
First-Class Object Sets

Erik Ernst

University of Aarhus, Denmark
eernst@cs.au.dk

Abstract. Typically, objects are monolithic entities with a fixed inter-
face. To increase the flexibility in this area, this paper presents first-class
object sets as a language construct. An object set offers an interface
which is a disjoint union of the interfaces of its member objects. It may
also be used for a special kind of method invocation involving multiple
objects in a dynamic lookup process. With support for feature access and
late-bound method calls object sets are similar to ordinary objects, only
more flexible. The approach is made precise by means of a small calculus,
and the soundness of its type system is shown by a mechanically checked
proof in Coq.

Key words: Object sets, composition, multi-object method calls, types.

1 Introduction

In an object-oriented setting the main concept is the object. It is typically a
monolithic entity with a fixed interface, such as a fixed set of messages that the
object accepts. This paper presents a language design where sets of objects are
first-class entities, equipped with operations that enable such object sets to work
in a similar way as monolithic objects. An object set offers an interface to the
environment which is a disjoint union of the interfaces of its members, and it
supports cross-member operations, known as object set method calls, which are
similar in nature to late-bound method calls on monolithic objects. The object
set thus behaves in a way which resembles the behavior of a monolithic instance
of a ‘large’ class that combines all the classes of the members of the object set,
e.g., by mixin composition or multiple inheritance.

Object sets are useful because they are more flexible than such a monolithic
instance of a large class: There are no restrictions on which classes may be put
together in the creation of an object set, and there is no need to declare a large,
composite class and refer to that class by name everywhere. In fact, object set
types are structural with member class granularity—the type of an object set is
a set of classes, and every subset is a supertype. Moreover, object sets could be
modified during their life time, which would correspond to a change of class in
the monolithic case.

On the other hand, access to a feature of an object set requires explicit
selection of the member class which provides this feature, and the object set
method call mechanism is quite simple rather than convenient. This is because

the emphasis in this language design has been put on expressing the required
primitives, rather than giving the design of a fragment of a convenient and
pragmatic programming language.

In fact, work on the implementation of the language gbeta [1–3] served as our
starting point for the design of object sets. Objects in gbeta have a semantics
which may be represented by collections of instances of mixins, i.e., as multi-
entity phenomena rather than monolithic entities. Like object sets, they provide
an interface which is a disjoint union of the interfaces of the included mixins, but
unlike object sets there is no need to specify explicitly which mixin to use when
accessing a feature. Like object sets, gbeta objects can have cross-entity features
(such as methods or inner classes, which are then known as virtual), but unlike
object sets these features are accessed in exactly the same way as single-mixin
features. Similarly, since all gbeta objects are conceptually object sets there is
no distinction (syntactically or otherwise) between the usage of object sets and
“ordinary objects”.

The language gbeta also supports dynamic change of class for existing ob-
jects, and this corresponds to the replacement of the contents of the object by a
larger object set. In context of the features included in this paper this operation
is simple and safe, though of course it would require addition of mutable refer-
ences to object sets to make it work as a dynamic change of class. In context
of gbeta it is considerably more complex because dynamic specialization of an
object may have effects that correspond to a dynamic replacement of actual type
arguments of the class of the (multi-entity) object by some subtypes, which may
cause a run-time error, e.g., because the value of an instance variable may thus
become type incorrect. Because of this, dynamic object specialization in gbeta
has been extended with restricted versions that are safe, but it is beyond the
scope of this paper to model these refinements of the concept. Nevertheless, it is
worth noting that it is possible to embody the primitives presented in this paper
into a full-fledged programming language in such a way that they are convenient
to use.

The contributions of this paper is the notion of object sets, the precise defi-
nition of their semantics and typing in a formal calculus, FJset, and the mechan-
ically checked proof of soundness [4] for this calculus, using the Coq [5] proof
assistant.

