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Lexicon Acquisition through  
Noun Clustering

Anna Björk Nikulásdóttir & Matthew Whelpton

This paper describes an experiment with clustering of Icelandic 

nouns based on semantic relatedness. This work is part of a larger 

project aiming at semi-automatically constructing a semantic data-

base for Icelandic language technology. The harvested semantic clu-

sters also provide valuable information for traditional lexicography. 

1. Introduction

Semantic resources are already an established part of natural lan-

guage processing (NLP) applications for dominant languages. Fol-

lowing the Princeton WordNet (Fellbaum 1998) for English, many 

other languages have created their own WordNet-like resources 

(cf. http://www.globalwordnet.org). However, for less-resourced 

languages like Icelandic, the situation is much less favourable. Ice-

landic language technology (LT) has really only existed for about a 

decade (Rögnvaldsson et al. 2009) and despite a rich lexicographic 

tradition there have until now been no specially LT-oriented se-

mantic resources. Fortunately, over the last decade, the prerequisi-

tes for the application of (semi-)automatic methods in developing 

such semantic resources have now been created: a Part-of-Speech-

tagger, a shallow parser and a lemmatizer (Loftsson 2008; Loftsson 

and Rögnvaldsson 2007; Ingason et al. 2008). 

 In 2007, a pilot study was run to extract semantic relations 

from an Icelandic dictionary (Nikulásdóttir and Whelpton 2009; 

Nikulásdóttir 2007a; Nikulásdóttir 2007b); following the success 

of this study and parallel developments in the field, a work-pack-

age for the creation of a database of semantic relations was in-
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corporated into a major new project in Icelandic LT1. One central 

aim of the project is to experiment with known methods for the 

extraction of semantic relations and investigate how well they can 

be applied to Icelandic, given two significant factors: a) Icelandic is 

a highly inflected language; b) there are as yet no large corpora for 

the language. Most of the research in this area has focused on Eng-

lish which differs from Icelandic in both respects. To as great an 

extent as possible, we aim to exploit and develop methodologies 

which will be generally viable for other less-resourced languages 

with the support of open source tools.

 The methods for the extraction of semantic relations or other 

semantic information can be divided into a) pattern-based met-

hods and b) statistical methods. Pattern-based methods make use 

of syntactic and lexico-syntactic patterns as introduced by Hearst 

(1992), whereas statistical methods investigate statistical properties 

of language data. Following hybrid methodologies developed in 

recent years (Pantel and Pennachiotti 2008; Cimiano 2006; Ceder-

berg and Widdows 2003) we intend to exploit and to combine met-

hods from both approaches (Nikulásdóttir and Whelpton 2010). 

 In this paper we describe one statistical method for the ex-

traction of semantic information, namely clustering on the basis 

of semantic relatedness.  In sections 2 and 3 we discuss semantic 

relatedness and clustering in general. In section 4 we describe an 

experiment with the clustering of Icelandic nouns and how the 

results can be utilized for construction of a semantic database, as 

well as for lemma acquisition in traditional lexicography.

1 In 2009, the project Viable Language Technology beyond English – Ice-
landic as a test case received a three year Grant of Excellence from the 
Icelandic Research Fund RANNÍS
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2. Semantic relatedness

Relations between words or concepts in semantic databases in the 

style of the Princeton WordNet (Fellbaum 1998) are predomi-

nantly classical semantic relations like hypernymy and synonymy. 

An extension of the set of classical relations is evolving in different 

resources: DanNet (Pedersen et al. 2009) e.g. uses the CONCERNS 

relation to express a general topic-relatedness of two concepts, 

(goal CONCERNS sport) and Boyd-Graber et al. (2006) have 

conducted experiments in enriching WordNet with a directed, 

weighted “evoking” relation. The evoking relation describes how 

strongly one concept evokes another one, e.g. car evokes road.

 The Swedish SALDO resource (Borin and Forsberg 2009) is 

not designed along the lines of WordNet, but rather uses loosely 

characterized associative relations as its structuring principle. 

