
ISSN 0105-8517

Petri Nets 2000
21st International Conference on

Application and Theory of Petri Nets

Aarhus, Denmark, June 26-30, 2000

Workshop Proceedings

Software Engineering and Petri Nets

Organised by

Mauro Pezzé
Sol M. Shatz

DAIMI PB – 548

June 2000

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Preface

This booklet contains the proceedings of the Workshop on Software Engineering and
Petri Nets (SEPN), held on June 26, 2000. This workshop was held in conjunction with the
21st International Conference on Application and Theory of Petri Nets (ICATPN-2000),
organised by the CPN group of the Department of Computer Science, University of Aarhus,
Denmark. The SEPN workshop papers are also available in electronic form via the web
page: www.daimi.au.dk/pn2000/proceedings

The aim of the workshop was to bring together researchers and practitioners with inter-
ests in Petri nets and/or software engineering, with the goal of exploring more closely the
potential impacts and pitfalls in applying net-based formalisms to software development
problems.

All submitted papers were refereed and evaluated under the direction of a program com-
mittee with the following members:

Jonathan Billington, University of South Australia (Australia)
Ugo Buy, University of Illinois at Chicago (USA)
Robert France, Colorado State University (USA)
Dino Mandrioli, Politecnico di Milano (Italy)
Mauro Pezze, Politecnico di Milano (Italy)
Sol Shatz, University of Illinois at Chicago (USA)

The program for the workshop included ten selected papers and two invited talks. The
invited speakers were: Professor Michal Young (Oregon State University, USA) and Pro-
fessor Manfred Broy (Technishe Universitat Munchen, Germany).

Mauro Pezze and Sol Shatz
Co-organizers, SEPN-2000

Table of Contents

J. Merseguer, J. Campos, E. Mena
Performance Evaluation for the Design of Agent-based Systems: A Petri Net Approach 1

A. Chandler, A. Heyworth, L. Blair, D. Seward
Testing Petri Nets for Mobile Robots Using Gröbner Bases 21

M. Češka, V. Janoušek, T. Vojnar
Generating and Exploiting State Spaces of Object-Oriented Petri Nets 35

H. Giese, G. Wirtz
The OCoN Approach for Object-Oriented Distributed Software Systems Modeling . 55

S. Philippi
Seamless Object-Oriented Software Development on a Formal Base 75

N. C. Narendra, I. P. Pal
An Architecture for Adaptive Planning and Scheduling of Software Processes Using

Timed Colored Petri Nets . 95

A. Burns, A. J. Wellings, F. Burns, A. M. Koelmans, M. Koutny, A. Romanovsky,
A. Yakovlev

Towards Modelling and Verication of Concurrent Ada Programs Using Petri Nets . 115

J. Vachon, N. Guelfi
COALA: A Design Language for Reliable Distributed Systems Engineering 135

M. Lemmon, K. X. He
Supervisory Plug-ins for Distributed Software . 155

K. El-Fakih, H. Yamaguchi, G. v. Bochmann, T. Higashino
Protocol Re-synthesis Based on Extended Petri Nets 173

���������	��

��������������������������� �!�	�"��#���$%��&��(')� �	�
* '	�+�)�-,/.���&0��132546&7�0�8

&:9 * ���;�0���=<>�;� *@?A? �������B#6C

DFEFGIHJ�KAJ�L G JNM!OIJNLNP DRQTSVU JNL�W Q!XZY[ERG P Q!\^]�_B] O Q L]IE KAJ \^Q

`;aFbdc!eRf!g�hji!klcNmdnpoq bdrts q g;huiRvwgxiRrtgxmyoz q fFg�{�rt|}bdgyn q |y~F�:iFr��wgxmd|�r�bj�	cNk7� q m q vwcN� q ~^{�a q r�i���y�R�w�!���������w�x�!�!���[�j���R�N�!�T���N�!���(���������F�(���w�-�j���

���¡ y¢y£(¤V¥N¢w¦ {�cNk§bu¨ q mdg©f!gy|�rtvwi q iVf�rtn�aRªtgyn�gxi�b q bdrtcwi�«F|�rtiRv�n�cw¬Frtª�g q vwgyi�bd| q mdg
iFc(¨ q f q �!|�rti��TcNª��wg�f­rti q |�sygya!bdrtsyrt|�n�® q ªtcFeF¯�®Rgxmdg q mdgBmdgy|�g q mds°®Fgxmd|�¨�®Rc8±�«Rgy|}²
bdrtcwi³r�bd|8«!bdrtª�r�bu�5¬´gys q «F|�g�r�b�sycw«Fªµf6¬´g q iFgx¨¶bdgys·®RiFcwªtcwv��6bd® q b8f!c�gy|�aFmdc(��r�fFg
iFgx¨A|�¸�rtª�ªt|�¬F«Fb/rtb/sycw«Fª�f�rti�b�mdc�fF«Fsyg7iRgx¨Aa!mdcw¬Fª�gxn�|ye�{!gysx«Fmdr�bj� q iVf;a´gxm�k§cNmdn q iRsyg
q mdg;bd®Rg;n�cN|}b�sxmdr�bdrts q ª q |�a´gysxbd|�k§cNm�bd®Rrt|�iRg°¨=¸�rtiVf�cNk�|�cNk§bu¨ q mdgweVhui	bd®Fr�|�a q a´gxm
¨0g)aFmdgx|�gyi�b q klc�mdn q ª q aRaFmdc q s·®Abdc q i q ªt�!|�g	a´gxm�klc�mdn q iFsyg	k§cNm­bd®Frt|�syª q |�|�cNk
|}�!|}bdgyn�|ye[¹:«!m q aFaFmdc q s·®ºrt|;rti�bdgyvNm q bdg�f³rti5bd®Rg8g q mdª��6|}b q vNgy|�cNk»bd®Rg�|�c�k§bu¨ q mdg
f!gy�TgyªtcwaFn�gyi�b�aFmdc�sxgy|�|yeVhui�bd®Rrt|�¨ q ��~Fr�b�rt|Ba´cN|�|�rt¬Rªtg�bdc­aFmdg�f!rtsxb�bd®Rg;¬´gx® q ��r�cN«Fm
¨�r�bd®RcN«Fb;bd®Fg+iFgysygy|�|�r�bu�¼bdc�s q m�m��5cw«!b:bd®Rg+sycwn�aFªtgxbdg+rtn�aFª�gxn�gyi�b q bdrtcwi¼aF® q |�gNe
¯/c�|�®Rc�¨½bd®Rg q aRa!mdc q s°®^~^¨0g­n�c�fFgxª q |�cNkµbj¨ q mdg­mdgxb�mdrtgy� q ª7|�gxmd��r�sxg­|}�!|}bdgyn¾rti
q a!m q vNn q bdrts;¨ q ��~!ª q bdgxm�~Fbd®Rg;syc�m�mdgy|�a´cwiRfFrtiRv­k§cNmdn q ª[n�c�f!gyªIr�|�cN¬Fb q rtiFg�f q iRf
q i q ª��!|�g�f)rtiZc�m·fFgxm�bdc­|}bd«Rf!��a´gxm�k§cNmdn q iRsygwe

¿AÀFÁ¡Â�Ã^Ä�Å0Æ!Ç^ÈVE!ÉËÊdÌ:Q L°J Y J�L ÉÍE L X¼Q�\^Î J!P´Ï�J Ê L U¡\ J ÊxG P^Ð8KÒÑ�P XZE!Ó^UµÔ J Q M!J \RÊ

Õ ÖR×BØ´ÙIÚ�Û+Ü8Ý/ØIÞdÚB×

ß�\5Ê°à J ÔlQ!G·Ê©á J Q L G P]´UlGdÊ L U§Ó O Ê J]³G·E!ÉËÊdÌ:Q L°J Q!YIYIÔ§U§ÎNQ�ÊxUµEF\^GBà[QTS J U§\^Î LxJ QFG J]ZÊ°à J U L Y/EFGxG°UµÓIU§Ôµâ
U�ÊxU J G�X¼Q�ãVU§\ M¼O G J E�É�ß�\RÊ J�L \ J Ê8Î�Q�Y[Q�ÓIU§ÔµUµÊ°U J G P Y/EFG°UµÊ°U§E!\IU§\ M]´UlGdÊ L U§Ó O Ê J]AG°E�ÉËÊdÌ;Q LxJ] J S J Ôµâ
E!YIX J \RÊ�Q!G;Q�S J�L áZUµ\RÊ JNL°J GdÊxUµ\ M Q!YIY L EFQ!Îyà7äFå;à J Î(Ô§U J \RÊ�æ�G JNL S J�L XZE´] J Ô¡à[Q!G:Ó J Î(EFX J Ê°à J
ã J áÒY^Q L Q!]´U M XçÊxEAG O Y^Y[E L Ê�]´UlGdÊ L U§Ó O Ê J]èG°E�ÉËÊdÌ;Q LxJ] J S J Ô§E!Y^X J \RÊNä¡ß}Ê�U§G�Ì�U§] J Ôµá L°J Î(E M â
\IU§G J]6Ê°à[Q�Ê;Ê°à JNL°J Q L°J ÉÍE OIL X¼Q�U§\³Ê J Îyà^\IE!Ô§E M U J GBÌ�àIUlÎyà�Q!]´SFEVÎNQ�Ê J ÉÍE L Î�ÔµU J \RÊ(æ�G J�L S J�L] J â
S J Ô§E!Y^X J \RÊxGNÇ L°J Ô§Q�Ê°U§E!\^Q!Ô7]IQ�ÊxQ�Ó[Q!G J XZQ!\^Q MFJ X J \RÊ8G°á´GdÊ J X¼G�é�ê8ë+ì K ÈIí P å Ï X)EF\IUµÊ°E L G P
M!L E O YVÌ;Q LxJ Q�\^]î]´UlGdÊ L U§Ó O Ê J]pE!Ó´ï J Î�ÊyG�ä�ß}Ê�U§G­Ì J Ô§Ô�Q!ÎNÎ J Y´Ê J]AÊ°à[Q�Ê�]´UlGdÊ L U§Ó O Ê J]pE!Ó´ï J Î�ÊxG
Uµ\AÎ(EF\�ï O \^Î(Ê°U§E!\�Ì�UµÊ°àèðZñFò(óËô§õ)öN÷Fõ�ø^ùuú5û�üTý P üFü�þ-Ê J ÎyàI\IEFÔµE M á5Q LxJ Q)S J�L á5U§\RÊ J�LxJ G·Ê°U§\ M Q�YIâ
Y L ERQ!Îyà	Ê°E�Q!]^] L°J G°G�Î J�L ÊxQ!Uµ\)ãVUµ\^])E!É�G°E�ÉËÊdÌ;Q LxJ]IE!X¼Q�U§\^G�Ô§Uµã J:J â}Î�E!XZX J�L Î JFP Uµ\´ÉÍE L X¼Q�Ê°U§E!\
L°J Ê L U J STQ!Ô-Q�\^]³\ J ÊdÌ©E L ã¼X¼Q�\[Q M!J X J \RÊ�Q�\^]ºQ!]´XZU§\IUlGdÊ L Q�Ê°U§E!\-ä
ÿ ÔµÊ°àIE OIM à�Êxà J�LxJ Q LxJ�L°J G J Q L Îyà J�L G:Ì�àIE�� OIJ GdÊxUµEF\ºXZEFÓIUµÔ J G°E�ÉËÊdÌ;Q LxJ!P UµÊ8ÊyQ�ã J G�G J \^G J

Uµ\A]´UlGdÊ L U§Ó O Ê J] J \VSVU L E!\^X J \RÊxG­û ��þ-Ó J Î�Q O G J UµÊ�U§G�Q�Ê J ÎyàI\IEFÔµE M á¼Ì�UµÊ°à�Q�YIY L EFY L UlQ�Ê J \ J Ì
G·ãVU§ÔµÔlG;ÉÍE L Ê°à J G J ãVU§\^]�E�É�G°á´GdÊ J X¼G�ä/ì O Ê8UµÊ+Î(E O Ô§]ºU§\RÊ L EV] O Î J \ J Ì Y L E!ÓIÔ J X¼G�QFG;Ê°à J Uµ\´â
Q�YIY L E!Y L UlQ�Ê J+O G J E�É0Ê°à J \ J Ê LxJ G°E O^L Î J GNäRß�\ºÊxàIU§G8Ì:QTáZÊxUµX J Î�E!\^G O XZU§\ M Î(E O Ô§]ºÓ J Î(EFX J
Q�Y L EFÓIÔ J X¾ÉÍE L�O G J�L GNä´È´E P Ì J Q L°J Î(EF\^Î JNL \ J]¼ÊxEZ] J S J ÔµEFY6\ J Ì½Ê J ÎyàI\IU�� OIJ G�Q!\^]³X J Ê°à´â
EV]^G+Ì�à^U§Îyà XZU§\IU§X)U�� J Êxà J G J Y L E!Ó^Ô J XZGNä/ß�\ Ê°à^U§G­Î(EF\RÊ J�� Ê P ú�ñ	�yù�
Bö
�°õ��^õ����(ñ
��ðZö�ø��yõ ûµü��Tþ
Q�YIY J Q L G�Q!G	Qp]´UlG°Î�UµYIÔ§U§\ J U§\^G°U§] J G·E!ÉËÊdÌ:Q L°J¼J \ M U§\ JNJ�L Uµ\ M Ê°Ep] J Q�Ô©Ì�U�Êxà XZE´] J Ô:Y J�L ÉÍE L â
XZQ!\^Î J EF\AG·E!ÉËÊdÌ:Q L°J G·á´G·Ê J XZG8] J G°U M \-ä Ñ Uµã J X¼Q!\Rá³Y J E!YIÔ J Î(EF\^Î JNL \ J]�Q�Ó/E O Ê8G°E�ÉËÊdÌ;Q LxJ
� ¯�®Rrt|/¨0cNmd¸;® q |/¬´gxgyi8fFgy�Tgxª�cNa´g�f:¨�r�bd®Rrti�bd®Rg-aFmdc��}gys°b-¯��������(²��� "!#�©c�kFbd®Fg0{�a q iRrt|�®�$0h%$'&�¯:e

1

Y JNL ÉÍE L X¼Q�\[Î J!P Ì J Ó J Ô§U J S J Ê°à[Q�Ê;Ê°à J Y J�L ÉÍE L X¼Q�\^Î J8J S�Q!Ô O Q�Ê°U§E!\³X O G·Ê�Ó J Q!ÎNÎ(EFX)Y^ÔµUlG·à J]
] OIL Uµ\ M Êxà J�J Q L Ô§á6G·ÊxQ MFJ G:E�É0Ê°à J G·E!ÉËÊdÌ:Q L°J] J S J Ô§E!YIX J \RÊ�Y L E´Î J GxGNä

(»ø^ó):õ+*-,Òñ�*!õ�ôtóËøR÷/.7ö�øR÷10^ö�÷Rõ�é Ð8KÒÑ í�û 2�þ0UlG8Ì�Ul] J ÔµáAQ!ÎNÎ J Y´Ê J] Q!G�Q5G·ÊxQ�\[]IQ L]A\IE!â
ÊxQ�ÊxUµEF\ Ê°EîXZE´] J Ô�G°E�ÉËÊdÌ;Q LxJ G·á´G·Ê J X¼GNä Ð \´ÉÍE L Ê O \^Q�Ê J Ô§á P�Ð8K Ñ ÔlQ!Îyã´G�E!É�Ê°à J \ J Î J GxGxQ L á
J�� Y LxJ GxG·U§S J \ J GxG+Ê°EAQ!ÎNÎ OIL Q�Ê J Ô§áÒ] J GxÎ L U§Ó J Y J�L ÉÍE L XZQ!\^Î J G°ãVUµÔ§Ô§GNä7å;à JNL°J à^QTS J Ó JNJ \ G J SRâ
J�L Q�Ô»Q!YIY L EFQFÎyà J G;ÊxE³G°E!Ô§S J ÊxàIUlG+ÔlQ!Îyãèûµü�� P 2
3 P ü�4Tþjä65+\ J E�É�Ê°à J�M EFQ�ÔlG�E!É�Ê°àIUlG+Y^Q�Y J�L U§G
Ê°à J G·Ê O]Iá5E�É0Ê°à J Y J�L ÉÍE L X¼Q�\^Î J U§\^]´UlÎ J G;Uµ\�XZE!Ó^UµÔ J Q M!J \RÊ�G°á´GdÊ J X¼G P Ê°à O G P Ì J Y L E!Y/EFG J
Q7(�,/.8
�óËù:9;�^õ����(ñ
��ðZö�ø��yõ�ö�ø[ø/ñ�ù}ö�ùuó�ñ�øIú	éÍY[Q�â Ð8K Ñ í0Ê°E] J Q�Ô[Ì�U�Êxà5Y J�L ÉÍE L XZQ!\^Î J G°ãVUµÔ§Ô§G
E!\pÊ°à J G J ãVUµ\[]pE!É:G°á´GdÊ J X¼G�ä'5 O^L Q�YIY L EFQFÎyàAÊ°EAG°E!Ô§S J Ê°à J Y L EFÓIÔ J X UlG�Q!G�ÉÍE!Ô§Ô§E�Ì�G�Ç�Ì J
X)E´] J Ô�Ê°à J Y L E!Ó^Ô J X]´E!X¼Q�U§\ O G·U§\ M Y^Q�â Ð8K ÑBP] J GxÎ L UµÓ^Uµ\ M G·ÊxQ�ÊxU§Î�Q�\[]6]´áV\^Q!X)UlÎ+SRU J Ì�G
Ì�à J \Z\ J Î J GxGxQ L á!äTY^Q�â Ð8KÒÑ XZE´] J Ô§G�Ì�U§ÔµÔ M U§S J:O G�Ê°à J \ J Î J GxG°Q L á­Ó^QFÎyã MFL E O \^]�Ê°E­E!Ó´ÊyQ�U§\
Ê°à J Î(E L°LxJ G°Y[EF\^]´U§\ M ÉÍE L X¼Q�Ô/XZE´] J Ô J�� Y LxJ GxG J]5QFG=<�õ�ù>��ó0ø�õ(ùuú�ûµü�?Tþ}äA@ L E!X Y^Q�â Ð+K Ñ�P Ì J
] J�L UµS J Q�Ê°U§X J Uµ\RÊ J�L Y L°J ÊxQ�Ê°U§E!\ZE�É Ï�J Ê L U´\ J ÊxGBÔ J Q!]´U§\ M ÊxECB J \ JNL Q!ÔµU�� J]¼ÈRÊ°E´Îyà^QFGdÊxU§Î Ï�J Ê L U
D J ÊyG�é>B�È Ï D�í	ûµü�þ}ä¡å;à O G P Ì J UµXZYIÔ§U§Î�U�ÊxÔµá M UµS J Q5G J X¼Q�\RÊxU§ÎNG�ÉÍE L Y^Q�â Ð+K Ñ U§\AÊ JNL X¼G+E�É
Ï�J Ê L U¡\ J ÊxGNä Ï�J�L ÉÍE L X¼Q�\^Î J U§\^]´UlÎ J G�XZQTá6Ó J Î�E!XZY O Ê J]³ÉÍE L B�È Ï D ÓVá6Q�Y^YIÔµáVU§\ M � O Q�\Iâ
Ê°UµÊxQ�ÊxUµS J Q�\^Q!Ôµá´G°U§G©Ê J ÎyàI\IU�� OIJ G�Q!Ô LxJ QF]´á5] J S J Ô§E!Y J]³U§\³Êxà J Ô§U�Ê J�L Q�Ê O^L°J ä
å;à JAL°J GdÊ¼E!É+Êxà J Y^Q�Y J�L U§G¼E L°M Q�\IUlG J] QFG)ÉÍE!Ô§ÔµE�Ì�GNä�ß�\¶G J Î�ÊxUµEF\E2 P Ì J] J GxÎ L UµÓ J Q

