
B
R

IC
S

R
S

-96-60
B

engtsson
etal.:U

p
p
a
a
l

in
1995

BRICS
Basic Research in Computer Science

UPPAAL in 1995

Johan Bengtsson
Kim G. Larsen
Fredrik Larsson
Paul Pettersson
Wang Yi

BRICS Report Series RS-96-60

ISSN 0909-0878 December 1996



Copyright c© 1996, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent publications in the BRICS
Report Series. Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK - 8000 Aarhus C
Denmark

Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through World Wide
Web and anonymous FTP:

http://www.brics.dk/

ftp://ftp.brics.dk/

This document in subdirectoryRS/96/60/



UPPAAL in 1995∗

Johan Bengtsson† Kim G. Larsen‡

Fredrik Larsson† Paul Pettersson† Wang Yi†

ABSTRACT UPPAAL
1 is a tool suite for automatic verification of safety and

bounded liveness properties of real-time systems modeled as networks of timed au-
tomata [12, 9, 4], developed during the past two years. In this paper, we summarize
the main features of UPPAAL in particular its various extensions developed in 1995
as well as applications to various case-studies, review and provide pointers to the
theoretical foundation.

1 Introduction

UPPAAL is a tool suite for automatic verification of safety and bounded liveness
properties of real-time systems modeled as networks of timed automata extended
with data variables [12, 9, 4], developed during the past two years. In this paper, we
summarize the features of UPPAAL in particular the various extensions developed
in 1995 as well as applications to various case-studies, review and provide pointers
to the theoretical foundation.

In developing an automatic verification tool, there are two main issues to be con-
sidered: a user interface which should be easy to use and a model-checker which
should be efficient. UPPAAL consists of a graphical user interface based on Au-
tograph, that allows system descriptions to be defined graphically and a model-
checker that combines on-the-fly verification with a symbolic technique reducing
the verification problem to that of solving simple constraint systems [12, 9]. The
current version of UPPAAL is able to check for invariant and reachability proper-
ties, in particular whether certain combinations of control-nodes of timed automata
and constrains on variables are reachable from an initial configuration. Bounded
liveness properties can be checked by reasoning about the system in the context of
a testing automata. In order to facilitate debugging, the model-checker will report

∗This work has been supported by the European Communities (under CONCUR2 and RE-

ACT), NUTEK (Swedish Board for Technical Development) and TFR (Swedish Technical Re-
search Council)
†Department of Computer Systems, Uppsala University, SWEDEN. E-mail: {johanb, fredrikl,

paupet, yi}@docs.uu.se
‡BRICS (Basic Research in Computer Science, Center of the Danish National Research Foun-

dation), Aalborg University, DENMARK. E-mail: kgl@iesd.auc.dk
1The current version of UPPAAL is available on the World Wide Web via the UPPAAL home

page http://www.docs.uu.se/docs/rtmv/uppaal.



.q

.atg

.ta

‘‘no’’

‘‘yes’’

diagnostic
trace

search
engine

verifyta

atg2ta

hs2ta

checkta

trace
generator

constraint
solvers

FIGURE 1. Overview of UPPAAL

a diagnostic trace in case the verification procedure terminates with a negative
answer [10].

The current version of UPPAAL is implemented in C++. An overview of
UPPAAL is shown in Figure 1.

atg2ta A compiler from the graphical representation (.atg) of a network of timed
automata, to the textual representation in UPPAAL (.ta).

hs2ta A filter that automatically transforms linear hybrid automata where the
speed of clocks is given by an interval into timed automata [11], thus extending
the class of systems that can be analyzed by UPPAAL.

checkta Given a textual representation (in the .ta-format) of a network of timed
automata, checkta performs a number of simple but in practice useful syntactical
checks.

verifyta A model-checker that combines on-the-fly verification with constraint
solving techniques [12, 9].

