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Abstract

A language design development process is presented which leads to a language,

gbeta, with a tight integration of virtual classes, general block structure, and a

multiple inheritance mechanism based on coarse-grained structural type equiva-

lence. From this emerges the concept of propagating specialization. The power

lies in the fact that a simple expression can have far reaching but well-organized

consequences, e.g., in one step causing the combination of families of classes,

then by propagation the members of those families, and �nally by propagation

the methods of the members. Moreover, classes are �rst class values which can

constructed at run-time, and it is possible to inherit from classes whether or

not they are compile-time constants, and whether or not they were created dy-

namically. It is also possible to change the class and structure of an existing

object at run-time, preserving object identity. Even though such dynamism is

normally not seen in statically type-checked languages, these constructs have

been integrated without compromising the static type safety of the language.
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Chapter 1

Introduction

This thesis is about the design of object-oriented programming languages, view-

ed through the development of a particular language, gbeta, as a generalization

of the language Beta. This generalization provides bene�ts in two main areas:

the abstraction mechanisms are made even more expressive, and the run-time

�exibility is improved without compromising the static type safety.

A recurring topic in this thesis is how the activity of programming is managed

by human beings, and how the technical programming language design decisions

can be put into perspective as being motivated, ultimately, by the e�ects they

have on human beings who work with programs. This aspect of the thesis is

of course quite subjective since it is concerned with matters which are far too

complex to formalize, and it is therefore a personal message which is useful

only to the extent that it �ts into some other persons subjective view of these

matters�in particular if it is not a perfect �t but rather a nagging partial �t that

spurs rethinking of some otherwise unquestioned assumptions. However, this

perspective is applied in context of a lot of technical content which constitutes

the actual language design, so we will elaborate some more on that.

Beta already o�ers very strong abstraction mechanisms via the support

for virtual classes in the context of general block structure; gbeta generalizes

the foundation, building on a coarse-grained structural type equivalence and

supporting multiple inheritance. With the tight integration of these features

in gbeta, a concept of propagating specialization emerges. With propagating

specialization it is possible to, e.g., combine aspects of families of classes: One

class family aspect, Conc, might deal with concurrency control, and another,

Impl, with implementation. The expression Conc&Impl would then combine the

two class family aspects, �rst the families Conc and Impl, then by propagation

the members of the class family, and �nally by propagation the methods of the

members. As a result, each method in each member of the class family can be

equipped with several aspects using just one simple top-level expression.

One common trend in the development of gbeta from Beta is the support for

many new possiblities normally associated with languages without static type

checking, and doing this without destroying the safety guarantees provided by

1



2 CHAPTER 1. INTRODUCTION

static type checking. Firstly, it is possible to create classes at run-time and use

them just like other classes. Secondly, objects can be specialized dynamically,

i.e., an existing instance of a class C can be morphed into an instance of a more

specialized class C' without disrupting the object identity. Thirdly, it is possible

to inherit from virtual classes and to specify specialization relations between

virtual classes such that classes which are not known at compile-time are still

known to have certain well-de�ned relations. Finally, by means of inheritance

from class variables it is also possible to inherit from a class which is constructed

dynamically.

All these dynamic constructs are unusual in the context of a language with

static type checking, but they are integrated in such a way that they do not

disrupt the type safety of other constructs. As an analogy, consider a sim-

ple functional language supporting only multiplication of integers modulo some

prime number p, having no run-time errors. Now add a division operator. With

the enhanced functionality comes a new run-time error, �Divide by zero!�,

but the multiplication operator is still safe, and even though division may fail

it will not produce ill-de�ned results�it will either fail immediately or produce

results which are every bit as sound and safe as all other numbers. Returning

to gbeta, an example would be that the creation of a new class may fail due

to a well-formedness criterion which cannot always be checked during static

analysis, but when creating instances of a class it is equally safe whether or

not that class was created dynamically. Moreover, all constructs�including

the new, dynamic ones�are statically checked with respect to name lookup, so

MessageNotUnderstood errors cannot occur.

1.1 Readers Targeted

An obvious purpose of writing a PhD dissertation is to obtain the degree, hence

it would be conceivable to target only the few, selected specialists in the topic

area who are involved in the graduation process. However, my motivation for

doing research is to improve the state of the art, in order to obtain profoundly

improved solutions to known problems, to go beyond the realm of known prob-

lems into the realm of new possibilities, and�last but not least�to experience

the joy of creation and collaboration around creation. For this, the natural

target is the computer science world at large.

To mediate between such a highly specialized group of readers and the world

at large I decided to describe the expected reader of this dissertation as follows:

A computer science professional or student who : : :

� is interested in programming language design and implementation.

� does not necessarily know Beta, but knows some object-oriented language

at least from a user's point of view.

� has some common knowledge about the object-oriented tradition, such

that slogans like �code reuse is good� or �conceptual modeling is good,
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code reuse is just a derived bene�t� make sense and possibly generate

some arguments against or in favor.

This description outlines the background topics assumed to be well-known,

hence it describes information deliberately missing from this dissertation. From

a positive point of view, the contributions of this work would be of interest for

specialists who are working with the design, implementation, or speci�cation of

statically typed object-oriented languages, speci�cally : : :

� inheritance mechanisms, virtual classes, genericity.

� general block-structure (inner classes), advanced name-binding (scoping).

� method combination, class combination, systematic propagation of such.

� classes and methods as more-than-usual �rst class entities.

� dynamic classes and dynamic object specialization (extension).

� type analysis for such systems.

� the trade-o� between name equivalence and structural equivalence.

Moreover, crossing the border of �just� language design into a broader topic

area, the results presented here are also closely related to the following:

� aspect-oriented programming, subject-orientation.

� activities, object collaborations.

1.2 Organization

The chapters of this thesis are quite di�erent; some are concerned with the

conceptual framework around gbeta and Beta�at this level there is little dif-

ference between the two�and others present and motivate technical details of

certain language constructs or brie�y survey the approaches to speci�c topics

in other programming languages; yet others focus on software engineering as-

pects or on the implementation of gbeta. Finally, some chapters present partial

formalizations of the semantics and static analysis.

Chapter 2 establishes the basic concepts such as objects and patterns, with

an emphasis on the underlying conceptual framework which puts these concepts

into perspective. It then goes into a brief presentation of the concrete language

constructs which support these basic concepts, deferring a large amount of detail

to later chapters.

In Chap. 3, patterns are treated in great detail. Since the concepts are so

tightly integrated, this chapter also introduces mixins which are the building

blocks that patterns are made of, and it introduces objects, since they are to

such a large extent determined by their associated patterns. Moreover, the

mechanism which is used throughout to create new patterns from existing ones,
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the C3 linearization algorithm, is introduced, formalized, and some soundness

properties about it are proved. Inheritance of attributes and specialization of

behavior is covered, and the rule for name lookup within an object is presented.

Finally, the notion of quali�cations, which is similar to declared types of refer-

ences in other languages, is presented.

Some pattern attributes are bound to pattern values by means of a uni�-

cation process which actually drives the entire propagation machinery, namely

virtual pattern attributes, and they are covered in Chap. 4.

The next chapter, Chap. 5, discusses the notion of block structure and the

associated notion of context dependency, and motivates why that might actually

be considered the essence of object-orientation even though block structure has

had an unstable and often rather low popularity in the object-oriented commu-

nity and elsewhere.

The interplay between block structure and virtual pattern attributes is the

essential basis on which the capability for propagating specialization relies. How

this works is covered in Chap. 6.

Chapter 7 goes on to another unusual feature in a statically type checked

language, namely the capability of gbeta to support the creation of new classes

and methods at run-time. The �rst part of this chapter argues that it is indeed

justi�ed to call these features `dynamic' even though they are kept under strict

control by the static analysis.

Finally, Chap. 8 presents a number of miscellaneous functionality related

enhancements in gbeta, some of which are not backward compatible with Beta;

and Chap. 9 presents a few mechanisms which were added to gbeta in order

to solve some problems with the expressiveness and/or safety properties of the

Beta static analysis. Programs using the former enhancements can generally be

rewritten to an equivalent form that do not use these enhancements, by means of

local changes to the source code. In contrast, the latter improvements, the ones

related to the static analysis, allow the expression of type safe designs which

could not expressed safely in any similar design without these improvements.

This concludes the direct treatment of the language gbeta. After that, in

Chap. 10, the modularization system in gbeta is presented. This is the fragment

language, and the only di�erence between the fragment language in gbeta and

in Beta is that the gbeta implementation is more general�because it skips over

some hard problems in the area of separate compilation. Nevertheless, the more

general implementation of the fragment language may work as an illustration

of how important it is to try to implement it more completely than is the case

with Beta today.

The two next chapters present two more formally strict descriptions of two

small languages which exhibit the core properties of gbeta, but avoid a large

amount of complications from all the non-core constructs which exist in order

to make gbeta a practical language. It was for a long time an important goal to

formalize gbeta as a whole, but it seems that concrete language design bears a

rich motivation in itself whereas a rigid formalization may appear to be a more

mundane task of cleaning up the results achieved elsewhere.

The short Chap. 14 concludes, and thereby marks the end of the main part
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of this thesis. The appendices which follow after Chap. 14 give additional details

about certain topics which have been covered more brie�y throughout the earlier

chapters. Appendix A gives the complete, context-free grammar for gbeta. The

proofs for some properties of the linearization algorithm appear in App. B. The

next appendix, App. C, contains the original presentation of the Expression

Problem, as it was given by Philip Wadler on the Java genericity mailing list

in the autumn of 1998; this is used in Chap. 9.4. Appendix D presents each of

the instructions in the special virtual machine for execution of gbeta programs,

making it easier to �nd an estimated upper bound of the detailed time and

space complexity of the execution of gbeta programs.

Since the chapters of this thesis are so di�erent in content, it might be ben-

e�cial to separate the di�erent kinds of topics and create, say, several selective

tables of content which simply omit references to all the parts of the thesis which

are concerned with all other perspectives than the one in focus for that partic-

ular table of content. This would make it possible to read some parts of the

thesis in order to learn about the concrete language syntax and semantics, skip-

ping all the more philosophical considerations about the conceptual framework

etc. However, this would not be an easy task, exactly because it is one of the

main points of the thesis that all these perspectives must be brought together

in order to do serious language design, so to the extent that this has actually

been achieved it will be almost impossible to read about one aspect in isolation

because there will be cross-references to all the other aspects which would then

be hard to understand.
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Part I

The Language gbeta
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Chapter 2

Basic Concepts

Coming from the Scandinavian tradition of object-orientation, and in particular

having its roots in Beta, gbeta has a terminology which is in some ways non-

standard. It might seem that the unusual terminology is an unjusti�ed added

di�culty, making it harder for the general public to understand and judge the

value of the contributions of this community. However, the unusual words often

denote unusual concepts (e.g. pattern), and in these cases a non-standard word

is obviously called for. Moreover, some words which are used everywhere (e.g.

object) have a di�erent meaning. Hence, these basic concepts need to be intro-

duced carefully; the next section introduces objects and patterns at an abstract

level, and the following sections of this chapter introduce concrete language

constructs for patterns, objects, and other basic aspects of gbeta.

2.1 Objects and Patterns

The following discussion introduces the conceptual foundation for gbeta, com-

plementing the conceptual framework for Beta, of which a detailed presentation

can be found in [74, ch. 18]. This treatment should be self-contained, though,

such that [74] need only be consulted for additional depth. The discussion ap-

plies to Beta as well as gbeta. The concrete language constructs arising from

the considerations in this section are described in Sect. 2.2 and on.

2.1.1 Modeling

Program executions are considered to be similar to simulations, having a mod-

eling relation to a �topic�: the structure and dynamics of the program execution �

(the model system) should re�ect the structure and dynamics of a selected part �

of the real world, as viewed from a given perspective (the referent system). �

The choice of a perspective is essential�for instance, a bus may be consid-

ered a complex system of interconnected and interacting physical components

in a CAD/CAM system used by a bus manufacturer, or the same bus may be

9
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represented by a few data items like name and price in an accounting system.

Di�erent perspectives on �the same thing� may give rise to entirely di�erent

computerized representations.

Many other approaches to object-orientation also emphasize the modeling

relation between the real world and object-oriented programs, e.g. [24], even

though conceptual modeling may not be given the �rst priority, and the choice

of perspectives is treated only implicitly.

It might seem that this framework only applies to simple-minded mirroring

of physical phenomena like train schedules or payrolls, leaving many well-known

computer programs unexplained, e.g., word processors. To counter this objec-

tion we must expand on the importance of a peculiar circularity, namely that

models are themselves phenomena. For example, the contents of a �le used in�

an accounting system may be considered a model of the real-world state at some

point, but at the same time it may be managed (e.g., copied) as a phenomenon

in its own right by an operating system utility (such as `cp' or a `File Man-

ager'). Similarly, a word processor supports the presentation and manipulation

of a computerized phenomenon�a piece of written, natural language�which,

considered as a model, might be concerned with the description of objects and

patterns in a computer language called gbeta : : :

The perspectives on computerized material as model or as phenomenon will

always be intertwined because the main bene�t of a computerized modeling

system compared to, e.g., a book is the dynamic manipulability of the model.

To manipulate a model, it must be treated as a phenomenon.

2.1.2 Modeling Phenomena with Objects

A program execution cannot re�ect the development in a part of the real world

in an amorphous, holistic way. A divide and conquer strategy must be applied,

by dividing the referent system into phenomena, each less complex than the

referent system as a whole. The programming language must then provide a

representation of real-world phenomena; objects play this rôle.�

This rôle is dual, since phenomena may be things as well as behavior. Con-

sequently, the object concept corresponds to both �objects� and �method invo-

cations� in more traditional languages. Note that a conventional method is not

the same as an invocation of that method; in most languages there is no explicit

access to invocations.

2.1.3 Modeling Dynamics�a Non-solution

Supporting phenomena is not su�cient�the world is not static. A development

in the real world may bring phenomena into view or otherwise change their

status from irrelevant or inexistent to present and relevant, e.g., when a house is

built or a tornado emerges. Because of the vast complexity of the real world, it is

not feasible to rebuild it in all details inside the computer. Hence, the emergence

of phenomena in the execution of a computerized model (a program) can not

be expected to be an automatic consequence of the immanent properties of the
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model. In other words, we cannot model the society and nature in such faithful

detail that the �house� will be built inside the computer and then destroyed by

the �tornado� inside the computer, for reasons which in details parallel a similar

development in the real world, down to the stroke of the wings of a butter�y

on Sri Lanka which originally made the di�erence between �tornado� and �no

tornado�. The conclusion is:

� We do not want to copy the world, it is too complex.

2.1.4 Complexity Management

Natural language provides a wonderful wealth of accumulated knowledge about

modeling and complexity management.

To take a simple case �rst, consider �xed references to phenomena, like names

of persons or places, or signals. A signal unconditionally signals the state of the �

sender, like saying �Ouch!� when it hurts, hence referring to a �xed phenomenon

within the sender. A particular sound might be used by some birds to signal

fear, and those birds would not need any language capability beyond signals

to make use of them. Fixed references may e�ciently direct the attention to

known phenomena and hence work in a complex world, but they rely entirely on

previous knowledge and do not provide intra-lingual complexity management.

Luckily, language is not only �xed references to known phenomena. For

example, we can talk about the house and the tornado from the previous sec-

tion without having experienced them ourselves, and without reconstructing

the events in every detail. We are using a model of the event which includes

a purposeful level of complexity, and this is only possible because we give up

built-in causality (i.e., the inevitable link from a cause to its e�ect). The words �

that describe the emergence of the tornado have no built-in mechanism which

forces the production of words that describe the e�ects of the tornado sweeping

over the landscape, even if that were the actual development. Someone telling

a story about the tornado could just as well tell about the miraculous change

which suddenly made the tornado weaken and dissolve, turning into a peaceful

breeze and leaving the house untouched. The loss of causality is at the same

time a liberation from necessity, giving the freedom to describe non-existing

phenomena as well as existing ones, thus enabling dreams, lies, hypotheses,

theories, etc.

To explain how natural language obtains this liberation from real-world

causality, but still retains the ability to go beyond simple references to ex-

isting knowledge, we must deal with the concept of concepts. There are several �

di�erent philosophical views of concepts, including the Aristotelian and the

prototypical view [74, ch. 18]. All of them recognize the ability of concepts to

denote a collection of phenomena, called the extension of the concept, by means �

of some kind of decision procedure, called the intension of the concept. E.g., �

for a �hard�, Aristotelian concept like `prime number' we might use a quite rig-

orous procedure to determine whether a given phenomenon already considered

a number could also be considered a prime number, and for a �soft�, prototyp-
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ical concept like `nice weather' we might have a long discussion about it. For

concrete system development, Aristotelian concepts are much more manageable

(implementable) than prototypical ones, but in the discussion here, the choice

of concept of concepts is unimportant.

The ability of a concept to denote a set of phenomena determined by a de-

cision procedure contrasts with the more primitive language entities like proper

names or signals. They can be learned directly by repeated experiences of

the connections, whereas concepts are unavoidably dependent on descriptions

or other speci�cations of the intension. This introduces a circularity in that

`concept' can only be de�ned using concepts; luckily this is no problem when

explaining it post-hoc.

The extension of a concept is not arbitrary, the members of the set of phe-

nomena in the extension are in certain ways similar. These similarities make

it possible to use existing experience to estimate the properties of a situation

described in terms of concepts. Hence, a concept based description will provide

a useful model, avoiding both the restriction to simple, �xed references to phe-

nomena, and the complexity of (in any sense) copying the mechanisms of the

referent system. We may now expand on the conclusion made in the previous

section:

� We cannot copy the world, but we can describe it.

� Natural language avoids the complexity explosion by not supporting real-

world causality.

� Natural language then gains the ability to go beyond �xed references to

known phenomena by means of concepts.

2.1.5 Understanding

This section presents a simplistic view of the human mind. It is of course not

supposed to overthrow all the e�orts made by psychologists, philosophers, and

others over the centuries; it is only supposed to help leveraging the richness of

the human mind as a source of inspiration when doing programming language

design. Moreover, it focuses on the activity of consuming and understanding lan-

guage, only mentioning sensory experiences and production of language brie�y

at the end.

Think of the human consciousness as a universe, capable of supporting dy-

namic processes by means of entities. We will make no attempt to explain the

physiology which supports such entities on the basis of networks of neurons,

nor to detail the nature of those entities; but note that they imply that under-

standing at a very fundamental level consists of dividing the world into parts,�

phenomena, and then reconstructing an image of the world in terms of images of

those parts. This is an analytical approach to understanding, based on breaking�

down and reconstructing. It is very suitable for our purposes, oriented towards

language, whereas a holistic approach would be more oriented towards word-free�

exploration of �ne details of total, undivided mental states. Since programs are
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just (extremely regular) language, the analytical approach has the right bias for

us.

The mental entities can be described from a functional point of view. Their

basic responsibility is to be images of real world phenomena, thus enabling the

human carrier to make reasonable predictions and thence useful decisions when

interacting with that real world. The human understanding of the surrounding

world is thus an active reconstruction of the world in terms of such mental

images. The reconstruction may shift rapidly, as if several potential versions

of mental universes are available and more or less activated, corresponding to

changes of attention and of mode of thinking.

The mental reconstruction need not be �perfect�. For example, ghosts are

1

simply mental images which do not correspond to real world phenomena; con-

versely, walking right into a glass door is usually the consequence of having failed

to build a mental image of that glass door at the right time. More importantly,

di�erent perspectives�chosen according to di�erent basic understandings of the

world and di�erent desires and goals in di�erent situations�radically in�uence

the contents and structure of the mental shadow world.

Furthermore, human beings are capable of detaching the mental image of

the world from the actual surroundings, for instance when being intensely en-

gaged in reading a book. With this we arrive at the core topic of this section:

listening, reading, or otherwise consuming language. Language consumption

corresponds to using the language as abstract (world-detached) directions as to

what developments to induce into the mental universe. Each sentence is actively

being interpreted by the listener's mind, and the meaning of the sentence is the

set of changes induced into the mind of the listener.

It may be illustrative to think of this process as the insertion of a piece of code

into an interpreter which will then execute that code in the given context. Note

that the execution happens in a debugger! E.g., considering a given statement

a lie corresponds to rejecting to �run� that statement.

2

The existence of numerous near-activated mental universes makes the pic-

ture very complex, since the reaction to any stimulus might include a shift in

the priorities of mental universes. In any case, all the mental universes are con-

structed within a general framework of understanding, the world view , which �

contains basic assumptions, and outlines the limits of acceptable images of the

world. The twelve categories of Immanuel Kant is one famous attempt to out-

line inevitable basic assumptions on which understanding must be built. For

example, time and space are fundamental modes of organization of perception�

we do not know by experience that the world exists in space and develops in

time, because experience is only possible when time and space are already in

place. On top of such basic infrastructure, but otherwise at the foundation of

the framework of understanding, we �nd sensory experiences. Any suggestion

of developments in a mental universe which violate the huge base of sensory

experience will generally be rejected, or cause the mental universe in question

1

Probably

2

Of course, a meta-statement like `He is a liar!' may be executed instead
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to be labeled as `phantasy'.

Finally, the perceiving mind may set out from a mental development, arising

from experience or phantasy or both, and reconstruct a �program� which would

give rise to a similar development when received and �executed� in a similar

mental context, and then �transmit� that program to others. This is called

`talking' or `writing'.

It might be interesting to try to use this description of the human mind to

build more �intelligent� and robust computer systems, but the discussion about

holistic approaches, multiple mental universes, attention, and more are only

included here in order to make the picture broad enough to make sense. What

we will use directly in the following sections is only the following core:

� A relevant view of human understanding is as construction and develop-

ment of models, based on mental images of phenomena.

� Natural language can be received and �executed� by the mind, thus build-

ing or modifying mental models.

� Simple references just allow natural language to redirect attention, but

concepts allow the construction of mental models which are liberated from

the �truth�. Human understanding of computer programs takes this inde-

pendence and self-drivenness of models to an extreme.

2.1.6 Concept Based Modeling Using Patterns

We need a mechanism in the programming language to play the rôle of concepts;

patterns play this rôle. As is the case with concepts, patterns may have (im-�

ages of) things as well as (images of) behaviors in their extension, so patterns

correspond to both `class' and `method' in most other languages.

Similar to the intension of a concept, a pattern is associated with a speci-

�cation of the extension, but since a programming language must be machine

executable there is no room for vagueness or discussion. Hence, patterns are at

the extreme Aristotelian end of the spectrum of concept views.

The concrete syntactic constructs used to specify patterns are presented in

Sect. 2.2; more details are given in Chap. 3.

At this point we are ready to defend the class based approach to OO lan-

guage design as opposed to the seemingly cleaner and simpler prototype based,�

classless designs. The argument is that a classless approach will need complexity

management just as much as a class based one, and the hundreds of generations

of experience embedded in the structure of natural language is simply too good

to ignore; when classes are not supported directly, essentially the same concepts

will inevitably turn up under other names, or as more or less elegant program-

ming conventions; for example, Cecil distinguishes between abstract/template

objects and concrete objects�the former work just like classes and the latter

work like objects; and the convention of putting all methods in a Self object

into a separate `traits' object which holds all methods is actually very similar

to an implementation of classes.
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2.1.7 Modeling Dynamics�Object Creation

The relation between patterns and objects is similar to the relation between

concepts and mental images of phenomena, not the relation between concepts �

and phenomena. The main di�erence is that the real world with all its details

supports a causality which is neither supported by natural language descriptions

nor by computer programs. As a result, objects do not just emerge including

all the needed properties during program execution, they must be explicitly

created according to some description, which is in fact a pattern. Note that

object creation in a program does not directly correspond to a similar event in

the real world; but it does correspond to the change in a mental model when

a phenomenon is discovered, or when other changes make a previously ignored

phenomenon relevant.

When a pattern is used to create a new object we say that the pattern is used �

prescriptively , in contrast to the descriptive use of patterns which is introduced �

in the next section.

Natural language actually does have a similar �object creation� mechanism,

although it is of course much more subtle than in a programming language: If

a story starts with `Once upon a time there was a king whose daughter : : : '

then the mental image of the king and his daughter are induced in a listener

hearing about them for the �rst time. Certain syntactic constructs (`there was '),

modes of articles (`a king', not `the king') or explicitness of relations (`whose

daughter') serve to mark the introductory references as such. It depends heavily

on the linear structure of language which makes it quite well-de�ned when a

phenomenon is mentioned for the �rst time; that implies creation.

Creation of mental images of phenomena is the core of dynamics of mind,

and creation of objects in a program execution is the core of dynamics for such

an execution.

3

Objects which become irrelevant at some point may simply be

ignored, so object destruction plays a much smaller rôle than creation at this

level.

2.1.8 Navigating in a Model

Concepts and patterns are not only used prescriptively. In fact, presentations

of the conceptual foundation for classes and similar concepts usually emphasize

descriptive usages, providing information about an already existing (considered- �

as-relevant) phenomenon or object.

The need for information is obvious; conceivably we could ramble around

in the world with closed eyes and plugged ears etc., but usually it is safest

to interact with phenomena only when they have known properties, to some

extent. Descriptive uses of concepts supply the listener with a similar property

enrichment of the imagined world as the sensory input does for the real world.

Similarly in a program execution, the knowledge that a particular object is in

the extension of a known pattern improves the safety of interacting with that

object. In fact, with strict type-systems as in gbeta and in Beta, no property

3

Measurable properties may also change, see Sect. 2.1.10
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of an object is ever assumed to exist without a static proof of its existence; this

is covered in more detail in Sect. 2.2.5, Sect. 3.11, and Sect. 13.

2.1.9 Causality After All

It may seem reasonable to describe natural language as purely a vehicle for

transport and (complex, receiver dependent) manipulation of states of mind,

being a passive entity driven entirely by extra-lingual forces like sensory in-

put and desires. However, the existence of logical reasoning demonstrates that

causality also does occur intra-lingually. The concept of language used here is

broad enough to include formal logic and mathematics as special cases.

Formal logic inference rules treat language entities as phenomena (like chess�

pieces which can be moved around according to rules) independently of their

modeling rôles, and that aspect has been driven to extreme prominence in the

case of programming languages. An implementation of a programming language,

or a complete formal semantics for it, establishes a complete formality. Such a

complete formality enables a program to control the actions taken by a machine,

introducing a whole new world of possibilities for intra-lingual causality. In

other words, the execution of programs contain mechanisms which with necessity

produce certain e�ects from certain causes, thus making the program execution

dynamic in a sense which used to be reserved for the real world only. This

enables automatization at a level of sophistication which has changed the world.

Hence, causality in programs certainly makes a di�erence. However, we

should always remember that computerized causality is of the same kind as

logical reasoning, which has basically nothing to do with the causality of nature

that causes the universe to behave as it does.

2.1.10 Modelling Dynamics with Measurable Properties

Natural language has developed another mechanism which helps making lan-

guage based models useful even though they have vastly less complexity than

the world they model. This mechanism induces measurable properties into men-�

tal images of phenomena as a postulate, not by mirroring the causal basis for

those properties. As an example, saying that `the house is red ' provides the

mental image of a house with the property that visible light is re�ected mostly

for wavelengths near 700 nm, without giving any details about why that would

be the case.

As with concepts, the bene�t is a complexity reduction through absence of

faithfulness in the modeling relation. If postulates were not available and we

had to establish the redness of the house by reconstructing the mechanism, then

we would need to model every single atom on the surface of the house and every

photon hitting it. At the macroscopic level there is no mechanism which causes

color.

So we want to support measurable properties. A measurement yields a

value [69], which is a simpler concept than that of a phenomenon or an object,�

because values do not have identity. For example, if we count the number of
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people in a room twice and get 17 both times, it does not make sense to ask

whether it is the same 17. Semantically, a value may simply be represented

as a member of a set, for instance the set of natural numbers; 17 is 17 and

that's it. In contrast, a semantic representation of an object requires a notion

of identity such that two distinct objects will still be considered distinct even

if they happen to be in the same state. Typically, the semantic representation

would be an object identity (perhaps a natural number) which could be used

to look up the current state of the object in the store (the semantic notion of

memory) of the program anytime during the execution. To support measurable

properties, we need values.

A very entrenched point of view is that it is characteristic of a clean object-

oriented language design that �everything is an object�. In particular this view �

is represented by the Smalltalk [50] community, but it is rarely even challenged.

If that goal were to be reconciled with the other (commonly accepted) goal of

maintaining a modeling relation to the real world, then we would need to repre-

sent, e.g., `red' in the above example using objects, and there is no reasonable

way to do this�`red' and `house' are inseparable from an object point of view.

The usual solution in languages like Smalltalk is to introduce unique objects. �

For a unique object, object identity is made irrelevant because there is exactly

one of each kind, none of them disappear, and no new ones can be created. For

example, there is the `1' object and the `2' object and so on, at all times.

If everything is an object then unique objects are needed in practice: for

example, most practical programs will break if somebody introduces an extra

boolean object (or an extra class inheriting from boolean) besides true and

false. Furthermore, unique objects solve the problems with disturbing object

identity: for example, with unique integers 3 + 4 will always yield �the same�

7 as 5 + 2, which is of course desired in case somebody wants to compare the

results.

Now if unique objects work so well, what is the problem? The problem is

simply that the unique objects have exactly the same properties as pure values

would have had, so claiming that �everything is an object� and then making

some objects unique is just a cover-up for the fact that integers, booleans, etc.

actually are values and not objects. They should not have that distinguishing

feature of objects which is object identity, and they do not have it either.

After this vendetta, values are safely incorporated as a useful and well-

justi�ed element of an object-oriented programming language design, and we

may reveal that gbeta provides a small, prede�ned set of value domains. They

are described in Sect. 2.2.1.

2.1.11 Relation to the BETA Conceptual Framework

As mentioned already in the beginning of this chapter on page 9, the conceptual

framework associated with Beta has been an all-important source of inspiration

for the presentation given in this chapter. However, the presentation here di�ers

in some ways; especially by emphasizing that the transition from a part of

the real world to a computerized model of it necessarily is accompanied by
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a vastly reduced complexity; then by introducing patterns as the parallel of

concepts because concepts are an age-old, well-tested solution to the problem

of providing such a vast but meaningful complexity reduction; and �nally by

motivating measurable properties and values as yet another well-tried natural

language device for obtaining useful models without excessive amounts of detail.

Some highlights are the following claims:

� an object should not resemble the real world, it should resemble a useful

natural language description, hence : : :

� a prescriptive use of a pattern, that is object creation, is not an ugly, un-

explained corner of object-oriented languages, it is a natural consequence

(parallelled in human thinking) of the loss of those details which lets the

real world generate phenomena �automatically�

� even a model is a phenomenon for some purposes

2.2 Language Constructs for the Basic Concepts

After having motivated the choice of fundamental concepts in gbeta at length,

we can introduce the concrete details. This section just introduces the core

syntax and a very brief explanation of the informal semantics of gbeta, to give

an overview of the language. Many aspects are covered in more detail in later

chapters.

2.2.1 Value Domains

As mentioned in Sect.2.1.10, gbeta o�ers a set of value domains:�

� boolean values (true and false)

� char values ({a�z, A�Z, 0�9 : : : }.)

� integer values ({ : : : -2,-1,0,1,2 : : : })

� real values ({1.0, -3.14159, 1.2e38 : : : })

� string values ({ �, 'x', 'Readme, please' : : : })

� the set pattern of patterns

� the set oid of object identities (think �pointers� to objects)

Except for the fact that control structures depend on booleans and integers, the

set of domains and the exact set of values in each domain is not essential for

the language design, even though it would have to be characterized precisely for

language standardization. But the fact that the set of value domains is prede-

�ned is not satisfactory. We considered adding a complete functional language
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at the �bottom� of gbeta (i.e., for expression evaluation) but that has not yet

been worked out and may bring more confusion than bene�ts.

Compared to Beta, the string values have been added; string values are im-

mutable sequences of characters. The motivation for adding strings is that the

language (Mjølner) Beta depends on hundreds of lines of code by having built-

in knowledge about the declarations of large patterns like stream and text,

especially in order to be able to handle implicit coercions from literal strings to

full-�edged text objects. In the design of gbeta, such dependencies were con-

sidered inappropriate, and the string basic pattern (introduced in Sect. 2.2.4)

enables an alternative implementation of text which preserves the functional-

ity and relieves the language as such from the dependencies on concrete source

code.

This even improves the performance�compared to the Mjølner BETA im-

plementation, which also to some extent de�nes the language Beta, in cases

where [74] is ambiguous. Evaluation of literal strings in Beta implies the cre-

ation of a text object, hence a literal string should not be evaluated unless the

value will actually be used; with string values, evaluation of literal strings can

be as cheap as integers. Moreover, in today's Beta programs lots of text ob-

jects are copied, because it is too hard to avoid the combination of aliasing and

updating which makes �my� text change just because �somebody else� needed

to change �his� text, and the two texts happened to be the same object. The

string values can be shared freely; on the other hand, a programmer may need to

go back to mutable strings for the special cases where many small changes must

be made to a large string (again, by avoiding excessive copying). The design

and the performance implications associated with gbeta strings are well-known

from, e.g., Python built-in dictionaries [115].

In Beta [74, p. 45], true and false are patterns, inheriting from the ba-

sic pattern boolean (see Sect. 2.2.4). We �nd it hard to see how that could

be speci�ed in a manner which is consistent with the rest of the language; it

would be hard to give a satisfactory de�nition of what &true[]->aBoolean[];

false->aBoolean; should mean�and such usages should be allowed with the

given description.

2.2.2 Values and Immutability

The purpose of this section is to explain why it is sometimes necessary to men-

tion that values are �immutable�. It is included because the concept of `value'

and the concept of `object' sometimes seem to be hard to keep clear of each

other. The reader who thinks that this is a trivial problem may want to skip

the rest of this section. The concept of values and its relation to objects has

been analyzed in [69], but we are not aware of a treatment that deals with the

speci�c source of confusion which is the topic of this section.

In a typical computer hardware design, as seen from the machine code level

and ignoring details about caches etc., there are a few CPUs and a store which

is realized as an array of cells of 8-bit binary values, normally augmented with

processor instructions for accessing 2, 4, or 8 of those bytes as a unit.
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This design provides those values which may be represented in a few bytes

with a special status, since they may be stored and loaded directly with built-

in processor instructions, atomically. The view of the value as the state of a

small group of atomically accessed memory cells, and of the group of memory

cells themselves as a container for such a value is easy to grasp. Two di�erent

groups of cells may hold the same value and still be distinct groups, and two

di�erent values may be loaded from the same group of cells at di�erent times.

Sofar, there is no need to talk about values being immutable, just like there is

no need to emphasize that a value like `123' is immutable; `123' is `123', and

any attempt to change it would be considered a silly and counter-productive

exercise; for example, we don't want to worry about things like �Do you mean

the `123' of today or the `123' of yesterday?�

However, values may be arbitrarily complex, so built-in hardware instruc-

tions for the retrieval, storage, and management of values in general cannot

(realistically) be implemented. As a simple case, a character string of arbitrary

length may be kept in a contiguous area of memory cells and transferred to

a similar area of cells by a loop which copies the contents of a few cells per

iteration. The fact that retrieving and storing this value is not atomic in terms

of machine code actions does make a di�erence.

In context of concurrency, the abovementioned implementation of string

value transfers might be considered wrong, because another thread might change

single cells in the source area during the transfer, such that the value produced

at the destination is not equal to the value present at the source at any point

in time. If the source holds the value 'Hello, world!' and is later assigned

the value 'Veni, vidi, vixi!', then the destination might receive the value

'Hello, wor, vixi!'. As this shows, not even when considering the whole

series of intermediate states at the source can it be explained what the resulting

state is at the destination, because the state of the source was never 'Hello,

wor, vixi!'; in other words, this behavior cannot be explained using string val-

ues, it can only be explained in terms of char values kept in separate, mutable,

char-sized chunks of memory.

Even in the strictly single-threaded case, aliasing invalidates any attempt to

explain the behavior using string values only. An access path to any subset of

the string storage area, e.g., access to a single memory cell via a (simple, char

typed) variable, will enable changes to the composite value, the string, indirectly

by changing the value of the simple variable. Again, since no computation, in-

termediate or not, in the execution of the program produced the resulting value

of the string, there is no way to explain this resulting value without describ-

ing the string as a composite, mutable entity containing a number of separate

memory cells.

If we cannot use the concept of a composite value when explaining the behav-

ior of program executions, then composite values are simply not implemented

correctly.

Hence, in order to be able to explain the semantics using a notion of com-

posite values, we must restrict the possible behaviors by imposing a certain

discipline on the use of the individual memory cells. The discipline includes the
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following:

� The entire set of memory cells used to hold a composite value must be

updated only as a whole (no subparts of it can be updated via other access

paths, e.g., using variables with simpler types)

� Any change to the value by means of a sequence of changes to parts of

the representation must happen atomically (in a critical region), such that

no retrieval of the composite value will ever obtain an intermediate, �half-

updated� result

� Any retrieval of the composite value must happen atomically, perhaps

overlapped with other retrievals, but not overlapped with updates

A simple solution which satis�es this is to allocate fresh memory to hold a

given composite value and then never change it afterwards; any change to a

variable holding that value would require allocation of more fresh memory and

construction of the new value in there; on the other hand, it is safe to let many

variables refer to that storage, to represent the fact that they hold that particular

composite value. This is a typical implementation in functional programming

languages, where composite values play a very important role. The unlimited

aliasing may avoid a lot of copying, but on the other hand the computation of

many similar composite values is expensive (e.g., when a long string is being

edited interactively it will be copied with every change).

This discipline on the usage of memory cells establishes a closer connection

between the groups of memory cells themselves and the contents, the composite

value. This is because that area of memory is used for nothing but holding

the value, during the entire period from allocation to garbage. That connection

probably causes the confusion which it is the purpose of this section to remove.

A given area of memory may be used to represent an object�a mutable

entity with object identity�or it may be allocated, �lled in with a value, and

then kept unchanged, in order to hold the given value. In the �rst case we might

very well �nd two areas of storage with the same bit pattern, thus representing

two di�erent objects which happen to be in the same state; but in the second

case, two areas of storage with the same bit pattern would generally represent

the same value,

4

and even though they would have di�erent memory addresses,

it should not be possible within the (high-level) language to distinguish between

them, e.g., to discover whether they were allocated in the same or in two di�erent

areas of memory. As a consequence, such a composite value representation is not

the same as an object, not even the same as an object whose state is declared

immutable (�const�), if the language supports such a concept.

In summary, because composite values cannot be handled atomically at the

machine code level, it is impossible to obtain the correct semantics in the man-

agement of a composite value without a special discipline on the usage of memory

4

Value equality may of course be more complex; the values might, e.g., be graphs which

include pointers representing internal edges, and they would of course not have the same bit

pattern, but rather describe the same graph
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cells containing such a composite value. A safe and simple discipline is to ensure

that memory containing a composite value is never changed (until it is garbage

collected, at least). This discipline makes the representation of composite values

resemble the representation of composite, mutable entities (objects), and hence

it is tempting to use the term �immutable� for the former, to distinguish it from

the latter. This is purely an implementation concern; semantically, a mutable

value is an absurdity, so values are not immutable, they are just values.

2.2.3 Literals

The basic value domains boolean, char, integer, real, and string were already

introduced in the previous section. The only syntax associated with values is

the literal notation of those values, which was also exempli�ed in the previous�

section. For example, the syntax true is a literal; each evaluation of true deliv-

ers the boolean value true. No other operations than evaluation are supported

for literals�it is not possible to assign to a literal, or to obtain the pattern of

a literal (a value doesn't have a pattern), or a reference to it (a value doesn't

have object identity), etc. The precise syntax of literals is given in App. A.

2.2.4 Patterns and Objects

For each basic value domain there is a basic pattern�boolean, char, integer,�

real, and string�whose instances are capable of carrying a state which is

a value from the corresponding value domain. For example, we may use the

pre-de�ned pattern integer to create an (integer) object which functions as

a container for a value from the domain of integer values. Instances of basic

patterns are called basic objects.�

Measurable properties of objects are supported through object state. Sim-�

ple object state is supported by basic objects,

5

and more complex object state

is supported inductively, by composition. Basic objects as well as variable at-

tributes (introduced later in this section) are the atomic building blocks, and

more complex entities can be composed from less complex entities using a syn-

tactic construct called a MainPart.

A simpli�ed version of the MainPart syntax is given in Fig. 2.1 on page 23.

The full grammar can be found in App. A. The grammar here is only concerned

with the aspects of MainPart which are used to declare class-like patterns. The

support for behavior (for method-like patterns) is covered in Sect. 2.2.6.

The declaration syntax is unusual but consistent. Every declared name is

placed on the left hand side of a colon (`:'), and the ObjectSpec syntax which

speci�es what that name means is placed on the right hand side. Between the

colon and the ObjectSpec is a short string, Kind, which determines what kind of

attribute is being declared.

In the notation used in the grammar in Fig. 2.1, non-terminals are written�

like this: `MainPart'; terminals are single quoted (like ``:''); alternatives are

5

Actually we should say part objects because they may be parts of larger objects, but part

objects are not presented before Sect. 3.3.
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MainPart ::= `(#' AttributeDecl

�

`#)'

AttributeDecl ::= Name `:' Kind ObjectSpec `;'

Kind ::| `' | `<' | `:<' | `:' | `##'

| `@' | `

^

' | `

^

='

| `@|' | `

^

|' | `

^

|='

ObjectSpec ::| Name | Descriptor

Descriptor ::= Name

?

MainPart

Figure 2.1: Simpli�ed (class) syntax of MainPart

separated by bars (`|'); and standard regular expression syntax is used to mark

optional and repeated elements (X

�

derives zero or more repetitions of X, and Y

?

derives the empty string or Y). Name is used for names (identi�ers); it is speci�ed

at the lexical level by the regular expression [a-zA-Z_][a-zA-Z0-9_]

�

, which

allows for a commonly used set of strings for names. Names are case insensitive.

6

2.2.5 Attributes

The MainPart syntax allows for several di�erent Kinds of attributes, presented

in Fig. 2.2 on page 24. Compared to Beta, the exact variants (marked by `=')

have been added. Compared with other languages, gbeta attributes correspond

to both methods, �elds, and inner classes in Java; to features in Ei�el (both

routines and attributes); and to members in C++ (both data members and

member functions). Of course, there are many di�erences in the details.

The kinds of attributes are divided into four groups in Fig. 2.2. The four

groups arise from two choices, between pattern and object and between simple

and variable. An attribute may provide a pattern, as in the groups `pattern' and

`variable pattern', or an object, as in the groups `object' and `variable object'.

An attribute may also denote an entity directly, as in the groups `pattern' and

`object', or it may denote a variable which in turn provides an entity, as in

the groups `variable pattern' and `variable object'. A variable pattern is just

a variable whose values are patterns. A variable object, however, holds the

identity of an object, thus supporting not only di�erent objects at di�erent

times, but also aliasing.

7

Note that even though pointers may be used in an implementation (object

identity may simply be implemented as memory addresses), the terminology

emphasizes the mutability (if present), not the indirectness. As we shall see

in Sect. 2.3, the concrete representation of an attribute is transparent at many

usage points, such that the usage does not depend on whether the attribute

6

gbeta would have been case sensitive if it had not violated Beta compatibility.

7

Actually a declaration like x: @y may also introduce aliasing, as described near the end of

Sect. 2.3.4.
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Attribute Kind Description Example

Pattern (none) Pattern X: string(#..#)

< Virtual pattern X:< Point

:< Virtual further-binding X::< ColorPoint

: Virtual �nal-binding X:: ColorPoint

Variable

pattern

## Variable pattern X: ##object

Object @ Object X: @integer

@| Component X: @|task

Variable

object

^

Variable object X:

^

string

^

= Variable exact object X:

^

=string

^

| Variable component X:

^

|task

^

|= Variable exact

component

X:

^

|=task

Figure 2.2: The di�erent kinds of attributes

denotes an object, a pattern, or a variable object or pattern.

Members of class types in C++ and attributes of expanded types in Ei�el

are similar to object attributes; instance variables in Smalltalk, �elds in Java,

members of pointer types in C++, and attributes of non-expanded types in Ei�el

are similar to variable object attributes. In Beta, object attributes are called

`static references', and variable object attributes are called `dynamic references'.

We feel that the Beta terminology for patterns (`pattern' and `variable pattern')

should be followed for objects, too, both for simplicity, and because the word

`object' should not be missing, and because `static reference' suggests the use of a

constant pointer. It adds unnecessary complexity (in the mind of a programmer,

or in a formal semantics) to introduce a pointer and then require that it is never

changed. Hence the use of `object' and `variable object'.

When describing the individual variants of attribute kinds we need to use

speci�c terms for the right hand side of the declaration. For the pattern group

it is called the value of the attribute; for the object group it is called the spec-�

i�cation of the attribute; and for the two variable attribute groups it is called�

the quali�cation of the attribute. In the traditional Beta terminology the right�

hand side of an object attribute would also be its `quali�cation', but there are

two reasons why this is not used in gbeta. First, the new terminology ensures

that `quali�cation' always refers to a pattern which is used as a constraint on

the allowable entities referred by a variable attribute; for an object attribute

this is not an issue. Second, in gbeta the speci�cation of an object attribute

need not be a pattern at all. This is detailed in Sect. 2.3.



2.2. LANGUAGE CONSTRUCTS FOR THE BASIC CONCEPTS 25

Three of the four groups of attribute kinds have variants. These variants do

not invalidate the description of attribute kinds given sofar, but they a�ect the

structure of the declared entity or the constraints made on its use.

In the pattern group, a missing kind (marked with `(none)' in the �gure)

speci�es that the declared entity is simply the value. The three virtual kinds

specify that the declared entity is a pattern which depends on the context�i.e.,

the object of which it is an attribute, the enclosing object. To determine the �

precise pattern denoted by such a virtual attribute, the precise pattern of the

enclosing object must (generally) be known, but the declaration itself at least

gives an upper bound for the pattern. The partial order between patterns which

determines the meaning of `upper bound' is presented in Chap. 3, and virtual

patterns are treated in detail in Chap. 4.

All variants whose Kind includes bar (`|') di�er in the same way from the

corresponding Kinds where that bar has been deleted: When the bar is present,

the pattern associated with the attribute is guaranteed to be a specialization of

component. This has to do with concurrency and is treated in Sect. 9.5

For those who know Beta this might be surprising. In Beta, objects and

components are di�erent kinds of entities; in gbeta, however, a component is just

an object whose pattern is a specialization of the pre-de�ned pattern component.

This simpli�es and regularizes the language without sacri�cing functionality, and

actually improves type safety and expressive power. Again, details can be found

in Sect. 9.5

Finally, the only variants not yet covered are the variable object variants

containing `='. Normally, a variable object attribute may refer to any object

which is an instance of a pattern which is less than or equal to the quali�cation.

With `=', the variable may only refer to objects which are instances of exactly

the quali�cation. An example where this proves valuable is given at the end of

Sect. 8.1.2.

2.2.6 Methods and Behavior

Like the previous section, this section is also about patterns and objects; but

the focus is on the behavioral aspects, so the patterns will be similar to meth-

ods, and the instances of the patterns will often be implicit, unnoticed, not

unlike activation records for method invocations in traditional object-oriented

languages. This presentation serves to introduce the reader who does not know

Beta to the somewhat unusual syntax used for expressions such as assignment

and parameter transfers. Since gbeta and Beta are identical at this level of

detail, the reader who knows Beta might wish to skip to the next section.

A simpli�ed grammar for MainPart with focus on the method-like aspects of

patterns is given in Fig. 2.3 on page 26. The simpli�cation mainly a�ects Eval-

uation, which just includes names, lists, and addition here. Of course, the full

grammar in App. A will be needed in order to write useful programs, but the

rather drastic simpli�cation is appropriate here since the semantics of subtrac-

tion, multiplication and other expressions and control structures is generally
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MainPart ::= `(#' AttributeDecl

�

EnterPart

?

DoPart

?

ExitPart

?

`#)'

EnterPart ::= `enter' Evaluation

DoPart ::= `do' Imp

�

ExitPart ::= `exit' Evaluation

Evaluation ::| Name | Evaluation `+' Evaluation

| `(' Evaluation <`,' Evaluation>

�

`)'

Imp ::| Name | Assignment

Assignment ::= Evaluation `->' Name

Figure 2.3: Simpli�ed (method) syntax of MainPart

unsurprising; moreover, later sections, e.g., Sect. 9.1, will cover some control

structures and other aspects neglected here.

The derivation of lists from Evaluations uses some new notation, namely angle�

brackets (`<' and `>'). They are only used for grouping, such that the repetition

operator (`

�

') is applied to the comma and the Evaluation together. Hence,

that alternative allows an Evaluation to be a parenthesized, comma separated,

non-empty list of Evaluations, for example (x,(y,z)).

The rest of this section introduces the various parts of pattern speci�cations

associated with behavior, as well as the interconnections between those parts

which may be constructed using Assignments.

The simplest part is the DoPart, marked by the keyword do and containing�

a sequence of imperatives. Imperatives are often called `statements' in other�

languages, but the word imperative is standardBeta terminology, and moreover

it speci�es unambiguously that we are talking about commands given to the

computer, not, e.g., about questions or assertions.

The informal semantics of executing an imperative which is a Name is to look�

up the attribute denoted by that Name, obtain an object from it, and execute

that object. How an object is obtained from di�erent kinds of attributes is

explained in Sect. 2.3, in particular in 2.3.4. The rules for name lookup are

described in two phases, in Chap. 3 for the so-called local case and in Chap. 5

for the general case.

The informal semantics of executing an Assignment is to look up the attribute

denoted by the Name subterm, obtain an object from it, evaluate the Evaluation

subterm, insert the obtained value into the object, and �nally execute the object.

In order to give a description which aligns better with main-stream terminology

we might phrase it like this: To execute an Assignment is to look up the method

denoted by the Name subterm, create an activation record for it, evaluate the

arguments, transfer them into the parameters in the activation record, and

�nally execute the method with that activation record. Or, alternatively: To

execute an Assignment is to look up the object speci�ed by the Name subterm,

evaluate the Evaluation subterm, assign the result to the object, and �nally
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execute the default method of the object, to let it integrate the received values

correctly. Those translations reveal that the Assignment imperative covers both

expression evaluation and function call for the left hand side, as well as method

invocation and value assignment for the right hand side.

Note that the general support for (possibly nested) lists allows combining

expressions into lists and thereby returning more than one value from a �func-

tion�; or accepting a list of values and thereby supporting argument lists for

�procedures� or �methods� without introducing a separate concept or syntax for

argument lists; or specifying logical, user-de�ned notions of value assignment

(similar to user de�ned assignment methods in C++) by using EnterParts with

objects.

To execute an object means to execute its DoPart, which again means to

execute the imperatives of the DoPart sequentially.

8

The insertion of a value into an object has an inductive de�nition. The basic

cases are associated with the basic patterns, and with variable attributes. Value

insertion and evaluation involving variable attributes is described in Sect. 2.3.4,

but the semantics is similar to the semantics of basic objects in Assignments.

With basic objects, e.g., inserting an integer value v into an integer object

o

i

means changing the state of o

i

such that, until its next state change, an

evaluation of o

i

will deliver v; similarly for other basic values and objects. Cor-

respondingly, the evaluation of object state is de�ned inductively with basic

objects providing the basic cases, as implied in the description of value inser-

tion. For example, a boolean object o

b

will deliver either the value true or false,

depending on the value last inserted into o

b

. The composite (non-basic) cases

of value insertion and evaluation are described below, after the description of

the EnterParts and ExitParts.

The inital values of basic objects are false (for boolean), '\0' (the nul char, �

for char), 0 (for integer), 0.0 (for real), and � (the empty string, for string).

When executing an object o, instance of a pattern whose syntax contains an

EnterPart N and/or an ExitPart X, both N and X are ignored; when o is evaluated,

X speci�es how to obtain the value of o and what structure that value has; and

when a value is being inserted into o, N speci�es what kind of value is accepted,

and how to insert it.

As promised above, the composite case in the inductive de�nition of the

informal semantics of object state evaluation and value insertion will now be

explained. Given an object o whose pattern p is associated with syntax contain-

ing the EnterPart N and ExitPart X. Then value insertion proceeds as follows:

� If the Evaluation in N is a Name then inserting a value into o is the same

as inserting it into the entity denoted by that Name, with lookup starting

from o.

� If the Evaluation in N is a list L of evaluations, then the value accepted for

insertion must have the structure obtained recursively from the structure

of values accepted by the elements of L; the e�ect of inserting such a value

8

The complete explanation depends on inheritance and INNER; see Chap. 3
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is the same as the combined e�ect of inserting the elements of the value

into the elements of L.

� If the Evaluation in N is on the form Evaluation+Evaluation then the pro-

gram is rejected with a static semantic error (similarly for other expres-

sions which do not specify a pattern or object, including all binary expres-

sions).

The explanations about evaluation are parallel:

� If the Evaluation in X is a Name then evaluating the value of o is the same

as evaluating the value of the entity denoted by that Name, with lookup

starting from o.

� If the Evaluation in X is a list L of evaluations, then the value delivered by

o is obtained recursively by evaluating each element of L.

� If the Evaluation in X is on the form Evaluation+Evaluation then each of

the operands must deliver a single integer value when evaluated; they

are evaluated, left to right, and the (integer) sum of the obtained values

is delivered; otherwise, each of the operands must deliver a single string

value when evaluated; they are evaluated, left to right, and the (string)

concatenation of the obtained values is delivered.

The integer addition which provides the abovementioned sum happens in a

monoid (integer;+) whose properties are not speci�ed exactly here. It may, e.g.,

raise over�ow errors, be non-commutative, and/or compute the sum modulo 2

31

.

It is apparently nice for a language to conform to a mathematically beautiful

de�nition of, e.g., integer addition, but not all users of a language may want

to pay for it in terms of lower performance, higher space usage, or similar.

Specialized versions of a language might be very beautiful in this respect.

Of course, the full language gbeta has more expressions than just addition.

There is also the topic of value coercions, e.g., `1+2.5' will coerce 1 into 1.0

and then perform an addition of real values. Since the gbeta approach to these

issues is non-innovative we skip over the details.

One topic has been silently skipped over in the entire description above,

namely the e�ects of a variable object attribute providing an object which is

an instance of another pattern than the quali�cation. Of course, this only

occurs when the variable object is not exact (see Sect. 2.2.5 about attributes

in general and exact ones in particular), and then only with patterns which

are specializations of the quali�cation. The general rule is that the statically

known pattern unconditionally determines what part of an object is taken into

consideration for evaluation and value insertion, whereas all parts of an object

contribute with DoParts to the behavior of the object. More details can be found

in Sect. 3.

Notice that the full generality of the MainPart is needed for patterns used as

methods, since the DoPart is the body, the EnterPart speci�es incoming argu-

ments, the ExitPart speci�es the returned results, and the attributes are used for
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arguments, results, local variables, and for local methods, classes, etc. It would

be technically messy and wasteful to de�ne two separate language constructs

for method invocations and for objects now that the latter will do the job of the

former just �ne.

Moreover, procedure activation records (in Algol), rather than records or �

structs (in C terminology) were the original source of inspiration which gave

rise to objects. Hence, objects were active and had behavior from the very

beginning, even though many OO language designers still hesitate when it comes

to introducing concurrency and active objects.

Finally, classes may also need all parts of the MainPart construct, using

attributes for local state, methods, nested classes and so on, using the EnterPart

and ExitPart to provide a user-de�ned notion of value assignment (i.e., transfer

of the logical object state), and using the DoPart to maintain state invariants

(the DoPart is executed after every value insertion and before every evaluation).

Even though it would be messy and wasteful to have separate constructs

for classes and methods, it might be valuable to be able to specify that a given

pattern should be used only in certain ways, hence supporting programmer

assumptions about the intended usage. An example where this is important is

those cases where a (procedure) pattern is programmed under the assumption

that it will never be executed twice. If a user of that pattern creates an instance,

stores it, and executes it several times, then only comments might have helped

the user avoid errors caused by this sequence of actions. The ability to say �not

storable�, �cannot be provided by a variable object�, and other similar things

might be valuable, though not currently supported in gbeta.

2.3 Transparency and Coercion

From a characterization of a subtle but ubiquitous phenomenon in natural lan-

guage we derive the concept of transparency in the realm of programming lan-

guages. Transparency is a widely accepted goal within programming language

design, and some approaches to it are presented. Finally the gbeta approach is

detailed and compared with the Beta approach.

2.3.1 Natural Language and Transparency

�I was at the Jones'es today. Suddenly a big dog came running

into the room. The dog jumped onto the table and started eating

everything!�

This little story may not seem to demonstrate any particularly interesting

properties of natural language, but that is just because we are so used to it.

The following paragraphs focus on di�erent relations between phenomena and

words, thus paving the way for the claim that natural language provides good

inspiration for transparency.

Consider the name of a person, like `Jones'. In a given context it would

often be unambiguous, such that this name is a �xed reference to the real world



30 CHAPTER 2. BASIC CONCEPTS

phenomenon which is that person. Personal pronouns, e.g., I or you, have a

similar �xed meaning relative to a given colloquial situation. Fixed references

have the nice property of allowing the listener to add in all the experience (s)he

has with the given phenomenon, i.e., they provide much information, concisely.

However, in many cases words are used without having such a �xed asso-

ciation with one, known phenomenon. For example, at the beginning of the

story there is no dog. The dog is introduced into the mind of the listener by

the �rst reference to it, `a big dog', and the inde�nite article `a' con�rms that

this is an introductory occurrence. Later, the phrase `The dog : : : ' uses the

de�nite article `The' to emphasize that `dog' refers to an already introduced

phenomenon. Articles, along with several other means including the pronouns

`this' and `that', are used to coerce words designating concepts into simple refer-

ences to �xed phenomena. Those phenomena are rarely given their own names,

they are just recognized by the generic word (`dog') because the situation as

described does not happen to have more than one phenomenon covered by that

concept. Naturally, using a concept as a local name of a concrete phenomenon is

so ubiquitous that almost no non-trivial statements could be expressed without

it.

In particular, events or behaviors which occur and are then gone are com-

monly denoted in this manner, e.g., �After having said this, he made a very

illustrative movement with his arm.� The movement occurs and is gone, hence

it can be introduced, live, and disappear in one go. Verbs as a word class is

another device of natural language which introduces a phenomenon (an action

or a development) transiently.

Actually this mechanism is so common that the concepts tend to disappear

altogether. The word `dog' designates a concept, not a simple reference to a �xed

phenomenon, but we have to put quotes around to refer to it as a concept. The

previous sentence, and entries in dictionaries, and some other specialized usages

of language really treat a concept as a concept, but it usually requires special

markers to do this. For instance, verbs have a special form (the in�nitive) which

is used to refer to the concept, all other forms inevitably denote an otherwise

anomymous phenomenon covered by that concept.

After dealing with �xed references to phenomena, concepts used as �xed

references, and concepts used as concepts, consider the possibility of using �xed

references to phenomena as concepts. This is not rare either; generalizations,

metaphors, word explanations, and questions often do that. For example, con-

sider the exchange �Mom, what is a car? A car is just like our Morris, only a lot

bigger and faster!�. Here, the Morris (which references a concrete phenomenon)

is used to de�ne the concept of a car.

Of course, the quoted remarks have more, and more subtle meanings than

just �everything = nice dinner�, but that just serves to remind us that any

attempt to exhaust the meaning of a piece of natural language is likely to fail.

What we do want to extract from this discussion is the principle of using an

entity of another kind than the contextually appropriate one, and then implicitly

coercing it into the right kind. For example, using a word that really designates

a concept in a position where a simple reference to a phenomenon is expected,
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and then implicitly solving the problem by e�ectively rede�ning that word to

be a locally de�ned �xed name.

2.3.2 Transparency in Programming Languages

Transparency is a further development of the natural language mechanism which

was treated in the previous section, emphasizing the complete absence of local

clues to the transformations. When using one entity as if it were of another

kind, the statically or dynamically available information about its kind is used

to provide the appropriate implicit transformations.

For example, if the retrieval of the state of a variable has the same syntactic

appearance as the invocation of a function then the two could not be distin-

guished at usage points. This is covered in detail for Ei�el on p. 57 and p. 175

in [79], and motivated with the improved freedom to change the implementation

without a�ecting usages. In CLOS [56, p. 72], the freedom to change implemen-

tation is again given as the primary reason for this transparency, which is in

this case provided by means of accessor methods. An accessor method simply �

retrieves or updates the value of a variable; exclusively using accessor methods

for access to variables ensures that it is indistinguishable from having two meth-

ods with whatever implementation. Self uses this approach [2], by letting the

name of the slot be the getter (e.g. `x'), and the name with a colon appended

be the setter (`x:'). For Cecil, the accessor method based approach is presented

on p. 13 of [21], this time also mentioning variables overridden by methods and

vice-versa as a bene�t. Dylan introduces slots along with `getter' and `setter'

methods on p. 57 of [97], and Sather [102] also consistently de�nes accessor

methods. In Java, accessor methods are described as a useful programmer con-

vention on p. 41 of [6], and in C++ [31, 104] the use of accessor methods to hide

the implementation is considered well-known, e.g., on USENET news groups.

In other words, there is overwhelming concensus on the bene�ts of the kind of

transparency provided by accessor methods. However, as the Ei�el presentation

mentions explicitly, only functions with no arguments delivering one result may

appear the same as a variable. In those cases (as in Cecil) where variables may

be assigned remotely (from �outside� the object, like obj.x:=5), also procedures

taking one argument may appear the same as a variable�since assignment is

syntactic sugar for a call of the setter method, both method call syntax and

�:=� may be used in both cases.

Summing up, this transparency is achieved by forcing all accesses to variables

to be method invocations, which will then (of course) be indistinguishable from

other method invocations with similar arguments and returned results.

Another kind of transparency hides dereferencing of pointers, as for example

C++ reference types which are used like direct object denotations, contrasting

with traditional pointer types where the dereferencing operation is explicit at

every usage point. This kind of transparency is not as frequent as the previous

one, which is quite natural since accessor methods hide the di�erence between

direct access or dereferenced access anyway. Moreover, many languages includ-

ing Simula, Smalltalk, and Cecil only support indirect attributes, preempting
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that kind of transparency, too.

2.3.3 Transparency in BETA

In Beta, a more general approach is taken, thanks to the uni�ed evaluation

syntax. The transparency of stored vs. computed values is not achieved by en-

forcing accessor methods for all variable accesses, but by implicitly transforming

the entity at the usage point, somewhat like the situation in natural language

as described in Sect. 2.3.1. For example, when a term is a denotation of a pat-

tern (e.g., `p2.move' below), the semantics of executing that term is to create

an object as an instance of the pattern, and then to execute that object. The

traditional Beta terminology for this is to call the syntax denoting that pattern

an inserted item. Consider the following example:

(# point:

(# x,y: @integer;

move:

(# dx,dy: @integer;

enter (dx,dy)

do x+dx->x; y+dy->y

#)

enter (x,y)

exit (x,y)

#);

p1,p2: @point

do

(3,4)->p1->p2.move

#)

Ex.

2-1

In the outermost DoPart, p1 is an object which is being assigned the state (3,4)

and then evaluated, providing the argument list (x,y), which also yields (3,4),

to the method invocation p2.move.

Hence, the usage of objects and patterns appear the same, with object cre-

ation happening implicitly. The uni�cation of syntax for argument transfer and

assignment, along with general support for tuples of values, ensure that function

calls and method invocations with any number of arguments and returned re-

sults can appear the same as evaluation and assignment with (possibly variable)

objects.

The approach which uses accessor methods only makes di�erent entities

appear the same insofar as they may always meaningfully be treated in the same

way. With variable patterns, for example, it does not make sense to force them

into being accessed through accessor methods, because changing the variable

pattern and using it as a method (which might take one argument which might

be a pattern) would compete for the meaning of a `setter' method.

So instead of enforcing just one access path to entities, we provide di�erent

contexts which declaratively require di�erent entities. This will be detailed in

the next section which explains the approach taken in gbeta. Since the gbeta

approach is a generalization of the Beta approach, the Beta rules will be

characterized as restrictions of the gbeta rules at the end of the next section.
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Figure 2.4: Coercion in execution, evaluation, and assignment

2.3.4 Transparency in gbeta

This section was written to be read and forgotten! It exposes all those coercions

between di�erent kinds of semantic entities (run-time entities) that transparency

is there to hide. These coercions will be inserted by the compiler in the right

places, such that names can be used in the same way even though they may

be de�ned as di�erent kinds of attributes, e.g., as an object or as a pattern.

However, the details must be described at some point, and that point is this

section.

As explained in Sect. 2.2.5, gbeta provides four basic kinds of attributes,

namely object, variable object, pattern, and variable pattern. In �gure 2.4, the

coercion mechanism for execution, assignment, and evaluation (i.e., everything

except declarations) is speci�ed. The �gure contains much information, so it

will be described in details in the following.

The four kinds of attributes are shown, one in each box, using an italic

typeface, along with the associated semantic entities, such as object or pattern.

The arrows between the boxes represent coercions. For example, with a given

variable object attribute, an object identi�er (member of oid) or NONE can

be obtained�that's what a variable object attribute contains; this object iden-

ti�er can then be coerced into an object unless it is NONE, as indicated by

the :NONE annotation on the leftmost upward arrow. If object identities are

represented simply as memory addresses, the coercion would be a dereferenc-

ing operation, but other operations might be used with other representations of

object identities. The important thing is that we can get hold of an object.

Coercion happens when a piece of syntax which denotes an attribute is used

in some syntactic context. In the general case, that piece of syntax is an Attri-

buteDenotation, see the full grammar in App. A, but in the simpli�ed grammar

used sofar, it is just a Name. There are three di�erent syntactic contexts, namely �

`Name[]', `Name##', and the default context. The default context applies in all �

other cases, i.e., for all names not followed by one of those two coercion markers. �

The coercion is a journey from one of the boxes to another one, consisting of

the actions associated with the arrows on the path. The starting point is deter-
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mined by the kind of attribute which the Name is declared to be. For example,

it would start in the top left box for an object attribute. The destination of the

journey is the box which is marked with the syntactic context, i.e., with `[]',

`##', or `default'. Given a starting point and a destination, the path of arrows

is fully determined, and the coercion can be described. The following piece of

code uses all paths through a number of examples:

(# i: @integer;

s: ^string;

p: (# #);

pv: ##object

do

i; s; p; pv;

i[]; s[]; p[]; pv[];

i##; s##; p##; pv##;

#)

Ex.

2-2

The attributes i, s, p, and pv are of all kinds, namely object, variable object,

pattern, and variable pattern, respectively. The DoPart then systematically puts

them into the three di�erent syntactic contexts, hence causing coercions from

any of the four starting points to any of the three destinations.

The �rst imperative, `i', causes the empty coercion, because an object is

needed and that is exactly what the attribute already denotes. In contrast,

the imperative `pv[]' in the next line of the program causes a coercion with

several steps. The starting point is the bottom right box since the attribute is

a variable pattern. The destination is the bottom left box, since the coercion

marker is `[]'. As a consequence, the following actions are taken: It is checked

whether pv is NONE; if it is NONE then a run-time error is raised, otherwise

the pattern is obtained. Then the pattern is instantiated, yielding a new object.

Finally the identity of the object is obtained, and that is the result.

Note that an imperative like `s[]' does not do anything, since the object

identity is obtained and then immediately discarded, but in order to explain

coercion these more or less silly imperatives are the simplest possible examples.

A more useful imperative could be like `pv[]->m', which would perform the

same coercion on pv as above and then give the obtained object identity as an

argument to the invocation of the method m.

There is one anomaly in this system, namely that assignment to syntax in a�

`[]' or a `##' context requires that this syntax denote a variable attribute of the

destination kind, i.e., variable object or variable pattern, respectively. In other

words, no coercions are allowed when using one of the two markers on the right

hand side of an assignment. For example, with `m->s[]' it is required that s

denote a variable object attribute.

The problem is that assignment with non-trivial coercion to, e.g., the lower

left box would have unwanted semantics. Consider the case where the attribute

denotes a pattern, p, the imperative is `m->p[]', and the evaluation of m delivers

the object identity #. If this were to be allowed, then the assignment should

change p in such a way that future evaluations of p[] would deliver #, at least

until the next change.
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Figure 2.5: Coercion in declarations

However, this would not match well with the rest of the language. Whenever

an object or object identity is requested from syntax denoting a pattern, the

object will be instantiated afresh. So an object identity can be obtained from

a pattern, but we cannot change what object it will deliver the next time. In

this respect the pattern attribute is similar to an object attribute�the object

attribute invariably denotes one �xed object, and the pattern attribute delivers

a di�erent object at every request, but both of them have so strict semantic

constraints on what object to provide that the semantics of variable assignment

is incompatible.

Hence, the situation is similar to that of assigning to a constant attribute

in other languages, like `const int i=1; i=2;' in C++, which is of course also

rejected at compile-time. Note that languages with accessor methods, e.g. Cecil,

have a similar behavior: A constant variable or �eld has only a reader accessor,

no writer. As a consequence, any attempt to assign to such an attribute will

lead to an error because the required method is missing. In those languages it

is possible to add a user-de�ned method with the signature expected of a writer

accessor, thus allowing for a user-de�ned resolution of the con�ict. A similar

approach could be used in gbeta, but such a feature has not yet been designed

in detail.

Hence, transparency is very complete for evaluation and for value assign-

ment, but the coercion markers `[]' and `##' used on the receiving side of an

assignment break the transparency with the current language design.

We have described the coercions associated with execution of code; the rest

of this section deals with coercions in declarations. This is simple as there

are solely two groups of attributes: The pattern attributes and the variable

attributes, both variable objects and patterns, require a pattern on the right

hand side of the declaration, and this pattern is obtained by coercion. The

object attributes, being the only attributes not yet covered, require an object

on the right hand side. Figure 2.5 describes the mechanism. The only di�erence

between Fig. 2.4 and Fig. 2.5 is the annotation which de�nes the destination of

coercions in di�erent contexts; for declarations the destination is determined by

the Kind of declaration, as introduced in Fig. 2.2 on page 24.
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Especially two consequences of this are interesting. The syntax this(Name)

is used to denote the nearest enclosing object which is statically known to be

an instance of a specialization of the pattern obtained from the given Name; it

is similar to this in C++ and self in Smalltalk, except for the usage of a Name

to select the right one out of the potentially many enclosing objects. Consider

the following example:

link: (# next: ^this(link); value: @integer #)

Ex.

2-3

The link pattern represents a basic singly linked list where each link in the

list may hold an integer value and a reference to the next element in the list.