 We believe that a semantic database for NLP applications could 

profit from such loosely characterized relations alongside the clas-

sical semantic relations. One way to harvest such relations is to 

use measures of semantic similarity or semantic relatedness. The 

definition of semantic similarity has been rather vague (Manning 

and Schütze 1999:296), but it is  now generally accepted that se-

mantic similarity should be distinguished from semantic related-

ness, which is a more general relation. Some scholars (cf. Resnik 

1995:448) have treated the two kinds of relation as orthogonal to 

each other: so car and wheel are related by a specific classical rela-

tion – meronymy; and yet they are not similar to each other in the 

way that, say, car and bicycle are. We follow Budanitsky and Hirst 

(2001:29) in treating semantic relatedness as an umbrella term for 

a range of semantic relations including not only semantic simila-

rity (car~bicycle) but also “lexical relationships such as meronymy 

(car-wheel) and antonymy (hot-cold), or [...] any kind of functio-

nal relationship or frequent association (pencil-paper, penguin-
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Antarctica).”  A more thorough discussion of semantic similarity 

and semantic relatedness can be found e.g. in Zesch and Gurevych 

(2009) and Turney (2006).

 For the automatic extraction of semantic information, pat-

tern-based methods (cf. Hearst 1992) are commonly used for the 

extraction of classical semantic relations such as hypernymy and 

meronymy. These methods use reliable lexico-syntactic patterns, 

like NP
1
 such as NP

2
 ((, NP)* (and NP

n
))* and extraction rules. In 

this example a description of the respective rule would be “if NP
1
 

is followed by such as and NP
2
 (and possibly an enumeration of 

nominal phrases), then NP
1
 represents a hypernym of NP

2
 (and 

the other NPs, if present). Given for example the sentence: sports 

such as soccer, handball and basketball ... one would extract (soccer 

HYPERNYM sport), (handball HYPERNYM sport) and (basketball 

HYPERNYM sport).

 There are two main approaches to the automatic computation of  

the less well-defined semantic relatedness: a) to use knowledge sour-

ces like WordNet and Wikipedia, where paths between concepts or the 

glosses/definitions build the basis for measures of  relatedness (Zesch 

and Gurevych 2009; Pedersen et al. 2004; Budanitsky and Hirst 2001; 

Resnik 1995); and b) to apply distributional methods to text corpora 

(Bullinaria 2008; Cimiano 2006; Weeds 2003; Cederberg and Wid-

dows 2003; Manning and Schütze 1999).  In this paper we follow the 

second of these approaches and describe an experiment using the di-

stributional method of semantic clustering, based on co-occurrences 

of nouns and common content-bearing words (mainly nouns, verbs, 

adjectives). As is described in Section 3, the notion of “co-occurrence” 

used here is purely collocational (i.e. the co-occurrence of the target 

word with common content-bearing words); however, we also note 

the success of Cimiano (2006) and Weeds (2003) in measuring distri-

butional similarity with respect to grammatical functions, especially 

with respect to direct objects. Application of this method for Icelandic 

awaits future work.
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 Such general semantic relatedness is important because it can 

be used as a “confidence measure” to validate specific semantic re-

lations extracted with other methods (such as the pattern-based 

methods mentioned earlier). As an example, Cederberg and Wid-

dows (2003) use general semantic relatedness to rank their hypo-

nymy results, extracted using lexico-syntactic patterns. In doing 

so, they achieved a 30% reduction in error. We have already con-

ducted initial experiments with this method, and intend to imple-

ment it on a broader basis (Nikulásdóttir and Whelpton 2010).

3. Distributional similarity and clustering

The fundamental assumption underlying distributional methods 

for computing semantic relatedness is that the semantic properties 

of a word determine the context they appear in. Thus, words ap-

pearing in a similar context are likely to be semantically related. 

The basic method therefore involves compiling distributional in-

formation on a set of target words with respect to some uniform 

definition of context. 

3.1. The list of target words

The list of target words is generated using a text corpus. At the mo-

ment a balanced PoS-tagged, lemmatized corpus, Mörkuð íslensk 

málheild (MIM), is being developed at the Árni Magnússon Insti-

tute for Icelandic Studies (Helgadóttir 2004). The planned size of 

this corpus is about 25 million tokens, a reasonable size but still 

not especially large. For our present studies we use a subset of a 

preliminary version of this corpus (hereafter, SubMIM) contain-

ing about 8.8 million tokens, including punctuation marks etc. 

The source of this data is mainly newspaper texts (Morgunblaðið, 

a selection from the years 2000-2007), but further texts come from 
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a public science web portal at the University of Iceland (http://

visindavefur.is), reports from Icelandic ministries, and from a 

med ical Journal (Læknablaðið). 

