
largest subcategory ofLATS for which such a result holds. Moreover, among
thediamond-extensional, we identify theevent-maximalasynchronous transition
systems and prove that they induce the largest full subcategory ofLATS, mdLATS,
for which the coreflection cuts down to anequivalence. This yields a precise char-
acterisation ofTSIm in terms ofLATS that extends the relationships betweenTSI
and LATS discussed above: in fact, the category ofeLATS and its full subcat-
egorymeLATS are, respectively, the full subcategories ofdLATS andmdLATS
consisting of transition systems without multi-arcs.

Summing up, this paper presents the following diagram of formal relationships
between the new model of transition systems with independence and multi-arcs
and asynchronous transition systems which can be useful in practise to translate
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back and forth between the two models when the application one has in mind
requires it.

TSIm
�

�

//
� x

**VV
VVV

VVV
VVV

VVV
VVV

V
�

_

��

∼=

LATS

TSI
� y

++WWW
WWWW

WWW
WWWW

WWWW
WWWW

W

*



77pppppppppp

mdLATS
?

�

OO

�
�

// dLATS

jj

am
⊥

VVVVVVVVVVVVVVVVV
?

�

OO

meLATS
?

�

OO

*



77

ppppp

pp
pp

�
�

// eLATS

kk

at
⊥

WWWWWWWWWWWWWWWWWWWWWWW
+

�

99rrrrrrrrr

Although the technical development here goes along the lines of [10], and
therefore, strictly speaking, this paper is simply an extension ofloc. cit., we be-
lieve that the definition ofTSIm is a relevant contribution on its own.

1 Preliminaries

In this section we recall briefly the definitions of asynchronous transition systems,
transition systems with independence, and their respective categories [1, 22].

As discussed in the introduction, asynchronous transition systems are simply
transition systems whose transitions are decorated by events equipped with an
independence relation. Four axioms (A1–A4) are needed to guarantee the intended
meaning for the events and the independence relation.

Definition 1.1 (Labeled Asynchronous Transition Systems)A labeled
asynchronous transition system (lats for short) is a structure

A = (SA, iA,EA,TranA, IA,LA, `A),

where(SA, iA,EA,TranA) is a transition system with set of states SA, initial state iA∈
SA, and transitions TranA⊆SA×EA×SA, and where EA is a set of events, LA a set
of labels,`A : EA→ LA a labeling function, and IA ⊆ EA×EA, the independence
relation, is an irreflexive, symmetric relation such that

A1. e∈ EA ⇒ ∃s1,s2 ∈ SA. (s1,e,s2) ∈ TranA;

A2. (s,e,s1),(s,e,s2) ∈ TranA ⇒ s1 = s2;

A3. e1 IA e2(s,e1,s1),(s,e2,s2) ∈ TranA ⇒
∃u. (s1,e2,u),(s2,e1,u) ∈ TranA;

s

s1
��
�

e1
��

s2
??

? e2
��

ue2
�� e1

��

IA

A4. e1 IA e2(s,e1,s1),(s1,e2,u) ∈ TranA ⇒
∃s2. (s,e2,s2),(s2,e1,u) ∈ TranA.

s

s1
���

e1
��

s2

e2
��

u
??

e2
�� e1

��

IA
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In the rest of the paper we shall letI(e) denote the set{e′ | e IA e′} and, for
convenience, use(s,ea,s′) as a shorthand for a transition(s,e,s′) with `A(e) = a.

The following is the standard definition of morphisms forlats, which essen-
tially mimics the idea ofsimulation(cf. [1, 22]).

Definition 1.2 (Asynchronous Transition System Morphisms)For A and A′ lats,
a morphism from A to A′ is a triple of (partial) functions1

(σ : SA→ SA′,η : EA⇀ EA′,λ : LA ⇀ LA′),

where(σ,η) is a morphism of labeled transition systems, i.e.,

I σ(iA) = iA′;

I (s1,e,s2) ∈ TranAη(e)↓ ⇒
(
σ(s1),η(e),σ(s2)

)
∈ TranA′;

(s1,e,s2) ∈ TranAη(e)↑ ⇒ σ(s1) = σ(s2);

which preserves the labeling, i.e., makes the following diagram commutative

EA /
η

��
`A

EA′

��
`A′

LA /

λ
LA′,

and the independence, i.e.,

e1 IA e2η(e1)↓, η(e2)↓ ⇒ η(e1) IA′ η(e2).