The rest of the paper is organized as follows: Section 2 presents the calculus
informally and discusses the design. Next, Sect. 3 gives the formal definitions,
and Sect. 4 describes the soundness result. Finally, Sect. 5 describes related work,
and Sect. 6 concludes.

2 An Informal Look at the FJset Calculus

The FJset calculus is derived from the Featherweight Java calculus [6] by adding
the object set related operations, allowing covariant method return types, and
removing casts. The covariant method return types are included because they

are useful and standard today, and the casts are left out because they do not
provide extra benefits in this context.

The crux of this calculus is of course the ability to express and use object
sets. An object set is a set of objects collected into a single, typed entity. An
object set may be decomposed in order to use individual members of the set,
and used as a whole in a special kind of method call, the object set method call.
Each object set is associated with a set of classes and each object in the set
is uniquely associated with one particular class in the set of classes. Another
way to describe this would be to say that each object in the set is labeled by a
class. The object is an instance of that class or a subclass thereof. This makes it
possible to access the object set members and to use each one of them according
to an interface that it is known to support.

The correspondence between objects and classes in an object set is main-
tained by considering the set of objects and the set of classes as lists, and pair-
ing up the lists element by element. This is possible for an object set creation
expression (a variant of the well-known new expression for monolithic objects)
because such an expression contains the two lists syntactically, and this ensures
that every object set from its creation has a built-in definition of the mapping
from classes to member objects. It also equips the members of the object set
with an ordering. This ordering is insignificant with respect to typing, but it is
significant with respect to the dynamic semantics, because it determines which
method implementation is most specific during an object set method call. In
other words, the ordering of the members of an object set is an implementa-
tion detail—crucial in the definition of its internal structure and behavior, but
encapsulated and invisible at the level of types.

However, an expression denoting an object set may by subsumption be typed
with an arbitrary subset of the associated classes, and they may be listed in an
arbitrary order in the type. In other words, it is possible to forget some of the
objects and also to ignore the ordering of the objects. However, the dynamic
semantics only operates on an object set when it has been evaluated to such an
extent that it is an object set creation at top level. This ensures that the object
set operations are consistent because they are based on the built-in mapping.

Two operations are provided to decompose an object set. They both rely on
addressing a specific member of the set via its associated class. One operation
provides access to the object associated with the given class, and the other
operation deletes that object and class from the object set, thus producing a
smaller object set.

The object set method call operation is provided in order to gather contribu-
tions from all suitable objects in an object set, in a process that resembles a fold
operation on a list. The call is based on an ordinary method whose signature
must follow a particular pattern, namely that it takes a positive number of ar-
guments and the type of the first argument is identical to the return type of the
method. This makes it possible for the method to accept an arbitrary list of “or-
dinary” arguments—the arguments number two and up—and also to accept and
return a value which plays the role as an accumulator of the final result. In this

1 class Printable extends Object {
2 String print(String s) { return "Plain Printable"; }
3 String separator() { return ", "; }
4 }
5 class Agent extends Printable {
6 String id;

7 String print(String s) { return s+" "+id; }
8 }
9 class Person extends Printable {

10 String name;

11 String print(String s) { return name+" "+s; }
12 String separator() { return " -- "; }
13 }
14 class Main extends {
15 { Printable } p;

16 String doPrint() {
17 return p.print@Agent("The name is") +

18 p@Printable.separator() +

19 p.print@Printable("");

20 }
21 }
22

23 // the following yields "The name is Bond -- James Bond"

24 new Main(new {Agent, Printable} (new Agent("Bond"),

25 new Person("James")))

26 .doPrint()

Fig. 1. An small example program in FJset.

sense the object set method call supports iteration over the selected members
of the object set and collection of contributions to the final result, not unlike a
folding operator applied to a list. Note that an object set method call does not
require static knowledge about the type of any of the objects in the set.