G·á´G·Ê J X P Ó^Q!G J] E!\ Q MFJ \RÊxG P Ì�à^U§Îyàpà^Q!G8Ó JNJ \ ÊyQ�ã J \�É L E!X>û�ü"2wþ}ä[ß�\îG J Î�Ê°U§E!\F? P Ì J	M UµS J
E OIL Y L EFY[ERG°Q!Ô�Ê°EÒQ!\I\IE!ÊxQ�Ê J G·á´G·Ê J X%Y J�L ÉÍE L X¼Q�\^Î J Q!G°Y J Î�ÊxG	Uµ\ Ð+K Ñ é�Y^Q�â Ð8KÒÑ í�Q!\^]
Ì J] J S J Ô§E!Y6Ê°à J Y^Q�â Ð+K Ñ X)E´] J Ô§G©ÉÍE L Êxà J G°áVG·Ê J X Y LxJ G J \RÊ J]5U§\ºG J Î(Ê°U§E!\G2Iä^È J Î(Ê°U§E!\/H
U§G�] J]IU§ÎNQ�Ê J]ºÊ°E6Ê L Q�\^G·ÉÍE L X Y[Q�â Ð8K Ñ]IU§Q M!L Q�X¼G�U§\FÊxE Ï�J Ê L U-\ J ÊyG8U§\ E L] JNL ÊxE6Q!ÎyàIU J S J
Ê°à J] J G°U LxJ]¼ÉÍE L XZQ!Ô^XZE´] J ÔjäI@»U§\^Q!ÔµÔ§á P G·EFX J Y JNL ÉÍE L X¼Q!\^Î J�LxJ G O ÔµÊxG©Q�\^]5Î�E!\^Î�Ô O G·U§E!\^G©Q LxJ
Y L°J G J \RÊ J]-ä

J K¶×MLONQPSRUT�VWLYX	Ø[Z\L^]:Ú`_xØ
a7P�Ù[LcbdL¡Ø´Ù^ÞWLOefPSVG]�L7ÙAe�Þ·Ý�L¾Þ·×@ØAZgL
KEhjikKdbdlmipÖAlmKonqp\nFØIL'R

ß�\AÊ°àIUlG�G J Î�Ê°U§E!\ÒÌ J Ó L U J�r áºY LxJ G J \RÊ ÿ D8å ÿ ê W å;ß W ÿts ä�å;à J G°áVG·Ê J Xçà^Q!G8Ó JNJ \ ÊyQ�ã J \
É L EFX¾ûµü�2TþVQ!\^]�UµÊ0Ì�U§ÔµÔRÓ J©O G J]	Q!G7Q!\ J�� Q!X)Y^Ô J Q�Ô§E!\ M ÊxàIUlG7Y^Q!Y JNL ÊxE+G·Ê O]Iá�Y J�L ÉÍE L X¼Q�\^Î J
E!\ºX)EFÓIU§Ô J Q M!J \RÊ�G°áVG·Ê J X¼G�ä
å;à J5M ERQ�Ô�E!É�Ê°à J G·á´G·Ê J X%UlG�ÊxE Y L E�SVU§] J XZEFÓIUµÔ J Î�E!XZY O Ê J�L�O G JNL G	Ì�U�Êxà]´Uvu JNL°J \RÊ

G JNL SVUlÎ J G�Êxà^Q�Ê J \Ià^Q!\^Î J Êxà J Î�Q!Y^Q�ÓIU§Ô§U�ÊxU J G�E�É:Ê°à J U L Î(E!XZY O Ê J�L äw5+\ J E!É©Êxà J G J G JNL SVUlÎ J G
U§G�Ê°à J È´E�ÉËÊdÌ;Q LxJ ê J Ê L U J S�Q�Ô0È J�L SVU§Î J!P Êxà^Q�Ê­Q�Ô§ÔµE�Ì�G O G J�L G;ÊxE6G J Ô J Î�Ê+Q!\^]�]´E�Ì�\IÔ§EFQF]³\ J Ì
G·E!ÉËÊdÌ:Q L°J U§\ÒQ�\ J QFG·áºQ�\^] J#x Î(U J \RÊ8Ì;QTá!ä^å;àIUlG8G J�L SVU§Î J à^Q!G�Ó JNJ \AÊxàIE OIM àRÊ�Ê°E5Ì:E L ã6U§\
Q�Ì�U LxJ Ô J GxG;\ J ÊdÌ:E L ã¼X J]´UlQZQ�\^]ºY L E�SVU§] J G;G J S J�L Q�Ô�U§\RÊ J�LxJ G·Ê°U§\ M É J Q�Ê OILxJ GNÇ

y å;à J G°áVG·Ê J X X¼Q�\[Q M!J G»Ê°à J ãV\IE�Ì�Ô J] MFJ \ J�J] J]�Ê°E LxJ Ê L U J S J G°E�ÉËÊdÌ;Q LxJ Ì�UµÊ°à^E O Ê O G JNLUµ\RÊ J�L S J \RÊxUµEF\ P´O G°Uµ\ M Q!\³EF\FÊxE!Ô§E M á!ä
y å;à J Ô§EVÎNQ�ÊxUµEF\ºQ!\^]³QFÎ�Î J GxG;X J Ê°àIE´]³Ê°E LxJ XZE�Ê J G·E!ÉËÊdÌ:Q L°J U§G:Ê L Q!\^G°Y^Q LxJ \RÊ:Ê°E O G J�L G�ä
y å;à J�LxJ U§G8Q{zxÎ�Q�ÊxQ�Ô§E M}| Ó L E�Ì�G°Uµ\ M É J Q�Ê OILxJ Ê°E¼à J ÔµY O G J�L U§\AG·E!ÉËÊdÌ:Q L°J G J Ô J Î�ÊxUµEF\-ä
y å;à J G°á´GdÊ J X X¼Q�U§\RÊxQ�U§\^G O Y Ê°Eî]IQ�Ê J Êxà J U§\´ÉÍE L X¼Q�ÊxUµEF\ L°J Ô§Q�Ê J]îÊxE Êxà J QTS�Q�U§ÔlQ�ÓIÔ JG·E!ÉËÊdÌ:Q L°J ä
ß�\³Êxà J ÉÍE!Ô§Ô§E�Ì�Uµ\ M[P Ì J Ó L U J�r áº] J GxÎ L U§Ó J Êxà J G·á´G·Ê J X Y^QTáVU§\ M Q�Ê·Ê J \RÊ°U§E!\�U§\�U�ÊyG8Î(EFX)â

Y[EF\ J \RÊxGNäFå;à J�LxJ U§G:Q~z°XZQ�ïdE L]´E!XZE | \[Q�X J]��+ô �+�xõ�* P Ì�à^U§Îyà5UlGBQ!\5Q MFJ \RÊ©G°Y J Î(UlQ�Ô§U§G J]ZU§\
� �©«!bdcwiRcNn�cw«F| q vwg+�:¯ ¬}�©|�g�f q�� $0®Rr�bdgys°bd«Fmdg�klc�m;sy«F|d¯/cwn�rt�yg�f�n�cw¬Rhuªtgg$0cwn�aR«!bdrtiRv��©|�|�rt|}²
b q iFsygwe

2

O G JNL Uµ\RÊ J�L Q!Î�ÊxUµEF\-ä¡å;à J�LxJ U§G	Q��¡ñW�yù>
Bö��°õ�,Òö�ø/öN÷Fõ#��Q M!J \RÊ­Ì�à^EFG J ÊyQ!G°ã U§G�Ê°EAÎ LxJ Q�Ê J Q
Î�Q�ÊyQ�Ô§E M Ì�àIUlÎyàAÌ�UµÔ§Ô7à J Ô§Y�Ê°à J�O G JNL Ê°E5G J Ô J Î(Ê�Ê°à J	L°J � O U LxJ]ºG·E!ÉËÊdÌ:Q L°J ä ÿ \IE!Ê°à JNL Q M!J \RÊ P
Ê°à J{� �°ñ�
�ú�õ#�ÒÌ�U§ÔµÔ8à J Ô§Y Ê°à JAO G J�L U§\¶G J Ô J Î�ÊxUµ\ M Êxà J G·E!ÉËÊdÌ:Q L°J äS@»U§\^Q!ÔµÔ§á P Q���ö�ôµõ(úyð¼ö�ø
Q M!J \RÊ­UlG�U§\ Îyà^Q LxM!J E�É�Y J�L ÉÍE L XZUµ\ M Q!\RápQ!Î�ÊxUµEF\èY L°J SVUµE O G�Ê°E�Êxà J U§\^GdÊyQ�Ô§Ô§Q�Ê°U§E!\îE�É;Ê°à J
G J Ô J Î�Ê J]�G·E!ÉËÊdÌ:Q L°JFP Ô§Uµã J�J â�Î(EFX)X JNL Î J ä
å;à J G°áVG·Ê J X�Ì;Q!G-Y L EFY[ERG J]­Uµ\5ûµü�2Tþ O G°U§\ M]´Uvu JNL°J \RÊ-Ê J ÎyàI\IE!Ô§E M U J G P \^Q�X J Ô§á W 5�ê�ì ÿ
û�ü�H�þ P}� å�å Ï Q!\^])X)EFÓIU§Ô J Q M!J \RÊyG�ä!ÈVEFX J Y JNL ÉÍE L X¼Q�\[Î J Ê J GdÊyG�Ì JNL°J Q!YIYIÔ§U J]�Ê°E�]´Uvu JNL°J \RÊ
UµXZYIÔ J X J \RÊyQ�Ê°U§E!\[G P U§\èE L] J�L Ê°EAG J Ô J Î(Ê�Ê°à J Ó J G·Ê�Ì:QTá E!É:QFÎ�Î J G°G°U§\ M³LxJ XZE!Ê J G·E!ÉËÊdÌ:Q L°J ä
W E!\^Î�Ô O G°U§E!\^G;Ì J�LxJ Êxà J ÉÍE!Ô§Ô§E�Ì�Uµ\ M Ç

y å;UµX J Î�E LxL°J G·Y/E!\^]IUµ\ M Ê°E W 5�ê8ì ÿ Q!\^]�X)EFÓIU§Ô J U§X)Y^Ô J X J \RÊxQ�ÊxUµEF\^G Q L°J Q�Ô§XZEFG·ÊU§] J \RÊ°UlÎ�Q!Ô¡ÉÍE L Q)Ì�Ul] J�L Q!\ M!J E�É'�^Ô J G;ÊxE)Ó J]´E�Ì�\IÔ§EFQF] J]-ä
y K E!Ó^UµÔ J Q MFJ \RÊ+Q!YIY L EFQ!Îyà J G�Q LxJ É�Q!G·Ê J \IE OIM à�Ê°E6Î�E!XZY J Ê J Ì�U�ÊxàÒÎ(Ô§U J \RÊ�æ�G JNL S J�L Q�YIâY L EFQ!Îyà7ä

ÿ ÔµÊ°àIE OIM àAÎ(EF\^G°U§] JNL U§\ M Ê°à J UµXZY/E L ÊxQ�\[Î J Q�\^]³Êxà J�L°J Ô J S�Q�\^Î J E!É»Êxà J�LxJ G O Ô�ÊyG�E�É0Ê°à J
Ì©E L ã ûµü�2Tþ P Ì J Ì:E O Ôl]pÔµU§ã J Ê°EAG·Ê LxJ GxG8Êxà JZJ \IE L XZE O G­Î(EFG·Ê­E�É©U§XZYIÔ J X J \RÊ°U§\ M]´Uvu JNL°J \RÊ
Y L E!Ê°E!ÊdáRY J GZU§\ E L] J�L ÊxE J S�Q�Ô O Q�Ê J Êxà J Y J�L ÉÍE L X¼Q�\^Î J E!É+Êxà J]´Uvu JNL°J \FÊ5Q!Ô�Ê J�L \^Q�ÊxUµS J GNä
ß�\ Ê°à JºLxJ G·Ê�E�É�ÊxàIUlG	Y^Q!Y JNLNP Ì J XZE´] J Ô©Ê°à J G°áVG·Ê J X Uµ\ QÒY L Q M X¼Q�Ê°UlÎ¼Ì:QTá O G°Uµ\ M Y^Q�â
Ð8K ÑBP Q�\I\IE!ÊxQ�Ê°U§\ M Î�E!\^G°UlGdÊ J \RÊ°Ô§á�Ê°à J G°á´GdÊ J X Ô§EFQF] éÍÌ J à^QTS J Q�\I\^E�ÊxQ�Ê J]AÊ°à J G°á´GdÊ J X
ÔµERQ!]=ÊxQ!ãRU§\ M QFG5Q Ó^QFG·UlGZÊxà J J�� Y J�L UµX J \FÊyG6Q!\^] J�� Y J�L U J \^Î J E!É�Êxà J Q O Ê°à^E L G¼E�É­Ê°à J
Î(UµÊ J] Y^Q�Y J�L í�ä ÿ ÉËÊ J�L Ê°à^Q�Ê P Ì J ÎNQ�\AU§\RÊ J�L Y LxJ Ê+Ê°à J Y^Q�â Ð8K Ñ X)E´] J Ô»U§\AÊ J�L XZG8E�É Ï�J Ê L U
\ J ÊyG¼Q�\^]=] J�L UµS J Êxà J Î(E LxLxJ G°Y[EF\^]´U§\ M Y J�L ÉÍE L X¼Q�\^Î J XZE´] J Ô�Ì�àIUlÎyà Ì�U§Ô§Ô�Ó J Y L E!Y J�L Ôµá
Q�\^Q!Ôµá´G J]¡äIå;àIUlG�Q�\[Q�Ô§áVG°UlG©UlG O G J]6Ê°E J S�Q�Ô O Q�Ê J Êxà J G°áVG·Ê J X�ä

� �>Ú�ÛgL�V	V°Þ·×\� Ø[Z\L�n1p\nFØAL�R Ü�nVÞ·×\�UTgP'�������

ß�\=Êxà J Y LxJ SVU§E O G¼G J Î(Ê°U§E!\ P Ì J à^QTS J�J#� Y^Ô§Q!Uµ\ J]=Ê°à JAMFJ \ JNL Q!Ô©É J Q�Ê OIL°J G¼E�É�Ê°à J ÊxQ LxM!J Ê
G·á´G·Ê J X�ä�D8E�Ì P Ì J ÉÍE´Î O G�E!\èXZE´] J Ô§Ô§Uµ\ M UµÊ O G°Uµ\ M Y^Q�â Ð8K Ñ \^E�ÊxQ�Ê°U§E!\-äO� J à^QTS J Î(E!\Iâ
G·Ul] J�LxJ] Ð+K Ñ Q�\[]è\IE�Ê�Êxà J \IE!ÊxQ�Ê°U§E!\èE�É;X J Ê°à^EV]IE!Ô§E M U J G	G O Îyà QFGC5 K åçû �wþ P 5;5­È´_
û�ü�3Tþ�E L @ O G°U§E!\�û 4�þ�Ó J ÎNQ O G J E!É8UµÊxG)Ì�U§] J�L Q!ÎNÎ J YIÊxQ�\[Î J Uµ\ Ê°à J G°E�ÉËÊdÌ;Q LxJ5J \ M Uµ\ J�J�L U§\ M
Î(E!XZX O \IUµÊdá!ä
å;à J G°áVG·Ê J X] J GxÎ L UµY´ÊxUµEF\¼Uµ\ Ð8K Ñ Q!Î�Î�E!XZYIÔ§U§G°à J G�Ì�U�Êxà6G·ÊxQ�ÊxU§Î+Q�\^]¼]IáR\[Q�XZU§Î�SRU J Ì�G

Uµ\�E L] JNL ÊxE M U§S J Q)Î�E!XZYIÔ J Ê J] J GxÎ L UµYIÊ°U§E!\ºE�É7Êxà J G°áVG·Ê J X�ä[@IE L Êxà J G°Q!ã J E�É�G·U§XZYIÔ§U§Î�U�Êdá
Q�\^] ÉÍE L Ê°à J Î(EF\VS J \^U J \^Î J E�ÉBE OIL Y L EFÓIÔ J X P Ì J E!\IÔ§á] J GxÎ L U§Ó J Ê°à J]´áV\^Q!X)UlÎ�SRU J Ì E�É
Ê°à J G°á´GdÊ J X�ä

@»U M!O^L°J ü¼G·à^E�Ì�G�Ê°à J¼O G J Î�QFG J G­\ J�J] J]pÊxE] J GxÎ L UµÓ J Ê°à J]´áV\^Q�XZUlÎ�Ó J à[QTSRU§E O^L E�É
Ê°à J G°á´GdÊ J X�ä6� J] J Q�Ô�Ì�UµÊ°àèÊxà L°JNJ]´Uvu JNL°J \FÊ O G J ÎNQ!G J G P z°G°àIE�Ì G J�L SVU§Î J G |IP z°G°E�ÉËÊdÌ;Q LxJ
L°J Ê L U J STQ!ÔBG J�L SRUlÎ J�| Q�\^]jz J â�Î(E!XZX J�L Î J�| ä ÿ Ô§G°E P Ì J ÎNQ�\ G J�J Êxà J5O \IU�� OIJ QFÎ�Ê°E L Ì�àIUlÎyà
Uµ\RÊ JNL QFÎ�ÊyGBÌ�UµÊ°à³Ê°à J G°áVG·Ê J X P Êxà J z O G J�L+| äRå;à J+O G J Î�QFG J G©Q L°J] J GxÎ L UµÓ J]6Uµ\6Ê°à J ÉÍE!Ô§Ô§E�Ì;â
Uµ\ M ä
�6� ÃVÂ@ÆwÀFÄ"�6���!ÀVÆk�»ÆwÀF�1�^ÆNÀ Å0ÀVÆ��!Ä����w ���Ã�¡£¢
y Ï�L Uµ\[Î(U§Y^Q�Ô J S J \RÊ r E�Ì�Ç�Ê°à J)O G J Î�QFG J)M ERQ�Ô�UlG�Ê°EAG·à^E�Ì Ê°EºÊxà JZO G JNL Ê°à J QTS�Q�U§ÔlQ�ÓIÔ JG JNL SVUlÎ J G-Êxà^Q�Ê�Ê°à J G°á´GdÊ J X E1u JNL GNä�å;à J ÈVE�ÉËÊdÌ;Q LxJ ê J Ê L U J S�Q�ÔIÈ JNL SVUlÎ J U§G0E!\ J E!ÉIÊ°à^EFG J
G JNL SVUlÎ J G:Q!\^]ºU�Ê�UlG�Q�ÔlG°EZ] J GxÎ L UµÓ J]ºQ!G�Q O G J Î�QFG J ä

