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Transition Systems with Independence
and Multi-Arcs

Thomas T. Hildebrandt, Vladimiro Sassone*

* BRICS — Computer Science Dept., University of Aarhus
* Dipartimento di Informatica, Universitdi Pisa

Abstract

We extend the model of transition systems with independence in order to provide
it with a feature relevant in theoninterleavinganalysis of concurrent systems, namely
multi-arcs Moreover, we study the relationships between the category of transition sys-
tems with independence and multi-arcs and the category of labeled asynchronous transi-
tion systems, extending the results recently obtained by the authors for (simple) transition
systems with independence (Bftoc. CONCUR’98, and yielding a precise characterisa-
tion of transition systems with independence and multi-arcs in termsvehf-maximal
diamond-extensionplabeled asynchronous transition systems.

Introduction

Following the leading idea of CCS [12] and related process calculi [11, 2, 13, 9],
the behaviour of concurrent systems is often specéigdnsionallypy describing

their ‘state-transitions’ and the observable behaviours that such transitions pro-
duce. The simplest formal model of computation able to express naturally this
idea is that oflabeled transition systemsvhere the labels on the transitions are
thought of as the actions of the system at its ‘external ports’, or, more generally,
the observable part of its behaviour.

Transition systems are anterleavingmodel of concurrency, which means
that they do not allow to draw a natural distinction between interleaved and con-
current execution of actions. More precisely, transition systems do not model
the fact that concurrent actions can overlap in time and reduce concurrency to
a nondeterministic choice of action interleavings, so loosing track of the casual
dependencies between actions and, consequently, of the fact that computations
that differ only for the order of independent actions represent, actually, the same
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behaviour. In other words, interleaving models abstract away from the difference
between the factua&mporaloccurrence order and the more conceptaaisalor-
dering of actions. The simplest exemplification of this situation is provided by the
CCS termsa | b anda.b+ b.a, both described by the following transition system.

SO (1)

Although for many applications this level of abstraction is appropriate, for sev-
eral other kinds of analysis a model may be desirable that takes full account of
concurrency. For instance, apart from any philosophical consideration about the
semantic relevance of cause/ effect relationships, knowing that different interleav-
ings represent the same behaviour can reduce considerably the state-space explo-
sion problem when checking system properties such as safety [8] and liveness
properties [21, 17].

Several efforts have been devoted to the search of transition-basater-
leaving models, e.g., transition systems enriched with additional features that
make expressing concurrency explicitly possible (cf., e.g., [18, 4, 6, 7, 5, 3]).
The present paper focuses on two such models, naasgtychronous transition
systemsintroduced independently by Bednarczyk [1] and Shields [20],teard
sitions systems with independenpmposed by Winskel and Nielsen [22]. These
two competing approaches are, among the others, those building on the simplest
idea: endow transition systems with some formal notion of ‘similarity’ of tran-
sitions that enables to distinguish whether or not the opposite edges in diagrams
such as (1) represent the same action. Intuitively, this is achieved in both ap-
proaches by thinking of transitions ascurrencef eventstwo transitions rep-
resenting the same event if they correspond to the same action. However, the dif-
ferences induced on the models by the different choices of how to assign events to
transitions are definitely not trivial. And so are the relationships that these models
bear to each other.

Getting to the details, asynchronous transition systems assign events to tran-
sitions explicitly and enrich the structure further by addingradependence re-
lation on the events that describes their causal relationships. This clearly makes
distinguishing nondeterminism and concurrency possible:- b.a andalb can
be represented respectively by, e.g., the followadgeledasynchronous transi-
tion systems, where indicates whether or not the evermtande (labeled bya
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andb) are independent.

VI
NN

Observe that here and in the rest of the paper we conkileledasynchronous
transition systems [1, 22], i.e., asynchronous transition systems with a further
labeling of events, as the proper extension of labeled transition systems.

The expressive power of asynchronous transition systems is clearly not limited
to the example above; for instance, Bednarczyk [1] and Mukund and Nielsen [15]
have shown that noninterleaving related issues for CCS processes — daeh as
calities— can be modeled faithfully using this model. However, it can be ar-
gued that assigning both the independence relation and the decoration of transi-
tions with events explicitly means assigning too much. In fact, this obviously
introduces someedundanciesn the model: there are, for instance, many non-
isomorphic variations of the asynchronous transitions systems above which can
still be reasonably thought as modelsatif anda.b+ b.a. Moreover, although it
is usually easy to tell about independence of transitions, in many important cases
itis at leasnotimmediate to assign events to transitions: it might very well be the
goal of the entire semantic analysis to understand what the events of the system
and their mutual relationships are. This consideration seems to indicate that asyn-
chronous transitions systems cannot have a significant impact in Plotkin’s SOS
style semantics, unless the independence relation is promoted to a greater role.