 The tagging and lemmatizing was performed using the PoS-

tagger IceTagger and the lemmatizer Lemmald, both included in 

the open source IceNLP-toolkit.2  

 The list of target words in our experiment is composed of tho-

se nouns which occur at least 18 times in SubMIM, approximately  

11,500 nouns. To reduce noise, we removed the 100 most frequent 

nouns from the list, leaving 11,400 nouns. It should be noted that 

the original lists consisted of automatically lemmatized word 

forms. Incorrect lemmata were deleted but not corrected, and thus 

the lists do not mirror 100% the frequency relations in the corpus 

and the analysis does not account for wrongly lemmatized words. 

With the correction of the lemmatization these lists will change.

3.2. Defining context – words and windows

Semantic similarity is computed for a set of target words with re-

spect to some uniform definition of context. There are a num-

ber of ways of defining “context”. In our case, we assessed the 

co-occurrence of our target words with respect to a list of high 

frequency content-bearing words. Our initial plan was simply to 

use a general frequency list for Icelandic, purged of stop words3 

(1000 words total). However, this list includes words not present 

in the 2,000 most frequent words from SubMIM. It was therefore 

decided to replace those words which occurred on the general list 

but not on the SubMIM list with words from the SubMIM list, 

giving a hybrid 1,000 word list. To reduce noise, the 100 most fre-

quent words were then removed, giving a final list of 900 words.

2  http://sourceforge.net/projects/icenlp

3 Another approach is taken by Bullinaria (2008), who does not remove 
stop words from the list of context words.
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 Information was then collected for every target noun on how 

often it occurred within a 25 word window of each of these 900 

context words: i.e. the number of times a context word occurs 

within 12 words before or 12 words after a target noun. This in-

formation was represented in a matrix with the target nouns la-

beling the rows and the common content words labeling the co-

lumns. Each cell therefore contains the number of times a target 

noun (row) co-occurs with a content word (column). (See Table 1 

below.)

 Significant parameters which affect the characteristics of this 

co-occurrence matrix, and hence the overall results, include (cf. 

also Bullinaria 2008): the size and quality of the corpus being used 

and the information represented in the corpus, i.e. our corpus is 

part-of-speech tagged and lemmatized allowing us to extract the 

noun lemmata; the choice of the context words (the compilation 

of our list of 900 frequent content-bearing words represents in it-

self a range of significant choices); and the size of the co-occurren-

ce window (e.g. co-occurrence could mean simple adjacency or a 

window of increasing length, up to perhaps 100 words).

 To give a simple example of co-occurrence from our cor-

pus, the target words þvottahús ‘laundry room’ and baðherbergi 

‘bathroom’ co-occur with the context word íbúð ‘flat, apartment’ 

within a window of 25 words:

... hafa sérgeymslur inni í íbúðunum, bað með aðstöðu fy-

rir þvottavél, auk sameiginlegs þvottahúss og sameiginle-

grar geymslu ...

... íbúðirnar afhendast fullbúnar án gólfefna en baðherber-

gi er flísalagt ...

In processing these snippets the program increments a counter for 

both target words in the cell representing the context word íbúð. 
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If þvottahús and baðherbergi generally share similar contexts in 

the corpus, i.e. both mostly appear near the same context words, 

their similarity value will be high4. Note how in the (fictive) co-

occurrence matrix shown in Table 1 the top three target words 

share similar context, whereas literature and cod have different dis-

tributions: 

cw 1 cw 2 cw 3 cw 4 cw 5 cw 6
dining room 7 0 5 10 0 0
bathroom 11 0 9 9 0 0
laundry room 8 0 9 11 0 0
literature 0 8 0 0 0 0
cod 0 0 0 0 14 23

Table 1: An example of a co-occurrence matrix (cw = context word)

3.3. Similarity measures

To assess semantic relatedness, the rows in the co-occurrence ma-

trix (representing the distribution of individual target nouns) 

must be compared. To increase the information content of the co-

occurrence counts, the raw count data has to be transformed, e.g. 

by a logarithmic value (for different measures see e.g. Manning 

and Schütze 1999; Sahlgren 2006; Bullinaria 2008). The compa-

rison of two rows follows through a similarity measure. The most 

common similarity measure used in measuring semantic related-

ness is the so-called cosine similarity measure (cf. Manning and 

Schütze 1999). This measure gives a similarity value between 0 and 

1, such that words with very different distribution have a simila-

rity value closer to 0 but those with a very similar distribution 

have a similarity value closer to 1. Parameters which have an affect 

4 These snippets also contain other target words, but for illustrative rea-
sons only two are discussed in the example – likewise some words can 
be both context and target words, and in some approaches this holds for 
every word.
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on results in this case concern the methods for transforming raw 

count data and the choice of similarity measure.