It is immediate to see thatlats and their morphisms form a category, which we
shall refer to asLATS.

Starting from Definition 1.1, transition systems with independence attempt
to simplify the structure retaining explicitly only the independence, now layered
directly on the transitions. As already mentioned, the notion of event becomes
implicit, determined by the independence relation through the equivalence-classes
of the relation∼.

Definition 1.3 (Transition Systems with Independence)A transition system with
independence (tsi for short) is a structure

T = (ST , iT,LT ,TranT , IT),

1We use, respectively,f : A→ B and f : A⇀ B to indicate total and partial functions. Forf a
partial function,f (x)↓ ( f (x)↑) means thatf is (un)defined atx.
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where(ST , iT ,LT ,TranT) is a transition system and IT ⊆ TranT×TranT, the inde-
pendence relation, is an irreflexive, symmetric relation, such that, denoting by≺
the binary relation on transitions given as

(s,a,s1)≺ (s2,a,u) if and only if

∃b∈ LT . (s,a,s1) IT (s,b,s2)

(s,a,s1) IT (s1,b,u)(s,b,s2) IT (s2,a,u),

and by∼ the least equivalence on transitions which includes it, we have

T1. (s,a,s1)∼ (s,a,s2) ⇒ s1 = s2;

T2. (s,a,s1) IT (s,b,s2) ⇒∃u. (s,a,s1) IT (s1,b,u)(s,b,s2) IT (s2,a,u);

T3. (s,a,s1) IT (s1,b,u) ⇒∃s2. (s,a,s1) IT (s,b,s2)(s,b,s2) IT (s2,a,u);

T4. (s,a,s1)≺∪� (s2,a,u) IT (w,b,w′) ⇒ (s,a,s1) IT (w,b,w′).

The∼-equivalence classes are to be thought of as events, i.e.,t1 ≺ t2 means
that t1 andt2 are part of a ‘concurrency diamond’, whilstt1∼ t2 means that they
are occurrences of the same event. Concerning the axioms, notice then thatT1
corresponds toA2 and axiomsT2 andT3 correspond, respectively, toA3 andA4.

The following definition of morphisms for transition systems with indepen-
dence resembles closely the one given above forlats.

Definition 1.4 (Transition System with Independence Morphisms)For T and
T ′ tsi, a morphism from T to T′ consists of a pair of (partial) functions

(σ : ST → ST ′,λ : LT ⇀ LT ′)

which is a morphism of transition systems and, in addition, preserves indepen-
dence, i.e.,

(s1,a,s2) IT (s′1,b,s
′
2)λ(a)↓,λ(b)↓ ⇒(

σ(s1),λ(a),σ(s2)
)

IT ′
(
σ(s′1),λ(b),σ(s′2)

)
.

We shall useTSI to denote the category oftsi and their morphisms.
The following lemma states thattsi morphisms are well defined as maps of

events, an easy consequence of the fact that they preserve independence that we
shall use in order to embedTSI into LATS.

Lemma 1.5 (Morphisms map Events to Events)For (σ,λ) : T→T ′ a morphism
of tsi, (s1,a,s2) and(s′1,a,s

′
2) transitions of T ,

(
σ(s1),λ(a),σ(s2)

)
∼
(
σ(s′1),λ(a),σ(s′2)

)
whenever(s1,a,s2)∼ (s′1,a,s

′
2) andλ(a)↓, i.e., lats morphisms preserve∼.
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2 ComparingLATS with TSI: Considering multi-arcs

In this section we first recall the results of the comparison ofTSI andLATS carried
out by the authors in [10], and then, reconsidering a restriction used inloc. cit.,
we introduce the notion oftransition systems with independence and multi-arcs—
i.e., tsi in which multiple transitions carrying the same label are allowed between
the same two states. In the next section we shall then perform an analysis matching
that of [10], investigating the relationship between such a category andLATS, and
showing that, in a precise sense, our definition provides a minimal, conservative
way to extendtsi with multi-arcs.