Transition systems with independerace an attempt to answer to the previous
observation. Here events anet introduced explicitly. They are rathelerived
from the structure of the ‘simply-labeled’ transitions, upon which the indepen-
dence relation is directly layered. In such a model, each of the CCS terms dis-
cussed above admits only one transition system which can faithfully represent it,
viz., respectively,

PN
N N

The implicit information about events can be easily deduced from the presence
(or the absence) of, making the achieved expressive power comparable to that
of asynchronous transition systems. Moreover, avoiding a primitive notion of
event makes providing‘aoninterleaving’operational semantics in the SOS style
a relatively simple task (cf. [22]).

However, in order to be consistent with the computational intuition, the ax-
iomatics of transition systems with independence involves (apparently necessar-
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ily [19]) onecondition expressed ‘globally’ in terms of all the transitions repre-
senting occurrences of the same event. This contrasts with the ‘local’ conditions
defining asynchronous transition systems (due to the globally identified events)
and can make hard checking that a given structure is a transitions system with
independence. Thus, the differences induced on the two models by the choice of
a primitive versus aderivednotion of event are far-reaching and seem to make
them suitable for different applications. This indicates that it is not wise to choose
once and for albetween asynchronous transition systems and transition systems
with independence, which, in turn, opens the issue of investigadimgally their
analogies and differences.

An exhaustive analysis of this question was carried out by the authors in [10],
showing that transition systems with independence, besides being nicely related
to a class of asynchronous transition systems callednsionglare equivalent
to the so-callecevent-maximahsynchronous transition systems. The results of
loc. cit. are summarized by the following diagram, whérgl, LATS, eLATS,
andmeLATS are, respectively, the categories of transitions systems with indepen-
dence, labeled, extensional, and event-maximal asynchronous transitions systems,
and where—, 1, and2 stand respectively for embeddings, coreflections, and

equivalences.
TSI & LATS
M

meLATS ——— eLATS

Essentially, the extensionality condition refers to the existence wiigue
way to ‘complete’ pairs of independent transitions ittdependence-diamonds
Also, it excludes multi-arcs, i.e., multiple transitions with the same label between
the same two states. Event-maximality, on the other hand, can be seen at the
same time as identifying those transition systems that make as few identifica-
tions of transitions as possible, i.e., contain no confusion about event identities,
and those in which such identities are derivable from the independence relation,
i.e., reduce the redundancy. It is worth noticing here #taeLATS — TSI, the
right adjoint of the coreflection, complements and corrects a non-well-defined
construction sketched in [22]: as a matter of fact, due to the greater generality of
asynchronous transition systerasATS happens to be the largest subcategory of
LATS on which such a construction makes sense.

A question left open by [10] is whether or not the need to restrict to exten-
sional asynchronous transition systems is a consequence of the intrinsic differ-
ences between the two notions of events considered, i.e., if in order to be able to
model situations ruled out by the extensionality constraints it is necessary to as-
sign events explicitly. This paper addresses such a question; namely, we remove
the restriction to transition systems without multi-arcs, relaxing the definition of
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transition systems with independence, and yielding the new notitraagition
systems with independence and multi-drasextensional transition systems with
independenceould probably be a better name, though).

This represents, in our view, an interesting enhancement of the model. In fact,
in noninterleaving semantics, to be able to treat multi-arcs is clearly very relevant.
In a sense, it can be seen as allowing ‘quotienting’ of the state-space while re-
taining full information about events and causality. As an example, consider the
CCS term(alb) + a.b, traditionally described by the transition system below to
the left. It is common (see e.g. [13, 15] among otherg)uotientthe state-space
by some structural congruence that, e.g., collapses the btateil |b, obtaining
the more compact representation — with multi-arcs — shown to the right.

b/'a|nil\a yamil\a
(a|b)+a.ba1 ~ nil (alb)+a.b a niI
a\nil|b/b1 \’nll|b b
b

Observe that, contrarily to the interleaving case, wital here to havewo
different atransitions, since they rappresent different events: one is part of the
independence-diamond and is, therefore, independdmntloé other is not.

In order to justify our definition, we prove that, except for the extensionality
condition, the categorySl,, of transition systems with independence and multi-
arcs bears exactly the same relationship3 &isto LATS. More precisely, we
prove thafTSl,, is coreflectivan the categoryLATS of thediamond-extensional
asynchronous transition systems — intuitively, those transition systems that make
no confusion about the identities of the events carried by transitions facing each
other in independence-diamonds. Similarly to the casd $if dLATS is the
largest subcategory dfATS for which such a result holds. Moreover, among
the diamond-extensionalve identify theevent-maximaasynchronous transition
systems and prove that they induce the largest full subcategoAI1&, mdLATS,
for which the coreflection cuts down to aguivalenceThis yields a precise char-
acterisation ofl Sl,, in terms ofLATS that extends the relationships betwéést
and LATS discussed above: in fact, the categoryebATS and its full subcat-
egory meLATS are, respectively, the full subcategoriesdbATS and mdLATS
consisting of transition systems without multi-arcs.