The design of the object set method call mechanism was chosen to enable
iteration over a subset of the members of the object set supporting a specific
interface, without adding extra language mechanisms. Pragmatically, it might
be more natural to use actual iteration in an imperative setting, or to return
a data structure like an array containing the eligible object set members. But
in this context we prefer a minimal design, and hence we ended up chosing the
programmer convention driven approach based on ordinary nested method calls.

Figure 1 shows a small example program in FJset. This program shows how
to create objects and object sets, how to perform an object set method call, how
to decompose an object set in order to use a feature of one of its members, and it
indicates the result of the computation. In order to make the example compact
and readable it uses an extension of the calculus that includes a String type,
string literals, and concatenation of strings with the ‘+’ operator.

Lines 1–13 define three classes to support modeling a human being from two
different points of view in an object set; the only difference from standard Java
code is that there are no constructors, but the constructors in FJ style calculi are
trivial and somewhat of an anomaly so we left them out. Note that the signature
of the print method is such that it can be used for object set method calls: Its
return type is also the type of the first (and only) argument.

The class Main has an instance variable (line 15) whose type is an object
set, { Printable }, which means that it is guaranteed that there is an object
labeled Printable in this object set, but there may be other objects as well.
The doPrint method (line 16–20) makes two object set method calls (line 17
and 19) and one ordinary method call (line 18), and returns the concatenation
of the results. The object set method call on line 17 involves only one member
of p, because only the first one is labeled by Agent or a subclass thereof. The
call on line 19 involves both objects in p. The expression p@Printable on line
18 extracts the object labeled as Printable in p, which is the Person object,
and calls its separator method, which by ordinary late binding returns " -- ".

Finally, note that subsumption makes it possible for the instance variable p
to refer to an object set of type { Agent, Printable }, and also that the usage of
different classes in the object set method call can be used to filter the contributors
to such a call in various ways.

3 The FJset Calculus

We now proceed to present the syntax, the dynamic semantics, and the type
system of the FJset calculus, interspersed with short discussions about why the
calculus is designed the way it is. We also give some remarks on how the pre-
sentation in this paper and the accompanying Coq proof fit together, based on
the assumption that this kind of knowledge is useful for the development of a
strong culture of using proof assistant software.

3.1 Syntax and Notation

A program is a class table and a main expression, and the semantics of a program
is to execute the main expression in context of the given classes. As is common,
we assume the existence of a fixed, globally accessible class table, CT, which lists
all the class definitions in the program.

The syntax of the calculus from the level of classes and down is shown in
Fig. 2. Notationally, we use overbars to denote lists of terms, so C stands for the
list C1 C2...Cn for some natural number n; n=0 is allowed and yields the empty
list, ‘•’. There may be separators such as commas or semicolons between the
elements of such a list, but they are implicit and implied by the context.

Several constructs in the syntax are identical to the ones known from Feath-
erweight Java. Class and method definitions are standard, using the variant of
Featherweight Java that omits explicit constructors. The standard expressions
are variables, field lookups, method calls, and new expressions.

Q ::= class C extends D { T f; M } class declarations
M ::= T m(T x) { return e; } method declarations

e ::= x | e.f | e.m(e) | e@C | e\C |
new C(e) | new {C} (e) | e.m@C(e) expressions

v ::= new C(v) | new {C} (v) values

T,U ::= C | {C} types

Object,this predefined names
C,D class names
f,g field names
x variable names
m method names
N any kind of name

Fig. 2. Syntax of FJset.

The remaining expressions are concerned with object sets. A class selection
expression, e@C, provides the object labeled with the class C from the object set
e. A class exclusion expression, e\C, provides an object set from which the object
labeled with C as well as C itself has been deleted. The expression new {C} (e)
denotes creation of an object set which contains each of the objects denoted by
the expression list e, labeled by the list of classes C.