The starting point of the analysis in [10] is the obvious inclusionta: TSI→
LATS which acts on objects by decorating each transition with the event identi-
fied by the∼-class the transition belongs to, and by inheriting the independence
relation directly from thetsi. On the opposite direction, we considered the ‘ab-
straction’at from LATS to TSI that forgets the events and brings the independence
from the events down to the transitions. However, a simple argument shows that
the presence of multi-arcs inLATS makes it impossible forat to be well-defined
as a map toTSI. Thus, the very first step of [10] is to consider only thoselats A
satisfying

(Ex) (s1,e
a
1,s2) 6= (s1,e

b
2,s2) ∈ TranA ⇒ a 6= b,

whose purpose is to forbids multi-arcs. This allows to prove that thediamond-
extensionalasynchronous transition systems, whose definition follows, are exactly
thoselats A such thatat(A) belongs toTSI.

Definition 2.1 (Diamond-Extensionallats) A diamond extensional labeled asyn-
chronous transition system (dlats for short) is alats that satisfies

A!3. e1 IA e2(s,ea
1,s1),(s,eb

2,s2) ∈ TranA ⇒
∃! pair (s1,xb

2,u),(s2,xa
1,u) ∈ TranA. e1 IA x2e2 IA x1x1 IA x2;

A!4. e1 IA e2(s,ea
1,s1),(s1,eb

2,u) ∈ TranA ⇒
∃! pair (s,xb

2,s2),(s2,xa
1,u) ∈ TranA. e1 IA x2e2 IA x1x1 IA x2.

The categorydLATS is the full subcategory ofLATS consisting of the diamond-
extensionallats.

We callextensionalthe diamond-extensionallats that in addition satisfy (Ex),
and we denote byeLATS the full subcategory ofdLATS that they determine.
We can now give the formal definitions of the functorsta: TSI → LATS and
at: eLATS→ TSI.

9



Definition 2.2 (TSI ↪→ LATS) For T a tsi, let ta(T) be the structure

(ST, iT ,E,Tran, I ,LT, `),

where, denoting by∼ the equivalence relation induced by IT as in Definition 1.3,

I E = TranT/∼, the set of∼-classes of TranT;

I Tran=
{(

s1, [(s1,a,s2)]∼,s2
) ∣∣ (s1,a,s2) ∈ TranT

}
;

I [(s1,a,s2)]∼ I [(s′1,a,s
′
2)]∼ if and only if (s1,a,s2) IT (s′1,a,s

′
2);

I `
(
[(s1,a,s2)]∼

)
= a.

For (σ,λ) : T→ T ′ a morphism oftsi, let ta
(
(σ,λ)

)
be(σ,η,λ), where

η
(
[(s,a,s′)]∼

)
=

{[
(σ(s),λ(a),σ(s′))

]
∼ if λ(a)↓,

undefined ifλ(a)↑.

The proof thatta is well defined follows easily from Lemma 1.5. Actually,ta
is a full andfaithful functor, i.e., an embedding ofTSI in LATS. In the following,
when no confusion is possible, we may occasionally omit the index∼ from the
notation for∼-classes.

Definition 2.3 (eLATS ↪→ TSI) For A a lats, let at(A) be the structure

(SA, iA,LA,Tran, I),

where

I (s,a,s′) ∈ Tran if and only if (s,ea,s′) ∈ TranA,

I (s,a,s1) I (s2,b,s3) if and only if (s,ea
1,s1),(s2,eb

2,s3) ∈ TranAe1 IA e2.

For (σ,η,λ) : A→ A′ a morphism oflats, let at
(
(σ,η,λ)

)
be(σ,λ).

The result of [10] is thatta andat form acoreflectionof TSI in eLATS.