Summing up, this paper presents the following diagram of formal relationships
between the new model of transition systems with independence and multi-arcs
and asynchronous transition systems which can be useful in practise to translate
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back and forth between the two models when the application one has in mind
requires it.

TSI ¢

TSI mdLATS ( > dLATS
{N
ATS ¢

melL > eLATS

Although the technical development here goes along the lines of [10], and
therefore, strictly speaking, this paper is simply an extensidomfcit., we be-
lieve that the definition of Sl is a relevant contribution on its own.

1 Preliminaries

In this section we recall briefly the definitions of asynchronous transition systems,
transition systems with independence, and their respective categories [1, 22].

As discussed in the introduction, asynchronous transition systems are simply
transition systems whose transitions are decorated by events equipped with an
independence relation. Four axiomd {A4) are needed to guarantee the intended
meaning for the events and the independence relation.

Definition 1.1 (Labeled Asynchronous Transition Systems)A labeled
asynchronous transition systetat for short) is a structure
= (Sasin, Ea, Tram, Ia, La, la),

where(Sa, ia, Ea, Tran) is a transition system with set of stateg Bitial state iy €
Sa, and transitions Trap C Sa x Ea x Sa, and where [k is a set of events, da set
of labels,/a: Ean — La a labeling function, andd C Ea x Ea, the independence
relation, is an irreflexive, symmetric relation such that

Al. ecEpn = 39,2€ Sa. (S1,65) € Trany;
A2. (s,es),(sep) cTrany, = S =%;

e S e

A3. ellaex(sers) (s e,%) cTram = s Wy
Ju. (Slanau)a (827617 U) S TranA; & ""u‘* e

e S o
A4. erlnex(s e,s1),(s1,€,u) € Trama = K s,

s (S.€2,%), (2€1,0) ETrAM. & ¥



In the rest of the paper we shall Ige) denote the sef€ | e Ia €} and, for
convenience, usgs, €*,s) as a shorthand for a transitidg e, s') with /a(e) = a.

The following is the standard definition of morphisms fais, which essen-
tially mimics the idea oimulation(cf. [1, 22]).

Definition 1.2 (Asynchronous Transition System Morphisms)For A and A /ats,
a morphism from A to ‘As a triple of (partial) function$

(0: Sa— Sw,N: Ea— Ea,A: Lo —La),
where(o,n) is a morphism of labeled transition systems, i.e.,
» o(ia) =in;

> (s1,e) € Tramn(e)l = (o(s1),n(e),0(s2)) € Trany;
(s1,6%) € Tramn(e)t = o(s) = o(s);
which preserves the labeling, i.e., makes the following diagram commutative

En—Ep

o

La—=Ln,
and the independence, i.e.,

erlaen(en)l, n(e2)l = n(e)lan(e).

It is immediate to see th&its and their morphisms form a category, which we
shall refer to a$ ATS.

Starting from Definition 1.1, transition systems with independence attempt
to simplify the structure retaining explicitly only the independence, now layered
directly on the transitions. As already mentioned, the notion of event becomes
implicit, determined by the independence relation through the equivalence-classes
of the relation~.

Definition 1.3 (Transition Systems with Independence)A transition system with
independencetgi for short) is a structure

T = (Sr,iT, Ly, Tranr, I1),

lWe use, respectively,: A— B andf: A— Bto indicate total and partial functions. Féra
partial function,f (x)] (f(x)1) means thaf is (un)defined ax.
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where(Sr,it, Ly, Tranr) is a transition system ang IC Trany x Tranr, the inde-
pendence relation, is an irreflexive, symmetric relation, such that, denotirg by
the binary relation on transitions given as

(s,a,51) < (s2,a,u) ifand only if
dbelr.(s,as)lr (sbs)
(Sa a, Sl) I (Slaba U)(S, ba SZ) I (8273-7 U),

and by~ the least equivalence on transitions which includes it, we have
T1l. (s,a,8) ~(s,a) = S1=%
T2. (s,a,91) It (s,b,s2) = 3Fu.(s,a,51) IT (s1,b,u)(S,b, %) IT (S2,a,U);
T3. (s,a,%1) It (s1,b,u) = 3. (s,8,51) IT (S,b,%)(S,b, %) IT (S2,8,U);

) <

T4. (s,a,s1) <U> (,a,U) It (wb,w) = (sas) It (wbw).