Finally, the expression e.m@C(e) denotes an object set method call, which
selects all objects from the object set e which are labeled with the class C or a
subclass thereof, and calls a method m on each of them in the order they appear
in the class list of the built-in mapping of the object set e. The method m must
be defined in or inherited by the class C, and it must take a non-zero number
of arguments where the first argument has the same type as the method return
type, in order to enable the nested method call process mentioned in Sect. 1.

3.2 Auxiliary methods, Subtyping, and Wellformedness

Figure 3 defines the auxiliary functions used for field lookup and similar tasks.
They are standard except for the function distinct which simply expresses that
a given list of names (of any kind such as class names, method names, etc.) are
distinct. As is common, quoting a class definition as a premise of a rule indicates
the requirement that CT must contain that class definition.

The rules in Fig. 4 show subclassing (` C <: D), which is standard, subtyping
for object sets (` T ⊂: U), which corresponds to the superset relation among
the sets, and subtyping, which combines the two. Furthermore the judgement
C ∈: {C} holds whenever C is a superclass of one of the classes C; this is used in
the dynamic semantics of object set method calls.

fields(Object) = •
class C extends D {T f; M}

fields(D) = U g

fields(C) = U g, T f

class C extends D {U f; M}
T m(T x) {return e;} ∈ M

mBody(m, C) = x.e

class C extends D {U f; M}
m 6∈ M mBody(m, D) = x.e

mBody(m, C) = x.e

class C extends D {U f; M}
m 6∈ M mType(m, D) = (T→ T)

mType(m, C) = (T→ T)

class C extends D {U f; M}
T m(T x) {return e;} ∈ M

mType(m, C) = (T→ T)

distinct(•) N 6∈ N distinct(N)

distinct(N N)

Fig. 3. Auxiliary functions for FJset.

In the Coq formalization of the calculus, transitivity for subclassing includes
the requirement that the two pairs of classes are distinct, i.e., that C 6= C′′ and
C′′ 6= C′. An easy induction shows that each of the two definitions of subclassing
is able to derive all the subclass judgements of the other. However, in order to
show in Coq that subclassing is decidable, the addition of these requirements
solves a problem because it is hard to specify in Coq that the derivation tree for
a subtyping judgement is finite. As we shall see later on, the required finiteness
is a consequence of the rule for class typing.

The requirement in the rule for object set subtyping that the classes D are
distinct is necessary in order to prevent occurrences of class lists with duplicate
elements. It is only required for the supertype, {D}, because distinctness for
the subtype is ensured by other rules, in particular in the typing of object set
creation expressions shown below in Fig. 7.

The type wellformedness requirements are shown in Fig. 5. They state that
a class name is well-formed if there is a class of that name in the class table, and
that an object set type, {C}, is well-formed if it consists of distinct class names.
Finally CT must satisfy Object 6∈ CT. Note that the class names in an object set
type are not explicitly required to be defined in CT, because this requirement is
a consequence of other rules. In general, the wellformedness requirements in this
calculus are sufficient to enable the proof of soundness, but they are also minimal
in the sense that removing any of them invalidates the proof. We believe that the
use of proof assistent software may tighten the specification of well-formedness
requirements in calculi, which is an area that otherwise easily gets a slightly
imprecise treatment.

class C extends D { T f; M }
` C <: D

` C <: C′′ ` C′′ <: C′

` C <: C′

` C <: C
D ⊆ C distinct(D)

` {C} ⊂: {D}

` T <: U

` T <: U

` T ⊂: U

` T <: U

` Ci <: C

C ∈: {C}

Fig. 4. Subclassing and subtyping for FJset.

` Object ok C ∈ CT

` C ok

distinct(C)

` {C} ok

Fig. 5. Wellformedness rules for FJset.

3.3 Expression Evaluation

The dynamic semantics of FJset is presented in Fig. 6. Selection of a redex
in a larger expression is defined in terms of evaluation contexts rather than
congruence rules; they are listed at the bottom of the figure, where E denotes an
expression with exactly one hole and E∗ denotes a (non-empty) list of expressions
with exactly one hole. With respect to the evaluation order, this calculus follows
the tradition from FJ whereby the evaluation order is restricted as little as
possible, and particular strategies like call-by-value are available as one of the
possible choices.