Proposition 2.4 (taa at: TSI⇀ eLATS) TSI is coreflective ineLATS.
PROOF: Subsumed by that of the forthcoming Proposition 3.8.X

Thelats corresponding totsi are characterised as theevent-maximallats. Intu-
itively, a lats is event-maximalif its events and independence are ‘tightly coupled’,
so that one cannot ‘split’ events without destroying the globallats structure. In
other words, the identity of the events in event-maximallats is forced by the in-
dependence relation. This will provide a direct characterisation oftsi in terms of
lats

10



Definition 2.5 (Event-Maximal lats) For A a lats, ē∈ EA, and T⊂ Tē, where
Tē = {(s,e,s′) ∈ TranA | e= ē}, let A[T] denote the replacement of̄e on the tran-
sitions in T for a fresh event̃e 6∈ EA, i.e.,

A[T] = (SA, iA,EA∪{ẽ},Tran, I ,LA, `),

where

I Tran=
(
TranArT

)
∪
{

(s1, ẽ,s2)
∣∣ (s1, ē,s2) ∈ T

}
;

I I = IA∪ IT ∪ I−1
T , IT =

{
(ẽ,e)

∣∣ ē IA e
}

;

I `(e) =

{
`A(e) if e∈ EA,

`A(ē) if e = ẽ.

A lats A is event-maximal if for each̄e∈ EA and each nonempty T⊂ Tē, the
transition systems A[T] is not alats.
The categorymdLATS is the full subcategory ofLATS consisting of the diamond-
extensional, event-maximallats.

The definition above, stating that any structure obtained by ‘rearranging’ events
non-trivially must fail to be alats, is our way to express that — as remarked before
— the identity of the events in event-maximallats is forced by the independence
relation.

Now, if we denote bymeLATS the restriction ofmdLATS to the full subcate-
gory induced by the objects satisfying (Ex), we can state the final result of [10].

Proposition 2.6 (meLATS∼= TSI) meLATS is equivalent toTSI.
PROOF: Subsumed by that of the forthcoming Proposition 3.9.X

Technically, the contribution of this paper is to re-address the choice of condi-
tion (Ex) which forbids multiple transitions with the same label between the same
two states. Namely, instead of restrictinglats in order to get a well-defined functor
at to TSI, we relax the definition oftsi to allow multi-arcs, proposing below the
notion of transition systems with independence and multi-arcs. This represents
an interesting evolution oftsi, whose relevance goes beyond the comparison oftsi
andlats; morally, it constitutes the main contribution of this paper. In other words,
we propose here transition systems with independence and multi-arcs and justify
their definition by showing how their multi-arcs relates to those oflats.

Formally, we extendtsi in the simplest possible way: transitions are repre-
sented by a map assigning to each element of a setTran of transitions a triple
consisting of its source, label, and target. This allows to have more transitions
between the same two states with the same label simply by having more elements
of Tran mapped to the same triple. The independence relation and the defining
axioms are the obvious translations of those oftsi.
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Definition 2.7 (tsi with Multi-Arcs) A transition system with independence and
multi-arcs (tsim for short) is a structure

T = (ST , iT ,LT ,TranT ,〈−〉T , IT),

where〈−〉T : TranT → ST × LT ×ST and (ST , iT ,LT ,〈TranT〉T) is a transition
system and IT ⊆ TranT×TranT, the independence relation, is an irreflexive, sym-
metric relation, such that, denoting by≺ the binary relation on transitions given
as

t ≺ t ′ if and only if 〈t〉T = (s,a,s1)〈t ′〉T = (s2,a,u)

∃t1, t2 ∈ TranT . 〈t1〉T = (s,b,s2)〈t2〉T = (s1,b,u)

with t IT t1t IT t2t1 IT t ′,

and by∼ the least equivalence on transitions that includes≺, we have

Tm1. t ∼ t ′, 〈t〉T = (s,a,s1), 〈t ′〉T = (s,a,s2) ⇒ t = t ′;

Tm2. t IT t ′, 〈t〉T = (s,a,s1), 〈t ′〉T = (s,b,s2) ⇒
∃t1, t2. 〈t1〉T = (s2,a,u)〈t2〉T = (s1,b,u)t IT t2t ′ IT t1;

Tm3. t IT t ′, 〈t〉T = (s,a,s1), 〈t ′〉T = (s1,b,u) ⇒
∃t1, t2. 〈t1〉T = (s2,a,u)〈t2〉T = (s,b,s2)t IT t2t1 IT t2;

Tm4. t ≺∪� t ′ IT t ′′ ⇒ t IT t ′′.