The ~-equivalence classes are to be thought of as events;i-et, means
thatt; andt; are part of a ‘concurrency diamond’, whilst~ t, means that they
are occurrences of the same event. Concerning the axioms, notice thdmn that
corresponds té2 and axiomsl'2 andT3 correspond, respectively, &8 andA4.

The following definition of morphisms for transition systems with indepen-
dence resembles closely the one given abovéfter

Definition 1.4 (Transition System with Independence Morphisms)For T and
T’ tsi, a morphism from T to Tconsists of a pair of (partial) functions

(O': St > S Lt — LT’)

which is a morphism of transition systems and, in addition, preserves indepen-
dence, i.e.,

(s1,8,%) I (s),b,s5)A(a)l,A(b)l =
(0(51):M(a),0(s2)) v (0(5),A(D), ()

We shall usel' Sl to denote the category efi and their morphisms.

The following lemma states thati morphisms are well defined as maps of
events, an easy consequence of the fact that they preserve independence that we
shall use in order to embékbl into LATS.

Lemma 1.5 (Morphisms map Events to Events)For (o,A): T — T’ amorphism

of tsi, (s1,8,%) and(s}, a,s,) transitions ofT,(o(sl),)\(a),o(SQ)) ~ (0(s)),\(a),0(s,))
whenevers;,a,sp) ~ (8),a,5,) andA(a)l, i.e., lats morphisms preserve.



2 Comparing LATS with TSI: Considering multi-arcs

In this section we first recall the results of the comparisoh®ifandLATS carried
out by the authors in [10], and then, reconsidering a restriction uskxt.ircit.,
we introduce the notion dfansition systems with independence and multi-arcs
I.e., tsi in which multiple transitions carrying the same label are allowed between
the same two states. In the next section we shall then perform an analysis matching
that of [10], investigating the relationship between such a categoriAnh8, and
showing that, in a precise sense, our definition provides a minimal, conservative
way to extendsi with multi-arcs.

The starting point of the analysis in [10] is the obvious inclug@nTSI —
LATS which acts on objects by decorating each transition with the event identi-
fied by the~-class the transition belongs to, and by inheriting the independence
relation directly from thetsi. On the opposite direction, we considered the ‘ab-
straction’at from LATS to TSI that forgets the events and brings the independence
from the events down to the transitions. However, a simple argument shows that
the presence of multi-arcs IPATS makes it impossible foat to be well-defined
as a map ta'SI. Thus, the very first step of [10] is to consider only thése A
satisfying

(Ex) (s1,65,) # (51,88, ) e Trany = a#b,

whose purpose is to forbids multi-arcs. This allows to prove thatithmond-
extensionaasynchronous transition systems, whose definition follows, are exactly
thoselats A such thatt(A) belongs toT'SI.

Definition 2.1 (Diamond-Extensionallats) A diamond extensional labeled asyn-
chronous transition systema/éts for short) is alats that satisfies

Al3. e lpe(s €,51),(5,68, %) € Traly, =
3 pair (s1,X5,u), (S2,)X8,U) € Trama. ey 1a X2€2 Ia XaXq |4 X2;

Al4. e laex(s €8 s1),(s1,68,u) € Tramy =

3! pair (s,xB,sz), (s2,X§,u) € Tranma. eq la Xo€ Ia X1X1 1A Xo.

The categorydLATS is the full subcategory dfATS consisting of the diamond-
extensionalats.

We callextensionathe diamond-extensionkits that in addition satisfyKx),
and we denote bgLATS the full subcategory ofiLATS that they determine.
We can now give the formal definitions of the functdes TSI — LATS and
at: eLATS — TSI.



Definition 2.2 (TSI — LATS) For T atsi, letta(T) be the structure
(ST7iT7E7Tran7 |7LT7€)7

where, denoting by the equivalence relation induced byas in Definition 1.3,
» E = Tranr/~, the set ofv-classes of Traf;

» Tran= {(s1,[(s1,a,%)]~,%2) | (s1,a,%) € Tranr };
> (s3] 1 [(sh,a.8))- ifand only if (s1,3,57) Ir (,,5))

> (([(s1,8,%)]~) =a.
For (o,A): T — T" a morphism otsi, let ta((g,A)) be(o,n,A), where

~J[(a(s),Ma),0(5))] . ifA(a)l,
n(((sas)]-) = {undefined if(a)?.

The proof thata is well defined follows easily from Lemma 1.5. Actuallg,
is afull andfaithful functor, i.e., an embedding dfS! in LATS. In the following,
when no confusion is possible, we may occasionally omit the inrdésom the
notation for~-classes.