The rules for field lookup and method invocation are standard. The rule for
class selection, (R-Select), selects the member of the given object set labeled
with the specified class. This rule serves as an example of the evaluation order
issue mentioned above: evaluation has to proceed until the top level expression
is an object set creation expression (new {C} (...)) in order to reveal {C} and
thus the built-in mapping of the object set, but the arguments need not be fully
evaluated.

We stated earlier that an object set offers an interface which is a disjoint
union of the interfaces of its members. The class selection operation fulfills this
promise as follows: For a given object set, the classes used to label some members
of the object set are made explicit in its type (others may have been lost by
subsumption). The interface of the object set is the union of the interfaces of
these classes, and thus the object set supports access to all these features of

fields(C) = T f

new C(e).fi ; ei

(R-Field)

(new {C} (e))\Ci ; new {C\#i} (e\#i)
(R-Drop)

mBody(m, C) = x.e0

(new C(e)).m(e′) ;

[this/new C(e),x/e′]e0

(R-Invk)

` Ci <: C i = min{ j | ` Cj <: C }
vi = new D(v′) mBody(m, D) = x.e0

e′0 = [this/new D(v′),x/ee]e0

(new {C} (v)).m@C(ee) ;

(new {C\#i} (v\#i)).m@C(e′0e)
(R-SInvk)

(new {C} (e))@Ci ; ei

(R-Select)

C 6∈: {C}
(new {C} (v)).m@C(e,e) ; e

(R-SInvk-Done)

E ::= [] | E.f | E.m(e) | e.m(E∗) | new C(E∗) | new {C} (E∗) | E@C |
E\C | E.m@C(e) | e.m@C(E∗)

E∗ ::= e E e′

Fig. 6. Evaluation rules and evaluation contexts for FJset.

all those members. There are no naming conflicts because the choice of class is
made explicit, i.e., it is a disjoint union. In a full-fledged language it is much
more convenient to avoid the explicit class selection, but this is trivial in the cases
where there is no naming conflict, and it should be handled explicitly when a
conflict exists; the language gbeta uses this approach.

The rule for class exclusion, (R-Drop), deletes the requested class and the
corresponding member from the object set. This rule introduces notation for a
simple function that deletes the i’th element from a list, namely t\#i, where t
are terms of any kind, e.g., class names or expressions. Usage of this notation
implies that the list is long enough to contain the position to delete.

In the Coq formalization of this calculus the (R-Drop) rule zips the list of
classes and the list of expressions together to a list of pairs, then deletes the pair
which contains the specified class, and then unzips the shortened list of pairs
to get the resulting list of classes and list of expressions. This is a relatively
typical situation where the convenient formalization in Coq does not correspond
exactly to a well-known or convenient notation for presentation in a paper, but
the slightly awkward notation t\#i used to express deletion-by-position seems
to be the most readable way to bridge the gap.

The object set method call semantics is specified by two rules, (R-SInvk)
and (R-SInvk-Done). As mentioned, an object set method call amounts to a
composite operation which includes a method call on each of the members of
the set labeled by a class supporting that method. The rule (R-SInvk) specifies
what to do when the object set contains a member supporting the requested
method m, and the rule (R-SInvk-Done) specifies what to do in the end when
all such objects have been processed.

Whether an object set member supports m is determined by requiring that
the member is associated with a subclass of the class C specified in the object
set call. This means that each selected object will be an instance of C or one of
its subclasses, and the method m will be defined for that object, with a signature
which is identical to the signature of m in C, except for possible covariance in the
return type. Objects supporting unrelated methods with the same name m are
ignored.