Since the quali�cation of next is obtained from the denotation of the link

object itself, it denotes the pattern of that object. This might be link, but

in a subpattern of link it would be that subpattern. In other words, this is a

genuine `SelfType' or `MyType' [15]. In the Beta community there has been

some discussion about de�ning a special construct to be able to provide genuine

self-types [73], but this has not yet been implemented nor completely designed.

There is a well-known workaround which uses a virtual pattern that the

programmer must manually redeclare in all subpatterns, as in the following

example:

link:

(# selfType:< link;

next: ^selfType;

value: @integer

#)

Ex.

2-4

The workaround is error-prone, and it does not have the right typing proper-

ties: The type system cannot assume that the selfType virtual is the pattern

of the enclosing object, because there is no guarantee that it will actually be

that pattern. If the programmer forgets to further-bind the virtual in a new

subpattern, it will not anymore be a correct self-type.

Another case where the coercion in connection with declarations is useful, if

perhaps not beautiful, is the case where an object attribute has a speci�cation

which is a variable object. An example is the following:

(# X: ^somePattern

enter X[]

do (# constX: @X do : : : constX : : : #)

#)

Ex.

2-5

In the outermost MainPart, the variable object X can be used for many things,

but sometimes it must be assured for application speci�c reasons that di�erent

usages of a name actually refer to the very same object. Moreover, this is also

valuable in the type analysis, because it may prove that certain patterns are

the same even though it is not known what pattern it is, thus proving, e.g., an

assignment type safe without exact knowledge about the involved patterns.

To obtain such an immutable object name, we can declare an object attribute

which denotes the object available from X at some point. To do this we need a
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place to put the new declaration. This is achieved by creating an anonymous

object, using the inserted item syntax (which denotes a pattern which is then

by coercion instantiated and executed), as with (# constX: @X : : : #) in the

DoPart. The name constX can be used in the DoPart of the inserted item, and

that name will invariably denote the object which was available from X when

the inserted item was created. This is an example of the `snapshot' semantics

which is presented and motivated in Sect. 3.9.

Note that a similar semantics with the same syntax is obtained with a dif-

ferent approach in [12], which is based on a generalization of the notion of

quali�cations.

Finally, the relation between gbeta coercion and Beta coercion can be de-

scribed. The entity transformations presented in this section have not tradition-

ally been described in terms of a consistent coercion scheme in Beta; indeed,

not everybody in the Beta community accept this as a natural explanation of

the Beta semantics. However, the actual behavior of Beta programs can be

described exactly by the �gures and explanations in this section, except for a

few cases which are prohibited in Beta, namely:

� Coercions cannot have variable object as the destination except when the

starting point is object. For coercions from pattern and variable pattern,

the new operator, `&', must be added in front of the (variable) pattern

denotation, like in &p[].

� In declarations, only one kind of entity can be used�both the speci�cation

of an object attribute and the quali�cation of a variable attribute must

be a pattern.
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Chapter 3

Patterns

This chapter deals with patterns in gbeta, and since all the concepts are so

tightly integrated this tends to touch on everything; so this is a long chapter

with many di�erent topics covered in various sections. The overall outline of

the chapter is as follows: First there is a presentation of the basic premises and

the building blocks from which patterns are constructed. Then properties of

patterns as a whole are discussed, and then composition of several patterns into

new patterns. Finally there is a discussion of a few satellite topics.

Section 3.1 explains that patterns are values and not objects, and why it

is so. It is followed by a presentation of the concept of mixins in general in

Sect. 3.2, and Sect. 3.3 gives a presentation of mixins in gbeta, along with the

entities which are built out of mixins, namely patterns and their brethren, the

objects.

Now that we have the value domain of patterns available the question about

equality in that domain arises, and Sect. 3.4 covers both various kinds of equiv-

alence which is used for classes and similar entities in other languages, and

the very strict equivalence criterion which is used for patterns in gbeta (and in

Beta).

Patterns in gbeta are organized into specialization networks, and this is a

signi�cantly more densely populated universe than the corresponding strictly

tree-shaped specialization hierarchies in Beta. The relation between these two

is covered in Sect. 3.5. With patterns organized into specialization networks it

becomes possible to talk about superpatterns and therefore also about inheri-

tance of attributes, as it happens in Sect. 3.6.

This establishes patterns as standalone entities, and Sect. 3.7 builds on this

by describing how patterns can be composed into new patterns by means of

merging. Any construction of a new pattern, including pattern merging and

�plain, old inheritance� like in Beta, will a�ect the behavior associated with

that pattern when it is used as a method. The topic of Sect. 3.8 is how such

composite behavior can be created and explained in terms of the mixins and

their do-parts in a pattern, and how that gives rise to a broader notion of

specialization of behavior than that of Beta, but one that grows out of the

39
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Beta tradition.

Finally there is a treatment of a few additional topics in association with

patterns. The �rst topic is the notion of object creation by instantiation of

patterns, which is covered in Sect. 3.9. After that, Sect. 3.10 goes into more

detail about how attributes in objects can be accessed, specifying the local name

lookup rules which are the basic elements of all name binding in gbeta. The last

section in this chapter, Sect. 3.11 deals with the notion of quali�cations, similar

to such a notion as the declared type of references.

Hence, this chapter covers not only patterns, but also the building blocks

from which patterns are built, namely mixins, and the entities which are created

according to patterns, namely objects. It should be obvious that patterns are

absolutely essential in the design of gbeta�a trait that gbeta has inherited from

Beta.

3.1 Patterns are Values

In Beta and gbeta, patterns are values. This corresponds to the situation

in natural language, where concepts are also in a sense values. Of course, in

these matters there will never be absolute truths. However, a given concept, as

designated by a spoken or written word, should be available from the appearance

(sound or graphical shape) of the designation, such that understanding can

proceed. The alternative view, being that the word denotes an entity with a

unique identity and some internal state, does not really make sense, since there

is no place to go and look up what that state is; moreover, in case of a change

in the alleged state of the concept, should all the �instances� (mental images of

phenomena in the extension) be �updated� to re�ect the changes?

From a technical point of view, the fact that patterns are values in Beta

makes it natural that (variable pattern) attributes may have them as values.

These values are exclusively taken from the set of patterns known at compile-

time. The patterns are organized into a partial order (the specialization order,

see Sect. 3.5) which is also completely known at compile time. Because of this,

there is no support for computation on patterns in Beta. Patterns may be

compared for equality or inequality, but there is no way to compute a pattern

by giving one or more other patterns as arguments to an operation.

However, there are cross-domain operations, like inheritance (see Sect. 3.6)

which produces a pattern from another pattern and a mixin (see the next

section), or like instantiation which produces an object from a pattern (see

Sect. 3.9). The fact that Beta has attributes whose values range over patterns

makes (the equivalent of) classes and methods �rst class entities. They may

become even more �rst class, though.

In gbeta, a genuine operation on patterns is introduced, taking a number of

patterns as operands and producing a new pattern. This introduces the concept

of pattern computations. As an analogy, assume that we started out with a set

of natural numbers, such that comparison would be almost the only supported

use, and then enhanced it with an operation like `addition', such that numbers
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not in the original set could be constructed. The operation in question, pattern

merging, is presented in Sect. 3.7.

Since patterns are values and the merging operation is de�ned entirely in

terms of those values, such pattern computations can be, and are, allowed at

run-time in gbeta. This means that some patterns in a program execution may

not be available for static analysis at compile-time, they are genuine run-time

values. This makes patterns (classes and methods) even more �rst class than

they are in Beta. Note that the type analysis of a dynamically constructed

pattern is subsumed by an already existing case, namely the case where a given

pattern is not known at compile-time but it is known to be a specialization of

a given pattern; this is, e.g., typically the case with virtual patterns. Run-time

construction of classes is covered in more detail both in other sections of this

chapter and in Sect. 7.2.

Please note that this concept is signi�cantly di�erent from the ability in

certain dynamic languages (like Self, CLOS and Smalltalk) and recently also in

Beta to compile classes or other entities during a program execution, and then

integrate the resulting compiled entity into the execution and continue running

it. The Java dynamic class loader plays a similar role.

One important di�erence between dynamic compilation and real class com-

putations is that a new, dynamically compiled class would have no particular

relation to existing classes in the program, though it could be created as a sub-

pattern of a class which is already known in the program, and integrated by

means of subpattern polymorphism [75]. In contrast, the value of a pattern

merging operation is fully determined by the (existing) patterns being merged,

and the type analysis takes this knowledge into consideration (using whatever

information is known about the operands). Dynamic compilation or loading

yields results which are not so well integrated into the language, in particular

in connection with static type systems. In Java [6, p. 315++], for example, a

dynamically loaded class is not a �rst class entity similar to all all other classes;

it is an object, instance of the class Class, and instances of such a class are

created using the method newInstance instead of using the built-in operator

new, and the new object is not recognized as having a type which is associated

with the dynamically loaded class, it is just an Object, which requires a dy-

namic cast in order to be useful. In contrast, dynamically created classes in

gbeta are fully integrated; the type system does not know the complete type,

but whatever is known is used, and the type-checking situation is no di�erent

from the case with virtual patterns.

On the other hand, only certain patterns may be computed using pattern

merging. An analogy would again be the addition of natural numbers. If all the

numbers available from the beginning are even numbers, then there is no way

to add them up to an odd number. Similarly, if there is no pattern in a program

which has, say, a print method then pattern computations cannot be used to

obtain one. See Sect. 3.2 and 3.7 for more details.

In other languages, classes and methods are not generally considered values.

In Smalltalk where �everything is an object�, the consistent choice is to make

classes objects, too, and this is indeed the case. Consequently, new classes are
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newer computed, only compiled. A well-known result of letting classes be objects

as well is that it is hard to �nd a simple, understandable way to terminate the

chain of objects from a given object to its class, which is then also an object, to

the class of the class object, which is then also an object, to : : :

This in�nite regress problem was actually one of the motivations for devel-

oping classless languages like Self and Cecil.

One special topic, which is linked to the question of whether classes are

values or (more like) objects, is the topic of shared state. In many languages, a�

class may have some state which is accessible from every instance of the class by

means of special attributes. These attributes are called static members in C++,

static �elds in Java, class variables in Smalltalk, shared slots in CLOS, and slots

with class allocation in Dylan. `Once functions' in Ei�el o�er the functionality

of on-demand initialization and (thereafter) shared state, all in all similar to the

others. The motivation for this mechanism is that some tasks need to deal with

all the instances of a class, e.g., counting all instances, keeping lists of them, or

ensuring that at most one of them is in a special state.

It seems that this notion forces a class to be object-like, having its own state

and hence having identity, such that aliasing is non-transparent and implicit

copying generally not allowed. If classes are actually somewhat object-like, the

natural question is �why not make them into real objects like in Smalltalk?�

The answer could be that those classes are not objects to any signi�cant

degree. For instance, if the core properties of a class�the description of the

structure of instances�were actually mutable, then it would be possible to add,

remove, or change attributes described by the class. That immediately raises

the question already mentioned above: When the class changes, should all the

existing instances �automagically� be updated? In CLOS it is possible to change

a class in a running program, and objects will be updated by a user-de�ned or

automatically generated version updating procedure; but this is again dynamic

compilation as opposed to an integrated language feature. It would not be very

easy to reconcile with static type-checking, either, as is demonstrated in the

Orm system [58, 53] where this topic has been explored�only a quite limited

class of special cases can be handled without running the entire type-analysis

again, and the running program execution is lost when the type-analysis must

be re-done.

In other words, the identity and mutability aspect of classes associated with

shared state are marginal to the class as such. Since classes in those languages

are constant, global entities, a more suitable explanation of the shared attributes

is that they are simply global variables whose names are made available in a

special name space which is identi�ed with the class name. This is actually also

a common way to describe what static members are, in the C++ community.

Without shared state, classes in C++, Java, and Ei�el become similar to Beta

patterns (used as classes), because they are values, but there is no support for

computation with those values.

By the way, the natural way to obtain shared state in languages with general

block structure like Beta and gbeta is simply to move the declaration one level

out in the block structure [71, 72].
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3.2 Mixins

In the CLOS community there is a very old and well-established programming

technique associated with the mixin concept [56, p. 46]. A mixin class in CLOS �

is technically just a class like other classes, but it is intended to be used in

a special way. It should be one of several super-classes in an occurrence of

multiple inheritance, and it will thus be �mixed in� with the other super-classes.

Other classes must be present for the mixin class to function correctly, because

methods of the mixin typically use attributes�ghost attributes�which are not �

de�ned in the mixin class itself but are expected to be provided by the other

classes. When looking at a mixin class in isolation it looks just like a run-time

error waiting to happen, but this is acceptable since there is no static type check,

and with the right companion classes, the properties needed by the mixin class

will actually be available.

The mixin class mechanism depends on the linearization used in multiple

inheritance in CLOS (and similarly for LOOPS, Dylan, and others). A lin-

earization is an algorithm or a speci�cation which reshapes a given directed �

acyclic graph into a list�it linearizes the graph. The list must be a topological

sorting of the graph. The precise details are described in Sect. 3.7. The graph

in question is the set of superclasses of a given class, connected with edges from

every class to each of its direct superclasses; this is usually called the inheritance

graph.

For an attribute which is used in a mixin class but seemingly not de�ned�a

ghost attribute�there is no path in the inheritance graph from the mixin class

to any class which declares that attribute. Accordingly, a direct translation of

the technique into C++ or another statically type checked language will just

cause a compile-time error, since the ghost attribute is `not de�ned'. However,

the linearization process generally changes the set of reachable classes from any

given class in the inheritance graph, and this may add a class which actually

declares the ghost attribute to the set of classes reachable from the mixin class.

In other words, the reorganization of the inheritance graph gives the mixin

class one or more new superclasses which may provide declarations for ghosts in

the mixin class. This motivates an alternative name for mixin classes, namely

abstract subclasses. �

Since this technique is not type safe, and because it is so intertwined with

linearizing multiple inheritance, a further development of the idea has lead to a

separate concept of mixins, di�erent from the concept of classes, but related to �

it. The �rst, ground-breaking paper which introduced the mixin as a separate

concept was [10]. The connection between mixins and classes lies in the inheri-

tance mechanism. Inheritance allows for the creation of one new class based on

zero or more superclasses and a speci�cation of a class increment (often a block �

enclosed by braces, { : : : }, and containing a list of declarations; in Beta and

gbeta the syntax for the increment is the MainPart, see Sect. 2.2.4 and 2.2.5).

Mixins liberate the incremental speci�cation entity such that it can be ap-

plied to several di�erent superclasses, instead of being an inseparable part of one

particular occurrence of inheritance. The bene�t derived from this generaliza-



44 CHAPTER 3. PATTERNS

tion is that one increment can be reused in several di�erent contexts. Otherwise,

in a language without mixins, it would have had to be textually copied for each

usage, with the well-known adverse consequences for maintainability, �exibility,

readability, etc.

The incremental speci�cation entity may be a function from classes to classes

as in [45], or it may be a class-like entity which can be composed using special

mixin-composition operators [10, 9], or it may even be a method whose exe-

cution enhances the structure of the enclosing object [99]. In any case, the

application of a mixin to an actual superclass resembles inheritance, hence the

alternative name abstract subclass for mixins. Note that this terminology might

be confusing because a mixin is not a class; the term might actually be more

appropriate for the usage of mixin classes, as in CLOS.

In a statically typed language, the not-yet-known superclass of a mixin must

be characterized somehow, before the usage of inherited (ghost) attributes in

the mixin can be type checked. In [45]�which deals with a subset of Java

enhanced with mixin support�this is achieved by requiring that mixins specify

an inheritance interface. This is an interface which is assumed of the formal�

superclass during checking of the mixin, and required of the actual superclass

at mixin application. With an inheritance interface it is made explicit exactly

what parts of an actual superclass the mixin depends on, and it is made possible

to type-check the mixin (and generate code for it) once and for all. It will then

be a robust, reusable abstraction.

Finally, we should mention raw, text pre-processing approaches to providing

mixin-like functionality�to explain why such solutions are insu�cient. In C++,

there is a well-known technique which parameterizes a �class� with a superclass,

thus enabling the creation of several di�erent classes using the same piece of

syntax as a class increment. The technique is to create a template class which

inherits from one of its formal parameters; di�erent instantiations of the tem-

plate with di�erent classes as arguments for that parameter will then work like

applications of the �mixin�.

This may seem to be genuine support for mixins, but there are some sig-

ni�cant drawbacks. Firstly, C++ templates are essentially textual macros, since

implementations do not, and cannot, analyze templates statically nor generate

code for them; instead, analysis and code generation must run from scratch for

every di�erent instantiation, as if the code had just been put into a new context

with copy/paste. This takes time and space�in particular the space usage is

known to be a serious problem in practice. More importantly, the analysis may

reveal errors deep inside the implementation because, e.g., a class given as a

template argument does not happen to declare a speci�c method. Nothing less

than the entire implementation su�ces to determine whether a given template

argument is appropriate, so there is no encapsulation robustness, no abstraction.

Secondly, since any two instantiations with di�erent arguments are analyzed

independently, the meaning of names used in the implementation of the template

can vary freely. In all other parts of C++, any given name application can be

annotated with information about the kind of entity denoted by that name as

well as the statically known type; but for names used in a template, neither is
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Part Object

Mixin

Origin

� a relative term,

is also a part object

associated with origin

associated with mixin

Contains attributes,

Contains MainPart,

Origins:

not

always

in same

object

An object: a list of part objects

A pattern: a list of mixins

Figure 3.1: Overview of mixins, patterns, part objects, and objects

known. Even though the binding is per-template-instantiation, i.e. at compile-

time, this is similar to having dynamic name binding because the information

about kind and type is not available at the template declaration. Such a subtle

change in semantics is confusing and error-prone.

3.3 Mixins and Derived Entities in gbeta

This section presents gbeta mixins along with the derived entities, patterns and

objects. At the conceptual level, mixins in gbeta are best viewed as aspects

of concepts, i.e., as entities similar to concepts but so intimately dependent

on something else (such as other mixins) that they are simply unthinkable in

isolation. Compare this to the relation between the concepts of `person' and

`musician'; there is a di�erence in the amount of knowledge we have about

a phenomenon which can be described as a `person' and one which can be

described as a `musician', but it would not make sense to try to isolate this

di�erence such that it could be used without any reference to the underlying

`personality'.

However, the presentation in this section is concerned with patterns and

objects as semantic entities, i.e., as analyzable, constructible phenomena within

a computer or in a formal semantic speci�cation (at this level of detail it �ts

both). Using the general knowledge of mixins from the previous section, mixins

in gbeta can now be characterized in a rather terse manner.

In gbeta, the specialization relation, the inheritance mechanism, and the

pattern merging operation are all best explained in terms of building blocks

which function much like the above described mixins; �rst it will be described

what they are, then the other entities are described in terms of mixins, and
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�nally the gbeta mixins will be compared with other kinds of mixins.

The syntactic representation of a gbeta mixin is a MainPart; all mixins are�

either basic or associated with a MainPart, and basic mixins come in the usual

variants boolean, char, integer, real, and string.

1

Each MainPart may be

part of zero or more mixins in a given program execution; a MainPart in a gbeta

program may only a�ect program executions by being used in the creation of

mixins; patterns are created entirely from mixins; and each objects is created

according to a pattern.

A gbeta pattern is a list of gbeta mixins. Each gbeta object is a list of part�

�

objects, and each part object is associated with one mixin. This associates the

object as a whole with a list of mixins, i.e., a pattern. That is the pattern of�

which the object is an instance (�its� pattern). We may also consider each part

object an instance of the associated mixin.

A mixin consists of two components, aMainPart and an enclosing part object,

called the origin of the mixin. The origin of a mixin is used as the origin of any�

part objects which are instances of the mixin. The origin of a part object is

the execution context for the part object: Whenever a name lookup process

starting in the part object needs to search the enclosing environment, the origin

is used. A lookup process proceeds to the enclosing environment when the local

environment does not provide a declaration of a given name. This is covered in

more detail in Sect. 3.10 and in Chap. 5.

Each part object has originally been created according to some mixin and

thereby becomes (and will forever be) an instance of that mixin. In this creation

process, the mixin is used as a �blueprint�, so the attributes available in the part

object are the ones described by the declarations in the MainPart associated

with the mixin.

All this describes what a gbeta mixin is, and how it is situated at the core

of the structures in terms of which gbeta programs are executed. The details

of how to build patterns from mixins are given in Sect. 3.6 and 3.7, but at this

point we may still compare some more high-level properties of mixins with the

other variants of mixins, descibed in the previous section.

Like other genuine kinds of mixins, gbeta mixins are not based on macro

expansion; they are analyzed statically (and code can be generated) once and

for all. Similar to mixins in [10] and [9], gbeta mixins are entities which are

used as building blocks for the creation of patterns. Like mixins in [45] which

must declare an inheritance interface, gbeta mixins only interact with actual

superclasses in ways which can be detected statically at the declaration point�

there are no ghost attributes.

However, the interaction speci�cation is a standard pattern, not a special

purpose inheritance interface. The inheritance interface only allows the mixin

to depend on some method signatures in the actual superclass, not for instance

to access state (�elds). This corresponds to the special case of using a pattern

with no state and no implemented methods as the interaction speci�cation. Even

1

There are actually a few more basic mixins, including component and semaphore which

are associated with non-sequential execution and mentioned in Sect. 9.5
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though this special case may often be a desirable choice, the general case where

the interaction speci�cation is a pattern of any kind yields greater �exibility.

Note that the development of mixins has almost closed a circle. The starting

point was a special usage of technically ordinary classes in CLOS and similar

languages; mixins were then separated out as a new concept, di�erent from a

class; later, the interactions between a mixin and its actual superclass were made

explicit by means of inheritance interfaces; and �nally, in gbeta, inheritance

interfaces were generalized to ordinary patterns.

The situation is then again similar to the starting point, because mixins in

gbeta may only be speci�ed together with a pattern on which they depend (or, if

that pattern is missing then the mixin must not depend on the actual superclass

at all), and this speci�cation of a mixin together with its dependency looks just

like an ordinary declaration of a pattern, enhancing a given superpattern with a

new increment using inheritance. Actually, the same declaration may be viewed

as a declaration of a new pattern, or as a declaration of a mixin together with

a speci�cation of its dependencies�the di�erence lies in the usage.

This is consistent with the rest of the language where, e.g., patterns unify

methods and classes, leaving it open for the programmer to decide whether to

view a given pattern as a method or as a class. There is a subtle richness in

having an entire spectrum between method and class, or between mixin and

pattern, instead of just having the end points of the spectrum.

However, in order to explain the structure and construction of patterns, and

in order to de�ne the specialization (�isa�) relation, the only reasonable approach

is to consider the mixins individually. That is the way it was designed, and that

is the reason why these sections on mixins precede the sections about inheritance

and merging.

3.4 Equivalence

This section is about qualities, not in the sense of �good quality� or �bad quality�, �

but in the sense of immanent di�erences, such as the di�erence between tomatoes

and oranges. An immanent di�erence is an unexplained di�erence; two things �

are considered �just di�erent� without having a common deconstruction in terms

of which the di�erence is accounted for. Conversely, e.g., a paper bag containing

two tomatoes and a paper bag containing three tomatoes are di�erent in terms

of an analysis which describes them as composite entities built out of the same

kinds of building blocks. That is an explained di�erence, a completely modeled

di�erence, not a di�erence in qualities.

The notion of qualities is a mental device which is needed because models are

not faithful. As usual, instead of copying the humongous complexity of the real

world and hence recreating any di�erence in behavior or properties by means

of copying the mechanisms, we use qualities as a mental device to obtain use-

ful models with much less complex structure. Tomatoes and oranges are �just

di�erent�, axiomatically di�erent, and then we may enrich our knowledge about

tomatoes and about oranges independently, by adding typical properties to the
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concepts. At no point are those concepts brought into a common, commensu-

rable state, where all the di�erences are completely explained within the model.

To emphasize the point: qualities are concerned with di�erences which are taken

for granted, as opposed to di�erences which are modeled; it is a property of a

model and not a property of the real world.

Our claim in this section is that support for qualities is obviously needed in

a programming language, and that we may choose between di�erent degrees of

support for immanent di�erence. Moreover, these di�erent degrees of support

correspond to a technical topic which is usually called type equivalence.

In the programming language universe, the absence of qualities corresponds�

to machine code, where the bit is the only kind of matter and everything else is

just collections of bits and manipulation of bits. All di�erences are structural.

Similarly, untyped lamba calculus is also a world of pure structure. Such a

smooth and homogeneous world may be considered �clean� and ideal, but for

modeling purposes it does not su�ce, since the recreation of di�erences by mech-

anism is too heavy-handed; some things are �just di�erent� and we should be

able to postulate that. However, support for immanent (postulated) di�erences

must generally be provided on top of the native, smooth, quality-less universe

of raw machine code execution. This is done by imposing a certain discipline

on the usage of the raw bits.

The �rst step in the direction of support for qualities could be the separation

of di�erently sized chunks of memory, e.g. distinguishing between an 8-bit byte,

a 16-bit word and a 32-bit dword. The idea is that there should be a discipline

on the usage of memory which ensures that a given bit is treated consistently

as being a member of just one of those types of chunks of memory. Assembler

language typically helps enforcing such a policy.

Memory chunks of the same size may be considered di�erent, as when a

language de�nes the types int and float�both 32-bit entities, but intended

to be manipulated by means of di�erent procedures (integer vs. �oating point

operations). This is an example of support for built-in qualities. Let us call

built-in qualities primitive types.�

At this level we might also introduce a concept of record types�composite�

units of storage which are de�ned inductively as containing entities of primitive

types, or of other record types. Using C syntax we can illustrate a couple of

record types:

struct point { int x,y; };

struct position { int longitude, latitude; };

Ex.

3-1

The question about type equivalence arises as soon as there is any mechanism

available through which programmers may de�ne �similar� types. Respecting

the built-in qualities and the user-de�ned composite structure, it is only natural

to consider point and position equivalent. Whether a usage of a given entity

occurs based on the point or on the position declaration, the two contained

word entities will be used according to the discipline we decided to enforce at

this level. This kind of type equivalence might be designated pure structural
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equivalence. Note that it is not too practical, because the equivalence may be�

ambiguous. In the above example we might identify x and longitude, but we

might just as well identify x and latitude. Both choices would ensure the

required discipline on the underlying usage of memory.

To describe the next level of support for qualities, we must introduce the

concept of a record path. With a given record type, an entity of that type is �

known to contain entities which may be accessed by name, according to the list

of declared names in the record type de�nition. If such a name is used to access

a part of the entity which is again of record type, a similar step may be taken

from there. Thus, a list of names corresponds to a process of repeated subentity

selection. Let us call such a list of names a record path.

Now, the next level of support for qualities takes record paths into consid-

eration, by considering those types equivalent which support the same record

paths leading to entities of the same primitive type. Note that recursion, along

with pointers with a special NULL value or disjoint sum types (tagged unions),

would introduce in�nite sets of record paths, making the type equivalence check

more complicated. With the requirement that each record must de�ne unique

names (i.e. no name can be declared twice in the same record), this may ensure

unambiguous mappings between equivalent types. In such a type system, the

following two record types would be equivalent:

struct mypoint { int x,y; };

struct yourpoint { int y,x; };

Ex.

3-2

An example of a mapping which would ensure unambiguous access to the un-

derlying memory would be to sort the declared names alphabetically and store

the entities in that order (x before y in both mypoint and yourpoint). Note

that even though we have referred to stored values only, and referred to them as

if the representation should be trivial (like mapping high-level language names

directly to o�sets into contiguous areas of memory), the notion of type equiva-

lence is independent of the representation. The important point is whether or

not two given type de�nitions specify the same type.

This type equivalence criterion would normally be designated structural

equivalence, even though it depends on both structure and naming. This kind �

of equivalence automatically equips composite entities with di�erent qualities,

when their internal structures are de�ned using di�erent sets of names; but

when the same set of names is chosen for both, then the types may be consid-

ered equivalent, depending on the types of the part entities.

It seems that the indirect derivation of qualities from the set of names inside

a de�nition is of an accidental nature. In particular, when systems grow very

large and complex, it is inconvenient to have to make a global search in order

to ensure that some new type which is being de�ned will not by accident be

confused with an existing type. The need to inspect the entire system to avoid

accidental clashes (which will silently allow unforeseen actions) is not normally

considered desirable in software engineering.

The other side of the coin is that types may be constructed in di�erent
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places and still be the same, by using similar de�nitions. This is a typical

correctness/convenience trade-o�.

An example of a language where the underlying record type system is of

exactly this kind is Objective CAML [94], which is an object-oriented extension

of CAML, which is again a functional language in the ML family.

Note that the specialization (�isa�) relation in Objective CAML further inten-

si�es the problem of accidentally confusing entities which should be immanently

di�erent. For example, consider a door class for which the open method would

send signals to some hardware in order to actually open a physical door; and a

window class which is used to control a rectangular area of a bitmapped com-

puter screen, and where open means `initialize the internal data structures and

show the window on the screen'. A type which just lists an open method might

very well be a supertype of both door and window,

2

and an invocation of one

open where the other was expected could be a disaster�imagine that somebody

in the sta� of a nuclear power plant wants to open the window showing the cur-

rent state of a particular nuclear reactor, and that action in fact opens the door

to that reactor and lets radioactive material �ow out : : :

The moral of this is that even a theoretically very well-founded and strict

type system, like the one in Objective CAML, may actually exhibit correctness

faults because it does not have a su�ciently thorough support for distinguish-

ing di�erent qualities. It is our opinion that it is naïve to assume that models

will be complete and faithful, and structural equivalence seems to build on the

assumption that there cannot be signi�cant real-world di�erences between phe-

nomena whose descriptions are formally identical�the structure of the model

is everything there is to know.

Structural type equivalence takes the record paths into consideration, but

ignores the �rst name, the name of the record type itself. A more strict version

of structural equivalence could be de�ned by simply requiring that the declared

names of types should also be the same, in addition to the record paths etc. as

before. However, this would still build on a derived notion of qualities which

would require global checks in order to avoid accidental confusion of similarly

declared types. A di�erence in degree, only.

Nevertheless, this kind of type equivalence, known as name equivalence, is�

quite widespread. That is because it often coincides with the next kind of type

equivalence, as explained below. In fact, the presentation of name equivalence

in [4] assumes this coincidence; it is unsound unless all names used in any two

type expressions are de�ned in the same (�at, global) environment. It says, on

p. 356:

Name equivalence views each type name as a distinct type, so two

type expressions are name equivalent if and only if they are identical.

The combination of this de�nition and the associated examples (in Pascal)

clearly indicate that, e.g., two variables declared to have type `"cell' are con-

sidered to have the same type under name equivalence, with no mention of the

2

Assuming that all the involved open methods take no arguments and deliver no results,

it is a supertype in Objective CAML
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lookup process that determines the meaning of the identi�er `cell'. If `cell' is

looked up to mean `integer' for one of the declarations and `string[30]' for

the other then the type equivalence obviously confuses two di�erent types, and

hence the existence of more than one scope for type names must be implicitly

excluded from consideration. This is natural for Pascal but less natural for a,

supposedly, generally applicable de�nition of name equivalence.

Another presentation is given in [44] on the pages 333�334. Type equiv-

alence, which is here called type compatibility, is presented by comparing a

notion of structural type equivalence with a so-called `strict de�nition of type

equivalence' associated with Ada, Pascal, and Modula-2. The strict de�nition

considers two types equivalent iff they are de�ned in (syntactically) the same

declaration, as tested in an implementation by comparing pointers to describing

structures generated during a traversal of the program syntax tree.

These presentations, along with the actual semantics of Pascal, support the

view that name equivalence is generally considered the same as the next kind of

equivalence, based on program positions. However, since name equivalence does

not seem to be very well-de�ned, and since the de�nition in [4] is unsound in any

language which does not have one global name-space for types, the de�nition

given here was created as a generalization which would make sense in a non-�at

type name space, and which actually depends on names.

The next approach to type equivalence, locational equivalence, takes a rad- �

ical step away from the smooth, homogeneous world of bits and lambdas. This

kind of type equivalence is incompatible with the basic lambda calculus exe-

cution model, because it presupposes that the expression of the program, the

source code, remains unchanged during the entire program execution. This de-

viation from the lambda calculus makes it harder to formalize the semantics

using a direct translation of programs to lambda expressions, and this seems to

have alienated many mathematically oriented researchers to the concept. It is as

if they consider locational equivalence unacceptable, just because they cannot

readily use the traditional approaches to formalization of the semantics. For

example, it is stated by Abadi and Cardelli in [1, p. 27] that:

Structural subtyping [ : : : ] has desirable properties, such as support-

ing type matching [ : : : ] A disadvantage [of structural subtyping]

is the possibility of accidental matching of unrelated types. In con-

trast, subtyping based on type names is hard to de�ne precisely, and

does not support structural subtyping.

After this, they exclusively use structural notions of types, with or without

involving subtypes, in the rest of the book.

In lambda calculus, the ability to transform the program itself (�-reduction)

is the only computational tool. The simplicity of the semantic model�only the

program text itself is needed for a small-step operational semantics�is tradi-

tionally viewed as desirable, especially when the emphasis is on proving formal

properties of executions. However, another basic model has proved useful in

practical programming, possibly because it matches the way people think bet-

ter than �-reduction does. In this model, programs are constants, and the
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execution happens in terms of a run-time system whose actions are directed by

the program. Object-oriented languages generally fall in this category. Pre-

sumably, the human mind is capable of building an understanding of a static

program in a similar way as it may get to know a physical landscape; there are

�locations�, each location has its own, characteristic properties, and the �dis-

tance� between di�erent parts of the program may have been designed to re�ect

degrees of relatedness�when being in a particular location, the most relevant

parts of the program are �nearby�.

Taking it seriously that the program is immutable,

3

it becomes meaningful

to refer to locations in a program. This is the basic mechanism behind locational

equivalence. With this kind of equivalence, two types are considered the same�

iff they are constructed at the same location in the program, e.g., by the same

declaration. This criterion has the nice property that any system, however large,

will let a programmer de�ne a new type and rest assured that it will be destinct

from all other types in the program. In other words, this equivalence criterion

takes the clean approach of providing syntactically distinct type introductions

with distinct qualities.

The other side of the coin is that two similar types will be distinct, even

if they should be considered the same; a separate mechanism may then be

provided to allow explicit identi�cation of two given types. Note that this does

not introduce the need for global checks in order to secure against unexpected

semantic e�ects. The failure to view two types as being equivalent may give

compile-time errors, but it will not cause run-time confusion. The former is

a much less serious problem since it is obvious, whereas the latter is silent at

compile-time and probably subtle at run-time.

Revisiting the relation between name equivalence and locational equivalence,

the two happen to coincide in the case where the type names are all de�ned at

top-level. Since the top-level names are required to be unique, two types have

the same name iff they are de�ned in the same location (otherwise they would

have to have di�erent names). With a partitioned global name space, as with

Java packages and sub-packages, and with C++ name spaces, name equivalence

is again e�ectively changed into location equivalence by considering the path of

names of (sub)packages or name spaces as a part of the name of the type.

Turning to Beta, the notion of name equivalence or locational equivalence

does not su�ce for a characterization of the equivalence of patterns; location

equivalence is the correct starting point, but the run-time environment must be

taken into consideration, too. Note that location equivalence is de�ned on basis

of the construction of an entity, in this case a mixin, not on the occurrence

of a declaration. This makes a di�erence because Beta and gbeta support

the speci�cation of patterns in many places outside of pattern declarations;

for example, a descriptor (see Fig. 2.1 on page 23) may be used in a pattern

declaration, or directly as a statement. When used as a statement it constructs

an anonymous pattern which is then by coercion instantiated and the resulting

3

It may actually be extended, but not changed in ways which invalidate existing location

speci�cations
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object executed (see Sect. 2.3.4).

Even though it is not the tradition, patterns in Betamay be characterized in

exactly the same way as patterns in gbeta, namely as lists of mixins, where each

mixin is a pair, consisting of a MainPart and an origin, which is a part object

that provides the mixin with an environment. See Sect. 3.3 for the introduction

of these concepts.

Two patterns in Beta are equivalent iff they are equivalent as lists of mixins,

i.e., if they have the same number of mixins and the mixins are pairwise equiv-

alent. Two mixins are equivalent iff they are associated with the same MainPart

and the same origin. Note that the de�nition of a mixin implies that patterns

do not exist before run-time; they are genuine run-time values. Also note that

this means that patterns are di�erent just because they have di�erent origins in

one or more mixins; it is not enough that they are associated with exactly the

same syntax (same MainParts at same positions in the list) and hence have the

same set of de�ned names, according to the same attribute declarations. They

must really be situated in the very same run-time context.

This very strict notion of pattern equivalence also ensures that a pattern is

a complete generator of instances (objects); with a pattern alone it is possible

to create a new object, and that object will be situated correctly in a run-time

context. If patterns had only included MainParts and no origins, then an object

created from a pattern would not have an environment unless it were speci�ed

explicitly, and that means that a pattern could not, for instance, work as a

method: a method is generally expected to produce side-e�ects on �its object�

(origin), and to do this it must have information about what object it �lives� in.

Of course, the static analysis must deal with patterns in terms of a compile-time

representation; this is covered in more detail in Chap. 13.

So, Beta supports an even �ner distinction between patterns than ordinary

locational equivalence. A consequence of this notion of pattern equivalence is

that the number of di�erent patterns in a program is unbounded, even though �

the number of syntactic occurrences of pattern declarations is of course �xed

and �nite. This makes it possible to distinguish between an unbounded number

of di�erent qualities associated with a given structure; all it takes to obtain N

di�erent patterns with a given declaration is to dynamically create N instances

of some pattern associated with the MainPart which lexically encloses that dec-

laration. As an example of how natural and useful this may be, consider the

following:

university:

(# student: (# : : : #);

course:

(# register: (# s:

^

student enter s[] do : : : #);

#);

: : :

#);

Aarhus, UW, VUB: @university;

Ex.

3-3

With these de�nitions, the student pattern is nested in university. Conse-

quently, the type system will distinguish between students at di�erent univer-
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(* first example: horizontal *)

a:

1

(# #); b:

2

(# #); c:

3

(# #);

(* second example: vertical *)

p:

4

(# #); q: p

5

(# #); r: q

6

(# #);

Figure 3.2: Two small Beta or gbeta examples, with numbered MainParts

sities, in particular the three di�erent university objects Aarhus, UW, and VUB

have distinct student patterns inside them. This supports correctness in the

cases where students at di�erent universities should actually be considered dif-

ferent. In the case where students at di�erent universities should be considered

equivalent, the simple change needed is to move the declaration of student out

of the university pattern, placing it as a sibling to university, not as nested

in and dependent on university.

Now that the description of equivalence of patterns in Beta has been adapt-

ed to use exactly the concepts which are suitable in gbeta, there is only one thing

to add: Pattern equivalence in gbeta is exactly the same as pattern equivalence

in Beta. Then note that gbeta has a much more �exible way to combine mixins

than Beta, and hence there are many new ways to obtain equivalent patterns

in gbeta.

3.5 The Pattern Space

As mentioned before, e.g. in Sect. 3.3, patterns in Beta and in gbeta are lists

of mixins. This section describes what lists of mixins can be constructed. Sec-

tion 3.6 and 3.7 describe how they can be constructed using inheritance and

merging. Moreover, the organization of the set of patterns into a partial order

relation is described and compared for Beta and gbeta.

For any given Beta program, the patterns may be organized into a tree,

namely the well-known inheritance hierarchy which is associated with any sin-

gle inheritance system. The root of the tree is object, and each node in the

tree has its direct subpatterns as children. The object pattern is the empty list

of mixins. The `direct subpattern' relation is established by inheritance. Inher-

itance is treated in the next section, but for now it su�ces to say that it works

like the traditional cons function, taking a list L (the pre�x, or superpattern)

and an element m (the new increment, a mixin) and returning a list whose head

is the element and tail is the list, written as m::L in, e.g., Standard ML.

Two small sets of pattern declarations are given in Fig. 3.2, and the corre-

sponding Beta pattern spaces are shown in Fig. 3.3 on page 55. The pattern

space of a program is the set of patterns which may occur during an execution�

of that program, organized into a partial order which de�nes the specialization

(�isa�) relation. In this case we ignore the origins, for simplicity and because
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[1] [3][2]

[]

[]

[4]

[5,4]

[6,5,4]

Figure 3.3: The Beta pattern spaces of the examples in Fig. 3.2, using the

MainPart numbers

[]

[4]

[5,4]

[6,5,4]

[1] [3][2]

[]

[1,2,3] [1,3,2] [2,1,3] [2,3,1] [3,1,2] [3,2,1]

[1,2] [1,3] [2,1] [2,3] [3,1] [3,2]

Figure 3.4: The gbeta pattern spaces of the examples in Fig. 3.2, using the

MainPart numbers
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the origins would be the same for all mixins anyway.

When looking at Fig. 3.3, there is no direct reference to the names of pat-

terns, such as a or q. This is because the patterns cannot be speci�ed in terms

of the declared names�they denote entire patterns, and we need to explicitly

show the construction of each pattern as a list of mixins. To be able to name

the individual mixins, every MainPart has been annotated with its own, unique

number in Fig. 3.2; since the origins would all be identical, each number denotes

exactly one mixin.

In Beta, in these examples and generally, every pattern in the pattern space

is directly associated with a pattern constructing piece of syntax (mainly pattern

declarations and inserted items). By disregarding the origins, the pattern is

fully speci�ed somewhere in the program by syntax and name lookup rules

alone. Note that this even holds for virtual patterns: Even though the value

of a virtual pattern may not be known at compile time, there is always some

declaration in the program which de�nes the most speci�c, actual value of it.

Virtual patterns will be treated in Chap. 4.

Moreover, since the Beta pattern space is always organized into a tree with

every mixin occurring in only one node of the tree, it is actually possible to

identify mixins and patterns in Beta: for any given mixin, there is one and

only one pattern which has this mixin as its most speci�c, i.e., as the head

of the list. Also, when starting from any node in the tree, each step towards

the root removes one mixin from the pattern, namely the head of the list, thus

producing the direct superpattern.

Consequently, the set of patterns in a Beta program is actually a very sparse

selection of lists of mixins, considering how many combinations there are with

a given set of di�erent mixins.

In contrast, the pattern spaces of the two examples when considered as gbeta

are quite di�erent, as shown in Fig. 3.4. The gbeta pattern spaces contain the

Beta pattern spaces because the Beta semantics is a special case of the gbeta

semantics. But in the �rst, horizontal, example, the gbeta pattern space is much

larger than the corresponding Beta pattern space. This is because the mixins

can be combined freely, using the merging operator (see Sect. 3.7).

When using pattern merging like multiple inheritance to bring together en-

tirely unrelated patterns, there is no di�erence between, e.g., [1; 2; 3] and [3; 1; 2].

But when behavior is involved it makes a big di�erence, and any one of the com-

binations may be the right choice in a concrete situation. Section 3.8 gives more

details about behavior in connection with patterns containing more than one

mixin.

So the horizontal example was quite di�erent in Beta and in gbeta. On the

other hand, as the �gure shows, there is no di�erence between the Beta and

gbeta pattern spaces with the second, vertical example. The situation is di�er-

ent because the mixins `4', `5', and `6' are introduced di�erently. In Fig. 3.2,

the mixin `5' is introduced in a Descriptor where p is used as a superpattern.

This makes a di�erence, because all the p mixins are then guaranteed to be

present in every pattern where mixin `5' occurs, and hence the declarations

provided by the p mixins may freely be used when binding names and checking
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types in the `5' mixin. This is a general phenomenon: A Descriptor binds mix-

ins associated with the contained MainPart to the list of mixins denoted by the

speci�ed superpattern, thus guaranteeing that the superpattern attributes will

always be available for that mixin. With these guarantees, there are no other

allowable patterns than those patterns which are already available with Beta

semantics. The horizontal and the vertical examples are extreme cases, and it

is a question of good software engineering practice to design inheritance graphs

such that mixin dependencies are introduced just when they are needed, pre-

serving �exibility as much as possible. At the modeling level it corresponds to

building clear and crisp concepts, since the independence corresponds to a sep-

aration of concerns. However, it is always possible to make entities independent

in the super�cial sense that they do not technically depend on each other�for

example by tediously changing all the connections into other mechanisms such

as parameter transfers�and this may be an inappropriate move. The criterion

is whether or not the separate parts are still both meaningful and usable.

The general observation is that each mixin in Beta is rigidly associated

with one �xed tail of mixins, whereas mixins can be combined freely in gbeta,

subject to the restrictions which are necessary to ensure type safety in access to

inherited attributes (to avoid MessageNotUnderstood errors, one might say).

Furthermore, unrelated patterns, associated with �at, horizontal inheritance

graphs, more freely allow combinations of mixins, whereas tall, vertical inheri-

tance graphs allow only few di�erent combinations. In any case, the programmer

does not need to worry about this, because the constraints are managed entirely

by the language, simply because there is no way to specify a pattern containing

a mixin for which the depended-upon mixins are not present.

The specialization (�isa�) relation may now be de�ned. The edges in the

pattern spaces show individual elements of the specialization relation, and the

relation may be obtained as the re�exive and transitive closure of these elements.

However, a characterization in terms of lists of mixins is easier to make precise,

and it is correct for both Beta and gbeta:

De�nition 1 Given two patterns P = [p

1

: : : p

n

] and Q = [q

1

: : : q

m

], we say

that P is a specialization of Q iff P may be obtained from Q by adding zero or

more mixins, i.e., if there is an injective, increasing function ' : f1 : : :mg !

f1 : : : ng such that p

'(i)

= q

i

, for all i 2 f1 : : :mg.

In other words, a superpattern is a sublist, e.g., [1; 2; 3] � Q when Q is any

of [], [1], [2], [3], [1; 2], [1; 3], [2; 3], or [1; 2; 3]. In the case where m = 0 (so

Q = object and f1 : : :mg = ;), the requirement is trivially satis�ed, so every

pattern is a specialization of object, as expected.

For Beta, only one special case of this specialization relation is exploited,

because mixins are inseparable from their tails (the declared superpattern),

namely the case where the deletions always remove the frontmost element. For

example, [3; 2; 1] could be an actual specialization of [2; 1] in Beta, but [3; 1] or

[2] could never exist if [3; 2; 1] exists. A consequence is that a specialization test

in Beta can be made simply by inspecting the elements of a given pattern. P

is a specialization of Q iff the frontmost mixin of Q occurs in P .
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Traditionally in the Beta community, this relation is called the `specializa-

tion' relation, and the reverse relation is called the `generalization' relation. In

other communities it may be called the `isa' relation or the `inheritance' relation.

Using `isa' would be �ne, but using `inheritance' would redistribute the emphasis

from the relation between concepts which may be more or less general/special,

to the detailed, implementation-oriented phenomenon of `inheriting' attributes

from a superclass. Since such reuse of attributes is de�nitely subordinate to the

soundness of the relation between the modeled concepts, the term `inheritance'

will be reserved for purposes which actually depend on attribute speci�cs.

3.6 Inheritance and Available Attributes

The inheritance mechanism is the mechanism which allows a mixin which is the�

head of a pattern to use attributes declared in the tail of that pattern; since the

tail of a pattern is itself a pattern, this description applies recursively to all the

mixins in patterns. The word `inheritance' re�ects the fact that those attributes

are in a way given to the mixin at the head by the �ancestors� (superpatterns),

because all sublists of the tail are superpatterns.

The syntactic representation of the inheritance mechanism is the ObjectDe-

scriptor, which is the full version of the simpli�ed syntactic construct Descriptor

which was speci�ed in Fig. 2.1 on page 23 and Fig. 2.3 on page 26. The main

di�erence is that the Name in front of the Mainpart in a Descriptor is more �ex-

ible in the real ObjectDescriptor, allowing more di�erent kinds of superpattern

speci�cations. However, the Descriptor will su�ce for the presentation of the

mechanism here, so we will stick with the simpli�ed syntax. The full syntax can

be found in App. A.

Like in Sect. 2.2, the class-like aspects and the method-like aspects of the

semantics of Descriptors are treated separately, with this section describing in-

heritance of attributes and Sect. 3.8 describing specialization of behavior.

A description of inheritance would typically talk about the attributes which

a given object or class �has�. To be able to do this we must make it reasonably

precise what `has' means in that connection. This will be done in three phases:

First the notion of attributes in part objects and mixins is treated, then the

attributes of an object or pattern as a whole can be dealt with, and �nally the

notion of a view on a pattern or object is introduced. Since the view determines

what attributes can actually be used, all these concepts need to be brought

together in order to describe what a given mixin inherits from its superpattern.

For a given part object, the available attributes accurately re�ect the at-

tributes speci�ed in the mixin from which the part object was originally created.

So we only have to consider the attributes speci�ed in a mixin, and they accu-

rately re�ect the syntactic declarations given in the MainPart associated with

the mixin, with all name applications interpreted according to the run-time

environment which is provided by the origin of the mixin.

This interpretation of names is �xed at compile-time, where the static anal-�

ysis annotates every name application in the program with a speci�cation of
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how to �nd the entity denoted by that particular name application. This spec-

i�cation is called a run-time path. For any given run-time environment, the �

denoted entity can be accessed by mechanically following the instructions in the

run-time path. For example, an attribute used as a parameter for a (pattern

used as a) method would often be located in the same part object as the one

which contains the name application that refers to it. In that case, the static

analysis would annotate the name application with the empty run-time path,

meaning �it is right here!�. If the method accesses an attribute of its enclosing

object (which per de�nition includes a part object which is the origin), then the

run-time path would start with one step outwards, and then possibly one more

step in order to go to the right part object.

In summary, each part object contains attributes as speci�ed in its mixin and

using the static analysis annotations to give semantic meaning to the syntax on

the right hand side of declarations. In this sense, a part object and a mixin never

inherits anything! However, attributes in tail mixins are available according to

the static analysis of them, and for that we must consider the set of attributes

o�ered by complete patterns.

The fact that every name application during static analysis is annotated with

a �xed run-time path implies that every name application is statically associated

with one speci�c name declaration. This is called static name binding, and it has

some important implications, which are discussed near the end of this section.

The notion of inheritance only makes sense when applied to complete objects

and patterns. Since the set of attributes of an object is determined fully by its

pattern we only need to consider attributes as speci�ed in patterns. However,

we need to remember the connection between objects and patterns because an

object may be specialized dynamically, hence becoming an instance of a more

specialized pattern. More about this in Sect. 7.3.

The attributes of a pattern are simply the attributes of all the mixins in

the list which is that pattern. However, some of these attributes may have the

same name, causing a name clash. This is a classical problem with multiple �

inheritance [59], but it also occurs when a mixin declaring a given name N is

applied to a class which already declares N . It is our opinion that name clashes

must be handled gracefully, since it is inappropriate to require that separately

developed code which is brought together (by merging, e.g.) must use disjoint

sets of names. Separately developed patterns should be capable of being merged

and then used as each of the contributors with exactly those interactions that are

appropriate for the modeling task. E.g., if a pattern is created by a combination

of Voter and Employee, then it should be possible to use instances of it as Voter

or as Employee, without confusing the contributions from each aspect, but also

with uni�cation of those contributions which should actually be considered the

same. This ideal might not be fully achievable, but gbeta does much to approach

it.

There are two possible reactions to name clashes. One is to consider di�erent

declarations of the same name as the same attribute, another is to consider

them as di�erent attributes. In gbeta (and Beta) these possibilities are both

supported, and the choice is made explicitly by the programmer. However, not
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all kinds of attributes can be uni�ed (considered as the same).

Attributes with the same name in di�erent MainParts are generally consid-

ered distinct, so an object may contain, e.g., two attributes named x, one being

an integer object, and the other being a variable pattern, as in this example:

p: (# x: @integer #);

q: (# x: ##object #);

r: p & q; (* brings together two attributes named 'x' *)

Ex.

3-4

Attributes of di�erent kinds will never be considered the same, and for attributes

of the same kind, only pattern attributes may be declared in multiple MainParts

and be considered the same.

This is marked by making the pattern attribute virtual. As shown in Fig. 2.2

on page 24, virtual pattern attributes are associated with three di�erent kinds

of attribute declarations. One of them, the virtual pattern declaration (with�

kind '<' as in X:< Point) introduces the attribute. Every virtual further-

binding and �nal-binding is statically associated with one particular virtual

pattern declaration, so there are exactly as many pattern attributes associated

with virtual declarations of all kinds in a pattern as there are virtual pattern

declarations. The virtual pattern declaration �is� that pattern attribute, and

the further- and �nal-bindings modify the value of it. Virtual patterns are

covered in more detail in Chap. 4.

An object attribute, or a variable (pattern or object) attribute can not be

uni�ed across mixins, but the obvious semantics of unifying such attributes is

exactly what is achieved by introducing an auxiliary virtual pattern V , and

then exploit the uni�cation of V ; the object speci�cation or variable attribute

quali�cation should then be V . Since uni�cation must in all cases be declared

explicitly, this is only slightly less convenient than having attribute uni�cation

available for all kinds. However, uni�cation of di�erent kinds of attributes (e.g.,

a pattern and an object) is not supported, cannot easily be obtained by a re-

write, and does not have an obvious, meaningful semantics. As an example

of the by-virtual-pattern uni�cation of variable object attributes, consider the

following:

link:

1

(# v:< object; value:

^

v; next:

^

=this(link) #);

intlink: link

2

(# v::integer #);

Ex.

3-5

Details of virtuals are deferred to Chap. 4, but the example is hopefully un-

derstandable with the following explanation. In this example, the link pattern

implements a basic singly linked list, which uses the virtual v as the quali�ca-

tion of the variable object attribute value. In intlink, which is [2; 1] using

the given numbering of MainParts, the uni�cation of the attribute v in the two

mixins ensures that the quali�cation of value in an intlink is integer. This

is actually a useful semantics which might very well have been the meaning of

unifying variable object attributes. However, since this is an easy re-write, there

is no need for such uni�cation.
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1 (# cell: (# v:< object; value:

^

v #);

2 integerCell: @cell(# v::< integer #);

3 touchyInteger: integer

4 (# enter (# 'Somebody changed me!'->stdio #)#);

5 myCell:

^

cell

6 do

7 touchyInteger[]->integerCell.value[];

8 integerCell[]->myCell[];

9 (* for myCell.value we now have different view,

10 * qualification, and pattern of referred object *)

11 #)

Figure 3.5: Views, quali�cations, and actual patterns

The result is that a pattern has exactly those attributes which are declared

in the MainParts of the mixins in it, except for the virtual further- and �nal-

binding declarations (which are statically associated with some virtual pattern

declaration but do not �count� themselves). Since some declarations may have

the same name without being uni�ed, there is still the problem of ambiguity

when looking up such a name. To handle this we need di�erent views on objects.

Actually, for backward compatibility with Beta, an attempt to access an

attribute of name N where two or more attributes of the name N are declared

will succeed, and it will access that N attribute which is declared in the front-

most (most speci�c) mixin. However, this is deprecated and a warning will be

generated during static analysis. The right solution is to use a view which se-

lects a suitable superpattern that does not contain the name clash. This will

probably improve the readability of the code anyway.

A view on an object is a statically known pattern which is used to access �

the object.

4

Such a pattern may be derived from the speci�cation of an object

attribute, it may be the quali�cation of a variable object or pattern, or it may

be denoted in a quali�ed attribute denotation (an �upward cast�, with syntax

Quali�edAttrDen which can be found in the grammar, App. A, and which is

presented in Sect. 8.2.2). In all cases the view is the contract between the

object being accessed and the �client� or �user� of the object which performs

the access. The view determines what attributes may be accessed and what

properties those attributes have themselves.

In many cases, for instance with a virtual, the pattern on which a view is

based is not known exactly at compile-time, but there is always a statically

known upper bound. This upper bound is then used for the view. It is noted

in the static analysis that the view is possibly incomplete, i.e., that the pattern

may be strictly more specialized than what is statically known. This means that

4

Since patterns do not exist before run-time there is no such thing as a compile-time

constant pattern, but often a pattern is completely known statically relative to the current

object
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a certain list of mixins is statically guaranteed to be present, but the actual run-

time quali�cation may contain additional mixins.

Note that this is not the same as subtype polymorphism. Where subtype

polymorphism is concerned with the relation between, e.g., the quali�cation of

a variable object attribute and the pattern of the object referred by it, this is

about the relation between the quali�cation and the static knowledge about the

quali�cation. In a language where classes are always compile-time constants,

there may be subtype polymorphism, but still each quali�cation will be known

exactly during static analysis.

Figure 3.5 illustrates the di�erent patterns involved in this situation. It uses

virtual patterns which will be explained in detail in Chap. 4, but at this point

we just describe the properties of the concrete example. The cell pattern

describes objects which may hold a value quali�ed by the virtual attribute

v which is object in cell, and the integerCell object further-binds v to

integer such that the value in integerCell must be quali�ed by integer. A

touchyInteger is a specialization of integer which will complain whenever it

is being assigned a new value. Line 7 and 8 in the �gure then initialize the value

of integerCell to an instance of touchyInteger, and makes myCell refer to

integerCell. As a result, in line 9, the variable object attribute myCell.value

has object as the view pattern (because the view of myCell is cell); it has

integer as the quali�cation, because myCell refers to integerCell whose v

attribute has the value integer; and the object referred by myCell.value is

an instance of touchyInteger. This makes the view, the quali�cation, and the

pattern of the referred object di�erent, so these concepts are obviously distinct.

The static analysis and semantics of gbeta ensures that certain invariants

hold. For instance with a variable object attribute, the view pattern will at

all times be a superpattern of the quali�cation, and the quali�cation will at

all times be a superpattern of the pattern of the referred object. These in-

variants are necessary and su�cient to ensure that attribute access will never

fail (there are never any MessageNotUnderstood errors). However, note that

if the view is di�erent from the quali�cation, reference assignment (like : : :

->myCell.value[] in the example) is and must be detected as type unsafe,

unless relative information otherwise guarantees the type safety.

Finally, as promised, we will discuss some important implications of the fact

that gbeta has static name binding . It allows programmers to look up (proba-�

bly by double-clicking : : : ) what declaration any given usage of a name refers

to, and hence matches very well with locational (or stricter) equivalence: The

name application may unconditionally �take over� whatever information can

be obtained about the associated declaration, including comments and general

knowledge about the intended usage and properties of entities near that loca-

tion; the programmer may then rest assured that this knowledge can not be

invalidated by accidental name clashes or similar phenomena which can only be

detected using global knowledge.

Moreover, the static name binding ensures that certain dynamic operations

are safe, such as dynamically adding new part objects to an existing object,

thereby giving it new attributes. Luigi Liquori says in [63, p. 150] that this is
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well-known to be unsound:

As clearly stated in [13, 4], subtyping is unsound when we allow

objects to be extended.

The demonstration of this problem by means of an example right after the above

quote relies on changing the meaning of a name application by introducing a

new declaration of the same name but with another type. This is an example

of unifying two attribute declarations in such a way that the type checker will

never know about both of them at the same time. Now, with static name bind-

ing and explicit uni�cation that problem is trivially solved, since an attribute

declaration can only override another when the two are recognized by the static

analysis as being one, uni�ed attribute, and that means that the necessary type

conformance checks between the two declarations can be made during static

analysis. However, even though such a result is nice, it should be viewed as one

of many examples of improved analyzability and understandability associated

with a language where programmers can reason about programs in terms of

properties of declarations, without having to worry about what declarations to

look at. In other words, it is a bene�t of static name binding.

3.7 Pattern Merging

This chapter shares material with our paper Propagating Class and

Method Combination, which was accepted for publication and presen-

tation at the ECOOP'99 conference.

The merging operation, `&', is based on a linearization, as mentioned already �

in Sect. 3.2. This section speci�es precisely how the merging works, giving a

formal de�nition of the linearization based on operations on total order relations

which are again just a formal view on lists.

3.7.1 Linearization

Until now the class combination mechanism `&' used in gbeta has only been pre-

sented by example. This section motivates the mechanism, speci�es precisely

what the mechanism is, and proves some properties about it. The concrete algo-

rithm is shown in Fig. 3.6. This algorithm uses the standard member function

which determines whether or not a value (�rst argument) is a member of the

given list (second argument). As is evident, merging may fail. This corresponds

to the situation where the compiler rejects a gbeta program because it contains a

�bad merge�. It occurs when the contributing patterns give con�icting directions

as to the order of two or more elements, e.g., where one contributor requires the

order [: : : a : : : b : : : ] and another requires [: : : b : : : a : : : ] for two mixins a and b.

Where behavior is combined, it certainly makes sense for the programmer to

decide exactly in what order contributing behaviors are composed, but for the

case where the combination deals exclusively with state it would be nice to have
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fun merge ([]: int list) (ys: int list) = ys

| merge (xxs as x::xs) [] = xxs

| merge (xxs as x::xs) (yys as y::ys) =

if x=y then x::(merge xs ys)

else if not (member x ys) then x::(merge xs yys)

else if not (member y xs) then y::(merge xxs ys)

else raise Inconsistent;

fun member x [] = false

| member x (y::ys) =

if x=y then true else member x ys;

Figure 3.6: The algorithm used in merging

a symmetric, unordered mechanism. That is future work. The details about

behavior combination is given in Sect. 3.8.

A small oddity: In object-oriented languages it is a tradition to write the

most speci�c part last, like in aSuper(# .. #), not (# .. #)aSuper, and hence

the class combination operator `&' was designed to make the last argument the

most speci�c. In this section it is more convenient to reverse the order, so the

programming language syntax A&B corresponds to the mathematical notation

B � A below. Among other things, it matches better with the standard list

notation which also puts the most accessible (�head�) element at the front (left)

end of the notation.

The class combination mechanism is a graph linearization, i.e., a procedure

which from an oriented graph constructs a list which determines a topologi-

cal sorting of the nodes. Obviously a cyclic graph does not allow this, hence

the potential for rejection of a merge. Since there are many possibilities for

typical graphs, some systematic choices must be made in order to arrive at a

well-de�ned result. Existing linearizations [29, 30, 7] are described in terms of

such systematic choices of �what node to take next�, and this makes it hard to

understand their outcome and to reason about their properties.

Luckily, the `C3' linearization [7], which is the one used in gbeta, can be

characterized in a much more declarative way, and it can even be generalized in

a way that makes it a proper operation on a suitable set M :

8x; y 2M: x� y 2M

The name C3 re�ects three consistencies exhibited by this linearization, namely

consistency with the local precedence order,

5

consistency with the extended

precedence graph,

6

and monotonicity.

7

The other known linearizations (includ-

5

The programmer-chosen ordering of direct superclasses, or, in gbeta, the ordering of the

operands of the merging operator

6

The extended precedence graph additionally orders classes according to the local prece-

dence order from the most general common subclass

7

Avoidance of the phenomenon that an inherited feature is looked up in a class that none

of the direct superclasses would have chosen.
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The C3 merging principle:

The merge of two orders A and B is

the union of A and B together with

all non-contradictory edges from A to B

Figure 3.7: The intuitive principle behind merging

ing the ones used in LOOPS, CLOS, and Dylan) do not have all three consisten-

cies. Moreover, the C3 looks even better with the simple characterization given

below. The remaining problem with linearization is that no linearization can

handle all inheritance hierarchies, some will be rejected as inconsistent. There

is simply no way the lists [1; 2] and [2; 1] could be merged into a new list of

distinct values which would preserve the order of 1 and 2 for both of those lists.

To reach a declarative characterization we must make a shift in mindset and

terminology from the `list' and `graph' based thinking. If we regard the edges in

a given acyclic oriented graph as a relation and take the re�exive and transitive

closure of that, we get a partial order. Similarly, a list determines a total order.

Hence, a linearization is a construction of a total order by adding elements to

a partial order. C3 actually constructs a total order from a number of given

total orders, namely the linearizations of the superclass hierarchies. The C3

principle for two orders is as shown in Fig. 3.7. To elaborate on this principle,

it says that �the merge is everything A says and everything B says and then, by

default, elements from A are smaller than elements from B.� This is formalized

straightforwardly in section 3.7.1. First we have to establish a few facts.

Total preorders

We need to consider total preorders:

De�nition 2 A total preorder is a relation which is re�exive, transitive, and

total. A total order is a total preorder which is also anti-symmetric.

It is easy to prove that:

Lemma 1 Assume � is a total preorder. The relation � de�ned by a � b ,

a�b^ b�a is an equivalence relation, and the relation � on equivalence classes

de�ned by [a] � [b] i� a � b is well-de�ned and a total order.

8

Given an equivalence relation � and a total order on the equivalence classes

�, then the relation � de�ned by a � b, [a] � [b] is a total preorder.

In other words, a total preorder corresponds to a list of equivalence classes of

elements, rather than a list of individual elements.

This is the desired generalization: to construct a list of groups of mixins,

each group consisting of mixins considered equally speci�c.

8

[a] denotes the equivalence class containing a.
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In such a setting, clashing names are not always disambiguated. This might

at �rst seem to be a step backwards; it is in fact an improvement. When the

ordinary C3 linearization (Fig. 3.6) would succeed, the generalization delivers

the same result (all groups have size one). When the hierarchy would be rejected,

the resulting non-trivial groups would in many cases work well enough. For

example, as long as a name is only declared by one of the mixins in a given

group, there will be no clashes on that name. In fact, a number of inheritance

hierarchies would be better described by making certain mixins equally speci�c,

since the commitment to one order causes unnecessary restrictions on future

usage. However, the lack of ordering does not blend well with combination of

behavior.

Merging

We need a couple of tools before C3 merging can be formalized:

De�nition 3 When R is a relation, its domain dom(R), its inversion R, its

one-step transitive closure R

+

, and its transitive closure R

�

, are de�ned by:

dom(R)

4

= fyj(9z: (y; z) 2 R) _ (9x: (x; y) 2 R)g

R

4

= f(y; x)j(x; y) 2 Rg

R

+

4

= R [ f(x; z)j9y:(x; y); (y; z) 2 R g

R

�

4

=

[

i2!

R

i

where R

0

4

= R, 8i 2 !: R

i+1

4

= R

+

i

.

The following lemma is immediate from the de�nitions:

Lemma 2 Let R and S be relations. Then R

�

is transitive. The domain is

additive: dom(R [ S) = dom(R) [ dom(S). The domain is preserved by transi-

tive closure and inversion: dom(R

�

) = dom(R) = dom(R). Re�exivity is pre-

served by transitive closure, inversion, and union: if 8x 2 dom(R): x�

R

x then

8x 2 dom(S): x�

S

x, S 2 fR

�

; Rg, and if 8x 2 dom(T ): x�

T

x, T 2 fR;Sg

then 8x 2 dom(R [ S): x�

R[S

x.

The formalization of the C3 merging principle is:

De�nition 4 (C3 Merging) Let R

1

and R

2

be relations. The C3 merge of

R

1

and R

2

is

R

1

�R

2

4

= R [ (dom(R

1

)�dom(R

2

) n R)

where R

4

= (R

1

[R

2

)

�

.

Intuitively, the merge combines the two given relations R

1

and R

2

into (R

1

[R

2

)

which is then �repaired� to be a transitive relation R by taking the transitive
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closure. R is complemented with everything from dom(R

1

)�dom(R

2

) which does

not contradict R. In other words, R

1

elements are smaller than R

2

elements,

unless something is known to the contrary.

As an example of a general merging, fa � b; a � c; b � cg � fc � bg is

fa � b; a � c; b � c; c � bg, or as lists: [a; b; c]� [c; b] = [a; fb; cg]. The elements

fb; cg for which there are con�icting ordering requirements�a cycle, as de�ned

below�are collected into a group and thus made equally speci�c.

Now we can state the closure property that makes total preorders interesting:

Proposition 1 Assume R

1

and R

2

are total preorders. Then R

1

�R

2

is a total

preorder.

Proof: (See appendix B) 2

The ordinary C3 merge (Fig. 3.6) fails precisely when the generalized C3 merge

(Def. 4) produces a total preorder which is not a total order. A total preorder

is a total order if and only if there are no cycles, so we need to consider them:

De�nition 5 Let R be a relation. A sequence of distinct elements d

1

: : : d

n

2

dom(R), n � 2, is a cycle in R iff

(8i 2 1 : : : n�1: (d

i

; d

i+1

) 2 R) ^ (d

n

; d

1

) 2 R

R is acyclic iff there are no cycles in R.

Lemma 3 Let R be a acyclic relation. Then R

�

is acyclic.

Proof: (See appendix B) 2

We can now state and prove the �non-pre� equivalent of proposition 1:

Proposition 2 Assume R

1

and R

2

are total orders and R

1

[R

2

does not have

cycles. Then R

1

�R

2

is a total order.

Proof: (See appendix B) 2

We have seen that the C3 merging principle can be formalized in a rather ob-

vious manner and proved that the formalization has the nice stability property

of proposition 1 and the incomplete stability property of proposition 2. It seems

to be worthwhile to try to develop the strict linearization of various languages

into the more wholesome total preorder model, going from class precedence lists

to class group precedence lists. This has not yet happened for gbeta, and as

mentioned the main problem is the fact that behaviour can hardly be combined

in a symmetric way�a non-deterministic choice of ordering of the behavior com-

position or generally having concurrent execution of equally speci�c behaviors

would surely be a nightmare to debug.

It is not hard to see that the algorithmic version of C3 actually implements

the formalization presented here�the algorithm each time selects the least re-

maining element according to our formalization of C3. Of course, the algorithm

just terminates with an error message if the result would not be a total order.
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As an aside it is interesting to note that the gbeta implementation actually

used a quite di�erent algorithm for merging during a period of more than a year.

Only after the above formalization was created did it become clear that the

C3 algoritm (which was simpler and therefore attractive) solved the exact same

problem, because both algorithms clearly implement the formal characterization

of the linearization. Algorithms are generally harder to compare and reason

about than declarative formalizations like Def. 4.

3.8 Specialization of Behavior

In most object-oriented languages, behavior cannot be specialized. Let us �rst

consider a non-example. Typically, the behavior of a method m (in some lan-

guages it must be `virtual') in a given class C can be made di�erent from what

it is in the superclass(es) of C by overriding the implementation of m with a�

di�erent one. The new implementation is generally written from scratch. Only

ordinary method invocations may be used to produce a new behavior built on

the existing behaviors, for instance by invoking the implementation of m in a

speci�c superclass (as with superOfC::m() in C++) or by sending a message to

a special object designator like `super' (as in Smalltalk) which will invoke the

implementation available in the immediate superclass.

It may seem natural to include method overriding into the concept of be-

havior specialization, but it is not the same. Method overriding will make an

invocation of m exhibit di�erent behavior when invoked on instances of di�erent

classes, but the implementations of m will not be a family of related methods

which are de�ned incrementally; the di�erent implementations of m are entirely

independent methods which are only brought together by the common name.

In contrast, a family of methods related by behavioral specialization is more

like a class hierarchy, where commonalities in behavior are factored out into

the general members of the family, and more special members are created in-

crementally from more general ones. As a special case, such a family of related

methods may be used as the implementations of a virtual method, but it may

also be used in other ways.