Definition 2.3 (eLATS — TSI) For A alats, let at(A) be the structure
(Sa,ia, La, Tranl),
where
» (s,a,8) € Tran ifand only if (s,€*,5) € Trana,

> (58,51 | (s2,b,55) ifand only if (s,€,s1), (s2, €3, 53) € Tramer In .
For (o,n,A): A— A’ a morphism ofats, let at((o,n,\)) be (o, A).

The result of [10] is thata andat form acoreflectionof TSI in eLATS.

Proposition 2.4 ta- at: TSI — eLATS) TSI is coreflective ireLATS.
PROOF. Subsumed by that of the forthcoming Proposition 3.8/

Thelats corresponding tesi are characterised as teeent-maximahbts. Intu-
itively, alats is event-maximaf its events and independence are ‘tightly coupled’,
so that one cannot ‘split’ events without destroying the glddalstructure. In
other words, the identity of the events in event-maximaal is forced by the in-
dependence relation. This will provide a direct characterisatiasi af terms of
lats
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Definition 2.5 (Event-Maximal lats) For A a lats, e € Ea, and T C Tg, where
Te={(s,e,) € Tramy | e= €}, let A|T] denote the replacement efon the tran-
sitionsin T for a fresh eve@< Enp, i.e.,

AT] = (Sa,ia, EAU{E}, Tran |, La,?),

where
» Tran= (Trana~T)U{(s1,€ %) | (s1,6%) € T};
> I =laUltUIFY, Ir={(&e) |elhe};
14 if E
> ()= MO TTecEa
la(e) ife=&

A lats A is event-maximal if for each € Ep and each nonempty T Tg, the
transition systems[A] is not a/ats.

The categoryndLATS is the full subcategory dfATS consisting of the diamond-
extensional, event-maximéats.

The definition above, stating that any structure obtained by ‘rearranging’ events
non-trivially must fail to be dats, is our way to express that — as remarked before
— the identity of the events in event-maxinats is forced by the independence
relation.

Now, if we denote bynelL ATS the restriction oindLATS to the full subcate-
gory induced by the objects satisfyingx), we can state the final result of [10].

Proposition 2.6 (meLATS = TSI) meLATS is equivalent torSl.
PROOF. Subsumed by that of the forthcoming Proposition 3.9/

Technically, the contribution of this paper is to re-address the choice of condi-
tion (Ex) which forbids multiple transitions with the same label between the same
two states. Namely, instead of restrictiags in order to get a well-defined functor
at to TSI, we relax the definition ofsi to allow multi-arcs, proposing below the
notion of transition systems with independence and multi-afEBis represents
an interesting evolution aéi, whose relevance goes beyond the comparisasi of
andlats; morally, it constitutes the main contribution of this paper. In other words,
we propose here transition systems with independence and multi-arcs and justify
their definition by showing how their multi-arcs relates to thoskf

Formally, we extendsi in the simplest possible way: transitions are repre-
sented by a map assigning to each element of dset of transitions a triple
consisting of its source, label, and target. This allows to have more transitions
between the same two states with the same label simply by having more elements
of Tran mapped to the same triple. The independence relation and the defining
axioms are the obvious translations of thosesof
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Definition 2.7 (tsi with Multi-Arcs) A transition system with independence and
multi-arcs ¢siy, for short) is a structure

T= (STaiTaLT7TranT7<_>T7IT)7

where (—);: Trant — St x Lt x Sr and (Sr,it, L1, (Tranr)) is a transition
system and{ C Tranr x Trany, the independence relation, is an irreflexive, sym-
metric relation, such that, denoting by the binary relation on transitions given
as

t <t ifandonlyif (t); =(s,a,s1)(t')r = (s2,a,u)
dt1,to € Trany. <t1>-|— = (s,b,s) <t2>-|— = (s1,b,u)
with t I tit I totg I+ t,
and by~ the least equivalence on transitions that includesve have
Tml. t~t, )y =(sas), thr=(sas) = t=t,
Tm2. tirt), )y =(sas), )t =(sbs) =
dtq, to. <tl>T = (2,a,u) <t2>-|- = (sy,byu)t IT tot’ I tq;
Tw3. tiTt, )y =(s,as), ') =(s,b,u) =
3y, to. (t)1 = (2,8, U)(t2) 1 = (S, b, )t |7 toty 17 to;
Tod. t<Uu=t'Itt" = tigt’.
As for tsi, the ~-equivalence classes — in the following denotedthy, for
t a representative of the class — are to be thought of as events. The axioms are
recast to fit with the indirect way of assigning source, label, and target to transi-
tions. Notice that a global axiom liké,1 is still necessary, since the intended
notion of events still cannot be determined locally. Axidij4 ensures that the
independence relation determines a well-defined relation on events.
In the rest of the paper we shall see that this vietjofagrees with the notion

of events forlats and that, in facttsi,, relates well to the category of diamond-
extensionalats.