The rule (R-SInvk) specifies how to call one method m and provide the results
produced by this method call to the next method call. It requires that the list
of classes C associated with the object set contains a subclass Ci of the class
requested in the call, C, and selects the ‘first’ one (the one with the smallest
index i). It then removes the selected object from the receiver object set and
repeats the object set method call with the result of the invocation of m on
the selected object as its first argument. Note that the minimality of i is not
needed for soundness, it is needed in order to ensure that object set method calls
have a predictable semantics: it should accumulate the results from its members
according to their built-in ordering.

However, the first argument does not look like a method call, it is actually
given as [this/new D(v′),x/ee]e0, but inspection of the rule for method call,
(R-Invk), reveals that this is the result of taking one evaluation step after the
method invocation new D(v′).m(ee). It is necessary to express the rule in this
form in order to maintain the property that all rules are compositional.

A similar investigation shows that the receiver of the object set method call
after the step in (R-SInvk) is the result of taking one step after excluding the
selected class Ci from the receiver object set before the step. Compositionality
again forces the rule to take that step rather than expressing the result in terms
of an explicit class exclusion operation.

The semantics of an object set method call may thus seem to be expressible
in terms of other operations, but this is not the case because there is no way
to select the class Ci appropriately without this operation. A primitive could be
provided in order to make such a selection, but we have not found any which
enables the same functionality without requiring strictly more static knowledge
about the contents of object sets.

Finally, the rule (R-SInvk-Done) yields the first argument of the object set
method call in the situation where no object in the object set can be selected.

Γ (x) = T

Γ ` x : T

(T-Var)

Γ ` e : {C} ` Ci ok

Γ ` e@Ci : Ci

(T-Select)

Γ ` e : C fields(C) = T f

Γ ` e.fi : Ti

(T-Field)

Γ ` e : {C}
Γ ` e\Ci : {C\#i}

(T-Drop)

Γ ` e : C mType(m, C) = (T→ T)
Γ ` e : U ` U <: T

Γ ` e.m(e) : T

(T-Invk)

distinct(C)
Γ ` e : U ` U <: C

Γ ` new {C} (e) : {C}
(T-SNew)

fields(C) = T f

Γ ` e : U ` U <: T

Γ ` new C(e) : C

(T-New)

Γ ` e : {C} Γ ` e : T T
mType(m, C) = (T T→ T)

Γ ` e.m@C(e) : T

(T-SInvk)

Fig. 7. Type rules for FJset.

3.4 Typing

The type rules for FJset are shown in Fig. 7. The rules for the typing of variables,
field lookups, ordinary method invocations, and ordinary object creation are
standard.

The rule (T-Select) specifies that the target must be typable as an object
set containing the requested class, and the resulting type is then that class. It
would be easy to change this rule and (R-Select) to select a subclass, i.e., to
allow for the selection of a class C as long as C ∈: {C}, but this could prevent
the selection of a class C′ from an object set that is also associated with some
subclass C′′ of C′ or make the operation ambiguous, and since there is no depth
subtyping for object set types it would not enhance the expressive power or the
flexibility of the language.

The rule (T-Drop) specifies that the target must be typable as an object set
that includes the class to exclude, which is then removed from the type of the
object set to produce the result type. For the same reasons as above it would
not be useful to allow the requested class to be a superclass of the excluded
class. The rule (T-SNew) specifies the typing of object set creations. It simply
requires that the classes used as labels are distinct and that each member has a
subtype of its associated class. The rule (T-SInvk) specifies how to type object
set method calls. It requires that the receiver is typable as an object set, but

override(m, D, T, T) Γ ; this :C ` e : U ` U <: T ` T, T ok distinct(x)

` T m(T x){ return e; } ok in C,D

(T-Method)

` D ok ` T ok ` M ok in C,D ` D 6<: C ` D <: Object
distinct(fields(D) f) distinct(names(M))

` class C extends D { T f; M } ok

(T-Class)

mType(m, D) is undefined

override(m, D, T, T)

mType(m, D) = (T→ T′) ` T <: T′

override(m, D, T, T)

Fig. 8. Class and method typing for FJset.

does not require anything about the set of classes associated with this object
set. On the other hand, the method m must be defined or inherited in the class
C, it must take at least one argument, and the type of the first argument must
be identical to the return type, which is also the type of the entire object set
method call.