 In summary, it is possible to process a corpus and to compute 

the similarity of the distribution of words of interest. Similarity 

values gained in this way are seen as an estimate of the semantic 

relatedness between words.

3.4. Clustering methods

The similarity information described so far concerns the simila-

rity of individual word pairs, such as laundry room and bathroom. 

However, such information across all the nouns in a corpus can 

be used to produce clusters of nouns, where clustering is based on 

their relative similarity to each other. From a lexical semantic point 

of view, the ideal cluster would fall under a superordinate concept 

or semantic domain. An important challenge for clustering is that 

it is not known in advance how many such superordinate concepts 

or domains are evoked by nouns in the corpus.

 A clustering algorithm must therefore group the words solely 

on the basis of their similarity values; identification and labeling 

of the superordinate domains which result from successful cluste-

ring must be performed manually. Continuing with the example 

of laundry room and bathroom, the algorithm might group these 

words together with dining room, bedroom, child’s bedroom, en-

trance, garage, wardrobe, parquet, etc. It is, however, the task of a 

human assessor to label this cluster, for example with the concept 

HOUSE. 

 As with the other measures mentioned above, many clustering 

algorithms exist. In our experiment described in the next section 

we used the k-means clustering algorithm, with some adjustments. 

The interested reader can find good descriptions of k-means and 

other algorithms for example in Manning and Schütze (1999) and 

Duda et al. (2001).
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4. Experiment: Clustering of nouns in Icelandic

In the following we describe an assessment of an experiment clu-

stering Icelandic nouns according to semantic relatedness. We use 

two different statistics based on co-occurrence counts of words 

and cluster the data using adjusted k-means. First, an overview 

of the general approach and results is given, and then sections 4.2 

and 4.3 describe manual assessment of selected clusters, an expert 

validation and a comparison to the Icelandic Dictionary respec-

tively.

4.1. General results

We use two different measures to transform the raw co-occur-

rence counts in the co-occurrence matrix containing rows of tar-

get words and columns of context words: a logarithmic measure 

(Manning and Schütze 1999:302) and Positive Pointwise Mutual 

Information, PPMI (Bullinaria and Levy 2007)5. As a result two 

distinct matrices are produced, a) the log co-occurrence matrix 

and b) the PPMI co-occurrence matrix. These matrices form the 

input for the clustering algorithm, where the cosine similarity 

measure is used to compute similarity of distributions (i.e. rows 

in the matrix). The results of the clustering based on the log co-

occurrence matrix show 79 clusters, each containing from 9 to 192 

words, whereas the PPMI matrix results in 76 clusters with 4 to 

198 words. The cluster content is automatically ranked according 

to how close a word is to the word considered being “in the mid-

dle” of the cluster. 

5 PPMI is a statistical method based on conditional and overall proba-
bilities, used to increase the information content of raw co-occurrence 
data. We avoid technical details here but interested readers can find a 
more thorough account in the reference provided.
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 From a shallow screening of the clusters, it seems that 60 clu-

sters from the log matrix can be characterized by a subsuming 

concept and 59 clusters from the PPMI matrix. As the clustering 

is completely unguided – i.e. no pre-defined categories are given 

– the resulting clusters have different ontological status: scienti-

fic domains (BIOCHEMISTRY, BIOLOGY), concrete things 

(HOUSE, VEHICLE), domains containing mostly proper nouns 

(FOOTBALLERS, MUSIC/MUSICIANS) domains from public 

discourse (POLITICS, FINANCES/BUSINESS), etc.

 We will now report on a preliminary manual assessment of 

these clusters. Lacking a gold standard to evaluate these results, we 

selected one domain for manual assessment, the domain of finan-

ces and business. In the following we describe the examination of 

these clusters. 

4.2. Expert validation

For the expert validation, two employees of a bank were asked to 

rate relatedness of words to the domain of finances and business. 