As for tsi, the∼-equivalence classes — in the following denoted by[t]∼, for
t a representative of the class — are to be thought of as events. The axioms are
recast to fit with the indirect way of assigning source, label, and target to transi-
tions. Notice that a global axiom likeTm1 is still necessary, since the intended
notion of events still cannot be determined locally. AxiomTm4 ensures that the
independence relation determines a well-defined relation on events.

In the rest of the paper we shall see that this view of[t]∼ agrees with the notion
of events forlats and that, in fact,tsim relates well to the category of diamond-
extensionallats.

Using I(t) to denote the set{t ′ | t IT t ′}, we can state the following lemma
which will be useful later on. As a matter of notations, we shall use〈− 〉i , i =
1, . . . ,3, to denote the composition of〈−〉T with the appropriate projection, i.e.,
if 〈t〉T = (s,a,s′), then〈t〉1 = s, 〈t〉2 = a, and〈t〉3 = s′.

Lemma 2.8 AxiomTm4 is equivalent to

(Tm4′) t1∼ t2 ⇒ I(t1) = I(t2).

PROOF:
Easy, by induction. X

12



The definition of morphisms for transition systems with independence and
multi-arcs necessarily involves a (partial) function on transitions, which, of course,
must respect the mapping of states and labels.

Definition 2.9 (tsim Morphisms) For T and T′ tsim, a morphism from T to T′

consists of a triple of (partial) functions

(σ : ST → ST ′ ,λ : LT ⇀ LT ′,τ : TranT ⇀ TranT ′)

that respects sources, targets, and labels, i.e., that makes the following diagram
commute

TranT /τ

��
〈−〉T

TranT′

��
〈−〉T′

ST×LT×ST /

<σ,λ,σ>
ST ′ ×LT ′ ×ST ′,

preserves independence, i.e.,

t IT t ′τ(t)↓, τ(t ′)↓ ⇒ τ(t) IT′ τ(t ′),

and preserves the ‘diamond relation’�, i.e.,

t � t ′τ(t)↓ (or τ(t ′)↓) ⇒ τ(t)� τ(t ′).

We shall useTSIm to denote the category oftsim and their morphisms.
Observe that in the definition above it is necessary to consider the reflexive

closure� of the relation≺, since morphisms can be partial and, therefore, col-
lapse diamonds.

Concerning the relationships betweenTSI andTSIm, everytsi can be regarded
as atsim simply by defining the map〈 − 〉T to act as the ‘identity’, i.e., inter-
preting transitions as themselves. Such a mapping extends to an inclusion func-
tor tm: TSI ↪→ TSIm by definingtm

(
(σ,λ)

)
to be(σ,λ,τ), whereτ

(
(s,a,s′)

)
=

(σ(s),λ(a),σ(s′)). It follows immediately from the last condition in Definition 2.9
thatτ is well defined as a map of events, a fact that we shall use in later on to em-
bedTSIm into LATS.

Lemma 2.10 (Morphisms map Events to Events)For (σ,λ,τ) : T→ T ′ a mor-
phism oftsim and t∼ t ′ equivalent transitions of T , ifτ(t)↓, thenτ(t)∼ τ(t ′), i.e.,
tsim morphisms preserve∼.

In general, it is not possible to define a map fromTSIm to TSI that forgets
multi-arcs and preserves independence. This is shown by the following example
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in which collapsing thea-multi-arcs would make the twoa-labeled transitions
sticking out ofs break axiomT1

•

•

55b

∼ •

FF

a
XX

a

∼ •

ii b

s

UU

a

II

a

OO

b

This means that the embeddingtm: TSI ↪→ TSIm does not have a right adjoint.
Dually, it can be proved thattm cannot have a left adjont either (a proof that we
shall omit, though). Thus,TSI is neitherreflectivenorcoreflectivein TSIm.

3 From LATS to TSIm: A coreflection

Now that all the bricks are in play, we can complete the picture showing how to
extend the functorsta and at to a pair of adjoint functorsma and am forming
a coreflection betweenTSIm anddLATS. There is only one reasonable way to
define the embeddingma.