Specialization of behavior is available in Beta, as presented already in

in [60], and it is available in a generalized form in gbeta. In both Beta and

gbeta, specialization of behavior is based on the INNER imperative. INNER works

the same in Beta and gbeta, at least when describing patterns as lists of mixins,

as it was done in the previous sections. The only di�erence is that gbeta allows

for much more �exible ways to create patterns from given mixins. As shown in

Sect. 3.8.2, this makes a real di�erence in expressive power.

Behavior specialization is the creation of a more re�ned, detailed, complex

behavior from a less re�ned one by means of an incremental speci�cation. For

example, yelling �di-bah-ba-doo-dah-dosh� is a specialized version of the behav-

ior of yelling �ba-dooh-dah�, but also a specialized version of yelling �di-bah-[]-

dosh�, where �[]� is a special placeholder which by the rules of the game may be

replaced by anything, and which defaults to nothing if it does not get replaced.
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Actually, both of the less special behaviors may be viewed as the general basis

from which the special behavior is derived, using the other, less special behavior

as an incremental speci�cation. However, the behaviors cannot just be �added�

symmetrically, there must be a speci�cation of how to combine them.

Kristine Stougaard Thomsen created a proposal for how behavior could ac-

tually be combined in a mostly symmetrical manner by means of non-sequential

execution (similar to coroutines) already in 1987 [108]. The central concept in

this proposal is that the INNER imperative is replaced with another construct

which would transfer the control to another do-part, thereby allowing several

equally speci�c mixins to coexist without having to decide on an ordering. This

idea might well be applied in context of the generalized merging mechanism.

However, we believe that the programmer in the general case would have too

much trouble determining exactly what would happen at run-time with such a

cross-over mechanism instead of INNER, so it is our impression that it should

preferably be used only in those cases where the do-parts in question could really

be executed in an arbitrarily interleaved order.

Together, the notion of patterns as lists of mixins (not sets of mixins), in-

heritance, the pattern merging operation, and the INNER imperative provide a

rich framework for creating and using combinations of behavior speci�cations

in gbeta. The specialization of behavior which this gives rise to will now be

described in two phases, �rst from above considering patterns and behaviors as

a whole, then from below considering the individual mixins and their DoParts.

3.8.1 Specialization of Behavior�a Top-Down View

The behavior associated with a pattern will be present as an aspect of the

behavior of any of its subpatterns; it can never be discarded, only re�ned. This

ensures that a subpattern will always have a behavior which is in some sense a

completion and enhancement of the behavior of each of its superpatterns.

The behavioral specialization relation is based on syntactical criteria, so

there is no consistent, bullet-proof semantic meaning behind the claim that

`behavior cannot be discarded'; in contrast, it is actually possible to add a

mixin to a pattern P such that the resulting pattern will do what the new

mixin DoPart speci�es, ignoring the behavior of P entirely. An example of this

kind of distorted behavioral specialization is the following:

(* original behavior *)

do 'Hello, world!'->stdio;

(* "refined" behavior *)

do (if false then 'Hello, world!'->stdio if);

'Good day, earth!'->stdio;

Ex.

3-6

The re�ned version of the code is in fact built from the existing behavior and

a new contribution, but the semantics of the execution ensures that only the

new behavior will be observed. As a general rule, though, a subpattern will

have a behavior which can reasonably be described as a specialization of the
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p: (# do (for i:3 repeat INNER for)#);

q: p(# (* fill in the INNER of p *)

do 'Hello, world!'->stdio

#);

r: (# (* print 'Hello, world!' three times *)

do (for i:3 repeat

'Hello, world!'->stdio

for)

#)

i:3 INNER

for

'Hello, world!'->stdio

Figure 3.8: Specialization of behavior: q and r are equivalent

behavior of any of its superpatterns. In particular, this is a meaningful goal

which programmers may strive for and generally achieve.

Like gbeta, Beta also supports a syntactic�not a semantic�behavioral

specialization relation; but it would not be easy to improve that into a genuine

semantic re�nement relation. It would be hard to formalize `behavioral special-

ization', and it would surely be an undecidable problem to verify it statically

for a non-trivial language. Hence, a syntactic approximation is probably the

best we can hope for. Of course, run-time checks of assertions like the pre- and

post-conditions of Ei�el can be added, and there has been a framework for doing

this in Beta, to a certain extent, for several years. We should note that pre-

and post-conditions and invariants in Ei�el express these correctness criteria as

part of the interface and thereby elevate them to a more visible position than

they could have as part of method implementations. This is likely to strengthen

the consciousness of programmers about these criteria and thereby support the

creation of high quality systems.

However, support for provable behavioral conformance is not the basic idea

behind the Beta and gbeta behavioral specialization mechanisms, the basic idea

is rather to enable incremental speci�cation of behavior. That is an obvious

goal given the relation between concepts and patterns, and given the existence

of specialization relations between concepts. Admittedly, the mechanical spe-

cialization relation supported by Beta and gbeta are very crude imitations of

the specialization relations in natural language. But they are indeed useful!

3.8.2 Specialization of Behavior�a Bottom-Up View

The behavior specialization process can be described as a syntax tree completion

process, i.e., as a source code transformation which inserts entire DoParts from

more speci�c mixins into special positions (INNER imperatives) in less speci�c

ones. This transformation process correctly shows which imperatives will be

executed in what order, and it promotes the right idea about specialization

as a process of �lling-in missing pieces; however, the transformations generally
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change the name binding environments of names, so they could not be performed

on real programs without changing their semantics or�more likely�introducing

static semantic errors.

Nevertheless, these transformations will be used to illustrate the behavior

combination mechanism, starting with the example in Fig. 3.8 which happens to

work correctly also after the transformation. In the �gure, the pattern p is the

general basis whose behavior is to repeat INNER three times, and the de�nition

of q adds an increment to the behavior of p, thereby determining what the

meaning of INNER in p is. As a result, the behavior of q is equivalent to the

behavior of r.

From the concrete example we turn to an informal but general, recursive

de�nition: The behavior of object, the empty list of mixins, is to do nothing.

The behavior of a pattern containing just one mixin is the DoPart of that mixin.

The behavior of a pattern with at least two mixins is derived from the behavior of

its tail (which is the same as the immediate superpattern in Beta) by inserting

the behavior of the head into each occurrence of an INNER imperative in the

behavior of the tail.

The behavior of a DoPart is the e�ect of executing the imperatives in that

DoPart in context of a part object which is an instance of a mixin associated

with the enclosing MainPart. The insertion of a behavior into an occurrence of

INNER is a transfer of control similar to a sub-routine call, i.e., a jump to the

DoPart in question, followed by the execution of the imperatives there, in the

environment of the corresponding part object, and returning from that DoPart

upon termination.

An alternative explanation of the semantics of the INNER is that it is similar

to a message send to super in Smalltalk, but it calls the �subclass� (the next

more speci�c mixin, i.e., the preceding element in the pattern) instead of the

�superclass� (the next more general mixin, i.e., the successor element). Thinking

of INNER as an `inverted super send' might seem to be the most direct approach

at �rst, but the view of the syntax tree being completed gradually by �lling in

the INNER placeholders with the DoPart from the next more special mixin is

closer to the intention behind the mechanism. Again, Beta and gbeta have

exactly the same semantics of INNER for any given pattern, but gbeta will allow

a more �exible construction of patterns from existing mixins.

Figure 3.9 on page 72 is an example where combinations of a few mixins

into several di�erent patterns show di�erent behavior as determined by the

semantics of INNER (note that the boolean doit is false at the beginning of each

imperative). For example, the merging c&b&a gives rise to the equivalent of the

following DoPart:

do (for 4 repeat

'c'->stdio;

(not doit)->doit;

(if doit then 'b'->stdio

else true->doit; 'a'->stdio; false->doit

if)

for)

Ex.

3-7
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(# doit: @boolean;

a: (# do true->doit; 'a'->stdio; INNER; false->doit #);

b: (# do (if doit then 'b'->stdio else INNER if)#);

c: (# do (for 4 repeat

'c'->stdio; (not doit)->doit; INNER

for)

#)

do a; (* prints 'a' *)

b; (* prints '' *)

c; (* prints 'cccc' *)

a&b; (* prints 'ab' *)

b&a; (* prints 'a' *)

a&c; (* prints 'acccc' *)

c&a; (* prints 'cacacaca' *)

b&c; (* prints 'cccc' *)

c&b; (* prints 'cbccbc' *)

a&b&c; (* prints 'ab' *)

a&c&b; (* prints 'accbccb' *)

b&a&c; (* prints 'acccc' *)

b&c&a; (* prints 'cacacaca' *)

c&a&b; (* prints 'cabcabcabcab' *)

c&b&a; (* prints 'cbcacbca' *)

#)

Figure 3.9: Many examples of specialization of behavior

Of course, a systematic enumeration of the possible combinations like this ex-

ample does not make sense in a real usage context, but some of the combinations

are examples of more generally applicable principles. For example, try to com-

pare c&a with a, c&a&b with a&b, and c&b with b; this shows the usage of c as

a behavioral aspect which will repeat whatever it is combined with, and modify

the environment in which the repeated behavior is executed (by changing doit).

Similarly, b is a �conditionalizing� behavioral aspect which chooses whether

or not to execute whatever behavior it is combined with. This is demonstrated

by c&b&a, where b uses a di�erently for each iteration of the for-imperative,

depending on the environment�which is controlled by c. Mixins similar to

b can be used to switch on and o� the behavior of given patterns, according

to whatever criteria are appropriate. Clearly, a given basic behavior enhanced

with the ability to be switched on and o� may be described as a re�ned, spe-

cialized version of the basic behavior itself�although the conditionalizing mixin

arguably plays the role of a post-hoc added superpattern when considered from

a Beta point of view.

These kinds of behavioral specialization which include the placement of a

given, comparatively simple �super� behavior in the context of some other �in-
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cremental� behavior are not supported in Beta, only in gbeta. The reason

is that a pattern on the form [m

k

;m

k�1

: : :m

1

] in Beta only has the pat-

terns [m

j

;m

j�1

: : :m

1

] for j 2 f0 : : : kg as superpatterns, no other sublists of

[m

k

;m

k�1

: : :m

1

] can even exist, and hence a given behavior can never be �in-

serted into� another behavior by specialization in Beta, it can only �insert� the

incremental behavior as leaves in the syntax tree completion.

Finally, by comparing a with b&a, c&a, b&c&a, and c&b&a we can observe

the traditional specialization of the behaviors of b, c, b&c, and c&b with a as a

new leaf behavior. Of course, even though this kind of behavior specialization

is possible in Beta, it would require the textual copying of the de�nition of a

into every position where it should be used to specialize a behavior.

3.9 Object Creation

Objects do not just magically come into existence in gbeta. Actually, the process

of creating an object is complex, even though there is no notion of `constructors'

in gbeta. The following description details what should happen at the conceptual

level in any gbeta implementation. It also describes the current (slow, but

general) method used in the existing implementation of gbeta. However, a

high quality implementation of gbeta would exploit the information from static

analysis to pre-compute or avoid the need for many entities which are actually

created at run-time in the current gbeta implementation.

As described in Sect. 3.3, an object is a list of part objects, each part object

is associated with the mixin from which it was originally created, and each mixin

is associated with aMainPart which contains a list of attribute declarations. The

part object must have the attributes de�ned in the MainPart, and the run-time

paths (presented in Sect. 3.6), which have been initialized during static analysis,

are used to �nd the entities (objects or patterns) denoted by the right hand sides

of declarations, and that often makes it possible to initialize the attributes of a

given part object.

However, it is not that easy in the presence of recursion. The problem is

that an object may contain an attribute which denotes an entity which must

be looked up in another attribute of the same object or even in a directly or

indirectly nested object. In other words, the construction of the object cannot

be completed without using (parts of) the object itself. The approach used to

break this cycle in the current gbeta implementation is to compute attributes

on demand, annotating each attribute which is being computed as �half-done�.

Whenever the object creation algorithm looks up an attribute and �nds that it

is �half-done�, a circularity must have been encountered and a run-time error is

raised which kills the thread in which this failing object creation was going on.

A traversal of all attributes ensures that the demand occurs for every attribute

during the object creation, whether or not it is used in the initialization of other

attributes.

In many cases it will be possible to determine statically whether or not such

an on-demand computation will give rise to circularities, but with the generality
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of Beta (hence also gbeta) it is possible to create circularities which cannot be

detected without �ow analysis, i.e., it is in general an undecidable problem to

detect such cyclic dependencies. It would still be nice to detect a large number

of easy, safe cases and then give warnings for the few, hard cases. An example in

Beta containing a cycle which requires �ow analysis to detect is the following:

p: (# r1: [(# exit r2.range #)] @integer;

r2: [(# exit r1.range #)] @integer

#)

Ex.

3-8

This example contains some constructs which have not yet been presented, but

they will be explained for this special case here. The pattern p contains two repe-

tition attributes, i.e. two arrays of objects. The lengths of the repetitions are de-

termined by the evaluations (# exit r2.range #) and (# exit r1.range #),

and these expressions must be evaluated before each of the repetition attributes

can be created. Since the length of r1 can only be computed when r2 has been

initialized and vice-versa, there is no way to create an instance of p. It would

be possible to �solve the equation� by choosing an arbitrary non-negative integer

and initialize both r1 and r2 with that length, but an implementation of gbeta

is not required to discover such possibilities. The cycle should be detected and

rejected, preferably at compile time, even though that is not possible in the

general case. In the current implementation of gbeta it is never detected at

compile time, so in particular this example gives rise to a run-time error.

Cyclic dependencies are not the only things to consider when creating new

objects. In gbeta, the approach was taken to allow many things which are

prohibited in Beta, in order to try out whether or not the increased generality

and �exibility would be worthwhile.

As an example, all kinds of entities may be used on the right hand side

of declarations, so for instance a variable object have a variable pattern as

its quali�cation (�declared type�). Since a variable pattern may be NONE,

there may arise a run-time error already during initialization of the attribute.

However, even if the variable pattern is not NONE, some decisions must be

made with respect to the semantics of this variable object later. The problem is

that the variable pattern may change during the life time of the variable object.

If we have the following situation, what would be the correct reaction?

1 (# vp: ##object

2 do string##->vp##;

3 (# vo:

^

vp

4 do &string[]->vo[];

5 integer##->vp##;

6 ..

7 #)

8 #)

Ex.

3-9

In this example, vp is a variable pattern with quali�cation object which hap-

pens to have the value string at the point where the inserted item is created,

i.e., when line 3 is reached. In line 4, the assignment makes the variable object

vo refer to a string object. Since the value of the quali�cation vp is string
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The snapshot principle:

The right hand side of an attribute declaration

is evaluated when the enclosing object is created,

and it is never changed after that

Figure 3.10: The principle behind variable entities used in declarations

that would be �ne. In line 5, however, pv is changed by the assignment to have

the value integer, and at that point the variable object vo will no longer refer

to an object which is quali�ed by the value of pv.

It is obviously not manageable to have a quali�cation of a variable object

which may change like that during the life time of that variable object. In

general, it is not desirable that attributes may silently become invalid, so qual-

i�cations should be immutable. One rule which will make them immutable is

the conservative rule that quali�cations must be compile-time constants (rela-

tive to the current object), but this was exactly the limited universe from which

we wanted to escape. Another rule which is very simple and which handles all

the new, dynamic cases consistently is the snapshot principle which is shown in

Fig. 3.10. This principle is used in gbeta for dynamic entities used on the right

hand side of declarations. Note that it applies equally well to the well-known

static cases, even though it makes no di�erence there.

Also note that the semantics where only compile-time constants are allowed

on the right hand side of declarations is a special case of the snapshot seman-

tics, which makes it possible to prohibit any or all of the dynamic enhancements

provided by the snapshot principle as desired. One aspect of traditional Beta

semantics which points in the direction of the snapshot principle is the seman-

tics of length speci�cations in declarations of repetitions (�arrays�). Such an

expression, like x in `r: [x]

^

boolean', is evaluated when the enclosing object

(of which `r' is an attribute) is created, and the length of the repetition is of

course not adjusted every time the current value of the expression x changes.

That is an example of a snapshot of the state of the program being used to

determine the meaning of a declaration.

Another example that we have already seen earlier is the support for constant

references by coercion, as described in Sect. 2.3.4. An example which will be

covered later, in Sect. 7.2, is the usage of a pattern variable as a superpattern,

to create a dynamic control structure.

Reconsidering the example above with the declaration vo:

^

vp, it may ac-

tually be useful: The declaration gives vo a quali�cation which is only known

by upper bound�since vp is less-equal than its own quali�cation, the quali�-

cation of vo is also less-equal than that bound. This means that an object can

safely be obtained from vo with the quali�cation of pv as the statically known

pattern, but any attempt to reference-assign to vo, e.g. m->vo[], will cause a

message from static analysis that this is not type safe. On the other hand, it
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Local lookup of a name N in a view P :

If P is Object then the lookup fails; otherwise

if the head of P contains a declaration of N ,

then that declaration is the result; otherwise

the result is the lookup of N in the tail of P

Figure 3.11: The rule for local lookup

is possible (i.e. statically type safe) to renew vo, i.e., to create a new instance

of the quali�cation of vo and make vo refer to this new object. The syntax for

this is &vo (or &vo[] if we want to prevent execution of the new object). As

a result we have obtained a variable object attribute which is read-renew, as

opposed to read-only or read-write. Client code may use vo as an instance of

the quali�cation of vp (we might call this the �o�cial� quali�cation of vo), and

every instance of the enclosing object can have its own �secret� quali�cation for

vo, determined by the value of vp at snapshot time. By the way, this is an

example of a context dependency; see in Chap. 5 why that is actually a natural

and justi�able thing to use, when used right.

3.10 Local Lookup

As mentioned in Sect. 3.6, name lookup is performed entirely during static

analysis, and at run-time the entity denoted by a name is obtained by following

the instructions in the run-time paths which were constructed by static analysis

and attached to each name application. Hence, no searching procedures are

performed at run-time in order to �nd any declarations with a given name, that

has already happened during static analysis. This section is about the searching

procedure which is used when the run-time paths are constructed. It is only

concerned with the case where the name being looked up is actually available in

the current object; when it is not available in the current object, i.e., when the

lookup with the rule given in this section fails, the search may continue with the

enclosing objects, as described in more detail in Chap. 5. If the global search

also fails then the program is rejected with the static analysis error `name is

unde�ned'.

The local lookup rule is based on the view pattern, which is not surprising

since the view is the information which is available during static analysis when

the local lookup is performed. So, given a view of an object, the lookup rule�

simply says that the mixins are searched one by one, starting with the most spe-

ci�c; the result of the lookup is the �rst declaration encountered which declares

the requested name. A recursive formulation of this rule is given in Fig. 3.11.

A few examples of local lookup are given in Fig. 3.12 on page 77. In the

�gure, three applications of names in the context of the object referred by myQ
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1 (# p:

1

(# x,y: @integer #);

2 q: p

2

(# x: ##object #);

3 r: q

3

(# y: @string; z:

^

object #);

4 myQ:

^

q

5 do

6 r[]->myQ[];

7 myQ.x; (* refers to the variable pattern *)

8 myQ.y; (* refers to the integer object *)

9 myQ.z; (* compile-time error! no 'z' in view *)

10 #)

Figure 3.12: Local lookup examples

are performed in the lines 7�9. The name myQ is also looked up, but this is a

trivial case, so we will concentrate on the usages of x, y, and z.

In line 6 myQ is made to refer to a new object created as an instance of the

pattern r, which is [3; 2; 1] using the usual notation for patterns and the given

numbering of MainParts in the example. This means that the object referred by

myQ in the lines 7�9 actually contains two attributes named x, two attributes

named y, and one attribute named z. However, the view on myQ is in all cases the

pattern q, i.e., [2; 1], which contains two attributes named x and one attribute

named y. Since the MainPart 2 is more speci�c than 1 in q, the result of the

lookup of x in line 7 is the variable pattern attribute in 2, not the integer

object in 1. In line 8, there is only one y attribute available in the view of

myQ, namely the integer object declared in 1, so that is the result. Finally, the

access to z in line 9 is rejected at compile-time because the view of myQ does

not contain any declarations named z.

Note that the local lookup is the only applicable rule for lookup in the context

of a given object (i.e., with syntax including a dot like myQ.x, and generally with

the Remote syntax as speci�ed in the grammar, App. A). Only lookup which

does not occur explicitly in the context of an object, i.e., stand-alone name

applications like myQ, are eligible for global lookup.

3.11 Quali�cations

A quali�cation is a pattern associated with a variable attribute which regulates �

what values the variable attribute is allowed to take on at run-time. It is the

pattern obtained by coercion from the run-time entity denoted by the right hand

side of the declaration of a variable attribute. Other terms for similar concepts

in other languages would be `declared type', `type constraint' or simply `type'.

Note that `types' mostly are a compile-time phenomenon whereas quali�cations

in gbeta (and Beta) are genuine run-time concepts, even though the static anal-

ysis is all about discovering what the run-time values will be, wherever possible.

The intuition is that a quali�cation describes a certain set of properties, and the
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value of the variable attribute is guaranteed to be such that this set of properties

is actually available.

The exception which has a parallel in most languages is that a variable

attribute generally may be �disabled� in some sense, by being NONE in gbeta

or Beta, by being in the void state in Ei�el, by being a NULL pointer in C++,

or by being nil in CLOS and related languages. In this state, the variable

attribute does not refer to an entity, and access to any property of the (missing)

entity is a run-time error.

In Cecil this problem has been removed by not allowing variable attributes

to attain any disabled state [21]; instead, variable attributes will initially refer to

a special `default' object. However, the practical consequence seems to be that

the default object cannot do anything but respond to any attempted accesses by

raising a run-time error, hence recreating the situation with disabled attributes.

Otherwise, for a non-disabled variable attribute A, the quali�cation Q of A

constrains the entities which are allowed to be referred by A. If A is a variable

pattern then the value of A must be a pattern which is less-equal than Q. If A

is a variable object then the value of A must be the identity of an object which

is an instance of a pattern which is less-equal than Q (exactly Q for the exact

variants).

With the snapshot semantics of declarations, presented in Sect. 3.9, Q will

immutably be the same pattern during the entire life time of A, and that ensures

that the quali�cation constraint just needs to be assured for each assignment

to the variable attribute itself (i.e., for assignments like : : : ->A[] when A is

a variable object, and : : : ->A## when A is a variable pattern).

A simple way to ensure this is to dynamically check that the constraint is

satis�ed at every assignment to the variable attribute; but that would not be

appropriate, because it would make every such assignment a potential run-time

error. With the level of static analysis in gbeta and Beta, we can do better.

For the cases where the quali�cation is known exactly at compile-time, these

assignments may be checked statically: We must ensure that the view on the

entity being assigned is less-equal than the quali�cation of the variable attribute

which is the target of the assignment. The entity being assigned unto the

variable attribute may be more special than the quali�cation, but that does

not violate the constraint for ordinary variable attributes. The exact ones are

covered below.

When the view on the entity being assigned is not less-equal than the quali-

�cation of the variable attribute, then the assignment might actually be accept-

able, but the static knowledge does not guarantee this. In Beta, the tradition

is to accept this case with a compile-time warning, leaving it to the programmer

to consider the case and take the responsibility, perhaps by making a proof of

type safety based on ad-hoc techniques, perhaps just by guessing or hoping. In

gbeta, the intention has been to get rid of such warnings and simply prohibit

the unsafe cases. Sofar, for backward compatibility, the situation is still handled

with a warning and a run-time check, but gbeta contains a construct which can

be used to remove the need for all such dangerous assignments. This construct,

the when imperative, is presented in Sect. 9.1.
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For the cases where the quali�cation of a variable attribute is not known

exactly at compile-time, assignments to the attribute are generally not type

safe, but in some cases the static analysis may establish knowledge about the

relation between some patterns, without knowing exactly what patterns they

are. A typical example is the case where two variable object attributes x and

y have the same virtual, v, as quali�cation. An assignment like x[]->y[] is

then type safe because the object referred by x must be an instance of a pattern

less-equal than v no matter what pattern v is, and that is su�cient to ensure

that y is allowed to refer to the same object. Other examples arise with the

when imperative mentioned above.

For variable object attributes whose Kind include `=', see Fig. 2.2 on page 24,

the quali�cations are exact. This means that the object referred by such a

variable attribute A must be an instance of exactly the quali�cation Q, and

this can be assured with similar techniques as the normal case covered above.

When the exact pattern is known for an object whose identity is being assigned

to a given exact variable object attribute, it can be checked whether those

two patterns are equal; a similar case occurs when the patterns are not known

exactly, but are nevertheless known to be equal; this is the case when assignment

happens between two exact variable objects whose quali�cation is the same

virtual pattern. The case where an object referred by a normal, inexact, variable

object attribute is assigned onto an exact one corresponds to other unsafe cases:

A warning is given, and the unsafe assignment can be avoided entirely by using

the when imperative.

The last topic of this section is the need for sets of patterns as quali�cations,

similar to the concept of union types in some languages (e.g., type-union in

Dylan [97]). Such sets of patterns are convenient, because the pattern space is

so �ne-grained, and sometimes some patterns are not �signi�cantly� di�erent.

However, they are not (yet) available in gbeta.

Since patterns depend on their run-time environment, because each mixin is

associated with its enclosing part object, there is a potential for an unbounded

number of distinct patterns in any non-trivial Beta or gbeta program. Gener-

ally, other OO languages have a number of classes which is �xed at compile-time.

(In CLOS it is possible to invoke the compiler at run-time and add new classes,

but there is no type system which keeps track of all the types/classes poten-

tially associated with the value of each variable. In Java new classes may be

loaded, but with a limit on the size of the source code there is also a limit on

the number of distinct classes.) Hence, the need for a concept similar to union

types is especially relevant in Beta and gbeta.

In (Mjølner) Beta, a special kind of quali�cations which are not patterns but

sets of patterns are allowed. The syntactic appearance of those quali�cations

is included in the syntax which is also used in gbeta, but the di�erence is that

Beta allows them whereas they are static semantic errors in gbeta. An example

is as follows:

window: (# item: (# #)#);

aWindowItem:

^

window.item;

Ex.

3-10
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In this example, a pattern window is declared, and the pattern item is de-

clared as an attribute of window. This means that each object which is an in-

stance of window will contain a pattern attribute item, and the item from two

di�erent windows will be di�erent patterns. Nevertheless, the variable object

aWindowItem is declared to be able to refer to any object which is an instance

of window.item. In gbeta, the very expression window.item causes a compile-

time error, because there is no such thing as an attribute of a pattern�only

objects have attributes, patterns describe what attributes their instances will

have. However, in (Mjølner) Beta this is taken to mean that aWindowItem is

allowed to refer to any instance of an item pattern in any instance of window,

i.e., the quali�cation is a set of patterns with an unbounded number of members.

There will be as many patterns in this set as there are instances of window.

This kind of generalization of quali�cations has been proposed for Beta in

1996 [12]. In this proposal it is possible to use arbitrary AttributeDenotations

as quali�cations, such that a pattern anywhere in a construct like a.b.c...x

would indicate that there is some object in the program execution which could

be chosen to take that position in the chain. E.g., if j were a pattern attribute

in a quali�cation h.j.k for a variable object obj then it must at all times be

possible to �nd an instance of j such that the k attribute in this instance yields

a pattern which is greater-equal than the actual pattern of the object referred

by obj.

However, this design has not been used in gbeta. There are some problems

with it; consider the following example:

a: (# b:< object #);

theB:

^

a.b;

Ex.

3-11

With these declarations it should be possible to let theB refer to an object�

if and only if there is an instance of a in the program execution in question.

Now, what should the response be if the last instance of a were removed by the

garbage collector? Moreover, what if there is an instance of c:

c: a(# b:: integer #);

d: a(# b::< string #);

e: d(# b::< (#..#)#)

Ex.

3-12

In this case it would presumably still be OK to let theB refer to its object if

it happened to be an integer. It would be acceptable for theB to refer to a

string as long as some instance of d were in existence, but in this case it would

be necessary to check that this were not an instance of a subpattern of d which

further-binds b, such as e does.

In other words, it seems to be a highly confusing semantics in the general

case. We have not been able to come up with restrictions which would be un-

derstandable and which would allow a �sane� subset of all the possibilities with

these generalized quali�cations, but it appears obvious that there should be

added some constraints on the allowable expressions. For example, we might

require that each non-last pattern element in the AttributeDenotation (these are
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the �ambiguous� objects) should be uniquely determined as standing for one

particular object by the immediately following element in the AttributeDenota-

tion. In the patterns a�e above there is no way to choose �the� a object for

theB, because theB does not in any way depend on the a.

In other words, attempts to understand or explain the semantics of this con-

struct in general seem to run into complications, not to mention implementing

a correct type check for the usage of it. Consequently, no such construct has

been included in gbeta, even though it remains an attractive goal to support

quali�cations which denote non-trivial sets of patterns.
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Chapter 4

Virtual Patterns

This chapter introduces virtual pattern attributes. They have already been

mentioned several times before because they play such an important rôle, but

this section is the place to look for a comprehensive presentation of them. We

will start with a slightly extended summary of the information about virtuals

already given earlier.

A virtual pattern attribute is, as the only kind of attribute, uni�ed across

multiple mixins. This means that an object having several part objects whose

mixins specify declarations of a certain virtual V will only have one such virtual

attribute V , but all the declarations of V will be considered as a group when

creating that attribute.

The uni�cation of declarations belonging to a given virtual attribute is a

combination process which puts together the contributing patterns from all the

declarations, thus arriving at a combined pattern. This pattern is a special-

ization of each of the patterns denoted by the right hand side of the uni�ed

declarations, so each declaration may be considered as a constraint which speci-

�es a minimum structure which the resulting pattern must support. Technically,

the combination is de�ned in terms of the merging rule, presented in Sect. 3.7.

The remaining sections in this chapter will give the technical details of the

attribute uni�cation process and then compare the resulting notion of virtual

patterns with the virtual patterns in Beta. After that, they will be compared

to virtual methods in other object-oriented languages, and then to class or type

parameters in languages with parameterized classes or types.

4.1 The Construction of a Virtual Pattern

For a given object, the value of a virtual pattern V for which there are some

declarations in the mixins of the object is obtained by merging the patterns

denoted by the right hand sides of those declarations. To be able to perform

this merging the declarations must be selected, and the merging process must

be speci�ed in details. This will be covered in the following.

83
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First, we need to mention a �ne point of terminology�the term virtual dec-

laration covers both a virtual pattern declaration (whose Kind is `<'), a virtual�

further-binding declaration (whose Kind is `:<'), and a virtual �nal-binding dec-

laration (whose Kind is `:'). The various kinds of declarations were introduced

in Sect. 2.2.5.

To specify the selection of virtual declarations which are considered as be-

longing to a given virtual attribute, we must introduce the concept of a virtual

chain. A virtual chain is a list of virtual declarations of the following kinds: ex-�

actly one virtual pattern declaration, then zero or more virtual further-binding

declarations, and �nally zero or one �nal-binding declaration. Speci�ed as a

regular expression, the list of Kinds must be on the form < :<

�

:

?

. The meaning

of the (optional) �nal-binding of a virtual is that it cannot be further-bound

after that; in other words, it changes the virtual pattern from a pattern being

known only by upper bound into a completely known pattern.

1

The virtual chain of a virtual attribute named N is determined by traversing

the pattern backwards, starting with the most general mixin and ending with

the most speci�c mixin�the head of the pattern. The virtual is identi�ed with

one particular virtual pattern declaration of the name N , the identity of the�

virtual relative to the enclosing object, and that must be selected. Note that a

given pattern may actually contain more than one such declaration, so we must

choose one particular virtual attribute named N among zero or more choices.

With a given choice of identity declaration for N , D

id

, the virtual chain

is fully determined. We need to introduce one more concept to describe it,

though, namely the identity of a virtual further- or �nal-binding declaration�

D. The MainPart containing D is syntactically a part of a Descriptor (in the

full grammar: an ObjectDescriptor) which also speci�es a superpattern, and by

local lookup in that superpattern a certain virtual pattern declaration is chosen

as the identity of D. If no such virtual pattern declaration can be found, the

program will be rejected with a static semantic error.

Now, the mixins can be scanned, starting from the mixin containing D

id

and going through more and more speci�c mixins until the head of the pattern

is reached. Whenever a virtual further-binding or �nal-binding declaration D

0

of the name N is found, it is included into the virtual chain if and only if the

identity of D

0

is D

id

. The intuition is that we include those virtual declarations

which themselves claim to belong to D

id

.

The end result is a list of virtual declarations, which is then checked to make

sure that it has the right shape, < :<

�

:

?

. If it has another shape, the program

is rejected with a static semantic error.

Now, the pattern which is the value of the virtual attribute may be con-

structed. The virtual chain is consulted, and for each element in the chain, the

right hand side is looked up and a pattern is obtained from it. This gives a

list of patterns which are merged, again starting with the contribution from the

most general mixin and going towards more speci�c mixins. This produces one

1

A virtual may be �nal-bound and still only be known by upper bound; more about this

at the end of this section.
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1 (# p:

1

(# v:< object #);

2 q: p

2

(# v::< integer #);

3 r: q

3

(# v:: integer #);

4

5 a:

4

(# v:<

5

(# #)#);

6 b: a

6

(# v::<

7

(# #)#);

7

8 mix: a & r & b; (* two 'v' virtuals *)

9 #)

Figure 4.1: Examples of virtual attributes

pattern which is then the value of the virtual attribute.

Consider a few, simple examples of virtual chains, as shown in Fig. 4.1. The

specialization chain p, q, and r contains a virtual chain named v which give the

following pattern values: In an instance of p, the virtual chain only contains

the virtual pattern declaration in the MainPart 1, so v in p is object. In an

instance of q, the virtual chain contains the identity declaration of v in 1 and

a further-binding in 2, so v in q is object&integer, i.e., integer (remember

that object is the empty list of mixins). Finally, in an instance of r, the virtual

chain contains the identity declaration, the further-binding in 2, and a �nal

binding in 3, so v in r is object&integer&integer, i.e., integer.

Even though the value is integer in both cases, there is a di�erence between

v in q and in r since v is only known by upper bound in q whereas the statically

visible bound in r, integer, is guaranteed to be the exact value. The di�erence

is that assignment to a variable object attribute quali�ed by v in context of

an object quali�ed (inexactly) by q would be type unsafe, but in context of

an object quali�ed by r it would be type safe. Of course, the static analysis

determines this, it is not something that a programmer is expected to analyze

manually.

Now consider the combination of a, r, and b in line 8 of Fig. 4.1. There is

nothing new with a and b, so we just mention that v in a is [5] and v in b is [7; 5].

However, when combining patterns from the fp; q; rg family with patterns from

the fa; bg family, two distinct virtual identities named v are brought together.

Consequently, the mix pattern contains two separate virtual attributes named

v. The reason why the virtual chains are kept separate is that each virtual

declaration in the fp; q; rg family is statically associated with v in the MainPart

1 as its identity, and similarly for the fa; bg family and the v in the MainPart 4.

For an instance of mix, an access to v using a view from fp; q; rg will select

the virtual with the former identity, and an access to v from fa; bg will select the

latter. An access to v using mix as the view will cause a compile-time warning

about the ambiguity, but then (for backward compatibility with Beta) it will

proceed and choose the identity inMainPart 4, because the mixin associated with

MainPart 6 is the most speci�c choice in the merge a&r&b, and the declaration
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in 6 is associated with the identity from 4.

Note that the merge a&r&b is [6; 3; 2; 1; 4], so the contributions to the Main-

Part 4 identity of v are collected from the very ends of the pattern (mixins 4

and 6), without being �disturbed� by the intervening mixins (1,2,3), even though

they contain declarations of the same name.

The result, which is very important for correctness in context of large scale

projects where dissimilar code is brought together, is that virtual declarations

are uni�ed if and only if they belong to the same identity, and the identity

is determined statically, such that a programmer can check out exactly what

virtual (s)he is working on or using. Here is a small example�whose basic

idea is commonly attributed to Boris Magnusson�which illustrates why this is

important:

1 (# cowboy: (# draw: (# do 'BANG!'->stdio #)#);

2 graphicalObject:

3 (# draw: (# : : : linepointrectfill : : : #)#);

4 graphicalCowboy: @

5 cowboy(# get_your_gun: draw #) &

6 graphicalObject(# show_yourself: draw #);

7 aCowboy: ^cowboy;

8 aFigure: ^graphicalObject;

9 do

10 graphicalCowboy.get_your_gun; (* BANG! *)

11 graphicalCowboy.show_yourself; (* creates drawing *)

12 graphicalCowboy[]->aCowboy[];

13 aCowboy.draw; (* BANG! *)

14 graphicalCowboy[]->aFigure[];

15 aFigure.draw; (* creates picture *)

16 #)

Ex.

4-1

In line 1 and 2 of the example the patterns cowboy and graphicalObject

are declared, and line 4 declares an object which is an instance of a pattern

combining both. The name clash is that draw was chosen as a method name

in both cowboy and graphicalObject, so graphicalCowboy has two virtual

methods named draw, with entirely di�erent meanings and intended usages.

However, these methods are kept cleanly separate, and they can be selected

individually using intuitive methods. First, line 5 and 6 show how to de�ne addi-

tional names for the methods formerly named draw, and line 10 and 11 show how

these new names can be used to disambiguate the two draw methods. Finally,

lines 12�15 show how more restricted (focused) views on the graphicalCowboy

object will recover the separate meanings of draw according to the chosen view.

�When treated as a cowboy, the object will respond as a cowboy�.

The chain based semantics of virtual attributes may sound convoluted, so

we will outline some consequences which hopefully make the picture a little bit

more self-evident. Firstly, the merging process has the semantics of virtuals

in Beta as a special case. The Beta rule about virtuals states that a virtual

further-binding or �nal-binding may (only) declare a more special value for the

virtual than the one which holds in the immediate superpattern. This is exactly

the e�ect of the merging semantics when the contributions form a decreasing
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sequence (i.e., when the right hand sides of the virtual chain denotes a sequence

of increasingly specialized patterns).

We have this result (which is trivial to prove):

Lemma 4 For any sequence of patterns p

1

; p

2

: : : p

k

which can be merged, the

following holds:

(8i 2 f1 : : : k � 1g : p

i

� p

i+1

) ) p

1

&p

2

& : : :&p

k

= p

k

Moreover, for any two mergeable patterns p and q the following holds:

p&q � p ^ p&q � q

The �rst part of the lemma says that an increasingly specialized chain of pat-

terns simply merges to the last element in the chain. Actually, any sequence

of pairwise comparable patterns merges to the most specialized pattern in the

sequence, but only the decreasing chain is possible in Beta. Hence, the gbeta

merging rule has the Beta specialization rule as a special case.

A consequence of the second part of lemma 4 is that the value of any virtual

is a specialization of each of the contributions from the virtual chain, so each

virtual declaration may be considered a constraint which requires that a certain �

list of mixins must be present among the mixins which constitute the value of

the virtual as a whole.

As an example of the declarative nature of this mechanism, it makes no �

di�erence if the same requirement is stated twice, as with the repeated integer

requirement in the example in Fig. 4.1 on page 85. Since the merging process

will add in the mixins which are missing it works similarly to a constraint solver

which ensures that the required mixins are available, and does nothing for those

mixins which are already present, just adds the new ones in suitable places.

Similar to the transparency mechanism, Sect. 2.3, the action by the programmer

is to request a particular end result. What is at hand and what must be done

to end up with that result is implicit and is handled automatically.

Note that some merging operations fail, but also note that all mergings of

patterns known at compile-time (which is still the typical case) can be and are

checked statically, such that failing merge operations only occur when combining

patterns which are not known at compile time. A warning is given for all those

cases where the merging must be carried out at run-time and a run-time error

can not be ruled out. These very dynamic cases are the topic of Chap. 7.

Even though a virtual declaration in gbeta does not have to specify a more

specialized pattern than the �inherited value� of that virtual, the result is the

same as in Beta, in the sense that the merging operation will indeed produce

a pattern which is more special than the value of the virtual in any of the

superpatterns. This is another application of the second half of lemma 4. It

means that a virtual attribute in a sequence of increasingly specialized patterns

will itself be an increasingly specialized sequence of patterns. In other words, a

virtual always �grows along with the enclosing pattern�. This is also necessary

to ensure type safety.
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1 directedGraph:

2 (# node:< (# incidence: @edgeSet; label:< string #);

3 edge:< (# from,to: ^node #);

4 edgeSet: set(# element::edge #);

5 addNode: (# : : : #);

6 : : :

7 #);

8 person: (# name: @string; : : : #);

9 family: @directedGraph

10 (# node::person(# label::(# do name->value #)#)#);

Figure 4.2: An example of further-binding to an unrelated pattern

So Beta virtuals are a special case of gbeta virtuals, but that is of course not

the only interesting property of gbeta virtuals. The generalized semantics allows

for profound enhancements in the practical usages of virtual patterns. One

seemingly small di�erence which will undoubtedly unfold to radically di�erent

designs in programs of non-trivial size is the fact that virtuals may be further-

bound to unrelated patterns, not just to specializations of the value in the

superpattern.

Figure 4.2 shows a simple example of how this can be used. The pattern

directedGraph would be a generally useful implementation of support for di-

rected graphs, with creation, traversal, searching, and so on. The person pat-

tern would also be generally useful, and directedGraph and person would not

have been written with each other in mind. However, the family pattern brings

them together by specializing on directedGraph and further-binding the node

virtual to person (and adding a new mixin to make the label of the node

deliver the name of the person, thus integrating person into the new context).

The important observation is that node and edge in directedGraph depend

on each other, and by further-binding node with person in family, a pattern

is created which has all the functionality of person, enhanced with the rôle of

being a node in a directedGraph. If a virtual cannot be further-bound to an

unrelated pattern then it is not possible to make a separately developed pattern

play a rôle which entails mutual dependencies, as in this example. This ability

to create contexts in which independently developed patterns can be integrated

could change the entire style of writing programs and libraries in gbeta, as

compared to Beta. We will return to this example again in Sect. 4.4, when

comparing virtuals with type parameters in other languages.

Another area where gbeta virtuals are more �exible than Beta virtuals is the

choice of entities used for further-binding; in Beta they must be patterns which

are completely known at compile-time,

2

in gbeta they can also be virtuals (or

variable patterns, actually). The e�ect of further-binding a virtual V to another

virtualW is that those two virtuals are connected in a network of constraints�

2

As a special case, Beta does actually allow a virtual to be �nal-bound to an open virtual.
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with such a declaration it is always ensured that V � W . Arbitrarily complex

graphs of specialization dependencies like that can be de�ned, and the resulting

system of patterns will behave similarly to a constraint graph; when a change is

introduced somewhere in the system, the semantics of virtuals will ensure that

the changes propagate all the way through the system until the constraints are

again satis�ed. This is an unusual and powerful mechanism, since it may change

the value of many pattern attributes in a regular and statically inspectable

manner in response to one or a few declarations, but it probably takes some

time to develop a design and programming tradition which exploits the new

possibilities. Here is a small example of such a virtual-to-virtual dependency:

stack:

(# element:< object;

common:< object;

push:< common(# e:

^

element enter e[] do INNER #);

pop:< common(# e:

^

element do INNER exit e[] #);

#);

noisyStack: stack

(# common::< (# do 'Working!'->stdio; INNER #)#);

Ex.

4-2

The example de�nes an interface pattern called stack which would have subpat-

terns supplying an implementation. The specialty is the �hook� virtual pattern,

common, which has been used as the superpattern of the virtual methods push

and pop. In stack the hook is empty, object, but in noisyStack it is further-

bound to print a message before the rest of push resp. pop is executed. Such a

hook can of course be used to invoke common behavior before/after each exe-

cution of the methods as it is done here, but is should be noted that it is more

powerful than that. It can be used to add more arguments or returned results

or attributes to all the methods in one operation, for example an extra integer

input argument used to give a timeout to the operations in a distributed setting

with unreliable network connections.

Finally, there are some new issues with the static and dynamic semantics of

�nal-bindings in gbeta compared to Beta. When contributions to virtuals may

be patterns which are not known exactly at compile-time, such as other virtuals,

then a �nal binding with the semantics from Beta (which makes the virtual

a compile-time constant) does not have acceptable properties. The problem is

that a �nal-binding of a virtual which depends on another virtual (which has not

been �nal bound) will a�ect that other virtual in a way which is unacceptable,

namely by prohibiting further-binding of it. As an example, consider this:

p: (# v:< object; w:< v #);

q: (# w:: integer #);

r: q(# v::< boolean #); (* PROBLEM! *)

Ex.

4-3

The problem is that the �nal bound on w in q requires that w in q and in all

subpatterns of q must be exactly integer, since that is the statically known

value of w as seen from the �nal-binding declaration itself. This con�icts with

the further-binding of v in r, because the requirement that w � v would then
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only be satis�ed if w contained a boolean mixin; w cannot be exactly [integer]

and contain a boolean mixin at the same time.

The reason why this is an unacceptable situation is that the restriction on

the further-binding of v has been created by a usage of v, namely the usage in

the identity declaration for w. Since a declared name may be used arbitrarily

far away from the declaration and in source code written by various di�erent

people, it is in general not acceptable to have restrictions which are caused by

usage. The only way to avoid putting restrictions on v is to give up on the

�xedness of w. If the �nal bound really does not mean that w must be exactly

integer, then we can just make it integer&boolean in r, and all requirements

are satis�ed.

The approach used in gbeta is to detect the two situations and treat them

di�erently. When the virtual is actually �xed by a �nal bound, the resulting

pattern is registered and all bindings which change it are rejected. When the

virtual depends on non-�xed patterns (typically other virtuals) the requirement

imposed on the virtual is that no new contributions to the virtual chain can

be added. Hence, the virtual may become more specialized because of already

known contributions, but no new contributions can be added, not even by merg-

ing; as a result, the virtual will be �xed as soon as all non�xed contributions

become �xed�this could happen when some other virtual gets �nal bound.

It would be nicer to unify the two treatments by simply rejecting all bindings

which would change a virtual which is already �nal-bound, but we have not been

able to implement a correct static analysis of this rule. The current rules allow

a subset of the programs which would be accepted under this �nice but hard

to analyze� rule, so if it is at some point implemented then the only change

would be that additional programs would be accepted by the static analysis, no

programs acceptable under the current analysis would become illegal.

4.2 Why Non-Virtuals?

One of the rôles which are played by virtual attributes in Beta and gbeta

is that of providing method implementations which depend on the run-time

pattern of the object on which the method is executed, often designated as

late binding of methods (look at the actual object, then choose the method�

implementation). In many object-oriented languages including Smalltalk, Ei�el,

and CLOS, methods have late binding, either always or by default. Without

static analysis late binding is the only option, and in many contexts including

the Ei�el community it is considered the only justi�able choice [79, p. 514].

In other languages, including Simula and C++, methods must have a special

annotation, like the keyword `virtual', to obtain late binding. Hence the term

`virtual method'.

With late binding, the object (or class) is so-to-speak allowed to decide

for itself what action to take in response to an incoming message, and this is

generally�rightfully�considered to be the most useful and manageable seman-

tics for method invocations. This attitude is even embedded in the (originally
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Smalltalk but now widespread) terminology which uses `message send' instead

of `method invocation'. The alleged alternative is that of having several meth-

ods with the same name in a given class and then choosing one of those methods

at compile-time, called early binding , based on the static knowledge about the �

class of the object, not its actual run-time class. It is obvious that the latter ap-

proach is error-prone because it may impose a treatment upon an object which

does not �t the object�such a group of methods would presumably have been

written to �t the instances of the class in which they are declared, and unless

the static knowledge about the class of an object is exact, the method from a

�wrong� class can be chosen. Hence, we agree that late binding is generally the

right choice.

Then why is early binding the easy, default, �normal� choice in gbeta? The

reason is that the alternative to late binding need not be the error-prone early

binding semantics described above, it may just as well be a special kind of late

binding whose outcome can be determined statically : : : The idea is not that

the choice of a method implementation should be made on basis of (incomplete)

static knowledge, the idea is that there should not be a choice!

So in gbeta, the interpretation of an ordinary pattern declaration named

N (intended for method-like usage) is �here's the method N �. It speci�es the

interface and implementation

3

of the method, and it declares that the method

is speci�ed entirely in this declaration. Because of this understanding, the

existence of several methods with the same name in a given view is considered

a problem�bad design�and a warning is given if that method is used. The

existence of several methods of the same name in an object is irrelevant, because

it is the view on the object that determines what names are available and what

they mean.

In contrast to an ordinary pattern declaration, a virtual declaration named

N (intended as a method) is interpreted to mean �here's a contribution to the

method N �, explicitly allowing for other contributions which may a�ect both

the implementation and the signature of the method. Note that there is no

notion of `binding' or `choice' between di�erent attributes named N , only the

notion of having exactly one or at least one contribution to the single attribute

named N .

Since it o�ers more immediate �exibility for programmers to allow for several

contributions to a given attribute than to require exactly one contribution, it

might be argued that only the former case, virtuals, should be supported, while

the latter case, ordinary pattern declarations, should just be a special usage of

virtuals where the �exibility is not fully exploited. In the same vein, the support

for �nal-binding declarations could be removed, they are just further-bindings

with some added restrictions.

However, the �exibility comes at a price. The price is zero as long as no static

analysis is attempted, but for languages with static analysis including gbeta

and Beta, very valuable extra information becomes available when some of the

�exibility is explicitly discarded. In particular, a pattern which is only known

3

The implementation may be hidden in another �le, this is a separate issue, see Chap. 10
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by upper bound is not fully useful as a quali�cation, because an assignment to a

variable (object or pattern) attribute with such a quali�cation is not type-safe.

Evaluation is no problem, but assignment is.

This problem is well-known from many contexts, but we have to introduce a

concept before discussing them, namely covariance [1, p. 20]. In type systems for

lambda calculi with subtyping, the following would be a typical type inference

rule [1, p. 94]:

� ` � � �

0

� ` � � �

0

� ` �! � � �

0

! �

0

The rule states that a function type (� ! �) is a subtype (�) of another

(�

0

! �

0

) if the result types have that relation (� � �

0

) and the argument types

have the opposite relation (� � �

0

). This is the rule which must be used in

order to obtain a sound (correct) type system, the �obvious� rule with � � �

0

would con�ict with the subsumption rule (subtype polymorphism). As a result,

the argument position and the result position of such a function type are often

designated as contravariant resp. covariant positions�the type in a covariant

position is allowed to vary with the composite type it is a part of, but a type�

in a contravariant position must vary against the composite type. The problem�

with the upper-bound-only quali�cation mentioned above is that a �covariant

type� occurs at a contravariant position, typically when the variable occurs in

an EnterPart so the assignment happens during argument transfer. For this

reason it is commonly known as the �covariance� problem�the quali�cation is

covariant, but should have been contravariant.

Now we can return to the question of why the restricted cases (such as or-

dinary pattern declarations) are at all supported in gbeta. Since the design of

gbeta (and Beta) rests on the assumption that static type safety is a valuable

property of a programming language, the �exibility trade-o� is actually redis-

tributed considerably: It is true that a programmer who writes a specialization

of a given pattern P with a virtual attribute named N has greater freedom than

(s)he would have had with an ordinary pattern attribute named N , everything

else unchanged. But since the ordinary pattern attribute can be used (safely) in

many more places than the virtual pattern, the �exibility of changing N must

be weighed against the �exibility of using N .

Hence, the situation is not so simple that virtual patterns are �better� and

should be the only choice; on the contrary, it does make very good sense to

allow programmers to commit to certain restrictions.

4.3 Comparison with Virtual Methods

Virtual patterns used as methods are not in themselves very di�erent from

virtual methods in other languages. The big di�erences are associated with

patterns, and they have already been covered elsewhere. So at this point we

will just give a summary of the consequences of using patterns for this purpose.
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A virtual pattern is specialized covariantly along with the patterns of the

enclosing object, so behavior cannot be discarded, only re�ned. The precise

meaning and consequences of this have been discussed at length in Sect. 3.8.

The fact that behavior cannot be overriden may be viewed as a needless loss

of �exibility, but it is also possible to consider it as a sobering device which

teaches programmers to commit only to those details which are actually going

to be relevant and useful in all subpatterns. The resulting designs would thus be

�cleaner�. Nevertheless, gbeta allows programmers to e�ectively discard behavior

by using the merging semantics to put a mixin �on top of� the inherited value

of the virtual, e.g., by further-binding [y; x] to [y; x; z] where the new z may

choose to ignore y and x by not executing INNER.

A widely debated issue is that of argument variance. C++ provides no argu-

ment variance [31]; Ei�el allows unrestricted argument covariance [79, p. 621++]

and uses global analysis to compensate for the loss of type safety; theoretical

object calculi may have explicit variance declarations, e.g. [1, p. 223]; Cecil [21]

also allows for explicit variance by means of type inequality declarations. In

gbeta there is no separate notion of support for `covariant' or `contravariant'

arguments. Arguments are just attributes which happen to be used in an Enter-

Part, and the e�ect of a covariant attribute may be achieved by using a virtual

quali�cation (virtuals are covariant), as in the following example where push

has a covariant argument e:

stack:

(# element:< object;

push:< (# e:

^

element enter e[] : : : #);

: : :

#);

Ex.

4-4

An invocation of push can only be type safe if the exact pattern is known for the

stack object on which push is invoked; this may be achieved in various ways,

very often by accessing the stack via an object attribute (not variable). A sub-

pattern of stack might also �nal-bind element and thus remove the covariance

of e.

Contravariant attributes cannot be allowed in gbeta (or Beta), because the

semantics of specialization of behavior requires that all mixins be executed, see

Sect. 3.8 for details. If an argument to [y; x] were only required to be quali�ed

by a superpattern of what is required with the superpattern [x], the code in x

which uses that argument could not safely be executed. Moreover, no real-life

examples seem to motivate the need for contravariant arguments.

One technical detail which follows from the semantics of object creation is

that a virtual pattern is complete at the �rst usage. This is di�erent from

the situation in C++ where a virtual method during object construction will be

invoked according to di�erent classes of the enclosing object, as if the enclosing

object started out as object (even though C++ does not have object) and then

changed class each time a new constructor was invoked.

Finally, the view on a virtual pattern as a method may be reasonable in a

concrete case, but it will always be a partial view, disregarding many capabilities
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of the virtual pattern. Whenever more class-like usages of the virtual become

relevant, the entire class functionality of the virtual is available for use. For

example, a virtual method invocation can be treated as an object and, e.g.,

stored in a list for later execution. This remark will of course apply everywhere.

4.4 Comparison with Type Parameters

Recently, virtual classes, virtual types, and similar concepts with more or less

well-de�ned semantics have been compared with type parameterization mecha-

nisms in several papers [13, 110, 54]. A choice must be made as to what kinds

of entities should be supported by the mechanism. It does make a di�erence

whether it is parameterized types or parameterized classes, but we will delay

this discussion to the end of this section. These two mechanisms are considered

as alternative designs which achieve similar goals, and it has been demonstrated

that they are good at di�erent things [13]. They will be exempli�ed and ex-

plained below.

However, it is a common misconception that virtual classes are an inher-

ently type-unsafe mechanism, apparently because it is assumed that no mech-

anism can exist which removes the covariance. Since object attributes and

�nal-bindings have been used for this purpose in Beta for many years, it can

only be hoped that the discussion will become more well-informed in the future.

A type parameterization mechanism may arise in di�erent ways. The most

simplistic version is exempli�ed by C++ templates, which are essentially tex-

tual macros, as mentioned near the end of Sect. 3.2. Hence, the entire template

must be inspected by the programmer who wants to use it, in order to determine

whether a given set of arguments are appropriate. For an ordinary function, in

contrast, only the signature (in a `header' �le) is needed, and both the pro-

grammer and the compiler may ignore the implementation of the function when

using it. In e�ect, the template instantiation mechanism itself is typeless, it

just inserts the arguments in the speci�ed positions in the de�nition and hands

over the result to ordinary analysis and code generation. Consequently, as we

also mentioned, names which are used in a template de�nition may be bound

di�erently for each instantiation, and this is a semantic anomaly compared to

the static name-binding which is used in all other parts of the language.

Parameterized classes in Ei�el are more well-de�ned, and may be analyzed

once and for all. However, as in other parts of Ei�el, undeclared covariance is

allowed as a general principle, and global analysis is necessary [26] in order to

check the type correctness of programs[79, p. 633]. The approach used in the

global analysis is to keep track of which methods are called on objects whose

class is only known by upper bound, and which methods have been overrid-

den by methods with covariantly specialized argument types. The intersection

(the `polymorphic CAT-calls') should be empty. A single assignment statement

(which contains an implicit `upcast') or a single actual argument given to a

method invocation (again with an implicit `upcast') is su�cient to add a class

to the set of classes which are accessed polymorphically, so this means that the
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type safety of a method invocation anywhere in a program may be destroyed

by the addition of an extra statement in another part of the program with no

explicit connections to the �rst location. In particular, this means that reusable

libraries cannot be type checked once and for all, they must be re-checked for

every program in which they are used.

Type parameters in Ei�el are actually quite similar to virtual attributes

in Beta with respect to the static analysis, but the decision to make all type

parameters and all method argument types covariant causes severe problems for

the static analysis. One way to characterize the situation is that the freedom for

programmers to modify entities by inheritance has been given absolute priority,

and consequently the freedom for programmers to use those entities safely has

su�ered.

Parametrically polymorphic types [103, 95, 96, 92] in languages like Stan-

dard ML and Haskell can be described as type schemes, i.e., type expressions �

containing type variables where a choice of a type for each variable yields an or-

dinary, so-called ground, type. Such a choice of types for type variables is called

an instantiation of the type scheme. Universal quanti�ers with constraints, e.g. �

bounds, may limit the possible choices for some type variables. Note that the

type inference and type analysis with parametrically polymorphic types does

not need to work on ground types everywhere, it may as well use the relation

between di�erent type variables to determine whether or not a given expression

is type correct, thus proving type safety with all the possible instantiations.

Existential quanti�ers [82, 1] have also been considered but do not play as

important a role as universal quanti�ers in current languages. It might be a

good basis for a formalization of virtual types, and it is used in [1, p. 173�184]

to formalize self-types (which are also inherently `covariant'). In any case, the

type scheme then stands for the set of ground types which can be obtained by

instantiation.

A variant of this concept of polymorphic types which was pioneered by Sys-

tem F [49, 92] is based on letting types be explicit in the language as val-

ues, hence allowing type schemes to be represented as functions from types to

types. A problem with this approach, often referred to as the Type:Type prob- �

lem [18, 78], is that it blurs the demarkation line between types and values.

That is a problem for type checking, since (interesting) languages in general are

Turing complete and termination hence not guaranteed, so if static type check-

ing should be possible then the values which are types should be kept separate

from the values which are run-time program entities. If these two are not kept

separate then it easily becomes an undecidable problem whether or not a given

program is type correct. Nevertheless, parameterized types viewed as functions

from types to types are the foundation for the following.

The work done in the area of functional languages has been used as a starting

point for type parameterization in object-oriented languages, for instance in

Pizza and GJ, which are extensions of Java, but also in Cecil. A simple bound

on a type parameter, which constrains the legal arguments in instantiations to

be subtypes of a given, known type, enable type checking of a parameterized

class once and for all. Firstly, the implementation of the parameterized class can
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be checked under the assumption that the actual arguments will be subtypes

of the bounds, and that generally allows the usage of all the attributes of the

bounds. Secondly, each instantiation must be such that the arguments satisfy

the bounds. Here is a GJ example:

interface Printable { abstract void print(Stream on); };

class List<T implements Printable> implements Printable {

T storage[10];

void print(Stream on) {

for (int i=0; i<10; i++) storage[i].print(on);

};

: : :

}

class Point implements Printable { : : : }

Ex.

4-5

The type check can accept the statement storage[i].print(on) because the

entries in storage can be assumed to be instances of some class which imple-

ments Printable, and an instantiation like List<Point> is accepted because

Point actually implements Printable.

A similar example in gbeta would look like this:

Printable: (# print: (# on:

^

Stream enter on[] #)#);

List: Printable

(# T:< Printable;

storage: [10]

^

T;

print::

(# do (for i:10 repeat on[]->storage[i].print for)#);

#);

Point: Printable(# : : : #);

Ex.

4-6

The main di�erence between the type parameter based approach and the virtual

pattern based approach for this example is that List in the �rst case is a purely

compile-time entity, so it does not have any representation at run-time and it

cannot be used as such in programs. Only when it is given type arguments (when

it is instantiated) does it become a class, which can then be used just like other

classes. That makes a di�erence because we can refer to a List polymorphically

in gbeta and, e.g., print it without having any compile-time information as to

what type parameter the List we are actually operating on �has received�:

(# intList: @List(# T::integer #)

anyList:

^

List;

do intList[]->anyList[];

screen[]->anyList.print;

#)

Ex.

4-7

In the type-parameter approach it is simply not possible to declare a variable

like anyList whose quali�cation is the generic, argumentless List. On the other

hand, a variable object like anyList allows for any value of T since there is

no lower bound on its quali�cation, so such a variable cannot be used for, e.g.,

type safe insertion of new elements. That just means that anyList is useful for

purposes where the virtuals used as type parameters are not in a contravariant
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position. For insertion etc. an access path like intList, whose pattern is known

exactly, is more appropriate. Since T is actually �nal-bound in intList, a

variable object with intList as quali�cation would also allow all usages.

The approaches are both statically type checked and they are both safe. The

di�erence is that the approach based on type parameters disallows polymorphic

access entirely whereas the approach based on virtual attributes allows poly-

morphic access but only for a computed, reduced interface which excludes all

the elements where a covariant type is used in a contravariant position. In both

approaches it is of course possible to either stop with an error message or give

a warning and generate a dynamic type check whenever an unsafe construct is

detected.

The type parameter based approach is more convenient than the virtual

attribute based approach in one respect, namely in that it makes more classes

type equivalent. In gbeta, any two syntactically distinct occurrences of the

syntax List(#T::integer#) will denote di�erent patterns, even though such

collection data structures could often be considered equivalent. This is because

a list-of-X, for some X, does not have any conceptual signi�cance itself, the

elements have their own quality but any two lists of them have the same quality

(see Sect. 3.4 for details about qualities). However, even collections of other

objects may at times have their own qualities, such as when a collection of

`boys' is actually a `gang'.

For a more sophisticated usage of type parameters we need to introduce the

concept of F-bounded polymorphism [17]. When considering a parameterized �

type as a function from types to types, and when operating in a type space which

is a partial order, it becomes possible to select types according to their algebraic

properties in this type space. In particular it is useful to focus on the pre-�xed

points of the parameterized type, i.e., those types � for which �(�) � � , where

�(�) is the function which is also the parameterized type. This kind of bound

selects all those types which have a particular recursive structure, as in this

example:

interface Ordered<T>

boolean lessequal(T other);

interface SortedList< T implements Ordered<T> > {

boolean insert(T elem);

}

class Integer implements Ordered<Integer> { : : : }

class String implements Ordered<String> { : : : }

Ex.

4-8

This example is inspired by a similar example in [65], and it will be revisited

in Sect. 9.2. Ordered is a parameterized class which is not intended to receive

arbitrary type arguments, it is intended to be used like in the classes Integer

and string. That kind of usage establishes the relation which is required to

make Integers and Strings acceptable type arguments to SortedList. The

recursive structure which is ensured by a relation like

X implements Ordered<X>
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can be described in terms of an unfolding operation: The insertion of X in

place of the formal type argument in the de�nition of Ordered must create

the de�nition of an interface which is actually implemented by X, i.e., all the

methods must be available and each method must have the right signature. But

if X is itself considered as a �xpoint of a function which maps an expression Y

to the de�nition of X with Y inserted in place of each occurrence of X, then the

criterion above just means that an unfolding of X is less-equal than an unfolding

of Ordered, i.e., that the function whose �xpoint is X must be pointwise less-

equal than the function Ordered.

By going from the domain of classes to the domain of those (�unfolding�)

functions whose �xpoints are the classes, the somewhat cryptic formulation

X implementsOrdered<X> gets reduced to a simple less-equal criterion.

Now, the �xpoint operations produce distinct, unrelated classes, so for ex-

ample Integer and String above are not related by subtyping in any way, they

do not even have a common supertype. Within the F-bounded polymorphism

community this is generally considered a feature and not a bug, since it would

be against the intentions to, e.g., put an Integer and a String into the same

list and then have to support comparisons of them. Integers may be compared,

and Strings may be compared, but an Integer and a String cannot. With

virtual attributes this is handled in a di�erent way.

A special kind of string such as for instance StyledString could be created

such that StyledString implements Ordered<StyledString>, but that does

not imply that StyledString would be a subtype of String. In other words,

Integer and String are kept separate, but those classes which should be related

are also kept separate. In Cecil there is support for declaring subtype relations

explicitly such that StyledString can be made a subtype of String [65].

Turning to virtuals, it is not necessary to make the classes/patterns entirely

unrelated in order to obtain security against the confusion of Integers and

Strings:

Ordered:

(# knownType:< Ordered;

lessEqual:<

(# other:

^

knownType;

value: @boolean

enter other[]

do INNER

exit value

#)

#);

SortedList:

(# T:< Ordered;

insert: (# elem:

^

T enter elem[] : : : #)

#);

Integer: Ordered(# : : : #);

String: Ordered(# : : : #);

SortedIntegerList: SortedList(# T::Integer #);

Ex.

4-9

With these de�nitions, we cannot insert elements into a sorted list only known

by SortedList as an upper bound, because the argument to insert is covariant.
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But we can use objects quali�ed with SortedIntegerList, whether or not they

are accessed polymorphically.

To summarize, many tasks can be solved similarly well with type parameters

and with virtual class attributes. Ei�el demonstrates that the di�erence between

virtual attributes and type parameters may sometimes be reduced almost to a

syntactic di�erence, although the lack of general block structure in Ei�el makes

it unsuitable for the expression of mutually dependent families of classes, and

the insistence on allowing all parameters to be covariant impedes static type

checking. On the other hand, parameterized classes o�er more structural equiv-

alence which is attractive in particular with collection data structures. Virtual

attributes do not seem to allow for a similar structural equivalence in context

of general block structure�at least, it would be the entire universe of enclosing

objects which would have to be structurally equivalent, not just the two lists (or

whatever it is we are comparing). Finally, the virtual attribute based approach

supports a deeper kind of run-time polymorphism because safety is achieved

by using computed, reduced interfaces (by �outlawing� methods with covariant

arguments, etc.) whereas the type parameter based approaches achieve safety

by not having a subtype relation between di�erent instantiations or between

instantiations and the parameterized class itself, since it is not even a class.

There is one more di�erence between the type parameter approach and the

virtual attribute approach which we have not yet discussed. As the name says,

type parameters are types and not classes, and virtual attributes are normally

classes, or they are patterns which are even more capable than classes. It would

certainly be possible to reduce virtual attributes to be types, even though this

would require introduction of syntax for types in gbeta. However, we would

consider this a serious loss of expressive power; for example, it would not be

possible to call a virtual method or to create an instance of a virtual class in

gbeta if this were realized. The problem is that a type describes some constraints

but does not solve them itself, so there has to be a class (or method) available

before objects can be created (or methods invoked), and a virtual type would

not directly support any way to get access to such a class (method).
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Chapter 5

Context Dependency and

Block Structure

Consider the two sentences �There was a humongous dog in the book, and the

little girl chuckled every time she saw it� and �There was a humongous dog in

the room, and the reddish brown stains on the �oor made me think about those

horrible sounds I had heard the night before�. The introduction and description

of the `dog' itself is identical in the two sentences, but the meaning of this

description�a picture or a large, dangerous animal�is heavily in�uenced by

the context. Note that in this example, and in this chapter generally, `context'

means semantic context and not syntactic context; the `little girl' and `chuckled'

are actually syntactically close to each other, but the important issue is that

`chuckled' is understood by using the mental model of the little girl as a frame

of reference.

Context dependency arises at several di�erent levels. As an example of a

quite urgent context dependency at a �ne-grained level, consider verbs and verb

phrases. Phrases like `chuckled', `saw', `made : : : think', and `had heard' are

not self-contained, they only obtain su�cient meaning in the mind of a listener

when the immediate context within the sentence is taken into account, such that

`the little girl' and `I' can be identi�ed as the primary agents of those actions.

The context dependency is not di�erent in nature for verbs and for other

words, but verbs characterize such transient phenomena as actions and devel-

opments, so they only provide an annoyingly incomplete amount of information

unless the entities which perform those actions or undergo those developments

are speci�ed by other words. On their own, these transient phenomena are often

not particularly signi�cant, but viewed as indicators of developments involving

less transient phenomena�such as people, dogs, houses, or even computerized

objects�they may become very signi�cant. Similarly, verbs in isolation usually

carry only a quite limited and generic amount of information, so the knowledge

about the immediate context of the meaning of a verb greatly enhances the

depth and detail in the understanding of it; to return to the usual example, `the

101
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little girl chuckled' lets `chuckled' provide some extra information in our minds

about the `little girl', and in return it lets the `little girl' in our minds provide

the understanding of `chuckled' with extra depth.

In summary, contextuality allows us to reach a much richer interpretation

of a word-in-context than what we can achieve with a word-in-isolation (where

the �dictionary meaning� is all we have), and in return the context dependent

meaning may enrich and/or modify our mental model of that context. This

chapter is about the exploitation of contextuality in the design of programming

languages, in order to make programs more comprehensible for human beings.

Block structure, or nesting is a programming language concept which cor-�

responds to the notion of context dependency at the conceptual level. This

chapter �rst presents context dependency as it is used in human perception and

thinking, in Sect. 5.1. This conceptual basis is used to motivate the introduc-

tion of block structure in programming languages in Sect. 5.2, and the concrete

mechanism used in gbeta is described in Sect. 5.3. With block structure in place

it is possible to give the rules for name lookup in the general case, and Sect. 5.3

also covers this, thereby completing the treatment of lookup which was given in

Sect. 3.10. Finally, the similarities and di�erences between block structure and

modules are brie�y described in Sect. 5.4.

5.1 Contextuality for People

As we have seen, natural language incorporates several powerful mechanisms

which are used in the construction and maintenance of useful mental models of

the world. However, even though the model incorporates a choice of a suitable

perspective and hence a selection of a few aspects as relevant and a rejection of

the rest as irrelevant, there is no way we could maintain a model which would

be complete enough to be useful in itself. Our immediate consciousness simply

does not have the capacity.

Hence, somehow we are able to live in the world and handle all sorts of

upcoming situations while just thinking about a tiny little bit of it at any given

point in time. Moreover, the small bits of the world that we can handle in our

consciousness are not directly available for us as they exist, they can only be

detected by our senses in a very incomplete and sparse manner.