4.2.1. Clusters for expert validation

The clusters used in this part of the assessment come from the 

partition based on the log transformation measure. This partition 

includes five clusters related to the domain of finances and busi-

ness, each of them containing from 74 up to 173 words, all in all 

555 words. We selected the 50 top words from each cluster for the 

validation.

4.2.2. Validation by finance professionals

To evaluate to what extent the words in the clusters are related to 

the domain of finance and business, two employees from a bank 

were asked to rate the words from the clusters described in Section 
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4.2.16. Four scores were possible: 3 – very related to the domain; 

2 – fairly related to the domain; 1 – not particularly related to the 

domain; 0 – not at all related to the domain. This method produ-

ced an interesting result with respect to domain-specificity: the 

bankers were both so focused on the banking domain that words 

obviously related to the business domain, like samsteypa ‘con-

glomerate’ and sölufyrirtæki ‘a selling company’, were rated as 0. 

Even company names (such as the well-known bank, Glitnir) were 

mostly rated with 0, sometimes with 1. Given this domain-bias, 

only the results from the two clusters directly related to banking 

proved to be useful and they are the focus of this assessment.

 The inter-annotator agreement with respect to the four scoring 

categories was 65%; however, grouping the positive scores (very/

fairly related) and the negative scores (little/not-at-all related) in-

creased inter-annotator agreement to 80%. 

score banker 1 banker 2
3 58 55
2 22 16
1 16 25
0 4 4

Table 2: Rating results from two employees of a bank, rating words in 
two clusters, each containing 50 words.

As shown in Table 2, according to banker 1, 80% of the words in 

the two clusters are very or fairly related to the banking domain 

and 71% according to banker 2. Taking only the inter-annotator 

agreement into account, 64% of the words in the two clusters are 

very or rather related to the domain. This degree of agreement is 

not especially high, though one has to bear in mind, that “there 

exist numerous equally valid alternative ways” of doing manual 

categorization (Bullinaria 2008:5).

6 We want to thank the two employees at Íslandsbanki for their assess-
ment.
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4.3. Comparison with the Icelandic Dictionary (ÍO)

The purpose of the comparison with ÍO is twofold: to find out a) 

whether a data-driven method like this adds anything to the infor-

mation already in the dictionary and b) whether the classification 

of those words present in the dictionary matches the clustering 

results7. This part of the assessment also concerns the domain of 

finance and business.

4.3.1. The Icelandic Dictionary (ÍO)

ÍO originates in the first general monolingual Icelandic dictio-

nary from 1963: Íslenzk orðabók handa skólum og almenningi ‘An 

Icelandic Dictionary for Schools and the General Public’. All later 

editions and revisions build on this version and no general moder-

nisation has taken place. 

 The following assessment concerns the coverage of lemmata in 

ÍO. We will therefore report briefly on the lemma list and defini-

tion vocabulary. A substantial part of the lemmata in the first ver-

sion (1963) comes from a bilingual Icelandic-Danish dictionary 

from 1920-1924: Íslensk-dönsk  orðabók (Kvaran 1998). Even in the 

second edition of ÍO (1983), there is a bias towards dated vocabu-

lary, but we are not aware of whether the planned correction of 

this bias back towards contemporary usage (Árnason 1998)  has 

been performed. Árnason also notes that ÍO has inconsistent defi-

nition texts and unclear objectives for the selection of lemmata.  It 

has furthermore been determined that c. 42% of the definition vo-

cabulary did not form lemmata in the 1983 edition (Bjarnadóttir 

1998). There is a lexicographical rule stating that derivatives and 

compounds built by productive word formation rules where mea-

ning and form are predictable from the parts need not become 

7 We started the comparison also using Stóra orðabókin um íslenska mál-
notkun ‘The Large Dictionary of Icelandic Language Use’ (Jón Hilmar 
Jónsson 2005), but the coverage of the finance/business domain words 
was too small to be of use.
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lemmata in a standard dictionary. However, this rule has not been 

consistently followed in ÍO (cf. Bjarnadóttir 1998:39):

eiturbikar bikar með eitri í poison goblet a goblet containing poison

eplakaka kaka með eplum í apple cake a cake containing apples

Yet even taking into account this rule (and other lexicographical 

lemma selection rules), Bjarnadóttir concludes that about 6,300 

lexemes, or 12% of the definition vocabulary, are missing from the 

lemma list. It is thus apparent that the construction of the lemma 

list in ÍO has not followed strict guidelines, and the reasons for 

a word being included or not included in the lemma list are not 

always clear-cut.  