Definition 3.1 (TSIm ↪→ dLATS) For T a tsi, let ma(T) be the structure

(ST, iT ,E,Tran, I ,LT, `),

where, denoting by∼ the equivalence relation induced by IT as in Definition 2.7,

I E = TranT/∼, the set of∼-classes of TranT;

I Tran=
{(
〈t〉1, [t]∼,〈t〉3

) ∣∣ t ∈ TranT
}

;

I [t]∼ I [t ′]∼ if and only if t IT t ′;

I `
(
[t]∼
)

= 〈t〉2.

It follows from Lemma 2.8 and the definition of∼ that the definition of the
independence and labels on the events ofma(T) is well given. It is now easy to
verify the following.

Proposition 3.2 The transition system ma(T) is a dlats.
PROOF: AxiomA1 is trivially satisfied. AxiomA2 is satisfied because ofTm1,
for, by definition of ma, two transitions carry the same event if and only if they
belong to the same∼-class in T . ConcerningA3 andA4, they correspond directly
to Tm2 andTm3, and the uniqueness criteria imposed byA!3 andA!4 are a direct
consequence ofT1. X

14



In order to definema as a functor, we need to define its action on the mor-
phisms ofTSIm.

Definition 3.3 (TSIm ↪→ dLATS) For (σ,λ,τ) : T → T ′ a morphism oftsim, let
ma
(
(σ,λ,τ)

)
be(σ,η,λ), where

η
(
[t]∼
)

=

{[
t ′]∼ if τ(t) = t ′,

undefined ifτ(t)↑.

That Definition 3.3 is well given follows from Lemma 2.10; it is also easy to
check thatma is afull andfaithful functor, i.e., an embedding ofTSIm in dLATS.

The obvious way to define the ‘abstraction’am to TSIm on the objects of
LATS is, for a lats A, to make the transitionsTranA the elements of the transi-
tion setTranam(A) and then interpret them (via〈−〉am(A)) simply by replacing the
event with its label. We shall prove that this gives a well-defined object-map from
the category of diamond-extensionallats to TSIm, and thatdLATS is actually the
largest full subcategory ofLATS whose every object is mapped byamto atsim.

Definition 3.4 (dLATS ↪→ TSIm) For A a lats, let am(A) be the structure

(SA, iA,LA,Tran,〈−〉, I),

where,

I (s,ea,s′) ∈ Tran if and only if (s,ea,s′) ∈ TranA,

I 〈(s,ea,s′)〉= (s,a,s′),

I (s,ea
1,s1) I (s2,eb

2,s3) if and only if e1 IA e2.

Proposition 3.5 For A a lats, am(A) belongs toTSIm if and only if A belongs to
dLATS.
PROOF: The pairs of transitions inA!3 and A!4 exist because of axiomsA3
andA4. If am(A) ∈ TSIm, their uniqueness is needed in order for am(A) to sat-
isfy axiomTm1. Suppose that, on the contrary, in the case ofA!3 there are two
pairs (s1,xb

2,u),(s2,xa
1,u) and (s1,yb

2,w),(s2,ya
1,w) satisfying the condition. As-

sume, without loss of generality, that y2 6= x2. Then we have(s1,yb
2,w)

6= (s1,xb
2,u), but we also have that(s,eb

2,s2)≺ (s1,yb
2,w) (as transitions of am(A))

and(s,eb
2,s2)≺ (s1,xb

2,u), i.e., that(s1,xb
2,u)∼ (s1,yb

2,w), which contradictsTm1.
The case forA!4 can be proved along the same lines, thus showing the necessity
of the uniqueness conditions.

Concerning their sufficiency, the property of symmetry and irreflexivity for
Iam(A) is inherited from IA. It remains to check that the axiomsTm1–Tm4 defining
tsim hold for am(A). AxiomsA3, A4 and A!3, A!4 ensure that if(s,ea

1,s1) ≺
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(s2,ea
2,s3), then e1 = e2. It follows then by induction that(s,ea

1,s1) ∼ (s2,ea
2,s3)

implies e1 = e2, for all (s,ea
1,s1),(s2,ea

2,s3)∈Tranam(A). If in addition s= s2, then
axiomA2 implies that s1 = s3, and so(s,ea

1,s1) = (s2,ea
2,s3), i.e.,Tm1 is satisfied.