3

Electronic
User

Commerce

Retrieval
Software

Service

Services
Show

¤Y¥v¦ ¦"§V¦ �:|�gQ$ q |�gy|

� Ã�¨> xÂC�´Ä�À Ä�À} �Ä���À}�[�[©;ÆwÀFÄ"�6���!À~�0ÆNÀF�q�IÆwÀ Å»ÀVÆ���Ä����w ��uÃª¡£¢
y Ï�L Uµ\[Î(U§Y^Q�Ô J S J \RÊ r E�Ì�Ç/Êxà J�O G JNL+LxJ � OIJ GdÊyG8Êxà J G·á´G·Ê J XçÉÍE L Êxà J] J G°U LxJ]pG·E!ÉËÊdÌ:Q L°J äå;à J ì L E�Ì�G J�L�MFJ ÊxGBQ�ÎNQ�ÊyQ�Ô§E M Q�\^]�Êxà J X¼Q�ïdE L]´EFX)E P ÿ ÔµÉ L°J] P G°àIE�Ì�G�UµÊ�Ê°E­Ê°à J�O G J�LwP
Ì�àIE¼G J Ô J Î�ÊyG;Ê°à J G°E�ÉËÊdÌ;Q LxJ Gyæ�à J \ J�J]^G�ä

y _ � Î J Y´Ê°U§E!\[Q�Ô J S J \RÊ r E�Ì�Ç�UµÉ[Êxà J�O G J�L UlG�\IE�ÊBGxQ�ÊxU§G	� J]�Ì�UµÊ°à)Ê°à J ÎNQ�ÊyQ�Ô§E M Y L°J G J \RÊ J] PGyæ�à J ÎNQ�\¼Q!G°ã	ÉÍE L Q LxJ �^\ J X J \RÊNäRå;àIUlG�Y L E´Î J GxG�Î�E O Ôl]ZÓ J+L°J Y J Q�Ê J]¼Q!G�XZQ!\Vá	ÊxUµX J G
Q!G;\ J Î J G°GxQ L á O \RÊ°U§Ô¡Ê°à J�O G JNL G J Ô J Î�ÊyG�Q)Î�E!\^Î L°J Ê J YIU J Î J E�É0G°E�ÉËÊdÌ;Q LxJ ä

«�©uÀ}�1 �Ä�Ã�¡'���/�FÃª¬8¬ ÀFÄ��FÀG�0ÆwÀ~�1�IÆwÀ Å0ÀRÆ���Ä��­�' ���Ã�¡Y¢
y Ï�L Uµ\[Î(U§Y^Q�Ô J S J \FÊ r E�Ì�ÇIÊ°à J�M EFQ!Ô¡U§G;ÊxE5Y L E�SVU§] J Êxà J�O G J�L Q!\ J â}Î�E!XZX J�L Î J Q!Î(Ê°U§SVU�ÊdáQ�\^]³Êxà J]´E�Ì�\IÔ§EFQF]5E�É»Ê°à J G°E�ÉËÊdÌ;Q LxJ G J Ô J Î�Ê J]¡ä
ÈVàIE�Ì G JNL SVUlÎ J G�Q!\^] J â�Î(EFXZX JNL Î J­O G J Î�Q!G J G8Q LxJ E O Ê�E!É0Êxà J GxÎ(EFY J E!É�Ê°àIUlG8Q L ÊxU§Î�Ô JFP

Ê°à O G P Ì J Î�E!\^Î J \RÊ L Q�Ê J EF\³Êxà J ÈVE!ÉËÊdÌ:Q L°J ê J Ê L U J S�Q!Ô7È J�L SVU§Î J ä
Ï�L Q M X¼Q�Ê°UlÎ8EFÓ´ï J Î(Ê·â}E L U J \FÊ J]³X J Ê°à^EV]IE!Ô§E M U J G8G O ÎyàAQFG�û 4 P � P ü�3Tþ�]´E¼\IE�Ê8] J Q�Ô7Ì�U�Êxà

Y JNL ÉÍE L X¼Q�\[Î J G°ãVUµÔ§ÔlG�ä�ÈVE P Ì J ÎNQ�\�G°QTá=Ê°à^Q�Ê�Ê°à JNL°J U§Gº\IE!Ê�Q!\�Q!ÎNÎ J Y´Ê J] ð¼õ(ù�9Iñ�* ÊxE
X)E´] J Ô©Q!\^] GdÊ O]´áèG·á´G·Ê J X@Y J�L ÉÍE L XZQ!\^Î J U§\èÊ°à J E!ÓIï J Î�Ê°âjE L U J \RÊ J]îG·E!ÉËÊdÌ:Q L°J] J S J Ô§E!YIâ
X J \RÊ³Y L E´Î J GxGNä:å;àIUlG³Ô§QFÎyã=U§XZYIÔµU J G6Ê°à[Q�ÊºÊ°à JNL°J U§G³\IE�Ê�Q Ì J Ô§Ô�â�] J �^\ J] ÔlQ�\ M!O Q M!J E L
ø/ñ�ù�ö�ùjó�ñ�ø�ÊxE)Q!\I\IE!ÊxQ�Ê J G°á´GdÊ J X Ô§EFQF] P G°á´GdÊ J X] J Ô§QTá´G:Q�\^] L E O Ê°U§\ M)L Q�Ê J G�ä[5+\5Êxà J Î(E!\Iâ
Ê L Q L á P ÉÍE L X¼Q!ÔFG°Y J Î(Uv�[Î�Q�Ê°U§E!\�ÔlQ�\ MFO Q MFJ G P G O Îyà�Q!G Ñ 5�åg5­ÈZûµü"�Nþ P E L»Ï�J Ê L U!\ J ÊxG:û�ü�?Tþ P à^QTS J
Î(E!\[G·Ul] J�LxJ]ºQ�\[]ºG·Ê O]´U J]³Ê°à J Y L EFÓIÔ J X U§\�] J Y´Êxà-ä[å;à O G P Ê°à J�LxJ Q LxJ G J S J�L Q�Ô�Y L E!Y/EFGxQ�ÔlG
Ì�à J�LxJ Ì J Î�Q!\�Ô J Q L \5É L E!X�ä
ÿ G0Ì J;LxJ X¼Q L ã J] P U�Ê�UlG»E OIL E!Ó´ï J Î�ÊxUµS J ÊxE+Y L E!Y/EFG J Q Ð+K ÑºJ�� Ê J \^G·U§E!\ºéÍY^Q�â Ð+K Ñ í7ÊxE

] J Q!Ô[Ì�UµÊ°àºY JNL ÉÍE L X¼Q!\^Î J EF\5Êxà J G°E�ÉËÊdÌ;Q LxJ] J S J ÔµEFYIX J \RÊ©Y L E´Î J G°G:Q�Ê©Ê°à J] J G·U M \6G·ÊxQ M!J ä
� J Î(EF\^G°U§] JNL Ê°à^Q�Ê;E OIL Y L E!Y/EFGxQ�Ô/X O G·Ê�Q!ÎNÎ(E!XZYIÔ§UlG·à³Ì�U�ÊxàºÓ/E�Êxà P Ê°à J X J Ê°àIE´]�Q�\^]6Ê°à J
\IE�ÊyQ�Ê°U§E!\7ä1@0U L GdÊ P Êxà J X J ÊxàIE´]ZÌ�UµÔ§Ô M UµS J�O G�Êxà J Y L E´Î J GxG�ÊxE�X)E´] J ÔIÊxà J G°áVG·Ê J X Q!\^])Ê°à J
L°J Ô J STQ!\RÊ»Y^Q L Q!X J Ê JNL G-Ê°E8Ó J ÊxQ�ã J \�U§\RÊ°E­Q!ÎNÎ(E O \FÊwä�� J Q!]´SFEVÎNQ�Ê J ÉÍE L Q�Y^Q�Ê·Ê J�L \´âjE L U J \RÊ J]
Q�YIY L E � UµX¼Q�Ê°U§E!\-ä Ñ Q�Ê J Ô§á P] J G·U M \³Y^Q�Ê°Ê JNL \^G­û �Tþ-à^QTS J8M Q!Uµ\ J] LxJ Ô J S�Q!\^Î J Uµ\ºG·E!ÉËÊdÌ:Q L°J] J â
S J Ô§E!Y^X J \RÊ0] OIJ Ê°E8Ê°à J U L G·U§XZYIÔ§U§Î�U�Êdá�Q!\^] r^J#� U§ÓIU§ÔµUµÊdá!äTì O Ê0Ê°àIUlG7Ì�U§Ô§ÔFÓ J G O Ó´ï J Î�Ê0E�ÉIÉ O Ê OILxJ
L°J G J Q L Îyà-äIÈ J Î�E!\^] P Î�E!\^Î J�L \IU§\ M Êxà J \IE!ÊxQ�ÊxUµEF\ P UµÊ�Ì�UµÔ§Ô-Ó J Ê LxJ Q�Ê J]ºU§\6ÊxàIU§G�Ì©E L ã�ä
ß�\)E L] J�L Ê°E�à^QTS J Q�Î�E!XZYIÔ J Ê J Y JNL ÉÍE L X¼Q�\[Î J \IE�ÊyQ�ÊxUµEF\ P Ê°à J+Ð8K Ñ Ó J à^QTSVU§E OIL Q�Ô´Q!\^]

GdÊ L°O Î(Ê OIL Q�Ô¡XZE´] J Ô§G8X O G·Ê�Ó J Î(E!\[G·Ul] J�LxJ]-ä ÿ ÔlG·E P Y JNL ÉÍE L X¼Q!\^Î J Ì�U§ÔµÔ»YIÔ§QTáºQ)Y L EFXZUµ\ J \RÊ
L EFÔ J U§\ Êxà J UµXZYIÔ J X J \RÊyQ�Ê°U§E!\=]´U§Q M!L Q�X¼GNä7ß�\ ÊxàIUlG	Y^Q!Y JNLNP Ì J Q LxJ U§\RÊ JNL°J GdÊ J] EF\IÔµáèU§\
Ó J à^QTSVUµE OIL Q!ÔIQ!G°Y J Î�ÊyG P Î�E!\^Î L°J Ê J Ôµá�Uµ\)Ê°à J G J � OIJ \^Î J]´UlQ M!L Q�X Q�\^])Êxà J GdÊyQ�Ê J Ê L Q�\^G°UµÊ°U§E!\
]´U§Q M!L Q�X¼GNä1@ O Ê OILxJ Ì:E L ã´G�Ì�UµÔ§Ô�] J Q!Ô[Ì�UµÊ°à¼Êxà J8LxJ G·Ê©E!É¡Ê°à J�Ð8K Ñ]´UlQ M!L Q�X¼G�Ê°E] J G°Î L U§Ó J
Ó J à^QTSVUµE OIL é O G J Î�QFG J]IU§Q M!L Q�X¼G P QFÎ�Ê°U§SVU�Êdá)]´UlQ M!L Q�X¼G P Î(EFÔµÔlQ�Ó/E L Q�ÊxUµEF\�]´UlQ MFL Q!XZGyí P G·Ê LxO Î(â
Ê OIL Q�Ô-QFG·Y J Î(ÊxG P Q�\^]ºU§X)Y^Ô J X J \RÊxQ�ÊxUµEF\A]´U§Q M!L Q�X¼GNä

4

å;à JºÐ+K Ñ \IE�ÊyQ�ÊxUµEF\ Ê°E] J Q�Ô;Ì�UµÊ°à Ê°U§X J UlG)Ó^Q!G J]=E!\ Ê°à J�O G J E�É8ÊxUµX J�LxJ G·Ê L U§Î(â
Ê°U§E!\^GNä�å;àIUlG LxJ G·Ê L UlÎ�Ê°U§E!\[GîQ L°J J�� Y LxJ GxG J] QFGÒÊxUµX J É O \[Î�Ê°U§E!\[GèE!\ X J G°GxQ MFJ \^Q!X J G P
J ä M ä Pg® éÍX J GxG°Q M!J 5+\ J ä L°J Î J UµS J å;U§X J âZX J GxG°Q M!J 5+\ J ä G J \^]Iå;U§X J í°¯>üpG J Î!ä²±Rä£� J Î(E!\Iâ
G·Ul] J�L XZE LxJ�L°J Q�Ô§U§G·Ê°UlÎ;ÊxE�Q�\^\IE�ÊyQ�Ê J Ê°à J X J G°GxQ MFJ G·U�� J äFß�\5Ê°àIUlGBÌ;QTá P Ì J Î(E O Ô§]5ÎNQ�ÔlÎ O ÔlQ�Ê J
Y JNL ÉÍE L X¼Q�\[Î J ÉÍE L]´Uvu J�LxJ \RÊ�\ J Ê8G°Y JNJ]IGNä

³ ¢�´ � ÀIµO�»ÀI¡w�!À Åw�­�[¶[Ä��[¬ Æ
ß�\6E L] JNL Ê°E O \^] JNL G·ÊxQ!\^]ZÊxà J Y L E!Ó^Ô J X P UµÊ:UlGBU§\RÊ JNL°J GdÊxUµ\ M Q�XZE LxJ] J ÊxQ!UµÔ J]³] J GxÎ L UµYIÊ°U§E!\
E�É^Êxà J ÈVE!ÉËÊdÌ:Q L°J ê J Ê L U J S�Q�Ô^È J�L SRUlÎ J;O G J Î�QFG J äTå;à O G P Q�ú�õ�·#0^õ�ø��yõg*�ó�ö�÷1�°ö�ðçû 2�þIà^Q!G�Ó J�J \
] J S J Ô§E!Y J]6Ê°EZÊ LxJ Q�Ê�Q!Î�Î OIL Q�Ê J ÔµáZÊxà J X J \RÊ°U§E!\ J] O G J ÎNQ!G J!P G J�J � MFOIL°J 2Iä

{1K}

{100K}
{100K}

{100K}

{1K}

{0.9}

{1K}

{1K}
{1K}

{1K}

{1K}

{1K}

{1K}

{1K..100K}

refine_catalog(refinement_plus)

select_sw_service(info)

c1:Catalogcreate_catalog(info_plus)

observe_GUI_catalog(c1)

select_sw(name)

[info_need] more_information(refinement2, ci)

{1K}

{prob} {1K..100K}[satisfied]

create_salesman(info_sale)

[not satisfied]

1..n show_catalog_GUI(c1)

create_browser(c1)

get_catalog(info_plus)

refine_catalog(refinement)

electronic_commerce

info_sale_plus

request(info_sale)

delete_browser

select_sw(name)

c i+1

Salesman

BrowserAgent

SwManagerAlfred

¤`¥�¦ ¦�¸^¦ {!g�±�«FgyiRsyg;fFr q v�m q n klc�mBbd®Fg8{!c�k§bj¨ q mdg � gxb�mdrtgy� q ª[{!gxmd��rtsyg�«R|�g�s q |�g

ÿ G J � O^J \^Î J]´U§Q M!L Q�X LxJ Y L°J G J \FÊyG�X J GxG°Q M!J G�G J \RÊBQ�XZEF\ M E!Ó´ï J Î�ÊyG�ä Ð G O Q!ÔµÔ§á P Q�X J Gdâ
G°Q M!J U§G�Î�E!\^G°Ul] J�LxJ]îQ!G�\^E³ÊxUµX J Î�E!\^G O XZU§\ M Uµ\îÊ°à J G°Î�E!Y J E�É:Ê°à J XZE´] J Ô§Ô J]èG·á´G·Ê J Xºä
ì O Ê�Uµ\AQ)XZE!ÓIU§Ô J Q M!J \FÊ�G°á´GdÊ J X P Ì J]´UlG·Ê°U§\ M!O UlG°àºÓ J ÊdÌ J�J \�X J G°GxQ MFJ G;G J \RÊ�ÓRá6E!Ó´ï J Î�ÊxG
E!\ZÊ°à J GxQ�X J Î�E!XZY O Ê J�L Q!\^]ZX J GxG°Q M!J G�G J \RÊ:Q�XZEF\ M E!Ó´ï J Î�ÊyG�E!\³]´U²u J�LxJ \RÊ;Î(E!XZY O Ê J�L G P
Ê°àIERG J Ì�àIUlÎyàîÊ L QTS J Ô�Ê°à L E OIM àÒÊxà J \ J ÊNä»å;à J � L G·Ê�ãVUµ\[]pE!É:X J G°GxQ MFJ G­Ì�U§ÔµÔ�Ó J Î�E!\^G°U§]´â
J�LxJ] Q!G	\IE�âjÊ°U§X J Î�E!\^G O XZUµ\ M ä»å;à J G J Î(EF\^]èãVUµ\^] Ì�UµÔ§Ô:Î�E!\^G O X J ÊxUµX J QFG	Q�É O \^Î�ÊxUµEF\
E�É;Ê°à J X J G°GxQ MFJ G·U�� J Q�\^]îÊxà J \ J Ê�Y J�L ÉÍE L XZQ!\^Î J éuG·Y J�J]^í�ä ��JNL°J Q!\ Q�\I\^E�ÊxQ�Ê°U§E!\ P Uµ\´â
G·Ul] J Ó L QFÎ J G P Ì�U§Ô§Ô©Ó J X¼QF] J U§\^]´UlÎ�Q�Ê°U§\ M Êxà J X J GxGxQ M!J G·U�� J äw@^E L U§\^G·ÊxQ!\^Î JFP U§\�@0U M!OILxJ

5

2 P6¹»º
¼ º�½�¾ ¹W¿ ¹»º
À�Á
Â ½#º X J GxG°Q M!J UlG�ÔlQ�Ó J Ô§Ô J]èÌ�U�Êxà ®qÃFÄYÅ�Æ�¾Wº ± P Ì�à^UµÔ J�¹�Ç"È"¿ ½#É�¾	É}¼ ÈqÊ Ë£ÌYÍ
L°J � O U LxJ G8Ê°à J XZE�S J X J \RÊ+E�É ®qÃ�Î1ÎFÄYÅ�Æ�¾Wº#¹ ±Rä ÿ Ô§G°E P UµÊ�Ì�U§Ô§Ô0Ó J Y[ERG°G°U§ÓIÔ J Ê°E�Q�\I\^E�ÊxQ�Ê J Q
L Q!\ M!J ÉÍE L Êxà J G°Uv� J Uµ\îÊxà J6Ð8KÒÑ Î(E!XZXZE!\èÌ;QTá P Ô§Uµã J Uµ\ÐÏ ÈIÀ�º Â²Ñ�Ò�ÈIÀ Ï É�¾�Â È[Ñ X J GxG°Q M!JFP
Ì�à J�LxJ Q ®}ÃqÄ�ÓvÓvÃ�ÎqÎÔÄ ±8ÔlQ�Ó J Ô7Q!YIY J Q L G�ä
ß�\³Q)G J � O^J \^Î J]´UlQ MFL Q!X P Î(EF\^]´UµÊ°U§E!\^G LxJ Y LxJ G J \RÊ©Ê°à J Y[ERG°G°U§ÓIUµÔ§UµÊdáZÊ°à^Q�Ê:Êxà J X J G°GxQ MFJ