2 Extensions in 1995

The UPPAAL model for real-time systems is networks of timed automata with
data variables. For detailed descriptions of the model, we refer to [9, 4]. The model-
checking algorithms implemented in UPPAAL are developed in [12, 9]. During the
past year, we have applied UPPAAL to a number of case-studies reviewed in next
section. To meet requirements arising from the case studies, the UPPAAL model
and model-checker have been further extended with new features. In the following,
we summarize the new features of UPPAAL developed during 1995:

Committed Locations. UPPAAL adopts hand-shaking synchronization between
components in a network. The very recent case-study on the verification of Philips
Audio Control Protocol with bus-collisions shows that we need to further extend

2



the UPPAAL model with committed locations to model behaviors such as atomic
broadcasting in real-time systems. The notion of committed locations is introduced
in [3]. Our experiences with UPPAAL show that the notion of committed loca-
tions implemented in UPPAAL is not only useful in modeling real-time systems
but also yields significant reductions in time- and space-usages in verifying such
systems.

Urgent Actions. In order to model progress properties UPPAAL uses a notion
of maximal delay that requires discrete transitions to be taken within a certain time
bound. However, in some examples, e.g. the Manufacturing Plant [6], synchroniza-
tion on certain channels should happen immediately. For this reason the UPPAAL

model was extended with urgent channels, on which processes should synchronize
whenever possible [4]. The notion of urgent channels (also known as urgent actions
in the literature) has been implemented in both HyTech and Kronos.

Diagnostic Traces. Ideally, a model-checker should be able to report diagnos-
tic information whenever the verification of a particular real-time system fails.
UPPAAL reports such information by generating a diagnostic trace from the ini-
tial state to a state violating the property. The usefulness of this kind of informa-
tion was shown during the debugging of an early version of Philips Audio-Control
Protocol [10].

3 Case-Studies

UPPAAL was applied to a number of case-studies and benchmark examples dur-
ing 1995, including: several versions of Fischers Protocol [1], two version of Philips
Audio-Control Protocol [5, 10, 3], a Steam Generator [2], a Train Gate Con-
troller [7], a Manufacturing Plant [6], a Mine-Pump Controller [8] and a Water
Tank [11].

In terms of complexity, Philips Audio-Control Protocol with bus-collision is the
most serious case-study where UPPAAL is applied so far. The protocol is devel-
oped by Philips to exchange information between components (e.g. amplifier, tuner,
CD-player, etc.) in one of their high-end audio sets. In [10] Philips Audio-Control
Protocol without bus-collision [5] was verified using UPPAAL. In the verification
of the protocol, the diagnostic model-checking feature of UPPAAL was used for
detecting and correcting several errors in an early description of the protocol2.
Recently a version of Philips Audio-Control Protocol with two senders and with
bus-collision handling was verified using UPPAAL. The result is reported in [3].
This case study is comprehensive compared with previous verification efforts of
real-time and hybrid systems described in the literature. During this case-study

2
UPPAAL installed on a Sparc Station 10 running SunOS 4.1.4, with 32 MB of primary

memory verifies that the received bit stream is guaranteed to be identical to the sent bit stream
in 3.6 seconds.

3



UPPAAL was extended with committed locations, allowing efficient modelling of
broadcast communication3.

4 Future Extensions

In this paper we have summarized the main features of UPPAAL in particular its
recent extensions as well as applications to various case-studies.

Our experience with UPPAAL during the past years shows that in verifying real-
time systems, space-consuming is a more serious problem than time-consuming as
a verification process must store not only control-nodes searched but also possible
clock values associated with the control-nodes. We have introduced the notion of
committed locations which is useful in modeling real-time behaviors, and also yields
significant reduction in memory-usage. As future work, we shall further develop
techniques for minimizing memory-usage. Future work also includes extending the
current model-checker of UPPAAL to check bounded liveness properties of [10]
and implementing the newly developed compositional model-checking technique of
[9].

5 References

[1] Martin Abadi and Leslie Lamport. An Old-Fashioned Recipe for Real Time. Lecture Notes
in Computer Science, 600, 1993.

[2] J.-R. Abrial. Steam-boiler control specification problem. June 1995. International Seminar
on Methods for Semantics and Specification.