It would be very easy to change the (T-SInvk) rule to require C ∈: {C} and
adapt the soundness proof accordingly, which would guarantee that the object
set method call would include at least one actual method call, but this is not
required for soundness. Similarly, it would be easy to relax the rule such that
the return type only has to be a subtype of the type of the first argument rather
than being identical to it, but it would be hard to exploit this information unless
the rule were modified to enforce that there is at least one actual method call.
Even then, the accumulation of contributions from several members of the object
set would have to start “from scratch” at each member, because the type of the
first argument is fixed. Hence, these variations do not seem to be worthwhile.

Finally, Fig. 8 shows the rules for class and method typing, i.e., rules that ap-
ply type checking to the entire program. As opposed to the traditional treatment,
these rules include all the requirements needed for programs to be well-formed—
for instance in order to avoid cyclic inheritance graphs.

The rule (T-Method) specifies that a method m defined in a class C with su-
perclass D must correctly override any definitions of m available in the superclass,
it must have a body whose type is a subtype of the declared return type, it must
have distinct argument names, and the specified types must be well-formed. The
only non-standard element here is the requirement that argument names must
be distinct.

The rules for override are given at the bottom of the figure; they are used to
specify when a definition of a method m with argument types T and return type

T is correct in relation to definitions available in the superclass D. It is standard
except that it allows for covariance in the return type, just like the Java language
of today.

The rule (T-Class) specifies the standard requirements that the superclass
D, all field types, and all methods must be well-formed. Moreover, the super-
class cannot be a subclass of C itself, which prevents cycles in the inheritance
graph; and the superclass must be a subclass of Object, which ensures that all
inheritance chains are finite. This finiteness ensures that subclassing is decidable,
which is used in the progress proof. Finally, there are distinctness requirements
for field and method names.

All in all, this is not much more involved or verbose than the usual class and
method typing rules, but it is complete in the sense that there are no additional
(informal and maybe even implicit) well-formedness rules about programs to
worry about. We think that it would be useful to make program well-formedness
fully explicit, as we have done it here; it is, of course, a consequence of using
proof assistant software, because the proofs cannot be completed unless such
things are made precise and included in the specification.

4 Soundness

The FJset calculus is sound, which is shown via the standard progress and preser-
vation results:

Theorem 1 (Progress). If e is an expression typeable by ∅ ` e : T then either
e is a value or there exists an expression e′ such that e ; e′.

Theorem 2 (Preservation). If the expression e in the environment Γ is ty-
pable by Γ ` e : T and it can take the step e ; e′, then Γ ` e′ : U for some type
U such that ` U <: T.

A complete proof of these properties which has been mechanically checked
by the proof assistant Coq is is available for download [4]. It consists of ap-
proximately 6500 lines of Gallina code, divided into approximately 3500 lines
specifically on the calculus, and approximately 3000 lines of standard language
metatheory facilities from the Coq tutorial given at POPL 2008 [7].

5 Related Work

Dynamic languages like Self [8, 9] support a very general and flexible style of
composite objects by means of parent slots and genuine delegation. Object sets
are less flexible, but in return they are statically typed.

Object sets are similar to extensible records in some ways. For instance,
Gaster and Jones [10] define polymorphic, extensible records and unions based
on row variables, i.e., mappings from labels to types. With object sets, the as-
sociated classes work as labels and types combined; this reduces the flexibility

because there cannot be two labels with the same type, but given that object
sets are intended to model composite objects it would correspond to repeated
inheritance to have more than one member associated with the same class, and
this would preclude a surface level syntax where class selection is implicit due to
the name clashes. Object sets as presented here do not support extension; this is
because we consider a ‘lacks C’ construct which promises that there is no class
C in this object set to be unmanageable in real-world software development.
On the other hand the extensible records do not have a late-bound operation
that corresponds to our object set method calls, it only uses statically known
components.