Ê°à^Q�Ê©Êxà J á¼à^QTS J QFG°G°E´Î(UlQ�Ê J]ZÌ�U�Êxà³Î�E O Ôl]5Ó J G J \RÊwä ÿ \³Q!\I\IE�ÊyQ�ÊxUµEF\ P Q!Ô§G°E�U§\^G°U§] J Ó L Q!Î J G P
J�� Y LxJ GxG·U§\ M Ê°à J	J S J \RÊ�Y L EFÓ^Q�Ó^UµÔ§U�Êdá³G O ÎNÎ J G°G�Ì�U§Ô§Ô-Ó J Q!GxG·E´Î(UlQ�Ê J]6Ê°E J Q!Îyà�Î(EF\^]´UµÊ°U§E!\-ä ÿ
L Q!\ M!J UlG»QFÎ�Î J Y´Ê J]­ÊxERE[äwÈ JNJ!P ÉÍE L Uµ\^G·ÊxQ!\^Î JFP Êxà J Y L EFÓ^Q�ÓIU§Ô§U�Êdá ®�ÎªÓ Õ ±BQ!GxG·E´Î�U§Q�Ê J]­U§\Ö@0U M!OILxJ
2�Ê°EZÊ°à J Î(EF\^]´UµÊ°U§E!\ Ñ"È
¾ ¹»É�¾�Â ¹	×[º�Ø ä^ÈVE!X J ÊxUµX J G P U�Ê8UlG�Y/EFGxG·U§ÓIÔ J Ê°à^Q�Ê�Ê°à J Y L E!Ó^Q!ÓIUµÔ§UµÊdá5U§G
O \IãV\IE�Ì�\�Ì�à J \	XZE´] J Ô§Ô§Uµ\ M ä ÿ Ô§G°E P UµÊ�Î�E O Ôl]�Ó J Êxà^Q�Ê0Ê°à J Y L E!Ó^Q!ÓIU§ÔµUµÊdá�Q8X J GxG°Q M!J E´Î�Î OIL G
U§G�Q)Y^Q L Q!X J Ê JNL G O Ó´ï J Î(Ê�Ê°E5G·Ê O]´áFäIß�\�E OIL8J�� Q�XZYIÔ J!P Êxà J Î(EF\^]´UµÊ°U§E!\ Â²Ñ�Ò�È Ñ�º�º�Ø QFG°G°E´Î(Uµâ
Q�Ê J]�Ê°E­Ê°à J Ï ÈIÀ�º Â²Ñ�Ò�ÈIÀ Ï É�¾�Â ÈÔÑ X J G°GxQ MFJ UlG�Î L UµÊ°UlÎ�Q!Ô´ÉÍE L Êxà J G°áVG·Ê J X P Ó J Î�Q O G J UµÊ LxJ S J Q�ÔlG
àIE�Ì¶X O Îyà³Uµ\RÊ J Ô§ÔµU M!J \FÊ:Ê°à J ì L E�Ì�G JNL UlG#Ù´G°E P Ì J Ì:Q!\RÊ©ÊxE)G·Ê O]Iá¼U�ÊwäRß�\�G O Îyà6G°U�Ê O Q�ÊxUµEF\^G P
Ì J Ì�U§ÔµÔ7Q!\I\IE!ÊxQ�Ê J Q�\ºU§] J \RÊ°Uv� J�LwP Î(E L°LxJ G°Y/E!\^]´U§\ M Ê°EZÊ°à J�O \IãV\IE�Ì�\ºY L EFÓ^Q�Ó^UµÔ§U�ÊdáFä

³ ¢:Ú � ��A wÀFÛ©Ä"�Ô¡»Æ��� ���Ã�¡ Åw�­�Ô¶^Ä��[¬ Æ
È J � OIJ \^Î J]´UlQ M!L Q�X¼G0G·à^E�Ì àIE�Ì EFÓ´ï J Î(ÊxG0Uµ\RÊ J�L Q!Î�Ê P Ó O Ê�Ê°E+ÊxQ!ã J Q+Î�E!XZYIÔ J Ê J SVU J Ì E!É^Ê°à J
G·á´G·Ê J X]´áV\^Q�XZUlÎ�G P U�Ê©U§G�Q!Ô§G°E­Uµ\RÊ J�LxJ G·Ê°U§\ M Ê°E O \^] J�L GdÊyQ�\^]�Ê°à J ÔµUµÉ J E�É�E!ÓIï J Î�ÊyG�ä�ß�\ Ð+K Ñ�P
Ê°à J ú�ù}ö�ù}õ­ù>�°ö�øIú�óËùuó�ñ�ø]´UlQ M!L Q�X UlGBÊxà J Ê°EVE!Ô/Ê°à[Q�Ê�] J GxÎ L UµÓ J GBÊ°à^U§G;Q!G°Y J Î�Ê;E�É7Ê°à J G·á´G·Ê J Xºä
@IE L:J QFÎyà5Î(ÔlQ!GxGBÌ�UµÊ°à L°J Ô J S�Q�\RÊ:]´áV\^Q!XZU§Î8Ó J à^QTSVUµE OIL Q�GdÊyQ�Ê J Ê L Q�\^G°UµÊ°U§E!\6]´UlQ MFL Q!X X O G·Ê
Ó J G°Y J Î(Uv� J]-ä
ß�\ Q5GdÊyQ�Ê J Ê L Q�\^G°UµÊ°U§E!\A]´UlQ M!L Q�X ÊdÌ©E J Ô J X J \RÊxG+Ì�UµÔ§Ô7Ó J Î�E!\^G°Ul] J�LxJ] P Ê°à J öq�(ùjó:ÜwóËùuó�õ(ú

Q�\^] Ê°à J ÷10^ö���*Tú�ä ÿ Î(Ê°U§SVU�ÊxU J G L°J Y LxJ G J \RÊ�ÊyQ!G°ã´G�Y J�L ÉÍE L X J]=ÓVá Q�\ E!Ó´ï J Î�Ê¼U§\ Q M UµS J \
GdÊyQ�Ê J ä�È O Îyà Q!Î�ÊxUµSVUµÊ°U J GZÎ(EF\^G O X J Î�E!XZY O ÊyQ�Ê°U§E!\ Ê°U§X J Êxà^Q�Ê¼X O GdÊ¼Ó J X J Q!G OILxJ] Q!\^]
Q�\I\IE!ÊxQ�Ê J]-äBå;à J Q�\^\IE�ÊyQ�Ê°U§E!\ Ì�U§ÔµÔ8Ó J U§\^G°U§] J Ó L QFÎ J G¼G·àIE�Ì�U§\ M Ê°à J Ê°U§X J \ J�J] J]=ÊxE
Y JNL ÉÍE L X UµÊNä»ß}É:UµÊ�UlG�\ J Î J GxG°Q L á P Q³XZU§\IU§X O X Q�\^]îQ�X¼Q � U§X O X S�Q!Ô OIJ G�Î(E O Ôl]ÒÓ J Q�\Iâ
\IE�ÊyQ�Ê J]¡ä-È J�JFP ÉÍE L+J#� Q�XZYIÔ J!P Ó[EFÔ§]ÒÔ§Q!Ó J Ô§G�Ó J ÊdÌ J�J \ÒÓ L QFÎ J G8U§\�@0U MFOILxJ G�H P ý P 46Q!\^]{�Vä
B O Q L]IGBG°àIE�Ì¶Î(EF\^]´UµÊ°U§E!\^G©U§\6Q­Ê L Q�\[G·UµÊ°U§E!\¼Êxà^Q�Ê:X O G·Ê©à^E!Ôl]¼Uµ\6E L] J�L ÊxE�� LxJ Êxà J Î�E LxL°J â
G·Y/E!\^]IUµ\ MZJ S J \RÊwä ÿ Y L EFÓ^Q�Ó^UµÔ§U�Êdá¼X O G·Ê�Ó J Q!GxG°EVÎ�U§Q�Ê J]¼Ê°EZÊxà J X�äIß}Ê�Ì�U§ÔµÔ7Ó J Q!\I\IE�ÊyQ�Ê J]
Uµ\ Ê°à J G°Q!X J Ì;QTáèQFG MFO Q L]IG	Ì JNL°J Q�\I\IE!ÊxQ�Ê J] Uµ\ Ê°à J G J � OIJ \^Î J]´UlQ MFL Q!X P Q�\[] Ê°à J
G°Q!X J Î�E!\^G°U§] J�L Q�Ê°U§E!\[G+X O G·Ê�Ó J ÊyQ�ã J \pU§\RÊ°E QFÎ�Î(E O \RÊNä7È JNJ!P ÉÍE L Uµ\[GdÊyQ�\^Î J!P ÔlQ�Ó J Ô ®"ÎÔÓ Õ ±
ïdE!U§\ J]³Ê°E¼Î�E!\^]´UµÊ°U§E!\7Ý Ñ"È
¾=Þ�ß"¹	º1ÀàÓ ¹»É�¾�Â ¹	×[º�Ø1á Uµ\~@0U MFOILxJ H[ä
KAJ GxG°Q M!J G·U�� J X¼QTá¼Ó J EFX)UµÊ·Ê J]�G°Uµ\^Î J Ê°àIUlG;Uµ\IÉÍE L XZQ�Ê°U§E!\ºQ�YIY J Q L G:U§\6Êxà J G J � OIJ \^Î J

]´U§Q M!L Q�X�ä�ß�\	Ê°à J:J�� Q!X)Y^Ô JFP Ì J à[QTS J] O YIÔµUlÎ�Q�Ê J]�Ê°à^U§G0U§\´ÉÍE L X¼Q�Ê°U§E!\	Ê°E M Q�U§\ LxJ QF]IQ�ÓIU§Ô§U�ÊdáFä
� J \IE�Ì Y LxJ G J \RÊ�Ê°à J G·ÊxQ�Ê J Ê L Q�\^G°U�ÊxUµEF\p]´UlQ MFL Q!X¼G�ÉÍE L E OIL G·á´G·Ê J X O G·U§\ M Ê°à J Y^Q�â

Ð8K Ñ \IE!ÊxQ�Ê°U§E!\-ä

â³ÆwÀRÄ6Æ# ��A NÀF �Ä��[¡0Æ��­ ���Ã�¡ Å'���[¶[Ä"�Ô¬E¢8ß�\m@»U M!O^L°J ? P Ê°à J Ó J à^QTSVUµE OIL E!ÉBQ O G JNL UlG LxJ YIâ
L°J G J \RÊ J]-äVå;à J+O G J�L UlG©U§\³Ê°à J�¿YÉ1Â ¾ G·ÊxQ�Ê J+O \FÊxUµÔ¡G�æTà J Q!Î(Ê°U§S�Q�Ê J G;Q ¹	º1¼ º�½�¾ ¹	¿ ¹»º
À�Á
Â ½#º
J S J \RÊNä�å;àIU§G J S J \RÊÒG J ÊxG Ê°à J O G JNL U§\ Ê°à Jã¿YÉ1Â ¾�Â²Ñ"Ê Ò�ÈIÀ ½#É�¾	É}¼ È1Ê GdÊyQ�Ê J ä+å;à JäÈ[Å�å
¹	º1ÀvÁ"º Ë£Ì£Í ½�É�¾	É}¼ È1Ê¼J S J \RÊ P G J \RÊ�ÓVá ÿ Ô�É LxJ] P Q�Ô§ÔµE�Ì�G:Êxà J�O G J�L Ê°E J#� Q!XZUµ\ J Êxà J ÎNQ�Ê°â
Q�Ô§E M Ê°E¼Ô§EVE!ã¼ÉÍE L Ê°à J] J G°U L°J]³G°E�ÉËÊdÌ;Q LxJ!P UµÉ0UµÊ8UlG�U§\³Êxà J ÎNQ�ÊxQ!ÔµE M^P Êxà J�O G J�L G�G J Ô J Î�ÊxG
Ê°à J;¹»º
¼ º�½æ¾ ¹W¿ J S J \FÊ P Uµ\�E!Ê°à JNL Î�Q!G J Gyæ�à J G J Ô J Î�ÊxG�Ê°à JkÀ�º�×OÑ"º ½#É�¾	É}¼ ÈqÊZJ S J \RÊNä

ç ©­¨jÄ�ÀVÅ¶Æ# ��A NÀF �Ä��[¡0Æ��­ ���Ã�¡ Å'���[¶[Ä"�Ô¬E¢+å;à JAJ#� Q�XZYIÔ J G O YIY/EFG J G)Êxà^Q�Ê ÿ Ô�É LxJ]=U§G6Q�Ôµâ
Ì:QTá´G+Y LxJ G J \RÊ�U§\pÊ°à J G°áVG·Ê J X P \^EºÎ L°J Q�Ê°U§E!\ J S J \RÊ�UlG L°J Ô J S�Q�\RÊ+ÉÍE L E OIL Y OIL Y/EFG J GNä
ÈVEèÊ°à J GdÊyQ�Ê J Ê L Q�\^G°U�ÊxUµEF\]IU§Q M!L Q�X Ó J�M Uµ\^G5Ì�à J \¶Q Á1Â º�¿ ¹»º
À�Á
Â ½#º#¹¼J S J \RÊ5UlG5G J \RÊ

6

[not satisfied]^Alfred.refine_catalog(refinement)

^Alfred.select_sw(name)
{1K}

WAIT

{1K}

Do:observe

observe_GUI_catalog(c1)
{100K}

{0.9}

^Alfred.select_sw_service(info)

catalog
Waiting for

{1K}

¤Y¥v¦ ¦#è^¦ {�b q bdg:b�m q iF|�r�bdr�cNi5fFr q v�m q n k§cNmBbd®Rg;«F|�gxm

Ê°EÒÊ°à J³O G JNL ä ÿ ÔµÉ LxJ]Oé G	Ó J à[QTSRU§E O^L U§G	ÊdáVYIUlÎ�Q�ÔBÉÍE L Q G J�L S J�L E!Ó´ï J Î�Ê�Ó J à[QTSRU§E O^L ä»ß}Ê
Ì:Q!U�ÊyG+ÉÍE L Q�\ J S J \RÊ LxJ � OIJ GdÊxUµ\ M Q�G J�L SRUlÎ J é ¹»º
¼ º�½æ¾ ¹W¿ ¹»º
À�Á
Â ½#º!PO¹#Ç�È"¿ ½�É�¾	É}¼ È1Ê Ë£Ì£ÍµP
À�º#×OÑ�º ½#É�¾	É}¼ ÈqÊ E L=¹»º
¼ º�½�¾ ¹W¿ í�äA@IE L©J Q!Îyà5E!É-Ê°à J G J�LxJ � OIJ G·ÊxG:UµÊ:Y J�L ÉÍE L X¼G©Q)Î(EF\^Î LxJ Ê J
Q!Î(Ê°U§E!\ P Q�\^]ZÌ�à J \6UµÊ©UlG:Î(E!XZYIÔ J Ê J] P Q�X J GxGxQ M!J U§G:G J \RÊ�Ê°E	Ê°à J Î(E L°LxJ G°Y[EF\^]´U§\ M E!ÓIâ
ï J Î(Ê�Uµ\�E L] JNL ÊxE5Î(EFX)Y^Ô J Ê J Ê°à J ÊyQ!G°ã�ä ÿ ÉËÊ JNL Ê°à J X J G°GxQ MFJ UlG�G J \RÊ P ÿ Ô�É LxJ] LxJ Ê OIL \[G
Ê°E�UµÊxG�Ì:Q!U�ÊBG·ÊxQ�Ê J ÊxE�G JNL S J Q!\IE�Êxà J�LBL°J � O^J G·ÊNä1@0U M!OILxJ H�G·à^E�Ì�G ÿ ÔµÉ L°J]Oé G�Ó J à^QTSVUµE OIL ä
å;à J G·Ê JNL°J E�ÊdáVY J]³Ê L Q�\^G°U�ÊxUµEF\�êìë°í"î�ï ð�ï�î"ñqò%ó�ï�ð;ô X J Q!\^G�Êxà^Q�Ê ÿ ÔµÉ L°J]�XZQTá³Q�Ê·â
Ê J \^]ºE�Ê°à J�L G J�L SRUlÎ J G:Ê°à^Q�Ê�Q LxJ \^E�Ê�E�É0Uµ\RÊ J�LxJ G·Ê;à J�LxJ ä

{0.9}

show_catalog_GUI(ci)

[not ^user.satisfied]refine_catalog(refinement)

^browser.refine_catalog(refinement_plus)

{0.1}

{1K}

{100K}

{1K}

{1K}

^browser.select_sw(name)

Do:create_GUI(c)
^user.observe_GUI_catalog(ci)

Do:add_info3 Do:add_info2

Do:add_info1

[^user.satisfied]select_sw(name)

<<more_services>>
WAIT

select_sw_service(info) ^SwManager.get_catalog(info_plus)