Section 5.1.1 describes this risky guesswork which provides us with the illu-

sion that we simply experience the world as it is, and concludes that we, at this

very basic, ontological level, rely on contextuality to make sense of sparse and

incomplete information. We choose to focus on perception processes because

this demonstrates how deep our dependency on contextuality is; it is really a

built-in mechanism that we all use all the time.

After that, Sect. 5.1.2 argues that natural language enhances our ability to

rapidly switch between a multitude of contexts. This raises the question of how

such contexts may be organized such that it is possible to navigate between

them. Section 5.1.3 presents a very basic kind of organization which may be

considered as the real-world counterpart of the mechanism which is used in
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programming languages such as Beta and gbeta.

5.1.1 The Almost Static World

We use our senses in a way that depends on a very fundamental assumption,

namely the assumption that the real world is largely static, and changes are in

some sense continuous. Note that we are not talking about assumptions that

people make as part of their daily mental activities, we are talking about deeply

entrenched structural and functional properties of the central nervous system of

living creatures, developed by natural selection over billions of years. However,

had there been an architect for all this, then that architect would have needed

to make such an assumption in order to justify the design.

Without this assumption, i.e., under the alternative premise that any in

itself plausible situation

1

migth be immediately followed by any other in itself

plausible situation, our senses would not give us any useful information. This is

because our senses provide the central nervous system with a highly incomplete

stream of measurements of the state of the world. We do not perceive the world

as it is, we perceive a few glimpses of it now and then.

This is in particular evident with the eyes, where the very detailed vision

is concentrated in a few percent of the area covered with light sensitive cells,

such that, for example, we cannot read if we look just a few degrees in a wrong

direction. The illusion of being able to see everything clearly arises because

we move our eyes frequently, and because the world generally changes so little

that we can maintain a su�ciently correct model of the world without actually

seeing all of it all the time. Other indications of this wonderful guesswork are

simple facts like the following: we only see, hear, feel, smell, or taste a small

portion of the world, most phenomena are too far away or for other reasons

not discernable for our senses; we only perceive a few di�erent aspects of the

world, not, e.g., infrared light or magnetic �elds; and �nally, our �ve senses (and

all the other senses we haven't mentioned) do not detect the same phenomena,

so our perception of the world must continually be reconstructed from a very

heterogeneous set of sensory inputs, interpreted as witnesses of more or less

overlapping sets of phenomena. The conclusion is that we experience the world

by sparse samples of a few measures, not simply �the world as it is�.

It is amazing that we can arrive at a useful interpretation of this world, based

on only a few, unreliable hints now and then as to what it is really like. This

is possible because we are able to hold some kind of a continuous model of the �

real world inside our mind at all times. Sensory input is then as far as possible

interpreted in a way which is meaningful within the model, and then used to

modify the model. This continuous process of model-adjustment equips us with

a continuously useful model. This means that every new piece of information

injected into the model gets interpreted in context of the model. Moreover, when

the result of the basic model-adjustment process is unsatisfactory, we have the

1

What would required for a situation to be `plausible' under this alternative premise is of

course a separate, hard problem
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capability to switch to another model. Hence, we must have a rich source of

potential models, somehow close to the consciousness, readily available if needed.

This is what we mean by contextuality : the phenomenon that a stimulus�

is interpreted not by looking up an absolute meaning (as in a dictionary), but

relative to an existing body of knowledge, the context.�

Actually, it is not necessary that the world be static in order to make the

model based approach to world-understanding useful; it only has to be pre-

dictable. Predicting that nothing will change is probably the most basic strategy,

and it is almost always right. However, when a rabbit tries to run away from

a hungry fox and then barely manages to escape by quickly changing direction,

it actually relies on a prediction that the fox will continue in approximately the

same direction as it had just a moment ago. Hence, the prediction of no change,

and the prediction of approximately constant speed and direction of physical

entities �by default�, and the prediction that it is a bad idea to let the fox get

you in the �rst place, and countless other predictions, all these are used all the

time by all kinds of living creatures.

There are many di�erent mechanisms behind such predictions, starting from

a simple nerve loop, a re�ex, like the one that make us pull away a hand that

gets burned; continuing to largely unconditional patterns of behavior in response

to given stimuli, instincts, such as the construction of an anthill; and on to

conscious and scenario based planning, like when a cat runs around the house

after having found the front door closed, to see if the back door is open.

2

Note

that `prediction' in this context refers to the actual usefulness of the e�ect on

behavior with regard to future developments, not the presence of a conscious,

human-like thinking activity which enables an envisionment of that future. E.g.,

the re�ex predicts that pulling back the hand will avoid damage by means of

low level nerve system structure, not by means of thoughts; and the anthill

is built and maintained because of the fractal-like complex community wide

dynamics that arise as a combination of all the rather stereotype individual ant

behaviors�the prediction is that each individual ant will do well by exhibiting

those stereotype behaviors, in context of the more general prediction that the

future world will be a place where it is a good idea for ants to live in anthills.

On top of all these ancient techniques we have piled natural language, and that

allows us to share and systematize our experiences and thereby enhance our

predictional power considerably.

To summarize, we can survive in a world of which we only have very sparse

direct knowledge because we maintain a continuous model of it. The model

maintenance process is inherently contextual, every new stimulus is understood

in context of the model. A variety of prediction techniques have evolved to

support appropriate reactions to and maintenance of that model, the most basic

and most widely applicable one being the prediction that nothing changes. To

manage the possibility of change we need to associate speci�c phenomena with

speci�c prediction strategies, because reasonable prediction strategies are very

2

Biologists traditionally avoid such anthropomorphic explanations, but �it doesn't think,

only humans do that� just does not seem to make sense.
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di�erent for di�erent phenomena. Natural language, in particular concepts,

supports such a classi�cation of phenomena, but it does this on the basis of

other mechanisms that we share with other living organisms. This means that

we cannot arbitrarily choose to use alternative mechanisms, nor can we expect

to know consciously how we arrive at everyday conclusions.

In other words, human beings produce understanding by means of contextual

interpretation in models containing classi�ed entities. If we are to understand

programs then it seems promising to seek to support and exploit this approach.

5.1.2 Natural Language Brings Us up to Warp Speed

Natural language supports a further development of the continuous model ad-

justment process by allowing an e�ective maintenance and inter-personal sharing

of models, independently of the current sensory environment. Because of the

continuous sensory input, the model of the immediate environment will always

be very close to the consciousness, but we can also consider non-existent or

non-present things, and it is language that allows us to share such adventures.

A language based stimulus is received by the mind, interpreted within the cur-

rent model in order to provide it with �meaning�, and then treated as a request

(from another person) to adjust the model�and the model may or may not be

concerned with the immediate physical environment. Actually, because of the

independence from the immediate physical environment, language based stimuli

provide human beings who communicate with each other with a constant oppor-

tunity and requirement to switch between more or less unrelated points of view

in their thinking. In this respect, verbal communication could be compared to

moving around at warp speed in the physical world.

Consider again the two sentences about a dog which introduced this chapter.

We must realize that the model context in which any given language stimulus

is interpreted is generally tremendously complex. The `dog' obtains meaning

from the contexts which are established by the rest of the two sentences, aided

by a large, reader supplied body of knowledge about �ctional literary style, and

that meaning itself is then being targeted as the topic of the next few sentences,

in order to in�uence the model of production of meaning in the mind of the

reader, and that treatment of the treatment is �nally made the topic of this

sentence�which happens to topicalize the fact that it talks about itself!

The organization of all those possible points of view, or potential current

models, is of course highly individual, dynamic, and sophisticated. This is

undoubtedly a rich source of inspiration which ought to be explored in future

programming language design e�orts, but here we will concentrate on a very

basic kind of organization which is closely related to the organization of the

physical world. After all, the most basic modes of being are likely to be the

most robust workhorses, even though we may have a hard time appreciating

them because they are so ubiquitous.
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5.1.3 Physical Nesting

There is a basic mode of model organization which is derived from the orga-

nization of the physical world as we perceive it, namely by starting from one

particular point in space, the location, and including successively larger portions�

of the physical world in a series of contexts, each one containing all the previous

ones like the layers of an onion. Of course, an actual choice of sharply delineated

geometric shapes for this would be meaningless, it is more like a series of fuzzy

clouds with functionally de�ned boundaries like �me�, �the things I can reach out

and touch�, �this room�, �the things I can see and could easily walk over to�, �this

city�, and so on and so on. Let us call this a physical nesting organization of the�

universe of potential models. Note that this organization automatically orders

the models in a way which corresponds well with two di�erent measures: The

innermost models have the most immediate relevance and possibly urgency, and

models further out gradually become irrelevant for most short-term purposes; at

the same time, models further out gradually cover larger and larger portions of

the physical space, so they become less and less detailed and thus more suitable

for the tracking of changes which are substantial enough to make a di�erence

in spite of the distance.

A very nice property of a physical nesting model organization is that it

supports a kind of stability which is somewhat related to the stability of the

world which was discussed in the beginning of this section. A largely static

world o�ers the stability property that most of what is true now will still be

true in the near future; similarly, with a physical nesting organization of models,

a change of model (or viewpoint) to another one with a nearby location will have

the stability property that most of the enclosing models remain unchanged. In

other words, we can move around and thereby constantly invalidate some of the

innermost, nearest models, but the fact that almost nothing has changed when

viewed on a larger scale allows us to perceive the world as a comprehensible

place, even if the shapes, colors, and sounds that we are immersed in keep

changing relentlessly.

The stability of enclosing contexts as a way to make sense of the more

transient immediate contexts is at the heart of object orientation, as we shall

see in the next sections.

5.2 Contextuality in Programming Languages

It is obviously worth considering if and how a programming language can be

designed in such a way that it allows programmers to use their general compre-

hension competences when reading and writing programs. The previous sections

motivate certain directions for the design, given that we set out from the premise

that human beings who are dealing with computer programs are �rst of all op-

timized for living in the physical world and then, as an afterthought, equipped

with natural language and civilization, and �nally, basically as a big surprise,

immersed in a modern technological world.
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The design directions include the following: Human beings are well-trained

in exploiting contextuality, that is, in establishing mental models where exter-

nal stimuli are not just understood by their immanent (stand-alone/dictionary)

meaning, but are instead highly enriched by being interpreted in context of

a model and then used to update that model. Similar techniques should be

applicable when reasoning about computer programs.

Moreover, physical nesting seems to be a very fundamental and useful or-

ganization of a universe of potential models, and it has the earlier mentioned

nice property of making close models more relevant and urgent, and remote

models more coarse-grained and stable. It is also desirable that programmers

have support in organizing their understanding of program executions into such

a structure.

Context dependencies in a formal system like a programming language must

of course be based on a much more rigid and simple-minded mechanism than

anything in a natural language. General block structure is one such mechanism

which will allow words to derive their meaning from all the enclosing contexts,

but a number of restricted versions of block structure are also being used in

various programming languages. We brie�y describe them �rst, for comparison.

The simplest approach is to use one large, global, unstructured universe con-

taining all of the available entities, like in traditional FORTRAN, early versions

of BASIC, or symbolic machine code (`assembler'). This�degenerate�case of

context dependency support works nicely for small, simple projects, because

there is no real need for complexity management, and because the lack of this

kind of functionality allows for a simpler language.

However, as soon as the complexity rises above the trivial level the unstruc-

tured universe becomes hard to manage, because every consideration about a

given program basically has to set out from a total and simultaneous awareness

of the entire program in full detail. The experience with programs of this kind or

just programs of which some aspect was of this kind has given rise to the widely

accepted rule that global variables should be avoided. The argumentation given

here at least motivates the rule that there should only be few global variables.

The next step up is to support localized groupings of state, such as records,

or behavior, such as procedures. When a given group of variables are accessed as

�elds of a record then the programmer is supported in thinking about this group

of variables as an entity in its own right, and this alone reduces the complexity

of the system by reducing the number of entities. However, it is only really

useful if each usage of a variable from this group can be meaningfully explained

in terms of the group as a whole, so in particular the group as a whole must be

meaningful.

Similarly, a number of statements enclosed as the body of a procedure pro-

vide for a simpli�cation, compared to having the same statements on their own

at the global level of the program. Again the composite e�ect of executing those

statements should be meaningful as a whole, and each statement should make

sense as a contribution to that composite e�ect. Apart from the fact that the

statements can be understood as a group, it is also important that the number

of possible execution paths involving such a group of statements becomes much
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smaller, especially if the ideals of structured programming [116] are taken into�

account. The core ideal here is that there should only be few and readily recog-

nizable possible execution paths, and this is achieved by having such rules as:

each procedure should have only one entry point and one exit point, and the

goto command should be shunned [28] in favor of a few more specialized control

structures (like if, while and for statements).

Even more important, the notion of a procedure invocation is rei�ed: The

invocation of a procedure implies not only jumping to and from a group of

statements, but also the establishment of a local environment which is speci�c

for the given invocation.

3

This makes it possible to receive arguments, to use

local variables, and to return results; it also allows for recursion.

This notion of a local environment for each invocation of a procedure is an

example (and an important one) of support for contextuality�the body of the

procedure is executed in context of this environment, and since the environment

is invocation speci�c, it is capable of supporting the modeling of a speci�c

action or development which is an example, or instance, of the concept which

is associated with the name of the procedure (assuming that the procedure has

a name that corresponds to the e�ect of executing it, which of course it should

have).

It is no surprise that procedures are the �rst entities to have such a good

support for contextuality, since they are so closely related to verbs, and verbs

are so urgently dependent on their context. However, a verb phrase in a sentence

is normally associated with a noun phrase which names a primary context for

the interpretation of the verb, and then optionally an object which is being

manipulated. Procedures support the notion of objects being manipulated, but

not the notion of being contextually dependent on a less transient enclosing

entity.

This level of support for contextuality corresponds to traditional imperative

programming languages like C and Ada83. At this level it is actually possible to

create and maintain quite large and complex systems, such as operating system

kernels and, particularly using Ada, systems for real-time control of airplanes

and weapons. Clearly, procedures and records are so useful that they must be

taken seriously.

However, in recent years there has been a strong trend towards using object-

orientation in many di�erent application domains, and it is often given as a

reason that object-orientation is somehow more �natural� for expressing human

thinking than other programming paradigms, e.g. [24]. We basically agree with

this line of thinking, but on the very speci�c grounds that it represents yet

another step forward in the support for contextuality.

This step forward, in the mainstream of object-orientation, simply consists

in allowing procedures to be de�ned as contextually located inside records. This

is a technical change; the associated change in mindset and terminology is pro-

3

It is often called an `activation record' and considered an implementation detail, but that is

probably because it isn't a �rst class entity in most languages; even the most implementation-

independent formal semantics would have to specify it as a semantic entity, similar to other

environments such as ordinary records
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found and di�ers quite a bit between the user communities of di�erent languages,

but the (heretic) use of the old terminology allows us to see more directly what

new possibilities it provides us with.

From the point of view of the Scandinavian tradition of object-orientation,

this enables us to model a thing (a phenomenon associated with a concept

covered by a noun) along with actions and developments that take place in

context of that thing. Technically this is unimportant because the `thing' could

easily have been provided to the procedures as, say, the �rst argument. In

languages like CLOS, Dylan, and Cecil, the typical notation for access to an

entity inside an object (the `dot notation', as in myPoint.move) is actually

explained as a mere syntactic convenience which in reality means that the object

is the �rst argument to the procedure. So objects are not particularly important

in object-orientation after all : : :

We believe that this entirely misses the point! The improvement in the un-

derstandability of programs which can be obtained by supporting the execution

of procedures in context of records (which is so profound that we rename it to

things like `the execution of methods in context of objects' or `sending messages

to objects') stems from the fact that contextuality is a complexity management

mechanism which has been an inherent aspect of our approach to the world

since long before the emergence of the human species. In other words, the im-

portant di�erence is in the support for our basic modes of thinking, and the fact

that it technically may be �explained away� as syntactic sugar is an absolutely

unimportant curiosity.

To clearly expose the reduction in complexity, compare the following sce-

narios: Assume that we have a payroll system which models each employee as

an object which has various methods for registering performed work and for

receiving payments. In daily use the system is used to update the state of each

employee-object to re�ect the amount of work which was performed by the cor-

responding employee. Once in a while some money can be transferred to a bank

account, and the employee-object is updated to re�ect that the payment has

been made. A programmer working on such a program can work on basis of

a mental image of an employee, and for each method on employees he or she

can view it as an action which may depend on and/or change the employee

in context of which it happens. The potentially large number of transient phe-

nomona modeled by the methods are organized in context of the more long-lived

phenomenon modeled by the employee-object.

In contrast, the connection between the transient phenomena and their long-

lived context (the employee) has no direct support in procedural languages, so

they give much less support to programmers for the context based complex-

ity reduction. In other words, they emphasize each action or development in

isolation, and that means that the collection of all actions and developments

in a program execution becomes a much more complex whirlwind of isolated

phenomena than it would be if it were organized into a number of object �life

stories�.

Most object-oriented languages stop here, but in the Scandinavian tradition

of object-orientation a more general approach is taken, as a consequence of not
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abandoning but instead generalizing the support for block structure in Algol.

In particular, Beta supports a very homogeneous and general form of block

structure, a generalization of the block structure in Simula, which is again a

generalization of the language Algol. Note that the decision to abandon block

structure in other communities seems to have been made consciously [23, 51],

and this probably illustrates that general block structure used in an unstructured

and meaningless fashion can in�ict great damage to the comprehensibility of a

system.

The technical details of Beta block structure are the same as in gbeta, and

they are explained in Sect. 5.3. The implications of this general block structure

support at the conceptual level are unsurprising given the discussion so far, but

we will brie�y summarize them as they represent the logical end point of the

development: As a generalization of the previously discussed forms of block

structure, general block structure naturally supports the modeling of actions

and developments by means of procedure invocations carrying their own, local

environment, as well as the modeling of actions and developments in context of

noun related phenomena (things, persons, : : : ). A usage of general block struc-

ture which goes beyond mainstream object-orientation, but which was already

present in Algol in the sixties, is the notion of nested procedures. They allow

the expression of contextually dependent subactions which are used to construct

the more complex enclosing action.

Moreover, it is generally possible to de�ne contextually dependent entities

explicitly in context. For example, a student role can be modeled in context

of the university to which it applies; an airplane ticket can be handled by a

computer system using a model of an airplane seat in context of a particular

�ight; and an object inside a gbeta compiler which is capable of generating code

for a speci�c piece of syntax may be de�ned in context of the object which

represents that piece of syntax, which may again be de�ned in context of the

grammar for the language, in context of the compiler, etc. Whether an object is

understood as a model of a real-world phenomenon or it is understood entirely

as a computer based phenomenon in its own right, the important message is that

programmers are capable of using their real-world comprehension capabilities to

understand the semantics of programs, in particular by exploiting the contextual

complexity reduction.

However, the rigidity of concrete programming language mechanisms, in

particular when static type checkability is an important goal, sometimes makes

it necessary to carefully weigh the gains in simplicity and consistency against

the need for �exibility for the handling of atypical cases.

For example, a project may be modeled in context of a company, and as

a result the project may depend on the company (e.g. on the employees as

modeled by their online calenders). The understanding of the life-stories of

all projects can then be organized in context of the companies. Because of the

regularities (e.g. that meetings for a given project are held in rooms belonging to

the company of that project), the contextuality will ensure a basic and intuitive

level of consistency that would not be supported if companies, employees, rooms,

projects, and meetings were modeled in a �at universe, as global and unrelated
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classes.

Of course, a usable system must also be able to handle multi-company

projects with meetings in third-party rooms. This can for instance be sup-

ported by de�ning abstract, global, unrelated classes for meetings and so on,

and then de�ning concrete subclasses in context of a company for the simple

default case (meetings in the company's own rooms), and other concrete, global

subclasses for the hard-to-handle general case (meetings anywhere, with par-

ticipants from anywhere). This gives rise to more classes in the program, but

it might very well be worthwhile to exploit the simplicity of the simple case

also for users of the program, so that local meetings can be scheduled quickly

in an simple dialog box, whereas scheduling of �general� meetings includes an

inherently more complex selection of participants from multiple companies, as

well as negotiation procedures between the various scheduling systems used in

the involved companies.

There will always be a trade-o� between �hardwiring� design aspects for

simplicity and making them into parameters for generality. As an example of

why parameterization should not simply be equated with `good' and hardwiring

should not simply be equated with `evil', consider a language where a procedure

can receive its body as an argument, e.g., as a list of statements. Now we can

implement a given program with much fewer procedures, all we need to do is to

provide the body (possibly as a result of a clever computation) as an argument

to each procedure invocation. Wonderful �exibility! However, the problem is

that the manifest program entity, the procedure, has lost inherent meaning

for the programmer who is trying to understand the program. It appears as

an empty shell whose real meaning can only be understood when the infamous

body parameter is known, and the choice of actual parameters is such a transient

matter that it is hard to predict before run-time. As a result, we have seriously

damaged the comprehensability of the program, even if we may have been able

to reduce it to a smaller size.

Useful abstraction and parameterization mechanisms in programming lan-

guages are those that allow a programmer to construct entities which are both

meaningful and widely applicable. We believe that the ability to de�ne contextu-

ally dependent entities is an example of a mechanism which allows programmers

to reduce the �exibility of the dependent entities in return for making the group

of a context and its dependent entities more comprehensible as a whole. For

example, a pattern P in Beta and in gbeta is speci�c for its enclosing object O,

di�erent from the pattern of the same name in context of another object O

0

even

when O and O

0

are instances of the exact same pattern; similarly, the notion of

a virtual or late-bound method in various programming languages implies that

the meaning of the name of the method depends on the object in context of

which the method is invoked. In both cases, the contextually dependent entity

is in an essential way tied to the context, as opposed to the procedural �equiv-

alent� where it is the same procedure that receives di�erent objects as the �rst

argument in di�erent invocations. Multiplication mechanisms such as instantia-

tion of objects and incremental speci�cation mechanisms such as inheritance are

then more important than ever, since they allow us to manage a larger selection
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Global lookup of a name N in a view P :

Perform a local lookup in P ; if that succeeds then

the global lookup also succeeds, with the same result

as the local lookup; otherwise �nd the view of the

enclosing object of the frontmost mixin in P ,

and perform a global lookup of N from there;

if there are no more enclosing objects then

the global lookup fails

Figure 5.1: The rule for global lookup

of specialized variants than would otherwise be practical.

5.3 General Block Structure in gbeta

This section describes the syntax and informal semantics of the general block

structure in gbeta. Syntactically, the general block structure amounts to the

support for declaration of MainParts within MainParts in various ways, as it can

be seen in the full grammar in App. A. Already the simpli�ed grammar in

Fig. 2.1 on page 23 shows the most important case, namely the possibility to

write a MainPart nested inside a MainPart as a part of an attribute declaration,

an AttributeDecl.

The semantic support for general block structure is also quite straightforward

to describe, because all the descriptions of semantic (or run-time) entities given

sofar have been designed to �t into the greater, contextualized framework.

Patterns are by de�nition context dependent since each mixin, as described

in Sect. 3.3, includes the identity of the enclosing part-object. Similarly, each

part of an object receives a part-object as its context from the mixin of which

it is an instance.

This contextuality support in each part object is used in the general case

of name lookup. In Sect. 3.10 the rule for local lookup was given. The global

lookup rule builds on the local lookup rule, as speci�ed in Fig. 5.1. Basically, it

says that the local lookup rule is applied to each object in the context, starting

with the immediate context and one by one searching more and more global

ones until the requested name has been found, or the entire context has been

exhausted and an `unde�ned name' error must be reported.

Note that the search of the next enclosing object in each step always uses

that view whose most speci�c mixin is associated with the next syntactically

enclosing MainPart. In other words, lookup starts from the MainParts which

are there to look at, directly surrounding the name which is being looked up.

This means that the programmer can mentally annotate each MainPart with

the environment that it provides, and then any name lookup will simply be



5.3. GENERAL BLOCK STRUCTURE IN GBETA 113

1

1

(#

2 company:

3

2

(# employee:

3

(# : : : #);

4 project:

5

4

(# client:

^

customer;

6 manager:

^

employee

7 #);

8 realProject: project

9

5

(# meeting:

10

6

(# from,to: @dateTime;

11 : : : from : : :

12 : : : manager : : :

13 : : : employee : : :

14 #)

15 #)

16 #);

17 customer:

7

(# : : : #);

18 dateTime:

8

(# : : : #)

19 #)

Figure 5.2: Global lookup example

a succession of searches in those environments. As a result of the ubiquity

of the outermost environments (they are the context of very large portions

of the program) and the syntactic and semantic immediacy of the innermost

environments, name searches performed mentally by a programmer will often

be rather easy, either because the name is nearby or because it is generally

well-known.

The organization of objects corresponds to the physical nesting model or-

ganization, and the search order corresponds to the relevance and urgency or-

dering of the models by searching the most relevant objects �rst. Note that

it is perfectly possible to construct program entity nesting structures that do

not correspond to a physical nesting of phenomena, but that may just be an

example of using our metaphorical capabilities to understand non-spatial issues

in terms of a spatial-like organization, such as for example considering a novel in

context of the life of the author. Hence, there is no �policy� that prescribes that

the physical nesting model organization should only be used to model actual

physical nesting. The overall goal is to make programs understandable, and the

use of metaphors to go beyond actual physical nesting is an important human

capability that should of course be leveraged.

A few examples of global lookup are given in Fig. 5.2. The block structure of

executions of a program using the patterns in Fig. 5.2 is illustrated in Fig. 5.3 on

page 114. The �gure only shows the nesting and inheritance relations between

the MainParts, not the actual con�guration of part objects and mixins at run-
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block structure

1

2

7

8

3

4

5 6

inheritance

Figure 5.3: The block structure in Fig. 5.2

time. That is because there are so many possible con�gurations, so we have to

give a slightly abstract representation of it.

The relation to potential run-time entities is as follows: Each box in Fig. 5.3

represents the MainPart with the same number in Fig. 5.2, so any company

pattern will consist of one mixin, and that mixin will be associated with the

MainPart (and the box) numbered 2; an instance of such a company pattern will

consist of one part object which is an instance of the mixin. Similarly for other

patterns and objects associated with the source code in Fig. 5.3.

Whenever the code inside a MainPart M is being executed it happens in

context of a current part object, and the current object is always an instance of�

a pattern which includes mixins associated with M and all the MainParts of the

statically known superpattern; the current object may also contain additional

mixins which are not known statically. For any given part object there will be

part objects for all boxes which are reachable by either block structure links or

inheritance links (going left along an arrow or up along a double-line in Fig. 5.3).

For example, given a meeting object (associated with box 6), there will be a

uniquely determined object, associated with [5; 4] (an instance of a realProject

pattern), which is the enclosing object for the meeting object. Similarly, there

will be an enclosing company, [2], around the realProject, etc.

Now, when looking up the names which are mentioned inside MainPart 6,

we get the results as follows: dateTime is looked up by searching 6, 5, 4, 2, 1,

in that order; from is looked up locally, just 6 has to be searched; 6, 5, and 4

are searched to �nd manager; and �nally, 6, 5, 4, and 2 are searched in order to

look up employee.
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The lookup process may be described graphically: starting from a box M

that contains the name to search for, we �rst search upwards, among inherited

attributes; if that fails then we take one step outwards from M and repeat.

When thinking of the boxes representing all the syntactically enclosing Main-

Parts as a �spine� we may describe the global search as a series of local searches,

each one starting from the next more global MainPart in the spine. In the spe-

cial case where there is no inheritance the global search is reduced to a simple,

lexical scoping lookup mechanism.

All the mixins are contextually located inside their speci�c enclosing objects,

so for instance the employee pattern which is looked up from our meeting

context will be that employee pattern which is contextually located inside the

company where the meeting also (indirectly) belongs. So the meeting and the

employee are a natural pair, as opposed to a combination of a meeting in one

company and an employee from another company.

It is exactly this kind of automatic, statically checked, multi-level object

relation consistency support which is the core functionality of general block

structure�it allows us to safely and conveniently work with groups of objects

and patterns that naturally belong together, and the grouping mechanism o�ers

both great �exibility by being nestable to any desired depth, and comprehen-

sibility because of the deep and life-long experience that human beings have in

exploiting contextuality.

As mentioned in the previous section, this kind of consistency support is also

a restriction which may be too rigid in some cases�and, as mentioned, there is

always the option of using explicit associations, e.g., by manually maintaining

an explicit myProject reference in each meeting object. Such trade-o�s between

convenient safety and more verbose �exibility must be made all the time in the

construction of programs; it is basically the same kind of trade-o� as between a

while statement which allows only a very regular set of control �ows, and a goto

statement, which allows you to jump to any location in a program. History seems

to support the assumption that the choice of a rigid but analyzable construct

instead of a more �powerful� and �exible construct often makes sense, perhaps

because understandability is the more precious resource in the development of

complex systems. Again, similar to the case with goto vs. while, since a �at set

of global classes is just a special case of general block structure, it is trivial to see

that no expressive power is lost by having support for general block structure

in a language.

5.4 The Relation to Modules

General block structure shares a few features with modularization, so it is useful

to describe the di�erences between them. If one of them turned out to be the

more powerful mechanism, capable of solving all the tasks assigned to the other,

then we had better use that one and get rid of the other mechanism altogether.

However, we think that general block structure and modularization are largely

orthogonal mechanisms, hence it is actually useful to have both.
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Similarities: First a few reasons why they seem to overlap: If a given entity

E (such as a class) is used as part of the solution S to a complex problem,

but E does not play any rôle in the intended use of S (possibly available in a

manifest form as a speci�cation of S or as an interface to S), then we can do two

di�erent things to reduce the overall system complexity: We may provide the

functionality of S as a module and E may be de�ned as private in that module,

such that nobody needs to worry about what E is or how it is used except for

those who implement or maintain that module. Alternatively, we may de�ne E

in context of a class that implements a solution to S; we assume that this class

is global, to make the alternatives as comparable as possible.

In both cases, E is removed from the global name space, so programmers

will not be bothered with E unless they take a look inside S. Similarly, when

somebody does need to look at E, it will be clear already from the location

of E in the source code that E is supposed to be understood in context of S.

Finally, with multiple entities similar to S, S

1

: : : S

n

, and many entities similar

to E, it will be convenient to compose large, complex systems using a subset

of S

1

: : : S

n

, because each S

i

along with the E-like entities needed by S

i

can be

provided as a named package (module or class) which can be manipulated as a

whole; that amounts to better support for reuse of the S

i

's. One thing we have

left out of this picture is the need for shared resources�modules will need an

import mechanism in order to be useful, and with the block structure approach

there would generally be dependencies between the S

i

classes such that the use

of one of them would imply the use of a number of others. However, that can

be taken into account without changing the conclusions above.

It seems that both mechanisms support complexity reduction and reusability

in large systems by grouping and containment of entities that do not have to be

available for most of the system, thus allowing the remaining, generally useful

entities to stand out all the more clearly. However, that description is deceptive

for several reasons.

Dissimilarities: Firstly, the nesting of an entity inside another does not make

it inaccessible for outside entities. As an example of why it would be a bad

idea to introduce restrictions that would make nested entities inaccessible from

the outside, consider the company example from the previous section. Nested

entities like project and meeting are perfectly valid concepts in connection

with companies, they are not just implementation details that should be hidden

from public view. In some languages, e.g. Smalltalk, there is a rule saying

that methods are public, but instance variables are private. This ensures that

access from the outside will always be mediated by a computation, as opposed

to a simple variable access, and that again ensures that the implementation can

be changed more freely without a�ecting code that uses the class. Now, this

argument only makes sense if the access to a method and to an instance variable

from the outside look di�erent, otherwise the instance variable could simply be

changed to one or two methods if needed, and all usage points would remain

unchanged. Self, CLOS, Dylan, Cecil, and other languages transform access to
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variables (data slots) into method invocations by means of accessor methods,

andBeta and gbeta support a slightly di�erent kind of transparency by means of

coercions. In any case, the distinction between public computation and private

state seems to be an artifact of a too meager transparency support. Other

languages, including Simula, Java, C++, and Ei�el, use a separate mechanism for

access control management, namely explicit declarations of attributes as being

`private', `public', or accessible from speci�c entities (e.g. export declarations in

Ei�el and `friend' classes or functions in C++). Since this in all cases amounts

to an orthogonal mechanism, independent of the block structure, it actually

supports the claim that block structure and privacy management are separate

issues.

Secondly, the tasks of name space partitioning and visibility management

which are associated with module systems are static in nature. They are con-

cerned with proporties of source code, not with properties of run-time entities.

In contrast, general block structure is inseparable from run-time entities, it is

concerned with the ability of each nested run-time entity to depend on all its

enclosing entities. By enabling this it also supports the grouping of run-time

entities nested at some level under a common enclosing entity, for instance the

grouping of meetings and employees together if and only if they �belong� to

the same company. From the point of view of a module system there would

just be meetings and employees, and an individual relation between a speci�c

meeting and a speci�c employee can not be expressed. Conversely, general

block structure does not support the separation of individually reusable enti-

ties, because even �global� entities are nested inside some outermost �universe�

entity. The ability to compose a system from several smaller units is essentially

a module-related capability�and the above claim that block structure could be

used to support separately reusable packages silently assumed that such sepa-

rate packages could even be expressed and composed; that would require some

form of module system, thereby invalidating the argument that general block

structure could support the reuse on its own.

Finally, modules serve well as a means for physical organization of code, for

example to separate interface and implementation, or to allow for the combina-

tion of a given interface with any of several possible implementations, such as

one for each of a number of di�erent hardware and/or software platforms. This

again enables separate compilation, and it allows for �ne-grained source code

control [74, Ch. 17]. General block structure does not support the grouping of

source code entities according to such concerns as separation of interface and

implementation. For example, an entity in an enclosing scope may be an im-

plementation detail that a given nested entity does not need to depend on�e.g.

if the company had some attribute which was used in the implementation of

company itself but not needed by project or meeting. As another example, an

entity may not need or use the context, but it may still be an implementation

detail for a nested entity�e.g. if a specialized data structure were used in the

implementation of meeting, but the data structure did not depend on company

or project. Sometimes it is impossible to use the block structure to hide things

appropriately, sometimes it is just wrong, because it introduces useless contex-
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tual dependencies. Since contextuality allows us to make entities that may be

considered as a group more comprehensible, it is confusing and damaging for

the usability of an entity if it is nested inside another entity and the enclosing

and nested entities make no sense as a group. Hence, block structure should

not be used for physical organization of code.

So, to summarize, modules are used to control visibility and/or accessibility

for static entities, i.e., for pieces of source code; and for packaging related pieces

of source code into conveniently reusable units; and for separating di�erent

kinds of pieces of source code independently of the semantic properties such as

nesting location, e.g. for separating interface from implementation. General

block structure is used to support contextual dependencies between run-time

entities. Neither mechanism is able to handle the tasks assigned to the other.

Other points of view: Earlier treatments of related topics do not consider

contextuality, which is the main point in our argument for keeping classes and

modules separate, but otherwise the argumentation is similar.

In the classic paper [91], modularization of programs is for the �rst time

introduced as a concept and a concern in its own right, and the main criterion

given for modularization is that each module should encapsulate a design de-

cision by providing its services to other modules in a form which is useful for

the solution of the problem at hand, yet does not have to change if and when

another choice is taken with respect to that design decision. Today the phrase

`representation' or `implementation' seems to cover the term `design decision' as

it is used in [91]. The claimed results are that the system as a whole tolerates

many changes inside modules without forcing changes to other modules, the

system can be developed in parallel as soon as the interfaces have been chosen,

and the system as a whole becomes easier to understand. The results in this

paper are so well established today that they seem obvious.

In the Ei�el community, the position is that classes and modules should be

uni�ed, such that there is only one structuring construct in the language [79].

This uni�cation is made into a principle, required for `pure' object-orientation,

and the criterion is the same as the one we gave above: If one mechanism can

handle all the tasks of another mechanism, then the �rst one should be used

and the second one abandoned. However, the module and class mechanisms can

only be uni�ed in Ei�el because there is no support for contextuality except for

the nesting of method invocations inside objects. In particular this means that

classes can be entirely static entities, and they are all naturally located in one,

global name space. We just need to require that each module must consist of

exactly one class de�nition, and then classes and modules are uni�ed!

This does have some confusing consequences, though. For instance, there

are standard Ei�el classes such as MATH and BASIC_IO containing sets of

procedures and functions for doing trigonometric computations and for receiv-

ing keyboard input and writing text to a console. It is necessary to inherit from

MATH in order to compute the cosine of an angle, and it is necessary to inherit

from BASIC_IO in order to receive keyboard input; this inheritance relation
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does not make sense as a specialization, and the MATH and BASIC_IO classes

themselves do not make sense as generators of contexts for the procedures in-

side them. On the other hand, it makes good sense to consider MATH and

BASIC_IO as importable modules containing global procedures and functions.

Since we are generally in favor of uni�cation of concepts, it is worth con-

sidering whether a both-module-and-class concept is a good idea. There are

some serious problems, however. Firstly, it is only possible when classes are

static entities, so it cannot be applied to languages with general block struc-

ture. Secondly, there is no support for physical separation of the interface and

the implementation of a class, so even strictly implementation related changes

to a class will cause recompilations, new versions of �les, etc. It may be possible

to compensate somewhat for these problems by using a �smart� compiler and

linker and version control system etc., but it seems unnecessary to introduce

those problems in the �rst place. Finally, the functional granularity of the sys-

tem may not be at the class level�if a group of classes is only meaningful taken

together (say, NODE and EDGE which can be used together to create graphs),

then it seems counter-productive to require that this group must be handled as

a multitude of separate modules.

In [106], the need for modules as a separate construct in addition to classes

is treated in detail, and the main reasons given in favor of having both classes

and modules in a language are as follows: the import and the inheritance re-

lation should not be confused; groups of classes may need to collaborate in

order to maintain invariants; selective export (as in Ei�el or as friend in C++)

cause hard-to-understand networks of visibility; and modules allow both sep-

arate compilation per module and gives good opportunities for optimizations

inside a module, since many optimizations are concerned with interactions be-

tween tightly cooperating classes. Apart from the fact that this does not cover

contextuality, we support this argumentation, and again the conclusion is that

it is appropriate to have both classes and modules.
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Chapter 6

Propagation of Specialization

This chapter shares material with our paper Propagating Class and

Method Combination, which was accepted for publication and presen-

tation at the ECOOP'99 conference.

In recent years the management of concerns involving multiple classes and

the combination of structure and behavior from separate entities has been a

very active area of research. Subject orientation [52], aspect oriented program-

ming [57], and object collaborations [81] are all examples of such e�orts. The

support for general pattern merging and the semantics of virtuals in gbeta pro-

vides a language integrated approach to the achievement of these goals. A seam-

less integration into a statically typed general purpose programming language

such as gbeta opens the possibility for type checking at the level of the multi-

class constructs, separate type-checking and compilation, and avoidance of the

�impedance� problems associated with the use of several di�erent mind-sets,

languages, and tools.

The general block structure enables a natural expression of groups of mutu-

ally dependent patterns. The very �exible inheritance and pattern combination

mechanism interacts with the block structure to support propagation of pattern

combinations. The reason why we use the word `propagation' to describe this

phenomenon is that it allows programmers to initiate a complex but regular pro-

cess by specifying a syntactically simple pattern merging operation, for example

by an expression like a & b, and as a result of the semantics of virtual attributes

(see Chap. 4 for details), this combination of a and b can propagate to cause the

combination of some virtual attributes in a and b, and possibly also propagate

further into virtual attributes nested inside those virtuals etc., and �nally it

propagates the enrichment of all those virtuals into all the patterns that inherit

from them. In other words, one syntactically explicit combination operation

may cause many other combination and specialization operations on dependent

patterns, where the dependency relations are either `is-a-virtual-attribute-of' or

`inherits-from'.

This description of propagation as something that moves along the edges

of a graph of dependency links (some caused by simple syntactic nesting, some

121
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established in static analysis) illuminates how similar it is to a constraint solving

process. Constraints are introduced by declarations of virtual attributes�where

the constraint is on the form a � b�and by inheritance�where the constraint

is often on the form a = b&[(# : : : #)]. Other forms of constraints are also

available, for example lower bounds on virtuals, which are presented in Sect. 9.2.

Note that this constraint solving process may happen at run-time or at

compile-time. There is full support for performing the process at run-time, as

described in Chap. 7, but a warning will be issued for each location in a program

where this constraint solving process cannot be analyzed fully at compile-time;

that is the case, for instance, when two variable patterns are merged.

This chapter gives a survey of signi�cant usages of the propagating combina-

tion mechanism, thus illustrating the semantics and motivating its usefulness.

6.1 Combination of Classes, then Methods

The �rst example illustrates the use of propagation in only one level; this special

case works similarly to CLOS method combination using before and after

methods, thus illustrating the gbeta pattern combination mechanism by showing

how it achieves a known goal. Explained in terms of propagation, this is about

combination of two classes and�by propagation�combination of the methods

inside those classes.

Consider an abstract pattern Stack which speci�es a stack data structure,

along with a specialization StackImpl which contributes an implementation of

the stack using a list (whose type constraint on contained objects (element) is

speci�ed to be the same as the constraint given for the enclosing StackImpl):

Stack:

1

(# element:< object;

init:<

2

(# do INNER #);

push:<

3

(# elm:

^

element enter elm[] do INNER #);

pop:<

4

(# elm:

^

element do INNER exit elm[] #)

#);

StackImpl: Stack

5

(# init::<

6

(# do storage.init #);

push::<

7

(# do elm[]->storage.insert #);

pop::<

8

(# exit storage.deleteFirst #);

storage: @list

9

(# element::this(StackImpl).element #)

#)

Ex.

6-1

The StackImpl pattern can be used directly, but it does not protect itself from

shared access in a multi-threaded context. To add concurrency control we write

another specialization of Stack:
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3

(# elm:

^

element enter elm[] do INNER #) (* from Stack *)

12

(# do mutex.P; INNER; mutex.V #) (* from StackConc *)

7

(# do elm[]->storage.insert #) (* from StackImpl *)

(# elm:

^

element (* combined result *)

enter elm[]

do mutex.P;

elm[]->storage.insert;

mutex.V

#)

Figure 6.1: The contributions to push in aThreadSafeStack

StackConc: Stack

10

(# init::<

11

(# do mutex.init; INNER #);

push::< protect;

pop::< protect;

protect:

12

(# do mutex.P; INNER; mutex.V #);

mutex: @semaphore

#)

Ex.

6-2

In StackConc, the methods push and pop are further-bound to include the

pattern named protect.

Combination of the two aspects of the stack, the concurrency control and

the implementation, implies a combination of the shared virtuals including the

methods push and pop, so all we need to do to obtain a thread safe stack is this:

aThreadSafeStack: @ StackConc & StackImpl;

Ex.

6-3

In Fig. 6.1, the contributing mixins in an invocation of push on aThread-

SafeStack are listed. The e�ective, combined push in aThreadSafeStack is

given as the `combined result' in Fig. 6.1. This result is obtained by recursively

replacing INNER with the next more special contribution, and that produces

a do-part which behaves similarly to push. As desired, it protects the imple-

mentation part in a critical region by inserting it between the acquisition and

relinquishment of the semaphore. Consequently, only one thread at a time can

execute push (or pop) on this particular stack.

To detail how that particular sequence of contributing implementations of

pushwas computed we must consider the combinations of the enclosing patterns.

For this chapter it may be assumed that a mixin is just a MainPart, i.e. the

syntactic construct (# : : : #); a more precise description of mixins is given in

Sect. 3.3.

Stack is a pattern which only includes one mixin, which is numbered 1. Both

StackImpl and StackConc include two mixins�[5,1] and [10,1], respectively.
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The combination of two patterns is a linearization applied to the correspond-

ing two sequences of mixins. This linearization is speci�ed formally in Sect. 3.7.1

so here we just give the result:

[10; 1]&[5; 1] = [5; 10; 1]

The mixin sequence for push in [5; 10; 1] is the linearization of the contributions

in mixin 1, then 10, then 5:

[3]&[12]&[7] = [7; 12; 3]

This makes the contribution to push in StackImpl the most speci�c (i.e., the

frontmost element in the sequence of mixins), etc., and as we can see, the result-

ing pattern will execute the same imperatives as illustrated with the `combined

result' in Fig. 6.1.

Note that we could have combined the concurrency control with any im-

plementation, and the implementation could have been combined with one or

more auxiliary aspects such as an implementation of concurrency control. The

same kind of method combination could have been obtained in CLOS (not

typesafe, though) by putting statements before INNER into a before method

and statements after INNER into an after method, and inheriting from both

StackConc and StackImpl (in that order), yielding a class ThreadSafeStack;

aThreadSafeStack would then be an instance of this class. The reason is that

the special case of propagation in one level from a pattern used as a class and

into nested virtuals used as methods amounts to a mechanism which is similar

to standard method combination in CLOS.

6.2 Combination of Aspects

In this section we consider an example where the merging operation (`&') is

applied to families of patterns. Each family is realized by having a pattern that

represents the family and a number of nested virtuals used as classes, one for

each member of the family. The family as a whole is used as a method in this

case. Merging of such families creates a combined family, and by propagation

merges the contributions to each family member from all contributing families.

For the concrete example we need a few auxiliary patterns, supporting basic

�nancial transactions and transfer of possession:

Person:

1

(# name: @string #);

Payer: Person

2

(# pay:

3

(# amnt: @integer .. exit amnt #)#);

Paid: Person

4

(# accept:

5

(# amnt: @integer enter amnt .. #)#);

Receiver: Person

6

(# receive:

7

(# t:

^

Thing enter t[] .. #)#);

Deliverer: Person

8

(# deliver:

9

(# t:

^

Thing .. exit t[] #)#)

Ex.

6-4

A Person has a name; a Payer can pay an amount of money, and a Paid person

can accept payments. Moreover, a Receiver can receive a Thing and a

Deliverer can deliver a Thing.

For these patterns it is evident that collaborations may arise. An example

could be the activity �to pay�:
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collaboration:

(# First:< Person;

Second:< Person;

fst:

^

First;

snd:

^

Second;

enter (fst[],snd[])

do INNER

#);

pay: collaboration

(# First::< Payer;

Second::< Paid;

price:< (# value: @integer do INNER exit value #)

do price->fst.pay->snd.accept;

INNER

#)

Ex.

6-5

The pattern collaboration introduces two roles, played by fst and snd, and

speci�ed by First and Second. It is quite common that families of patterns can

be described in terms of roles, especially when the pattern family members are

used to specify one (possibly variable) object attribute each. Note that this kind

of method to some extent support the notion of activities which is presented �

in [61].

The pay method specializes the collaboration method by further-binding

the role patterns First and Second, and by adding one statement to the be-

havior in which the computed price is paid by fst to snd.

We can create a similar activity for a transfer of possession of some item,

where the snd role player delivers a Thing which is then received by the fst

role player:

deliver: collaboration

(# First::< Receiver;

Second::< Deliverer;

do snd.deliver->fst.receive;

INNER

#)

Ex.

6-6

With these activities in place we can create a combination which supports the

combination of the activities: both transferring an amount of money and trans-

ferring an entity in exchange for the money:

(# doTrade: pay & deliver;

Diamond: @Thing;

Walrus: @ Paid & Receiver & Deliverer;

Lucy: @ Payer & Receiver

do

Diamond[]->Walrus.receive;

(Lucy[],Walrus[])->doTrade

#)

Ex.

6-7

In this piece of code we create the combined method doTrade, thus by propa-

gation merging the nested virtual patterns First and Second and the behavior

such that both transfers will occur. Moreover, we declare an object Diamond



126 CHAPTER 6. PROPAGATION OF SPECIALIZATION

ObserverDesignPattern:

(# Subject:<

(# attach: (# enter observers.insert #);

detach: (# enter observers.delete #);

notify: observers.scan

(# do this(Subject)[]->current.update #);

observers: @set(# element::< Observer #)

#);

Observer:<

(# update:< (# S:

^

Subject enter S[] do INNER #)#)

#)

Figure 6.2: Support for the `observer' design pattern

that can be transferred, and two role players, Walrus and Lucy, whose patterns

have the necessary mixins. Since the Walrus must �rst receive the Diamond

in order to be able to deliver it to Lucy, there is both a Deliverer and a

Receiver aspect of Walrus. Lucy could have been a Deliverer, too, but she

probably won't.

Note that this use of the propagating combination mechanism depends on

the tight integration with the type system: We are creating a method whose

arguments have types that we obtain by combining the types of the arguments

of the method aspects that we combined. Such a type merging capability is

not supported by combination mechanisms like those of AspectJ [57] or subject

oriented programming [52, 90]. These approaches are otherwise able to combine

parts of methods and classes from separately speci�ed aspects/subjects in very

�exible ways, but they have no notion of �white-box� combinations, such as

combinations of types or interfaces or signatures of entities, only of �black-box�

combinations, such as combinations of implementations of methods.

6.3 Mutual Recursion

The last example seems to be almost compulsory in conference articles about

advanced languages and type systems recently [13, 65, 110], but in this case we

emphasize that it is possible to distribute the implementation over several levels

of specialization, in order to deal with various concerns as �soon� as possible�

that is, at the most general level where the necessary information is available.

In Fig. 6.2 there is a speci�cation of a pattern ObserverDesignPattern

which can be used to support the observer design pattern. It contains two

nested, mutually recursive patterns Subject and Observer. An instance of

Observer may attach to an instance of Subject. Once inserted into the set

of observers for that Subject it will be a target for noti�cations: each (signif-

icant) change in the state of the Subject should be followed by an invocation

of notify (it is a programmer responsibility to remember to invoke notify at
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WindowAndTextODP: ObserverDesignPattern

(# Subject::< TextBuffer

(# (* ensure that 'notify' is called after changes *)

setFileName::< (# do INNER; notify #)

#);

Observer::< Window

(# update::< (# do S[]->getState; refresh #);

getState:< (# S:

^

Subject enter S[] do INNER #)

#)

#)

Figure 6.3: A specialization, letting Windows observe TextBuffers

the right places). The notify method is a specialization of the scan method

on the observers, and the e�ect is to visit each of the attached observers and

invoke update on it. The Observer may then update its own state according

to the changes in the Subject.

To use this we need a couple of �application domain� patterns, for instance

a TextBuffer to be observed by a Window, which could be a ColorIcon:

TextBuffer:

(# name: @string;

setFileName:< (# n: @string enter n .. #);

getFileName:< (# n: @string .. exit n #)

#);

Window: (# refresh: (# .. #)#);

ColorIcon: Window(# setIconTitle: (# s: @string enter s .. #)#)

Ex.

6-8

Now we can create a specialization of the ObserverDesignPattern which lets

Windows observe a TextBuffer, as shown in Fig. 6.3. Note that we have the

potential for propagation here: There could be several di�erent specializations

of ObserverDesignPatternwhich would contribute a separate aspect each; for

example, we could have expressed the WindowAndTextODP pattern as a combi-

nation of a pattern TextSubjectODP (which would only further-bind Subject),

and a pattern WindowObserverODP (which would only further-bind Observer).

With a pattern like ObserverDesignPattern the propagation would proceed

in two levels, from the outermost family of class patterns, over the intermediate

nested virtuals which serve as class family members, and �nally to the virtuals

which are nested inside those family members. However, the mechanics are the

same as in the previous examples, so we will not present the details of such a

two-level combination operation.

Instead, we will concentrate on the potential for performing some tasks at

this intermediate level of specialization, such that all subpatterns will be relieved

of these tasks. When an Observer learns that the Subject has changed (i.e.,

when notify invokes current.update with that Observer as the argument)

then we can get the state and refresh the Window. We do not yet know how
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to get the state, but that's a virtual method so we can put it in later.

Finally we can create an instance of the design pattern, myODP, and populate

it with a subject myBuffer and an observer myIcon:

myODP: @WindowAndTextODP

(# myBuffer: @Subject;

myIcon: @ (& ColorIcon & Observer &)

(# getState::(# do S.getFileName->setIconTitle #)#)

#)

Ex.

6-9

The pattern of myIcon has two super-patterns, ColorIcon and Observer. The

�rst would be a standard GUI support pattern, and the second contributes the

design pattern related aspect. The newly added mixin provides the implemen-

tation of getState�now that we have the information about how to implement

it. This implementation uses the type knowledge that

� S is less-equal than a TextBuffer, because myODP is a WindowAndTextODP

which declares Subject::< TextBuffer... Hence, it must have a method

getFileName which takes no arguments and delivers a string value

� myIcon is a ColorIcon, so it has a setIconTitle method which accepts

a string value as argument

This could not be type checked if S in the body of getState had only had the

type declared in the original ObserverDesignPattern. However, in both Beta

and gbeta, the virtual pattern attributes are recognized by the type system

as denoting a more specialized pattern when looked up in context of a more

specialized enclosing object or enclosing method invocation.

Let us consider how this problem can be handled in other languages. When

dealing with a single class, simple bounded polymorphism can handle this kind

of changing types: The entity whose type should change can be a type parame-

ter, and di�erent instantiations will see the entity with di�erent types. However,

bounded polymorphism cannot handle the case where more than one class form

a group of mutually recursive classes that should be specialized as a group. In

approaches based on F-bounded polymorphism [64, 11] it is possible to establish

recursive relations between the members of a type family, so it is possible to cre-

ate a construct which is somewhat similar to ObserverDesignPattern, see for

instance [64]. Note that all the relations between the classes in the family must

be redeclared in every specialization of the family; [64] suggests some syntactic

sugar which can be used to avoid most of these repetitions.

However, the possibility of implementing some of the functionality of the

class family, including the possibility to have an attribute such as observers,

depends on the fact that the di�erent specialization levels of the class family

(ObserverDesignPattern, WindowAndTextODP, and the anonymous pattern of

myODP) are full-�edged patterns, not just types. In the approaches based on

F-bounded polymorphism, this is not possible.

The problem is that the di�erent instantiations of the type family consists

of types that are not related by subtyping; this corresponds to having a type for
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Subject in ObserverDesignPattern and having another type for Subject in

WindowAndTextODP, but no subtyping relation between them. The reason why

there is no subtyping relation between them is that such a relation would make

the type systems unsound. That is again because those systems do not have exis-

tential types. Consequently, the incremental speci�cation of the implementation

of classes with those types cannot be expressed as an inheritance hierarchy in

parallel with the subtyping hierarchy�there is no subtyping hierarchy between

the di�erent versions of Subject to follow in parallel.
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Chapter 7

Dynamic Features

This chapter shares material with our paper Dynamic Inheritance in

a Statically Typed Language, which was accepted for publication in

the Nordic Journal of Computing.

Actually, the topic of this chapter is in some sense a non-issue. A static

feature of a programming language that plays a role in the actual behavior of

programs is just a way to perform certain tasks in the execution of programs

at an early point in time, compile-time, and those tasks may of course also

be performed when their outcome is needed, at run-time. For example, a C

compiler may use symbol tables and knowledge about the size and alignment

properties of the �elds in a struct to compile the access to such a �eld down

to the addition of a �xed o�set to the address of the struct as a whole, and if

the information that was used to compute that o�set is not thrown away, then

the computation may just as well happen when the �eld is being accessed at

run-time.

However, making the computer behave in a particular way is not always the

only purpose of a program. We may also want to apply various kinds of theorem

provers to the program, such as type checkers, in order to improve the likeli-

hood that the program actually speci�es a behavior that is similar to what we

intended. Of course, this `intention' is informal by nature. Moreover, non-trivial

questions about the behavior of programs written in non-trivial programming

languages tend to be undecidable.

So it may seem like an impossible task to prove that any given program has

any speci�c dynamic properties, even though we know type systems do just that.

The underlying notion which has been very successful in attacking this problem

is that of formalizable invariants. Invariants allow us to scale up from local to

global considerations�a statement X will hold at all times in all executions of

a program if every part of the program complies with X . Statements which are

not invariants are not so easy to scale up, so the reliance on invariants seems

to be crucial if we want to analyze programs. `Dynamic' and `invariant' are

incompatible concepts, so there may be an issue after all.

131
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In Sect. 7.1, the notions of invariants and promises are used to unfold the

meaning of our concept of dynamic features, and to describe how they interact

with the static analysis. Section 7.2 presents the concrete mechanism of dynamic

pattern merging and presents some ways to use it. Finally, Sect. 7.3 introduces

the notion of dynamic specialization of objects, explains why we need it, and

gives usage examples.

7.1 Invariants and Dynamic Features

An invariant is a statement that is true in all cases within a certain universe of�

discourse. In this context we are especially interested in entity invariants, which�

allow us to think of program executions in terms of more complex and useful

semantic entities than individual memory cells; and safety invariants, which�

allow us to trust that certain operations at run-time will never fail.

For example, it may be stated as an invariant that the memory cells 125432�

125435 for the duration of an execution of a given C program will only be

accessed as an int variable. The invariant is the statement �if the current

machine code operation accesses any memory cell in the area 125432�125435

then it reads/writes all four cells as a unit�. That is all we need to ensure that

this particular area of memory can be interpreted as holding an integer value

and is being used according to an integer protocol. For a float there might

also be a few exceptional bit-patterns that must be avoided because they are not

representations of �oating point values. C and many other languages provide

loopholes (such as type casts and unions) that allow programmers to explicitly

override invariants, but they are generally treated as an anomaly that must be

used with great care. The goal of dealing with semantic entities at a higher level

than raw memory cells whenever possible is generally accepted.

The entity invariants mentioned sofar are local in the sense that they can be

described in terms of memory cells that are reserved for the entity. The entity

invariant for a pointer is global, so we have to mention the �universe� in order

to specify it: Given a store which is organized into entities (and possibly some

unused space), the entity invariant for a pointer states that it holds the address

of an entity.

On top of these primitive entity invariants we can recursively build composite

ones: For a struct, the entity invariant is the conjunction of the invariants of

the �elds.

With a traditional run-time system for C, as implied by the above descrip-

tion, there are many di�erent kinds of entities, and each must be treated in

a speci�c way which cannot be inferred from the contents of the raw memory

that is reserved for the given entity. This means that the entity invariants can

only be maintained at run-time by exercising very strict static control over the

execution; basically, every entity usage in the program must be determined as a

usage of one particular kind of entity. This is handled by the type system, and

the type system propagates precise type knowledge along all potential dynamic

usage connections (assuming ANSI C, in one �le, and without casts). The in-
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variants enforced by the type system include some that are directly necessary

for the maintenance of entity invariants, but most of them are needed because

future operations might violate some entity invariants if they were not there.

Such preparations for the future is what we call safety invariants.

In contrast, a traditional bytecode interpreter for Smalltalk establishes a

run-time system with more complex entity invariants, but with a much more

homogeneous set of entity protocols [50, Chap. 21]. Basically, an entity is either

an object which is an array of slots, or it is a slot which is a pointer to an object.

Some objects are classes; each object has a class which is referred by a known

slot; classes store methods which are needed for behavior; and a few classes like

smallInteger receive special treatment. But the important issue is that even

though there may be almost as many kinds of entities as in C, the treatment of

entities in a Smalltalk program can be almost homogeneous. A message send to

an object is a standardized operation, independent of the object. An instance

variable lookup is di�erent for each instance variable (they are stored in di�erent

locations in the object), but since that can only occur inside a method of the

class whose instances have that variable, it is a problem that can be solved

just by looking at that class and its superclasses. As a consequence, the entity

invariants can be maintained for a Smalltalk program with static knowledge

only about each class-with-supers in isolation.

Whereas the C environment forces the notion of entity invariants and safety

invariants to be considered together, Smalltalk maintains entity invariants auto-

matically and thereby makes it possible to discard the safety invariants entirely.

This is the traditional trade-o�, between the safe, fast, highly interconnected

systems with rigid static analysis, and the much more �exible and radically

modularized systems with more expensive run-time behavior. The notion of

dynamic features is commonly associated with various consequences of this �ex-

ibility and independence, for instance the fact that sending the same message to

two di�erent objects may cause two di�erent methods to be invoked, or the fact

that an instance variable may refer to objects with di�erent internal structure

at di�erent times.

However, even though Smalltalk objects are all alike as entities, programmers

need to consider them di�erent because they are supposed to handle di�erent

tasks, are therefore implemented di�erently, and will behave di�erently. In par-

ticular, since a message send may cause a failed method lookup and thence

invoke the method doesNotUnderstand:, the need for safety invariants is not

entirely removed. Breaking entity invariants, i.e., misinterpreting memory cells,

is much worse than invoking doesNotUnderstand: which may actually be han-

dled, but generally an invocation of doesNotUnderstand: indicates that the

program has a defect. The next section takes a look at the connection between

di�erent invariant architechtures and the kind of support programmers can have

to help them reduce the number of defects.
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7.1.1 Invariant Architechtures

Di�erent programming languages have di�erent kinds of invariants, but they all

have some kinds of invariants, both very statically predictable languages like

traditional FORTRAN and Pascal, and very dynamically �exible languages like

Self and Smalltalk. Self has a simple invariant architechture�basically the only

invariants are that the result of an expression evaluation is an object, and that

objects can receive messages that will be looked up using a certain algorithm.

The invariant architecture of FORTRAN is simple, too, but it is di�erent in

that it builds on semantic entities that are less capable (because they are close

to the actual, physical entities such as memory cells that common computers

support directly). On the other hand, the invariant architectures of languages

like Beta, Ada, or C++ are very rich and they allow for user-de�ned extensions

such that complicated systems of provably invariant properties of programs can

be built and automatically veri�ed.

Imagine that a given task needs to be solved by a computer, and imagine that

a particular strategy can be applied to obtain a solution which can be expressed

as a traditional FORTRAN program, a Self program, and a Beta program.

The programs must in some sense �do the same thing� (we might require that

the externally observable behavior for the three programs be indistinguishable,

even though we most likely cannot verify that), and they must be �natural�

programs for their implementation language, whatever that means. On basis of

these assumptions, we expect the following outcome:

With FORTRAN all invariants about the program will be low-level, in the

sense that they specify properties that make sense when viewed as statements

about the discipline under which the computer hardware is used, and in the

sense that these properties are either meaningless or at a very �ne-grained level

if they are interpreted as statements about the solution of the original problem.

With Self the invariants will also be oriented towards the computer and not

the problem. They are all entity invariants, so they will specify guarantees

for �objectness� of all semantic entities which are manipulated by the program,

and such entities may be arbitrarily complex and hence may be designed to be

understood in context of arbitrary problem-speci�c considerations. We might

say that invariants in Self are low-level in context of a computer which has much

more powerful built-in entities than individual memory cells; that computer may

then be simulated by a piece of software, running on a more modest piece of

hardware. With Beta it is possible to build arbitrarily complex, user-de�ned

systems of invariants, and that may be used to ensure user-de�ned properties

that make sense when viewed in context of the problem being solved. The next

section outlines the consequences of these di�erences for human beings.

7.1.2 Promises

In addition to the invariants, which are formal properties that programming

languages can enforce automatically (insofar as the implementation is correct),

there is also a belief system, which is established by each individual person who
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is working with a program, in cooperation with other people who are around and

have some relevant knowledge. The belief system is used to build understanding,

or models, of the dynamic behavior of a program, and must be complete in

the sense that it has the total behavior of the program as its topic, whereas

the system of invariants will only cover the special cases that happen to be

expressible within the given programming language. The belief system is also

very powerful and quite unreliable, because it is an aspect of human thinking.

The belief system contains aspects which are similar to invariants, let us

call them promises, and the invariants are actually mainly useful because they �

can be perceived by human beings and converted to clear and simple promises.

Now, with the three imaginary programs in FORTRAN, Self, and Beta, the

belief systems have the following working conditions:

For the FORTRAN program, the available invariants establish a very com-

plex and low-level set of promises, and in order to reason about the program

in terms of the problem being solved it is necessary to build models of the pro-

gram behavior which add a large amount of structure to make sense of all those

details. It is crucial that the problem-level considerations do not have manifest

representations in the program, so the complex structure must be maintained

in the mind with little external support.

For the Self program, the available invariants are also far removed from the

considerations which are relevant to the problem to be solved, but in this case

the basic building blocks, the objects, can solve complex problems in an encap-

sulated way, so understanding can be established incrementally : To understand

a list (su�ciently well for a given purpose), it is enough to internalize the

regularity in its behavior�by looking at a formal speci�cation, by reading the

source code, by using a list several times, or by listening to somebody who knows

about lists. Then it can be used meaningfully, and it can be implemented or

debugged by understanding the pieces of its implementation in context of the

understanding of the list as a whole. The incrementality lies in the fact that

only local understanding needs to be established�when viewed from the out-

side, the list can be considered as a black box whose behavior is bounded

by promises; and when viewed from the inside, the list can be understood

as a construct that is built by composing a small number of other black boxes

with similarly bounded behavior. In this manner, it is possible to understand

a complex program by only considering a very small portion of it at any one

instant. We may ignore all the reasons why said promises can be made, and

only remember the promises themselves. Note, however, that only experience

from usage and the choice of names is available for building those promises;

there is no automatic check which in any way con�rms that the entity behind

such a name will have the properties signalled by the given name. Without

automatically veri�able support the promises may be few and local, but they

may still be complex, and for a complex entity there may be many increments

of encapsulated complexity stacked on top of each other. That creates a long

chain whose weakest link may not always be su�ciently strong.

The only extra facility which is added in context of a language like Beta is

that it is possible to give the promises an automatically veri�able support by
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means of user-de�ned invariants. This puts special emphasis on those properties

that happen to be expressible in the given language. Moreover, it is unavoidable

that many programs must be rejected even though they do maintain all the

stated invariants, because exact static analysis is undecidable and therefore a

safe approximation is generally used. On the other hand, it provides guarantees

for certain well-de�ned properties of the dynamics of programs, and it also

documents for a programmer who is new to the code that other parts of the

source code can and may rely on those properties, and therefore they should be

respected and maintained.

Human reasoning is de�nitely more powerful than mechanical reasoning

when the goal is to quickly obtain approximately correct judgments. Mechanical

reasoning is good at handling tedious detail with absolute rigor, and �approxi-

mately correct� may be a serious bug when it comes to automatized processes

such as computer program executions. This trade-o� between the more �exible

but less safe dynamic approach and the safer but less �exible static approach

does not have an optimal solution, or at least not one that is valid for everybody,

or for all purposes.

The gbeta design rests on the assumption that safety invariants ensured via

static analysis is valuable�the more complex systems and the more people

collaborating on it, the more valuable it is�and the dynamic features which

are described in this chapter do not in any way open loopholes that make it

possible to violate the invariants that gbeta otherwise maintains. There is no

pattern or object which is under less strict scrutiny in a program which uses

these features than in other programs; there is no way a gbeta program will

let an attribute denote or refer to an entity which does not conform to the

quali�cation; and there is no way a name lookup operation can fail at run-time

(the MessageNotUnderstood error).

So why do we claim that gbeta indeed has any dynamic features worth

mentioning, compared to other statically type-checked languages? The fact is,

creation of new classes and methods at run-time and changing the class and

structure of existing objects are actually dynamic features which are unusual in

statically checkable languages, as well as in programming languages in general.

As the next section argues, the novelty of these dynamic capabilities may

not only be a consequence of the fact that it is non-trivial to perform static

analysis of programs that may use these features, it may also be connected with

the history of technological development.

7.1.3 Performance and Tradition

The fact is that a computer program is a connecting link between human beings

and computers. This link should be optimized for two radically di�erent pur-

poses, namely enabling human beings to understand and express useful designs,

and instructing computers to exhibit certain rigorously de�ned behaviors. The

priority has generally been given to the �rst of these two tasks in this thesis.

That is because the historic development has progressed from a situation with

expensive computers and cheaper human labor to the opposite situation, and
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this trend will probably continue. It is also all the more urgently required to

support human beings as well as possible, with systems that are getting so com-

plex that they cannot be managed at all without better support for the human

side of the equation.

This does not mean that computer resources can be wasted without limit,

just that the optimization of both should be based on the right trade-o�s!

As a result of the historic conditions, the traditions of computer science and

computer practice contain some deeply entrenched trade-o�s that give priority

to the economy in the use of computerized resources, thereby possibly losing

some opportunities for serving human beings better, even if the trade-o� is

no longer reasonable. A factor which helps maintaining this unfortunate state

of a�airs is that the alternative trade-o� may imply greater implementation

complexity, for example in compilers. People are not aware of what they could

have, since they did not personally make those trade-o�s, so they just accept

the well-known solutions which are actually good enough for many purposes.

The invariants play an important role in this context. Invariants can in a

precise sense reduce the potential range of run-time behavior associated with

pieces of source code. In other words, they can make it simpler to execute the

program, and thereby enable an implementation which uses the given computer

resources more economically. As an example, consider the C struct �eld access

mentioned on page 131 near the beginning of this chapter. It consumes far

fewer computer resources (time and space) to add a small integer constant to

an address than a symbol table lookup followed by a computation of the o�set.

Since the o�set can be used many times, it is not just a question of spending

those computer resources early, it is also a question of spending them once

instead of many times. In a way, we might say that it is not only the human

being who is relieved of a lot of thinking because of the invariants, it is also the

computer.

The entrenched trade-o� which is buried in this approach is that entities

which are equipped with a description at the source code level will, as far as

possible, be �compiled down� to a level where all the consequences of the de-

scription have been spelled out into low-level operations, and the description

itself is discarded before run-time. This has given rise to some reverse reason-

ing, where the ability to discard the description has been taken as a criterion,

and the semantics of the language adjusted accordingly. An example is the de-

sign of the dynamic_cast facility in C++, which is only supported with classes

that already must have a run-time representation of the class for other reasons,

e.g. because they contain virtual member functions.

The opposite philosophy has been adopted in Self. Here, such a basic opera-

tion as name lookup is very costly in the general case, but dynamic compilation

and maintenance of several versions of the compiled code for each method (with

optimizations which are valid under di�erent sets of assumptions) makes it pos-

sible to obtain impressive performance without reducing the generality of the

language as such [22].

The approach taken in gbeta is similar at the outset, but the support for the

sophisticated compilation techniques is as yet non-existent, so the performance
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of the current implementation is poor.

Chapter 11 gives more detailed information about the performance of gbeta

as such, but we need to mention two �expensive decisions� here which were

taken in the design of gbeta. One is to have a full-featured representation of

patterns at run-time, and to support all the operations on patterns that can be

speci�ed by means of inheritance and pattern merging also at run-time. The

other is to support a mechanism which dynamically modi�es the structure of an

already existing object, such that it becomes an instance of a more specialized

pattern than the pattern it was an instance of before the operation, without

a�ecting the identity of the object (it is the same object with a more elaborate

structure). These two decisions provide the technical support needed for the

dynamic features which are the topic of this chapter.