A well-established approach to extensible records is the Haskell HList li-
brary [11], where Kiselyov, Lämmel and Schupke use type level natural numbers
and a number of layers on top of that to support type safe heterogeneous lists.
Such lists are actually nested tuples, and the approach relies heavily on being
able to use large type expressions which are inferred and never show up in the
source code. If explicit typing is considered a valuable source of documentation
then object sets are more manageable because they abstract away from the or-
dering of elements, and they may provide access to an arbitary set of members
without depending on the internal structure, i.e., the order of known members
and the presence of unknown members.

6 Conclusion

We have presented the concept of object sets as a first class language construct
which is capable of emulating the main features of traditional, monolithic objects:
access to the disjoint union of the features of all object set members in the type,
and support for a kind of method calls whereby the choice of methods to call is
made dynamically, corresponding to feature access and method calls for ordinary
objects. However, object sets are more flexible than ordinary objects, because
they combine the features of several classes (like mixins or multiple inheritance,
but without the name clashes), and they provide the machinery needed in order
to support dynamic metamorphosis of object sets. The mechanism is useful in
its own right, but it is likely to benefit from a pragmatic layer on top of the
operations shown in this paper, because this makes the syntax more compact
and convenient. The mechanisms of this paper might then provide good service
as primitives on main-stream platforms such as .Net or JVM, which would make
these platforms better at handling flexible object models in a type safe manner.

Acknowledgments The design of the object set method call mechanism owes
some very useful insights to Kim Birkelund. The Coq proof was developed from
a starting point created by Bruno de Fraine which was a proof of soundness
for Featherweight Java without casts, which again used a number of files from
the POPL 2008 Coq tutorial. This was very valuable material in the process of
getting up to speed in Coq.

References

1. Ernst, E.: gbeta – A Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. PhD thesis, Devise, Department of Computer
Science, University of Aarhus, Aarhus, Denmark (June 1999)

2. Ernst, E.: Higher-order hierarchies. In Cardelli, L., ed.: Proceedings ECOOP’03.
LNCS 2743, Heidelberg, Germany, Springer-Verlag (July 2003) 303–329

3. Ernst, E., Ostermann, K., Cook, W.R.: A virtual class calculus. In: Proceedings
POPL’06, Charleston, SC, USA, ACM (2006) 270–282

4. Ernst, E.: Coq proof of soundness for the FJset calculus (October 2008) http:

//www.daimi.au.dk/~eernst/Sw65ab/objsetproof.tgz.
5. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development.

Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer
Science. Springer Verlag (2004)

6. Igarashi, A., Pierce, B., Wadler, P.: Featherweight Java: A minimal core calculus
for Java and GJ. TOPLAS 23(3) (May 2001) 396–459

7. Aydemir, B.: Using proof assistants for programming language research (January
2008) http://www.cis.upenn.edu/~plclub/popl08-tutorial/.

8. Ungar, D., Smith, R.B.: Self: The power of simplicity. In: Proceedings OOPSLA’87,
Orlando, FL (October 1987) 227–242

9. Agesen, O., Bak, L., Chambers, C., , Chang, B.W., Hölzle, U., Maloney, J., Smith,
R.B., Ungar, D., Wolczko, M.: The Self 4.0 Programmer’s Reference Manual. Sun
Microsystems, Inc., Mountain View, CA (1995)

10. Gaster, B.R., Jones, M.P.: A polymorphic type system for extensible records and
variants. Technical Report NOTTCS-TR-96-3, Department of Computer Science,
University of Nottingham (November 1996)

11. Kiselyov, O., Lammel, R., Schupke, K.: Strongly typed heterogeneous collections.
In: Haskell Workshop. (2004) 96–107