 Since the year 2000, ÍO has been accessible on the web (http://

snara.is) and that is the version which we use for our experiment.

4.3.2. Clusters for the dictionary comparison

Both partitions (the one based on log and the one based on PPMI) 

include five clusters related to the domain of finances and busi-

ness. The log-clusters have a total of 555 words and the PPMI-

clusters a total of 582 words, with 458 words being common to 

both partitions. As with the clusters for the expert validation, the 

50 top words from each cluster were selected. The resulting lists 

were merged, thus erasing the partition into distinct clusters and 

removing duplicates, and all proper nouns were deleted. The final 

list for the comparison with ÍO consists of 260 common nouns.

4.3.3. Lemma coverage

The first test concerns the question of how many words from the 

test list are lemmata in ÍO. Of the 260 selected words, 147 or 56.5% 

appear as a lemma in ÍO. Another 17 words, all compounds, are 

included in one of the compound lists within the definition of 

many lemmata. This means that 96 words or 36.9% are not listed 



nikulásdóttir & whelpton

155

in the dictionary. Some of these words are productive compounds, 

often avoided in dictionaries, like compounds with heildar- ‘total’: 

heildarvelta ‘total turnover’, and heildarútflutningur ‘total export’ 

(but recall that the dictionary lemma list also contains many pro-

ductive compounds, see section 4.3.1). Given that our resource is 

intended for NLP applications, we want our database to include 

such compounds, as this will save applications from having to de-

code them individually.

 Another possible reason for a word being or not being in the 

dictionary is frequency. The 260 words in the finance/business list 

appear from 18 to 134 times in SubMIM. The ten most frequent 

words are all lemmata in the dictionary, but other high frequency 

words like markaðsvirði ‘market value’ (81 occurrences), hönnu-

narfyrirtæki ‘design company’ (80 occurrences), eignarhaldsfélag 

‘holding company’ (70 occurrences) and yfirtökutilboð ‘take-over 

bid’ (70 occurrences) are not. Also low frequency words are either 

in the dictionary (smásöluverð ‘retail price’) or not (smásölustig 

‘retail level’) – both words appear only 18 times in the corpus.

Figure 1: Frequencies of words from the finance/business domain listed 
and not listed in ÍO (the highest frequency numbers are left out to 
make the graph better readable)

Figure 1 shows the frequency distribution of the 260 words, se-

parated by occurrence and non-occurrence in ÍO. This suggests 
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that our clustering technique does indeed provide useful results 

for extending dictionary coverage.

4.3.4. Domain labeling

The second evaluation task regarding ÍO was to compare the 

classification of the words listed in the dictionary with the clu-

ster domain. ÍO has the domain label viðskipti/hagfræði ‘business/

economics’. Of the 147 words listed as lemmata, 52 or 35.4% have 

this domain assignment. Four words are assigned to the domain 

stjórnsýsla ‘administration’; ál ‘aluminium’ and dísilolía ‘diesel’ are 

assigned to eðlis-/efnafræði ‘physics/chemistry’, though they can 

also be seen as related to economics. Three unrelated words have 

other domain assignments. That leaves 86 words without any do-

main assignment: of these, words like lánsfé ‘loan capital’, afborgun 

‘amortization’, and bankareikningur ‘bank account’are all strongly 

related to the finance domain; however, these 86 words also in-

clude items that are completely unrelated to the finance domain, 

such as kindakjöt ‘mutton’, vín ‘wine’, and varahlutur ‘spare part’. 

Once again, our clustering technique does provide useful results 

for extending the domain information in the dictionary, though 

for this very reason it makes the dictionary an ineffective reference 

point for the assessment of cluster quality.

5. Conclusion
 

We have described one method for extracting semantic informa-

tion from text. These results will contribute to the development 

of a semantic database for Icelandic language technology. The 

methods described here will be used alongside other techniques 

(cf. Nikulásdóttir and Whelpton 2010), in the belief that a hybrid 

methodology (Pantel and Pennachiotti 2008; Cimiano 2006; Ce-

derberg and Widdows 2003) will yield the highest quality results 
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from limited resources. The results reported here also suggest that 

clustering by semantic relatedness can be of great use to traditio-

nal lexicography in discovering potential lemma candidates.
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