There are two reasons why these operations do not introduce loopholes in

the static analysis. Firstly, the static analysis of gbeta must already be able to

handle entities of which just as little is known as the patterns and objects which

are the outcome of these operations, so when such an entity has been processed,

there is no new issue with it at all. This is the good news.

Secondly, and this is the bad news, the operations which produce these new

patterns and structure-modi�ed objects at run-time may fail, because the com-

pletion of the operation would have violated some safety invariant. The ex-

amples where such operations fail are generally contrived, and there are pro-

gramming conventions which can be used to ensure that the operations do not

fail. This is similar to the fact that there can be created many ad-hoc rules

and accompanying proofs which will ensure that a given division expression will

never cause a `Divide by zero' error at run-time, the simplest one being an if-

imperative which only executes the division if the denominator is not zero. The

transformation of a run-time error into the execution of an else-part does not

really solve the problem, but it does allow for a more �exible response than a

run-time error (which in gbeta will kill the thread that caused the problem, not

the whole program).

Programmers have been able to handle run-time errors like `Divide by zero'

using ad-hoc methods, so this level of safety might actually be acceptable in

practice. Nevertheless, it would be a signi�cant step forward if programming

conventions that ensure the success of the two dynamic operations in gbeta were

formalized and made part of the static analysis.

7.2 Dynamic Patterns

Pattern merging can be performed at run-time, just as well as it can be per-

formed at compile-time. The static analysis of dynamically created patterns

happens on exactly the same conditions as the static analysis of any other de-

notation of a pattern for which only an upper bound is known, as is the case

with virtual patterns in many contexts. The same considerations apply, such as

covariance of variable objects with a quali�cation known only by upper bound.

Merging operations can only build a new list of mixins by combining lists
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of existing mixins. There is no way to create a new MainPart at run-time,

short of running the static analyzer and the code generator on a new piece of

source code (that is what happens when the implementation of gbeta is run in

interactive mode and a `do' command is executed). Note that this cannot be

made safe using simple conventions: there are countless ways for compilation of

new source code to fail, and the newly compiled entity can only be integrated

into the running program in a type safe manner via some superpattern which is

already known in the program [75].

Other than that, the available set of mixins is limited by the constraint that

theMainPartM (and therefore all the declarations) of a mixinmmust be present

in the program, and m must be contextually located within a part object which

is associated with the MainPart which lexically enclosesM . Of course, we do not

create an arbitrary mixin and then check whether it satis�es these criteria, but

all patterns, in particular all patterns which are used for pattern computations,

will only contain mixins that satisfy these criteria.

Since all accesses to attributes are resolved during static analysis and ex-

pressed using run-time paths, the attributes of an instance of a given dynami-

cally created pattern can only be accessed using statically available knowledge.

This knowledge is guaranteed to describe a subset of the object, i.e., that it is

an instance of some superpattern of the actual pattern of the object, and that

this is only an upper bound for the real pattern of the object. Hence, it is

not possible to access all the attributes of an instance of a dynamically created

pattern by means of one complete view, but there will generally be a set of

(superpattern) views which, taken together, support the access to the whole ob-

ject. On the other hand, if the computation enhances an abstract pattern with

some implementation, it may not be desirable for client code to have access to

any more than the abstract pattern interface anyway, so there is no reason to

bother with multiple views.

Even though there are no new issues with type safety, there is a new potential

for a run-time error�the merging operation may fail, and when merging pat-

terns which are only known by upper bound (including all dynamically created

patterns), this failure can not be ruled out during static analysis. There should

be better support for checking the safety of a merging operation at run-time.

Sect. 7.3.2 gives more detailed information on how and why pattern merging

may fail, as part of the treatment of dynamic object specialization errors. The

following sections contain examples of dynamic pattern computations used in

practice.

7.2.1 Dynamic Merging

All the merging operations that can be performed statically can also be per-

formed dynamically. An obvious application of this is to dynamically perform

the composition of an interface (an abstract pattern P ) and various implementa-

tion aspects (patterns which inherit from P and add an aspect to some virtuals

and/or introduce some new attributes). The Stack example from Sect. 6.1 �ts

directly into this case.
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The main bene�t of this approach is probably that the number of patterns

does not explode because of combinations. Approximately n! patterns would

have to be explicitly and tediously de�ned in order to provide all the possible

combinations of a pattern P and n di�erent aspects, but with dynamic pattern

combination it would only be necessary to de�ne the n+1 di�erent combinable

patterns. Note that such a disciplined use of dynamic patterns could trivially

be proved safe by an ad-hoc method: Just create a test program that iterates

through all the combinations once; if that does not cause a run-time error, then

there will never be a run-time error in the creation of those dynamic patterns.

The n! patterns would probably be reduced by the necessity of following con-

ventions such as �take zero or more aspects and merge them, then add one

implementation�, but even then there might be many combinations.

Another idiom which might be applicable in many places would be to dy-

namically add one mixin to a given method at the most general position. Such

a mixin could �conditionalize� the given method:

intFunc: (# i,j: @integer enter i do INNER exit j #)

: : :

map3to4: intFunc(# do (if i=3 then 4->j else INNER if)#);

modifyAnIntFunc:

(# arg: ##intFunc

enter arg##

exit map3to4 & arg ##

#)

Ex.

7-1

The pattern modifyAnIntFunc is invoked with an argument arg which is a

pattern that is less-equal than intFunc, i.e., a function from integers to integers.

It returns another function which behaves just like arg except that it maps 3 to

4 instead of whatever 3 was mapped to by arg. A similar e�ect can be achieved

in Beta using the following approach:

modifyAnIntFuncBETA:

(# arg: ##intFunc;

enter arg##

exit intFunc(# do (if i=3 then 4->j else i->arg->j if)#)##

#)

Ex.

7-2

The di�erence is that the returned pattern is no longer guaranteed to be less-

equal than arg, and that means that modifyAnIntFuncBETA cannot be used to

modify patterns which must be usable in some context as some given special-

ization of intFunc. Whatever useful properties arg might have beyond those of

intFunc are lost, because the returned pattern is not a modi�cation of arg, it

is an entirely di�erent pattern which happens to use the contextually available

value of arg in its do-part.

Another usage of this put-something-on-top-of-it idiom is the dynamic addi-

tion of concurrency control. One well-known way to avoid deadlock in concur-

rent systems with guaranteed serialization of the usage of a group of resources

R

1

: : : R

n

is to enforce a certain order on the acquisition of access to each of the

resources: if all clients acquire R

1

before they acquire R

2

, etc., then there can
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(# (* just execute the body two times *)

twice: (# do INNER; INNER #);

do

(* prints two lines of text *)

twice(# do 'Hi again, world!'->putline #)

#)

Figure 7.1: A user-de�ned control structure

never be a loop in which every client is waiting for the next client to release

a resource, because such a loop would have to contain a link where a client

with access to R

i

is waiting for another client to release R

j

for some i > j.

That client would violate the ordering rule. Clients may release their access to

resources in order when they are not needed any more.

Since the choice of ordering may greatly a�ect the overall performance of the

system, it may be bene�cial to change the ordering dynamically.

1

There may

also be other disciplines than the ordering rule which may be more appropriate

at times, for instance an optimistic approach when the load is not too high.

All it takes is that all methods which need access to some of the resources

R

1

: : : R

n

must have added the concurrency control mixin du jour on top of it.

The modi�ed method would then be invoked with all the usual arguments and

would return results as usual.

With this approach, a method, procedure, or function is not just something

that may be invoked, it is instead something which may be passed around and

modi�ed, and it may then be executed zero or more times. That is probably a

change in programming style for most programmers, but we believe that it is a

path worth exploring.

7.2.2 Dynamic Control Structures

There is a special case of usage of dynamic patterns that deserves separate

treatment. Technically it is simply the case where a single mixin is added at

the bottom of a given pattern, i.e., as the most speci�c mixin. That is just like

ordinary single inheritance, except that the superpattern is not a compile-time

constant. This section is about that case.

A control structure is a language entity (builtin or user-de�ned) which is �

parameterized with one or more pieces of code, bodies, immersed into a name

space. A standard example is an if-statement in any language, where the bodies

are the then-part and the else-part; in this case the name space is empty (no

declared names are provided by the if-statement). A standard control structure

which provides a non-empty name space is a for-statement, which typically

allows the body to refer to an index variable which is incremented with each

execution of the body.

1

The transitions must be handled carefully, of course.
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1 (# myFile: @file; (* an interface to a disk file *)

2

3 (* the iterator interface *)

4 iterator: (# theLine:

^

text do INNER #);

5

6 (* concrete iterators *)

7 inputIterator: iterator

8 (# (* read lines from std. input until empty line *)

9 do (while (getline->theLine[]).length>0 do

10 INNER

11 while)

12 #);

13 fileIterator: iterator

14 (# (* iterate through the file, and make the

15 * current line available in 'theLine' *)

16 do (while (not myFile.eof) do

17 myFile.getline->theLine[];

18 INNER

19 while)

20 #);

21 filter: iterator

22 (# do (if theLine.length>0 then INNER if)#);

23

24 (* a method which takes an iterator as argument *)

25 LinePrinter:

26 (# anIter: ##iterator (* a pattern variable *)

27 enter anIter##

28 do (* iterate and print each text *)

29 anIter(# do theLine[]->putline #)

30 #)

31 do

32 inputIterator## -> LinePrinter;

33 'somename'->myFile.name; myFile.openread;

34 fileIterator&filter## -> LinePrinter

35 #)

Figure 7.2: LinePrinter is parameterized with a dynamic control structure,

anIter

The typical way to create a control structure in Beta is to de�ne a pattern

in which an INNER statement is placed in the position where the body should

be executed. See Fig. 7.1, showing the control structure twice which simply

executes its body two times.

In gbeta it is possible to have dynamic control structures, using inheritance

from a variable pattern. This makes it possible to parameterize a method with

a control structure, delaying the decision about what control structure to use

until run-time. Figure 7.2 is an example of this: the method LinePrinter (line

25) accepts the argument anIter which is some subpattern�not known before

run-time�of iterator (line 4); anIter is then used as a superpattern in line

29.

In line 32, LinePrinter is executed with inputIterator as argument. This
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will simply echo what the user types, line by line, until an empty line is entered.

Line 33 initializes myFile, and in line 34 LinePrinter is executed with another

control structure as argument, namely the merge of fileIterator and filter.

The filter control structure (line 21�22) executes its body iff theLine is non-

empty. As a result, this invocation of LinePrinter will print the contents of

myFile, line by line, but skipping all empty lines. We could also, e.g., compose

with an iterator which visits each character of theLine; the composition would

then visit each character of each line of the �le.

Consider a similar example (with just one iterator, for brevity) in C++, as

shown in Fig. 7.3. In this version, anIter (line 30) is an object, instance of a

descendant of the class iterator (line 9); anIter cannot itself be a class since

classes are not �rst class entities in C++, but this loss of generality does not

a�ect this particular example.

The function call operator (line 11) is used to apply the iterator anIter to the

callback body (line 32). The fileIterator implementation of the function call

operator then provides itself as an argument to the given callback cb (line 20),

such that the implementation of cbmay use theLine. If we were to give theLine

as an argument to cb directly, then this and all other iterators would have to be

changed if a new member, e.g. anotherLine, were added to iterator. Hence,

this indirect approach is needed to obtain a similar stability towards changes of

the control structure name space as the gbeta version provides.

However, this is still an incomplete solution since iterators cannot be com-

posed, like fileIterator and filter are composed in line 34 of Fig. 7.2. There

does not seem to be a straightforward way to support iterator composition in

C++. Note that composition of control structures is also not supported in the

standard approach to iteration in C++ (especially in the Standard Template

Library [88]). In this approach, an iterator object�speci�c for the collection

being iterated over�is obtained and used in a for-statement, e.g.:

vector<int>::iterator i;

for (i = myVector.begin(); i != myVector.end(); i++)

cout << *i << endl;

Ex.

7-3

This e�ectively standardizes a large group of control structures to be for-

statements, but it does not support all control structures. E.g., a control

structure which forks a separate thread to handle each step of the iteration

could not be written in this style, because there is no way to write an iterator

which changes the semantics of the actual control structure in use, namely the

for-statement.

The Sather [101, 87] concept of iters has the same limitation. A Sather

iter is a co-routine which may only be executed lexically nested within a loop

statement, and it may yield, in which case the loop execution continues, or it

may quit, which works similarly to break in C, terminating the loop. However,

even though iters enable an elegant expression of many control structures, they

cannot change the fact that the basic control structure is the built-in loop.

Again, they do not support control structure composition.
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1 #include <iostream.h>

2 #include <fstream.h>

3

4 ifstream myFile("somename");

5

6 class iterator;

7 typedef void (*callback)(iterator&);

8

9 class iterator {

10 public:

11 virtual void operator() (callback cb) = 0;

12 char theLine[1000];

13 };

14

15 class fileIterator: public iterator {

16 public:

17 void operator () (callback cb) {

18 while (myFile) {

19 myFile.getline(theLine,999);

20 (*cb)(*this);

21 }

22 }

23 };

24

25 void body(iterator &iter)

26 {

27 cout << iter.theLine << endl;

28 }

29

30 void LinePrinter(iterator* anIter)

31 {

32 (*anIter)(&body);

33 }

34

35 int main(int, char *[])

36 {

37 LinePrinter(new fileIterator());

38 return 0;

39 }

Figure 7.3: Using function pointers to simulate a dynamic control structure

Yet another approach is used in Smalltalk, Self, Cecil, Dylan, and Tycoon-

II, where a control structure like an if-statement is not built-in but instead

uses late binding of methods in the objects true and false to obtain the choice

between the then-case and the else-case, and uses blocks/closures to defer the

execution of the two cases. This approach does not build on one �xed control

structure, so it transparently allows the same kind of expression to invoke es-

sentially di�erent control structures. However, the name spaces that the bodies

are immersed in are provided via arguments to the closures, so they have to be

typed in for every usage. Moreover, changes in the number or types of names

in these environments will generally require changes to all usage locations. In
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Self, blocks will silently discard extraneous arguments, so an argument may

be added without having to change all usage locations�but if yet another ar-

gument is added and a usage point needs access to that third argument, then

the ignored second argument will suddenly become visible anyway. All these

name space considerations illustrate di�erences between explicitly parameter-

ized entities and entities which gain access to the would-be parameters using an

environment (in this case inheritance, but contextuality works similarly).

Since the actual control structure is chosen by means of the method selector

(the �name of the message� being sent) and the receiver, there is no way one can

have a control structure variable without having a message selector variable, and

that again requires the use of such devices as, e.g., Dylan's perform primitive

(which accepts a symbol and a list as arguments and invokes the function whose

name is that symbol with those arguments). This is possible, but it will of course

not be statically checkable. It would actually be possible to write a method M

on a new object O that is just used to hold the two receivers; the method should

take a block B as an argument and perform the �rst control structure on a block

B

2

that performs the second control structure on the argument block B, using

the two receivers that O holds. The only missing link is that the name space

must be carried over by the intermediate block B

2

, so B

2

must explicitly list

that name space. Apart from the fact that every distinct name space must have

its own version of M , and the fact that static type checking has been evaded

(if it were available in the �rst place), this would actually be a way to establish

support for the composition of two control structures.

7.3 Dynamic Specialization of Objects

Dynamic specialization of objects is an extraordinarily natural thing!

When human beings build mental models, for example listening to a story

being told, the properties of the modeled phenomena are not all available for the

listener at the introduction. After hearing �Once upon a time there was a King

: : : � we certainly expect to learn more about that king as we hear the rest of the

story. So if we want to be able to support human beings in the understanding

of programs by adapting to approaches that seem to be reasonable descriptions

of ways humans think, then we had better consider this aspect. Let us call

it discovery . Now, we might think that we can handle discovery quite nicely �

already with the facilities presented in earlier chapters. For example, if we learn

that the king is called `Bob', then there would be an obvious parallel as follows:

person:

1

(# name: @string #);

king: person

2

(# kingdom:

^

country #);

: : :

hearStory:

3

(# theKing:

^

king

do &king[]->theKing;

'Bob'->theKing.name;

: : :

#)

Ex.

7-4
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Since attributes are not auto-declared we have to add a declaration of theKing,

but otherwise the mapping seems to work. The problem arises when the story

continues �The King was an avid player of golf, and he'd always have problems

with the Queen about the broken windows.� The problem is that theKing

does not have the required demonstrateElegantSwing method that avid golf

players are expected to support. However, that is exactly the kind of problem

that dynamic specialization of objects can solve, and it would look like this:

avidGolfer: person

4

(# demonstrateElegantSwing: : : : #);

: : :

hearStory:

3

(# theKing:

^

king

do : : :

avidGolfer## -> theKing##;

#)

Ex.

7-5

The e�ect of this assignment is that the object referred by theKing is modi�ed

such that it becomes an instance of king&avidGolfer, i.e., an instance of the

merge of the previous pattern of the object and the new pattern avidGolfer.

As a result, theKing will be enhanced with new part objects for whatever is

missing in order to make him an instance of some subpattern of avidGolfer;

the change in terms of concrete mixin lists would be from [2; 1] to [4; 2; 1]. Note

that the addition of new part objects may also lead to a change in the value

of virtual attributes; the object will be the same, but it will in every way be

enhanced such that it is really an instance of the new, more special pattern.

We believe that it is both a very useful and a quite understandable facility to

be able to create objects with a certain structure and then gradually specialize

that structure by adding new aspects as they are discovered.

7.3.1 Change of Class in Various Languages

One invariant that most object-oriented languages maintain for objects is that

they come into existence with a given structure (interface and implementation)

and then do not change that structure ever after. For class based languages it

may be phrased as the invariant that each object is an instance of a class, the

class is immutable, the class determines the structure of its instances, and an

object does not change its class. In gbeta, the last of these restrictions is lifted.

Some languages come in implementations that are complete in the sense that

they include the tools needed for creating and modifying programs, for example

Smalltalk and Self. This means that it is indeed possible to programmatically

change a class in Smalltalk resp. modify the structure of an object in Self.

However, this is considered �programming�, and it is not commonly used as a

technique in ordinary programs. For example, it is stated that the protocol

which supports the programmatic editing of classes `is not generally used by

programmers, but it may be of interest to system developers' [50, page 283].

Moreover, after the editing of the class, there is still the question about what

to do with existing instances�should they all change? should they remain as

instances of the old version of the class? etc. The programming environments
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handle these issues, but the languages are not oriented towards the widespread

use of programmatic object structure manipulations.

However, making changes directly to the structure of an object is not the

only way to make it act di�erently. The rest of this section surveys a number

of related mechanisms.

The language Self [114] supports a very general form of object behavior

modi�cation: In Self, an object may inherit from another object by having a

so-called parent slot which refers to that other object. Parent slots may be

assigned dynamically, and that works similarly to dynamically changing the

inheritance graph, thereby potentially rede�ning, adding, or removing inherited

methods and state. There is support for type inference in Self [3], but this builds

on a closed world assumption, so the entire program must be available for the

inference algorithm, and changing one single line of the code would potentially

invalidate any of the inferred types. Moreover, these types are intended to enable

optimizations by discovering some invariants that programs actually support.

They are not intended to prove that declared invariants will be supported, e.g.,

there is no syntax by which such invariants can even be declared.

Smalltalk [50] is class-based, and every object is an instance of one particular

class. However, the become: primitive swaps the identities of two objects and

thus supports arbitrary structural changes to any given object identity. It re-

mains a low-level task for the programmer to transfer any shared state to make

a group of objects seem like one object with varying structure.

In a very sophisticated approach [80], Mira Mezini uses a so-called meta-

Combiner object in a re�ective middle layer between objects and classes. Each �

�object� (let's call it complete) corresponds to one core object and a number

of adjustment objects (let's call them internal), as well as the metaCombiner

object which manages information about the methods of the complete object.

It is possible to add and remove adjustments. When two or more internal ob-

jects implement a given method they can be treated as aspects of the same and

executed sequentially, or they can be treated as unrelated and made available in

separate scopes. This enables a programmer (who noticed the danger) to avoid

accidental identi�cation of methods that are conceptually di�erent but have the

same name.

Note that a complete object in the metaCombiner approach consists of a

group of (traditional Smalltalk) objects, whereas an object in gbeta consists of

a group of part objects. In both cases the object is not monolithic, and this

enables greater �exibility. Furthermore, it would not be unreasonable to think

of a Self object together with all objects reachable directly or indirectly through

parent links as an �object�, and that again would often be a multi-part entity.

The language Sina embeds the concept of composition �lters [113, 5] which �

also allow for very �exible and expressive control over the method dispatch and

state distribution within a collection of objects. The composition �lters may

reject or redirect message sends depending on dynamically evaluated conditions,

and it is possible to simulate a standard inheritance mechanism, which may then

select varying �parents� dynamically. However, Sina does not have a static type

system.
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An example of a very general kind of support for actually changing the struc-

ture of an existing object is the change-class function in CLOS [56]. When

the class of an object is changed, a system de�ned generic function is called

which uses various heuristics (such as the spelling of slot names) to determine

whether to transfer the value of a slot from the old state of the object to the

new one, or to initialize a slot as in a new object. This mechanism provides

the programmer with the ultimate �exibility, but an unrestricted mechanism

like this will of course potentially break any safety invariant that the run-time

system might try to maintain, and is thus incompatible with any static analysis

that attempts to guarantee that MessageNotUnderstood errors cannot occur.

All these systems are very �exible. The �exibility goes along with a very

rich universe of potential program executions, and this makes it di�cult to prove

that any speci�c properties hold about individual program elements�in other

words, they are not designed for static type checking.

The CLOS [56] convention of using some classes for �mixin� inheritance has

been developed [10, 25, 100] into a separate concept of mixin-based inheritance.

For more information about mixins, please see Sect. 3.2. In [100, 68, 67] it is

described how Agora mixins can support dynamic inheritance and how it can be

statically type checked. The catch is that each object must contain speci�cations

of all its potential enhancements, which is not acceptable in practical software

engineering.

In Cecil [19, 20, 21, 43], predicate objects have been introduced to support

dynamic changes of object structure and method implementations. Cecil is

prototype based like Self, but with a slightly di�erent object model. An object

has a �xed position in the ordinary, static inheritance hierarchy, but it may

also inherit from a number of predicate objects, depending on its state. Since

predicate inheritance is determined by general boolean expressions any non-

trivial questions are undecidable; but if the programmer manually proves (or

claims) some disjointness and completeness properties and annotates the code,

a type check can be made. Predicate dispatching allows for an automated check

of the disjointness and completeness properties, but only insofar as the boolean

expressions can be considered as black boxes (so it cannot detect that, e.g., x>0

and x<=0 are disjoint and complete). However, programs are only accepted as

type safe if the dynamic inheritance provably has no e�ect on the interfaces, i.e.

if the dynamics may simply be ignored for type checking purposes.

Hence, in general, dynamic inheritance and genuine strict, static type check-

ing have not been reconciled. In gbeta there is support for dynamic creation of

classes, inheritance from classes known only at run-time, and dynamic evolution

of the structure of objects, without compromising the static type checking.

Compared to Self, the Smalltalk approaches, and composition �lters, gbeta

is less �exible: The structure of objects may be enriched, not reduced. This

means that an object may be specialized to an instance of a more derived pat-

tern, not generalized to an instance of a superpattern or to an unrelated pattern.

Compared to the metaCombiner approach, adjustments can be expressed nat-

urally, and the method combination of standard Beta is more static but also

more expressive. Moreover, the Smalltalk problem of accidental identi�cation of
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methods is irrelevant in gbeta, because of the static name binding. Compared

to Agora, gbeta does not require that each object foresees its entire potential

for structure development statically. Compared to predicate based inheritance,

gbeta does not support changing the structure of an object automatically, an

explicit statement must be executed. But unlike Cecil, the structure enhance-

ments in gbeta may certainly change an object in such a way that it supports

interfaces that it did not support before the modi�cation, and this is handled

in a type safe manner.

The next section details the mechanism behind dynamic specialization of

objects in gbeta.

7.3.2 The Dynamic Specialization Mechanism

The dynamic object specialization mechanism in gbeta supports the modi�ca-

tion of an object at run-time such that it becomes an instance of a pattern that

is less-equal than the pattern it was an instance of before the operation. This

modi�cation does not a�ect the identity of the object, and in particular all ex-

isting references to the object will now �see� the more specialized object. This

may for instance become evident because the behavior exhibited by the object

when executing some methods has changed; or it may enable an alternative in a

when imperative (a typecase) that was not enabled before, such that it becomes

possible to access the object through a richer view, for example in order to call

methods that the object did not have earlier. More information on the when

imperative is given in Sect. 9.1.

Consider an object O which is an instance of a pattern P . After being

dynamically specialized with the pattern P

0

, O will be an instance of the pattern

P&P

0

, and this may a�ect O in various ways:

A. If P � P

0

then O is left unchanged: it was already an instance of P

0

; this

will of course always succeed.

B. If P and P

0

share no mixins then all the part objects corresponding to

the mixins of P

0

are added to O (in more speci�c positions than all the

existing P part objects, because that is the way `&' works); there will

be no interaction between the old and the new part objects except for a

possible change in overall behavior due to added do-parts; the operation

will always succeed.

C. If P

0

< P then O will be enhanced with part objects corresponding to the

mixins in P

0

which are missing in P ; this operation will succeed, unless

it causes error 3, which is explained below. Note that error 3 only occurs

when there is a variable attribute which is not NONE, so it does not occur

with new objects.

D. If P and P

0

share mixins but the shared mixins occur in the same order

(this is the case if there is a pattern Q such that P � Q, P

0

� Q, and Q

contains all the shared mixins) then part objects will be added to O for
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the missing mixins of P

0

; this operation will succeed, unless it causes error

3 or error 2, explained below.

E. In the general case, part objects will be added to O for the missing mixins

of P

0

, in the positions speci�ed by the semantics of `&'; this may fail with

error 3, 2, or 1.

As we can see, dynamic object specialization is dangerous in the general case,

but we believe that the less dangerous cases form recognizable and useful classes

of usage of this mechanism; for the remaining cases, the potential errors will have

to be handled, and alternative actions must be taken when it is detected that a

given object specialization has failed. The failures come in three varieties, listed

in order of their occurrence during the execution of the dynamic specialization

operation:

1. The merge P&P

0

may fail; if this happens then the requested object struc-

ture is inconsistent, i.e., there is a pair of mixins, i and j, that both P

and P

0

contain, and P requires i to be more speci�c than j whereas P

0

re-

quires the opposite. Since the requested object structure cannot be built,

the operation raises a run-time error immediately. Note that this error can

only occur if both P and P

0

have at least two mixins each; a single-mixin

pattern (just one MainPart) is immune. Moreover, it can never happen for

mixins i and j which are inherited from the same superpattern, directly

or indirectly.

2. If the merge P&P

0

succeeds then the new object structure can be built.

However, propagation may cause additional dynamic merge operations. If

P and P

0

further-bind the same virtual attribute in two di�erent ways,

then this will cause a dynamic merge that may fail. Further propagation

is also possible, for instance to virtuals nested inside a shared virtual in

P and P

0

. Note that if P and P

0

do not have shared virtuals, or if at

most one of them further-binds each shared virtual, then there will be no

propagation and this error cannot occur.

3. If the merge P&P

0

and subsequent propagated merges succeed then it

is possible that the quali�cation of a variable object or pattern attribute

has been made more special, because a virtual pattern was used for the

quali�cation and that virtual pattern has been further-bound during the

operation; if the variable attribute already refers to an object or a pattern

then the strengthened quali�cation may be too strict for the object, and

in that case a run-time error is raised. Note that a virtual which is used

as a method (not as a quali�cation) can never cause this error.

There is actually yet another run-time error which may occur when an object

is about to be specialized dynamically, but it is orthogonal to the others and

does not depend on the two involved patterns. It is instead associated with

exact quali�cations. There is an inherent con�ict between exact quali�cations

and dynamic specialization. It is not possible to maintain the safety invariant
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of an exact reference and to dynamically specialize an object referred by that

reference. As a result, a run-time error is raised if there is an attempt to

specialize an object which is or has been referred by an exact reference. It

would be possible to maintain a reference count and thus be able to remove the

�is-exact� mark when the last exact reference to an object disappears, but the

current implementation just marks objects and never removes the marks again.

This probably means that it is necessary to divide the universe of patterns into

two sub-universes: the patterns whose instances may be specialized dynamically,

and the patterns whose instances may be referred by exact references. As long

as these subuniverses are kept apart, there will be no con�ict. It might even

make sense to elevate this to a property of the pattern itself and thereby make it

statically enforcable, but this has not been designed in detail nor implemented

in gbeta.

Here is an illustration of how the other errors can arise. Since the �rst two

errors are associated with the merging operation, we present them in context

of a dynamic pattern merging operation. The same merging operation could of

course have been provoked implicitly during an object specialization, but this

seems to expose the cause more directly. The third error can only happen in

context of dynamic object specialization. An error of type 1 arises if we merge

two patterns dynamically which both contain two given mixins (here it is mixin

1 and 2), but in di�erent order:

(# a:

1

(# : : : #); b:

2

(# : : : #); vp1,vp2: ##object

do a&b## -> vp1##;

b&a## -> vp2##;

vp1 & vp2 (* Error 1! *)

#)

Ex.

7-6

We use the variable patterns vp1 and vp2 to �hide� the actual patterns being

merged, such that the compiler cannot detect the merging failure statically�it

makes no attempt to do �ow analysis, so vp1 and vp2 are only known as �some

pattern which is less-equal than object� when the merging of them is analyzed.

Since this is not known to be safe, a compile-time warning is issued, and the

program actually fails with a run-time error during that merging operation.

The next case, errors of type 2, is concerned with propagation. To provoke this

error, we create two patterns q1 and q2 which both inherit the virtual v from

the superpattern p, so they have a shared virtual and therefore propagation of

the combination operation will occur:

(# a:

1

(# : : : #); b:

2

(# : : : #);

p:

3

(# v:< object #);

q1: p

4

(# v::< a&b #);

q2: p

5

(# v::< b&a #);

vp1,vp2: ##object

do q1## -> vp1##;

q2## -> vp2##;

vp1 & vp2 (* Error 2! *)

#)

Ex.

7-7
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When vp1 and vp2 are merged, a run-time error is raised. This is because of

the same merging con�ict as in the previous example, only this time it occurs

in the merging of the contributions to the shared virtual v. Again we use the

generic variable patterns vp1 and vp2 to make this a run-time error and not a

compile-time error. Finally, an error of type 3 can be provoked as follows:

(# p:

1

(# v:< object; aV:

^

v #);

aP:

^

p

do

&aP[];

&integer[]->aP.aV[];

p

2

(# v::< string #)## -> aP## (* Error 3! *)

#)

Ex.

7-8

We create an instance of p, make aP refer to it, and make its aV variable object

attribute refer to a fresh integer object. The dynamic object specialization

operation causes a warning, because it may hide the kind of problem that we

are planning to create. Then we specialize aP such that the quali�cation of

aV changes from object to string. While the integer object was perfectly

acceptable for aV before the specialization (because integer � object), it is

a violation of a safety invariant after the specialization (because integer 6�

string). Hence, a run-time error is raised.

After having visited this tarpit of trouble, we should remember that there are

systematic ways to maneuver around the problems. Let us summarize some rules

which are su�cient to avoid run-time errors in dynamic object specializations:

� It is always safe to add unrelated mixins to an object (this is case B).

� It is always safe to specialize a new object with a subpattern of its current

pattern (this is case C, and it is known that all variable attributes are

NONE, so error 3 cannot occur). One way to use this is to gradually build

any instance from a single inheritance hierarchy by creating it as object

and then adding up mixins along some path down through the inheritance

tree (�rst making it a Point, then proceeding to a ColorPoint, then a

SingingAndDancingColorPoint, etc.).

� It is always safe to specialize an object with a pattern that does not

further-bind any existing virtuals in the object (new virtuals and other

attributes can be added).

� It is always safe to specialize a new object with a pattern that only further-

binds virtuals in the object that it �owns�. E.g., the virtual attributes of

an abstract pattern may be divided into groups, and then an object may

be built gradually by specializing it dynamically several times, each time

with a pattern that takes care of exactly one group of shared virtuals.

So there are many ways in which dynamic object specialization can fail in the

general case, but there are also many di�erent conventions which can be em-

ployed to ensure that they will actually never fail. It would be much better if
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the static analysis could detect exactly when the specialization operation would

be guaranteed to succeed, but that question is of course undecidable, and the

safe, algorithmic approximations that we have been able to come up with are

too restricting to enforce generally.

7.3.3 Incremental Object Creation

This section presents the notion of incremental object creation, which is one

example of a disciplined way to use dynamic object specialization. It moti-

vates this technique from a software engineering point of view. We claim that

it enables an improved modularization of large and complex systems, thereby

removing ripple e�ects from the dynamics of system development which other-

wise make it �exponentially� harder to manage large systems than small ones.

The argumentation is given in the frame of a single, running example, namely

that of modeling cars from multiple perspectives.

In large projects it is important to apply �divide & conquer� strategies when-

ever possible, e.g. by dividing the system into many small clearly de�ned mod-

ules, and by keeping module dependencies at a minimum. Information which

is used or even available globally challenges this strategy by creating many

dependencies between modules. Dependency management as a core concern

in software engineering has been advocated and substantiated in particular by

Robert C. Martin [77].

One important measure according to this perspective is how much work it

requires to bring a complex system back to a usable state after a given change.

For example, if many modules (say, in a C++ system) use a certain function,

and this function is changed to take one more argument, then many changes

will have to be made before the system is again usable. Modules and module

elements may thus be characterized as more or less �heavy� to change, and the

ideal is to minimize unnecessary �weight� everywhere in the system, as well as

to ensure that the �heavy� elements do not need to change so often. The act of

separating a module into two (modules or parts) where one is the interface (what

the other modules need to know) and the other is the implementation (whatever

is left over when the interface has been extracted) is one typical technique which

takes us toward that goal, but the choice of elements (e.g. the set of classes in

a system), the partitioning of elements into modules, and the import network

between modules are also important factors.

The ability to create objects incrementally gives a new opportunity to remove

global knowledge about the total structure of highly visible objects, and thereby

makes it easier to change this total structure of an object without a�ecting the

system globally. This is especially bene�cial in those cases where no single

module needs to use this total structure anyway, because individual modules

only are concerned with one aspect of it.

Related problems have been studied in the area of Subject-Orientation [52].

In subject oriented programming, each subject is a separate, static �universe�

consisting of fragments of classes in the system. This makes it possible for one

(complete) class to participate in several di�erent subjects with di�erent inter-



154 CHAPTER 7. DYNAMIC FEATURES

class Car

{ public: int registration_number; };

class Property

{ public: int price; };

class Schedulable

{ public: void reserve(time from, time to); };

class TotalCar: public Car,

public Property,

public Schedulable

{};

Figure 7.4: A direct, naive design of the Car domain

faces in each subject, hence allowing designers to concentrate on one perspective

at a time and later combine the subjects to complete systems. In contrast, in-

cremental object creation in gbeta is a dynamic mechanism, and the di�erent

views on a given object are not separated�any given piece of code might ob-

tain any view it wishes on a given object (which supports it). Apart from these

di�erences it is certainly possible to view dynamic object specialization as one

possible mechanism giving language support for approaching the goals stated

by the subject orientation community.

Now let us turn to the concrete example. Consider a situation where many

di�erent departments of a large organization need to interact with the same

computerized model of an entity, e.g., a car. The full, combined speci�cation of

the car depends on many subsystems, each providing one aspect. The car must

be bought, paid, registered, written o� now and then, reserved for daily use

and for maintenance and repair�and the overall computerized representation

of the car should be kept consistent, so we do not want to model one car with

many separate computer objects. Cars are probably used in many places, too.

As a result, the system contains many cross-module interdependencies, and it

becomes hard to maintain. Incremental object creation avoids that problem

since the combination class does not need to be declared explicitly anywhere.

Figure 7.4 shows a �rst, naive approximation to such a design, using C++.

We have no intention of making these classes useful in a real project, but even

with toy-requirements this is a naive design. It is considered bad style to have

publically accessible data members, but that is only a problem because of the

lack of uniform access, so that is not our problem, either. We must think of

these classes as de�ned in separate modules, one for each class, because each

of the aspects of the car is a part of a much larger system. For example, the

accounting department handles everything that has to do with buying property

and maintaining the tax related issues as the property gets older and looses

value; so Property lives in that world. Similarly, Schedulable is maintained in

the logistics department.

The real problem lies in the module interdependencies. Let us call the central



7.3. DYNAMIC SPECIALIZATION OF OBJECTS 155

// Interface layer

class Car

{ public: virtual int registration_number() = 0; };

class Property

{ public: virtual int price() = 0; };

class Schedulable

{ public: virtual reserve(time from, time to) = 0; };

class TotalCar: public Car,

public Property,

public Schedulable

{};

TotalCar *newTotalCar()

{ return new ConcreteTotalCar(); }

// Implementation layer

class ConcreteCar: public Car { : : : };

class ConcreteProperty: public Property { : : : };

class ConcreteSchedulable: public Schedulable { : : : };

class ConcreteTotalCar: TotalCar { : : : };

Figure 7.5: A standard improvement over Fig. 7.4

module the hub; this is the module which contains the class TotalCar. Since all

departments need to use instances of TotalCar, and since TotalCar depends

on all the aspects, the system ends up having dependency links back and forth

between the hub and all the department modules. Any little change will cause

a total recompilation, which is already a serious problem in a large system.

Moreover, when the compiler has to consider the entire system it is likely that

some human beings should also take a look at the whole system, to see if the

changes break any of the many conventions that compilers cannot handle. This

system will be very unstable, in the sense that machines and/or human beings

will have to reconsider all of it all the time during development.

Now, there are well-known ways to handle this; we just wanted to show the

naive approach �rst because standard solutions might be two steps forward and

one step backward compared to the naive solution, and if alternatives allow us

to avoid going backward then we should keep it in mind. Figure 7.5 shows such

a standard solution.

With the design in Fig. 7.5 there could be two layers of modules: Each de-

partment would have an interface module layer and an implementation module

layer; for instance, the accounting department would keep Property at the in-

terface level, and hide ConcreteProperty away in the implementation layer.

The hub interface would contain TotalCar, and it would depend on the depart-

ment interfaces. The departments would depend on the hub interface, too. The
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(# Car: (# registration_number: @integer #);

Property: (# int: @price #);

Schedulable: (# reserve: (# from,to: @time enter(from,to)..#)#);

myCar:

^

Car

do

(* create a new car and make 'myCar' refer to it *)

&myCar[];

(* build the structure of 'myCar' dynamically *)

Property## -> myCar##;

Schedulable## -> myCar##;

#)

Figure 7.6: Incremental Object Creation

hub implementation would contain ConcreteTotalCar, and it would depend on

the department implementation modules. This is an improvement, because the

loop has been broken: if the implementation in one department is changed, then

the hub implementation is a�ected, but the buck stops here because the hub

interface is una�ected. The interfaces still have the looping dependencies, but

they are not expected to change so often.

Languages like Ada95, Turbo Pascal, and Beta allow for a separation of

interface and implementation without requiring an extra set of classes, but since

the extra set of classes allow such things as dynamically choosing one of several

available implementation classes, it might be relevant to have the Concrete : : :

classes even in those languages.

In gbeta we could have created ConcreteTotalCarby merging ConcreteCar,

ConcreteProperty, and ConcreteSchedulable. This is not possible in lan-

guages like C++ or Ei�el, because the result would not be a subclass of TotalCar,

because these languages do not support the mixin based coarse-grained struc-

tural equivalence that gbeta has. However, this could for example be handled by

having a ConcreteCar, a ConcreteProperty, and a ConcreteSchedulable as

data members and manually delegating to them. To be able to get a real, imple-

mented car via the hub interface we may use a factory method like newTotalCar.

This is necessary because the departments should not need to depend on the

hub implementation.

This adds up to a solution which has reduced the dependency problems in

the original, naive approach. However, we have paid for this in terms of a

signi�cantly more complex design. Moreover, it would still a�ect all parts of

the system if a new aspect were to be added, for example if the legal department

wanted to be able to handle cars in their registration of work related injuries.

The approach which builds on incremental object creation removes the global

representation of the total structure of car objects entirely, thereby making it

possible to use a naive design without creating the dependency loop. Figure 7.6

shows some patterns for the di�erent aspects, corresponding to Fig. 7.4. In

the do-part, a plain Car is created and then enhanced with the two aspects
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Property and Schedulable. This provides the car with new attributes such as

price and reserve, but they cannot immediately be accessed because the type

of myCar is Car. To use the enhanced interface we must obtain a reference to

myCar with a more specialized type; this can be done with a when imperative,

see Sect. 9.1 for details.

This dynamic approach allows us to work with objects that support the same,

rich interface as TotalCar does in the previous approaches, but the system does

not need to contain a class for this explicitly, and hence there is no need to have

a hub interface that all modules depend on, or to have a dependency loop.

The dynamic construction of the total car may happen gradually, by a sepa-

rate step taken in each of the departments. There would then be a dynamic hub,

i.e., a central location in the system which would have access to a list of entities,

one from each department. In this case we would need to have access to one

`car enhancer method' from every department, where a car enhancer method is

some pattern which is less-equal than this one (note that it does not even have

to depend on Car, even though it seems reasonable to qualify target by Car):

carEnhancer: (# theCar:

^

Car enter theCar[] do INNER #)

Ex.

7-9

Each department would not need to depend on the patterns provided and used

by the other departments, they would only need to know this simple method

signature pattern, carEnhancer, to be able to provide a car enhancer method

to the dynamic hub. Conversely, the hub would not need to depend on any

department speci�cs, such as the pattern Property etc. Hence, the dependencies

between the hub and the departments have been almost completely removed�it

is not just a loop which has been broken. Since the simple carEnhancer pattern

is unlikely to need to change, the whole system will be very stable even if some

departments keep changing their stu�.

As mentioned, the dynamic hub would keep a collection of car enhancer

methods; they would be used whenever a new car were to be created, like this:

(# carEnhancers: [n] ##carEnhancer;

theNewCar:

^

Car

do &theNewCar[];

(for i:carEnhancers.range repeat

theNewCar[]->carEnhancer[i]

for)

#)

Ex.

7-10

This would iterate through all the available car enhancer methods and run

them with theNewCar as the argument, and that would give each department

an opportunity to enhance the car in whatever way it wants; for example, the

accounting department would provide this pattern:

AccountingCarEnhancer: carEnhancer

(# do Property##->theCar## #)

Ex.

7-11

Note that these dynamic specialization operations would be guaranteed to suc-

ceed, for example, if the di�erent aspects were unrelated, or if they shared
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only a common superpattern and did not further-bind the same virtuals in this

shared superpattern. Such a convention might be reasonably easy to specify

and acceptable to conform to.

To avoid having global knowledge about department speci�c patterns like

Property and at the same time avoid dynamic typecasing to obtain a reference

to any given Car quali�ed by a department speci�c pattern, it might be bene�cial

if every department kept a database of references to all cars, quali�ed by their

own department speci�c views.

Alternatively, it might be acceptable, and it certainly would save some space

and administration, if cars were passed around globally as Car, and whenever a

department needed to work with a car it would use a when imperative to obtain

a more speci�c view on it, such as Property. If that view were not available in

a given car, then somebody violated the car enhancer convention, which would

be a bug. Nevertheless, it would actually be possible to add missing aspects

later, so the situation could just be repaired when detected. This would be

dangerous in the general case, but it would be safe if the added aspect shared

no mixins with other aspects, or if it only shared mixins whose virtuals it did

not further-bind.

The car would thus support the global set of interfaces, but no part of

the system would depend on this global set as a whole. Furthermore, a new

aspect could be added without recompiling any of the existing departmental

subsystems.

There are still more advantages with the dynamic, incremental object cre-

ation which are not parallelled in the static approach. Firstly, if we do not

need the TotalCar but would rather prefer to use any of the many di�erent

selections from a set of n aspects, then the static approach leads to a tedious

de�nition of the many combination classes, where incremental object creation

only needs the n aspects. Secondly, the ability to add aspects on demand may

be important when there are many objects and only some of them need some

�expensive� aspect. E.g., a system may contain many cars, but only few of them

need to carry legal department information about the consequences of a tra�c

accident. If we need this aspect for a given Car then we can test to see if it is

already there, and we can add it dynamically if it is not, subject to the same

safety considerations as above.

In any case, the improved independence between all the modules of this

multi-aspectual car system is obtained by taking away type information from

the global universe, thereby making the system as a whole much more resilient

against changes in that type information. This will inevitably cause either the

need to reestablish the type information locally (by means of typecasing), or the

need to apply extra resources in order to avoid losing that information in the

�rst place (such as the local databases of cars with department speci�c views).

It should probably not be expected that the improved independence can be

obtained as an entirely free lunch : : :



Chapter 8

Miscellaneous Enhancements

This chapter presents a number of language features in gbeta that have not

been covered elsewhere. They are optional enhancements, in the sense that

they could be removed without a�ecting the rest of the language. None of these

enhancements required changes to the basic strategies in the static analysis or

to the run-time entities, nor did they cause any major implementation e�orts.

However, they may certainly make a signi�cant di�erence for users of the lan-

guage.

The enhancements can be divided into two major groups. The �rst group,

treated in Sect. 8.1, contains elements of gbeta that are not backward compatible

with Beta. The language constructs in the second group, Sect. 8.2, support

a more concise and convenient expression of semantics that could already be

expressed using such things as a few extra imperatives or an extra attribute

declaration.

8.1 Incompatible Changes

In almost all respects, correct Beta programs are also correct gbeta programs,

and they will behave identically. However, a couple of incompatible changes were

introduced in gbeta, because we considered the Beta semantics improvable in

those few cases. These changes are genuine language design issues; there are

also some implementation speci�c issues which cause programs written for the

Mjolner Beta implementation to be rejected by gbeta; more about this can be

found in Sect. 11.2.

8.1.1 Repetition Evaluations

Repetitions have not been presented in earlier chapters, because we wanted to

concentrate on the core of gbeta. However, we have to present them now in

order to be able to specify how gbeta repetitions di�er from Beta repetitions.

Repetitions are not entities. They are collections of attributes whose names �

159
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are computed by combining a shared name for all the attributes in the collec-

tion with a number, the index of the chosen attribute. The index can be any�

member of the set f1 : : : ng for some natural number n, the range of the repeti-�

tion. The range is the number of attributes in the repetition; it is obtained by

evaluation of an integer valued expression when the part object containing the

repetition is created (and all its attributes are created with it), and it may be

changed dynamically. Repetitions can be recognized syntactically by the use of

expressions enclosed in square brackets, both in declarations and in the use of

computed names. For example:

(# R: [3] @integer; (* 3 object attrs: R[1], R[2], R[3] *)

do (* R.range = 3 *)

(* access the second attribute in 'R' *)

5->R[2];

(* use of 'R[4]' would be an error here *)

(* add two attributes 'R[4]' and 'R[5]' to 'R' *)

2->R.extend; (* R.range = 5 *)

(* new attributes have the usual initial values *)

R[4]+1->R[1]; (* R[1] = 1 *)

(* throw out all 5 attributes, get 4 new ones *)

4->R.new; (* R.range = 4, R[1] = 0 *)

#)

Ex.

8-1

Note that the notion of computed names introduces a special version of the

MessageNotUnderstood error which cannot be ruled out statically. The prob-

lem is that both the range of a given repetition and the indices used in computed

names may be the result of arbitrary computations, so it is generally an unde-

cidable problem to determine statically whether or not a given attribute in a

repetition exists. However, it is almost safe to test whether a given repetition

attribute access will succeed by means of an if imperative:

(if R.range>=3 then 0->R[3] if)

Ex.

8-2

This only fails if another thread modi�es R between the Evaluation and the body

of the if imperative. This is not normally considered as a loophole in the type

analysis but rather as an entirely separate (and more politically correct) kind

of run-time error, `Index out of range'. We have not added a construct in gbeta

which makes it possible to implement this example in a safe way, but a variant

of the when imperative could be used; see Sect. 9.1.3 for more information on

when.

So far, this describes repetitions in Beta and in gbeta equally well. How-

ever, there is a special syntactic shorthand for multiple assignments associated

with repetitions. Beta and gbeta have di�erent semantics for such repeated as-

signments in some cases. The syntax for a repeated assignment is just like that

of an ordinary AssignmentEvaluation, but the source and destination entities are

repetitions. The semantics is a repeated assignment operation which evaluates

the �rst attribute of the left hand side and assigns the resulting value to the

�rst attribute of the right hand side, then repeats for the two attributes with

index two, and so on. The receiving repetition is in all cases adjusted such that
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both repetitions have the same range. For example, the assignment R1->R2 has

the same e�ect as the whole do-part in context of the following example, both

in Beta and in gbeta:

(# R1: [3] @char;

R2: [0] @char

do (if true

// R1.range>R2.range then R1.range-R2.range->R2.extend

// R1.range<R2.range then R2.range-R1.range->R2.delete

if);

(for i:R1.range repeat R1[i]->R2[i] for)

#)

Ex.

8-3

Beta and gbeta do not include the primitive repetition operation delete, but

such an operation is needed in the implementation in order to get the right

semantics for these repeated assignments; the delete operation would remove

as many attributes as the given integer argument speci�es, starting from the

highest indices and going downwards. The whole operation happens atomically,

such that the range of the two repetitions will be equal until the end of the for

imperative.

In Mjolner Beta, repetitions of object attributes have di�erent assignment

semantics, depending on whether they denote instances of basic patterns, like

integer and char, or instances of composite patterns. For composite patterns,

the repetition assignment works like a repeated reference assignment. In gbeta

there is no such distinction between basic patterns and composite patterns, but

the repeated reference assignment can be speci�ed with another syntax in gbeta,

namely a syntax which is similar to ordinary, single reference assignment. For

example, the imperative R3[]->R4[] in gbeta and R3->R4 in Beta work like

the whole do-part in the following context:

(# Point: (# x,y: @integer #);

R3: [2] @Point;

R4: [7]

^

Point

do (if true

// R3.range>R4.range then R3.range-R4.range->R4.extend

// R3.range<R4.range then R4.range-R3.range->R4.delete

if);

(for i:R3.range repeat R3[i][]->R4[i][] for)

#)

Ex.

8-4

In Beta it would be possible to declare R4 as a repetition of object attributes,

e.g. R4: [7]@Point, and carry out the same repetition assignment. That is

rejected in gbeta because the implied execution of R3[i][]->R4[i][] would

be rejected�reference assignment can only be applied to a variable object at-

tribute, because it means that the attribute must vary.

In general, the coercion markers applied to repetition assignments in gbeta

are carried over to the body of the implied for imperative, so for example

R5[]->R6 means the same as the do-part in this example:
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(# printer: (# s:

^

string enter s[] do INNER #);

R5: [2] @string;

R6: [7]

^

printer

do (if true

// R5.range>R6.range then R5.range-R6.range->R6.extend

// R5.range<R6.range then R6.range-R5.range->R6.delete

if);

(for i:R5.range repeat R5[i][]->R6[i] for)

#)

Ex.

8-5

One way to explain the e�ect of R5[]->R6 is that it gives some string objects

as arguments, by reference, to some stored procedure invocations, which are

less-equal than printer, and then calls them.

The bene�ts obtained by rede�ning the semantics of repetition assignment

in gbeta compared to Beta are the following:

� There is no distinction between basic patterns and composite patterns;

such a distinction is nowhere else assumed and it would be a semantic

anomaly to introduce it here.

� There is no support for `reference assignment to an object attribute', such

as with R4 in the Beta imperative R3->R4 above. Again, that would be a

semantic anomaly. We should note that this is the actually implemented

semantics in the Mjolner compiler. The explanation of repetition assign-

ment in [74] could very well be interpreted to mean something much closer

to the semantics in gbeta.

� The simple, mechanical construction of the implied for imperative from

any given repetition assignment ensures that the connection between syn-

tax and semantics for repetition assignment is consistent with the rest of

the language.

� The various combinations of coercion markers on repetition assignments

mean di�erent things, and they may all be useful.

However, there are certainly also some problems left:

� It would probably not be meaningful to require that arbitrarily complex

assignment operations should be executed repeatedly as an atomic lan-

guage operation. What if such a complex repeated assignment would

attempt to change the range of one of the repetitions during the opera-

tion? The repetitions should not support that, that's what the atomicity

is all about. What would it mean to execute such a repeated assignment

�atomically� if each iteration might execute arbitrary code? Should all

other threads stop, or should the run-time system be required to maintain

locks on repetitions that are being used in assignments?

� The alternative, being that such an operation would not have to be atomic,

does not seem to be attractive either. It would be a very unpleasant

perspective if all repetition assignment operations could potentially cause

`Index out of range' errors.
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� It seems inconsistent that a repetition of object attributes supports the

new operation. This allows us to, e.g., access two di�erent objects via the

computed name R1[2] in the �rst example above. Normally, an object

attribute will denote the same object in the entire lifetime of the part

object of which it is an attribute. However, removing this possibility would

seriously damage the backward compatibility of gbeta and create a need

for alternative ways to handle such common facilities as the manipulation

of mutable strings (i.e. the text pattern in Beta).

It might be bene�cial to exploit and widen the static knowledge about the

length of certain repetitions and thereby be able to declare certain operations

safe. This could be done by making some (explicitly marked) repetitions �xed-

length, and then statically prohibit the operations new and extend on these

repetitions. If the range were a compile-time constant then even some accesses to

attributes in the repetition could be checked statically. Fixed-length repetitions

might also allow for a more e�cient representation in some cases. Nevertheless,

there would be many cases where the variable and mutable range would be very

useful, and arbitrary computations to select attributes from a repetition are also

useful indeed.

The conclusion is probably that repetition assignments are too complex to

allow for a de�nition which is both consistent and safe. Either we must single

out the basic patterns and disallow repeated value assignments for the general

case (reference assignments are simpler), or we must accept that repetition as-

signment cannot be executed atomically, even though it is a primitive operation

in the language. Actually, there would be problems with requiring atomicity for

assignment of very long repetitions, also in the case of repetitions of instances of

basic patterns. The basic problem with a non-atomic failable primitive opera-

tion is that a highly safety oriented programming style must abandon it entirely;

the extend and new operations on the two repetitions are made into run-time

errors for arbitrary periods of time, and there is no test which will determine

whether or not they can be executed safely at any given point in time. This is

no better than having the potential for a MessageNotUnderstood error at all

times.

One solution could be to de�ne the semantics of repeated assignments to

carry out as many iterations as possible after the initial length synchronization,

i.e., until the end of the shortest repetition is reached. That would make the

operation safe, it would not require atomicity and would therefore allow the

consistent, fully general value assignment semantics. It would then be possible

for programmers to check if the expected number of assignments were performed,

and handle the problem gracefully if not.

Another solution would be to remove the support for repetition assignments

altogether and require that programmers write the corresponding for loops ex-

plicitly. Since repetitions should arguably not be used �publicly� anyway�they

are simply too low-level and too in�exible to be part of widely used interfaces�

such a forced extra verbosity might actually make it even more clear that they

are meant to be used locally in the implementation of �real� abstractions. It
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might be necessary to add a primitive operation which would adjust the range

of a given repetition e�ciently. It should not be impossible for a production

quality compiler to generate code with the same performance for the explicit

for imperative version as it could do for the repetition assignment shorthand.

8.1.2 The Type of this

In Beta, the name application which appears in the syntactic construct ThisOb-

ject, e.g., Point in this(Point), is used for two purposes. First, it is used to

select one of the enclosing objects�the nearest enclosing object whose pattern

is statically known to be less-equal than the pattern of the attribute found by

looking up that name. Second, the object which is accessed through such a

ThisObject construct is accessed with the view of that name application�e.g.

this(Point) will be treated like a Point even if it is a ColorPoint. To see

what that means in practice, consider the following example:

1 (# (* This is in BETA, not gbeta *)

2 p:

1

(# x: @integer #);

3 q: p

2

(# x:

3

(# exit 2 #)#);

4 r: @q

4

(# do x->this(p).x #);

5 aP:

^

p

6 do

7 r[]->aP[];

8 r.x->aP.x

9 #)

Ex.

8-6

The topic of this example is how to access multiple attributes with the same

name, in the same object. As mentioned in Sect. 3.6, this is deprecated in

gbeta, but it might be inevitable, e.g., when combining two large, independently

developed bodies of code. Whenever a single object has more than one attribute

with a given name, the speci�city of the mixins in the view determines which

one of these attributes will be denoted by a given name application (statically

as well as dynamically). In the example, the object r, with part objects [4; 2; 1],

contains two attributes named x, and the usage of x in its do-part will access

the pattern in its part object 2 (line 3).

If there is a need to access another attribute than the chosen one, then we

need to obtain another view on the object in which the desired attribute is the

most speci�c one. For example, the construct this(p).x in line 4 is used to

access the x object attribute in part object 1 of r, line 2.

However, that approach does not work from outside of r, as in the main

do-part of the above example. Here, r.x in line 8 is used to access the pattern

x, but a separate variable object attribute such as aP must be declared, line 5,

in order to access the integer object x with aP.x, line 8. The two do-parts

have the same e�ect, but they are too di�erent. Moreover, it is confusing to

have to perform a small data �ow analysis to discover that r and aP is actually

the same object, only seen in two di�erent ways.

For this reason, the view manipulation e�ect of ThisObject was removed in

gbeta, and a construct similar to the qua expression in Simula was reintroduced
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(see Sect. 8.2.2) to manage views, and to do that only. As a result, a ThisObject

construct in gbeta will be useful in all the same ways as in Beta when used

to get access to one of the enclosing objects, but that enclosing object will be

accessed under the view which represents the full available knowledge about

that particular object. With this change, and the introduction of a qua-like

construct, two concerns have been separated, namely access to enclosing ob-

jects and access to any object via a speci�ed view. We think that this is an

improvement for the readability of source code.

This is not the only bene�t. Another improvement is that the ThisObject

construct supports access to the entire known structure of enclosing objects,

even if their patterns do not have a name, for example:

1 list:

2 (# element:< object;

3 scan: (# current:

^

element do INNER #)

4 scanReverse: (# current:

^

element do INNER #)

5 do scan

6 (# previous:

^

element

7 do scanReverse

8 (# previous:

^

element

9 do this(scan).current[]->previous[];

10 this(scan).previous[]->current[]

11 #)

12 #)

13 #)

Ex.

8-7

This piece of code illustrates a problem with access to identically named at-

tributes in enclosing objects. We can get access to this(scan).current (line

9) in both Beta and gbeta because current is inherited from scan (line 3), but

only the gbeta analysis allows us to get access to this(scan).previous (line

10). In this case the problem has been created arti�cially in order to keep the

example short, but this problem does arise now and then, and the ability to use

the selected enclosing object in full via ThisObject seems consistent and natural.

However, this change is actually insu�cient. Another generalization of

ThisObject should be introduced, but this has not yet been implemented in

gbeta: The name application is often not su�ciently �exible for cases like the

above example, for instance if the two nested control structure patterns are spe-

cializations of oneList.scan and anotherList.scan�which would be quite

realistic. We would only need to allow a general AttributeDenotation instead

of the NameApl which is currently allowed, such that we could write, e.g.,

this(anotherList.scan).current[]. It would also be convenient to allow

this alone, meaning this(object). The implementation would be easy, so

this will probably happen soon.

Another case where the gbeta analysis of ThisObject is useful is when meth-

ods return a reference to the enclosing object:
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link:

(# T:< object;

value:

^

T;

next:

^

=this(link);

append:<

(# other:

^

=this(link)

enter other[]

do other[]->next[]; INNER

#)

#);

doubleLink: link

(# prev:

^

=this(doubleLink);

append::< (# do this(doubleLink)[]->next.prev[] #)

#)

Figure 8.1: Linked lists

Counter:

(# x: @integer

inc: (# do x+1->x exit this(Counter)[] #);

dec: (# do x-1->x exit this(Counter)[] #)

#)

Ex.

8-8

With this style (where methods return the enclosing object if they do not have

to return anything else), it becomes natural to cascade method invocations like

this:

(# ct: @Counter

do

ct.inc.dec.inc

#)

Ex.

8-9

This example also uses the enhancement described in Sect. 8.2.5 to avoid some

parentheses, but the point we want to make here is that this breaks down with

the approach taken in Beta when we create a subpattern of Counter. Assume

that we want to use cascading method calls on an instance of such a subpattern;

since the inherited methods have this(Counter)[] in their exit lists, the result

will always be considered an instance of Counter with the Beta analysis, and

this means that the cascade is broken�after the �rst invocation of an inherited

method, only the inherited methods can be used.

As a �nal example illustrating how useful it is to be able to express a genuine

SelfType (a quali�cation which is recognized by the static analysis as being

equal to the actual, run-time pattern of a given enclosing object), consider the

link and doubleLink patterns in Fig. 8.1. A linked list can be built from link

elements, and a doubly linked list from doubleLink elements, with each link

(double or not) carrying one value by reference via the value attribute.
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Such a list will be heterogeneous in the sense that the value attribute of

each link may refer to an instance of any subpattern of T. The virtual T can

be further bound, hence restricting value to be an instance of a more speci�c

pattern than object; we may for example have a link which requires that its

value is an integer, whereas another link might require that its value is a

boolean. The crucial point here is that this will never be the case for two links

in the same list, and that is again because the next attribute in link (and also

the prev attribute in doubleLink) have the exact quali�cation this(link).

This exactness also ensures that there will never be a list which contains both

some single links and some doubleLinks.

This means that every list which is built from instances of link or a sub-

pattern of link is homogeneous�in the sense that the �spine� of the list, the

links themselves, consists of instances of the exact same pattern. As a result,

it is known to be safe to reference assign a new value to an arbitrary element

in such a list as soon as it is known to be safe to do it with just one link in the

list. Consequently, the whole list is adequately constrained for static analysis

by each of its elements, and that means that such lists can be passed around

just by passing abound a reference to one of the elements.

This homogeneity also makes append safe: It would not be safe to assign both

other[]->next[] in append in link and this(doubleLink)[]->next.prev[]

in append in doubleLink with inexact quali�cations. Moreover, if we changed

the quali�cation of next and prev to be an ordinary virtual then it would be

possible to �nal-bind it in all kinds of links which are used to create instances,

and this could make usage of links from the outside safe, but it still would

not help for the implementation of methods inside link. Hence, link and

doubleLink could not be implemented safely using virtuals.

To conclude, the combination of a true SelfType and exact quali�cations

make it possible to maintain a strict homogeneity in the patterns of objects

in dynamic con�gurations of unbounded size, and this makes designs like link

and doubleLink useful. Note that the typical design in Beta for situations

like this is to have a wrapper pattern which contains a virtual pattern attribute

which plays a similar role as link does here. A virtual pattern has the property

that a usage of the name of the virtual inside its own de�nition will actually be

a genuine SelfType (unless inheritance from virtuals is supported). However,

with a list which is built on this principle (such as the standard Mjolner Beta

list pattern where the nested �doubleLink� virtual is called theCellType) it

will not be possible to transfer links between di�erent lists�they have a wrong

origin for all other lists than their enclosing one. This would be particularly

nasty if a large list were to be reorganized, perhaps by splitting it into two

smaller lists with roughly the same number of elements. That would require

creation of new link objects for half of the elements in the large list.
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8.2 Convenience Constructs

This section describes some constructs in gbeta which could be removed from

the language without restricting the expressive power much; the e�ect of these

constructs could be achieved using local rewriting techniques which might in-

troduce a few extra imperatives and auxiliary attributes. Some of them are old,

well-known ideas that just never were given su�ciently high priority to actually

be implemented in Beta.

8.2.1 Computed Object Evaluation

Computed object evaluation, marked by `!', has been present in the Beta�

grammar for many years, but has not yet been implemented. We decided to

invent and implement a precise semantics for this; it seems to be useful, though

more experience with it would still be bene�cial. It enables the use of an object

which has no direct denotation, but which is available via the evaluation of a

Reference. It may be described as a dereferencing operation, somewhat like the

`*' operator in C. The di�erence is that it implies the evaluation of the Reference.

For example:

(# intFunc: (# i,j: @integer enter i do INNER exit j #);

getAnIntFunc: (# f:

^

intFunc : : : exit f[] #);

x: @integer

do

3 -> getAnIntFunc! -> x

#)

Ex.

8-10

The e�ect of the main do-part in this example is to compute the value of an

intFunc at 3. The intFunc itself is obtained as the result of an invocation of the

method getAnIntFunc. If there is a need to give arguments to getAnIntFunc

or otherwise perform a more complex complex computation, it can be expressed

by enclosing it in a MainPart:

3 -> (# exit (a+b)->getAnIntFunc->modifyAnIntFunc #)! -> x

Ex.

8-11

8.2.2 Explicit Choice of View

As described in Sect. 8.1.2, the syntactic construct ThisObject cannot be used

in gbeta to obtain a speci�c view on an object, like it can in Beta. Instead,

a construct similar to the qua construct in Simula has been reintroduced in

gbeta. This construct is similar to a type cast operation in C, but it is safe:

it will not �cast� an object to any pattern unless it is statically known to be

greater-equal than the actual pattern of that object. The Simula qua construct

can also �downcast� an object to a more speci�c class, but we have reserved

another construct for that, see Sect. 9.1. For example:
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(#

p:

1

(# x: @integer #);

q: p

2

(# x:

3

(# exit 2 #)#);

r: @q

4

(# do x->this(:p:).x #)

do

r.x->r(:p:).x

#)

Ex.

8-12

It is illustrative to compare this example with the example at the beginning

of Sect. 8.1.2; note that we have used the not yet implemented shorthand

this, which means this(object). The syntax of this construct is based on

the `(: : : : :)' brackets. The use of parentheses with markers placed just in-

side them is standard Beta syntactic style. The choice of colon as the marker

is supposed to signal the relation to declarations (which are the primary tools

for specifying and looking up views), and the placement after the entity to be

viewed di�erently is both more convenient syntactically�these constructs can

be applied more than once in the same AttributeDenotation�and it places the

view in view for the person who is reading the source code.

It is sometimes claimed, e.g. [98, p. 82] where super-sends are considered,

that the correctness of a program is threatened if it uses a construct which lets

programmers explicitly select the class in which the search for a given attribute

should start. This is indeed the case in languages like Smalltalk where such a

choice would cause an �inverted override� phenomenon: If a subclass rede�nes a

method then the rede�ned version of the method should be the correct choice for

an instance of that subclass in all cases, and subtle bugs could be introduced by

�freezing� the choice to a method implementation in any �xed class for individual

invocations of that method. This might be seen as a reason to avoid such

constructs entirely.

The situation is di�erent in gbeta, because the choice of a particular at-

tribute is determined by the view and is therefore always made at compile-time,

so a construct that allows explicit view selection is not semantically inconsis-

tent with the rest of the language. There is no such thing as �choosing the

wrong implementation of a late-bound method� in gbeta, because virtual at-

tributes are never overridden, they are uni�ed, and the pattern which is the

result of the uni�cation can be obtained by looking up any of the declarations

for that virtual�they all deliver the same pattern because they are all the same

attribute.

8.2.3 Control Structure Evaluations

An old idea which has not yet been implemented in Beta is that of �value�

versions of the built-in control structures. This is in some ways similar to the

if statement in Standard ML and other functional languages. For example:
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boolean2string:

(# b: @boolean

enter b

exit (if b then 'true' else 'false' if)

#);

x,y: @integer;

setSome: @

(# b: @boolean

enter (if b then x else y if)

#);

Ex.

8-13

This facility has not nearly been implemented in the full generality; for exam-

ple, it is not supported to evaluate a GeneralIfImp, only a SimpleIfImp can be

evaluated. It seems to be quite useful in practice, but the usefulness would

probably not rise very steeply if it were implemented fully, so it is likely to stay

at approximately this level of support for some time.

Note that the static analysis of these constructs might be handled by in-

troducing a general notion of the least upper bound of any given �nite set of

types, such that, e.g., an expression which might evaluate to an integer or to a

char value might be typed as being any of those two. Since this is not needed

anywhere else in the language and it would complicate the rest of the language

considerably, for instance by introducing the need for declarations of attributes

of all those least upper bound types, we have chosen the simplistic rule that these

constructs must evaluate to the exact same type of value for every branch.

8.2.4 Renewal of Variable Objects

In gbeta it is possible to renew a variable object by means of the `&' operator.�

This mechanism corresponds to the !!SomeAttribute construct in Ei�el. The

e�ect is to create a new instance of the quali�cation of the variable object

attribute and then make the attribute refer to the new instance. For example:

(# Point: (# x,y: @integer #);

Pair2Point: (# pt:

^

Point enter &pt exit pt[] #);

myPoint:

^

Point

do

(2,3) -> Pair2Point -> myPoint[];

#)

Ex.

8-14

The invocation of Pair2Point causes the renewal of the attribute pt, and the

new instance of Point is then value-assigned the pair of integer values which

are given as arguments. The identity of pt is then delivered as the return value,

and that is reference assigned to myPoint. Note that this construct violates the

transparency of the variable object attribute less than the explicit construct that

it is a shorthand for (which would include something like &Point[]->pt[] in

the example), because the reference assignment to an attribute unambiguously

reveals that it is a variable object attribute. With `&' it could be a pattern, a

variable pattern, and a variable object.

The use of `&' in this renewal construct is historically related to the use of

`&' in Beta in front of an ObjectSpeci�cation which denotes a pattern, in order
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to create a new instance of that pattern. That use of `&' is actually less relevant

in gbeta, where the implicit coercion�see Sect. 2.3.4 for details�ensures that

new instances of patterns are created also when `&' is not present. Historically,

the version without `&' in Beta was intended to mean that the compiler could

use the same object several times when a pattern was used as an imperative

and in assignments (that was called an `inserted item', which is still the name

of a non-terminal in the Beta grammar). This has never been implemented,

and it is hardly considered desirable by anyone in the Beta community any

more. So, in practice, there is little di�erence also in Beta between using such

expressions as myPoint.move and &myPoint.move.

As a result, the `&' operator can be understood as an explicit constraint that

a new object must be created at that point, which might be bene�cial for readers

of the source code to know. That must then be weighed against a (slight) loss

in transparency, because an attribute which can be used with `&' cannot be a

(non-variable) object attribute.

The usage of `&' for creation of new objects is historically entrenched, and the

usage of `&' for pattern merging seems to be the natural choice. It is unfortunate,

though, that the same symbol is used for two di�erent purposes. One way to

keep them apart is to remember that `&' for object creation appears at the

beginning of a syntactic construct, whereas `&' for pattern merging appears

between two constructs.

8.2.5 Improved Transparency

Greatly inspired by David Ungar, a mechanism has been added to gbeta which

improves on the transparency of computed vs. stored values. This mechanism

does not introduce new syntax. It is very simple, and it is backward compatible

with Beta, because it gives meaning to constructs that would otherwise have

caused static semantic errors. The error that used to be reported was that there

was an attempt to look up an attribute in a pattern (the Mjolner compiler would

say `An object is expected here').