{1K}

{1sg}

{1K}

{100K}

{1K}

{1sg}

{1sg}

{1sg}

¤Y¥v¦ ¦æõ/¦ {�b q bdg:b�m q iF|�r�bdr�cNi5fFr q v�m q n klc�m£�©ª�k§mdg�f

� Ã�¨> xÂC�´Ä�À�ö÷�[¡w�[¶/ÀRÄ6Æ# ��A NÀF �Ä��[¡0Æ��­ ���Ã�¡ Å'���[¶[Ä"�Ô¬E¢ Ñ Uµã J ÿ Ô�É LxJ] P Êxà J ÈVE�ÉËÊdÌ;Q LxJ
K Q�\[Q M!JNL Ó J à^QTS J GpQ!GÒQ!\ G J�L S J�L E!Ó´ï J Î�Êwä+ß}ÊèU§GpÌ;Q�UµÊ°U§\ M ÉÍE L Q LxJ � OIJ GdÊ J S J \RÊ
é%Ï ÈIÀ�º Â²Ñ�Ò�ÈIÀ Ï É�¾�Â È[ÑVPªÊqº�¾ ½#É�¾	É}¼ ÈqÊ^P'À�º�ø[ß"º#¹	¾ í8Ê°E J \^Q!ÓIÔ J Ê°à J QFÎ�ÊxUµEF\^G+Ê°E�Q!Î�Î�E!XZYIÔ§U§G°à
Ê°à J ÊxQ!G°ã�ä1@0U MFOILxJ ý�G·à^E�Ì�G�U�ÊyGBG·ÊxQ�Ê J Ê L Q�\[G·UµÊ°U§E!\¼]´UlQ MFL Q!XGÙ�UµÊBUlG�U§\RÊ J�LxJ G·Ê°U§\ M ÊxE�\IE�Ê J
Ê°à J QFÎ�Ê°U§E!\[GBY J�L ÉÍE L X J]ZÊxE LxJ G°Y[EF\^]¼Êxà JtÊ1º�¾ ½�É�¾	É}¼ È1Ê)L°J � O^J G·ÊNäI@»U L GdÊ P Q!\6EF\FÊxE!Ô§E M á
U§G:Î(EF\^G O Ô�Ê J]¼Q!\^] P Q�ÉËÊ JNL Êxà^Q�Ê P ÊdÌ:E]´Uvu JNL°J \RÊ©E!ÓIï J Î�ÊyGBQ L°J Î L°J Q�Ê J] P Ê°àIERG J U§\VS!EFÔµS J]
Uµ\ºÊyQ!G°ã5X¼Q�\^Q M!J X J \FÊwäù	Ä�ÃVÂ¼ÆNÀRÄ6Æ� ��[NÀ~ NÄ"�Ô¡»Æ��� ���Ã�¡ Åw�­�Ô¶^Ä��[¬E¢�å;à J G·ÊxQ�Ê J Ê L Q�\^G°U�ÊxUµEF\p]´UlQ MFL Q!X Uµ\ã@0U M!OILxJ
4�] J GxÎ L UµÓ J G©Ê°à J ì L E�Ì�G JNL é G©ÔµUµÉ J ä´ß}Ê�UlG:QFG©ÉÍE!Ô§ÔµE�Ì�GNÇVE!\^Î J Êxà J ì L E�Ì�G J�L UlG�Î LxJ Q�Ê J]5UµÊ

7

WAIT

request(info_sale)

Do:add_info4

^salesman.reply(info_sale_plus)

^browser.reply(catalog)
{100K}

{0.5sg..50sg}

{1K}

{1sg}

get_catalog(info_plus)

[info_need] more_information(refinement2,ci)
{1K..100K}{prob}

Do:get_info

{1K}

Do: create_catalog

Do: create_browser

^browser.create_browser(ci) {1K}

^catalog.create_catalog(info_plus)

{1sg}

{1 min}
{1K}

{1K}

¤Y¥v¦ ¦�ú^¦ {�b q bdg;b�m q iF|�rtbdrtcNi¼fFr q v�m q n klc�m�bd®Rg8{!c�k§bu¨ q mdggû q i q vwgxm

X O G·Ê M E;Ê°E�Êxà Jgü/Ì ý�¼ É�½#º!P Ì�à J�LxJ U�Ê»Uµ\VS!EFã J G ÿ ÔµÉ L°J]Oé G ¹�Ç"È"¿£¹ ½�É�¾	É}¼ È1Ê Ë£Ì£Í X J ÊxàIE´]
Ê°E¼SVUlG O Q!ÔµU�� J Êxà J Y LxJ SVUµE O G°Ôµá¼EFÓ´ÊxQ!Uµ\ J]�Î�Q�ÊyQ�Ô§E M ä ÿ Ê�ÊxàIUlG�GdÊyQ�Ê J UµÊ8Î�Q!\AQ�Ê·Ê J \^]³ÊdÌ:E
]´Uvu JNL°J \FÊ J S J \RÊxG PªÀ�º#×OÑ�º ½#É�¾	É}¼ È1Ê E L�¹	º1¼ º�½æ¾ ¹	¿ äVß}É-Ê°à J � L G·Ê J S J \RÊ:EVÎNÎ OIL GBÊ°à JNL°J Q LxJ
ÊdÌ©E³]´U²u J�LxJ \RÊ�Y[ERG°G°UµÓ^UµÔ§U�ÊxU J G�ÇÔ� L GdÊ P UµÉ�Ê°à J ì L E�Ì�G J�L à^QFG�Êxà J \ J Î J G°GxQ L á6ãV\IE�Ì�Ô J] MFJ
Ê°E G°E!Ô§S J Êxà J ÊyQ!G°ã P Q L°J �^\ J X J \RÊ³Q!Î(Ê°U§E!\¶UlG5]´U L°J Î�Ê°Ô§á Y JNL ÉÍE L X J]6Ù©G J Î(EF\^] P UµÉ�UµÊ
Î OILxLxJ \RÊ°Ô§á=à[Q!G5\^E�Ê5ÊxàIU§G³Ó^QFÎyã MFL E O \^] P Ê°à J ì L E�Ì�G J�L X O GdÊ6EFÓ´ÊxQ!Uµ\ Uµ\´ÉÍE L X¼Q�Ê°U§E!\
É L EFX Êxà J ÈVE!ÉËÊdÌ:Q L°JAK Q!\^Q MFJ�LwP ÓRá G J \^]´U§\ M QÐÏ ÈIÀ�º Â²Ñ�Ò�ÈIÀ Ï É�¾�Â È[Ñ LxJ � OIJ G·Ê5E L ÓVá
Ê L QTS J ÔµÔ§Uµ\ M ÊxEAÊ°à J G·E!ÉËÊdÌ:Q L°J YIÔlQ!Î J ä»ß}É:Êxà J-¹»º
¼ º�½�¾ ¹W¿ J S J \FÊ�E´ÎNÎ OIL G P Ê°à J ì L E�Ì�G JNL
X O G·Ê8Î LxJ Q�Ê J Q¼È´Q�Ô J G°X¼Q�\ºUµ\[GdÊyQ�\^Î J Q!\^]º]´U J ä

^alfred.show_catalog_GUI(ci)

Do:goto_Sw_place

Do:goto_MU_Place

create_browser(c)

delete_browser

Do:goto_MU_Place

{1K}

{1K}{100K} {100K}

{1K}

{100K}

{1K..100K}

{100K..200K}

^salesman.create_salesman(info_sale)

^SwManager.more_in-
formation(refinement2, ci)

[not info_need]

[info_need_travel]

select_sw(name)

refine_catalog(refinement_plus)

{1K..100K}

WAIT

[not info_need or info_need_local]
[info_need_travel]

[info_need_local]

Do: refine

^alfred.show_catalog_GUI(ci+1)
{100K}

{1sg}

reply

¤`¥�¦ ¦#þI¦ {�b q bdg:b�m q iR|�r�bdrtcwi5f!r q vNm q n k§cNm�bd®Rg=ÿ»mdc�¨�|�gxm

� �[©uÀVÆ�¬8�Ô¡ � ��A wÀ�Û©Ä��[¡»Æ��� ���Ã�¡��/���[¶^Ä��[¬�¢+å;à J È´Q!Ô J G·X¼Q�\�é G M ERQ�ÔºU§G ÊxE M UµS J J â
Î(EFX)X JNL Î J G J�L SVU§Î J G P QFG³Ì J Î�Q�\�G JNJ U§\�@»U M!O^L°J �Vä ÿ ÉËÊ J�L UµÊxGAÎ LxJ Q�Ê°U§E!\½UµÊ Q!G°ã´G
Ê°à J ÈVE�ÉËÊdÌ;Q LxJ K Q!\^Q MFJ�L ÉÍE L GxQ�Ô J Uµ\IÉÍE L XZQ�Ê°U§E!\-ä£�¶U�Êxà¶Ê°à^U§G³Uµ\IÉÍE L XZQ�Ê°U§E!\ Ê°à JÒJ â
Î(EFX)X JNL Î J ÎNQ�\�GdÊyQ L ÊNä´å;àIUlG;U§G;QZÎ(EFX)Y^Ô J#� ÊxQ!G°ã¼Êxà^Q�Ê�X O GdÊ�Ó J] J GxÎ L UµÓ J]6Ì�U�ÊxàºUµÊxG
E�Ì�\ O G J ÎNQ!G J Q!\^]�G J � O^J \^Î J]IU§Q M!L Q�X Ì�àIUlÎyà³UlG�E O Ê�E�É»Ê°à J GxÎ(EFY J E�É0Ê°à^U§G�Y[Q�Y J�L ä
å;à J Y^Q�â Ð+K Ñ X)E´] J Ô§G7Ê°à[Q�Ê�Ì J à^QTS J] J S J Ô§E!Y J]	Q L°JBJ�� Y LxJ GxG·U§S J©J \IE OIM à�ÊxE+QFÎ�Î(EFX)â

YIÔµUlG°àÒÌ�UµÊ°àè]´U²u J�LxJ \RÊ�U§X)Y^Ô J X J \RÊxQ�ÊxUµEF\^GNä ÿ \ J Î J GxGxQ L á�Î�E!\^]IU�ÊxUµEF\ Ê°E�] J G·U M \pX J Ê°àIE´]IG

8

begin_electronic_commerce
Do: electronic_commerce

create_salesman(info)
{1K}

Do: add_info_sale

^SwManager.re-
quest(info_sale)

{1K}

end_electronic_commerce

{1sg}

¤`¥�¦ ¦��´¦ {�b q bdg;b�m q iR|�r�bdrtcwi¼f!r q vNm q n klcNmBbd®Rg�{ q ªtgy|�n q i

U§G5Ê°à J U L Uµ\[] J Y J \^] J \^Î J E�É �^\[Q�Ô8U§XZYIÔ J X J \RÊxQ�Ê°U§E!\½] J Î(UlG·U§E!\[G�ä©ß�\¶Ê°à^Q�Ê6Ì;QTá P Ì J Î�Q!\
O G J Êxà J G J XZE´] J ÔlG;Ê°E¼] J S J ÔµEFYºQ!YIYIÔ§U§ÎNQ�Ê°U§E!\[G;Ó^Q!G J]ºE!\ W 5�ê�ì ÿ P X)EFÓIU§Ô J Q M!J \RÊyG P´J ÊxÎ�ä
ì O Ê�Ê°àIUlG M Q�YîÓ J ÊdÌ JNJ \] J G·U M \ Q!\^]îUµXZYIÔ J X J \RÊyQ�Ê°U§E!\ Î�E O Ôl]îÓ J6O \^] J G·U L Q!ÓIÔ J Uµ\ Î J�L â
ÊxQ�U§\½Î�QFG J G�ä£@IE L6J�� Q�XZYIÔ J!P U§\ Ê°à J G·á´G·Ê J X�Êxà^Q�Ê6Ì J Q LxJ Ê LxJ Q�Ê°U§\ M Ì J Q LxJ \IE�Ê³G OILxJ
àIE�Ì½X¼Q�\Vá5X¼Q�ïdE L]IE!XZEFG©G·àIE O Ôl]³Q�Ê·Ê J \^] L°J � O^J G·ÊxG P à^E�Ì X¼Q�\Vá5Î(EF\^Î O^L°LxJ \RÊ O G JNL G;Î�Q!\
O G J Ê°à J G·á´G·Ê J X P»J ÊxÎ!ä � E�Ì J S J�LwP Q�ÉÍE L X¼Q�Ô©XZEV] J Ô§ÔµU§\ M Ì�UµÊ°à Ï�J Ê L U�\ J ÊxG	G°E!Ô§S J G­Ê°à J G J
� O^J G·Ê°U§E!\^G�GxQ�ÊxU§G·É�Q!Î(Ê°E L U§ÔµáFä
å;à J] J G°U M \ÒY L E!Y/EFG J]AU§\=ûµü�2TþB] J Q!Ô§G+Ì�U�ÊxàpEF\ J)O G JNL Q�\^]ÒE!\ J X¼Q�ïdE L]´EFX)E[ä Ï�J Ê L U

\ J ÊyG�Q�Ô§ÔµE�Ì½Ê°E LxJ Y LxJ G J \RÊ�Î�Q!G J G�G O Îyà�Q!GNÇ
ü!äg5+\ J­O G J�L Q�\[]³EF\ J X¼Q�ïdE L]´EFX)E�éËÊxà J Y L E!Y/EFG J]ºG·á´G·Ê J X¼í(ä2´ä�È J S J�L Q�Ô O G J�L G�G JNL S J]6ÓRá³E!\ J X¼Q�ïdE L]IE!XZE^ä?Iä K Q�\Vá O G JNL G�G J�L S J]5ÓVá5X¼Q�\Vá5X¼Q�ïdE L]IE!XZEFG P E!\^Î J Y J�L8L°J � O^J G·ÊNä
å;à O G P Uµ\^Î L°J Q!G°Uµ\ M Êxà J XZE´] J ÔµÔ§Uµ\ M�J u�E L Ê P U�Ê;Î(E O Ô§]ZÓ J Y/EFGxG·U§ÓIÔ J Ê°E	QTSFE!Ul]�Ê°à J \ J Î J G·â

G·UµÊdá5E�É�U§X)Y^Ô J X J \RÊ°U§\ M Ê°à J G°á´GdÊ J X ÉÍE L Y LxJ]´UlÎ�ÊxUµ\ M Y J�L ÉÍE L X¼Q�\^Î J � M!OILxJ GNä

� �>Ú�ÛgL�V	V°Þ·×\� a=Þ�Ø[Z��°L¡Ø´Ù^Þ�×gL¡Ø[n
ÿ Ê�Ê°àIUlG�Y/E!U§\FÊ P Ì J à[QTS J XZEV] J Ô§Ô J]6Êxà J G°áVG·Ê J X Ì�UµÊ°àAY^Q�â Ð+K Ñ \IE�ÊyQ�Ê°U§E!\ P ÊxQ�ãVU§\ M Uµ\RÊxE
Q!Î�Î�E O \RÊ�Êxà J ÔµERQ!]ZU§\¼Ê°à J G J � OIJ \[Î J]´UlQ MFL Q!X Q!\^])Ê°à J G·ÊxQ�Ê J Ê L Q!\^G°U�ÊxUµEF\5]´U§Q M!L Q�X¼GNäFÈVE P
Q�Y L Q M X¼Q�ÊxU§Î�Q�YIY L ERQ!Îyà6E!É»Êxà J G·á´G·Ê J X à^QFG;Ó JNJ \�E!Ó´ÊyQ�U§\ J]-äIì O Ê�Ê°àIUlG LxJ Y LxJ G J \RÊxQ�Ê°U§E!\
U§G+\IE�Ê+Y L°J Î(UlG J	J \IE OIM à�ÊxE J�� Y LxJ GxG�E OIL \ JNJ]IGNä�ê J X J X�Ó JNL Êxà^Q�Ê�Ì J Ì;Q�\RÊ�ÊxE6Y LxJ]IU§Î(Ê
Ê°à J G°áVG·Ê J X Ó J à^QTSVUµE OIL Uµ\�]´Uvu JNL°J \FÊ;Ì;QTáVGNäI@»U L GdÊ P Ì J Ì:Q!\RÊ©ÊxE)G·Ê O]Iá5àIE�Ì Ê°à J G°á´GdÊ J X
Ì©E L ã´G�Ì�UµÊ°à EF\IÔµáîE!\ J5O G J�L G J�L S J]îÓRáîE!\ J XZQ�ïdE L]´E!XZE[äw5+\èÊ°à J E�Êxà J�L à[Q�\^] P U�Ê)U§G
Q�ÔlG·E)E�É7E OIL Uµ\RÊ J�LxJ G·Ê:ÊxE�ãV\IE�Ì½Ê°à J G°á´GdÊ J X Ó J à^QTSVU§E OIL Ì�à J \ºG J S J�L Q�Ô O G JNL G:Q LxJ G JNL S J]
ÓRá6E!\IÔ§á6EF\ J XZQ�ïdE L]´E!XZE P E L ÓRáºG J S JNL Q!Ô[X¼Q�ïdE L]IE!XZEFGNä
ß�\ÒE L] JNL Ê°EºE!ÓIÊxQ�U§\pQ!\^G°Ì JNL G�Ê°EºE OIL � OIJ G·Ê°U§E!\^G P Ì J \ J�J]AÊxE³Q�Y^YIÔµáAY J�L ÉÍE L X¼Q�\^Î J

Q�\^Q!ÔµáRÊ°UlÎ	Ê J Îyà^\IU�� OIJ G+Ê°EºÊ°à J] J S J ÔµEFY J] Y^Q�â Ð+K Ñ]IU§Q M!L Q�X¼G�ä�ì O Ê­Ê°à JNL°J UlG�Q6ÔlQ!ÎyãAU§\
Ê°àIUlG£� J Ôl]5Ó J ÎNQ O G J \IE�Y JNL ÉÍE L X¼Q!\^Î J XZE´] J Ô J#� U§G·ÊBÉÍE L:Ð+K Ñ�P G°E�Ê°à J Y L Q M X¼Q�Ê°UlÎ�XZE´] J Ô
U§G�\IE!Ê J�� Y LxJ GxG·U§S J:J \IE OIM à7ä ÿ ÔlG·E P Ì J \ J�J]�Ê°E J�� Y LxJ GxG�G·á´G·Ê J X Î(E!\[Î OILxL°J \^Î(á P Ó O Ê Ð8KÒÑ
X)E´] J Ô§G­Î�E!\^Î OIL°LxJ \[Î(áºUµ\ÒQ³S JNL áºY/ERE L Ì;QTá!ä�å;à O G P UµÊ�UlG L°J � O U LxJ]AQ5ÉÍE L X¼Q�Ô0X)E´] J Ô�E�É
Ê°à J G°á´GdÊ J X Ì�UµÊ°àAÎ(EF\^Î O^L°LxJ \^Î�á5Î�Q!Y^Q�ÓIU§Ô§U�ÊxU J G�ä
å7EºG·EFÔµS J Ê°à J G J Ô§QFÎyã´G P Ì J à^QTS J Îyà^EFG J \ Ï�J Ê L U7\ J ÊxG­Q!G�ÉÍE L XZQ!Ô»XZE´] J Ô P Ó J Î�Q O G J UµÊ

à^Q!G©Ê°à J�LxJ X¼Q L ã J]¼Î�Q!Y^Q�Ó^UµÔ§U�ÊxU J G;Q�\^]³Q�ÔlG·E	Ê°à JNL°J Q LxJ Ì J Ô§ÔµâjãV\IE�Ì�\6Q!\^Q�Ô§áRÊ°UlÎ�Ê J ÎyàI\IU�� OIJ G
Ê°E³G·Ê O]´á G·á´G·Ê J X Y JNL ÉÍE L X¼Q�\[Î J U§\pG·Ê°E´Îyà^QFGdÊxU§Î Ï�J Ê L U7\ J Ê­X)E´] J Ô§GNä¡å;à O G P Ì J Y L E!Y/EFG J
G·EFX J ù>�°ö�ø^ú��(ñ���ð¼ö�ùjó�ñ�øm�æ0´ôµõ�ú�Ê°EZEFÓ´ÊxQ!Uµ\ Ï�J Ê L U�\ J ÊxG;É L E!X Y^Q�â Ð8K Ñ]IU§Q M!L Q�X¼G�ä