Actually, this also implies thatTm4 holds. For, since the independence in am(A) is
inherited from that on the events in A, we have that(s,ea

1,s1)∼ (s2,ea
2,s3) implies

I
(
(s,ea

1,s1)
)

= I
(
(s2,ea

2,s3)
)
. This, as proved by Lemma 2.8, is equivalent toTm4.

Finally, Tm2 andTm3 hold because of the correspondingA3 andA4. X

The definition ofamon morphisms depends on the fact thatLATS morphisms
preserve independence on events.

Definition 3.6 (dLATS ↪→ TSIm) For (σ,η,λ) : A→ A′ a morphism oflats, let
am
(
(σ,η,λ)

)
be(σ,λ,τ), where

τ
(
(s,ea,s′)

)
=

{(
σ(s),η(e)λ(a),σ(s′)

)
if η(e)↓,

undefined ifη(e)↑.

By inspecting Definition 3.4, it is easy to verify that the above definition
makes the diagram in Definition 2.9 commute. Moreover, it preserves�, since
axiomsA!3 andA!4 ensure thate1 = e2, whenever(s,ea

1,u)� (s′,ea
2,u
′), i.e., since

η preserve independence,am
(
(σ,η,λ)

)
is well defined.

In order to prepare for our main proof, we first prove the following lemma.

Lemma 3.7 For any T inTSIm, we have that am◦ma(T) is isomorphic to T .
PROOF: (Sketch) We show that there is a bijectionθ between TranT and Tranam◦ma(T)

such that(idS, idL,θ) and(idS, idL,θ−1) are morphisms ofTSIm, respectively from
T to am◦ma(T) and vice versa, inverses of each other. The obvious choice for
θ(t) is (〈t〉1, [t]〈t〉2,〈t〉3). Observe that this gives an injective map because of ax-
iomTm1. X

The isomorphisms of 3.7 directly extends to a natural transformation

η =
{

(idS, idL,θ) : T→ am◦ma(T)
}

T∈TSIm
: 1TSIm =⇒ am◦ma.

We shall prove now that such a transformation is theunit of an adjunction involv-
ing maandam, i.e., thatam is right adjoint toma: TSIm ↪→ dLATS.

Proposition 3.8 (maa am: TSIm ⇀ dLATS) For any A∈ dLATS and any mor-
phism m: T→ am(A) in TSIm, there exists a unique morphism
mT : ma(T)→ A in dLATS such that am(mT)◦ηT = m.
PROOF: Let m be(σ,λ,τ). Clearly, by definition of am, mT must be of the form
(σ,γ,λ) for someγ : Ema(T)→EA. It is easy to realize that the only possible choice
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for γ is the following: for t∈ TranT and τ(t)↓, let γ([t]) = e, if τ(t) = (s,ea,s′).
This is a well given definition, for Lemma 2.10 ensures that m maps all transitions
in [t] to the same∼-class of Tranam(A), and the proof of Proposition 3.5 shows
that if two transitions belong to the same∼-class of Tranam(A), they originate
from transitions in TranA carrying the same event. This proves both existence and
uniqueness of mT. Finally, it immediate to check that am(mT)◦ηT = m. X

Sinceη is an isomorphism, by standard results in category theory, we have that
the adjunctionmaaam: TSIm⇀ dLATS is a coreflection, i.e.,TSIm iscoreflective
in dLATS.

Concerning the coreflection described in the previous section, it is immediate
to verify that the functors obtained by composingmaandamwith the inclusion
tm: TSI ↪→ TSIm and with the obvious inclusion ofeLATS into dLATS coincide,
respectively, withta followed byeLATS ↪→ dLATS and withat followed bytm, as
illustrated in the following diagram.

TSIm
--

ma

dLATSll

am

TSI
--

ta?
�

OO

eLATSll

at

?
�

OO

This supports our claim ofTSIm being aconservativeandminimalextension of
TSI, since regardingtsim as lats, the extension corresponds exactly to removing
the constraint (Ex).

To complete our analysis, we identify therepleteimage ofmain LATS, i.e., the
full subcategorymdLATS of dLATS consisting of the objects isomorphic toma(T),
for someT ∈ TSIm.