The new meaning is obtained by evaluating the pattern; if that delivers the

identity of an object, then that object is used. For example:

(# door: (# open: (# : : : #)#);

house1: @(# frontDoor: @door #);

house2: @

(# frontDoor:

(# theDoor:

^

door

do (* let me see, I think it is this one *)

: : : ->theDoor[]

exit theDoor[]

#)

#)

do

house1.frontDoor.open;

house2.frontDoor.open

#)

Ex.

8-15
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The point is that the frontDoor attribute in house1 is stored and the frontDoor

attribute in house2 is computed, i.e., the former is an object and the latter

produces an object when needed. Without this mechanism, it would have been

necessary to change the usage of the frontDoor of house2 (by adding parenthe-

ses to make it (house2.frontDoor).open); with this mechanism the two usage

points can be identical. As always, the fact that the usages are independent of

the chosen implementation of a given attribute improves on the possibilities for

program reorganization and maintenance.

This transparency mechanism is speci�cally oriented towards attributes that

are used to access other attributes. If an attribute is itself the last element in the

chain (e.g., a stand-alone name, or the last name in a Remote construct), then

the coercion which is available also without this mechanism already provides

good support for changing the kind of an attribute without a�ecting usage

points. Of course, it is still possible to become dependent on whether frontDoor

is a pattern or an object by means of explicit coercion markers; for example

house1.frontDoor## is less-equal than door##, but house2.frontDoor## is

not. This underscores the fact thatBeta and gbeta have very good transparency

support as long as attributes are used without explicit coercion markers, but

the transparency gets more and more compromised the more coercion markers

there are, so they should preferably be kept in rather private areas of the source

code, such as with parameters that are only used locally within a method.



Chapter 9

Improving the Static Analysis

This chapter describes some mechanisms in gbeta which enable a more �exible

and detailed management of the information which is used in the static analysis,

thus allowing for a statically safe expression of some designs which could not be

expressed safely if these mechanisms were removed from the language. Since we

highly value the safety guarantees provided by static analysis, these mechanisms

are important additions to gbeta.

However, they have been designed with the rather idiosyncratic and formal-

istic requirements of the static analysis in mind, so they do not support the

comprehensibility of the source code very well. The decisions about where and

how to use them will usually be concerned with technicalities rather than un-

derstanding the overall conceptual universe of the program. It would probably

be a good habit to maintain awareness about what aspects of a program express

the essential design and what aspects are there to help the static analysis. In

return, the static analysis might actually help improving the understanding of

the program because false impressions of regularities may be unveiled when the

static analysis is unable to verify them.

Section 9.1 describes the when imperative which supports a dynamic case

selection based on patterns (type casing). Section 9.2 presents a mechanism

which allows the speci�cation of a lower bound on a virtual, thereby making

certain usages of that pattern in contravariant positions safe. The next section,

9.3, describes virtual objects which allow for a more statically restricted way to

provide arguments than the normal approach based on evaluations and enter-

lists, and Sect. 9.4 describes the concept of disownment of a virtual, which makes

it possible to further-bind a given virtual in certain ways, because certain other

kinds of further-binding have been declared to be illegal.

Finally, Sect. 9.5 deals with a more profound change in the development of

gbeta from Beta: There are two kinds of object-like entities in Beta, namely

items and components. The di�erence is concerned with sequential vs. alter-

nating or concurrent execution. These two kinds of entities have been uni�ed

into the single concept of objects in gbeta, and the support for non-sequential

execution has been transferred to the domain of patterns by introducing a new,

173
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basic pattern. One of the main bene�ts obtained by this change is a clearer and

more manageable static analysis treatment of non-sequential entities, and that

is the reason why it is located in this chapter. Section 8.1.2 would actually �t

very well into this chapter, but we decided to put it in Sect. 8.1 because it is

not just an improvement for static analysis but also an incompatible change in

relation to Beta.

9.1 Type Casing�the when Imperative

A type case is a control structure which allows the selection of one of a given set�

of bodies according to the actual (run-time) descriptive value associated with a

given run-time entity, for example the class of an object.

Many people in the object-orientation community consider type casing an

inherently inappropriate activity, as explained in Sect. 9.1.1. However, we be-

lieve that some mechanism for dynamic rediscovery of the applicability of static

information is needed, as argued in Sect. 9.1.2�not just because real projects

are imperfect, but because there is a genuine trade-o� between the overall com-

plexity of a system and the completeness of statically checkable information

about run-time entities such as objects. Next, Sect. 9.1.3, describes how Beta

can already do type casing, why that is not completely safe, how the when im-

perative in gbeta solves the safety problem, and how it works in more detail.

Finally, Sect. 9.1.4 explains why the when imperative is a more powerful con-

struct than traditional type casing based on purely static denotations of the

descriptive entities.

9.1.1 Why Type Casing is Bad

It is a widely accepted tenet within the object-orientation community that type

casing is a bad thing. For example, it is stated in [79, p. 1116] that the inspect

construct in Simula `runs into con�ict with the Open-Closed principle'. The

problem is that a type case, such as an inspect statement, contains an explicit

list of cases and then handles the problem at hand in various di�erent ways, one

speci�c way for each case, and this creates unmanageable dependencies. The

con�ict with the Open-Closed principle is that every new class which may occur

in context of the problem which is handled in such a type case will create the

need for addition of a new case to the type case statement. Hence, the type

case is not open for extension because the set of classes associated with that

problem cannot be extended without a�ecting this particular piece of code. The

preferred alternative is to declare a method in a suitable type, and implement it

in each of the implementations of that type, basically by using the corresponding

case from the type case as the method body. With this approach it becomes

possible to add a new class without changing existing code�the new class just

has to implement that method in its own way.

During the development and standardization of C++ [105] it was for a long

time not considered appropriate to add constructs that would enable type casing,
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for example by means of dynamic class tests like dynamic_cast<� � �>, for similar

reasons as the ones given above (space economy considerations were also taken

into account, because this would require run-time type information even for

classes that would not otherwise need that).

As a third and �nal example, at a Borland product presentation for more

than a hundred programmers in 1991 in Copenhagen, the basic ideas of object-

orientation were presented in such a way that this topic was made the most

important bene�t of using object-oriented languages. The central example was

one where di�erent graphical shapes were drawn, �rst using switch statements,

and then using virtual methods. They added a new kind of shape and demon-

strated how this required changes in several places with the switch based im-

plementation but not with the virtual method based one.

In other words, this argument is at the heart of the folklore of object-

orientation.

However, with functional programming languages such as Standard ML and

Haskell it is a standard technique to write each function as a number of cases

where each case deals with arguments of a certain kind, for example one case

dealing with the empty list and another case dealing with non-empty lists. Since

algebraic datatypes allow for the de�nition of one type containing a speci�ed set

of variants which may each contain composite values, this style of programming

may resemble object-oriented programming in some ways. In this community

the explicit casing on the structure of entities is not considered problematic.

The bene�t of such a program structure is that it is possible to write a new

function which handles this type of values, each variant in a speci�c way, without

changing the algebraic datatype or all the other functions for use with that type.

With the object-oriented approach where the casing is made implicit and the

cases stored in di�erent places, that would correspond to the addition of a

new (late-bound) method to the class hierarchy, along with the introduction of

method implementations in each of the subclasses. This point is for instance

made very clearly in Sect. 4 of [89].

So it seems that these two ways to distribute the implementation of a set of

behaviors associated with a set of related kinds of entities each have their own

bene�ts, and everyone should feel free to choose one or the other, depending on

whether adding classes or adding methods seems the more likely. However, we

do not think the choice is that symmetric.

Firstly, we believe that the ability to use context based reasoning makes it

more pro�table to keep the method implementations associated with the classes,

in stead of keeping the cases for all classes together in the same procedure. In

the latter case it is necessary to inspect one case in every one of the associated

functions in order to see how the instances of a given class are actually imple-

mented, and the implementations of all the other classes will be right there,

disturbing the impression of the class being considered. What we need to know

in order to be able to implement or maintain a method is what it should do and

in what context it should do that, not how all the other classes implement it.

Secondly, there is no need to choose between the two kinds of extensibility,

as we shall see in Chap. 10, we can have them both at the same time.
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This leads to the conclusion that it is indeed not appropriate in the typ-

ical case to organize the implementations of a range of behaviors for a range

of di�erent kinds of entities by type casing on the entities in separate, global

implementations of each behavior.

9.1.2 Why Type Casing is Good

As argued in the previous section, the organization of the implementations of a

range of behaviors for a range of di�erent kinds of entities by type casing on the

entities is not recommended in the typical case; but there are also other uses for

type case constructs, and they motivate the introduction of such a construct in

gbeta.

To see why these other uses of type casing are signi�cant we have to consider

some possible trade-o�s in the management of static information, assuming

that type casing is not available. Note that a reference assignment in Beta and

gbeta which causes a warning during static analysis and generation of a dynamic

quali�cation check is in fact a special case of type casing, where the two cases are:

(1) perform a reference assignment, or (2) raise a run-time error. Consequently,

we must assume that such unsafe reference assignments are also not available

in the following discussion, except for Smalltalk where the maintained static

information is incomplete and we might say that such implicit type cases are

present in every message send.

The maintenance of static knowledge about program execution entities is

not a free lunch. As an example of a radical trade-o� in this respect, the lack

of explicit typing of instance variables in Smalltalk make it possible to change

and recompile a class C in a system without a�ecting other classes than C and

its subclasses, and without considering any other classes than the superclasses

of C (and that is only to �nd the slot numbers of inherited instance variables).

1

This approach basically reduces the static knowledge about run-time entities to

a minimum, thereby gaining �exibility and discarding safety.

At the other end of the spectrum we have a language like Pascal, where the

strict typing of all entities ensures that the information about the structure of

a given entity is propagated at least as far out into the source code as that kind

of entity itself. This approach insists on complete static information about all

accessed entities, thereby guaranteeing safety, but paying for it with a vastly

increased network of program part interdependencies.

The complexity of global interdependencies tends to grow faster than pro-

portionally when systems get larger, so the cost of maintaining complete static

information gets gargantuan with complex systems. Moreover, each global con-

cern has to be considered again in every new context where it is injected, so a

module which carries a global concern with it may be a very heavy burden if it

is to be integrated into a large system.

1

Self has an even more radical separation in principle, but the very sophisticated com-

pilation techniques reintroduce many globally scoped interdependencies; similar phenomena

probably occur with highly optimizing modern implementations of Smalltalk.
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Statically type checked object-oriented languages support the notions of sub-

typing and polymorphism, i.e., an attribute may have the safety invariant that

it always refers to an entity of a given type, and a type may be de�ned to include

objects which are instances of a given class or any of its subclasses, so a given

name may give access to various di�erent but related kinds of entities. This

allows for intermediate trade-o�s, where the static information about a given

entity is not completely generic like in Smalltalk, and not rigidly complete like

in Pascal.

An important reason why it is su�cient in many cases to have incomplete

information about the structure of an object is that di�erent method imple-

mentations may perform a range of actions with the same �meaning� using late

binding. So, polymorphism and late binding play together to make unknown

parts of an object structure useful�or to allow useful parts of an object struc-

ture to be unknown.

However, that approach can only be used as long as there is a way to express

the desired interaction with a given object in terms of some sequence of invo-

cations of methods which are known to be supported. The situation is di�erent

if we do not know exactly what object to use, such that we cannot invoke the

desired method before we have found a suitable object. Similarly, we may need

to obtain additional information because an object which is already at hand

might support certain methods that we need to use. Note that this discussion

is not about subversion of information hiding and ADTs (abstract data types),

it is about retrieving information which is �public� and relevant, but currently

unavailable in the given context.

In particular, for a method M to be invokable at all on a given object O,

there must exist a reference to O somewhere in the program execution whose

statically known type includes knowledge about that method M (note that this

might also be a this/self reference, possibly implicit). Whether or not there

exists at least one reference to a given object with a given type is a global

consideration�just like garbage collection, which is concerned with a similar

question. It is well-known that the global strategies which are needed in order

to manage memory reclamation when garbage collection is not available�for

instance conventions about �ownership� of objects�are the cause of a severe

increase in overall system complexity and interconnectedness.

A typical example where it is hard to maintain the complete static knowledge

about an object is when it is stored together with similar objects:

(# vehicle: (# : : : #);

car: vehicle(# : : : #);

bus: vehicle(# : : : #);

theCompany: @

(# theVehicles: @list(# element::vehicle #);

findBus: (# theBus:

^

bus do : : : exit theBus[] #)

#)

#)

Ex.

9-1

The challenge in this example is to write the implementation of the findBus

method, which is supposed to deliver the identity of some buswhich is associated
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with theCompany. The vehicles which are associated with theCompany are

conceivably acquired over a long period of time and under various di�erent

circumstances, and it is consequently hard to keep track of where each vehicle

came from and what kind of vehicle it is. This is an example where it is tempting

to throw away static knowledge about each individual vehicle, and that is

exactly what we are doing if those vehicles are only stored in theVehicles, as

in the example above. In that case, we cannot implement findBus because there

is no readily available reference to such a bus which has bus as its statically

known quali�cation, and indeed there may not exist such a reference at all. We

consider several solutions below, some of which will use more than one attribute

in place of the single list called theVehicles above.

It is possible to introduce a virtual method returnThisIfBus in vehicle

and implement it such that it delivers the identity of the object quali�ed as a

bus if it is a bus, and delivers NONE otherwise. That is a bad solution for two

reasons. One reason is that this style in general requires changes to vehicle

whenever we add a new subpattern X of vehicle that we might want to call

such a returnThisIfX method on. This is a global dependency loop because

it makes vehicle depend on all its subpatterns in the general case. Another

reason is that this amounts exactly to a manual reconstruction of the type casing

mechanism that we are considering�if we really need returnThisIfX methods

then it would be better to add support for type casing, which does not cause

additional global dependencies.

An alternative strategy could be to introduce separate lists of buses and of

other vehicles, but that would only work until we need a getCarmethod, then

we would need to maintain a list of buses, a list of cars, and a list of other

vehicles. We could put each kind of vehicle into a separate list, but then we

would need to change theCompany every time a new subpattern of vehicle was

added�exactly one of those global dependencies that we want to avoid.

To conclude, it may be a noble goal in the name of safety and correctness

to preserve full static knowledge about all run-time entities somewhere in the

system, and even maintain enough knowledge to know where to go to �nd a

reference which o�ers su�cient static information for a given purpose. But we

do not think that this is realistic in large and complex systems, or it will incur

severe disadvantages in terms of increased complexity. The complexity cost

can even be disproportionately large�if a module is to be reused in a complex

system then any global concerns that it carries with it (such as keeping track

of the number of references of a certain kind) will tend to be as complex as the

total system to maintain, not just as complex as the module.

Finally, the tendency to lose static information about objects over time is

of course aggravated even more if the scope in time or space is widened, for

example for objects which are stored in a database and retrieved in the execution

of another program, or objects which are exchanged or just accessed across a

network.

Hence, it is sometimes justi�ed to recover information about the type or

structure of run-time entities, i.e., to do type casing.
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9.1.3 How to Make Type Casing Safe

Beta supports a very general notion of type casing, in addition to the un-

safe reference assignments, because patterns are �rst class values which can be

obtained from many kinds of attributes and compared:

1 findBus:

2 (# theBus:

^

bus

3 do theVehicles.scan

4 (#

5 do (if current## <= bus## then

6 current[]->theBus[];

7 leave findBus

8 if)

9 #)

10 exit theBus[]

11 #)

Ex.

9-2

This pattern is a possible implementation of the findBus pattern from the

previous section, and it should be understood in that context. It uses a few

constructs which are characteristic of Beta standard libraries. We will explain

the overall e�ects of executing this method, but not go into details about how the

Beta standard libraries are implemented. We hope that this will be su�cient

to make the example comprehensible also for those who have no experience with

the Beta libraries.

All the vehicles in theCompany are stored in the list called theVehicles,

so we must iterate over all the elements in that list in order to �nd a bus.

That is the e�ect of executing theVehicles.scan(#..#), line 3�9; scan is a

control structure pattern supporting iteration that is de�ned for all lists. The

most speci�c do-part of the control structure, line 5�8, is executed once for

each element in the list, and in each iteration the variable object attribute

current refers to the currently visited element. Hence, the if imperative will

be executed once for each element of the list.

With each current element it is tested, line 5, whether or not it is an

instance of a pattern which is less-equal than bus, and if that is the case then

the identity of that object is reference assigned to theBus, line 6, the iteration

is terminated, line 7, and the result is returned via theBus, line 10.

The only problem with this approach is that it is not safe. The test for

the pattern relation and the reference assignment are separate actions, so there

might be another thread which modi�es current between the test and the

assignment, and then the assignment might cause a quali�cation error even

though that is exactly what the test is there to prevent. It would indeed be a

contrived program where that would actually happen, but type checkers cannot

assume that programs are non-contrived. They would not have any idea about

contrivedness either, of course.

Consequently, it is necessary to generate a dynamic quali�cation check in

the reference assignment, and emit a warning that it might fail at run-time.

There are a signi�cant number of tests of this kind in the Beta program

which implements gbeta (more about this program in Chap. 11), and it is a
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recurrent source of irritation that the �real� quali�cation checks (which are con-

sidered bugs that should be removed) sometimes slip by unnoticed because all

these �safe� constructs cause so many warnings.

This creates a strong motivation for adding a construct which is actually

safe, and which is recognized by the static analysis such that the semi-spurious

warnings can be avoided. Luckily, this is no problem.

The when imperative was added to gbeta in order to solve this problem. It�

is used in the following way, in a modi�cation of the previous example which

does the same thing, only safely:

1 findBus:

2 (# theBus:

^

bus

3 do theVehicles.scan

4 (#

5 do (when it: current

6 // bus then it[]->theBus[]; leave findBus

7 when)

8 #)

9 exit theBus[]

10 #)

Ex.

9-3

The if imperative is now replaced by a when imperative, line 5�7. This syntactic

construct, WhenImp, resembles the construct GeneralIfImp, as it can be seen in

the full grammar for gbeta in App. A. Both have a structure similar to case or

switch statements in other languages.

Just after the keyword when in line 5 there is a name declaration, named it

in the above example. This declares the name which will be accessible under

the given quali�cation of each case (marked by //) inside the when imperative.

It is an object attribute, and not a variable one, so it cannot be made to denote

any other object during the execution of the when imperative. Let us call the

object that this name denotes the target of the when imperative, and let us call�

each AttributeDenotation which occurs after // the guard of that case.�

The execution proceeds as follows: First an object is obtained by looking

up the AttributeDenotation which is just after the colon (current, line 5, in the

example); then the target name (it, also line 5) is bound to that object�it

becomes the target; then the cases, each starting with //, are tested one by one

in source code order, until the �rst time where the test succeeds; a test succeeds

iff the pattern of the target is less-equal than the pattern of the entity denoted

by the guard (bus, in the example); when a test has succeeded the Imperatives

just after the then are executed, and the remaining parts of the when imperative

are skipped. If all tests fail and there is an ElsePart then that is executed; if

all tests fail and there is no ElsePart then no cases are executed, and no error

is raised.

The Imperatives in each case are analyzed statically in an environment where

the target is assumed to have a pattern which is less-equal than the Attribute-

Denotation that it was compared against, and that is of course safe because that

piece of code is only executed when that is true. Note that it is essential for

the soundness of the analysis that the target can not be reference assigned, and
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that it will therefore denote the same object for the entire duration of the when

imperative.

There is also a case variant, marked by //=, where the pattern match must

be exact. The run-time semantics and static analysis are modi�ed accordingly

for such a case. Note that the usage of //= on an object will mark it such that

it cannot thereafter be dynamically specialized.

9.1.4 Non-static Type Casing

It might seem that type casing by nature is concerned with the test for appli-

cability of static information, and nothing beyond that.

This is actually not true with the gbeta when imperative, because the seman-

tics is to compare the actual (run-time) pattern of the target with the actual

pattern of each guard. This makes a di�erence in that it is possible to obtain

knowledge about the relation between two patterns without necessarily knowing

any of them exactly during static analysis. For example:

1 transferAppropriate:

2 (# src,vardst:

^

list

3 enter (src[],vardst[])

4 do (# dst: @vardst

5 do src.scan

6 (#

7 do (when elm: current

8 // dst.element then elm[]->dst.append

9 when)

10 #)

11 #)

12 #)

Ex.

9-4

The pattern transferAppropriate is a procedure which takes two lists as

arguments, src and vardst, and inserts some elements from src into vardst,

namely exactly those elements which can be inserted into vardst without vi-

olating the quali�cation constraint. Like a few times earlier, this example is

easiest to understand for those that already know the Beta standard libraries,

but it works as follows: The virtual pattern element is used as the quali�ca-

tion of all attributes in list which are supposed to refer to an element in the

list. In particular, it is used for the arguments to methods such as append,

which will add its argument as a new element at the end of the list. The pat-

tern src.scan(# : : : #), line 5�10, will iterate through all elements of src as

usual, and the when target elm, line 7, is the currently visited element, which

is appended to the second argument list iff it has an appropriate pattern.

As a technicality, we need to obtain a non-variable attribute which denotes

the object referred by the second argument, vardst. This is obtained by using

an extra object, described by the outermost MainPart, line 4�11, in the do-part

of transferAppropriate, and declaring an object attribute dst, line 4, such

that it denotes the object referred by vardst just after transferAppropriate

is invoked. The when imperative then uses dst; if it had used vardst directly

then the invocation of append would have been unsafe, and a warning would
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have been emitted. Note that a virtual object attribute (described in Sect. 9.3)

could also have been used to obtain a non-variable denotation of the second

argument, but that would cause a syntactic overhead at each call site and provide

some extra constraints that we do not need here, so we preferred the more

encapsulated approach in this case.

The method transferAppropriate is type safe, and it is polymorphic across

all combinations of specializations of list. This is an example where the type

casing construct does not reduce the �exibility or reusability of the source code.

In contrast, it provides a type safe polymorphic functionality which cannot be

matched by any of the languages where the support for dynamic type tests

has been excluded from the run-time system�such as Cecil or GJ�and even

if support for dynamic type tests were added to those languages then this par-

ticular kind of polymorphism could not be supported without the addition of

existential types or another mechanism which would make it possible to even

have a polymorphic reference to lists of all kinds. With the approach based

on parametric polymorphism (and F-bounds, or not, that makes no di�erence),

no such polymorphic reference can exist, because there is no subtyping relation

between list[P] and list[Q] when P < Q.

9.2 Lower Bounds on Virtuals

A lower bound on a virtual attribute allows for more control over that �ne

balance between two incompatible dimensions of freedom which is characteristic

of virtuals. A virtual attribute provides the programmer with a very valuable

freedom, namely the freedom to elaborate on a pattern attribute, for instance

in order to de�ne a method in an abstract pattern and then implement that

method in various concrete subpatterns; or in order to parameterize a pattern

with a class, for instance the element attribute in list which is the quali�cation

of elements contained in the list. However, a virtual attribute also reduces the

freedom of programmers (who want to write type-safe code), because a virtual

pattern generally varies along with the pattern of the enclosing object, i.e., it

is covariant, and this means that it cannot be used in a contravariant position.

For example, if an object is only statically known to be an instance of list or a

subpattern of list then we cannot insert new elements into the list, because

the actual quali�cation could be any subpattern of object, i.e., any pattern

whatsoever.

Virtual attributes are generally known either by upper bound or exactly. A

virtual attribute is introduced with a declaration like v:< p, may be further-

bound a number of times with declarations like v::<q, and it may be �nal-

bound with a declaration like v::r. Virtual introductions and further-bindings

provide upper bounds, only. A �nal binding provides both an upper bound and

a lower bound and thereby freezes the virtual attribute to be one particular

pattern (at least if all the declarations for that virtual gave contributions which

are compile-time constant patterns, but not, e.g., if the virtual is �nal-bound

to an open virtual). The static knowledge is in all cases either an upper bound
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(so it may be any pattern less-equal than the bound), or it is a �xed pattern.

An explicit lower bound on a virtual can help establishing a more �exible

limit on the covariance than the entirely frozen limit of a �nal-binding, and it

is at the same time more strict than the upper bound alone. This makes it

possible to ensure type safety in cases which would be hard to handle without

this tool. To give a concrete example we will need a few patterns; the central

pattern for this example is shown in Fig. 9.1. It is the pattern ordered, which

is used to represent values which are organized into some total order relation.

This example is a variation of a Cecil example given in [64]. This example has

already been discussed in Sect. 4.4, but there are additional aspects now.

One of the main topics of this example is the notion of binary methods, �

namely methods which take an argument of the same type as the receiver of the

message. This is hard to handle if it is combined with subtype polymorphism,

because it is then typically only known that the two involved objects have types

T

1

and T

2

which are less-equal than a given upper bound T , and that says

nothing about whether or not T

1

= T

2

. Assuming that all combinations of

T

1

and T

2

are acceptable we may just choose the most speci�c type T

0

such

that T

1

� T

0

and T

2

� T

0

and then execute the method which expects two

arguments of type T

0

. That is exactly what multi-methods like in Cecil will

do, so the use of a multi-method is one possible solution to the problem of

handling binary methods safely. This approach will of course not work if it is

required that T

1

= T

2

. Other approaches discard the subtyping polymorphism,

but retain the potential for implementation inheritance by separating subtyping

and inheritance (which is in this case called matching [16]).

Binary methods have been treated in several contexts, for example [16, 14,

15]. Usually they are concerned with the case where two arguments to a proce-

dure must be of the same type, or the receiver and an argument of a message

must be of the same type. This can for example be made type safe by ensuring

that the exact type of both of the involved objects is known; with matching this

is achieved by removing the support for subtype polymorphism. In this context

we widen the concept such that the acceptable pairs of arguments must be in

the same family of patterns, i.e., some combinations of di�erent patterns are

acceptable whereas others are not.

The pattern ordered uses the virtual attribute cmpType to de�ne the pat-

terns which are expected to be known for comparisons. Initialization of instances

of subpatterns goes into further-bindings of init. Comparisons are supported

by the method lessEqual, and it is possible to select of the greater of two

ordered objects using the method max. Finally, the method asString makes it

possible to obtain a string which describes the given ordered object.

The virtual pattern cmpType deserves closer consideration. Inside ordered,

this attribute is not known exactly, but it is intended to be known exactly

from the outside, when actual instances are to be compared. There will be

a �nal bound on it in these cases. However, since cmpType is an open vir-

tual as seen from inside ordered, we would not be able to implement the

max method safely without the lower bound on cmpType. Assume that this

lower bound were removed; in that case the reference assignment in line 12,



184 CHAPTER 9. IMPROVING THE STATIC ANALYSIS

1 ordered:

2 (# cmpType:< ordered :> this(ordered);

3 init:< (# do INNER exit this(ordered)[] #);

4 lessEqual:<

5 (# other:

^

cmpType; b: @boolean

6 enter other[] do INNER exit b

7 #);

8 max:

9 (# other,maxi:

^

cmpType

10 enter other[]

11 do (if other[]->lessEqual

12 then this(ordered)[]->maxi[]

13 else other[]->maxi[]

14 if)

15 exit maxi[]

16 #);

17 asString:< (# s: @string do INNER exit s #)

18 exit this(ordered)[]

19 #);

Figure 9.1: The pattern ordered relies on a virtual lower bound

this(ordered)[]->maxi[], would not be type safe, because the quali�cation

of maxi (which is cmpType) could be any pattern less-equal than ordered.

Now consider the situation where cmpType has this(ordered) as a lower

bound, such as the example is actually written in Fig. 9.1. The lower bound

has no run-time semantics, it is only a restriction which makes some programs

illegal (which is unusual for a gbeta construct). The e�ect of the lower bound

on the analysis is two-sided. Firstly, the analysis is allowed to assume that

the lower bound is respected whenever the pattern cmpType is used�so it is

safe to reference assign this(ordered) to maxi because the quali�cation of

maxi by the lower bound is guaranteed to be greater-equal than the pattern of

this(ordered). Secondly, in every pattern that inherits cmpType it is checked

that any new upper bounds, which are applied to cmpType by further- or �nal-

binding declarations, are actually compatible with the given lower bound. In

other words, no matter what happens to cmpType it must remain a superpattern

of the pattern of its enclosing object. Of course, that is exactly what is needed

in order to ensure soundness of the abovementioned assumption which is made

wherever cmpType is used.

The intention with cmpType is that it should present a well-de�ned partial

view of instances of subpatterns of ordered. This is exactly what the lower

bound says, and we expect that this may be a quite useful feature in practical

programming.

In the concrete example we use it to make comparisons between certain
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ordered objects type safe and to detect and reject all other comparisons. To

do this we divide the subpatterns of ordered into families. The members of

these families should be comparable freely and safely amongst each other, but

members of di�erent families should not be compared, and there should be a

compile-time complaint if anybody tries to do such a thing. The families we

will consider are the one-member family text, and the family of number and

its two subpatterns int and float. The source code for these will be shown

below, but let us �rst consider a seemingly natural approach and explain why

it can not be done in that way.

As explained in [64], a simple approach would be to let the quali�cations

of the arguments to lessEqual and max be ordered in stead of cmpType, thus

removing the need for cmpType entirely:

ordered:

(# init:< <<as in Fig. 9.1>>

lessEqual:<

(# other:

^

ordered; b: @boolean

enter other[] do INNER exit b

#);

max:

(# other,maxi:

^

ordered

enter other[] do <<as in Fig. 9.1>> exit maxi[]

#);

asString:< <<as in Fig. 9.1>>

exit this(ordered)[]

#)

Ex.

9-5

With this design we can actually implement max safely, but lessEqual could

then be called with arbitrary ordered objects, so this would require that we

either choose a way to compare a number and a text, or that lessEqual imple-

ment certain comparisons, for instance of two numbers, and raise an exception

in the remaining cases, such as comparing a number and a text. In the �rst

case we would have to implement meaningless or contrived comparisons, and

that was exactly one of the things we wanted to avoid. In the second case we

would have to expect potential run-time errors at every comparison, and that is

of course not desirable. In other words, this simple approach is not appropriate.

Hence, in the following we will assume the de�nition as it appears in Fig. 9.1.

The de�nition of the text pattern which forms the �rst family all by itself

is as follows:

text: ordered

(# cmpType::text;

init::(# enter value #);

lessEqual::(# do (other.value<=value) -> b #);

asString::(# do value->s #);

value: @string

#);

Ex.

9-6

This de�nition of text �nal-binds cmpType to text, thereby making it possible

to safely compare instances of text or a subpattern of text with each other.



186 CHAPTER 9. IMPROVING THE STATIC ANALYSIS

Moreover, the virtual methods are implemented such that text can be used as

a concrete class. The other family is rooted in number:

number: ordered

(# cmpType::number;

lessEqual::(# do (other.asReal<=asReal) -> b #);

asReal:< (# r: @real do INNER exit r #)

#);

Ex.

9-7

Again, cmpType is �nal-bound to number in order to make all numbers compa-

rable. We introduce the method asReal which is needed in the implementation

of lessEqual; this implementation assumes that conversion to and comparison

as real values is appropriate for all kinds of numbers. Other choices might be

better, but this is simple and not unreasonable. The other members of the

family are int and float:

int: number

(# init::(# enter value #);

asString::(# do '<anInt>'->s #);

asReal::(# do value->r #);

value: @integer

#);

float: number

(# init::(# enter value #);

asString::(# do '<aFloat>'->s #);

asReal::(# do value->r #);

value: @real

#)

Ex.

9-8

These patterns just add implementations of various methods. With all these

patterns in place we can begin to use some ordered objects. The following

MainPart is assumed to be in a context where ordered and its subpatterns are

available:

1 (# t1,t2:

^

text;

2 n1,n2:

^

number;

3 r: @real

4 do

5 'Hello, '->(&t1).init;

6 'world!'->(&t2).init;

7 (if t1->t2.lessEqual then t1.asString->puttext if);

8 (t1->t2.max).asString->putline;

9 3.14159->float.init->n1[];

10 4->int.init->n2[];

11 (n1->n2.max).asReal->r

12 #)

Ex.

9-9

In this example, a couple of texts and numbers and an auxiliary attribute are

declared in line 1�3. In line 5 and 6 the two variable texts are renewed and

initialized with the two literal strings. The two texts are then compared in line

7 and the string value of t1 is printed if t1 is less-equal than t2 (and it is).

Next, the greater of the two texts is selected by max, and the string value of

that text (which is 'world!') is printed; that was line 8.
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In line 9, a new float object is created and initialized with a �-like value,

and n1 is made to refer to that float; similarly, line 10 creates a new int

object and initializes it with the integer value four. Finally the greater of the

two numbers is selected using max in line 11, and the real value of that number

is assigned to the auxiliary r.

In [64] it is explained how F-bounded polymorphism can handle this example.

With F-bounded polymorphism it is possible to let ordered be a parameterized

class whose type argument is used in F-bounds, like in this Pizza example:

interface Ordered<T> {

bool lessEqual(T other);

T max(T other);

};

class Text implements Ordered<Text> {

bool lessEqual(Text other) { : : : };

}

class Number implements Ordered<Number> {

bool lessEqual(Number other) { : : : };

}

Ex.

9-10

This does enable instances of Text to be compared to each other in a type safe

manner. It also allows subclasses of Number to be de�ned and instances thereof

compared, and it does make it a static error to compare a Text and a Number, as

desired. The implementation of the max method could not be given in Ordered

in Pizza because Ordered is an interface, but it can be given at the abstract

level in Cecil:

forall T where T isa Ordered[T]:

method max(x:T, y:T): T { if x>=y then x else y }

Ex.

9-11

In Cecil, methods can be de�ned as in�x operators like `>=', so the expression

x>=y corresponds to an invocation of greaterEqual in the other languages. This

implementation is type safe because the compiler will only accept invocations of

max with such arguments where there is a type T to which the actual arguments

are known to conform and such that T is less-equal than Ordered[T].

To summarize, both gbeta and Cecil have the ability to safely support inter-

family comparisons for di�erent families of subpatterns of ordered, respectively

instantiations of Ordered[T], and at the same time statically detect attempts to

compare across families. Moreover, this happens in a way that allows a type safe

implementation of such a method as max which is shared between all ordered

objects�without that constraint there would not be much of a challenge be-

cause each family could then be implemented from scratch as unrelated class

hierarchies, with a syntactically identical implementation of max in the root of

every family.

The most important di�erences are that Cecil infers better return types

for max, and gbeta allows for a more complete kind of dynamic polymorphism.

For the �rst issue, Cecil will infer that the maximum of two float objects is

again a float,

2

whereas gbeta will only have a return type of number. This

2

If Ordered[T] is declared to be contravariant in T, as explained in [64, p. 401].
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di�erence is caused by the fact that Cecil uses uni�cation of actual arguments

with formals at every call site in order to infer type arguments, whereas gbeta

uses virtual attributes for type parameterization. This is discussed in more

detail in Sect. 9.3. On the other hand, gbeta supports polymorphic access to

ordered objects:

(# o:

^

ordered

do (if : : :

then 3.14159->float.init->o[]

else 'world!'->text.init->o[]

if);

o.asString->putline

#)

Ex.

9-12

This would not be possible in Cecil (or any other approach based on F-bounded

polymorphism or simple type parameters), since it is not possible to have an

attribute which is capable of referring to all instances of Ordered�the problem

is that Ordered is not a type but a function from types to types, so it cannot

be the type of a reference.

9.3 Virtual Objects

Virtual objects were originally invented by Mads Torgersen, and he developed

the idea in his progress report [112]. We have adopted this concept in its original

form and given it a precise semantics that �ts into gbeta. Virtual objects turned

out to solve a longstanding problem in the type systems of both Beta and

gbeta: Without virtual objects, neither Beta nor gbeta can handle methods

with arguments or returned results whose types are polymorphic and depend

on each other. Virtual objects support these cases in a general way, even though

the syntax is more verbose than what one might expect or desire for a parameter

passing mechanism. There may also be other bene�cial uses of virtual objects,

but we have not had the time to experiment with them so this treatment will

concentrate on the parameter passing viewpoint.

Section 9.3.1 explains why languages like Beta and gbeta are not optimized

for implementation reuse as thoroughly as some other languages; this is the

core of the motivation for introducing virtual objects. Section 9.3.2 presents

one speci�c problem where the need for improvement in the support for imple-

mentation reuse is particularly evident, namely the problem of handling method

signatures with interrelated type variables. It is explained why this is inherently

di�cult to do in languages like Beta and gbeta. Finally, Sect. 9.3.3 shows how

parameter passing by means of virtual objects handles the problem.

9.3.1 Functional Languages and Implementation Reuse

The Hindley-Milner style types [92] which are used in functional languages such

as Haskell are particularly convenient for giving examples of signatures where

di�erent argument and result types may be chosen rather freely but only in ways
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which exhibit certain patterns of relations between the types. For example,

consider the standard function map which takes a function f and a list l as

arguments and returns another list containing the images by f of the elements

in l. This function has the following type:

8�; � : (�! �)! [�]! [�]

This type speci�es that map can be applied to any function f and list l for which

there exists a choice of values for the type variables � and � such that f is a

function from � to � and l is a list of values of type �; the result is then known

to be a list of values of type �. Wherever map is used, the type analysis will

combine the above type of map with the types of nearby expressions by means of

a uni�cation process which determines how (and if) it is possible to consistently

choose values for all the type variables [92].

This approach enables a type safe reuse of a given function implementation

for all those types of arguments where a choice of values for type variables is

possible, i.e., for all those types of arguments which are known to have a certain

minimal top-down structure. The implementation of map will work correctly no

matter what structure the elements in the list have, it just has to be a list of

something, and the function argument can be called on arbitrary values as far

as map is concerned. There are some internal relations between the arguments�

that the function argument type � must be the same as the type of the elements

in the list, and that the result type [�] can be computed from the function type

� ! �. These internal relations are irrelevant for the implementation of map,

but the consistent use of such internal relations in composite types allow for

very well-studied and solid type correctness properties for programs as a whole.

In this tradition, the highest priority is given to reusing function implemen-

tations as widely as possible. For example, there should only be one map function

which would then be reused for all the possible choices of values for type vari-

ables. The map function will actually work just �ne in all those cases, and having

several structurally identical implementations of the map functionality�e.g. one

for each choice of type variables�would be confusing and redundant. The ideal

is that programming language entities such as functions should be pure struc-

ture, purely transparent, carrying no other properties than the minimum which

is derived from the language semantics. So for example, the �meaning� of map

is just to apply a function to all elements in a list, no less and in particular no

more.

The natural consequence is that structural type equivalence is considered

�correct� in the functional language community, and anything else is seen as a

compromise which must be rooted in performance considerations or sheer bad

judgment; types should be computable (if we have a function type and a list

type then we can take them apart and recombine the elements to make another

list type); and the structure of composite values should not be taken to mean

anything but that structure, and we can of course take composite values apart

and recombine them any way we like. We might use the phrase `no nonsense'

to describe this mindset, noting that the nonsense is everything beyond the
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operational semantics of the language. Functional languages are really very

well optimized along these lines, and the topic of virtual objects is all about

obtaining some of the bene�ts of this approach.

However, gbeta has grown out of an entirely di�erent mindset. In the gbeta

approach the highest priority is given to how well the programming language

will support programmers in the construction of complex systems. We are less

concerned with the fact that a given implementation may be redundant in a

purely operational, semantic sense�the implementation should not play such

a dominant role. In contrast, we �nd it important to support programmers

in the construction and use of program entities based on an understanding

of the role and purpose of those program entities which goes far beyond the

narrow semantic properties and into the minds of people. Hence, a composite

entity is more than the sum of its parts. The programming language should

support programmers in thinking about composite entities as meaningful in

and of themselves and containing parts that make sense in their context, rather

than thinking about composite entities as arbitrary conglomerates whose parts

may be repackaged freely into other conglomerates.

Consequently, languages like Beta and gbeta are actually quite poorly op-

timized for a consistent and ubiquitous exploitation of opportunities for im-

plementation reuse based on purely structural and operational similarities. A

typical example where this seems to create problems is with container data

structures such as lists and sets. The problem is that these languages insist

that a list-of-integer pattern must have its own unique identity, di�erent

from any other list-of-integer pattern which happens to be de�ned by some

other possibly syntactically identical declaration. As far as both are simply con-

sidered as lists of integer objects without any further meaning, this is a clear

example of harmful and confusing redundancy, and it is inconvenient in large

projects to have to standardize on using one particular declaration in order to

avoid having several type-incompatible list-of-integer patterns.

However, in practice this does not seem to be a problem, because the generic

list functionality can be implemented as methods on the generic list pattern

and the concrete lists tend to be used only very locally in the implementation

of other patterns which do actually carry a meaning of their own. It seems that

�meaningless� concepts such as list-of-integer should preferably be kept hid-

den inside the implementation of meaningful patterns, because the requirement

that an entity be meaningful becomes ever more urgent the larger the universe is

where it is intended to be known and used. This means that it is not a problem

in practice that two list-of-integer patterns are distinct, because there will

not be any source code which uses both of them. Hence, we do not intend to

change or complicate the design of gbeta in any profound way in order to pro-

vide structural equivalence between (some) patterns. Besides, container data

structures seem to be an exception where structural equivalence is �obviously�

desirable, other examples come up rather seldom and seem less compelling.

There is another case where the need to improve on the support for imple-

mentation reuse in gbeta is more acute. This case is in some sense inverse to

the problem of excessive uniqueness of container data structures�we might say



9.3. VIRTUAL OBJECTS 191

that a structural equivalence on container data structures would allow us to use

many di�erent entities in the same context, but this improvement is about al-

lowing one entity to be used in many di�erent contexts. The problem is that the

static analysis and the run-time semantics of Beta and gbeta do not support

the capture of regularities such as the multiple occurrences of a type variable in

a Hindley-Milner style polymorphic type, and hence it is hard to write routines

which are parametrically polymorphic in the same sense as the map function in

a functional language. The next section will detail why this is a hard problem

in Beta and gbeta and outline some partial solutions.

9.3.2 Interrelated Types In a Method Signature

The map function mentioned in the previous section is actually a good example

of interrelated types in a signature, but the creation of a list of elements of type

� (which was the result type for the function argument) requires structural type

equivalence in order to be useful; otherwise the returned list could not be ac-

cessed as a list of elements of type �, only as a list of bare objects, because

the actual pattern of the result would be known only inside the implementation

of map. Hence, we will consider an example which does not �repackage� compos-

ite entities into other composite entities. As explained, this is something that

gbeta is not optimized for.

Let us assume that we want a generally applicable procedure which can

extract an element from a list. This problem is simple and still requires the

handling of polymorphically interrelated types which is hard in Beta and gbeta.

We can easily create a partial solution to this problem with a procedure which

uses subpattern polymorphism to handle all kinds of lists:

getElement:

(# theList:

^

list;

theElement:

^

object

enter theList[]

do theList.first.elm[]->theElement[]

exit theElement[]

#)

Ex.

9-13

This procedure receives theList as an argument and then uses the method

first to extract the �rst element from the list. In the standard Beta list

we have to access the elm attribute of the result returned by first to get hold

of the element itself, so we do that; the element is then reference assigned to

theElement so that we can deliver it as the result of getElement.

This design is type safe and it will actually deliver an element from the

list as desired (ignoring possible errors such as `List is empty'). The problem

with this design is that it needlessly throws away static information about the

properties of the element: If we use getElement to extract an element from a

list of integer objects then the result will certainly be an integer, but the

static analysis will claim that we only know that it is an instance of object or

a subpattern. Since statically provable information about run-time entities is a

valuable resource it is important to try to avoid such a loss.
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One way to do this is to have a separate copy of getElement for each spe-

cialization of list. Note that this is exactly what we do�even though there

is only one copy of the syntax�if we change getElement from a (stand-alone)

procedure to a method of list:

list:

(# element:< object;

: : :

getElement:

(# theElement:

^

element

do first.elm[]->theElement[]

exit theElement[]

#)

#)

Ex.

9-14

Since a method of a list object depends on that list it is possible for the static

analysis to retain the information about the quali�cation of elements in that

particular list, so getElement on a list whose element attribute is known

to be integer would be known to deliver an integer, not just an object.

This technique uses contextuality to remove the need for the equivalent

of call-site instantiations of parametrically polymorphic functional types like

8� : [�]! �, and it may be applicable in many cases. It is also speci�cally ob-

ject oriented because it builds on context dependency as opposed to parameter-

ization. However, it does not provide us with genuine parametric polymorphism

because all those getElementmethods, one in each list, would be distinct and

non-interchangeable both in the static analysis and in the dynamic semantics.

In a functional language we could actually have one single function with the

type 8� : [�]! �, and that function could be used for all choices of �. For sim-

ple calls it makes little di�erence whether we have many distinct getElement

methods or just one getElement procedure, but if we wanted to get an element

from many lists and getElement were a method then we could not obtain one

single getElement run-time entity and reuse it with all of those lists.

There is a profound reason why such a polymorphic entity could not be

created in an imperative language such as Beta or gbeta. The reason is that

functional languages use immutable bindings of names to values whereas Beta

and gbeta use destructive assignments to variable entities. Because of this, it

is actually possible to view the type analysis and type inference of functional

languages as a ubiquitous data �ow analysis which delivers the results in the

form of types of functions. It does not exactly determine the �ow of data, but it

does establish some connections between the types in type variable expressions

which can only be proved because the �ow of data is so restricted.

In the functional equivalent to our getElement procedure the type system

knows that the returned element is of type � for such an � that the argument is of

type [�], which almost amounts to knowing that the element actually came from

that list; in the Beta and gbeta approach it is only known that every operation

respects all safety invariants (in particular that a variable object conforms to its

quali�cation). Hence, as far as the type checker is concerned there is absolutely

no way we could use knowledge about the object referred by theList to conclude
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anything about the object referred by theElement. This is indeed a necessary

restraint because the language allows multiple destructive assignments to both

theList and theElement, and it would simply be unsound to assume anything

beyond the respect for safety invariants. Hence, if we want the type system to

prove that a call to getElement returns an integer then we must ensure that

the quali�cation of theElement is integer�there is no other way. This again

means that it cannot be the same pattern as one which provably returns, say, a

string.

In the next section we will describe how virtual object attributes provide a

solution to the original problem of handling call-site speci�c parameter/result

type interdependencies, in spite of the fact that there is no way we could use

the exact same pattern at all those call sites.

9.3.3 Virtual Object Attributes

It is clear that we would not�without fundamental design changes in the

language�be able to create a single pattern which would exhibit the parametric

polymorphism that allows it to provably return an integer when used in one

context and a string when used in another context. In other words, patterns

cannot exhibit parametric polymorphism in the sense that a function in, e.g.,

Standard ML does it. We should mention that the combination of mutability

and parametric polymorphism is not supported in the functional languages ei-

ther; one example is that methods in Objective CAML must be monomorphic,

so for example the polymorphic function map could not be a method without

being restricted to one particular choice of values for the type variables.

Hence, we must be prepared to create a distinct pattern at each call site.

Moreover, we need to have a mechanism that allows us to declare that a given

object (theList) will be available, such that it can be used in the implemen-

tation (of getElement), and we need to ensure that this object attribute is

non-variable. An ordinary object attribute would have exactly these properties,

but since it is immutable it does not work as a parameter�there is no way to do

parameter passing at the call site. The notion of a virtual object attribute solves �

exactly this problem by providing an object attribute which can be introduced

and used in the implementation and �nal-bound to an actual object in a subpat-

tern, i.e., at each call site. For example, we can de�ne a version of getElement

which receives its theList argument using a virtual object attribute:

getElement:

(# theList:< @list;

theElement:

^

theList.element

do theList.first.elm[]->theElement[]

exit theElement[]

#)

Ex.

9-15

A virtual object is declared with the same syntax as a virtual pattern, except

that an `@' sign is added to make the new attribute kind di�erent from all others

and yet make it similar to an ordinary object attribute declaration. There is
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no further-binding declaration, but there is an introduction declaration marked

by `< @' (e.g., `theList:<@list'), and a �nal-binding declaration marked by

`: @' (e.g., `theList::@myIntList'). When a virtual object parameter is to be

passed at a call site it must be done by means of a �nal-binding of that virtual

object:

(# myIntList: @list(# element::integer #);

i:

^

integer

do getElement(# theList::@myIntList #) -> i[]

#)

Ex.

9-16

There are some disadvantages with this parameter passing mechanism. It is

signi�cantly di�erent from�and more verbose than�the usual AssignmentEval-

uation based parameter passing style. The parameters are identi�ed by name

and not by position, so the type analysis will not warn you if you ought to

give three arguments and forgot one of them. It is a non-trivial design question

whether it should be considered an error to create an instance of a pattern that

has one or more virtual objects without a �nal bound. To make it an error

would seem to improve the support for automated bug-detection. However, it

would also be a serious fault in context of the general style of Beta and gbeta

where there are no �abstract� entities, so for example it is possible to create

an instance of any pattern whatsoever. If it were made an error then it would

make the language unsafe, because there are so many cases where an entity ac-

cess is subpattern polymorphic that it would make practically every statement

a potential run-time error if some patterns could not be instantiated. Conse-

quently, we decided to use the same rules as for ordinary object attributes, i.e.,

if a virtual object is not �nal-bound to an object then the bounding pattern is

used to obtain a fresh object. It would probably be good to supplement this

with a compile-time warning in the cases where it is statically known that one

or more virtual objects have not yet been �nal-bound.

Finally, it breaks the transparency in the sense that getElement is known

to be used as a pattern because it is the superpattern in an ObjectDescriptor,

and the ObjectDescriptor itself will always denote a pattern, not an object. In

fact, there is no way we could have avoided to break the transparency because

we must use a pattern which is di�erent from getElement, and there must be

an explicit construct somewhere which creates this pattern.

Nevertheless, virtual objects provide a mechanism which is consistent with

the rest of the language, both semantically and syntactically. It does support

the generic speci�cation of type relations between arguments and results, and

at each call-site it is statically checked that the speci�c binding to arguments

actually exhibits the required type relations.

Now let us reconsider the map function which we deemed impractical in gbeta

because it needed to create a list from a pattern which would not be known

outside map. There are actually other ways to express a similar functionality as

that of map which are much better adapted to the imperative context:
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map:

(# src:< @list; dst:< @list;

f:< (# s:

^

src.element; d:

^

dst.element

enter s[] do INNER exit d[]

#)

do dst.clear;

src.scan(# do current[]->f->dst.append #)

exit dst[]

#)

Ex.

9-17

In this pattern, the two lists are both provided from the outside, such that

they may have useful types, and the function f is made a virtual pattern whose

argument and return types match up with the two element virtuals in the lists.

It can be used like this:

(# l1: @list(# element::int #);

l2: @list(# element::text #)

do

map

(# src::@l1; dst::@l2;

f::(# do s.asString->text.init->d[] #)

#)

#)

Ex.

9-18

It is necessary to either learn the names src, dst, and f and the role they play

in the use of map, or to have programming environment support for the creation

of skeleton expressions which just need to be �lled in. However, our experience

with such constructs as scan on collection data structures is that it is easy to

remember how to write it and to understand it on a later reading. Thus, we

cannot precisely imitate the functional approach for such a function as map, but

we can create a native variant which seems to be quite acceptable.

To illustrate yet another aspect of the virtual object mechanism, consider

again the example with a company pattern that contains two nested patterns

called employee and project, see Fig. 5.2 on page 113. Using these patterns

we may for instance write a procedure which brings together two instances of

company matched up with a project and a representative employee for each:

synchronizeProjects:

(# company1:< @company;

company2:< @company;

employee1:

^

company1.employee;

employee2:

^

company2.employee;

project1:

^

company1.project;

project2:

^

company2.project

enter (employee1[],project1[],employee2[],project2[])

do : : :

#)

Ex.

9-19

This procedure can only be given parameters whose types match in the follow-

ing way: The virtual object parameters company1 and company2 can be arbi-

trary instances of company or a subpattern, but once these two have been �nal

bound they determine the quali�cations of the remaining attributes. Hence,
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employee1 and project1 must be contextually located in company1, and simi-

larly for employee2, project2, and company2. This means that the arguments

are organized into two groups, each group having the statically guaranteed con-

sistency property that the members of the group �belong together�. This illus-

trates that even though virtual objects are in some ways less elegant than the

call-site uni�cation of type expressions in functional languages, they do allow for

some kinds of statically checkable consistency properties which are unparalleled

in those functional languages, and indeed in all languages without support for

general contextuality.

9.4 Disownment of a Virtual

Disowning a virtual attribute means giving the promise that you do not intend

to further- or �nal-bind it. As a result, there will not be a con�ict when somebody

else �nal-binds it, and hence there is no need for the compiler to complain about

those �nal-bounds.

To enrich this explanation with a little more technical content, let us consider

the situation where virtuals cannot be disowned and see what problems this

causes. Assume that we have a pattern which contains two nested virtuals and

a subpattern of the outermost virtual:

a: (# v:< (# w:< object #);

b: v(# w:: integer #)

#)

Ex.

9-20

This is not a legal gbeta pattern. The reason is that we can create a con�ict by

means of a seemingly innocent subpattern:

c: a(# v::< (# w::< string #)#)

Ex.

9-21

The con�ict is that the pattern b inside c will contain a w virtual with contra-

dictory requirements. First, the introduction w:< object tells users of w that it

is a pattern which is less-equal than object; no problems with that. Second,

the �nal bound w::integer tells users of w in context of an instance of b that

it is exactly the pattern integer. This means that it is safe to reference assign

an integer object to a variable object attribute with w as quali�cation. Now,

since c further-binds v and w, and since b inherits w from v, the w in a b in a c

must live up to the following constraints:

� it must be exactly integer, as promised with the �nal-binding

� it must be less-equal than string, because of the further-binding

There is no way we could satisfy both of these constraints, so the situation as a

whole must be reconsidered and something in it deemed illegal.

Since c is derived from a we would consider it unnatural to declare a illegal

because of the existence of c. It would be very confusing if some patterns
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from a third party library would be used and work perfectly well for some time

and then suddenly would cause a compile-time error because a new�innocently

looking�subpattern of a library pattern was added to the system. Generally, in

any language, it would be incompatible with separate compilation if the creation

of a subclass C

0

of a class C could make C invalid, because C would already be

compiled when C

0

is added and the compiler should not be required to recheck

C when subclasses of C are de�ned�the source code for C may not even be

available.

On the other hand, it would be unacceptable to declare c as illegal, because

the con�ict is between the further-binding of w in v and the �nal-binding of w in

a subpattern of v. Since the fragment system (see Chap. 10) makes it possible for

such a subpattern to be located in a di�erent �le than both a and c, it would

not be possible to detect the problem before link-time, because the compiler

would never see the con�icting patterns, here b and c, together. Consequently,

we could not make c illegal because of the existence of b.

However, we can make a illegal without even considering c, and this leads

to a rule which is simple and safe. The solution we decided to use was that of

making the �nal-binding of w illegal:

It is not allowed to �nal-bind a virtual

which is inherited from an open virtual.

Unless it is disowned, that is. With this rule in place it is convenient to be �

able to shift the burden from one set of shoulders to another, and that is exactly

what a disownment mark, a `-', is designed to do:

a: (# v:< (# w:< - object #);

b: v(# w:: integer #)

#)

Ex.

9-22

The `-' on the virtual introduction w:<- object means that any further- or

�nal-binding of w in v is declared illegal: If a pattern like c above is created

then it will be rejected at compile-time because it violates the disownment. This

allows programmers to explicitly choose one of two paths. The default path is

where a virtual w inherited from an open virtual v cannot be �nal-bound such

that v can further-bind w without danger of con�icts. On the alternative path

the virtual is explicitly �given away� (disowned) to subpatterns so they can �nal-

bind it, because the enclosing virtual will not be allowed to further- or �nal-bind

it.

One case where disownment is necessary is in the example given as Fig. 9.2.

This example is a solution to the so-called expression problem, named by Philip �

Wadler but known from various contexts over several years. This problem has

been discussed extensively on the Java genericity mailing list where such people

as Philip Wadler, Kim Bruce, Didier Remy, Jacques Garrigue, Gilad Bracha,

Matthias Felleisen, Shriram Krishnamurthi, Kresten Krab Thorup, Mads Torg-

ersen, and I have participated in the discussion. The original presentation of

the expression problem is shown in App. C.
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The tentative solution given in App. C actually turned out to be impossible

to type check, as Philip Wadler explained on the mailing list in a later message.

The adjustment of the type checking algorithm for GJ which is mentioned in

section 2 of this presentation turned out to be non-trivial, because it would

require a type judgment which is contrary to what is actually known. The

problem is that the type argument This which is used to play the role as the

type of the current object (a Lang or a Lang2) is restricted by an F-bound, e.g.

This extends Lang2<This>. As a consequence This is known to be a subtype

of the type of the current object (This�SelfType), but the reverse subtyping

relation (SelfType�This) is not known and would not be sound to assume (the

instantiation Lang<This> in the superclass clause for Lang2 actually violates

it), so This cannot be considered a true SelfType. Since GJ does not have a

primitive notion of SelfType, and since F-bounded polymorphism is not capable

of expressing it (we want a �x-point but can only select for pre-�xed points),

the example must be rejected by the type analysis. The concrete location where

it fails is in Lang2.forPlus where it is attempted to reference assign an object

of type Eval to a reference (an argument of e1.visit) with type This.Eval,

and since all inner classes are potentially covariant and only This�SelfType is

known, this is not type safe.

Even though a solution in GJ seems to require additional investigations,

there are statically type checked solutions in gbeta and Objective Label. Objec-

tive Label builds on Objective CAML and adds support for labeled arguments,

polymorphic variants, and �rst-class parametric polymorphism [48]. We will

return to Objective Label after considering the gbeta solution in Fig. 9.2. This

solution de�nes two patterns, Lang and Lang2, implementing two tiny �lan-

guages� of expressions. Expressions in Lang can only be numbers, Num, and

expressions in Lang2 can be numbers (Num is inherited from Lang) and Plus,

which is a sum with two operands which are other expressions in the language.

One of the challenges of the expression problem is to be able to create new lan-

guages which add more kinds of expressions, and that is just what Lang2 does

with Plus.

For these expressions there are a set of possible actions, each action being

implemented by a subpattern of Visitor. Actions are carried out by executing

visit on an expression with a Visitor as argument (see Exp in Lang). Note

that visit needs to use a virtual object for its argument, theVisitor, in order

to be able to return an object whose statically known quali�cation depends on

the actual argument to which theVisitor is �nal-bound. Also note that there

is a disownment mark on theVisitor, such that methods which inherit from

visit will be allowed to �nal-bind theVisitor. It is no problem that visit

thereby also promises not to �nal-bind theVisitor�visit is not designed to

be called, but to be used as a superpattern for invocations, since the parameter

transfer is based on writing an ObjectDescriptor at the call-site.

Another challenge in the expression problem is to be able to add new actions,

i.e., new subpatterns of Visitor, to languages. The only action in both Lang

and Lang2 is Eval, but the modularized version of the expression problem in

Chap. 10 shows how a new action can be added to both Lang and Lang2 in a
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Lang:

(# Visitor:<

(# R:< - object;

for1: (# result:

^

R do INNER exit result[] #);

forNum:< for1(# val:

^

integer enter val[] do INNER #)

#);

Eval:< Visitor

(# R:: integer;

forNum::< (# do val[]->result[] #)

#);

Exp:

(# init:< (# do INNER exit this(Exp)[] #);

visit:<

(# theVisitor:< - @visitor;

result:

^

theVisitor.R

do INNER

exit result[]

#)

exit this(Exp)[]

#);

Num: Exp

(# val:

^

integer;

init:: (# enter &val #);

visit:: (# do val[]->theVisitor.forNum->result[] #)

#)

#);

Lang2: Lang

(# Visitor::<

(# forPlus:< for1

(# e1,e2:

^

Exp enter (e1[],e2[]) do INNER #)

#);

Eval::<

(# forPlus::<

(# fst,snd:

^

integer;

do e1.visit(# theVisitor::@this(Eval) #)->fst[];

e2.visit(# theVisitor::@this(Eval) #)->snd[];

fst+snd->&result

#)

#);

Plus: Exp

(# e1:

^

Exp; e2:

^

Exp;

init:: (# enter (e1[],e2[]) #);

visit::(# do (e1[],e2[])->theVisitor.forPlus->result[] #)

#)

#)

Figure 9.2: The Expression Problem in gbeta
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separate �le. We could of course have added this new Visitor to Lang2, like

in App. C, but the separate �le is just an even more �exible approach.

The implementations of visit in each kind of expression calls the method

forX on theVisitor, thereby enabling it to perform an action which is speci�c

for the kind X ; for instance, visit in Num executes theVisitor.forNum such

that theVisitor can visit that Num expression in a Num speci�c manner. This is a

well-known technique which is called double dispatch, or it is called the `Visitor'

design pattern [46]. The forNummethod in Eval in Lang is simple, it just returns

the integer object in that Num; the forPlus method in Eval in Lang2 visits

both operands to evaluate them, and then adds up the returned values and

returns an integer whose value is that sum. In these invocations of visit

the returned value is the identity of an object with quali�cation this(Eval).R,

which is a virtual that is �nal-bound to integer in Eval in Lang. Hence, it is

known to be type safe to reference assign that result to the local attributes fst

and snd.

We may now use the languages, assuming that Lang and Lang2 are available

contextually (the commented out imperative uses the Show visitor which is added

in Chap. 10):

(# L: @Lang;

L2: @Lang2;

e:

^

L.Exp;

e2:

^

L2.Exp;

i: @integer; s: @string

do

42->L.Num.init->e[];

e.visit(# theVisitor::@L.Eval #)!->i;

(37->L2.Num.init,5->L2.Num.init)->L2.Plus.init->e2[];

e2.visit(# theVisitor::@L2.Eval #)!->i;

(* e2.visit(# theVisitor::@L2.Show #)!->s *)

#)

Ex.

9-23

Note that being a virtual and inheriting from another virtual allows Eval

in Lang2 to obtain properties in several ways, thereby illustrating that many

kinds of information need only be given once because it may propagate to many

places:

� Since Eval in Lang inherits from Visitor it can be used as a Visitor

which is, e.g., known to support the forNum method.

� Since Visitor in Lang2 is given a forPlus method, Eval in Lang2 is also

known to support a forPlusmethod even when accessed as a Visitor. If

Eval had instead inherited from a simple (non-virtual) pattern then Eval

could not have been used as a Visitor because it would not automatically

get the forX methods that Visitor is enhanced with for every subpattern

of Lang.

� Since Eval in Lang2 is further-bound, the forPlusmethod is implemented

in a way which is speci�c for evaluation (this could not have been inherited
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from the generic Visitor because forPlusmust do something else in other

subpatterns of visitor).

Also note that virtuals like Visitor and Eval and expressions like Num and

Plus are mutually linked to each other by the contextual placement inside an

instance of Lang or Lang2. This allows them to be mutually dependent on each

other and still be reused in a more specialized context, without any danger of

mixing, e.g., a Num from an instance of Lang with a Plus from an instance of

Lang2. This again makes it possible and safe to use a language polymorphically,

for instance such that the statically known pattern of the language is Lang but

the actual pattern is Lang2; an expression from such a polymorphically accessed

language could be evaluated without depending on what kinds of expressions

that language actually contained:

useSomeLanguage:

(# varL:

^

Lang

enter varL[]

do (# L: @varL;

e:

^

L.Exp;

i:

^

integer

do

<<obtain an expression>> -> e[];

e.visit(# theVisitor::@L.Eval #) -> i[]

#)

#)

Ex.

9-24

In this example, the use of an ordinary enter-list based argument varL and then

a nested object with a non-variable object attribute L is preferred over the use of

a virtual object based parameterization, because this makes useSomeLanguage

truly polymorphic in the argument; with a virtual object as the parameter we

would have obtained access to the statically known pattern of the language at

each call site, and the point here is exactly that this is not necessary. We can

handle any language in exactly the same way.

Let us take a look at the solution in Objective Label which was presented

on the Java genericity mailing list on February 17, 1999, by Didier Remy and

Jacques Garrigue. This solution is shown in Fig. 9.3. As is often the case with

functional languages, the solution is impressively compact. It relies on the use

of polymorphic variants [47]. These are similar to the tagged variants that are �

used to de�ne algebraic datatypes, such as Empty and Node in the following

Standard ML de�nition:

datatype 'a Tree = Empty | Node of ('a Tree * 'a * 'a Tree);

Ex.

9-25

The di�erence is that the organization into groups is �xed and explicit with

ordinary algebraic data types (Empty and Node can be used in a Tree and

nowhere else), but polymorphic variants can simply be used, without needing

any centralized declaration à la algebraic data types, and they will be grouped

into arbitrary �nite sets according to their use. For example, Empty would not

be restricted to be one of the variants of the data type Tree, it could be used
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let rec call self = self (fun x -> call self x);;

module Lang = struct

let num x = `Num x

let eval self (`Num x) = x

end;;

module Lang2 = struct

let num = Lang.num

let plus x y = `Plus(x,y)

let eval self = function

`Plus(x,y) -> self x + self y

| `Num _ as x -> Lang.eval self x

let show self = function

`Num x -> string_of_int x

| `Plus(x,y) -> "(" ^ self x ^ " + " ^ self y ^ ")"

end;;

(* the test *)

open Lang2;;

let e = num 42;;

let e2 = plus (num 5) (num 3);;

call eval e2;;

call show e2;;

Figure 9.3: The Expression Problem in Objective Label

in many di�erent groups of variants, whenever �emptiness� was needed. As an

example of a polymorphic variant type consider the function eval in module

Lang2 in Fig. 9.3, which has the following type:

(�! string)! [< Num(int) Plus(� � �)]! string

The expression enclosed in square brackets in the middle is a polymorphic vari-

ant type, namely the type which contains a Num(int) variant or a Plus(� � �)

variant. The `<' marker indicates that this set of variants is an upper bound, so

the function may be called with an argument at this argument position whose

type is known to include at most these variants.

The type analysis of polymorphic variants is related to the type analysis in

[55], in that it represents types as �nite sets of (variant resp. class) identi�ers.

It di�ers in that the polymorphic variants have type speci�ers, and polymorphic

variant types are not just absolute sets, they can also be bounded by lower or

upper bounds, or both. A common property of the two approaches is that it

is not possible to add a variant (class) and recompile without rechecking all
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the expressions where a value of that variant (an instance of that class) could

occur. This means that it is impossible to add a new variant without rechecking

and recompiling all the usage points. In contrast, the standard object-oriented

analysis which does not attempt to maintain explicit and complete lists of vari-

ants/classes allows for such additions. For example, it is no problem to reuse

some code with a ColorPoint even though that code was compiled to be used

with a simple Point, but with the polymorphic variants we would have to go

in and add ColorPoint to the list of variants everywhere it could occur. More-

over, the distribution of the implementation, with all cases collected into global

functions such as Lang2.eval, will of course make it necessary to change those

functions every time a new variant is added.

The reason why Objective Label is better than other functional languages

is that it is actually possible to write a new module, like Lang2, which sup-

ports the extended language without creating con�icts between the di�erent

sets of variants, e.g., fNumg vs. fNum; Plusg. However, as opposed to gbeta,

there is no inheritance relation in Objective Label between Lang and Lang2, so

the implementation has to be written twice, although it is possible to reuse a

method by means of explicit delegation (e.g., the use of Lang.eval self x in

the implementation of eval in Lang2).

Finally, the languages are not �rst-class entities. They are modules which

can be opened such that the contained declarations become available, or they

may be used by �dotting� into their name spaces (Lang.eval is an example),

but there is no way to obtain a dynamically polymorphic reference to a module

such that a piece of code would only depend on the type of eval in Lang but

would actually at run-time work on eval in Lang2. The reason why this would

not be possible is that the types are not mutually recursively dependent, as is

demonstrated by the fact that a Lang.Num can actually be used in context of

Lang2 (see the declaration letnum= Lang.num). This means that there is no

way Objective Label could avoid mixing up expressions in Lang and expressions

in Lang2, and that again necessitates keeping waterproof barriers between Lang

and Lang2 in the static analysis�that kind of dynamic polymorphism would

simply not be type safe.

9.5 Concurrency as a Type Issue

Concurrency has always been an integrated part of Beta, possibly because of

the simulation background in the Simula community. There are two kinds of

non-sequential execution, alternating and concurrent. Alternating execution is

performed by coroutines, and concurrent execution is performed by so-called

systems. Both coroutines and systems are based on object-like entities, called

components. Where gbeta has objects and patterns, Beta has objects, compo- �

nents, and patterns.

3

The uni�cation in gbeta of components and objects into

just objects removes some typing and conversion complications. The change is

backward compatible because the special syntax which is used in Beta wherever

3

Actually the Beta terminology is items, components, and patterns.
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a component is used is reinterpreted in gbeta to be a simple merging operation.

The syntax associated with components in Beta always uses the `|' character,

for example:

aComponent: @|

(#

do 'This is executed '->puttext;

SUSPEND;

'by a coroutine.'->putline;

#)

Ex.

9-26

If a component in Beta is executed by the same syntax as used with an object,

here simply the imperative aComponent, then it will execute as a coroutine, i.e.,

it will establish its own stack and then execute until it is suspended or until it

terminates. A suspended component which is executed again will continue from

the point where it was suspended, it will not start again from the beginning.

Note that the run-time stack of a component may contain any number of ordi-

nary objects, so it is a computation involving the component and zero or more

objects which is being suspended and later resumed, not just the execution of a

single do-part as in the above example. In that example, executing aComponent

twice will print �This is executed by a coroutine�.

If the prede�ned fork command is executed on a component in Beta then

a new thread is created, and it will execute separately while the thread which

invoked the fork continues without waiting.

The dynamic semantics are the same in gbeta, except that a component

can be executed more than once, just like all other objects. The di�erence

is that the support for having a separate stack, and with it the coroutine and

thread functionality, has been moved out of the domain of the special object-like

entities called components in Beta and into the domain of ordinary objects and

patterns. To do this a new, basic pattern called component was introduced. A�

component in gbeta is simply an object which is an instance of a pattern which

is less-equal than component. To ensure backward compatibility, the `|' marker

is reinterpreted to mean merging with the new, basic pattern component:

a_Beta_or_gbeta_Component: @|aPattern;

same_in_gbeta: @ component & aPattern;

Ex.

9-27

This change has several consequences. For example, it is possible in gbeta to

use the when imperative to determine whether or not a given object (whose stati-

cally known quali�cation does not include component) is actually a component.

In Beta it is necessary to have special rules for the reference assignment to

dynamic references to components from an object-or-component, and for ref-

erence assignment to dynamic references to objects from attributes which are

known to denote components. All these special cases are e�ortlessly normalized

into the well-known rules for reference assignments with the approach in gbeta.