9

ß�\	Êxà J ÉÍE!Ô§ÔµE�Ì�U§\ M^P Ì J XZE´] J Ô´Ì�U�Êxà Ï�J Ê L UF\ J ÊxG0Êxà J � L GdÊ0ÊdÌ:E+Y L E!Y/EFG J]�G·á´G·Ê J XZG P Ê°à J
Ê°àIU L]ºEF\ J Ì�UµÔ§Ô-Ó J] J S J Ô§E!Y J]³Uµ\AQ)É O Ê OILxJ Ì©E L ã�ä[@IE L Ê°à J � L G·Ê8G·á´G·Ê J X P EF\ J�O G J�L Q!\^]
E!\ J X¼Q�ïdE L]´E!XZE P B�È Ï D à[QTS J Êxà J5J�� Y LxJ GxG°UµS J Y[E�Ì J�L Ê°EÒQFÎ�Î(EFXZYIÔµUlG°àèÊ°à J ÊyQ!G°ã�ä»å»E
GdÊ O]´á­Ê°à J G J Î�E!\^]�G°á´GdÊ J X P G J S JNL Q!Ô O G J�L G»G J�L S J]­ÓVá�EF\ J XZQ�ïdE L]´E!XZE P G·Ê°E´Îyà^Q!G·Ê°UlÎ�Ì J Ô§Ôµâ
ÉÍE L X J]ZÎ(E!Ô§E O^L°J] Ï�J Ê L UI\ J ÊyG�û ?�þ/Q L°J E!É/U§\RÊ J�LxJ G·ÊNäI5+\^Î J Êxà J G°áVG·Ê J X¼G�Q LxJ XZEV] J Ô§Ô J] P Ì J
O G J Q�\^Q!ÔµáRÊxU§Î­Ê J ÎyàI\^U�� OIJ G�U§X)Y^Ô J X J \RÊ J]ÒUµ\mB L°J Q�ÊyÈ Ï D û H�þ0Ê°EVE!Ô»Ê°E5EFÓ´ÊxQ!Uµ\ Ê°à J ÊxQ LxM!J Ê
Y JNL ÉÍE L X¼Q�\[Î J­L°J � O U LxJ X J \FÊyG�ä

� ¢�´ �+Àq NÄ��£¡0À} ¬ Ã7Å»ÀI©S¨}Ã^Ä/�ÒÆNÁ-Æ# wÀ}¬ Âk�­ � Ãª¡0À~¬8�
	wÃ[Ä�Å»Ã�¬ Ã��Ô¡»Å Ã�¡»À~�0ÆNÀRÄ
@»U L GdÊ P Ì J Q LxJ)M E!U§\ M Ê°E�E!Ó´ÊyQ�U§\îQ Ï�J Ê L U0\ J Ê­ÉÍE L­J QFÎyàîG°á´GdÊ J X Î�Ô§QFG°G P Ê°à J �yñ�ðg�^ñ�ø/õ�ø^ù
ø/õ�ù�ú�äI5+ÓVSVU§E O G°Ôµá P!J S J�L á�Q!\I\IE!ÊxQ�Ê J]¼G·ÊxQ�Ê J Ê L Q!\^G°U�ÊxUµEF\5]´U§Q M!L Q�X Ì�UµÔ§Ô M UµS J�O GBÊ°à J+M!O Ul] J!P
Q�\^]6Ê°à J ÉÍEFÔµÔ§E�Ì�U§\ MZM!J \ J�L Q�Ô/Ê L Q�\^G·ÉÍE L X¼Q�ÊxUµEF\ LxO Ô J G;Ì�UµÔ§Ô-Ó J Q�YIY^ÔµU J]¡Ç
���w©�À7´�¢
��
Bñk*�ó �8õ#�°õ�ø^ù���óËø�*Tú­ñW��ù>�°ö�øIú�óËùuó�ñ�øIú��yö�øAòyõ+ó­*!õ�ø^ùjó)©õ+*�óËøAö�ú�ù}ö�ù}õ+ù>�°ö�ø^ú�óËùuó�ñ�ø
*�ó�ö�÷1�°ö�ð����A�°ö�øIú�óËùjó�ñ�øIú~
'9´ó­��9 *!ñ ø/ñ�ù�ú>�Iõ�ø�* ø/õ�ùÖ�°õ(ú�ñ�0A�»�yõ(úAö�ø�* ù��xö�øIú�óËùjó�ñ�ø^úG
'9´ó­��9
*!ñ
����9Iõ;)Y�yú�ù���óËø�*m
�óËôËô�òyõ�ù>�°ö�ø^ú�ôµö�ù�õ+*ÒóËø[ù}ñ��jóËð�ð¼õ+*�ó�ö�ù}õ��³ù��xö�øIú�óËùjó�ñ�ø^ú��}ù:9^ö�ù`)`�xõºóËø
� õ#�°ñ�ùjóËð¼õ���óËø ù�9IõÖ<�õ�ù>��ó�ø/õ�ù�����9Iõ5ú(õ+�yñ�ø�* ��óËø�*°
�óËôËô©òyõ!�uùjóËðZõ+*"�)ù��xö�øIú�óËùjó�ñ�ø^ú)óËø ù�9Iõ
<�õ(ù>��ó�ø�õ(ù��#��9IõpðZõyö�ø�ñW� ù:9^õpõ%$��Iñ�ø/õ�ø^ùjó�ö�ôËô'&d*�ólú�ù���ó�ò#0´ù�õ�*ä�°ö�ø�*!ñ�ð Ü�ö���ó�öFò(ô§õ��(ñ�� ù�9Iõ
ù��°ö�øIú�óËùjó�ñ�ø~)`��óËøV÷èùuóËð¼õG
�óËôËô8òyõ~�yö�ôv�#0´ôµö�ù�õ+* öTú�öã�xñ�øIú�ù�ö�ø^ù`�+0´ø��(ùjó�ñ�ø½ñ	�³ù�9Iõºð¼õ(úxú�öN÷Fõ
úyó � õîö�ø�* ø/õ�ù�ú>�^õyõ�*(��,Òñ��°õèõ�ôµö!òyñ��xö�ù�õ�*°���°ñ+�Iñ�ú�ö�ô�úÒô�ó)�!õÒù:9^ñTú�õº÷�ó:Ü�õ(ø�óËø+*�,.-F�yñ�0´ôv*=òxõ
ù}ö��!õ�øÒóËø[ù}ñ³ö1�+�yñ�0´ø^ù0/Bò�0´ù£
Bõt9^ö�Ü�õk�xñ�øIú�ó­*!õ#�°õ+*6ðZñ
�°õ�óËðg�^ñ���ù�ö�ø^ù:ù�ñ	÷Rö�óËø ú�óËðg�/ôtó­��óËù1&
�
���w©�À�Ú6¢;���(ùjó�ñ�ø^ú6óËøIú�ó­*FõÒöpú�ù}ö�ù}õÒñW�³ù:9^õºú�ù}ö�ù}õ�ù>�°ö�øIú�óËùuó�ñ�ø�*�ó�ö�÷1�°ö�ð ö
�°õF�yñ�ø^úyó­*Fõ��xõ�*
öTú ùjóËðZõm�yñ�øIúæ0´ð)óËøR÷2/�ú�ñ óËø�ù:9^õG<�õ�ù>��ó�ø/õ�ù�ð¼ñ�*!õ�ô8ù�9Iõ3&ã
�óËôËô­òyõm�xñ�øIú�ó­*!õ#�pö�ú ùuóËð¼õ+*
ù��°ö�øIú�óËùjó�ñ�øIú3�4��9^õ8ùjóËð¼õ\
�óËôËô�òxõ �yö�ô���0´ôµö�ù}õ+*£�+�°ñ�ð¾ù�9Iõ65�<C(èö�ø�* *�ólú.�)ñ��^õ��°ö�ùuó�ñ�øIú8ø�õyõ�*Fõ+*
ù}ñ �Iõ#���(ñ���ðçù�9Iõ)ö1��ùuó�ñ�ø"�
���w©�À ³ ¢87=0^ö���*TúZóËø ù:9^õ¼ú�ù�ö�ù�õZù>�°ö�ø^úyóËùjó�ñ�øÐ*�ó�ö�÷1�°ö�ðM
�óËôËô;òyõ��yñ�ðZõ5óËð�ð¼õ+*�ó�ö�ù�õ6ù��°ö�øIú�ó:9
ùuó�ñ�øIú/
�óËù�9 ù�9Iõ ö�úyú(ñ���ó�ö�ù�õ�*��yñ��æ�°õ(ú>�Iñ�ø�*�óËøV÷°���°ñ!òyöFò(óËôtóËùjó�õ(ú;�(ñ
��ù:9^õ~�°õ(ú�ñ�ô 0´ùjó�ñ�ø ñ	�°�yñ�ø;9
< ó­��ùuú=�
���w©�À � ¢Ö�/ù}ö�ù}õ(ú)óËø=ù:9^õ6úyù�ö�ù�õ6ù��°ö�øIú�óËùjó�ñ�øÐ*�ó�ö�÷1�°ö�ðì
�óËôËô;òyõ ��ôµö1�yõ(ú6óËø ù�9Iõk<�õ�ù���ó�ø�õ(ù��
� 0´ù:ù:9^õ��xõ�
�óËôËô�òyõ�ø�ñ�ù:ù:9^õ�0´ø[ó­·�0^õQ�/ôµöq�yõ�ú�óËøîù:9^õ�ø�õ(ù0/©òyõ+�xö
0Vú�õ)öq*1*�óËùuó�ñ�ø/ö�ôÔ�/ô§ö1�yõ�úC
�óËôËô
òxõ�ø/õyõ+*!õ+*5ö�ú�ö�ø óËø���0´ù�ù}ñ��xñ�ø < ó­��ùuóËøV÷¼óËð)ðZõ+*�ó�ö�ù}õ	ù>�°ö�ø^úyóËùjó�ñ�ø^ú>�dñFò(ù�ö�óËø�õ�*³ò=&5ö+�1�/ô?&�óËøR÷
@g0´ô§õBAC�
�

@»U M!O^L°J Gt� P � P ü�3 P ü!ü¼Q!\^] ü�2 L°J Y L°J G J \RÊ�Êxà J \ J ÊxG­\ JNJ] J]ÒÊxEAXZEV] J Ô�E O^L úD&Tú�ù�õ(ð
�xñ�ð\�^ñ�ø�õ(ø[ù�ú�ÊyQ�ãVU§\ M Uµ\RÊxE	Q!ÎNÎ(E O \FÊBÊ°à J Y L°J SRU§E O G�Ê L Q�\^G·ÉÍE L X¼Q�ÊxUµEF\ LxO Ô J GNä ÿ ÎNÎ(E L]´U§\ M ÊxE
B�È Ï D \IE!ÊxQ�Ê°U§E!\Aû�ü�þ P UµXZX J]´UlQ�Ê J Ê L Q�\[G·UµÊ°U§E!\^G�é�� L Uµ\ M U§\�� JNL E�ÊxUµX J í�Q LxJ] L QTÌ�\ZQ!G�Ó[Q L G
é:�^Ô§Ô J]^í P Ì�àIUµÔ J Ê°U§X J]pÊ L Q�\^G°UµÊ°U§E!\^G­Q LxJ] J YIUlÎ�Ê J]èQ!G�Ó/E �´J GZé O \[�^ÔµÔ J][í�ä»å;U§X J]ÒÊ L Q�\^G°Uµâ
Ê°U§E!\^G:Q LxJ Q!\I\IE�ÊyQ�Ê J]ZÌ�UµÊ°à-� L U§\ M	L Q�Ê J G P Ì�à^UµÔ J U§XZX J]´UlQ�Ê J Ê L Q�\[G·UµÊ°U§E!\^G©Q LxJ Q!\I\IE�ÊyQ�Ê J]
Ì�U�ÊxàºY L EFÓ^Q�ÓIU§Ô§U�ÊxU J G:ÉÍE L Î(EF\ r UlÎ�Ê LxJ G°E!Ô O Ê°U§E!\7ä
å;à J G J � O^J \^Î J]IU§Q M!L Q�X Ì�U§ÔµÔ�Ó J Ê°à J¼MFO Ul] J Ê°E�E!Ó´ÊyQ�U§\îQã�yñ�ðg�/ô§õ(ù�õ Ï�J Ê L U�\ J Ê�ÉÍE L

Ê°à J G°á´GdÊ J X O G°U§\ M Ê°à J Y LxJ SVU§E O GZÎ�E!XZY[EF\ J \RÊ¼\ J ÊxGNä`� J X O GdÊ6Î�E!\^G°Ul] J�L Ê°à[Q�Ê Ð8KÒÑ
]´U§G·Ê°U§\ MFO U§G°à J G P U§\�Q�Î(EF\^Î O^L°LxJ \RÊ-G·á´G·Ê J X P ÊdÌ©E�]´Uvu J�LxJ \RÊ7ãVUµ\[]+E!É´X J G°GxQ MFJ G�U§\�Q�G J � OIJ \^Î J
]´U§Q M!L Q�X�Ç

y Ê°àIERG J­LxJ Y LxJ G J \RÊ J]³ÓRá³Q	É O ÔµÔ0Q LxL E�Ì�à J Q!] é	
Bö�óËù©ú�õ(ð¼ö�ø[ùuó­�(úwí P Q�\^]

10

P15P7

wait_for_service wait_UserforCatalog P4

P6

observe_GUI_catalog

alfred.select_sw_service

alfred_refine_catalog

alfred.select_sw

electronic_commerce

end_ec

begin_ec

¤`¥�¦ ¦FE^¦ �©|�gxm£��gxb�mdr[iFgxb�sycNn�a´cwiRgxi�b

wait_Alfred

P36

P3P4

P5

P6

P7

P8

P9

show_GUI_catalog

add_info3

add_info1 user.observe_GUI_catalogSw_Manager.getcatalog

add_info2

create_GUI

browser.select_sw_browser browser.refine_catalog

refine_catalogselect_software

select_sw_service

¤Y¥v¦ ¦FG^¦ �©ª�kµmdg�fk��gxb�mdr^iRgxbBsycNn�a´cwiFgyi�b

y Ê°àIERG J­LxJ Y LxJ G J \RÊ J]³ÓRá³Q�à[Q�ÔµÉ�Q L°L E�Ì�à J QF] édø�ñH9%
Bö�óËù©ú�õ�ðZö�ø^ùjó­��úTí�ä
å;à J ÉÍEFÔµÔ§E�Ì�U§\ M Ê L Q!\^G·ÉÍE L XZQ�Ê°U§E!\ LxO Ô J G�Ì�U§ÔµÔ´Ó J;O G J]	Ê°E�E!Ó´ÊyQ�U§\	Êxà J \ J Ê�G°áVG·Ê J X�ä�ì O Ê

� L G·Ê P UµÊ�X O GdÊ�Ó J ÊyQ�ã J \ºUµ\RÊ°E¼QFÎ�Î(E O \RÊ©Êxà^Q�Ê P ÉÍE L;J S J�L á¼X J GxG°Q M!J Uµ\³Ê°à J G J � O^J \^Î J]IU§Q�â
M!L Q�X P Êxà J�LxJ Q LxJ ÊdÌ:E	Ê L Q!\^G°U�ÊxUµEF\^G:Ì�U�Êxà6Êxà J G°Q!X J \^Q!X J U§\6ÊdÌ:E)]IU²u J�LxJ \RÊ�Î(E!XZY/E!\ J \RÊ
\ J ÊyG P Êxà J \ J Ê L°J Y L°J G J \RÊ°U§\ M Êxà J G J \^] JNL Q�\^]6Ê°à J \ J Ê LxJ Y LxJ G J \RÊxUµ\ M Ê°à J�L°J Î J U§S JNL ä

���w©�À�I6¢�J­��ù�9Iõ5ðZõ(úyú�ö�÷RõC9Iö�ú�
Bö�óËù�ú�õ�ðZö�ø^ùjó­��úD/+ñ�ø^ô'& ñ�ø�õ¼ù>�°ö�ø^ú�óËùuó�ñ�ø8
�óËôËô©ö��q�Iõyö
�¼óËø
ù:9^õ��yñ�ðg�/ô§õ(ù�õ+ø/õ�ù7úC&Tú�ù}õ�ðLK-ù:9´ólú�ù��°ö�øIú�óËùjó�ñ�ø�
�óËôËô[úæ0��1�^ñ���ù0ù:9^õ�óËø��yñ�ð)óËøR÷Zö�ø�*�ñ
0´ùà�yñ�ð)óËøR÷
ö��»�(ú`�+�°ñ�ð òyñ�ù�9�ø/õ�ùQ�xñ�ð\�^ñ�ø�õ(ø[ù�ú3�

wait

P3

P4

P5

P6

P7

P8

browser.reply_remote add_info4
request

salesman.reply

get_catalogmore_information_remote

browser.create_browser

create_catalog

get_info

browser.reply_local

more_information_local

¤Y¥v¦ ¦"§2M[¦ {�cNk§bu¨ q mdgtû q i q vwgxm���gxb�mdr^iRgxb�sycNn�a´cwiFgyi�b

11

P1

P2

P3

wait

P5P6

P7

P8

P9

P10

P11

P12

P13

P15

P16

P17

P18

P19

P20

SwManager.more_information_remote

reply_local

reply_remote

goto_MU_Place2

create_browser_agent

alfred.show_catalog_GUI

refine_catalog_browser

select_sw_browser

salesman.create_salesman

goto_Sw_Place

refine

goto_MU_Place

not_info_need_or_local

info_need_travel1

SwManager.more_information_local

info_need_local

info_need_travel

not_info_need

delete_browser

¤`¥�¦ ¦"§}§V¦ ÿ»mdc�¨�|�gxm=��g°b�mdr[iFgxb�sycwn�a´cNiRgyi�b

P1 P2 begin_add_info_sale

end_add_info_saleP5P6

SwManager.requestcreate_salesman

user.electronic_commerce

add_info_saleuser.end_ec

user.begin_ec

¤`¥�¦ ¦�§
¸^¦ { q ª�gx|�n q i���gxb�mdr^iRg°b�sycwn�a´cNiRgyi�b

���w©�ÀON�¢�J­�©ù�9Iõ�ðZõ(úyú�ö�÷Rõ�9^öTú;ø/ñH9%
Bö�óËù7ú�õ�ðZö�ø^ùjó­��úD/¡ù�9Iõ�ù>
Bñ­ù>�°ö�ø^ú�óËùuó�ñ�øIú=
�óËôËô[ö��q�Iõyö��8óËø
ù:9^õ;ø/õ�ù¡úC&Tú�ù}õ�ð ö�ø�*�ö�ôtú(ñ	ö�ø6õ%$!ù>�°öY��ôµö1�yõQ
�óËôËô^òyõ+ö1*1*Fõ+*­ðZñ�*!õ�ôËôtóËøV÷�ù�9Iõ��xñ�ð�ð 0´ø^ó­�yö�ùuó�ñ�ø
ò�0=�8õ#�3����9Vólú��/ô§ö1�yõC
�óËôËô6�°õ+�yõ(ó:Ü�õ�ö�øîö
�»�`�+�°ñ�ð ù�9Iõ�ú�õ(ø�*!õ#�­ù��°ö�øIú�óËùjó�ñ�øîö�ø�*-
�óËôËô»ö1*q*³ö�ø
ö��»�	ù}ñ5ù:9^õ��xõ��yõ�ó:ÜTõ#��ù>�°ö�ø^úyóËùjó�ñ�øP�
å;à J \ J ÊZG·á´G·Ê J X ÉÍE L Ê°à J6J�� Q�XZYIÔ J U§G�G·à^E�Ì�\îU§\8@0U MFOILxJ ü�?Iä7ß�\ E L] J�L ÊxE O \^] JNL â