Using I (t) to denote the seft’ | t I+ t'}, we can state the following lemma
which will be useful later on. As a matter of notations, we shall (isé;, i =
1,...,3, to denote the composition ¢f- ) with the appropriate projection, i.e.,
if (t); =(s,a,59),then(t); =s, (t), =a, and(t); =

Lemma 2.8 AxiomT,4 is equivalent to
(Tm4/) ti~ty = | (tl) = (tz).

PROOF.
Easy, by induction. v
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The definition of morphisms for transition systems with independence and
multi-arcs necessarily involves a (partial) function on transitions, which, of course,
must respect the mapping of states and labels.

Definition 2.9 (tsi,, Morphisms) For T and T tsi,, @ morphism from T to T
consists of a triple of (partial) functions

(0: Sr — Sp,A: Lt — Ly, T: Trany — Trany)

that respects sources, targets, and labels, i.e., that makes the following diagram

commute
T

Trany s Trany

-] [
Sr x Lt X S ———— Sp' X L1/ x Sy,

<O,\,0>

preserves independence, i.e.,

tirttt)), 1)y = Tt) I (),
and preserves the ‘diamond relatioft), i.e.,

t=<t'tt)l (ort(t)y) = T(t) ().

We shall usel'Sl,,, to denote the category &fi,, and their morphisms.

Observe that in the definition above it is necessary to consider the reflexive
closure= of the relation<, since morphisms can be partial and, therefore, col-
lapse diamonds.

Concerning the relationships betweE$l and TSI, everytsi can be regarded
as atsi, simply by defining the mag — ); to act as the ‘identity’, i.e., inter-
preting transitions as themselves. Such a mapping extends to an inclusion func-
tor tm: TSI < TSIy, by definingtm((o,))) to be(o,A,1), wheret((s,a,9)) =
(a(s),A(a),o(s)). It follows immediately from the last condition in Definition 2.9
thatt is well defined as a map of events, a fact that we shall use in later on to em-
bedTSl,, into LATS.

Lemma 2.10 (Morphisms map Events to Events)or (g,A,T): T — T’ a mor-
phism oftsip, and t~ t’ equivalent transitions of T, 1f(t), thent(t) ~ 1(t'), i.e.,

tsi,, morphisms preserve.

In general, it is not possible to define a map frdidl,, to TSI that forgets
multi-arcs and preserves independence. This is shown by the following example
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in which collapsing thea-multi-arcs would make the twa-labeled transitions

sticking out ofs break axiomT1
b 1°*_b
ZGUEN

This means that the embedditrg: TSI — TSI, does not have a right adjoint.
Dually, it can be proved tham cannot have a left adjont either (a proof that we
shall omit, though). Thus[' Sl is neithereflectivenor coreflectivan TSI,,.

3 From LATS to TSI,,: A coreflection

Now that all the bricks are in play, we can complete the picture showing how to
extend the functorga and at to a pair of adjoint functorsna and am forming

a coreflection betweemSl,, anddLATS. There is only one reasonable way to
define the embeddinga

Definition 3.1 (TSI, < dLATS) For T atsi, let mgT) be the structure
(ST7iT7E7Tran7 |7LT7€)7

where, denoting by the equivalence relation induced byas in Definition 2.7,
» E = Tranr/~, the set ofv-classes of Traf;

» Tran= {({t)y, [t]~, (t)3) | t € Tranr };
» [t]- | [t']. ifand onlyif t i t/;

> (1)) = 1),

It follows from Lemma 2.8 and the definition ef that the definition of the
independence and labels on the eventmafT) is well given. It is now easy to
verify the following.

Proposition 3.2 The transition system ni&) is a dlats.

PROOF. AxiomALl is trivially satisfied. AxiomA2 is satisfied because df,1,

for, by definition of ma, two transitions carry the same event if and only if they
belong to the same-class in T. Concerning3 andA4, they correspond directly

to T,2 andT,,3, and the uniqueness criteria imposedAlg andA!4 are a direct
consequence ofl. Vv
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In order to definama as a functor, we need to define its action on the mor-
phisms ofTSl,.

Definition 3.3 (TSI, — dLATS) For (o,A,1): T — T’ a morphism oftsin,, let
ma((o,A, 1)) be(o,n,A), where
t].. if T(t) =t/,
()=

undefined ift(t)7.

That Definition 3.3 is well given follows from Lemma 2.10; it is also easy to
check thamais afull andfaithful functor, i.e., an embedding @15l in dLATS.

The obvious way to define the ‘abstracticeam to TSI, on the objects of
LATS is, for alats A, to make the transition$rany the elements of the transi-
tion setTranyma) and then interpret them (vig— >am(A)) simply by replacing the
event with its label. We shall prove that this gives a well-defined object-map from
the category of diamond-extensiotats to TSI,,,, and thadLATS is actually the
largest full subcategory dfATS whose every object is mapped aynto atsiy,.