Similarly, it is possible to dynamically specialize a given object which was not

created as a component, such that it becomes a component and can, e.g., be

forked.
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symmetricCoroutineSystem:

(# symmetricCoroutine: component

(# resume:<

(# (* Here is the assignment which becomes safe *)

do this(symmetricCoroutine)[]->next[]; SUSPEND

#)

do INNER

#);

next:

^

symmetricCoroutine;

run:

(# active:

^

symmetricCoroutine

enter next[]

do (if (next[]->active[])=NONE then leave Run if);

NONE->next[];

active;

restart run

#)

do INNER

#)

Figure 9.4: Improving analysis with a pattern which is a component

Finally, it improves the static analysis that it is possible to include the

component aspect directly into a pattern. In Beta it is always a property of an

object-like attribute, never of a pattern, so the use of a ThisObject construct in a

Beta pattern is always analyzed as if the enclosing entity were an object, not a

component. An example where the gbeta approach leads to a better preservation

of the static knowledge about run-time entities is the classic example in Fig. 9.4,

adapted from a similar example in [74]. The example demonstrates how a

symmetric coroutine system can easily be built from Beta's built-in asymmetric

coroutine support.

In the original Beta version of the symmetricCoroutineSystem in Fig. 9.4,

the variable object attributes next and activewere declared with the `|' marker

which speci�es that it must refer to a component, not an object. In this version

the componentness has been moved by removing those `|' markers and adding

component as a superpattern of the pattern symmetricCoroutine. The di�er-

ence is that instances of this pattern in all parts of the program are known to

be components, and that again makes the reference assignment to next inside

resume safe. In the Beta version this reference assignment is not statically

known to be safe, because the static analysis cannot verify that the enclosing

symmetricCoroutine is actually guaranteed to be a component, it might as well

be an ordinary object.

As a �nal example of the enhanced expressive power of components in

gbeta�even though it might at �rst look like a curiosity which ought to be

avoided�consider adding the component mixin in the middle of a pattern in-
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(# tokens: @list(# element::string #);

do

tokens.scan & component

(#

do <<setup-header-color>>;

(while <<in-header>> do current->puttext; SUSPEND while);

<<setup-body-color>>;

(while <<in-body>> do current->puttext; SUSPEND while);

(while true do

'Unexpected token: '->puttext; current->puttext; SUSPEND

while)

#)

#)

Figure 9.5: One way to use a component in the middle of an object

stead of as the most general mixin. The e�ect of this is that the object will

obtain a behavior which starts out as the ordinary, sequential behavior of most

objects, but then at some level the execution of the INNER imperative will call

the special, pre-de�ned component behavior, and that changes the rest of the be-

havior into a coroutine which will be executed, suspended and resumed just like

any other coroutine. For example, assume that we have a list of strings which

holds the contents of an HTML document, one token per element. The piece of

code (with pseudo-code elements) in Fig. 9.5 then illustrates how we could print

the HTML document with a di�erent background color for the header and the

body parts.



Chapter 10

The Fragment Language

Modularization of gbeta programs is facilitated by the fragment language which

is a separate language that coexists with the gbeta source code in modules. The

design of the fragment language is entirely as in Beta, so any prior experience

with modularization of Beta programs can be applied directly to gbeta pro-

grams. However, the implementation in gbeta lifts a number of restrictions that

the Mjolner Beta system imposes, and the increased freedom to use hitherto

unavailable parts of the fragment language does indeed make a di�erence at

the systems design and the software engineering level. In other words, even

though readers who already know how to modularize Beta programs may want

to skip the basic presentation in Sect. 10.1, the description of some practical

consequences of the enhancements in Sect. 10.2 goes beyond the well-known and

might serve to illustrate useful techniques which can only be applied when some

of the restrictions have been removed.

10.1 Fragment Language Basics

This section presents the basic elements of the fragment language. This language

is a separate language which coexists with gbeta source code in modules. It

facilitates the combination of modules into larger systems, thereby making it

meaningful to write the modules in the �rst place and providing the well-known

bene�ts of modularization in Beta [74, Chap. 17]:

� Support for code reuse by use of the same module in several programs.

� Parallel and independent development by separate teams of programmers

for those parts of large systems which do not need to depend on each

other.

� Reduction of the complexity and interconnectedness of large systems by

separation of a given functionality into a widely used interface module

and an implementation module which is normally not used by any other

modules.

207
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� Separate static analysis and compilation of each module, reusing but not

a�ecting the results of the static analysis of other modules that it depends

on.

� Provision of separate variants of an implementation, e.g. for a number

of di�erent hardware architectures, with separate compilation and with

peaceful coexistence of the variants, instead of a plethora of #ifdefs.

� Separation of di�erent elements in an interface by �topic�, such that a

module which needs only one group of methods in a given class does not

have to depend on all the other methods.

� Various �acceleration� e�ects where one improvement leads to another

which may again improve on the �rst. For example, dependency chains

may be broken: Assume that module A uses module B, and module B

uses module C. If module B is separated into an interface B

1

and an

implementation B

2

then it may be su�cient that B

2

uses C, and then A

may use only B

1

and be relieved of its dependency on C.

As with most good ideas, the basic idea behind the fragment language is

simple. The idea is that a syntactic construct can be expressed as a sentential

form in the grammar of the language, i.e., as a partial grammatical derivation,

i.e., as an ordinary piece of source code in the language except that certain

parts of the source code have been left unspeci�ed, marked only by placeholders

saying �here should be something, but I won't tell you what it is�. For example:

getElement:

(# theList:< @list;

theElement:

^

theList.element

<<SLOT GetElement:dopart>>

exit theElement[]

#)

Ex.

10-1

In this pattern, a piece of code is missing and a placeholder, a SLOT application,�

is found in its place. It is the piece of text between the `<<...>>' brackets. Since

the placeholder for the missing piece of code is marked as a `dopart', and the

syntactic category DoPart is the kind of expression that is expected at this

position according to the grammar of gbeta, the pattern as a whole is accepted

by the parser, and it is known that there should be a piece of code somewhere

in any complete system which is a DoPart and which has been given the name

GetElement. The compiler does not need to look at that piece of code when

compiling the pattern getElement, but if there is no such piece of code when a

complete program using getElement is linked, then there will be a linker error.

In other words, the interface of this method may be compiled separately from

its implementation. Such a language which enables the combination af source

code units into a system is called a module interconnection language [93].

The piece of code carrying the name GetElement must be syntactically a

DoPart and it can be declared like this:
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-- GetElement:dopart --

do theList.first.elm[]->theElement[]

Ex.

10-2

This is a SLOT declaration, saying that in the name space for pieces of code, �

the piece with the name GetElement is the DoPart which follows right after the

`--...--' line. Note that the name space for pieces of code is constructed in

and used by the fragment language only, so it is possible (and not uncommon)

to use the same name for a piece of code as the name of some nearby attribute

in the gbeta source code. Hence, there is no confusion between the getElement

pattern and the piece of code named GetElement. Like in gbeta, names in the

fragment language are case insensitive.

Modules are (currently) identi�ed with �les, so each source code �le is a

module. Since the traditional name for a SLOT declaration is fragment form, �

and since each module may contain any number of these, modules are tradi-

tionally called fragment groups. Both fragment groups and fragment forms are �

traditionally called fragments when it is clear from the context whether it refers �

to one or the other.

A fragment form, or SLOT declaration, de�nes a named entity (a piece of

source code), and a SLOT application uses such an entity, so there is a need for

lookup rules in connection with SLOT names. These lookup rules are entirely

separate from the lookup rules in gbeta, and much simpler. Each fragment group

is considered as a �at name space containing a set of named pieces of code, each

piece of code typed as one particular syntactic construct, e.g., a DoPart. The

granularity for the lookup process is the fragment group, so lookup happens

either within one fragment group, or by going to other fragment groups which

are reachable through certain links. Each module may include a number of links

to other modules, in one of the following varieties:

1

ORIGIN: This kind of link speci�es the direction in which a fragment form

may be used ; one way to think of it is that each fragment form can �travel�

from fragment group to fragment group, but only via ORIGIN links, in

order to �go home� to the spot where it is used.

INCLUDE: This kind of link provides visibility. A declaration can only be

used in a fragment group if it is located in a fragment group which is

reachable through a (possibly empty) path of ORIGIN and/or INCLUDE

links.

BODY: This is a link which has no e�ect before link-time;

2

one way to think

of it is that it is a �blind� link, because the source code which is reachable

through BODY links will be included in the �nal program, but the con-

tents of such a fragment group is entirely invisible at compile-time�it's

1

These are not the only kinds of `properties' that may occur at the beginning of a fragment

group, but they su�ce for the presentation given here.

2

It may cause some �les to be considered and possibly compiled because of the global

dependency analysis, but that is essentially also `link-time' even if it is not the linker which

performs this analysis.
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like saying �I need this, but I don't want to know what it is!� which is

exactly the suitable attitude to have towards an implementation module.

It is important to realize that it may not be enough to INCLUDE a module

in order to use something which is declared in it; the INCLUDE link ensures

that the contents of the module will be visible in its context, but since Beta

and gbeta have general block structure there are many other possible contextual

placements than the outermost, global name space. For example, if the frag-

ment system is used to add a getElement method to the list pattern then an

INCLUDE link to the fragment which contains the declaration of getElement

will make it possible to invoke that method in context of an instance of list or

a subpattern, but it will not add any getElement pattern to any other context.

E.g., it will not be possible to invoke getElement as a standalone procedure

outside of any list, unless of course a pattern named getElement has been

added to that context by some other means. This may seem obvious, but expe-

rience shows that it often leads to confusion when, e.g., it is not possible to use

such a pattern as Window at the global level of a Beta program even though the

fragment group where it is de�ned has been included, when in fact Window is

de�ned as an attribute of the pattern guienv which represents and supports the

use of the graphical user interface framework on a number of platforms in the

Mjolner Beta system. The solution is typically to wrap everything written by

the programmer inside an instance of guienv, such that the programmer may

think of all the graphical user interface patterns as being �global�, though it

might also be relevant to use several instances of guienv to interface to several

screens for a distributed program (no, the current implementation of guienv

does not allow this, but it might).

The easiest way to understand why the fragment system has these properties

is to think of it in terms of two concepts [74, Chap. 17], namely the domain of�

a fragment form, and the extent of a fragment form; in both cases we call�

that fragment form the root of the domain or extent. Both of these concepts�

denote a syntactic construct, a piece of gbeta source code, and both of them are

created by selecting a certain set of fragment groups and performing a search-

and-replace process. For the domain, the selected fragment groups are all the

groups reachable through either ORIGIN or INCLUDE links, and for the extent

it is all groups reachable through either ORIGIN, INCLUDE, or BODY links�

in both cases directly or indirectly.

The search-and-replace process works as follows: For each SLOT application

the corresponding SLOT declaration is looked up, and the SLOT application is

replaced with the piece of source code in the declaration, such that each place-

holder for a �missing piece� in the source code is replaced with the actual piece

of source code that is de�ned with the same name. The lookup process may

only select a SLOT declaration in a fragment group from which there is a (pos-

sibly empty) path of ORIGIN links to the fragment group containing the SLOT

application�we might say that the scope for a SLOT name is the transitive

closure of the inverse ORIGIN links. In this replacement process there must be

exactly one SLOT declaration with the given name in scope for each syntactic
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construct which is not a list, and there may be zero or more SLOT declarations

for such syntactic categories as Attributes, where the grammar allows for an un-

ordered list of AttributeDecls of varying length, such that all SLOT declarations

of that name can simply be collected to make a longer list. For lists where the

order is semantically signi�cant it is generally only allowed to have one SLOT

declaration, but Alternatives form a notable exception, as explained in the next

section.

In other words, the domain contains all the source code which is available

for lookup from the root fragment, and the extent contains all the source code

which is available at run-time, namely the domain plus something which can

usually be described as the implementation.

For example, consider the situation where we have a fragment group in the

�le betaenv.gb containing just one universe fragment form named betaenv �

which is a descriptor (an alias for ObjectDescriptor):

-- betaenv:descriptor --

(# list:

(# <<SLOT listlib:attributes>>;

element:< object;

append: : : :

first: : : :

: : :

#);

program: @<<SLOT program:merge>>

do

program

#)

Ex.

10-3

The betaenv fragment form is by convention not looked up so there should

not be a SLOT application for the name betaenv, and this fragment form will

therefore be the outermost construct into which all other pieces of code will

be placed, directly or indirectly. Consequently, it is the universe within which

everything will ultimately be located. Furthermore, we have a fragment group

in getElement.gb which adds a method to the list pattern:

ORIGIN 'betaenv';

BODY 'getElementbody'

-- listlib:attributes --

getElement:

(# theElement:

^

element

<<SLOT GetElement:dopart>>

exit theElement[]

#)

Ex.

10-4

We need another fragment group in order to provide the implementation; that

kind of fragment group is conventionally given names ending in ..body, here

getElementbody.gb:

ORIGIN 'getElement'

-- GetElement:dopart --

do first.elm[]->theElement[]

Ex.

10-5
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Finally, we have a �le which can tie all the pieces together to a complete program,

myProgram.gb:

ORIGIN 'betaenv';

INCLUDE 'getElement'

-- program:merge --

(#

myList: @list(# element::integer #);

i:

^

integer

do

integer[]->myList.append;

myList.getElement->i[];

#)

Ex.

10-6

Taking program as the root fragment form, we obtain the following domain:

(#

list:

(# getElement:

(# theElement:

^

element

<<SLOT GetElement:dopart>>

exit theElement[]

#);

element:< object;

append: : : :

first: : : :

: : :

#);

program: @

(#

myList: @list(# element::integer #);

i:

^

integer

do

integer[]->myList.append;

myList.getElement->i[];

#)

do

program

#)

Ex.

10-7

Notice that the implementation of getElement is still missing in the domain.

The extent is the following piece of code, and this time the implementation is

included:
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(#

list:

(# getElement:

(# theElement:

^

element

do first.elm[]->theElement[]

exit theElement[]

#);

element:< object;

append: : : :

first: : : :

: : :

#);

program: @

(#

myList: @list(# element::integer #);

i:

^

integer

do

integer[]->myList.append;

myList.getElement->i[];

#)

do

program

#)

Ex.

10-8

Of course, this search-and-replace process is incompatible with separate com-

pilation, but an implementation which provides separate compilation�such as

the Mjolner Beta system�must behave in such a way that the name lookup

and the behavior of the program at run-time is as if the search-and-replace

process had actually taken place.

In fact, the gbeta implementation, about which more information can be

found in Sect. 11, performs the search-and-replace process as described for the

extent, and then checks the fragment graph to see for each name lookup whether

or not a given declaration with the name N is visible from the fragment where

the application of N is located. This means that the implementation of the

fragment language in gbeta takes the easy route and thus is far more complete

than the implementation in Mjolner Beta. Here, a SLOT can only be one of a

few, carefully selected syntactic categories (ObjectDescriptor, Attributes, DoPart,

and soon alsoMainPart). Moreover, an Attributes SLOT can only contain simple

pattern attributes, not objects, variable objects, virtual patterns, or variable

patterns.

However, there are some problems which have to be solved before the en-

hanced generality can be obtained in a system with separate compilation�gbeta

currently generates code with access to the entire program at the same time.

For separate static analysis there are only few new problems; the Mjolner Beta

system stores the results of the static analysis in �les along with the source code,

and that is basically what we need in order to analyze gbeta code separately; it

is certainly enough to perform name binding and to ensure that there will not

be any MessageNotUnderstood errors. The analysis of con�icts�for example

when there are several attributes with the same name in the same context�

requires a link-time check, and that check may be complicated by the need to
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investigate the legality of merging of virtuals in gbeta, but the need to have a

link-time check in the �rst place is not new.

3

On the other hand, for code generation it is necessary to handle the problem

that the size of objects is generally not known at compile-time with the gener-

alized fragment system, and therefore it is not possible to allocate �xed o�sets

for attributes (in objects for Beta and in part objects for gbeta), and that

is a signi�cant change, compared to the currently used assumptions for code

generation in the Mjolner Beta system. For instance, if an object attribute is

placed in an Attributes SLOT then the size of the enclosing object is not known

during compile-time of the SLOT application, but it is not even known during

compile-time of the SLOT declaration either, because there may be additional

Attributes SLOT declarations with the same name in other fragment groups. In

other words, the compilation of the pattern cannot determine how much mem-

ory to allocate for a new instance, and it cannot even use a symbolic name and

let the linker pick up the value from code generated for the SLOT declaration.

A simplistic solution which looks up the attributes dynamically for every access

would be prohibitively slow, but there are many systems where similar problems

have been attacked with great success, so it should not be entirely impossible.

More about this in Sect. 11.

10.2 Enhancements in gbeta

Actually, there are no enhancements in the fragment system of gbeta compared

to the fragment system of Beta; but most people who know Beta do this via

the Mjolner Beta system, and this means that the restrictions in the imple-

mentation of the fragment system which were mentioned near the end of the

previous section may often be considered part of the fragment system as such

rather than temporary restrictions caused by the �niteness of resources in the

development of that Beta system.

Hence, we �nd it bene�cial to give some hints at what kind of consequences

the restrictions have for practical systems development, by means of a number

of examples which are supported in the gbeta version of the fragment system,

but which violate some of the restrictions in the Mjolner version.

Firstly, it is a very serious restriction that the Mjolner fragment system only

allows one kind of attributes in an Attributes SLOT, namely simple patterns. It

is possible to have private methods (so private that the class does not have to be

recompiled when they are added), but that only works for non-virtual methods�

a virtual method, both declaration and all the further- and �nal-bindings, must

be physically located in context of the MainPart of which it is an attribute.

Especially further-bindings seem to be purely a matter of implementation in

many cases. Moreover, it is not possible to separate a group of virtual methods

out into a library fragment, again because virtuals have to be located physically

3

The Mjolner Beta system actually omits the link-time check and allows the existence of

more than one attribute in the same context with the same name as long as they come from

di�erent �les, but we are not convinced that this is a good approach.
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inside the source code for their enclosing object. It is possible and very useful

to move a group of simple patterns out into a library fragment; it is used in

order to provide these patterns optionally and in meaningful clusters, such that

only the clients who actually need them have to become dependent on them.

As an example where we separate out a virtual attribute in gbeta, consider

again the expression problem described in Sect. 9.4. The patterns in Fig. 9.2 on

page 199 may be modularized in the following manner:

(* FILE Lang.gb *)

ORIGIN 'betaenv'

-- lib:attributes --

Lang:

(# <<SLOT LangLib:attributes>>;

<<as in Fig.~9.2>>

#)

Ex.

10-9

The �rst fragment, Lang.gb, places Lang in a context with the SLOT application

lib of the syntactic category Attributes, and this is traditionally a SLOT at top

level in the universe fragment betaenv, so this means that we are making Lang

a globally available class for all those fragments that INCLUDE the fragment

Lang, directly or indirectly. The only di�erence in the pattern itself compared

to Fig. 9.2 is that we have added a SLOT application named LangLib. Similarly

for Lang2:

(* FILE Lang2.gb *)

ORIGIN 'betaenv';

INCLUDE 'Lang'

-- lib:attributes --

Lang2: Lang

(# <<SLOT Lang2Lib:attributes>>;

<<as in Fig.~9.2>>

#)

Ex.

10-10

With Lang2 we also have to INCLUDE the fragment form Lang, because the

pattern Lang from that fragment is being used as a superpattern. Now we add

an extra Visitor to both of these patterns:
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(* FILE LangShow.gb *)

ORIGIN 'Lang';

ORIGIN 'Lang2'

-- LangLib:attributes --

Show:< Visitor

(# R:: string;

forNum::< (# do '(some number)'->&result #)

#);

-- Lang2Lib:attributes --

Show::<

(# forPlus::<

(# fst,snd: ^string

do e1.visit(# theVisitor::@this(Show) #)->fst[];

e2.visit(# theVisitor::@this(Show) #)->snd[];

fst+' + '+snd->&result

#)

#)

Ex.

10-11

Note that the two SLOTs LangLib and Lang2Lib are used to put something

into two di�erent contexts from the same �le. The enhanced generality of the

gbeta fragment system comes into play in two ways here: Firstly, the fact that

attribute SLOTs may contain other kinds of attributes than simple patterns is

used to add a virtual to Lang and also to further-bind it in Lang2. Secondly,

since these two SLOT declarations are used in two di�erent fragment groups

we have given two ORIGIN links; in the Mjolner system only one ORIGIN is

allowed.

We could of course have introduced and implemented Show in Lang2 alone,

and included it already in Fig. 9.2, just like it is done in the GJ version in App. C.

This version demonstrates that it is also possible to enhance an already existing

class with a nested virtual class, or method, or type parameter : : : depending

on what kind of use the virtual attribute is intended for.

With these fragments it is possible for a client program to use the original

patterns Lang and Lang2 as they were, and it is possible to use the enhanced

version which also supports Show by including the fragment group LangShow.

Note that it is possible to include LangShow in a program and still not let

all parts of the program see Show�seeing something means depending on it

whether or not it is actually used, so that may be signi�cant. The fact that

these attributes are simply not present in a program that does not in any way

refer to LangShow (it is the client, not Lang that brings LangShow into the

program) opens some interesting possibilities in the area of saving space and

thereby also time by having more lightweight objects than would otherwise be

practical�programs that do not use a given aspect of a general pattern would

leave that aspect out entirely by not including certain �les.

Now consider the two forPlusmethods in Show (above) and in Eval (de�ned

in Fig. 9.2). They could actually share a large part of the implementation from
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a purely textual point of view, namely the two evaluations of visit. If we

separate out those two imperatives and put in an Imperatives SLOT instead

then we get the following:

forPlus::<

(# fst,snd: ^string

do <<SLOT ForPlus:Imperatives>>;

fst+' + '+snd->&result

#)

Ex.

10-12

With this de�nition of forPlus in Show, and a similar de�nition of forPlus in

Eval, these two methods may both use the same piece of syntax for the missing

piece of the implementation:

-- ForPlus:Imperatives --

e1.visit(# theVisitor::@this(Visitor) #)->fst[];

e2.visit(# theVisitor::@this(Visitor) #)->snd[];

Ex.

10-13

We have to use this(Visitor) to select the right enclosing object because

both Show and Eval are less-equal than Visitor, but otherwise the source

code works without changes in both contexts. However, the analysis and the

code generation are quite di�erent in the two cases�in Eval the fst and snd

attributes are integers, but in Show they are strings. The di�erence would

have been even bigger if they had been, e.g., patterns in one case and objects

in the other.

This mechanism can be used to exploit the similarities between di�erent

contexts where two pieces of code are very similar because they do the same

thing in some sense, but the type system is too rigid to see the similarities. It

remains to be seen whether this is a useful tool in software development or just

a way to create some terrible problems for maintenance and readability.

Finally, there is one case in which it may be justi�able to allow for more than

one SLOT declaration for an ordered list even though these SLOT declarations

will be collected in an arbitrary order, namely with the Alternatives of a Gener-

alIfImp. The GeneralIfImp construct is the if imperative which allows for testing

against several di�erent guards, similarly to a switch or a case statement in

other languages. The semantics of a GeneralIfImp is to evaluate the guards in

the order they appear in the source code. This rule was chosen because it is

hard to ensure that (non-trivial) expression evaluation in a language like gbeta

will not have side-e�ects, so a rule which says that the guards will be evaluated

in an unspeci�ed order would simply be too much of a source of subtle bugs.

Nevertheless, allowing multiple SLOT declarations to contribute to the same

Alternatives SLOT application is so interesting that we decided to live with the

fact that these SLOT declarations will be collected in an arbitrary order.

The motivation for allowing multiple Alternative SLOT declarations is that

it provides an entirely modularization based approach to support for modes in �

objects [107]. This concept is associated with the observation that many objects

may be described in a simpler way by �rst dividing their life history into a

sequence of phases, where the behavior of the object is relatively homogeneous
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within each phase. For example, a mobile phone o�ers di�erent operations and

behaves di�erently when a connection has been made than it does when there

is no connection; similarly, a bank account behaves di�erently when it is empty

and when it is full : : :

There has been some work recently in the direction of supporting modes in

Beta as a new language construct (not just a new library), but it is not yet

clear how exactly this will work. On the other hand, we would like to stress the

possibility of using the fragment system to divide an ordinary Beta program

into pieces in an unusual way (we do not need any special gbeta features for

this), and thereby allowing for that kind of separation of mode speci�c concerns

that mode support is all about.

Consider the mobile phone we mentioned before; assume that it has a `Talk'

button which is used to go o�-hook and dial the current number, and an `End'

button which is used to take the connection down again and go on-hook:

(* FILE phone.gb *)

mobilePhone:

(# offHook: @boolean; (* this is the current mode *)

onTalkPressed:

(# do (if offHook <<SLOT Talk:Alternatives>> if)#);

onEndPressed:

(# do (if offHook <<SLOT End:Alternatives>> if)#);

: : :

#);

Ex.

10-14

The value of the boolean object offHook is the mode, so the mode space only

has two elements. The behavior of the two methods when the phone is on-hook,

i.e., offHook is false, is as follows:

(* FILE phoneOnHook.gb *)

ORIGIN 'phone'

-- Talk:Alternatives --

// false then <<dial>>; true->offHook

-- End:Alternatives --

// false then <<beep>>

Ex.

10-15

The Alternatives are similar in form, and this should make it easy to ensure

consistency. Since all the source code in this �le is concerned with the phone

when it is in the on-hook mode, it should also support programmers in thinking

about just one mode at a time, along with the mode changes out of the on-hook

mode. In the other mode the situation is similar:

(* FILE phoneOffHook.gb *)

ORIGIN 'phone'

-- Talk:Alternatives --

// true then <<beep>>

-- End:Alternatives --

// true then <<shut-down-connection>>; false->offHook

Ex.

10-16
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There are some concerns that this approach does not address. For example,

there are often thousands of modes in real-world systems, perhaps even in mo-

bile phones, and this approach does not immediately o�er meaningful ways to

handle this. We believe that the best approach to handling this problem is to

cut down on the mode space by separating some concerns, such that a system

contains, e.g., 10 independent elements with 2 modes each rather than one el-

ement with 1024 modes. The problem of switching mode in the middle of a

method invocation (should we jump to the middle of another case?!) is not

addressed, but it seems that there are no good solutions to this problem any-

way, so that will probably be handled by programmers from case to case. At

least the semantics of this approach is simple since it only uses very well-known

constructs and just optimizes the physical organization of the source code for

a mode centric working style. All in all, we feel that this approach is simpler

than the special-purpose constructs which have been proposed, but it still does

the job relatively well.
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Chapter 11

Implementation

The language gbeta could not have been purely a thought experiment.

A programming language is in some sense similar to a fractal set like the

Mandelbrot set [76], where the rapidity of divergence of certain sequences of

complex numbers in the vicinity of the set can be used to draw complex, but

somehow regular, beautiful and surprising pictures. The similarity lies in the

fact that the language itself (the syntax and accompanying semantics) is such a

relatively simple core entity from which a large wilderness of di�erent programs

may be grown using human ingenuity and perseverance. Another analogy would

be a chaotic system like the weather, where developments over periods of weeks

or months are so acutely sensitive to the conditions at the beginning of the

development that even very small changes initially lead to entirely di�erent

scenarios later on [66]. With the Mandelbrot set, the complex outcome is a

result of a rigid application of a single rule; a small seed grows up and becomes

a complex phenomenon. With the weather, the complex outcome can not readily

be traced back to such a simple core cause, but there are still connections from

small causes to large consequences.

We believe that a programming language should be considered as an inter-

mediate form between fractals and the weather, even if di�erent from both in

many ways. The set of potential programs is about as rigidly de�ned as the

Mandelbrot pictures, at least if the language in question has a formal semantics

or an implementation. But the subset of these programs that human beings

will actually come up with and consider well-designed is more like the weather:

There is a complex basis of all the possible programs and then on top of that a

much more complex process of human beings trying to navigate the large uni-

verse of possibilities in order to produce programs at the center of a fuzzy cloud

of appropriate programs for a given usage context. Like the computation rule

for the Mandelbrot pictures, the programming language serves as a small seed

from which a large set of possible programs arise, and even small changes to the

language may have profound consequences for this set of possible programs.

In order to do good programming language design one must try to under-

stand this duality of the dynamics of unfolding, from actual language design

221
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decisions, over the formal consequences in terms of possible programs, and, last

but certainly not least, to the consequences for human beings who are trying to

create useful programs.

From this point of view it was evident that an implementation of gbeta would

be a necessary tool in the development of the language, not just as a �proof of

concept� that could be added at a late stage in the process. It is crucial that

the language development can be accompanied with excursions into the universe

of possible programs. It will be extremely valuable to gather experiences from

many people writing larger systems, when the implementation becomes su�-

ciently mature for that, and if a multitude of people can be lured into doing

it.

As a matter of fact, the development of gbeta started out as a plan to imple-

ment a Beta interpreter, mainly in order to establish some working knowledge

about the precise semantics of Beta, such that a formal semantics for Beta

could be �nished. However, it soon became apparent that such an interpreter

would be a wonderful tool for trying out experiments with the language design,

and that became the main topic of our research. As it turned out, it is not only

important to be able to write programs in the new language, it is also important

to use the process of implementing the language to improve the precision and

verify the technical feasibility of the intended semantics. An implementation

represents a precise choice of semantics, and the fact that the implementation

cannot be fuzzy helps greatly in the process of ensuring that the language se-

mantics is well-de�ned, and that such a choice of semantics is realistic in the

sense that it can actually be implemented.

In summary, the implementation of gbeta has served as an essential vehicle

for the exploration of the consequences of language design decisions, both in

terms of the experience from writing small example programs as a method to

sample the qualities of new kinds of possible programs, but also in terms of

the lessons learned from implementing the language, ensuring precision and

technical feasibility of chosen semantics.

Note that the considerations in other chapters of this thesis about human

beings and their understanding of programs serve to establish guidelines for the

design of programming languages, such that the design process�an exploration

of potential universes of possible programs�does not happen blindfolded. The

fact is that we cannot directly investigate the universes of possible programs

because they are so huge, so we need to search for principles to guide us, and

they must be concerned with human beings.

11.1 A Chronological View

The idea of creating gbeta was conceived in the autumn of 1995. The gbeta

implementation has been su�ciently complete to perform static analysis since

October 1996. In particular, it has been able to analyze the special `tst.bet'

program. This program contains about 2500 lines of Beta code which represents

a collection of test cases that is used as a baseline test suite for new versions of
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the Mjolner Beta compiler. The tst.bet program had to be changed slightly,

as described below in Sect. 11.2.

The ability to handle tst.bet correctly is a demonstration of a certain

level of backward compatibility and a certain level of correctness, since tst.bet

contains a number of constructs that originally were used to demonstrate bugs

or test �hard cases� in the Mjolner compiler. However, in 1996 gbeta could not

execute even the simplest program, it could only analyze it.

In spring and summer 1997, the core dynamic semantics (the run-time sys-

tem) in gbeta was implemented. This gave rise to several non-trivial changes

in the static analysis. These changes did not a�ect Beta programs, but they

a�ected the analysis of gbeta programs that went beyond the boundaries of

Beta. In particular, the dynamic semantics of the merging of virtual attributes

was implemented di�erently than it had been planned, because the original se-

mantics were hard to analyze correctly statically�virtuals could not in general

be determined to be type safe without a global analysis, i.e., they were incom-

patible with an `open world assumption' and hence incompatible with separate

compilation, and with reusable libraries. That was not considered acceptable,

and actually the semantics which was chosen to overcome this problem is better

from so many points of view that there has been no consideration of trying to

handle the original semantics since then. This was a case where even the im-

plementation of static semantic analysis did not clearly enough reveal that the

(slightly vague) intended semantics was ill de�ned.

In December 1997 a version of gbeta was complete and stable enough to

allow people with interests in programming languages to experiment with the

language as such. This version was announced as being available by anonymous

FTP, with an accompanying web-site at the address http://www.daimi.au.

dk/~eernst/gbeta/index.html. Version 0.8 of gbeta is expected to be released

here in July 1999. The source code of the implementation is available, under

the GPL (open source) copyright license.

In 1998 and 1999, the language has evolved along four axes. Firstly, the

static analysis has stabilized, such that there have been no changes at the design

level since spring 1998, but there have been many bug-�xes. In other words,

it seems clear how to analyze gbeta correctly, but the implementation of the

analysis had to be shaked down to a reasonably bug-free state. Secondly, the

implementation of the dynamic semantics has been improved�some constructs

were not supported, or they were only supported in �most� cases (for example,

the dynamic specialization of objects containing repetitions was implemented

in March 1999, until then an attempt to specialize such an object would cause

a `Sorry, not yet implemented!' error message). Thirdly, the basic architecture

of the execution of programs has been changed from a closure based model to a

model based on generation (once) and later (possibly many times) execution of

bytecode. This is treated in greater detail below. Finally, several new constructs

have been added to the language, for example virtual objects and the when

imperative.

There is still a long way to go before the implementation will have su�ciently

good performance (in time, space, and stability) for larger, real-world projects,
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but getting people to use it is certainly an important goal.

11.2 Compatibility Issues

The language gbeta is essentially backward compatible with Beta�a Beta�

program is also a gbeta program, and it behaves the same under both languages.

However, there are di�erences. There are some syntactic issues, because gbeta

has a few additional reserved words, and there are some genuine semantic issues,

which are the topic of Sect. 8.1. Finally, there are some more spurious semantic

di�erences which are described in this section in context of the modi�cations to

tst.bet that were needed in order to make it a gbeta program.

The modi�ed version of tst.bet is available as part of the release of gbeta

which is mentioned above. Incompatibilities between the semantics of Beta and

gbeta are described in Sect. 8.1. Some other incompatibilities that make gbeta

reject Mjolner Beta programs are caused by implementation artifacts in the

Mjolner Beta compiler, or facilities that simply have not yet been implemented

in gbeta. All in all, this causes three kinds of modi�cations to tst.bet.

Firstly, the Mjolner compiler expects the basic patterns like integer to

be de�ned by �magic� declarations such as integer:(##) in the outermost

(`betaenv') object; these declarations must be removed before gbeta runs the

program, because they actually declare that integer is a pattern that has no

enter and exit lists and no attributes. The �magic� with the Mjolner compiler

is that these declarations are treated di�erently than all other declarations, and

it was not considered appropriate for gbeta to do this; in gbeta the prede�ned

patterns are really prede�ned and do not have any syntactic representation. The

second kind of changes was the deletion of the few lines in tst.bet which were

used to test the invocation of external routines (such as C functions); no support

for external routines has been implemented in gbeta as yet. Primitives (such

as directly reading or writing a speci�c memory address) are not yet supported

either. Finally, since gbeta deliberately has a di�erent semantics than Beta in

repetition assignments, a couple of repetition assignments had to be changed.

Since external routines are not yet supported, a new primitive entity stdio

was added to gbeta, and this makes it possible to print to standard output and

to read the standard input. This does not represent careful language design, it

was just an easy way to make it possible to write programs which can at least

support old-fashioned, console based interaction.

In summary, gbeta will not run any Mjolner Beta programs unmodi�ed,

because they all contain calls to external routines (e.g. to be able to access

standard input/output), and because of the �magic� patterns in betaenv.bet.

However, Beta programming experience can generally be applied directly when

writing gbeta programs, just noting the �real� semantic changes presented in

Sect. 8.1.
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Figure 11.1: The architecture of the gbeta implementation

11.3 Architecture

The implementation of gbeta is written in Beta. It includes approximately

110 source code �les, 70 KLOC, written speci�cally for the implementation of

gbeta. Additionally, it uses some standard libraries provided by Mjolner, such

as the meta-programming system, MPS [84], which is used to obtain abstract �

syntax tree representations of source code. The GNU `readline' library is used

to provide line editing facilities for interactive use of gbeta.

The architecture of the implementation of gbeta, i.e., the most coarse-grained

view of the design, is illustrated in Fig. 11.1. Each rounded box in the �gure

represents some representation of a given, complete program which is being

analyzed and executed, and the arrows show how representations can be trans-

formed into other representations. This process is a simple, linear progression

which �nally produces two directly executable representations of the program.

At the beginning, the program is provided as a set of textual source code

�les or �les containing abstract syntax trees. If the programs are constructed

using such a tool as Sif [83] then the textual �les need not exist because the

abstract syntax trees are generated directly, otherwise the textual representation

is parsed to get the abstract syntax trees. The parsing is based on the grammar

in App. A, and the parser has been generated using MPS.

A simple transformation process is applied to the MPS syntax trees to pro-

duce an internal representation which may also be described as abstract syntax

trees, or ASTs. This extra transformation degrades the performance somewhat, �

but it also yields several bene�ts. First, the internal ASTs may be generated

from several di�erent kinds of MPS ASTs, so there may be several di�erent

grammars. This is used to ensure that Beta source code can be parsed accord-

ing to the standard Beta grammar, while gbeta programs can be parsed with a

grammar that di�ers from the Beta grammar in many ways. It may be bene-
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�cial to provide other grammars for gbeta than these two, e.g., a �mainstream�

grammar that tries to mimic the grammar of a language like Java might ease

the communication of ideas to people who are not familiar with the Beta style

of syntax. The internal representation is the same for all grammars, though

some nodes (such as when) will never be generated from a Beta MPS AST.

Second, the fact that the MPS ASTs and the internal ASTs are separate

makes it easy to make small adjustments to the gbeta grammar, regenerate the

patterns that are used to access the MPS ASTs, and then update the transfor-

mation. The internal AST nodes carry most of the implementation of gbeta,

and it would be very inconvenient to re-insert all those virtual methods etc.

after each little grammar adjustment.

Third, the internal representation is more abstract than the MPS ASTs, in

particular because the MPS grammar needs to allow for unambiguous parsing.

This allows the use of simpler ASTs, especially the ASTs for expressions become

smaller.

Fourth, each child node under a node in an internal AST is accessed through

a reference with a quali�cation which is optimally precise according to the gram-

mar (e.g., the two nodes hanging under a binary expression, l2BinaryExp, are

quali�ed by l2Expression), whereas each child node in an MPS AST is only

known by the type system as an `ast'. Consequently, a program which tra-

verses abstract syntax trees repeatedly will avoid a large number of dynamic

type checks by using internal ASTs.

Fifth, the MPS ASTs allow for annotation of syntax trees with semantic

information, but it is not easy to allocate space for information with variable

size, which is needed in order to support gbeta static analysis.

The main disadvantage is that the internal ASTs do not have integrated sup-

port for persistence. The MPS ASTs are stored e�ciently on disk �les together

with their static semantic annotations, but as it is now, gbeta recomputes the

static information every time a �le is loaded, because the internal ASTs from

previous runs are lost. This means that the potential for separate, reusable

analysis and code generation is not leveraged. That should be corrected as soon

as possible.

The next step in the processing of a gbeta program is the static analysis.�

This process has two aspects. The �rst aspect is essential for the run-time

semantics of programs, and that is the annotation of each name application,

NameApl, with a run-time path that speci�es how to �nd the entity which is

denoted by that NameApl in a given execution context. A necessary support

facility for this annotation is the capability to compute the type of accessible

run-time entities.

The second aspect of the static analysis is the type checking , where it is�

ensured that the statically known properties of entities guarantee that the ex-

ecution of the program will not exhibit type errors. This part of the static

analysis is not needed in order to run the program, and gbeta can be instructed

to skip it (by using the `-l' option, for `lazy' analysis, where static information

is computed on demand and only as needed for the execution of the program).

A program which has been transformed into an internal AST and anno-



11.4. SOURCE CODE NAMING CONVENTIONS 227

tated with run-time paths can be executed directly by means of a closure based

execution. This technique is described in Sect. 11.5.

However, the closure based execution technique is inappropriate for several

reasons, and that motivates yet another annotation phase, namely a code gener-

ation phase where each imperative is decorated with a list of bytecodes. When

a program is available as an internal AST with bytecodes it can be executed in

a much more appropriate way, using a stack based virtual machine to interpret

the bytecodes.

11.4 Source Code Naming Conventions

To support the readability of the source code we mention brie�y some naming

conventions that may help to place individual pieces of code in the right context,

in addition to the division into phases that Fig. 11.1 on page 225 describes. The

processing of gbeta programs is divided into three levels, namely the abstract

syntax (the program); the run-time entities (objects and patterns and so on,

which may be accessed using syntax); and the transient entities, implementing

values (always implicit�even literals just produce values when evaluated). The

transient entities are called `level zero', the run-time entities are called `level

one', and the syntactic entities are called `level two'.

This a�ects the naming of many parts of the implementation. For example,

the syntactic construct ObjectDescriptor is represented in internal ASTs by an

instance of the pattern l2ObjectDescriptor, where l2 means level two. Sim-

ilarly, a (gbeta) pattern is represented at run-time by an instance of a (Beta,

implementation level) pattern l1PatternEntity, where l1 means level one.

And, �nally, an integer value which arises as a result of a computation (such as

an evaluation of the value of an integer object) is represented by an instance of

the pattern l0TransientInteger. Names in the source code are often pre�xed

with l0, l1, or l2, to re�ect whether they refer to gbeta-level values, gbeta-

level objects/patterns, or gbeta-level syntax. For example, l1obj is an object,

l1pat is a pattern, and l2ndcl is an l2NameDcl abstract syntax node, a name

declaration.

Note that level zero entities are only used in the closure based execution, and

the ability to avoid explicit representation of transient entities as implementation

level Beta objects is one of the many reasons why the bytecode based execution

is so much more e�cient. In bytecode based execution the transient entities at

the gbeta level are mapped to transient entities at the implementation level.

11.5 Closure Based Execution

The implementation of the run-time semantics of gbeta comes in two versions,

two generations. The �rst generation of the implementation was created at

a stage where it was not at all clear that it would eventually be possible to

implement the language as it was intended. Getting the right semantics (and
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discovering what the detailed semantics should be) was a su�ciently lofty goal,

and performance considerations did not enter the equation.

It was actually possible. This implementation is based on closures, i.e.,

on objects which serve as contextually dependent deferred computations that

can be collected from run-time entities and then executed using a well-de�ned

protocol. For example, consider the interpretation of an assignment evaluation

such as (3,4)->myPoint.move in context of the following program:

(# Point:

(# x,y: @integer;

move: (# dx,dy: @integer enter (dx,dy) : : : #);

#);

myPoint: @Point

do

(3,4)->myPoint.move

#)

Ex.

11-1

The execution would proceed as follows: First the evaluation list `(3,4)' would

be asked to provide an `ExitIterator' which would be able to deliver the values

3 and 4 as level zero entities, in that order and one per request. The gbeta

implementation de�nes many kinds of ExitIterators, one for each syntactic

construct that can be evaluated. Then myPoint.movewould be asked to deliver

an `EnterIterator' (again, there are many kinds) which would be able to accept

two level zero entities containing integer values (or some other values that can

be coerced into integer values), and then the two iterators would be brought

together by asking the ExitIterator for the next level zero entity and giving

that entity to the the EnterIterator as often as one had something to give

and the other would accept more values. Static information is necessary for the

creation of such iterators, because the enter- and exit-lists which are statically

known at the location of the assignment evaluation, and only those enter-

and exit-lists, must participate in this process. A simpli�ed version of this

algorithm (which is the closure-based implementation of the execute method

of an l2AssignmentEvaluation) looks as follows:

leftHandSide.getExitIterator -> leftIter[];

rightHandSide.getEnterIterator -> rightIter[];

(while leftIter.hasMoreToGive and rightIter.willAcceptMore do

leftIter.getNextTransient ->

rightIter.acceptNextTransient

while);

(if leftIter.hasMoreToGive or rightIter.willAcceptMore then

(* the iters expected a different number of transfers *)

'OOPS! Static analysis bug detected, please report!' ->

internalError

if)

Ex.

11-2

Essentially the same process must be carried out during static analysis to

ensure that the two iterators will never have a di�ering number of delivered

resp. accepted level zero entities, and to ensure that each pair of delivery and
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acceptance of a level zero entity will have compatible types. If indeed they had

incompatible types in the above example, there would be an internalError

during the execution of acceptNextTransient.

The fully typed representation of all run-time entities and the frequent use

of consistency tests (and invocation of internalError if a test fails) degrade

the performance of gbeta considerably, but it also ensures that the soundness

of the static analysis is monitored very closely.

Since one and the same enter- or exit-list may be associated with di�erent

type information when used in di�erent contexts, there is no easy way to store

the results of the static analysis that determines the correct behavior of iterators.

Hence, the closure based design leads to a repetition of the static analysis of an

assignment evaluation (and many other syntactic constructs) for each execution

of it. Apart from the fact that this is ridiculously slow, it also gives rise to a

natural suspicion that there is no static analysis at all. If the �static information�

must be computed at run-time again and again then it does not seem to have

an appropriate name. Consequently, it would not be particularly convincing to

claim that the language supports static type checking.

As a result, it was a high priority task to redesign the execution model in

the gbeta implementation. But it was not an easy task, so it remained a high

priority task for a long time.

11.6 Code Generation

The improved implementation based on bytecode came into existence in the

autumn of 1998, based on a design where a stack based virtual machine executes

static bytecodes. With this model, the program is analyzed statically and a list

of bytecodes is generated for each imperative in the program. After that, the

imperative will be executed by letting the virtual machine read and execute the

bytecodes; the syntax is not needed any more, and the execution of bytecodes

does not need to obtain information about the involved entities by means of

static analysis methods. In other words, the static analysis is actually static.

A virtual machine and its bytecodes may be de�ned together as a software

based simulator for a CPU and its instruction set. Each bytecode may be

executed, and the e�ect of doing that is a simple action which is characteristic

for the bytecode but possibly modi�ed by (compile-time �xed) parameters. The

main bene�t of using a virtual machine based design in the implementation

of gbeta is that it allows for the de�nition of an explicit representation of the

semantics of a given program which is at a considerably lower level than the

original source code, but at the same time at a level which is high enough to make

it reasonably convenient to implement. As a consequence, it becomes possible

to inspect such aspects of the semantics as the time and space complexity of

individual imperatives in a program. This will be treated in Sect. 11.7.

The virtual machine which is used is a special purpose virtual machine whose

instruction set is optimized for the execution of gbeta. It would be tremendously

useful, for instance, to be able to compile gbeta down to the kind of bytecode
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virtualMachine:

(#

execute:

(# program: ^byteCodeList;

dynamicContext: ^partObject

enter (program[],dynamicContext[])

do : : :

#);

saveFrame: (# : : : #);

restoreFrame: (# : : : #);

resetFrame: (# : : : #);

tmpObjs: @stack(# element::l1ObjectEntity #);

booleans: @stack(# element::boolean #);

chars: @stack(# element::char #);

integers: @stack(# element::integer #);

reals: @stack(# element::real #);

strings: @stack(# element::string #);

objRefs: @stack(# element::l1ObjectEntity #);

patterns: @stack(# element::l1PatternEntity #)

#)

Figure 11.2: Pseude-code for important parts of the gbeta virtual machine

that Java virtual machines can run. But that is not easy, because each gbeta

concept (object, pattern, etc.) does not at all map directly to similar concepts

in Java, and the JVM is optimized for handling those concepts [62].

Figure 11.2 presents an overview of the gbeta virtual machine. Each thread

has its own virtual machine, so the concurrency support is not visible inside

each individual virtual machine. It contains an execute method which receives

two arguments, a program (a list of bytecodes) and a dynamic context in which

to execute that program. It also contains methods to maintain stack frames�

marks on the stack of temporary objects that are used as base levels for access

to temporaries. For example, if three temporaries are needed for the execution

of an AssignmentEvaluation then those temporaries may be pushed on the stack

of temporaries in the preparation phase of the execution, and they may then be

addressed relative to the base level on the stack of temporaries. They cannot

be addressed relative to the top of the stack of temporaries because there may

be other computations going on, such as the execution of methods which are

called as part of the execution of the AssignmentEvaluation.

The virtual machine contains many stacks. There could have been just

the stack of temporary objects (tmpObjs) and one expression evaluation stack,

but the expression evaluation stack has been split into 7 separate stacks, one
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for each kind of transient value. This makes it possible to maintain the type

information about each transient entity, and that again enhances the constant

paranoia that the run-time system exhibits towards the soundness of the static

analysis. Faults in the type correctness of the dynamic semantics are caught

very quickly. An implementation optimized for space and speed would of course

just trust the static analysis and store all expression evaluation intermediate

values (i.e. transients) on the same stack.

The bytecodes represent the kind of small tasks that the execution of a

gbeta program can be divided into. Some bytecodes simply push a compile-

time constant value on a stack. Others pop a value from a stack and store it

in a given entity (e.g. an object reference may be stored in a variable object

attribute, speci�ed by the run-time path which leads to it from the current part

object). Yet others may pop two values, add them, and push the result again.

The complete list of bytecodes is given in App. D.

There are three levels of bytecodes in the instruction set. First, there are the

simple bytecode instructions like the abovementioned ones. Then there are byte �

codes for built-in control structures (such as an if-imperative); a bytecode for

a control structure is executed at a high level, referring to syntax and in terms

of execution of other, syntactically nested imperatives. These high-level byte-

codes make it possible to use an instruction set that does not contain jumps or �

labels, and that again allows for a simpler implementation, without compromis-

ing the improvements that were obtained by going from closures to bytecodes.

Finally there are a group of intermediate bytecodes which are concerned with

the semantics of repetitions. In these bytecodes there is sometimes a need to

compute the value of an Evaluation (e.g., to access R[i+1] it is necessary to

compute the value of i+1), and that is again expressed in terms of syntax (the

syntax `i+1'). However, both for repetition related instructions and for control

structures, the �high-level� aspect could be further compiled down to simple

bytecodes by means of labels and jumps, and the time complexity of executing

one or the other would be the same.

In any case, the interesting issues with �the time complexity of a language�,

to the extent that such a concept is even meaningful, is the time complexity of

executing the small basic blocks of the program that use the kind of language

de�ned functionality (such as looking up a name in the current execution en-

vironment) that gets invoked everywhere. The gbeta bytecode instruction set

supports such investigations just as well with high-level bytecodes as it would

have done if they had been compiled away.

Here is an example of a listing of bytecodes which was printed during an

interactive execution of a program like the example in the previous section:

1 PUSH-ptn {"myPoint","move"}

2 NEW, ptn->tmp

3 PUSHI 3

4 POP-integer {tmp(1),"dx"}

5 PUSHI 4

6 POP-integer {tmp(1),"dy"}

7 CALL {tmp(1)}

Ex.

11-3
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This list was obtained using the command `bytecode' which prints the bytecodes

for the current imperative, which was (3,4)->myPoint.move. Note that a list

enclosed in braces ({..}) is the gbeta printed representation of a run-time path,�

and each element in a run-time path is a run-time step.�

A run-time step can be a lookup step (such as `"myPoint"'), which will cause�

a part object local lookup (and make the most speci�c part object of the result

the current part object, if the result is an object). Note that it is not a full local

or global lookup, but just the fetching of an attribute at a statically known

o�set in the currently selected part object. A run-time step can also be an out

step (such as `<-1'), which simply selects the part object which encloses the�

currently selected part object (thereby normally also selecting another object).

A step like `<-3' works like {<-1,<-1,<-1}. A run-time step can also be an up

step (such as `

^

�258'), which searches through the less speci�c part objects of�

the same object as the one that is currently selected until it �nds the requested

one, as speci�ed by the string after the backquote. Backquotes are used to mark

parts of the gbeta output as references to pieces of source code (in this case a

MainPart), such that it can be double-clicked on when gbeta runs inside Emacs,

to jump to that position in the source code. Finally, a run-time step can be a

temporary step (such as `tmp(1)'), which selects the most speci�c part object�

of the object in the speci�ed position on the stack of temporaries.

Note that it is statically known exactly what kind of entity is found at each

step of a run-time path traversal, and it is in all cases a part object

1

for every

step, except for the last step where it may be any kind of run-time entity, e.g.

a pattern.

When executed, the bytecodes shown above give rise to the following actions:

In the current object, the attribute myPoint is looked up, and in the object

which is obtained from that, the attribute move is looked up, yielding a pattern.

That pattern is pushed on an expression stack. The second bytecode pops the

pattern again, creates a new instance of it, and pushes the new object on the

stack of temporary objects. The third bytecode pushes the immediate integer

value three unto an expression stack, and the fourth bytecode pops it o� again,

storing it in the dx attribute of the object which is in the �rst slot of the stack

of temporaries. Similarly, the next two bytecodes store the value four into the

dy attribute of the �rst temporary. Finally the last bytecode calls the do-part

of the �rst temporary, i.e., it calls that instance of the move method.

The bytecodes in the implementation are actually full-�edged Beta objects,

with an execute method. They are also capable of printing themselves, and

they even store a text string which speci�es what source code �le and line

originally gave rise to the generation of the given bytecode. This means that

they are convenient to implement and debug, and that the behavior of the virtual

machine is nicely modularized into all the execute methods. It also means that

they take up a large amount of space, but a more e�cient implementation may

bene�t from the level of debugging that was facilitated by this implementation,

1

More precisely, it is a context (in the implementation in it an instance of the pattern

substanceSlice or a subpattern of that), which may be a part object or the entity associated

with an execution of a for imperative, or a few other things.
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without inheriting the space e�ciency problem.

11.7 Performance Implications

The implementation of gbeta does not allow for meaningful measurements of

performance; the execution is so heavily unoptimized that the results would

just con�rm the fact that any programming language can be implemented in

such a way that the performance is too slow for real-world use.

However, the bytecode generation which was brie�y introduced in the last

section does establish a baseline of information which can be used to argue

that the performance need not be that bad. The main observation we need to

make is that the generated bytecodes can be used to inspect the micro-level

time and space complexity of execution of gbeta programs. Since this has been

implemented, it proves that an implementation of gbeta with this performance

pro�le (or better) can be implemented.

The bene�t of having bytecodes to look at, compared to an execution based

on closures, is that they allow for a very immediate complexity inspection pro-

cess. Each simple bytecode has a near-constant execution time. The only ele-

ment which is not a constant time operation is the traversal of an up step in a

run-time path. The up step is currently implemented as a linear search in the

list of part objects that constitute the current object, so it is linear in the num-

ber of part objects. It is not expected that objects will have more than a few

part objects each in the typical case, but even two or three extra pointer indi-

rections for an access to an attribute are a signi�cant overhead when comparing

to, e.g., the execution of C code�where we might say that every run-time path

has exactly one step, and that is a lookup step.

In general the task of performing an up step is similar to a situation in

C++, where the lookup of a data member in presence of virtual inheritance also

requires extra work: at �rst the part object which represents the given superclass

must be looked up, and then the member can be looked up at a statically known

o�set inside that part object. It might be possible to leverage experiences from

the handling of this problem to obtain an e�cient solution in gbeta.

There are some �expensive� operations in the gbeta semantics. For example,

the process of dynamically specializing an object may cause the object to become

larger, and that may require that it gets moved in memory. To handle this

it is possible to scan the entire pool of objects and update pointers (which

makes dynamic object specialization very expensive), or it is possible to access

every object through an extra level of indirection (which makes every object

access a bit more expensive, which is bad), or it may be possible to force a

garbage collection during which the object being specialized would be relocated

anyway, or some objects could be allocated with some �waste� space at the

end to be prepared for dynamic specialization, etc. The main point is that

new functionality should preferably not cause degradation of the performance

of code that does not use it, but if it is performing a task which is both complex

and useful then it may actually be allowed to take some time when it is used.
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Moreover, there may be reasonable trade-o�s where it does cost a little bit

extra even for code that does not use it. Di�erent compilers may make di�erent

trade-o�s.

The implementation of gbeta right now just uses the approach which was

easiest to implement, degrading the performance in a variety of ways. However,

it should be noted that such facilities as dynamic specialization of objects may

be included or excluded with any given implementation without a�ecting the

rest of the language. There could be a compiler for the full language gbeta

which would not be able to optimize a number of cases. There could be another

compiler for gbeta-except-dynamic-specialization, and that might provide better

performance for systems that do not need dynamic specialization. There might

also be a highly optimizing compiler for gbeta-without-dynamic-allocation (and

whatever implies dynamic allocation), and such a language might be convenient

for systems with hard real-time constraints. It would allow for FORTRAN-

like optimization strategies, because all objects could be allocated at absolute

addresses which would be known at compile-time; there would be opportunities

for aggressive parallellizing optimizations if not even variable object attributes

were allowed, such that no entity could be aliased.

These restrictions would interact gracefully with abstraction mechanisms�

for example, it would still be meaningful to be able to express designs incre-

mentally using (possibly propagating) specialization, even if polymorphism were

made unavailable because variable objects were excluded.

With such scenarios it would be possible for programmers to reuse their

experience with a given programming language in widely di�erent application

areas, and if the constraints on a given project were to change then the rewriting

to the next-more-constrained or next-more-expressive language might well be

more manageable than, say, switching from Smalltalk to Ada.

11.8 Separate Compilation

The fragment system provides gbeta programmers with powerful support for

composing large programs by composition of modular units; see Chap. 10 for

more information about the fragment system. This works just like in Mjolner

Beta, except that the gbeta implementation of the fragment language is more

complete. So we may claim that the current gbeta implementation has very

good support for modularization of programs.

However, that is not the full story. The current implementation of gbeta does

not support separate compilation, and every time a program is executed gbeta

will analyze all the fragments all over again and generate new bytecode. That

is a consequence of the fact that the internal ASTs (introduced in Sect. 11.3)

cannot be stored on disk together with the associated static information.

For technical reasons, the Mjolner Beta persistence support [85] cannot

be used to store objects that are involved in concurrency, and that clashes

with the implementation of gbeta which uses Beta concurrency extensively.

Moreover, it would probably be better to de�ne some optimized representation
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of the semantic information which can be stored in the Mjolner AST �les, or

something that works similarly to that, instead of storing all the Beta objects

that actually make up the internal ASTs and their associated static information.

Apart from the fact that separate compilation does not happen now, it is

not di�erent from the same task for Beta, where it has been implemented and

used for many years. Each fragment group F can be analyzed by loading the

fragment groups in its domain, D

1

: : : D

n

, and binding the fragment forms in F

in the context where the corresponding fragment slot is found (that will be in one

of D

1

: : : D

n

which is reachable from F via ORIGIN fragment links). Assuming

that all the fragment groups D

1

: : : D

n

have been checked, the existing semantic

information in D

1

: : :D

n

will be su�cient for the analysis of F , and the code in

F will not be able to a�ect the correctness or content of the static information

in D

1

: : : D

n

. That is all well-known from Beta, and gbeta does not in itself

add new di�culties.

However, the more general implementation of the fragment language which

is supported in gbeta does cause a new di�culty. This di�culty would also be

present in context of Beta, it is not caused by the extra generality of gbeta.

The di�culty is that the support for adding substance attributes (such as object

attributes) in an Attributes SLOT makes it impossible to determine at compile-

time where in an object a given attribute will be allocated�in other words, it

makes it impossible to compile an attribute access operation down to a simple

addition of a statically known o�set to the address of the object (in gbeta that

is an o�set to the address of the part object).

However, that is a situation which has been handled gracefully in many lan-

guages. Sather uses a very small, automatically generated method, a thunk, to

look up an attribute whose o�set is not known statically, similarly to the im-

plementation of call-by-name in Algol-60 [70]; CLOS, Dylan, Cecil, and others

use accessor methods which may be compiled down to simpler constructs (in-

lined) when su�cient information is available, and dynamic recompilation and

method splitting like in Self [22] can be used to obtain better performance at

run-time, when a closed world assumption is natural. Similarly, some Objective

C implementations[111, 109] set up tables of methods at program loading time

(not link time, but just before running the program), and that could also be

used to set up o�set tables for attributes.

Note that all the attributes which are declared in the same fragment group

as the enclosing pattern may have assigned o�sets at compile-time, it is only

the attributes which are added in other fragment groups that have to have

o�sets assigned at link-time or later (or they may be looked up in some other

way, not using �xed o�sets at all), and it is only the patterns that contain a

declaration of an Attributes SLOT that may have such attributes. That may

very well be resolved quite quickly for most programs. We believe that the

potential improvement in the modularization of programs enabled by the full

implementation of the fragment language is probably well worth the cost in

performance degradation, if any, and in implementation complexity.

Another small implementation problem with the more general support for

fragmentation as it is implemented in gbeta is that a given piece of source code in
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a fragment form, S, may be inserted into more than one context; see Sect. 10.2

for an example. This means that name applications in S may be resolved to

di�erent name declarations in di�erent contexts, and consequently they must

be annotated with more than one set of static annotations. Similarly, there will

have to be more than one portion of generated code for S, and there must be

ways to choose what version of static information and generated code to use in

di�erent situations. It may be a bit tedious to handle this correctly, but should

not present any deep problems.
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The Core Language

This chapter shares material with our paper Propagating Class and

Method Combination, which was accepted for publication and presen-

tation at the ECOOP'99 conference.

This chapter presents the core of gbeta in an indirect manner, by describ-

ing an untyped functional calculus, gb. This core expresses the essence of the

semantics of object creation and attribute lookup in gbeta, including the se-

mantics of virtual pattern attributes and the combination mechanism. In gb

there is syntax for specifying a program; moreover, there is a rule outside gb

for building a pattern from such a program, a rule for creating an object as an

instance of a given pattern, and a rule for looking up a name in a given object.

This means that it is possible to specify some structure with a gb program and

then use the rules to explore that structure. This makes it possible to keep gb

minimal and still enable arbitrary objects and patterns to be created without

inventing expression syntax for it.

The abstract syntax for gb programs is given in Fig. 12.1. It includes blocks

(corresponding to MainParts in gbeta), descriptors (similar to ObjectDescriptors

in gbeta), and speci�cations (the right hand side of declarations). The symbol

l denotes a label, i.e., one of a prede�ned set of identi�ers. The only label with

a prede�ned semantics is `object' which is the pattern with no mixins; there

is no need for the basic mixins like integer and component because they only

a�ect evaluation semantics, their role in name lookup and pattern merging is

no di�erent from that of other mixins; the prede�ned names like `integer' may

b = (# l

i

: s

i

i2I

#) (block)

d = l b (descriptor)

s = l j d (speci�cation)

l (label)

Figure 12.1: The abstract syntax of gb

237
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Block = (Label � Spec) set

Descriptor = Label � Block

Spec = Label j Descriptor

Pattern = Mixin list

Mixin = Env � Block

Env = Object list

Object = Attribute set

Attribute = Label � EnvSpec list

EnvSpec = Env � Spec

Figure 12.2: Semantic Entities

be considered to be declared in a prede�ned scope which encloses the outermost

syntactically described object, `betaenv', and which contains no mutable state,

only a few patterns. The syntax includes only one kind of attribute declarations,

corresponding to virtual pattern attribute declarations in gbeta. Hence, all

attributes are virtuals. This is su�cient for the following reasons:

� Simple pattern attributes are (in this untyped world) like virtuals which

happen to have no further-bindings.

� The variability of variable patterns plays no role for name lookup, and

pattern merging follows the same rules for all patterns no matter what

kind of entity they are obtained from.

� Object attributes are looked up according to the same rules as pattern

attributes, and merging always happens in terms of patterns.

There is no statement syntax in gb, but the rules for creating instances

and looking up names can be applied repeatedly, so objects and patterns from

anywhere in the program can be created.

The semantic entities are shown in Fig.12.2. They include the syntax as

Block, Descriptor, and Spec. The central concept of mixin is represented by

Mixin which is a block in an environment. A pattern is simply a list of mix-

ins. An environment, Env, is not only the enclosing object but the list of all

enclosing objects, ending in the outermost object which contains everything in

the program execution. An Object is a set of attributes, and an Attribute is a

pair of a label and its value. The value of an attribute is a list of speci�cations,

each in its own environment. It can be thought of as a list of expressions whose

names have not yet been looked up, packaged together with almost all the in-

formation in which they will be looked up when needed. The missing part in

the environments for the value of an attribute A is the object of which A is an

attribute, and it will be inserted into the environments when the value is being

looked up.

Since the result of looking up a label in gb is always a Pattern, it would have

been natural to use the de�nition Attribute = Label�Pattern, but that de�nition

con�icts with the dynamic semantics for objects which contain self references.

The de�nition of Attribute in Fig. 12.2 is one way to handle recursive objects,

namely by evaluating speci�cations lazily.
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New(C : Pattern) = f (l;Val(l; C)) j l 2 Labels(C)g

8j 2 I: Val(l

j

; (# l

i

: s

i

i2I

#)) = s

j

Val(l; (e; b) : Mixin) =

�

[(e;Val(l; b))] if l 2 Labels(b)

[ ]; otherwise

Val(l; [ ] : Pattern) = [ ]

Val(l; (h :: t) : Pattern) = Val(l; h) ++Val(l; t)

Labels((# l

i

: s

i

i2I

#)) = fl

i

j i 2 Ig

Labels((e; b) : Mixin) = Labels(b)

Labels([ ] : Pattern) = ;

Labels((h :: t) : Pattern) = Labels(h) [ Labels(t)

Figure 12.3: Creation of objects (++ concatenates lists)

12.1 From Program to Pattern to Object.

A gb program is a block (just like a gbeta program is the betaenvObjectDescrip-

tor, i.e., normally a MainPart). For a given program b we construct the initial

pattern [([ ]; b)], which contains one mixin which places b in the empty environ-

ment; we could also have placed it in an environment containing the handful of

prede�ned patterns, but this approach is the simplest. This pattern can then be

instantiated like any other pattern, and that initiates the gb `execution'�which

is a chain of evaluations of New(�) and Lookup(�; �).

Any given pattern can be instantiated using the function New(�) which takes

a pattern and yields an object. It is de�ned in terms of the auxiliary functions

Labels(�) and Val(�; �). See Fig. 12.3.

Figure 12.4 presents the semantics of attribute lookup. Given an object O

and a label l, Lookup(O; l) delivers the result of looking up l in O. It yields a

pattern if l is de�ned in O, and raises an error otherwise. To lookup l in O we

search the labels of O using L

obj

(O; �; l). If we �nd l then we have an EnvSpec

list, ess, which is then looked up in O using L

esps

(O; ess). Note that ess is

the result of collecting all contributions to a given attribute�gb has virtual

attributes, only.

The next step is crucial. The use of C3(�; �) in the de�nition of L

esps

(�; �)

constructs the virtual by linearizing all the contributions. A similar core lan-

guage for Beta would not linearize at this point; it would replace the de�nition

in the less speci�c enclosing pattern with the de�nition in the more speci�c

one. Moreover, the static analysis in Beta ensures that this always replaces

the virtual pattern with a descendant. Since A&B � X for X 2 fA;Bg and

A&B = B&A = B whenever B � A, the Beta semantics comes out as a special

case of the gbeta semantics. Finally, L

env

(�; �) is used to look up labels in the

given environment e, enhanced with the current object to O :: e; this (very late)
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Lookup(O : Object; l : Label) = L

obj

(O;O; l)

L

obj

(O; [ ] : Object; l) = raise Unde�ned

L

obj

(O; ((l

0

; ess) :: t) : Object; l) =

�

L

esps

(O; ess); if l = l

0

L

obj

(O; t; l); otherwise

L

esps

(O; [ ] : EnvSpec list) = [ ]

L

esps

(O; (h :: t) : EnvSpec list) = C3(L

esp

(O; h);L

esps

(O; t))

L

esp

(O; (e : Env; l : Label)) = L

env

(O :: e; l)

L

esp

(O; (e : Env; (l; b) : Descriptor)) = (O :: e; b) :: (L

env

(O :: e; l))

L

env

([ ] : Env; l) =

�

[ ]; if l = "object"

raise Unde�ned; otherwise

L

env

((h :: t) : Env; l) =

�

Lookup(h; l); if l 2 Labels(h)

L

env

(t; l); otherwise

Figure 12.4: Looking up a label in an object

enhancement of the environment to include the current object is actually the

essence of the lazy evaluation that makes it possible to handle recursion. This

ends the brief presentation of gb.

12.2 The Relation to gbeta.

The core language gb described in the previous section is of course very di�er-

ent from gbeta. It is purely functional, so the gb objects (in environments) are

replaced with store locations (�pointers�) in gbeta. In gb, names are matched

according to their spelling. Since gbeta uses static name-binding, the identi-

�cation of names in gb is much more inclusive than in gbeta (gb considers

two declarations related in many cases where gbeta considers them unrelated).

To obtain the e�ect of static name binding in gb we would need to rename

identi�ers in a given program, but since the static analysis of gbeta determines

exactly what names are equivalent, it is certainly a tractable problem to choose

new names such that only the gbeta-equivalent names are spelled identically.

In gb, the immanent recursion of objects is handled using lazy evaluation

of attributes. In gbeta, the exact mixins contributing to a given declaration

are determined at compile-time,

1

and cycles (e.g., a pattern which indirectly

inherits from itself) are detected using a graph coloring algorithm: Whenever

the type of a declaration depends on itself, the program is rejected with a `cyclic

dependency' error message. The run-time context is represented relative to a

current object in the gbeta static analysis, since the actual objects are of course

not available before run-time.

1

Unless we use dynamic features, as described in Chap. 7
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However, gb accurately re�ects the semantics of looking up names in gbeta,

starting with declarations in the currently selected mixin (e.g., the method be-

ing executed) and continuing through all enclosing objects until the outermost

�universe� object is reached. Similarly, the semantics of virtuals is the same in

gb and gbeta (apart from the name binding issue which was mentioned above).

Each attribute includes the full context (potentially many objects) in gb, but

this has been reduced to one pointer shared by several attributes in gbeta. The

semantics comes out clearer and simpler with the complete environment at-

tached to each attribute, that is the reason why gb is handled in that way.

Finally, note that gb does not need to include the explicit linearization opera-

tor `&' since the semantics of that operator can be obtained using a couple of

auxiliary patterns and virtuals. This is because virtual pattern contributions

are linearized just like `&' expressions.



242 CHAPTER 12. THE CORE LANGUAGE



Chapter 13

Core of the Static Analysis

This chapter presents the core of the static analysis of gbeta, based a core

language eta. Note that the core language gb which was used in Chap. 12 was

concerned with the dynamic semantics, whereas eta is concerned with the static

analysis. These two core languages are di�erent because they have di�erent

purposes.

The eta language has no expressions, no assignments, no arguments to meth-

ods, and no statements. There is a large body of considerations associated with

the static analysis of these constructs. However, eta is su�ciently rich to illus-

trate the basic issues and techniques of type analysis in gbeta.

After a presentation of eta and the basic concepts behind the analysis, we

give a brief presentation of appendix E which contains a speci�cation of the

type analysis. Finally the relation to the full analysis of gbeta is discussed.

The syntax of eta is shown in �gure 13.1. An eta program is a Block. This

is just a list of attribute declarations, but because of nesting, programs can be

complex nevertheless. The `Meta-variables' summarize the systematic naming;

for example, D is a descriptor.