Recall from basic category theory thatmdLATS is determined by the coreflec-
tion: it consists of thoseA∈ dLATS for which the corresponding componentεA

of thecounitof maa am is iso. Applying standard categorical results to deriveε
from (−)T andη, we find that it is the natural transformation

ε =
{

(idSA,γ, idLA) : ma◦am(A)→ A
}

A∈dLATS
: ma◦am=⇒ 1dLATS,

where, for(s,ea,s′) ∈ Tranam(A), γ([(s,ea,s′)]) = e. Clearly,εA is iso if and only
if γ is such, i.e.,

(s,e1,s1),(s2,e2,s3) ∈ TranA, e1 = e2⇒ (s,e1,s1)∼ (s2,e2,s3) ∈ Tranam(A),

which means that two transitions carry the same event if and only if they belong
to the same∼-class ofA (viewed as atsim). Expressed purely in terms ofLATS,
this is, as it was the case forTSI, exactly the event-maximalLATS. Observe
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that in Definition 2.5 the interesting, nontrivial choices forT are those such that
∅⊂ T ⊂ Tē, i.e., those in which at least one ˜e-transition is added and at least one
ē-transition is kept inA[T].

Proposition 3.9 (mdLATS∼= TSIm) mdLATS is equivalent toTSIm.
PROOF: Let A be a diamond-extensionallats. We prove that the counitεA is iso if
and only if A belongs tomdLATS. To this purpose, letγ be the event component
of εA.

If γ is iso, i.e., for all(s,e1,s1),(s2,e2,s3) ∈ TranA we have that e1 = e2 im-
plies(s,e1,s1) ∼ (s2,e2,s3), for any choice of̄e∈ EA and any∅ ⊂ T ⊂ Tē, then
the condition in Definition 2.5 is satisfied, since, by the diamond-extensionality
of A, eitherA3 or A4 must fail for A[T]. In fact, in order for A[T] to be a
LATS, diamond-extensionality implies that we must have(s,e1,s1) ∈ T whenever
a (s,e1,s1) ∼ (s2,e2,s3) for some(s2,e2,s3) ∈ T, i.e., by the hypothesis onγ, T
should be T̄e. So A is event-maximal.

If γ is not iso, i.e., if there exist(s,e,s1) and (s2,e,s3) such that(s,e,s1) 6∼
(s2,e,s3), then T= {(s,e′,s′) | (s,e′,s′) ∼ (s,e,s1)} ⊂ Te is a nonempty set for
which the ‘splitting’ of e yields alats, i.e., A is not event-maximal. X

4 Conclusion

Based on a comparison between the model of asynchronous transition systems (a
model with explicitly defined events) and the model of transition systems with in-
dependence (a more abstract model, with a derived notion of events) carried out by
the authors in [10], we have introduced thetransition systems with independence
and multi-arcs— aconservativeandminimalextension of transition systems with
independence that features multi-arcs — showing that the ability of asynchronous
transition systems to model multi-arcs does not depend inherently on the choice
of having explicitly given events.

Adding multi-arcs to transition systems with independence constitutes a valu-
able enhancement to the model, which allows to model important situations in
which multiple transitions between the same states represent different events with
different causal histories.

Investigating the relationship between the category of transition systems with
independence and multi-arcs and the category of labeled asynchronous transition
systems that matches the one in [10], we have shown that the former iscoreflective
in the category ofdiamond-extensionallabeled asynchronous transition systems,
which intuitively are those transition systems that make no confusion about the
identities of the events carried by transitions facing each other in independence-
diamonds. This coreflection provides a way to translate semantics forth and back
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between the two models. Finally, we have identified theevent-maximallabeled
asynchronous transition systems as the largest class of asynchronous transition
systems for which the coreflection cuts down to anequivalence, so providing a
precise characterisation of transition systems with independence and multi-arcs in
terms of labeled asynchronous transition systems.

The analysis carried out in this paper helps in deciding when it is necessary
to move to a more ‘intensional’ framework (a lower level of abstraction) in which
further distinctions of events are introduced by assigning them explicitly. The def-
inition of transition systems with independence and multi-arcs raises the threshold
by allowing a derived notion of event also when multi-arcs are required.
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