Definition 3.4 (dLATS — TSl,,) For A alats, let an{A) be the structure
(Sasia,La, Tran (—),1),
where,
» (s,6,9) € Tran if and only if (s,€?,5) € Trana,
» ((s,e*9)) =(sa,9),
> (s,68,5) 1 (5,68,5) ifand only if & Ia e

Proposition 3.5 For A a lats, amA) belongs toT Sl if and only if A belongs to
dLATS.
PROOF. The pairs of transitions imA!3 and A!4 exist because of axion’3
and A4. If am(A) € TSI, their uniqueness is needed in order for @nto sat-
isfy axiomT,1. Suppose that, on the contrary, in the casé\t#f there are two
pairs (sl,xg,u),(SQ,x"i‘,u) and (s1, Y5, W), (S, ¥3, W) satisfying the condition. As-
sume, without loss of generality, that x,. Then we havésy, y3,w)
# (s1,X8, ), but we also have thds, €3, ) < (s1,Y3, W) (as transitions of arfA))
and(s, &3, %) < (s1,%,u), i.e., that(sy, X3, u) ~ (sl,jg,w), which contradictd 1.
The case foA!4 can be proved along the same lines, thus showing the necessity
of the unigueness conditions.

Concerning their sufficiency, the property of symmetry and irreflexivity for
lam(a) is inherited from A. It remains to check that the axion, 1-T 4 defining
tsin hold for an{A). AxiomsA3, A4 and A!3, Al4 ensure that if(s,€f,s1) <
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(s2,65,3), then @ = e,. It follows then by induction thafs, €],s1) ~ (S, €5, 3)
implies @ = e, for all (s,€f,s1), (s2,65,%3) € Trangy)- If in addition s= s, then
axiomA2 implies that $ = s3, and so(s, €], 51) = (S, 65, %), i.e., T 1 is satisfied.
Actually, this also implies tha,4 holds. For, since the independence in(@nis
inherited from that on the events in A, we have tlse¢?, s1) ~ (s, €5, 53) implies
1((s,€},51)) =1 ((s2,€3,%3)). This, as proved by Lemma 2.8, is equivalerf .
Finally, T2 and T,3 hold because of the correspondiAg andA4. v

The definition ofamon morphisms depends on the fact thATS morphisms
preserve independence on events.

Definition 3.6 (dLATS < TSl,,) For (o,n,A): A— A" a morphism oflats, let
am((o,n,\)) be(o,A, 1), where

H((s e d)) = 4 (0N 0(s)) it n(e)l,
7777 ] undefined if) (€)1

By inspecting Definition 3.4, it is easy to verify that the above definition
makes the diagram in Definition 2.9 commute. Moreover, it preseryesince
axiomsAl!3 andAl4 ensure thag; = e;, wheneve(s, €, u) < (s, €, U), i.e., since
n preserve independencaarn((o,r],)\)) is well defined.

In order to prepare for our main proof, we first prove the following lemma.

Lemma 3.7 For any T inTSly,, we have that amma(T) is isomorphicto T.

PROOF: (Sketch) We show that there is a bijecttoetween Tranand Tranm,mq)
such that(ids,id, , 8) and(ids, id ,8~1) are morphisms 6T S, respectively from

T to amomaT) and vice versa, inverses of each other. The obvious choice for
0(t) is ((t)1,[t] V2, (t)3). Observe that this gives an injective map because of ax-
iomT,1. V

The isomorphisms of 3.7 directly extends to a natural transformation
n = {(ids,id,8): T —amoma(T)}; s, : lrs1,, => @amoma

We shall prove now that such a transformation isuhg of an adjunction involv-
ing maandam, i.e., thatamis right adjoint toma: TSI, — dLATS.

Proposition 3.8 (na—am: TSI, — dLATS) For any A< dLATS and any mor-
phismm T — am(A) in TSl,,, there exists a unique morphism

m’: maT) — A indLATS such that arfim™) ont = m.

PROOF. Let m be(a,A,1). Clearly, by definition of am, lnmust be of the form
(0,Y,A) for somey: Epq1) — Ea. Itis easy to realize that the only possible choice
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for y is the following: for te Tranr andt(t){, lety([t]) = e, if 1(t) = (s,€%,9).

This is a well given definition, for Lemma 2.10 ensures that m maps all transitions
in [t] to the same--class of Tragm, ), and the proof of Proposition 3.5 shows
that if two transitions belong to the same-class of Tragya), they originate
from transitions in Trag carrying the same event. This proves both existence and
uniqueness of m Finally, it immediate to check that gm’)ont =m. v

Sincen is anisomorphism, by standard results in category theory, we have that
the adjunctiooma—am: TSI,, — dLATS is a coreflection, i.eTSl,, is coreflective
in dLATS.