Meta-variables Non-terminal Expansion

B Block = "(#" AttrDecl* "#)";

A AttrDecl = NameDecl Declarator ObjectSpec;

� Declarator = ":" j ":<" j "::<";

O ObjectSpec = Descriptor j NameAppl j Object;

Object = "object";

D Descriptor = Pre�x Block;

P Pre�x = Object j NameAppl;

a; b; c NameAppl = Identi�er;

a

d

; b

d

; c

d

NameDecl = Identi�er;

Figure 13.1: Syntax and meta-variables for mini-gbeta
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The analysis of eta (and gbeta) is rooted: Whatever type information is�

obtained about a piece of syntax is only valid relative to the current analysis

root. The root is always a Block. The analysis of a program is then the analysis

of each of its blocks.

The analysis uses typing entities. A typing entity describes an aspect of the�

statically known environment, as seen from the root of the analysis. Typing

entities contain indications of positions in the environment, in the form of paths

from the root. The current position during movements is called the focus.�

Typing Entities:

Step = OUT(n) j UP(B);

Path = Step list;

Mixin = Path � Block;

Type = Mixin list;

Context = Path � Type;

Universe = mutable Context set;

It would be cleaner to keep syntax and typing entities separate, but this allows

for a shorter presentation. Hence, there are Blocks in Mixins.

A Step OUT(n) describes the movement of focus from a Context to the en-

closing Context, repeated n times. E.g., OUT(1) leads to the enclosing Context.

A Step UP(B) describes the movement of focus within the current Context to-

wards more general Contexts until one is reached which contains the Block B. A

Path is a sequence of Steps. It is always implied that this sequence starts with

the root as focus.

A Mixin is a Block together with a Path which leads from the root to the

Context which encloses the Mixin, and a Type is a sequence of Mixins. Hence,

a Type describes a list of potential mixins, each corresponding to a Block and

each positioned in an environment. A Type could be described as the type of a

pattern.

A Context is a Type together with a Path which leads to the Context. A

Context could be described as the type of an object. Note that the type of

an object speci�es how it is possible to access exactly that particular object at

run-time, relative to a root which does of course not exist before run-time.

Finally, a Universe is a collection of information about objects in the environ-

ment which is built during analysis. Each Block has its own, unique Universe.

This universe is a mutable entity which is brought along everywhere during the

analysis and enhanced with every new Context created.

The static analysis is presented in appendix E as a program in pseudo-code

in a slightly enhanced version of Standard ML. In the following we will comment

on that program in order to make it easier to read. The algorithm executes in

a context where the eta program is available in the form of an abstract syntax

tree, and this syntax tree can be navigated using the `syn_..' functions. They

do simple things in terms of the structure of abstract syntax trees, like looking

up the right hand side of a declaration.

Most functions are partial, and failure is signaled by returning the special

bottom value �?� which either leads to trying something else (by constructs like
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if Result<>?..) or to a failing termination of the algorithm, if delivered as

the result of a type request.

After a few auxiliary functions, the typing functions are given, and they

specify the core of the analysis. The �U� argument is always the current universe.

In the following, the individual typing functions in App. E are brie�y presented.

First comes merge which implements the two-list C3 merging algorithm.

getFocus searches the Type T for the index of the Mixin whose Block is B.

Two lookup functions follow: blockLookup searches the declarations in the

Block B for the given name and delivers the NameDecl together with a Path

which leads to the given mixin (�',B). It is assumed that � leads to a Context

containing the mixin. localLookup searches the Context (�,T) starting in the

Mixin at index focus for the NameAppl a and delivers its NameDecl and the

Path to it. Hence, blockLookup searches one part object, and localLookup

searches all part objects of a type from a point, in most-speci�c-�rst order.

lookup, de�ned later, uses localLookup to search a Context and then continue

as necessary with all enclosing Contexts.

gatherVirtualChain delivers a list of NameDecls from the given Context

C. Each NameDecl declares a virtual of the same name as the given NameDecl

a

d

, and getVirtualDecl is used to check that each refers to the same initial

":<" declaration. I.e., gatherVirtualChain delivers the list of contributing

declarations to a given virtual.

Next, the typeOf family of functions compute the type of a given piece of

syntax, Typable, in the Context C, starting from the Mixin at index focus.

Name applications, name declarations, and descriptors have a type.

rawTypeOf determines the type of the given syntax without considering that

this syntax may be part of a virtual.

typeOfNameAppl is given a description of the placement of this NameAppl,

namely (C,focus), and it uses staticWalk to transform this into the placement

(C',focus') of the associated NameDecl. The type of the NameDecl in this

environment is then delivered.

typeOfDescriptor delivers the raw type, unless the descriptor is part of a

virtual. In that case, the NameDecl which declares this virtual is used to �nd

the type.

typeOfNameDecl tests whether the given NameDecl declares a simple pattern

or not. In the �rst case, the type is the type of the right hand side of the

declaration. In the latter case, the declared entity is a virtual pattern, and

gatherVirtualChain and merge are used to construct the type of the virtual.

Next, some universe building functions are given. getContext constructs a

Context associated with the Block B and located at the end of the Path �. This

Context may contain any number of Mixins, but one of them is associated with

B, and focus is set up to point at that Mixin. enclosingContext constructs

the enclosing Context of the given Context C at the given focus. Note that a

Context may have several di�erent enclosing Contexts, depending on focus.

The function declOf is special. It looks up the NameDecl associated with the

given NameAppl, and the Path which leads from the Context of the NameAppl

to the Context of its NameDecl. Note that this analysis is made in the local
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universe of the name application. This ensures that the binding from a name

application to its associated declaration is the same, no matter what universe

asks for this information. Consequently, name binding is not only static but

also invariant with respect to the viewpoint.

Similarly, the function getVirtualDecl uses the local universe because it is

also a binding between two names and must also be independent of universes,

such that any given further- or �nal-binding will be associated with one and the

same virtual attribute from all points of view. The di�erence to declOf is that

getVirtualDecl computes a binding from one NameDecl to another NameDecl.

The fact that the NameDecl of a further- or �nal-binding declaration is looked

up gives it an intermediate position between a name declaration and a name

application; this seems in some sense consistent with the fact that many further-

or �nal-bindings provide implementation and are not needed as declarations.

Hence, the path taken from a given name application (or further- or �nal-

binding) to its associated declaration is globally invariant, but each point of

view�each Block�has its own type information about the environment, so

the staticWalk will be in universes of varying richness. The local analysis

of a name application always yields the poorest universe, any other viewpoint

knows at least as much. This makes it possible to have di�erent types associated

with the same name applications, depending on the point of view, and that is

necessary for the handling of virtuals. This concludes our walk-through of the

functions in App. E.

This type analysis is su�cient to bind names correctly in eta, but it does

not accept a su�ciently large class of programs as type-safe. This is caused by

the fact that types are generally represented as lists of mixins with the implied

invariant that the run-time patterns and objects being described by these lists

will have at least these mixins; in other words, the patterns are assumed to be

known by an upper bound in all cases. It is not registered when the list is known

to be exact, and this produces a loss of precision which propagates and thereby

makes the type analysis vastly more pessimistic with respect to type safety than

need be.

To improve on this, the type analysis in gbeta associates some extra infor-

mation with types. In particular, it is noted whether any contribution to a type

is virtual. If this is not the case then the type is known to be exact, and this is

a tremendous help when determining type safety. This knowledge comes in two

versions: First, if the type of a quali�cation of a variable attribute is exact, then

both evaluation of and assignment to this variable attribute can be determined

to be safe, depending on the other parts of the syntactic context which is being

type checked. However, if the type of a quali�cation is only an upper bound

then only evaluations can be determined to be safe, assignments will always be

unsafe (unless relative information is available, see below). The second version

of exactness information is associated with the type of objects. If the type of

an object is exact then the type of virtual attributes in that object will also be

exact, and this is one of the most important ways to get rid of covariant types in

Beta and gbeta, for example by using an object attribute instead of a variable

object attribute.
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Other information gathered is the relations between virtuals: if we have,

e.g., v::< w(# .. #) and w is virtual then we know that v is a specialization

of w no matter what the rest of the program declares. This kind of information

is essential for determining type safety of assignments and argument transfers

among references whose declared types are virtual or depend on virtual types.

Lower bounds are similarly registered such that they may be exploited, e.g., in

case a variable object is being reference assigned.

The explicit merging operator �&� is not included in eta, but it does not

imply any new issues. The machinery for handling virtuals is there, and explicit

merging is a simple special case of that.

An obvious question is, �Does the universe make any di�erence, isn't it just

a cache?� The answer is �No, It is not just a cache!� because an inherited at-

tribute could depend on its enclosing contexts. If these contexts were computed

from scratch each time then some enclosing objects would be computed without

having the complete environment of the more specialized viewpoint. The root

of the universe is the most specialized, �most knowledgeable� point, and Mixins

further UP may �know less.� The result would be that the enclosing objects of

inherited parts of an object would receive a too general type. An example is:

p:

1

(# v:< object; r:

2

(# x: @v; .. #)#);

q: p

3

(# v::< integer; s: r

4

(# do 5->x #)#);

Ex.

13-1

When computing the type of x in mixin 4, the type of the virtual v is needed,

and this depends on the type of the enclosing instance of p. In this case, that

enclosing instance is a q, and the resulting type of v should be integer. Without

the universe, it would be typed as object and the program would be rejected.

Note that the analysis does not assume that any pattern is non-virtual.

Consequently, it is possible to inherit from virtual patterns, to combine virtual

patterns, and to do everything with virtual patterns which can be done with

ordinary patterns. In Beta it is only possible to create instances of virtual

patterns and to use them as quali�cations of references.

When inheriting from dynamically constructed patterns, names are bound

according to the statically known types. In other words, we can use what we

know about from a dynamic pattern, and the rest lies in �darkness.� The dark

parts of objects may still a�ect the behavior, because they may contribute to

do-parts and virtuals, and they may be discovered via when imperatives.



248 CHAPTER 13. CORE OF THE STATIC ANALYSIS



Chapter 14

Conclusion

The programming language gbeta was presented. This language is a deep gen-

eralization of the language Beta, almost backward compatible but signi�cantly

more general already at a very basic level of the semantics. Beta provides

virtual attributes and general block structure in context of strict static type

checking, and gbeta integrates this with a class and method combination mecha-

nism which propagates through the block structure and thereby enables complex

but orderly processes of combination of classes and methods, both at compile-

time and at run-time. By enabling programmers to express separate concerns

separately and later combine the parts into complete solutions by means of a

recursively applied multiple inheritance like mechanism, this represents a new

kind of abstraction mechanism which has other mechanisms as special cases

and adds new possibilities, too. One way to describe it is as a tightly language

integrated support for aspect-oriented programming.

A simple special case of the propagating combination mechanism works sim-

ilarly to the method combination mechanism in CLOS with before and after

methods, only type safe. Another example is to combine two methods and

thereby create a method whose argument types are obtained by combination.

The fact that this mechanism extends to the types of method arguments il-

lustrates the tight integration. An example of a run-time mechanism is the

dynamic specialization of objects which allows an object to become an instance

of a more specialized class; it is also possible to create new classes and new

methods at run-time, by recombining the building blocks which are available

in the program. A number of constructs not in Beta are available in gbeta,

helping to write programs which are more tractable for the static analysis and

hence diminish the need for circumventing the type system.

The module system of gbeta was presented; essentially a more complete

implementation of the fragment language which is also used in Beta, it mainly

serves as an appetizer which shows that signi�cant new possibilities arise by

lifting some of the restrictions in the current Beta module system.

The implementation of gbeta was presented brie�y, chronologically and ar-

chitecturally, and with brief glimpses of the approach to execution of programs
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either via closures or via execution of bytecode by a gbeta-speci�c virtual ma-

chine. It was argued that the implementation was crucial to the language design

process, doing language design without being able to run programs is a futile

exercise�at least for some people.

Finally, three more formally precise presentations of core aspects of gbeta

were presented. First, the linearization algorithm which is at the core of the

gbeta semantics was presented, formalized in a declarative manner, generalized,

and proved to have certain properties. Next, a small, functional object calculus

with virtual attributes and general block structure was presented, giving the

basic dynamic semantics of gbeta. Last, another small language was used to

present the most essential parts of the static analysis of gbeta.

All in all, this project generated a large amount of experience with language

design and implementation, including the creation of a highly non-trivial static

analysis and accompanying run-time system. One of the lessons which stand out

clearly is the demonstration of how deep a con�ict there is between on one side

the dynamic freedom to do and change whatever you want, and on the other

side the possibility to statically keep track of what may or may not happen at

run-time.
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Appendix A

Grammar for gbeta

The context-free grammar for gbeta is given below. Terminals are enclosed in

single quotes, 'like this', and non-terminals are enclosed in angle brackects,

<like this>.

<ObjectDescriptor> ::= <PrefixOpt> <MainPart>;

<MainPart> ::= '(#' <Attributes> <ActionPart> '#)';

<PrefixOpt> ::? <Prefix>;

<Prefix> ::| <SimplePrefix> | <CompositePrefix>;

<SimplePrefix> ::= <AttributeDenotation>;

<CompositePrefix> ::= '(' '&' <Merge> '&' ')';

<Attributes> ::+ <AttributeDeclOpt> ';';

<AttributeDeclOpt> ::? <AttributeDecl>;

<AttributeDecl> ::| <PatternDecl>

| <SimpleDecl>

| <RepetitionDecl>

| <VirtualDecl>

| <BindingDecl>

| <FinalDecl>;

<PatternDecl> ::= <Names> ':' <Merge>;

<SimpleDecl> ::= <Names> ':' <ReferenceSpecification>;

<RepetitionDecl> ::= <Names> ':' '[' <Index> ']'

<ReferenceSpecification>;

<VirtualDecl> ::= <Names> ':' '<' <DisownOpt> <Merge>

<RestrictionOpt>;

<BindingDecl> ::= <Names> ':' ':' '<' <DisownOpt> <Merge>

<RestrictionOpt>;

<FinalDecl> ::= <Names> ':' ':' <Merge>;

<DisownOpt> ::? <Disown>;

<Disown> ::= '-';

<RestrictionOpt> ::? <RestrictionPart>;

<RestrictionPart> ::= ':' '>' <Restrictions>;

<Restrictions> ::+ <AttributeDenotation> ',';

<VariablePattern> ::= '##' <AttributeDenotation>;

<ReferenceSpecification> ::| <StaticItem>

| <VirtualStaticItem>
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| <FinalStaticItem>

| <DynamicItem>

| <StaticComponent>

| <DynamicComponent>

| <VariablePattern>;

<StaticItem> ::= '@' <Merge>;

<VirtualStaticItem> ::= '<' <DisownOpt> '@' <AttributeDenotation>;

<FinalStaticItem> ::= ':' '@' <AttributeDenotation>;

<DynamicItem> ::= '^' <ExactOpt> <AttributeDenotation>;

<ExactOpt> ::? <Exact>;

<Exact> ::= '=';

<StaticComponent> ::= '@' '|' <Merge>;

<DynamicComponent> ::= '^' '|' <ExactOpt> <AttributeDenotation>;

<ObjectSpecification> ::| <ObjectDescriptor>

| <AttributeDenotation>;

<Merge> ::+ <ObjectSpecification> '&';

<Index> ::| <SimpleIndex> | <NamedIndex>;

<SimpleIndex> ::= <Evaluation>;

<NamedIndex> ::= <NameDcl> ':' <Evaluation>;

<ActionPart> ::= <EnterPartOpt> <DoPartOpt> <ExitPartOpt>;

<EnterPartOpt> ::? <EnterPart>;

<DoPartOpt> ::? <DoPart>;

<ExitPartOpt> ::? <ExitPart>;

<EnterPart> ::= 'enter' <Evaluation>;

<DoPart> ::= 'do' <Imperatives>;

<ExitPart> ::= 'exit' <Evaluation>;

<Imperatives> ::+ <ImpOpt> ';' ;

<ImpOpt> ::? <Imp>;

<Imp> ::| <LabelledImp>

| <LeaveImp>

| <RestartImp>

| <InnerImp>

| <SuspendImp>

| <Evaluation>

| <WhileImp>

| <WhenImp>;

<LabelledImp> ::= <NameDcl> ':' <Imp>;

<ForImp> ::= '(' 'for' <Index> 'repeat'

<Imperatives>

'for' ')';

<WhileImp> ::= '(' 'while' <Evaluation> 'repeat'

<Imperatives>

'while' ')';

<GeneralIfImp> ::= '(' 'if' <Evaluation>

<Alternatives>

<ElsePartOpt>

'if' ')';

<SimpleIfImp> ::= '(' 'if' <Evaluation> 'then'

<Imperatives>
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<ElsePartOpt>

'if' ')';

<WhenImp> ::= '(' 'when' <NameDcl> ':'

<AttributeDenotation>

<WhenAlternatives>

<ElsePartOpt>

'when' ')';

<LeaveImp> ::= 'leave' <NameApl>;

<RestartImp> ::= 'restart' <NameApl>;

<InnerImp> ::= 'inner' <NameAplOpt>;

<NameAplOpt> ::? <NameApl>;

<SuspendImp> ::= 'suspend';

<Alternatives> ::+ <Alternative>;

<Alternative> ::= <Selections> 'then' <Imperatives>;

<Selections> ::+ <Selection>;

<Selection> ::| <CaseSelection>;

<CaseSelection> ::= '//' <Evaluation>;

<WhenAlternatives> ::+ <WhenAlternative>;

<WhenAlternative> ::= '//' <ExactOpt> <AttributeDenotation> 'then'

<Imperatives>;

<ElsePartOpt> ::? <ElsePart>;

<ElsePart> ::= 'else' <Imperatives>;

<Evaluations> ::+ <Evaluation> ',';

<Evaluation> ::| <Expression> | <AssignmentEvaluation>;

<AssignmentEvaluation> ::= <Evaluation> '->' <Transaction>;

<Transaction> ::| <Reference>

| <ObjectReference>

| <EvalList>

| <StructureReference>

| <ForImp>

| <SimpleIfImp>

| <GeneralIfImp>;

<Reference> ::| <ObjectDenotation>

| <DynamicObjectGeneration>

| <ComputedObjectEvaluation>

| <RepetitionSlice>;

<DynamicObjectGeneration> ::| <DynamicItemGeneration>

| <DynamicComponentGeneration>;

<ObjectDenotation> ::= <Merge>;

<ComputedObjectEvaluation> ::= <Reference> '!';

<ObjectReference> ::= <Reference> '[]';

<StructureReference> ::= <Merge> '##';

<EvalList> ::= '(' <Evaluations> ')';

<DynamicItemGeneration> ::= '&' <Merge>;

<DynamicComponentGeneration> ::= '&' '|' <Merge>;

<AttributeDenotation> ::| <NameApl>

| <Remote>

| <ComputedRemote>

| <Indexed>

| <ThisObject>

| <QualifiedAttrDen>;

<Remote> ::= <AttributeDenotation> '.' <NameApl>;
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<ComputedRemote> ::= '(' <Evaluations> ')' '.' <NameApl>;

<Indexed> ::= <AttributeDenotation> '[' <Evaluation> ']';

<ThisObject> ::= 'this' '(' <NameApl> ')';

<QualifiedAttrDen> ::= <AttributeDenotation>

'(' ':' <Merge> ':' ')';

<Expression> ::| <RelationalExp> | <SimpleExp>;

<RelationalExp> ::| <EqExp> | <LtExp> | <LeExp>

| <GtExp> | <GeExp> | <NeExp>;

<SimpleExp> ::| <AddExp> | <SignedTerm> | <Term>;

<AddExp> ::| <PlusExp> | <MinusExp> | <OrExp> | <XorExp>;

<SignedTerm> ::| <UnaryPlusExp> | <UnaryMinusexp>;

<Term> ::| <MulExp> | <Factor>;

<MulExp> ::| <TimesExp> | <RealDivExp> | <IntDivExp>

| <ModExp> | <AndExp>;

<EqExp> ::= <SimpleExp> '=' <SimpleExp>;

<LtExp> ::= <SimpleExp> '<' <SimpleExp>;

<LeExp> ::= <SimpleExp> '<=' <SimpleExp>;

<GtExp> ::= <SimpleExp> '>' <SimpleExp>;

<GeExp> ::= <SimpleExp> '>=' <SimpleExp>;

<NeExp> ::= <SimpleExp> '<>' <SimpleExp>;

<PlusExp> ::= <SimpleExp> '+' <Term>;

<MinusExp> ::= <SimpleExp> '-' <Term>;

<OrExp> ::= <SimpleExp> 'or' <Term>;

<XorExp> ::= <SimpleExp> 'xor' <Term>;

<UnaryPlusExp> ::= '+' <Term>;

<UnaryMinusExp> ::= '-' <Term>;

<TimesExp> ::= <Term> '*' <Factor>;

<RealDivExp> ::= <Term> '/' <Factor>;

<IntDivExp> ::= <Term> 'div' <Factor>;

<ModExp> ::= <Term> 'mod' <Factor>;

<AndExp> ::= <Term> 'and' <Factor>;

<Factor> ::| <TextConst>

| <IntegerConst>

| <RealConst>

| <NotExp>

| <NoneExp>

| <Transaction>;

<RepetitionSlice> ::= <AttributeDenotation> '[' <Low:Evaluation>

':' <High:Evaluation> ']';

<NotExp> ::= 'not' <Factor>;

<NoneExp> ::= 'none';

<Names> ::+ <NameDcl> ',';

<NameDcl> ::= <Name>;

<NameApl> ::= <Name>;

<IntegerConst> ::= <SignOpt> <Natural>;

<SignOpt> ::? <Sign>;

<RealConst> ::= <IntegerConst> '.' <Natural> <ExpOpt>;

<ExpOpt> ::? <Exp>;

<Exp> ::= <ExpMark> <IntegerConst>;
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At the lexical level the speci�cations are quite simple, except for <TextConst>

which de�nes the format of literal strings. A <TextConst> is enclosed in single

quotes and may contain C-like escape sequences, e.g., '\n' is a literal string

containing one character, namely a newline. Because of these complications we

omit a precise de�nition of <TextConst>. Apart from that, the lexical level can

be speci�ed as follows:

<Name> = "[A-Za-z_][A-Za-z0-9_]*";

<Natural> = "0" | "[1-9][0-9]*";

<Sign> = "[+-]";

<ExpMark> = "[Ee]";

<TextConst> = ...;
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Appendix B

Linearization Proofs

Proof: (Proposition 1) Let R
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�
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1
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1
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1

�R

2

), and show

that either (x; y) 2 R
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� The remaining two cases are similar.
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This proves that R

1

� R

2

is re�exive, transitive, and total, i.e. it is a total

preorder. 2

Proof: (Lemma 3) Given an acyclic relation R. With R

0

4

= R, 8i 2

!: R

i+1

4

= R

+1

i

we have R

�

=

S

i2!

R

i

. Assume that R

�

has a cycle and let

k 2 ! be the least number such that R

k

has a cycle, say d

1

: : : d

n

; then k > 0

because R is acyclic. Since

f(d

i

; d

i+1

)ji 2 1 : : : n�1g [ f(d

n

; d

1

)g � R

k

and R

k

= R

+1

k�1

we can choose c

1

: : : c

n

2 dom(R) such that

8i 2 f1 : : : n�1g: (f(d

i

; c

i

); (c

i

; d

i+1

)g � R

k�1

) _ ((d

i

; d

i+1

) 2 R

k�1

))

^

(f(d

n

; c

n

); (c

n

; d

1

)g � R

k�1

) _ ((d

n

; d

1

) 2 R

k�1

)

which provides us with a cycle in R

k�1

, contradicting the minimality of k. 2

Proof: (Proposition 2) Since R

1

and R

2

are total preorders we get re�ex-

ivity, transitivity, and totality directly from proposition 1. Only anti-symmetri

remains to be proved. Assume that (x; y); (y; x) 2 R

1

�R

2

; we must then prove

that x=y. Let R

4

= (R

1

[ R

2

)

�

and S

4

= dom(R

1

)�dom(R

2

) n R such that

R

1

�R

2

= R [ S and (x; y) 2 S ) (y; x) 62 R.

� If (x; y); (y; x) 2 R then x = y since R is acyclic, by lemma 3.

� Both (x; y) 2 R ^ (y; x) 2 S and (y; x) 2 R ^ (x; y) 2 S are impossible by

de�nition of S.

� Similarly, if (x; y); (y; x) 2 S then (y; x); (x; y) 62 R. This is a contradiction

since x; y 2 dom(R

1

)\dom(R

2

) and in particular by totality of R

1

, (x; y) 2

R

1

_ (y; x) 2 R

1

� R.

2



Appendix C

The Expression Problem

This appendix contains the original presentation of the expression problem

which spurred the discussion on the java-genericity mailing list.

The Expression Problem

Philip Wadler, 12 November 1998

The Expression Problem is a new name for an old problem. The goal is

to define a datatype by cases, where one can add new cases to the

datatype and new functions over the datatype, without recompiling

existing code, and while retaining static type safety (e.g., no

casts). For the concrete example, we take expressions as the data

type, begin with one case (constants) and one function (evaluators),

then add one more construct (plus) and one more function (conversion

to a string).

Whether a language can solve the Expression Problem is a salient

indicator of its capacity for expression. One can think of cases as

rows and functions as columns in a table. In a functional language,

the rows are fixed (cases in a datatype declaration) but it is easy to

add new columns (functions). In an object-oriented language, the

columns are fixed (methods in a class declaration) but it is easy to

add new rows (subclasses). We want to make it easy to add either rows

or columns.

The Expresion Problem delineates a central tension in language design.

Accordingly, it has been widely discussed, including Reynolds (1975),

Cook (1990), and Krishnamurthi, Felleisen and Friedman (1998); the

latter includes a more extensive list of references. It has also been

discussed on this mailing list by Corky Cartwright and Kim Bruce. Yet

I know of no widely-used language that solves The Expression Problem

while satisfying the constraints of independent compilation and static

typing.

Until now, that is. Here I present a solution to this problem in GJ,

261



262 APPENDIX C. THE EXPRESSION PROBLEM

as extended by the mechanism I described in my previous note `Do

parametric types beat virtual types?'. (However, there is a caveat

with regard to inner interfaces, see below.)

1. A solution

Figure 1 shows a solution to the Expression Problem in GJ. The two

phases of the problem are clumped into two classes, LangF and Lang2F,

each of which defines several mutually recursive inner classes and

interfaces.

In the first phase, the class LangF define an interface Exp with a

subclass Num representing constants, and an interface Visitor with a

method forNum specifying functions over constants. The Visitor class

is parameterized on the result type of the function. Class Eval

implements Visitor<Integer> and specifies evaluation of expressions.

In the second phase, the class Lang2F extends Exp with an additional

subclass Sum representing the sum of two expressions, and extends

Visitor with an additional method forSum specifying how to act on

sums. Class Eval is extended appropriately, and class Show implements

Visitor<String> and specifies conversion of an expression to a string.

Finally, a test class creates, evaluates, and shows expressions from

both phases.

The class Eval in the second phase extends the class Eval from

the first phase and implements the interface Visitor from the

second phase. So it is essential that Visitor be an interface,

not an abstract class.

The LangF class is parameterised on a type parameter This that is

itself bounded by LangF<This>, and the Lang2F class is parameterized

on a type parameter This that is bounded by Lang2F<This>; further,

Lang2F<This> extends LangF<This>. This use of `This' is the standard

trick to provide accurate static typing in the prescence of subtypes

(sometimes called MyType or ThisType). As usual, we tie the knot with

fixpoint classes Lang and Lang2.

The key trick here is the use of This.Exp and This.Visitor, via the

mechanism described in `Do parametric types beat virtual types?'.

Recall that mechanism allows a type variable to be indexed by any

inner class defined in the variable's bound; in order for this to be

sound, any type which instantiates a type parameter must define inner

classes that extend those in the bound. Here we can refer to This.Exp

and This.Visitor because This is bound by LangF<This> which defines

Exp and Vistor; soundness is satisfied since Lang2F<This>.Exp extends

LangF<This>.Exp, and Lang2F<This>.Visitor extends

Lang2F<This>.Visitor.



263

This solution is remarkably straightforward, once one is familiar with

the techniques for simulating ThisType and virtual types. However, I

must admit it took me a while to see the solution, even after I went

looking for it. (Some of you will have seen an earlier solution,

similar in structure but impossible to implement since it had the type

variable This.Exp as a supertype of Num and Sum; the current version

has no such problem.)

------------------------------------------------------------------------

Figure 1: A solution to The Expression Problem

------------------------------------------------------------------------

class LangF<This extends LangF<This>> {

interface Visitor<R> {

public R forNum(int n);

}

interface Exp {

public <R> R visit(This.Visitor<R> v);

}

class Num implements Exp {

protected final int n_;

public Num(int n) {n_=n;}

public <R> R visit(This.Visitor<R> v) {

return v.forNum(n_);

}

}

class Eval implements Visitor<Integer> {

public Integer forNum(int n) {

return new Integer(n);

}

}

}

final class Lang extends LangF<Lang> {}

class Lang2F<This extends Lang2F<This>> extends LangF<This> {

interface Visitor<R> extends LangF<This>.Visitor<R> {

public R forPlus(This.Exp e1, This.Exp e2);

}

class Plus implements Exp {

protected final This.Exp e1_,e2_;

public Plus(This.Exp e1, This.Exp e2) {e1_=e1; e2_=e2;}

public <R> R visit(This.Visitor<R> v) {

return v.forPlus(e1_,e2_);

}

}

class Eval extends LangF<This>.Eval implements Visitor<Integer> {

public Integer forPlus(This.Exp e1, This.Exp e2) {

return new Integer(

e1.visit(this).intValue() + e2.visit(this).intValue()

);
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}

}

class Show implements Visitor<String> {

public String forNum(int n) {

return Integer.toString(n);

}

public String forPlus(This.Exp e1, This.Exp e2) {

return "(" + e1.visit(this) + "+" + e2.visit(this) +")";

}

}

}

final class Lang2 extends Lang2F<Lang2> {}

final class Main {

static public void main(String[] args) {

Lang l = new Lang();

Lang.Exp e = l.new Num(42);

System.out.println("eval: " + e.visit(l.new Eval()));

Lang2 l2 = new Lang2();

Lang2.Exp e2 = l2.new Plus(l2.new Num(5), l2.new Num(37));

System.out.println("eval: "+e2.visit(l2.new Eval()));

System.out.println("show: "+e2.visit(l2.new Show()));

}

}

------------------------------------------------------------------------

2. A caveat with regard to inner interfaces

In GJ as it is currently implemented, type parameters do not scope

over static members, and further, a type parameter may be indexed only

by non-static classes or interfaces defined in the bound. And in Java

as it is currently defined, all inner interfaces are taken as static,

whether declared so are not. This makes the mechanism for indexing

type variables by inner classes useless for interfaces, greatly

reducing its utility. In particular, it invalidates the solution just

presented, which depends on Visitor being an interface.

Fortunately, it looks possible to relax either the GJ or the Java

constraint. So far as I can see, the only difference in making an

interface non-static is that it can now include non-static inner

classes; so the change would not render invalid any existing Java

programs. But this point requires further study. Also, I should note

that since the changes have not been implemented yet, I have not

actually run the proposed solution. (I did translate from GJ to Java

by hand, and run that.)

3. Related work
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It is instructive to compare this solution with previous solutions

circulated by Corky Cartwright and Kim Bruce. Corky's solution

requires contravariant extension -- that is, even though Lang2F.Exp

extends LangF.Exp, one may use LangF.Exp in place of Lang2F.Exp and

not conversely. This partly explains why fixpoints are required here:

though LangF is a superclass of Lang2F, the classes Lang and Lang2 are

unrelated. Short of complicating the language with contravariance,

unrelated classes is the best we could hope for.

LangF

/ \

Lang Lang2F

/

Lang2

Kim's solution required a type to be parameterized over a type

constructor (rather than another type). In terms of our example, it

required Exp to be parameterized on Visitor. Here, instead of

paramerizing Exp on Visitor, Exp refers to This.Vistor<R>. Although

GJ supports parametization over types, it does not support

parameterization over higher-order type constructors. However,

virtual types (as simulated by GJ) in effect support higher-order type

parameters for free. I'm grateful to Mads Torgersen and Kresten Krab

Thorup for this insight, which they passed on when we discussed this

problem at OOPSLA a few weeks ago. (Ironically, though, it looks like

this solution won't work in Beta, which lacks interfaces or any other

form of multiple supertyping; there also may be a problem in having a

single expression type that allows visitors with different result

types, like Integer and String.)

The solution presented here is similar to the Extended Visitor pattern

described by Krishnamurthi et al. Their solution differs in that it

is not statically typed; they cannot distinguish Lang.Exp from

Lang2.Exp, and as a result must depend on dynamic casts at some key

points. This isn't due to a lack of cleverness on their part, rather

it is due to a lack of expressiveness in Pizza.

I am aware of two solutions to the expression problem, but both

depend on special-purpose language extensions designed specifically

for that problem. One appears in the Krishnamurthi et al. paper,

the other in a master's thesis by a student of Martin Odersky.

In contrast, the solution presented here arises from the general

purpose mechanisms of type parameters and virtual types.

I'd be grateful for pointers to other solutions to the Expression

Problem. How do Beta, Sather, Ocaml, and others fare?

Cheers, -- P
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Appendix D

Bytecode Instruction Set

ADD-mainpart mainpart where : Pop a pattern P , then add a new, most spe-

ci�c mixinM to P which is associated with the given mainpart and whose

origin can be found by traversing the run-time path where. Then push

the resulting pattern P&[M ].

ADDOP( + ) type : Pop two values of type type, add them (yielding a result

of type type ), and push the result.

ADDOP( - ) type : Pop two values of type type, subtract the �rst from the

second (yielding a result of type type ), and push the result.

ADDOP( or ) : Pop two boolean values and push the boolean value which is

the logical disjunction of them.

ADDOP( xor ) : Pop two boolean values and push the boolean value false if

they are equal and true otherwise.

CALL where : Execute the object found by traversing the run-time path where.

CALL-rep rdecl where kind : Lookup the repetition by traversing the run-

time path where. If the kind is object then it is a repetition of objects;

execute each of them in index order (execute rep[1], then rep[2], etc.).

If the kind is variable object then it is a repetition of variable objects;

for each of them, in index order, raise a run-time error if it is NONE and

otherwise execute it. If kind is variable pattern, then it is a repetition

of patterns; for each of them, in index order, create an instance of the

pattern and execute it. The declaration of the repetition, rdecl, is only

stored for documentation and debugging purposes.

CHK NONE : Peek

p

an object reference and raise a run-time error if it is NONE,

otherwise do nothing.

CHK PTN NONE : Peek

p

a pattern and raise a run-time error if it is NONE,

otherwise do nothing.
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ENSURE-component : Pop a pattern P , then push the pattern component&P .

Note that component&P is the same pattern as P if P is already less-

equal than component. Needed for expressions like &|p when p is a pattern

variable whose value may or may not be less-equal than component.

EXTEND-rep rdecl where : Lookup a repetition by traversing the run-time

path where. Pop an integer value N and extend the repetition with N

entries. The declaration of the repetition, rdecl, is only stored for docu-

mentation and debugging purposes.

FORK where : Lookup a component part object by traversing the run-time path

where. Fork a new thread which runs that component. Note that this fails

if the component is already run by another thread, even if it is suspended.

GETSIZE-rep rdecl where : Lookup a repetition by traversing the run-time

path where. Push the number of entries in the repetition as an integer

value. The declaration of the repetition, rdecl, is only stored for docu-

mentation and debugging purposes.

generalIf : Evaluate

j

the Evaluation of the GeneralIfImp imperative, yielding a

value V . For each Alternative, in the order they appear in the source code,

evaluate each Selection, also in the order they appear in the source code,

until an evaluation yields the value V . At this point, stop the evaluations

and execute the list of imperatives for that Alternative. Otherwise, if

no evaluation yields the value V , execute the list of imperatives for the

ElsePart.

KILL where : Lookup a component part object by traversing the run-time path

where. Kill the thread that runs this component. Note that it is an error

to kill a component that is not running.

locatedSimpleIf where : Lookup

j

a context C by traversing the run-time

path where. In context of C, evaluate the Evaluation of the SimpleIfImp

imperative which was provided as a parameter to the initialization of this

bytecode at compile-time. Obtain the result of the evaluation by popping

a boolean value V . If V is true then execute the imperatives in the then-

part of the SimpleIfImp, else execute the imperatives in the else-part.

MERGE-ptn : Pop a pattern P

1

and pop a pattern P

2

, then push the pattern

P

2

&P

1

.

MULOP( * ) type : Pop two values of type type, multiply them (yielding a

result of type type ), and push the result.

MULOP( / ) : Pop two real values, divide the second by the �rst (yielding a

real result), and push the result.

MULOP( and ) : Pop two boolean values and push the boolean value which is

the logical conjunction of them.
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MULOP( div ) : Pop two integer values, divide the second by the �rst, and

push the result. This instruction actually also handles real values, be-

cause the Mjolner compiler allows things like `1.2 div 2.4', but it is not

recommended to use this facility.

MULOP( mod ) : Pop two values of type type, �nd the value of the second

modulo the �rst, and push the result which is also of type type. Note

that the only allowed value type is integer. It may be changed to support

real values as well.

NEG(integer) : Pop an integer value N and push the integer value �N .

NEG(real) : Pop a real value R and push the real value �R.

NEW, ptn->obj : Pop a pattern P , create a new instance O of P , and push a

reference to O.

NEW, ptn->tmp : Pop a pattern P , create a new instance O of P , and push a

reference to O unto the stack of temporary objects.

NEW-rep rdecl where : Lookup a repetition by traversing the run-time path

where. Remove all entries from the repetition, pop an integer value N and

create N new entries. The declaration of the repetition, rdecl, is only

stored for documentation and debugging purposes.

NOT : Pop a boolean value B and push the boolean value :B.

namedFor : Create

j

a for substance entity (to hold the index variable). Eval-

uate the Evaluation of the NamedIndex of the NamedForImp imperative

which was provided as a parameter to the initialization of this bytecode

at compile-time. Obtain the result of the evaluation by popping an integer

value N . Execute the Imperatives of the NamedForImp N times, with the

index variable bound to i during the i'th iteration.

osSystem/in : Pop a string value, execute this as an operating system com-

mand. The standard output and the standard error streams are sent to

the same destinations as the standard output/error of the gbeta run-time.

For further information and a disclaimer see osSystem/inout .

osSystem/inout : Pop a string value, execute this as an operating system

command, and push the resulting standard output as a string value. The

standard error stream is sent to the same destination as the standard

error of the gbeta run-time. This operation is sometimes useful, but it is

of course a purely pragmatic, non-portable facility which is not part of the

language design. It uses the UNIX system call exec.

PEEK-inx-objref where eval evalWhere : Lookup a repetition R of variable

objects by traversing the run-time path where. Lookup a dynamic con-

text for the evaluation of the Evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval and pop the integer value N that this
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produces. Check that N is a valid repetition index (greater than zero,

less-equal than the number of elements in R). Peek

p

an object reference

and store it in R at entry N .

PEEK-inx-tmpref where eval evalWhere : Lookup a repetition R of variable

objects by traversing the run-time path where. Lookup a dynamic con-

text for the evaluation of the Evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval and pop the integer value N that this

produces. Check that N is a valid repetition index (greater than zero,

less-equal than the number of elements in R). Peek

p

an object reference

from the stack of temporary objects and store it in R at entry N .

PEEK-objref where : Lookup a variable object attribute A by traversing the

run-time path where. Peek

p

an object reference r. Check that r is NONE or

that it refers to an object which has a pattern which is less-equal than the

quali�cation of A. Store r in A if the quali�cation test succeeds, otherwise

raise a run-time error.

q

PEEK-tmpref where : Lookup a variable object attribute A by traversing the

run-time path where. Peek

p

an object reference r from the stack of tem-

porary objects. Check that r is NONE or that it refers to an object which

has a pattern which is less-equal than the quali�cation of A. Store r in A

if the quali�cation test succeeds, otherwise raise a run-time error.

q

POP-boolean where : Lookup an object O by traversing the run-time path

where. Find the boolean part object o in O. Pop a boolean value B and

change the state of o to B.

POP-boolean-value where : Lookup a boolean part object o by traversing the

run-time path where. Pop a boolean value B and change the state of o to

B.

POP-char where : Lookup an object O by traversing the run-time path where.

Find the char part object o in O. Pop a char value C and change the

state of o to C.

POP-char, C-->I, PUSH-integer : Pop a char value, coerce

c

it into the cor-

responding integer value, and push it.

POP-char, C-->R, PUSH-real : Pop a char value, coerce

cr

it into the corre-

sponding real value, and push it.

POP-char, C-->S, PUSH-string : Pop a char value, coerce it into the corre-

sponding string value (a string of length 1 containing that character), and

push it.

POP-char-value where : Lookup a char part object o by traversing the run-

time path where. Pop a char value C and change the state of o to C.
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POP-int, PUSH-char-at-inx where : Lookup a string part object o by tra-

versing the run-time path where. Pop an integer value N . Check that N

is greater than zero and less-equal than the length of the string. If the

test succeeds then push the char value in the string value of o at index N .

If the test fails then raise a run-time error.

POP-integer where : Lookup an object O by traversing the run-time path

where. Find the integer part object o in O. Pop an integer value N and

change the state of o to N .

POP-integer, I-->C, PUSH-char : Pop an integer value, coerce

c

it into the

corresponding char value, and push it.

POP-integer, I-->R, PUSH-real : Pop an integer value, coerce

c

it into the

corresponding real value, and push it.

POP-integer-value where : Lookup an integer part object o by traversing

the run-time path where. Pop an integer value N and change the state of

o to N .

POP-inx-objref where eval evalWhere : Lookup a repetition R of variable

objects by traversing the run-time path where. Lookup a dynamic con-

text for the evaluation of the Evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval and pop the integer value N that this

evaluation produces. Check that N is a valid repetition index (greater

than zero, less-equal than the number of elements in R). Pop an object

reference r. Check that r is NONE or that it refers to an object that has

a pattern which is less-equal than the quali�cation of R (a repetition of

variable objects has one shared quali�cation for all its entries). Store r in

R at entry N if the quali�cation test succeeds, otherwise raise a run-time

error.

q

POP-inx-ptnref where eval evalWhere : Lookup a repetition R of variable

patterns by traversing the run-time path where. Lookup a dynamic con-

text C for the evaluation of the Evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval in context of C and pop the integer value

N that this produces. Check that N is a valid repetition index (greater

than zero, less-equal than the number of elements in R). Pop a pattern

(or NONE) p. Check that p is NONE or a pattern which is less-equal than the

quali�cation of R (a repetition of patterns has one shared quali�cation for

all its entries). Store p in R at entry N if the quali�cation test succeeds,

otherwise raise a run-time error.

q

POP-obj, O-->P, PUSH-ptn : Pop a reference to an object O, obtain the pat-

tern of O, and push that pattern.

POP-obj, PUSH-tmp : Pop an object reference and push it on the stack of

temporary objects.
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POP-objref where : Lookup a variable object attribute A by traversing the

run-time path where. Pop an object reference r. Check that r is NONE or

that it refers to an object that has a pattern which is less-equal than the

quali�cation of A. Store r in A if the quali�cation test succeeds, otherwise

raise a run-time error.

q

POP-ptn, SPECIALIZE-obj where : Lookup an object O by traversing the run-

time path where. Pop a pattern P . Dynamically specialize O such that it

becomes an instance of pattern P

o

&P , where P

o

is the pattern of which O

was an instance before this operation. Note that this may both add more

part objects to O and change pattern values, e.g., virtual patterns may

become further-bound and quali�cations may become more special.

POP-ptnref where : Lookup a variable pattern attribute A by traversing the

run-time path where. Pop a pattern (or NONE) p. Check that p is NONE or

a pattern which is less-equal than the quali�cation of A. Store p in A if

the quali�cation test succeeds, otherwise raise a run-time error.

q

POP-real where : Lookup an object O by traversing the run-time path where.

Find the real part object o in O. Pop a real value R and change the state

of o to R.

POP-real, R-->I, PUSH-integer : Pop a real value, coerce

c

it into the cor-

responding integer value, and push it.

POP-real-value where : Lookup a real part object o by traversing the run-

time path where. Pop a real value R and change the state of o to R.

POP-string where : Lookup an object O traversing the run-time path where.

Find the string part object o in O. Pop a string value S and change the

state of o to S.

POP-string --> [char] rdecl where : Lookup a repetitionR of entities with

pattern char or a subpattern of char, by traversing the run-time path

where. Pop a string value V . Adjust the number of items in R to be the

same as the length of V . Then assign the char values in V to the entries

in R one by one: the �rst char value in V is assigned to the �rst entity in

R, then the second, etc. The declaration of the repetition, rdecl, is only

stored for documentation and debugging purposes.

At compile-time when this bytecode is generated, it is initialized to handle

one of three cases (there could as well have been three bytecodes): where

R is a repetition of objects, where R is a repetition of references to objects,

and where R is a repetition of patterns. In the �rst case, each assignment

of the iteration obtains the current entry of R, which is an object O

i

, and

stores the current char value from V in the char part object of O

i

. In

the second case, each assignment obtains the current entry of R, which is

an object reference r

i

, checks that it is not NONE, raises a run-time error

if it is, and otherwise stores the current char value from V in the string
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part object of the object referred by r

i

. Finally in the third case, each

assignment obtains the current entry of R, which is a pattern P

i

, creates

a new instance O

i

of P

i

, and stores the current char value from V in the

char part object of O

i

.

There is also a variant of this bytecode which is parameterized with two

evaluations, i.e., an upper and a lower bound expression, and with this

variant the target is not the entire repetition R but only the repetition

slice from and including the lower bound and to and including the upper

bound. For this, the lower bound must be greater than zero and less-

equal than the number of entries in R, but the upper bound must just be

greater than zero (a �too large� number means �up to and including the

last entry�). If any of these checks fails then a run-time error is raised.

The bounded variant of this bytecode is used in assignments that include

repetition slices, like for instance '***'->R[2:3]; if R is a repetition of 4

char objects with values '1234' before the assignment then it will contain

5 char objects with the values '1***4' after the assignment.

POP-string-value where : Lookup a string part object o by traversing the

run-time path where. Pop a string value S and change the state of o to S.

POP-string1, S1-->C, PUSH-char : Pop a string value V which is statically

known to have length exactly one, extract the single char value it contains,

and push that char value. See PUSHI .

POP-string1, S1-->I, PUSH-integer : Pop a string value V which is stat-

ically known to have length exactly one, extract the single char value it

contains, coerce

c

it to the corresponding integer value, and push it. See

PUSHI .

POP-string1, S1-->R, PUSH-real : Pop a string value V which is statically

known to have length exactly one, extract the single char value it contains,

coerce

cr

it to the corresponding real value, and push it. See PUSHI .

PUSH-boolean where : Lookup an object O by traversing the run-time path

where. Find the boolean part object o in O and push its value.

PUSH-boolean-value where : Lookup a boolean part object o by traversing

the run-time path where. Push the boolean value which is its state.

PUSH-char where : Lookup an object O by traversing the run-time path where.

Find the char part object o in O and push its value.

PUSH-char-value where : Lookup a char part object o by traversing the run-

time path where. Push the char value which is its state.

PUSH-index where : Lookup a for statement substance F by traversing the

run-time path where. Obtain the integer value of the index variable of F

and push it.
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PUSH-integer where : Lookup an object O by traversing the run-time path

where. Find the integer part object o in O and push its value.

PUSH-integer-value where : Lookup an integer part object o by traversing

the run-time path where. Push the integer value which is its state.

PUSH-inx-obj where eval evalWhere : Lookup a repetition R of objects by

traversing the run-time path where. Lookup a dynamic context C for

the evaluation of the Evaluation eval by traversing the run-time path

evalWhere. Evaluate

j

eval in context of C and pop the integer value N

that this produces. Check that N is a valid repetition index (greater than

zero, less-equal than the number of elements in R). Push a reference to

the object stored in R at entry N .

PUSH-inx-objref where eval evalWhere : Lookup a repetition R of variable

objects by traversing the run-time path where. Lookup a dynamic con-

text for the evaluation of the Evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval and pop the integer value N that this

evaluation produces. Check that N is a valid repetition index (greater

than zero, less-equal than the number of elements in R). Push the object

reference stored in R at entry N .

PUSH-inx-ptnref where eval evalWhere : Lookup a repetition R of variable

patterns by traversing the run-time path where. Lookup a dynamic con-

text C for the evaluation of the evaluation eval by traversing the run-time

path evalWhere. Evaluate

j

eval in context of C and pop the integer value

N that this produces. Check that N is a valid repetition index (greater

than zero, less-equal than the number of elements in R). Push the pattern

(or NONE) stored in R at entry N .

PUSH-inx-qual where eval evalWhere : Lookup a repetition R of variable

objects by traversing the run-time path where. Push the pattern which

is the quali�cation of R (a repetition of variable objects has one shared

quali�cation for all its entries).

PUSH-inx-tmpobj where eval evalWhere : Lookup a repetition R of objects

by traversing the run-time path where. Lookup a dynamic context for

the evaluation of the Evaluation eval by traversing the run-time path

evalWhere. Evaluate

j

eval and pop the integer value N that this pro-

duces. Check that N is a valid repetition index (greater than zero, less-

equal than the number of elements in R). Push a reference to the object

stored in R at entry N , on the stack of temporary objects.

PUSH-inx-tmpobjref where eval evalWhere : Lookup a repetition R of vari-

able objects by traversing the run-time path where. Lookup a dynamic

context for the evaluation of the Evaluation eval by traversing the run-

time path evalWhere. Evaluate

j

eval and pop the integer value N that

this evaluation produces. Check that N is a valid repetition index (greater
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than zero, less-equal than the number of elements in R). Check that the

object reference r stored in R at entry N is not NONE. If the test suc-

ceeds then push this object reference on the stack of temporary objects,

otherwise raise a run-time error.

PUSH-obj where : Lookup an object O by traversing the run-time path where.

Push an object reference which refers to O.

PUSH-objref where : Lookup an object reference r by traversing the run-time

path where. Push this object reference.

PUSH-ptn where : Lookup a pattern by traversing the run-time path where.

Push it.

PUSH-ptn "object" : Push the pattern object, i.e., the empty list of mixins.

PUSH-ptnref where : Lookup a variable pattern p by traversing the run-time

path where. Push p (it may be NONE or a pattern).

PUSH-qual where : Lookup a variable object attribute A by traversing the run-

time path where. Push the pattern which is the quali�cation of A.

PUSH-real where : Lookup an object O by traversing the run-time path where.

Find the real part object o in O and push its value.

PUSH-real-value where : Lookup a real part object o by traversing the run-

time path where. Push the real value which is its state.

PUSH-str-len where : Lookup a string part object o by traversing the run-

time path where. Push the integer value which is the length of the value

of o.

PUSH-string <-- [char] rdecl where : Lookup a repetition R of entities

with pattern char or a subpattern of char by traversing the run-time

path where. Push the string value which consists of the char values ob-

tained from the entries in R, one by one. There are three variants of this

bytecode for the cases where R contains objects, references to objects,

or patterns. The declaration of the repetition, rdecl, is only stored for

documentation and debugging purposes. There is also a variant which is

parameterized with a lower and an upper bound which is used when R

is speci�ed by a repetition slice. For example, if myString is a string

object, and R is a is a repetition of 4 char objects with values '1234' at

some point, then myString will have the value '23' after an execution of

the assignment R[2:3]->myString. For more details about the variants

of this bytecode, see POP-string --> [char] .

PUSH-string where : Lookup an object O by traversing the run-time path

where. Find the string part object o in O and push its value.
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PUSH-string-value where : Lookup a string part object o by traversing the

run-time path where. Push the string value which is its state.

PUSH-tmpobj where : Lookup an object O by traversing the run-time path

where. Push an object reference which refers to O on the stack of tempo-

rary objects.

PUSH-tmpobjref where : Lookup an object reference r by traversing the run-

time path where. Check that r is not NONE. If the test succeeds then push

this object reference on the stack of temporary objects, otherwise raise a

run-time error.

PUSHI NONE(obj) : Push a NONE-valued reference to an object.

PUSHI NONE(ptn) : Push NONE as a pattern (meaning there is no pattern here).

PUSHI boolean-literal : Push the given literal boolean value.

PUSHI char-literal : Push the given literal char value.

PUSHI integer-literal : Push the given literal integer value.

PUSHI real-literal : Push the given literal real value.

PUSHI string-literal : Push the given literal string value. Note that literal

string values with length exactly one are statically recognized, and this

information is used to allow coercion from a string value to a char value

if and only if that string value is known to have length one. That means

that there is no need to have a special syntax for char literal values.

RELOP( < ) type : Pop two values of type type, compare them, and push true

if the second is less than the �rst, otherwise push false.

RELOP( <= ) type : Pop two values of type type, compare them, and push

true if the second is less than or equal to the �rst, otherwise push false.

RELOP( <> ) type : Pop two values of type type, compare them, and push

true if they are di�erent, otherwise push false.

RELOP( = ) type : Pop two values of type type, compare them, and push true

if they are equal, otherwise push false.

RELOP( > ) type : Pop two values of type type, compare them, and push true

if the second is greater than the �rst, otherwise push false.

RELOP( >= ) type : Pop two values of type type, compare them, and push

true if the second is greater than or equal to the �rst, otherwise push false.

RESIZE-rep rdecl where : Lookup a repetition by traversing the run-time

path where. Pop an integer value N and delete or create new entries

such that the repetition has exactly N entries after the operation. The

declaration of the repetition, rdecl, is only stored for documentation and

debugging purposes.
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SEM-Count where : Lookup a semaphore part object o by traversing the run-

time path where. Push the integer value which is the number of threads

that are blocked in a P operation on o, i.e., the number of threads that

are �waiting for access to the resource which is guarded by o�.

SEM-P where : Lookup a semaphore part object o by traversing the run-time

path where. Execute the P operation on o. This may cause the current

thread to be blocked (stopped) by the scheduler, because it maintains the

invariant that the number of P operations on o is at all times less-equal

than the number of V operations.

SEM-TryP where : Lookup a semaphore part object o by traversing the run-

time path where. Execute the tryP operation on o. This operation has

the same e�ect as the P operation followed by pushing the boolean value

true would have had, if the P operation not would have blocked. If the

P operation would have blocked then tryP just pushes the boolean value

false. In other words, it tries to do a P operation, and then tells whether

it succeeded.

SEM-V where : Lookup a semaphore part object o by traversing the run-time

path where. Execute the P operation on o. This may cause a thread to be

unblocked (resumed) by the scheduler, because it maintains the invariant

that the number of P operations on o is at all times less-equal than the

number of V operations.

SUSPEND where : Suspend the current component.

simpleFor : Create

j

a for substance entity. Evaluate the Evaluation of the

SimpleForImp imperative which was provided as a parameter to the ini-

tialization of this bytecode at compile-time. Obtain the result of the eval-

uation by popping an integer value N . Execute the Imperatives of the

SimpleForImp N times.

simpleIf : Evaluate

j

the Evaluation of the SimpleIfImp imperative which was

provided as a parameter to the initialization of this bytecode at compile-

time. Obtain the result of the evaluation by popping a boolean value V . If

V is true then execute the Imperatives in the then-part of the SimpleIfImp,

else execute the ElsePart.

stdio/in : Read a line of text from the standard input of the gbeta run-time,

then push it as a string value. Pragmatic facility which is useful but not

part of the gbeta language design.

stdio/out : Pop a string value and print it on standard output of the gbeta

run-time. Pragmatic facility which is useful but not part of the gbeta

language design.

when : Create

j

a when substance entity (to hold the immutable reference to

the object on which we are typecasing). Lookup the AttributeDenotation
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of the WhenImp imperative which was provided as a parameter to the

initialization of this bytecode at compile-time. This step yields an object O

(or fails), and it is done by using information such as run-time paths which

was added to the AttributeDenotation during static analysis. Since the

AttributeDenotation lookup may include the computation of a repetition

entry index it may execute arbitrary code, and hence it may cause any

kind of run-time error. This may be seen as evidence of the fact that the

when imperative is not yet being compiled down to as primitive constructs

as most other constructs. That will be corrected as soon as possible.

For each WhenAlternative, in the order they appear in the source code,

obtain the pattern P of the AttributeDenotation of the WhenAlternative,

and test the pattern of O, P

o

, against P . If the WhenAlternative has an

exact marker (a `=' just after the `//') then we test whether P

o

and P are

equal, otherwise we test whether P

o

is less-equal than P .

When the �rst test succeeds execute the Imperatives of the currentWhenAl-

ternative and then terminate the execution of the WhenImp without con-

sidering the remaining cases or the ElsePart. Otherwise, if no test succeeds,

execute the ElsePart.

while : Evaluate

j

the Evaluation of the WhileImp imperative which was pro-

vided as a parameter to the initialization of this bytecode at compile-time.

Obtain the result of the evaluation by popping a boolean value V . If V is

true then execute the Imperatives and repeat the execution of theWhileImp,

otherwise terminate it.

Notes to the bytecode descriptions:

c The coercion used in the implementation is the built-in value coercion

which is provided by the Mjolner Beta compiler.

j The control structure imperatives are compiled into one bytecode for each

imperative (e.g. (if : : : if)) as a whole. This bytecode is initialized

with a reference to the abstract syntax tree for its imperative during code

generation, and its execution is de�ned at a higher level than with nor-

mal bytecodes. The execution consists of evaluation of Evaluations and

execution of Imperatives. With this design of the bytecode instruction set

there is no need to handle labels (addresses) and jumps in the generation

and execution of bytecode, which was nice because the implementation

thereby became simpler and less prone to subtle errors in address calcu-

lations and the like. When a speci�c entry of a repetition is accessed, the

computation of the index (as in R[a] where a may have a do-part) also

invokes arbitrary code.

The fact that some bytecodes cause arbitrary computations and not just

a �xed operation with near-constant time complexity may seem to defeat

the goal of making it possible to inspect the time/space complexity of

executing gbeta programs by looking at the generated code. However,
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it does not a�ect the complexity of execution: The high-level operations

occur either in those places where there would have been jumps and labels

in the bytecode if it had been compiled down to a level that did not contain

high-level operations, or it occurs when an Evaluation is being evaluated,

in which case the byte code of that Evaluation can be inspected separately.

In fact it can be argued that there is even better support for complexity

inspection with the current design, because every list of bytecodes that

the gbeta compiler prints will be (a part of) a basic block.

p To peek is to read the value at the top of the stack. Apart from the better

performance and the atomicity of the operation it is equivalent to a pop

operation yielding a value V , immediately followed by a push operation

which pushes the same value V .

q Note that this quali�cation check is unnecessary in all cases except where a

compile-time warning about a possible run-time error was issued. The test

is performed every time, even though it is redundant in all the places where

no warnings were issued, because this will detect faults in the soundness of

the static analysis. I.e., if there is ever a run-time quali�cation error in a

place where no warnings were issued, there is a bug in the static analysis.

No bugs related to the soundness of the static analysis have been observed

since early 1998.

r Coercion between char and real is considered an error, except that the

Mjolner compiler supports this coercion implicitly as part of a real division

operation. This is explicitly marked by Mjolner as a feature that may be

removed in a future release, so it is not recommended to use it. If you need

to coerce between char and real values then use an intermediate integer

object.
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Appendix E

Static Analysis Functions

(* SYNTAX *)

datatype NameDecl = NAMEDECL of string;

datatype NameAppl = NAMEAPPL of string;

datatype Prefix = "object" | NameAppl;

datatype Declarator = ":" | ":<" | "::<";

datatype Descriptor = Prefix*Block

and ObjectSpec = Descriptor | NameAppl | "object"

and AttrDecl = (NameDecl*Declarator*ObjectSpec)

and Block = AttrDecl list;

(* TYPING ENTITIES *)

datatype Step = OUT of int | UP of Block;

type Path = Step list;

type Mixin = Path * Block;

type Type = Mixin list;

type Context = Path * Type;

type Universe = Context list ref;

val 
 = ..: Path; (* non-existent path *)

(* SYNTAX NAVIGATION *)

(* deliver the nearest enclosing block of `s' *)

fun syn_enclosingBlock (s:NameAppl|..) = ..: Block;

(* deliver the descriptor which contains `b' *)

fun syn_enclosingDescriptor (b:Block) = ..: Descriptor;

(* deliver the right hand side of the `nd' decl. *)

fun syn_declaredTo (nd:NameDecl) = ..: ObjectSpec;

(* deliver the attribute declarations of `B' *)

fun syn_attrsOf (B:Block) = ..: AttrDecl list;

281
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(* deliver `nd' such that `D=syn_declaredTo(nd)' *)

fun syn_declOf (D:Descriptor) = ..: NameDecl;

(* true iff `nd' declares a pattern, (�=":") *)

fun syn_isPattern (nd:NameDecl) = ..: bool;

(* true iff `nd' declares a virtual, (�=":<") *)

fun syn_isVirtual (nd:NameDecl) = ..: bool;

(* deliver the string value of `id' *)

fun syn_string (id:NameAppl|NameDecl) = ..: string;

(* AUXILIARY FUNCTIONS *)

fun member x [] = false

| member x (y::ys) = if x=y then true else member x ys;

fun findPos pred xs =

let fun find [] n = ?

| find (x::xs) n = if pred x then n else find xs (n+1)

in find xs 0

end;

fun sameIdentifier name a

d

= toLower(name)=toLower(syn_string(a

d

));

(* TYPING FUNCTIONS *)

fun merge ([]: int list) (ys: int list) = ys

| merge (xxs as x::xs) [] = xxs

| merge (xxs as x::xs) (yys as y::ys) =

if x=y then x::(merge xs ys)

else if not (member x ys) then x::(merge xs yys)

else if not (member y xs) then y::(merge xxs ys)

else raise Inconsistent;

fun getFocus (T,B) =

let fun getf [] n = ?

| getf ((�',B')::T') n = if (B'=B) then n else getf T' (n+1)

in getf T 0

end;

fun blockLookup((�',B),�,name) =

let fun search [] = ?

| search ((b

d

,�,O)::Attrs) =

if sameIdentifier name b

d

then b

d

else search Attrs

val Result = search (syn_attrsOf B)

in if Result=? then ? else (Result,�@[UP(B)])

end;

fun localLookup(U,(�,T),focus,a) =
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let val Result = blockLookup (nth(T,focus),�,syn_string(a))

in if Result<>? then Result

else if (focus+1)>=length(T) then ?

else localLookup(U,(�,T),focus+1,a)

end;

fun getVirtualDecl(a

d

) =

let val B = syn_enclosingBlock(a

d

)

val U = <<the universe of B>>

val (T,focus) = getContext(U,B,[])

in getVirtualDecl1(T,focus,a

d

)

end

and getVirtualDecl1(T,focus,a

d

) =

let val S = nth(T,focus)

val Result = blockLookup(S,[],syn_string(a

d

))

in if Result<>? then

(* S does declare something of name a

d

*)

let val (b

d

,�) = Result

in if syn_isPattern(b

d

) then getVirtualDecl1(T,focus+1,a

d

)

else if syn_isVirtual(b

d

) then b

d

else if focus+1>=length(T) then ?

else getVirtualDecl1(T,focus+1,a

d

)

end

else if focus+1>=length(T) then ?

else getVirtualDecl1(T,focus+1,a

d

)

end;

fun gatherVirtualChain(U,C,a

d

) =

let val (�,T) = C

(* find the canonical (":<") declaration *)

val v

d

= getVirtualDecl(a

d

)

fun isMine b

d

= (getVirtualDecl(b

d

)=v

d

)

(* create list of contributing declarations *)

fun gather [] = []

| gather (S'::T') =

let val Result = blockLookup (S',[],syn_string(a

d

))

val Head = if Result=? then [] else

let val (b

d

,�) = Result

in if isMine b

d

then [b

d

] else []

end

val Tail = gather T'

in Head@Tail

end

in gather T

end;

fun typeOf(U,Typable,C,focus) =

case Typable of

NameAppl(a) => typeOfNameAppl(U,a,C,focus)
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| NameDecl(a

d

) => typeOfNameDecl(U,a

d

,C,focus)

| Descriptor(D) => typeOfDescriptor(U,D,C,focus)

and rawTypeOf(U,O,C,focus) =

case O of

Descriptor(D) =>

let val (P,B) = D

val (�,T) = C

val B' = syn_enclosingBlock(B)

val T' = (* type of superpattern *)

case P of

NameAppl(a) => typeOfNameAppl(U,a,C,focus)

| Object => []

in (�@[UP(B')],B)::T'

end

| NameAppl(a) => typeOfNameAppl(U,a,C,focus)

and typeOfNameAppl(U,a,C,focus) =

let val (a

d

,�) = declOf(a)

val (C',focus') = staticWalk(U,�,C,focus)

in typeOfNameDecl(U,a

d

,C',focus')

end

and typeOfDescriptor(U,D,C,focus) =

let val a

d

= syn_declOf(D)

in if syn_isPattern(a

d

) then rawTypeOf(U,D,C,focus)

else typeOfNameDecl(U,a

d

,C,focus)

end

and typeOfNameDecl(U,a

d

,C,focus) =

if syn_isPattern(a

d

) then

let val O = syn_declaredTo(a

d

)

in case O of

Descriptor(D) => typeOfDescriptor(U,D,C,focus)

| NameAppl(a) => typeOfNameAppl(U,a,C,focus)

| Object => []

end

else (* virtual pattern *)

let val vchain = gatherVirtualChain(U,C,a

d

)

fun doMerge [] = []

| doMerge (b

d

::Rest) =

let val B = syn_enclosingBlock(b

d

)

val O = syn_declaredTo(b

d

)

val (�,T) = C

val bfocus = getFocus(T,B)

val T = rawTypeOf(U,O,C,bfocus)

val Base = doMerge Rest

in merge T Base

end

in doMerge vchain



285

end

and getContext(U,B,�) =

if 9 (�',T) 2 U. �'

�

=

� then (�',T)

else if syn_enclosingBlock(B)=? then

(* B is the outermost block *)

let val T = [(
,B)];

val C = (�,T);

val focus = 0; (* B alone, must be focus *)

in U := U [ {C}; (C,0)

end

else

let val B' = syn_enclosingBlock(B);

val D = syn_enclosingDescriptor(B);

val (C',focus') = getContext(U,B',�@[OUT(1)]);

val T = typeOfDescriptor(U,D,C',focus');

val C = (�,T);

val focus = findPos (fn (�,B) => B=B') T;

in U := U [ {C}; (C,focus)

end

and enclosingContext(U,(�,T),focus) =

let val (�',B) = nth(T,focus)

val B' = syn_enclosingBlock(B)

in if 9 (�'',T') 2 U. �''

�

=

�'

then ((�'',T'),getFocus(T',B'))

else getContext(U,B',�')

end

and lookup(U,C,focus,a) =

let val Result = localLookup(U,C,focus,a)

in if Result<>? then Result else

let val (C',focus') = enclosingContext(U,C,focus)

in if C'=? then ? else lookup(U,C',focus',a)

end

end

and declOf(a) =

let val B = syn_enclosingBlock(a)

val U = <<the universe of B>>

val (C,focus) = getContext(U,B,[])

in lookup(U,C,focus,a)

end

and staticWalk(U,�,C,focus) =

let fun walkOut n (C',focus') =

if n=0 then (C',focus') else

let val (C'',focus'') = enclosingContext(U,C',focus')

in walkOut (n-1) (C'',focus'')

end
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fun walkUp B' (C',focus') =

let val (�',T') = C'

val (�'',B'') = nth(T',focus')

in if (B''=B') then (C',focus')

else if focus'+1>=length(T') then ?

else walkUp B' (C',focus'+1)

end

fun walk [] (C',focus') = (C',focus')

| walk (�'::�') (C',focus') =

let fun walkOneStep (UP(B')) = walkUp B'

| walkOneStep (OUT(n)) = walkOut n

in walk �' (walkOneStep �' (C',focus'))

end

in walk � (C,focus)

end;
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name interpretation, 58

nesting, 102

physical, 106

notation, grammar, 22, 26

notation, literal, 22

object

vs. activation record, 29

as mental image, 15

creation, 15

everything is an, 17

gbeta, 46

identity value, 18

initial value, 27

pattern of, 46

relation to phenomena, 10

state of, 22

object identity, 18

object state, 22

object view, 61

object, basic, 22

object, enclosing, 25

origin, 46

out run-time step, 232

overriding, method, 68

part object

current, 114

path, run-time, 59

pattern, 46

creating an object, 15

prescriptive use, 15

pattern equivalence, 53

pattern merging, 63

pattern of object, 46

pattern space, 54

pattern value, 18

pattern, basic, 22

patterns

relation to concepts, 14

unbounded no. of, 53

physical nesting, 106

polymorphic variants, 201

position

contravariant, 92

covariant, 92

prescriptive, 15

primitive type, 48

programming, structured, 108

promise, 135

properties

of mental images, 16

properties, measurable, 16

prototype based languages, 14

pure structural equivalence, 48

quali�cation, 77

of attribute, 24

qualities, 47

absence of, 48

range, 160

real value, 18

record path, 49

record type, 48

referent system, 9

relation, modeling, 9

renew, 170

repetition, 159

index, 160

range, 160

root fragment form, 210

root, of static analysis, 244

run-time path, 59, 232

run-time step, 232

safety invariant, 132

shared state, 42

signal, 11

simple bytecode, 231

SLOT application, 208

SLOT declaration, 209

space, pattern, 54
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specialization, 57

speci�cation

of attribute, 24

state, 22

state, shared, 42

statement, 26

static analysis, 226

static analysis focus, 244

static analysis root, 244

static member, 42

static name binding, 62

string value, 18

structural equivalence, 49

pure, 48

structured programming, 108

subclass, abstract, 43

syntactic context, 33

system

model, 9

referent, 9

target, of when, 180

temporary run-time step, 232

thread, see component

tmp run-time step, 232

type

primitive, 48

type checking, 226

type equivalence

in Beta, 53

locational, 51, 52

name, 50

pure structural, 48

structural, 49

type instantiation, 95

type scheme, 95

type scheme instantiation, 95

type-case, 174

Type:Type, 95

typing entities, 244

understanding, 12

understanding, analytical, 12

unique objects, 17

universe fragment form, 211

up run-time step, 232

value, 16, 18

of attribute, 24

of object, initial, 27

value domains, 18

variable object

renewal, 170

view on object, 61

virtual

as a constraint, 87

declarative mechanism, 87

identity declaration, 84

virtual chain, 84

virtual declaration, 84

virtual object, 193

virtual pattern declaration, 60

when imperative, 180

world view, 13