[3] Johan Bengtsson, David Griffioen, K̊are Kristoffersen, Kim G. Larsen, Fredrik Larsson,
Paul Pettersson, and Wang Yi. Verification of an Audio Protocol with Bus Collision Using
UPPAAL. Submitted for publication, 1996.

[4] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL— a Tool Suite for Automatic Verification of Real–Time Systems. In Proc. of
the 4th DIMACS Workshop on Verification and Control of Hybrid Systems, Lecture Notes
in Computer Science, October 1995.

[5] D. Bosscher, I. Polak, and F. Vaandrager. Verification of an Audio-Control Protocol. In
Proc. of FTRTFT’94, volume 863 of Lecture Notes in Computer Science, 1994.

[6] C. Daws and S. Yovine. Two examples of verification of multirate timed automata with
Kronos. In Proc. of the 16th IEEE Real-Time Systems Symposium, pages 66–75, December
1995.

[7] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. A Users Guide to HyTech.
Technical report, Department of Computer Science, Cornell University, 1995.

[8] Mathai Joseph, Alan Burns, Andy Welling, Krithi Ramamritham, Jozef Hooman, Steve
Schneider, Zhiming Liu, and Henk Schepers. Real-time Systems Specification, Verification
and Analysis. Prentice Hall, 1996.

3The verification of Philips Audio-Protocol with Bus Collision was carried out using an ex-
tended version of UPPAAL installed on a SGI ONYX machine.

4



[9] Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems Symposium,
pages 76–87, December 1995.

[10] Kim G. Larsen, Paul Pettersson, and Wang Yi. Diagnostic Model-Checking for Real-Time
Systems. In Proc. of the 4th DIMACS Workshop on Verification and Control of Hybrid
Systems, Lecture Notes in Computer Science, October 1995.

[11] A. Olivero, J. Sifakis, and S. Yovine. Using Abstractions for the Verification of Linear
Hybrids Systems. In Proc. of CAV’94, volume 818 of Lecture Notes in Computer Science,
1994.

[12] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification of Real-Time Com-
municating Systems By Constraint-Solving. In Proc. of the 7th International Conference
on Formal Description Techniques, 1994.

5



Recent Publications in the BRICS Report Series

RS-96-60 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal in 1995. December
1996. 5 pp. Appears in Margaria and Steffen, editors,
Tools and Algorithms for The Construction and Analysis
of Systems: 2nd International Workshop, TACAS ’96 Pro-
ceedings, LNCS 1055, 1996, pages 431–434.

RS-96-59 Kim G. Larsen, Paul Pettersson, and Wang Yi.Compo-
sitional and Symbolic Model-Checking of Real-Time Sys-
tems. December 1996. 12 pp. Appears in16th IEEE
Real-Time Systems Symposium, RTSS ’95 Proceedings,
1995.

RS-96-58 Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul
Pettersson, and Wang Yi. Uppaal — a Tool Suite for
Automatic Verification of Real–Time Systems. December
1996. 12 pp. Appears in Alur, Henzinger and Sontag,
editors,DIMACS Workshop on Verification and Control of
Hybrid Systems, HYBRID ’96 Proceedings, LNCS 1066,
1996, pages 232–243.

RS-96-57 Kim G. Larsen, Paul Pettersson, and Wang Yi.Diagnostic
Model-Checking for Real-Time Systems. December 1996.
12 pp. Appears in Alur, Henzinger and Sontag, editors,
DIMACS Workshop on Verification and Control of Hybrid
Systems, HYBRID ’96 Proceedings, LNCS 1066, 1996,
pages 575–586.

RS-96-56 Zine-El-Abidine Benaissa, Pierre Lescanne, and Kristof-
fer H. Rose.Modeling Sharing and Recursion for Weak Re-
duction Strategies using Explicit Substitution. December
1996. 35 pp. Appears in Kuchen and Swierstra, editors,
8th International Symposium on Programming Languages,
Implementations, Logics, and Programs, PLILP ’96 Pro-
ceedings, LNCS 1140, 1996, pages 393–407.