Concerning the coreflection described in the previous section, it is immediate
to verify that the functors obtained by composimg andam with the inclusion
tm: TSI — TSI, and with the obvious inclusion @ ATS into dLATS coincide,
respectively, witha followed byeLATS — dLATS and withat followed bytm, as
illustrated in the following diagram.

TSImédLATS
am
|

TSIZ_ "’ eLATS

at

This supports our claim of Sl,, being aconservativeand minimal extension of
TSI, since regardingsi,, aslats, the extension corresponds exactly to removing
the constraintKx).

To complete our analysis, we identify trepleteimage ofmain LATS, i.e., the
full subcategoryndLATS of dLATS consisting of the objects isomorphicrita(T ),
for someT € TSI,,.

Recall from basic category theory thatLATS is determined by the coreflec-
tion: it consists of thosé € dLATS for which the corresponding componeaat
of the counitof ma— amis iso. Applying standard categorical results to degve
from (—)T andn, we find that it is the natural transformation

e = {(ids,,y,id,): macam(A) — A}, ars: Macam= lyiaTs,

where, for(s, €,s) € Tranma), Y([(S,€,5)]) = e. Clearly,ea is iso if and only
if yis such, i.e.,

(S,€1,51),(S2,€2,83) € Trama, €1 = € = (S,€1,51) ~ (S, €2,S3) € Tranyma),

which means that two transitions carry the same event if and only if they belong
to the same--class ofA (viewed as asin,). Expressed purely in terms bATS,
this is, as it was the case fdiSl, exactly the event-maximalATS. Observe
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that in Definition 2.5 the interesting, nontrivial choices Tolare those such that
@ C T C Tg i.e., those in which at least omdransition is added and at least one
e-transition is kept irA[T].

Proposition 3.9 (mdLATS = TSI,,) mdLATS is equivalent torSi,,.

PROOF Let A be a diamond-extensionats. We prove that the coursi is iso if
and only if A belongs tendLATS. To this purpose, lef be the event component
of ea.

If yis iso, i.e., for all(s,e1,s1), (S, €2,S3) € Trany we have that g= e im-
plies(s,e1,s1) ~ (S2,€2,S3), for any choice ok € Ex and anye C T C Tg, then
the condition in Definition 2.5 is satisfied, since, by the diamond-extensionality
of A, eitherA3 or A4 must fail for AT]. In fact, in order for AT] to be a
LATS, diamond-extensionality implies that we must hey/e;,s1) € T whenever
a(se;,s) ~ (s2,e,33) for some(sy,e,s3) € T, i.e., by the hypothesis gn T
should be & So A is event-maximal.

If yis not iso, i.e., if there exidts,e,s1) and (s, €,s3) such that(s,e s) %
(s2,€,53), then T={(s,€,5) | (s,€,5) ~ (s,€,51)} C Te is a nonempty set for
which the ‘splitting’ of e yields #ats, i.e., A is not event-maximal. v/

4 Conclusion

Based on a comparison between the model of asynchronous transition systems (a
model with explicitly defined events) and the model of transition systems with in-
dependence (a more abstract model, with a derived notion of events) carried out by
the authors in [10], we have introduced tin@nsition systems with independence
and multi-arcs— aconservativeandminimalextension of transition systems with
independence that features multi-arcs — showing that the ability of asynchronous
transition systems to model multi-arcs does not depend inherently on the choice
of having explicitly given events.

Adding multi-arcs to transition systems with independence constitutes a valu-
able enhancement to the model, which allows to model important situations in
which multiple transitions between the same states represent different events with
different causal histories.

Investigating the relationship between the category of transition systems with
independence and multi-arcs and the category of labeled asynchronous transition
systems that matches the one in [10], we have shown that the forowefective
in the category otliamond-extensiondbeled asynchronous transition systems,
which intuitively are those transition systems that make no confusion about the
identities of the events carried by transitions facing each other in independence-
diamonds. This coreflection provides a way to translate semantics forth and back
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between the two models. Finally, we have identified élkent-maximalabeled
asynchronous transition systems as the largest class of asynchronous transition
systems for which the coreflection cuts down toesuivalenceso providing a
precise characterisation of transition systems with independence and multi-arcs in
terms of labeled asynchronous transition systems.

The analysis carried out in this paper helps in deciding when it is necessary
to move to a more ‘intensional’ framework (a lower level of abstraction) in which
further distinctions of events are introduced by assigning them explicitly. The def-
inition of transition systems with independence and multi-arcs raises the threshold
by allowing a derived notion of event also when multi-arcs are required.
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