GdÊyQ�\^]îàIE�Ì Ê°E Q!YIYIÔ§á Ê°à J Y LxJ SVUµE O G LxO Ô J G P Ì J Q L°JZM EFUµ\ M ÊxE J�� YIÔlQ�U§\èàIE�Ì ÊxEAE!Ó´ÊyQ�U§\
Ê°à JGÈ[Å"¹	º1ÀvÁ"º Ë£ÌYÍ ½�É�¾	É}¼ È1Ê Ê L Q!\^G·UµÊ°U§E!\ Uµ\ Êxà J \ J ÊZG·á´G·Ê J X é�@»U M!O^L°J ü�?Fí�É L EFX@Êxà JGÈ[Å�å
¹	º
À�Á"º Ë£ÌYÍ ½�É�¾	É}¼ È1Ê X J GxG°Q M!J G J \RÊ�ÓVá ÿ Ô�É LxJ]ÒÊ°EºÊ°à J¼O G JNL Uµ\pÊ°à J G J � O^J \^Î J]´UlQ MFL Q!X�ä
� J Î�Q!\ÒEFÓ^G JNL S J U§\ ÿ Ô�É LxJ]6é G�\ J Ê¼é�@0U MFOIL°J �Fí�Q!\^] U§\ÒÊxà JZO G J�L é G+\ J Ê5é�@»U M!O^L°J �Fí8Ê°à J
Y L°J G J \^Î J E!É/Êxà^Q�Ê�Ê L Q!\^G°U�ÊxUµEF\-äFÈVE P Uµ\ZÊxà J \ J Ê:G·á´G·Ê J X Ê°à J Ê L Q!\^G°U�ÊxUµEF\ZQ!YIY J Q L G�Ì�UµÊ°àZÊ°à J
O \IU§E!\AE�É�Êxà J U§\^Î(EFX)U§\ M Q!\^]�E O ÊxÎ(EFXZUµ\ M Q L ÎNG�E�É�Êxà J Î(EFXZY[EF\ J \RÊxG P G°áV\^Îyà L E!\IUlG°Uµ\ M U§\
Ê°àIUlG�Ì;QTá¼Ó[E!Ê°à�E!Ó´ï J Î�ÊyG�ä

@»U§\^Q!ÔµÔ§á P Ì J+L°J X¼Q L ã�Ì�UµÊ°àºQ�\ J#� Q!XZYIÔ J Ê°à^Q�Ê©Êxà J Î(E!\[Î OILxL°J \^Î(á J�� Y LxJ GxG J]ZU§\ Ð8KÒÑ
à^Q!G	Ó JNJ \ QFÎyàIU J S J]pU§\èÊ°à J \ J Ê)G°áVG·Ê J X%ÓVáèG·áV\^Îyà L EF\IU§G°U§\ M Î(EFX)Y/E!\ J \RÊ	\ J ÊxGNä��¶à J \
½�À�º�É�¾Wº ¹�É}¼ º#¹ Ï É}Ñ Ê L Q!\^G°U�ÊxUµEF\�� LxJ G»E!\ J Ê°EFã J \	UlG»Y^Ô§QFÎ J]	Uµ\ ý"QqÎ Q!\^]�EF\ J Ê°E!ã J \�UlG0YIÔlQ!Î J]
Uµ\ ý"RÔÃ!P Q�Ô§ÔµE�Ì�U§\ M Q)Î(EF\^Î O^L°LxJ \RÊ J#�´J Î O Ê°U§E!\5E!É-Ê°à J À�º�øÔß�º�¹W¾ Q!\^] Øqº
¼ º#¾Wº Å
À�È"¿£¹»º
À Ê L Q�\^G°Uµâ
Ê°U§E!\^GNä
� ¢:Ú �+Àq NÄ��Q¡»À} �¬ Ã-Å0ÀI©Y¨}Ã^Ä°�èÆ�Á-Æ� NÀI¬
Âk�­ � Ã�¡»À{¬8�
	wÃ[ÄTÅ0Ã�¬ Ã{�Ô¡»Å½ÆwÀ}�[ÀRÄ��[©

�0ÆNÀRÄ�Æ
ß�\=E L] JNL Ê°EèXZEV] J Ô�Ì�UµÊ°à Ï�J Ê L U;\ J ÊxG)Êxà J G·UµÊ O Q�Ê°U§E!\ E�É­G J S JNL Q!Ô O G JNL G)Ó J U§\ M G JNL S J]
ÓRáîE!\ J X¼Q�ïdE L]´EFXZE P Ì J \ JNJ]îÊ°EpUµ\[Î(Ô O] J G J S J�L Q�Ô�ÊxE!ã J \^G�U§\ G°E!X J YIÔlQ!Î J G	ÔµU§ã JFP ÉÍE L

12

m
1=

 2

P1

w
ai

t_
Sw

M
an

ag
er

P5

P6

P7

P8

w
ai

t_
U

se
rf

or
Se

rv
ic

e

w
ai

t_
U

se
rf

or
C

at
al

og

P1
5

P1
6

P1
7

P1
8

P1
9

P2
0

be
gi

n_
ad

d_
in

fo
_s

al
e

P2
2

P2
3

en
d_

ad
d_

in
fo

_s
al

e

P2
5

P2
6

P2
7

w
ai

t_
B

ro
w

se
r

P2
9

P3
0

P3
1

w
ai

t_
A

lf
re

d

P3
5

P3
6

P3
7

P3
8

P3
9

P4
0

P4
1

P4
2

P4
3

P4
6

P4
4

P4
5

P4
7

P4
9

P4
8

P5
0 P5

1

P5
2

P5
3

P5
4

P5
5

P5
6

br
ow

se
r.

re
pl

y_
re

m
ot

e
go

to
_M

U
_P

la
ce

2

ge
t_

in
fo

ob
se

rv
e_

G
U

I_
ca

ta
lo

g

m
or

e_
in

fo
rm

at
io

n_
re

m
ot

e

go
to

_M
U

_P
la

ce

go
to

_S
w

_P
la

ce

ad
d_

in
fo

_s
al

e

sh
ow

_c
at

al
og

_G
U

I

cr
ea

te
_c

at
al

og

ad
d_

in
fo

4 cr
ea

te
_s

al
es

m
an

ad
d_

in
fo

3

ad
d_

in
fo

2

ad
d_

in
fo

re
fi

ne

cr
ea

te
_B

ro
w

se
rA

ge
nt

cr
ea

te
_G

U
I

br
ow

se
r.

re
pl

y_
lo

ca
l

in
fo

_n
ee

d_
tr

av
el

in
fo

_n
ee

d_
lo

ca
l

se
le

ct
_s

w

re
fi

ne
_c

at
al

og

no
t_

in
fo

_n
ee

d

sa
le

sm
an

.r
ep

ly

re
qu

es
t

se
le

ct
_s

w
_b

ro
w

se
r

re
fi

ne
_c

at
al

og
_b

ro
w

se
r

se
le

ct
_s

w
_s

er
vi

ce
ge

t_
ca

ta
lo

g

t3
8

t3
7

t3
6

el
ec

tr
on

ic
_c

om
m

er
ce

no
t_

in
fo

_n
ee

d_
or

_l
oc

al in
fo

_n
ee

d_
tr

av
el

1

m
or

e_
in

fo
rm

at
io

n_
lo

ca
l

de
le

te
_b

ro
w

se
r

be
gi

n_
ec

en
d_

ec

¤`¥�¦ ¦�§
è^¦ ¯�®Rg\��gxb�mdr^iRg°b�klcNmBbd®Rg©¨�®Rcwªtg�|}�!|}bdgyn

13

Uµ\^G·ÊxQ!\^Î JFPÔ¿YÉ1Â ¾ Ì'¹	º
À�Ò�ÈIÀTSIº
À�Á
Â ½#º ä-ÈVU§\^Î J Ê°à J G°á´GdÊ J XçX O G·Ê�]´U§G·Ê°U§\ MFO U§G°àÒÓ J ÊdÌ J�J \Ò]´Uvu JNL â
J \RÊ�Ê°EFã J \[G¼éËÊ°à J á LxJ Y L°J G J \FÊ�]´Uvu JNL°J \RÊ L°J � O^J G·ÊxGyí P Ì J QF]I]èQ�Î(E!Ô§E O^L]IE!X¼Q�U§\îÉÍE L Ê°à J
L°J � O^J G·ÊxG P Ê°à O G;Ô J Q!]IUµ\ M ÊxE5GdÊxEVÎyà[Q!G·Ê°UlÎ+Ì J Ô§ÔµâuÉÍE L X J]³Î(EFÔµE OIL°J] Ï�J Ê L U�\ J ÊyG�û ?�þjä

5 OIL E!Ó´ï J Î�Ê°U§S J \IE�Ì UlG0Ê°E LxJ QFÎyà�Ê°à J G·Ê°E´Îyà^QFGdÊxU§Î©Ì J Ô§Ô�âjÉÍE L X J]	Î�E!Ô§E OILxJ]�\ J ÊyG0ÉÍE L Ê°à J
Î(E!XZY/E!\ J \RÊxG�Q�\[]�ÉÍE L Ê°à J G°áVG·Ê J X�ä Ñ-J Ê O G�Ó JNM U§\)Ì�UµÊ°à�Ê°à J Î(E!XZY/E!\ J \RÊ�\ J ÊxGNä ÿ G�Uµ\)Ê°à J
Y L°J SVUµE O G»G°á´GdÊ J X P Î(EFX)Y/E!\ J \RÊ»\ J ÊxG0Ì�U§ÔµÔ´Ó J EFÓ´ÊxQ!Uµ\ J]�É L E!X�Êxà J Q�\I\IE!ÊxQ�Ê J]	GdÊyQ�Ê J Ê L Q�\Iâ
G·UµÊ°U§E!\5]´UlQ MFL Q!X¼G�ä
� J Ó J�M Uµ\5Ê°à J Ê L Q�\^G°Ô§Q�Ê°U§E!\)ÊxQFG·ã�éËÉ L E!X Y L Q M XZQ�Ê°UlÎ�XZE´] J Ô^Ê°E�ÉÍE L X¼Q!Ô
X)E´] J Ôlí O G·U§\ M Êxà J�LxO Ô J G8G·ÊxQ�Ê J]³U§\AÊxà J Y LxJ SVU§E O G�G J Î(Ê°U§E!\-ä[å;à J	Ï�J Ê L U7\ J ÊyG�ÉÍE L ÿ ÔµÉ L°J]
Q�\^]ZÊxà J ÈVE�ÉËÊdÌ;Q LxJ+K Q!\^Q MFJ�L Ì�U§Ô§Ô/Ó J Ê°à J G°Q!X J Ó J Î�Q O G J E!\^ÔµáZE!\ J U§\^G·ÊxQ�\[Î J E!É J QFÎyà5U§G
Y L°J G J \RÊ;U§\ºÊ°à J G°á´GdÊ J X�ä�5+\³Ê°à J Î�E!\RÊ L Q L á P Êxà J G·á´G·Ê J X Ì�U§ÔµÔ-à[QTS J Q!G;X¼Q�\Vá6U§\^G·ÊxQ!\^Î J G
E�É O G JNL G P Ó L E�Ì�G JNL G;Q�\[]³GxQ�Ô J G°X J \�Q!G LxJ � O U L°J] P G O YIY[ERG J �^S J ÉÍE L Ê°à J�J�� Q�XZYIÔ J ä

D�E�Ì P Y^QTá6Q�Ê·Ê J \RÊ°U§E!\ºE!\°@»U M!O^L°J ü#H P Ì�àIU§Îyà LxJ Y LxJ G J \RÊxGBÊ°à J Ì J ÔµÔµâuÉÍE L X J]6Î(EFÔµE OILxJ]
Ï�J Ê L U�\ J Ê�ÉÍE L Êxà J5O G J�L ä7å;à JOU Î(EFÔµE OIL X J Q�\[G­Ê°à^Q�Ê�Ê°à J G·á´G·Ê J X] J Q�ÔlG­Ì�U�Êxà E!\ J ÊxE
�^S J+L°J � O^J G·ÊxGBQ!\^]ZÊxà J U§\IUµÊ°UlQ�Ô/X¼Q L ãRU§\ M Ï Ã U§\6YIÔlQ!Î J\¿YÉ1Â ¾ Ò�ÈIÀ ¹	º
À�Á1Â ½�º] J \IE!Ê J GBÊ°à[Q�Ê:Q!ÔµÔ
Î(ÔlQ!GxG­Uµ\^G·ÊxQ!\^Î J G�Ì�U§ÔµÔ©Ó J5O G J]¡ä K E L°J E�S J�LwP Q�Ô§Ô�Ê°à J YIÔ§QFÎ J G�Uµ\èÊxà J \ J Ê	à^QTS J Î�E!Ô§E OIL#U
Q�\^]³Ê°à J Q L Î�G�Q LxJ Ô§Q!Ó J Ô J]³Ì�UµÊ°à�Êxà J Ul] J \RÊ°UµÊdá5É O \^Î�ÊxUµEF\èé	¯WV�X8í P U§\³ÊxàIUlG�Ì:QTá6E!\IÔ§á5E!\ J
L°J � O^J G·Ê�Î�E O Ôl]³Ó J � LxJ]ºEF\^Î J Q�Ê°U§X J ä

@»U M!O^L°J üwý³G·à^E�Ì�G�Êxà J Ì J ÔµÔµâuÉÍE L X J]ÒÎ(EFÔµE OILxJ] Ï�J Ê L U»\ J Ê�ÉÍE L Êxà J ì L E�Ì�G J�L ä^ß}Ê�à^QFG
Ó JNJ \îE!Ó´ÊyQ�U§\ J]pQ�YIYIÔ§áVUµ\ M Êxà J Ê L Q!\^G·ÉÍE L XZQ�Ê°U§E!\ LxO Ô J G+Ê°E³Ê°à J ì L E�Ì�G JNL3Y G+ÈIå�ë	ä¡ß�\IUµÊ°UlQ�Ô
XZQ L ãVU§\ M Ï Ã U§\�Y^Ô§QFÎ JgýwÃ G·àIE�Ì�G-Ê°à^Q�Ê�Q+X¼Q � U§X O X E!É[�^S J Ó L E�Ì�G JNL G»Î(E O Ô§]�Ó J Î LxJ Q�Ê J] P
E!\ J ÉÍE L�J Q!Îyà O G J�L G L°J � O^J G·ÊNä^È´Q!Ô J G·X¼Q�\ºÌ J Ô§Ô�âjÉÍE L X J]6Î�E!Ô§E OILxJ] Ï�J Ê L U�\ J Ê	é�G J�J @0U M!OILxJ
ü�4Fí©à^QFG;Ó JNJ \A] J G·U M \ J]6U§\ºÊ°à J GxQ�X J Ì;QTá!ä

P15 R

P7

R

wait_for_service

Rm1
wait_UserforCatalog

R

P4

R

P6
R

observe_GUI_catalog

alfred.select_sw_service

alfred_refine_catalog

alfred.select_sw

electronic_commerce

end_ec

begin_ec
<x> <x>

<x>

<x>

<x> <x>

<x>

<x>

<x>
<x><x><x>
<x><x>

R:c
request:c
S:m
m1:m

¤`¥�¦ ¦�§�õ[¦ �:|�gxmBsycNª�cN«Fmdg�f ��gxb�mdr/iFgxb�sycwn�a´cNiRgyi�b

D�E�Ì P Ì J Q LxJ8M EFUµ\ M Ê°E�ÉÍE´Î O G©E!\6Ê°à J Î(EFX)Y^Ô J Ê J Ì J Ô§ÔµâuÉÍE L X J]6Î(E!Ô§E O^L°J]Z\ J Ê:ÉÍE L Ê°à J
G·á´G·Ê J X P G JNJ @0U MFOILxJ ü"�´ä»å;à J Ê L Q�\^G·ÉÍE L X¼Q�ÊxUµEF\ LxO Ô J G M U§S J \ Uµ\ Êxà J Y L°J SVUµE O G�G J Î�ÊxUµEF\
Ì�UµÔ§Ô M UµS J�O G�Ê°à J�M!O Ul] J ÊxE6Î(EF\^G·Ê LxO Î�Ê8UµÊNä�ß�\ QF]I]´UµÊ°U§E!\ P Ê°à J ÉÍE!Ô§ÔµE�Ì�U§\ M Ê L Q!\^G·ÉÍE L XZQ�Ê°U§E!\
L°O Ô J G;Ì�U§Ô§Ô-Ó J Q!YIYIÔ§U J]³Î�E!\^Î J�L \IU§\ M Ê°à J Î�E!Ô§E OIL G�Ç���w©�À�Z6¢;�+ôËôA�yñ�ôµñ
0A�yú:ö�ø�*�ðZö
�.��óËøV÷�úQ*!õ�)�ø/õ+*+óËøZù:9^õ\�yñ�ðg�Iñ�ø/õ�ø^ù¡ø�õ(ùuú`
�óËôËô^òyõ:óËøI9Iõ#��óËù�õ�*
ò=&¼ù�9Iõ	ø/õ�ù�úC&Tú�ù}õ�ð[�
���w©�ÀO\�¢
��9IõÖ��ôµö1�yõ(ú/
�óËù�9Ð�xñ�ôµñ�0A��ö�ø�*D]�ñ
�³ð¼ö��.��óËøR÷�ú³óËø ù�9Iõ~�yñ�ðg�Iñ�ø/õ�ø^ùuú6ø/õ�ùuú-
�óËôËô
ö��1�^õyö���óËøpù:9^õ�ø�õ(ùBúC&Túyù�õ�ð óËø ù�9Iõ�ú�ö�ð¼õC
BöH&
�
���w©�ÀO^�¢
��9Iõ6ö��»�(ú�ôµöFòyõ(ôËôµõ+*�óËøèù�9Iõ-�yñ�ð\�^ñ�ø�õ(ø[ù�ø/õ�ù�úÖ
�óËôËô�ö+�1�^õxö
�ZóËø ù:9^õ)ø/õ�ù;úD&Tú�ù�õ(ð
óËøÒù�9Iõ�ú(ö�ðZõÖ
BöH&
�

14

P1 Rm1

P2
R

P3 R

wait

R

P5

RP6
R P7 R

P8
R

P9
R

P10
R

P11
R

P12 R

P13
R

P15
R

P16

R

P17 R

P18 R

P19

R

P20

R

SwManager.more_information_remot

reply_local

reply_remote

goto_MU_Place2

create_browser_agent

alfred.show_catalog_GUI

refine_catalog_browser

select_sw_browsersalesman.create_salesman

goto_Sw_Place

refine

goto_MU_Place

not_info_need_or_local

info_need_travel1

SwManager.more_information_local

info_need_local

info_need_travel

not_info_need

delete_browser

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>
<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x><x><x>

<x>

<x>

<x>

<x>

<x>

<x>

<x><x>
<x>

<x><x><x> <x>

<x>

R:c
request:c
S:m
m1:m

¤`¥�¦ ¦�§1ú^¦ ÿ7mdc(¨�|�g°m:sycNªtcw«Fmdgyf���gxb�mdr[iFgxb�sycNn�a´cwiRgxi�b

P1
Rm1

P2
R

begin_add_info_sale
R

end_add_info_sale
R

P5
R

P6
R

SwManager.requestcreate_salesman

user.electronic_commerce

add_info_saleuser.end_ec

user.begin_ec

<x>

<x><x><x>

<x>

<x> <x> <x> <x>

<x>

R:c
request:c

S:m

m1:m

¤`¥�¦ ¦�§1þI¦ { q ªtgy|�n q iZsycNª�cN«Fmdg�f ��gxb�mdr[iFgxbBsycwn�a´cNiRgyi�b

���w©�À7´`_6¢85�ñ�ø < ó­��ùuóËøV÷5ö��»�(ú�ö
�°õ­ù�9IñTú�õ�ù�9Iö�ùBö��1�^õyö��­ôµöFòxõ�ôËôµõ+*ZóËø ök�yñ�ðg�Iñ�ø/õ�ø^ù�ø/õ�ùBò#0´ù
ø/ñ�ù0óËø6ù�9Iõt�yñ�ðg�Iñ�ø/õ�ø^ù0ø/õ�ù'
'9´ó­��96óËù0ólú;úD&�ø���9A�°ñ�ø[ólú�õ�*(�ba-9Iõ�øG�yñ�ø < ó­�(ùjóËøR÷Zö�����ú8ö��q�Iõyö
�D/
ù:9^õ8ø�õ(ù0úC&Tú�ù}õ�ð¾ðC0Vú�ù69Iö
ÜTõ�ù�9Iõ�ù>
Bñ�ö
�»�(ú�ôµö!òyõ�ôËôµõ+*c/����°õ(ú�õ��æÜwóËøR÷)óËøºù�9Vólúg
Bö2&	ù�9Iõ���ó­��9^õ�ú�ù
ú(õ�ð¼ö�ø^ùjó­���
ÿ GZQ�\ J�� Q�XZYIÔ J E!É�ê O Ô J �pG J�J E O ÊxÎ(EFXZUµ\ M Q L Î�G	ÉÍE L Ê°à J G°áV\^Îyà L E!\IUlG J]èÊ L Q!\^G·UµÊ°U§E!\[G
¹	º
¼ º�½æ¾ ¹W¿ Q�\^] É}¼ Ò%À�º�ØªÓ ¹	º1¼ º�½�¾ ¹W¿ U§\°@0U M!OILxJ GQ�ZQ!\^]Òü�H L°J G·Y J Î(Ê°U§S J Ô§á!ä

� J³L°J XZQ L ãÒÊ°à^Q�Ê	Êxà J Î�E!XZYIÔ J Ê J Ì J ÔµÔµâuÉÍE L X J] Î(E!Ô§E O^L°J]è\ J Ê�ÉÍE L Êxà J G°á´GdÊ J X] J â
G°Î L U§Ó J G+Î�E!\^Î OILxL°J \^Î(áºQ�Ê8Êxà J GxQ�X J Ô J S J Ô�Q!G�Ê°à J Î(EFX)Y^Ô J Ê J \ J Ê�ÉÍE L Ê°à J G·á´G·Ê J X M UµS J \
Uµ\³Ê°à J Y L°J SRU§E O G©G J Î(Ê°U§E!\-ä K E L°J E�S JNLNP U�Ê�U§\FÊ L E´] O Î J G�Q�\ J Ì Ô J S J Ô¡E�É»Î�E!\^Î OILxL°J \^Î(áFäVå;à J
O G J E�É0Î(E!Ô§E O^L°J])Ê°E!ã J \^G:XZE´] J ÔlG:Î(E!\[Î OILxL°J \RÊ O G J�L:L°J � OIJ G·ÊxG©E�É»Q)Î(EFXZYIÔ J Ê J G JNL SVUlÎ JFP QFG
U�ÊBÎNQ�\ZÓ J G J�J \ZUµ\)Ê°à JQ¹	º
¼ º�½æ¾ ¹W¿ ¹	º1ÀvÁ1Â ½�º Ê L Q!\^G·UµÊ°U§E!\ P Ê°à^Q�ÊBÎ�Q�\ � LxJ G J S JNL Q!ÔFÊxE!ã J \^G0É L E!X
YIÔ§QFÎ Jt¿YÉ1Â ¾ Ì�¹»º
À�Ò�ÈIÀ:SIº1ÀvÁ1Â ½�º�LxJ Y L°J G J \FÊxUµ\ M G J S J�L Q�Ô O G J�L�LxJ � OIJ G·ÊxGNä
d �°L-Ù[_yÚ�ÙªR P�×+Ý�L�Ù[L'nRÜ�V�Ø[n
å;à J8LxJ G O ÔµÊxG©Y L°J G J \RÊ J]5Uµ\¼ÊxàIUlG:G J Î(Ê°U§E!\5à[QTS J Ó J�J \6E!ÓIÊxQ�U§\ J]ZÉ L EFX Ê°à J Î(EFX)Y^Ô J Ê J \ J ÊxG
Ê°à^Q�Ê�X)E´] J Ô�Ê°à J¼J�� Q�XZYIÔ J G�Ù�Ê°à J Î�E!XZYIÔ J Ê J \ J Ê�Êxà^Q�Ê�XZE´] J ÔlG­Êxà J Î�QFG J U§\îÌ�à^U§ÎyàîÊ°à J
G·á´G·Ê J X UlG O G J] ÓVáîE!\ J6O G JNLNP Ì�àIE UlG	Q�Ê·Ê J \^] J] ÓVápEF\IÔµáîE!\ J X¼Q�ïdE L]´EFX)EAQ!\^]èÊ°à J
Î(E!XZYIÔ J Ê J \ J Ê;Ê°à[Q�Ê�XZE´] J ÔlG:Ê°à J ÎNQ!G J U§\�Ì�àIU§Îyà³Ê°à J G°á´GdÊ J X UlG O G J]³ÓVá6G J S JNL Q!Ô O G J�L G P
Ì�àIU§ÎyàAQ L°J Q�Ê°Ê J \[] J]ºÓVá5E!\^Ôµá³E!\ J X¼Q�ïdE L]´EFXZE^ä

15

P1
R

w
ai

t_
Sw

M
an

ag
er

P5
R

P6 R

P7 R

P8
R

w
ai

t_
U

se
rf

or
Se

rv
ic

eR
m

1

w
ai

t_
U

se
rf

or
C

at
al

og
R

P1
5

R

P1
6 R

P1
7

R
P1

8R

P1
9

R
m

1

P2
0

R

be
gi

n_
ad

d_
in

fo
_s

al
e

R

P2
2 R

P2
3 R

en
d_

ad
d_

in
fo

_s
al

e
R

P2
5

R
m

1

P2
6

R
P2

7 R

w
ai

t_
B

ro
w

se
r

R

P2
9

R

P3
0

R

P3
1

R

w
ai

t_
A

lf
re

d

P3
5 R

P3
6

R

P3
7R

P3
8R

P3
9

R

P4
0

R

P4
1 R

P4
2 R

P4
3 R

P4
6

R

P4
4

R

P4
5

R
P4

7 R

P4
9 R

P4
8

R

P5
0

R

P5
1

R

P5
2

R

P5
3

R

P5
4 R

P5
5

R

P5
6

R
br

ow
se

r.
re

pl
y_

re
m

ot
e

go
to

_M
U

_P
la

ce
2

ge
t_

in
fo

ob
se

rv
e_

G
U

I_
ca

ta
lo

g

m
or

e_
in

fo
rm

at
io

n_
re

m
ot

e

go
to

_M
U

_P
la

ce

go
to

_S
w

_P
la

ce

ad
d_

in
fo

_s
al

e

sh
ow

_c
at

al
og

_G
U

I

cr
ea

te
_c

at
al

og

ad
d_

in
fo

4

cr
ea

te
_s

al
es

m
an

ad
d_

in
fo

3

ad
d_

in
fo

2

ad
d_

in
fo

re
fi

ne

cr
ea

te
_B

ro
w

se
rA

ge
nt

cr
ea

te
_G

U
I

br
ow

se
r.

re
pl

y_
lo

ca
l

in
fo

_n
ee

d_
tr

av
el

in
fo

_n
ee

d_
lo

ca
l

se
le

ct
_s

w

re
fi

ne
_c

at
al

og

no
t_

in
fo

_n
ee

d

sa
le

sm
an

.r
ep

ly

re
qu

es
t

se
le

ct
_s

w
_b

ro
w

se
r

re
fi

ne
_c

at
al

og
_b

ro
w

se
r

se
le

ct
_s

w
_s

er
vi

ce
ge

t_
ca

ta
lo

g

t3
8

t3
7

t3
6

el
ec

tr
on

ic
_c

om
m

er
ce

no
t_

in
fo

_n
ee

d_
or

_l
oc

al in
fo

_n
ee

d_
tr

av
el

1

m
or

e_
in

fo
rm

at
io

n_
lo

ca
l

de
le

te
_b

ro
w

se
r

be
gi

n_
ec

en
d_

ec

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x><

x>

<
x><
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x> <
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x> <
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x>

<
x> <
x>

<
x> <

x>

<
x>

<
x>

<
x>

<
x>

R
:c

re
qu

es
t:c

S:
m

m
1:

m

¤`¥�¦ ¦�§(�´¦ ¯�®Rg�sycNª�cN«Fmdg�f���g°b�mdr[iFgxb�klc�m©bd®Fg:¨�®RcNª�g�|}�!|}bdgyn

16

ß}Ê»UlG»E!ÉIE OIL Uµ\RÊ J�LxJ G·Ê7Ê°E­G·Ê O]´á�Êxà J G°á´GdÊ J Xc�°õ(ú>�Iñ�øIú�õ�ùjóËðZõ©U§\�Êxà J Y L°J G J \^Î J E!É[Q O G JNL
L°J � O^J G·ÊNä�å7E­EFÓ´ÊxQ!Uµ\�Ê°à J;LxJ G°Y[EF\^G J ÊxUµX J!P � L G·Ê�Ê°à J Êxà L E OIM à^Y O Ê�E�É[Ê°à J=¹	º1¼ º�½�¾ ¹	¿ ¹»º
À�Á
Â ½#º
Ê L Q�\^G°U�ÊxUµEF\ P Uµ\AÊxà J \ J Ê­G·á´G·Ê J X P Ì�UµÔ§Ô�Ó J Î�Q!Ô§Î O Ô§Q�Ê J]AÓVá�Î�E!XZY O ÊxUµ\ M Ê°à J G·Ê J Q!]´á�GdÊyQ�Ê J
]´U§G·Ê L U§Ó O Ê°U§E!\èE!É©Êxà J U§G°E!XZE L YIà^U§Îe5�ñ�ø[ùuóËøª0^ñ�0Vú��-óËð¼õ�,Òö��.�Fñ�Üf5�9Iö�óËø é W å KîW í�Ì�U�Êxà7��xõxö�ù­�[<hg û H�þàÙ"�^\^Q!ÔµÔ§á P Ê°à J U§\VS JNL G J E�É[Ê°à J Y LxJ SVU§E O G L°J G O Ô�Ê M U§S J G-Êxà J G·á´G·Ê J X LxJ G°Y/E!\^G J
Ê°U§X J ä4aAõ�
Bö�ø^ù0ù�ñi��ø/ñ

8
'9Vó­�+9ºö��°õ+ù�9Iõ­òyñ�ùjùuôµõ�ø/õ+�D�Tú+ñ	��ù�9Iõ8úC&Túyù�õ�ð ö�ø�*	ó­*!õ�ø^ùjó �D&	ù�9Iõ�ó:�
óËð\�^ñ���ù�ö�ø��xõ�äNå;à J�LxJ Q LxJ ÊdÌ©E;Y/EFGxG·U§ÓIÔ J Y^Q L ÊxG�Ì�à^U§Îyà�ÎNQ�\�] J Î L°J Q!G J G·á´G·Ê J X�Y JNL ÉÍE L X¼Q!\^Î J ä
@»U L GdÊ P Ê°à J Ê L U§Y^G�E�ÉIÊxà J ì L E�Ì�G J�L É L EFX Ê°à J z O G J�L YIÔlQ!Î J�| ÊxE+Êxà J z°G°E�ÉËÊdÌ;Q LxJ YIÔlQ!Î J�| é�Q!\^]
Ì:QTá)Ó^Q!ÎyãIí�Uµ\³E L] J�L Ê°E	EFÓ´ÊxQ!Uµ\6\ J Ì½ÎNQ�ÊxQ!ÔµE M GNäRÈ J Î(EF\^] P Ê°à J�O G J�LBLxJ � OIJ GdÊyG�ÉÍE L ÎNQ�ÊyQ�Ô§E M
L°J �^\ J X J \FÊyG P Ó J ÎNQ O G J Gyæ�à J U§G�\IE�Ê�GxQ�Ê°UlG	� J]ºÌ�UµÊ°à�U�Êwä
ß�\ E L] J�L ÊxE GdÊ O]´á=Ê°à J ÊdÌ:E Y/EFGxG·U§ÓIÔ J Ó[E!Ê·Ê°Ô J \ J Îyã´G P Ì J à[QTS J] J S J Ô§E!Y J] QèÊ J G·Ê

ÊxQ�ãVU§\ M Uµ\RÊxEZQFÎ�Î�E O \RÊ;Ê°à J ÉÍEFÔµÔ§E�Ì�U§\ M Y[ERG°G°UµÓ^UµÔ§U�ÊxU J G�Ç
ü!ä=�¶à J \pù:9^õ � �°ñ�
�ú�õ#�+ø�õxõ+*�ú�ö)ø/õ#
d�yö�ù}ö�ôµñ°÷Òé O \[] J�L:L°J � OIJ G·ÊBE�É7Ê°à J+O G JNL í�Ê°à JNL°J Q LxJ
G J S JNL Q!Ô/Y/EFGxG°UµÓIU§Ô§U�ÊxU J G�Ç
y å;à J ì L E�Ì�G J�L à^QFG J \IE OIM à³Uµ\´ÉÍE L X¼Q�Ê°U§E!\5ÊxE¼Q!Î�Î�E!XZYIÔ§U§G°à³Ê°à J ÊxQFG·ã6E L U�Ê�\ JNJ]IGÊ°EîQ!G°ãÒÉÍE L Êxà J U§\´ÉÍE L X¼Q�ÊxUµEF\-ä7ß}ÊZUlG	X J QFG O^L°J]èÓRápÊ°à J�Ñ"È
¾ Â²Ñ�Ò�È Ñ�º�º�Ø Ê L Q�\^G°Uµâ
Ê°U§E!\7äª� J à^QTS J Î(EF\^G°U§] JNL°J]�Q�\�z°Uµ\RÊ J ÔµÔ§U M!J \RÊ8ì L E�Ì�G JNL�| Ì�àIUlÎyàÒ]´E J G8\IE�Ê�\ J�J]
U§\´ÉÍE L X¼Q�Ê°U§E!\³Ê°à J ��3kj¾E�É0Ê°à J ÊxUµX J G�Ê°à^Q�Ê:Êxà J�O G J�L QFG·ã´G:ÉÍE L Q LxJ �^\ J X J \RÊNä

y �¶à J \ Êxà J ì L E�Ì�G J�L \ J�J]IG)Uµ\´ÉÍE L X¼Q�Ê°U§E!\ ÊxEpY J�L ÉÍE L X Ê°à J ÊyQ!G°ã P UµÊ¼X¼QTá L°J â
� OIJ G·Ê�U�Ê�ÓVáÒQ{�°õ�ðZñ�ù}õ ���°ñ��yõ�*
0A�°õ��yö�ôËô+é�ê Ï:W í)é LxJ Y LxJ G J \RÊ J] U§\pÊ°à J \ J Ê�G·á´G·â
Ê J X¾ÓRá	Ê°à J;Â²Ñ�Ò�È Ñ�º�º�Ø ¼ ÈI½�É}¼ Ê L Q!\^G°U�ÊxUµEF\[í0E L UµÊ©X¼QTá	Ê L QTS J ÔVÊxà L E OIM àZÊ°à J \ J Ê�ÊxE
Ê°à JlSAÈ
Ò:¾>¿YÉ
À�º m}¼ É�½�º é LxJ Y LxJ G J \RÊ J]¼U§\6Êxà J \ J Ê8G°á´GdÊ J X ÓVá¼Êxà JÖÂ²Ñ�Ò�È Ñ"º#º�Ø ¾æÀ:É�Á"º
¼
Ê L Q�\[G·UµÊ°U§E!\[í�Ê°E MFJ Ê�Êxà J U§\´ÉÍE L X¼Q�ÊxUµEF\5Q�\^])Êxà J \¼Ê L QTS J ÔIÓ[Q!Îyã�Ê°E�Êxà JCü/Ì ý'¼ É�½�º ä
ß�\5ÊxàIUlG©ÎNQ!G J!P Ì J à[QTS J Î�E!\^G°U§] J�LxJ])ÊdÌ:E	G°Î J \^Q L U§EFGNäq@0U L G·Ê P Q�Y L E!Ó[Q�ÓIU§ÔµUµÊdá J � O Q!Ô
Ê°Ek3Iä ?	Ê°E)Y JNL ÉÍE L X Q�ê Ï:W+P G°E)Q�Y L E!Ó^Q!ÓIUµÔ§UµÊdá J � O Q�Ô[Ê°E�3Iä ��ÊxE	Ê L QTS J Ô[Ê°à L E O^M à
Ê°à J \ J ÊwäRÈ J Î(EF\^] P Êxà J E!Y^Y[ERG·UµÊ J G°U�Ê O Q�ÊxUµEF\ P Q­Y L E!Ó[Q�ÓIU§ÔµUµÊdá J � O Q�Ô´ÊxE�3Iä ��ÊxE�Y JNL â
ÉÍE L X Qºê Ï:W+P Ê°à J�LxJ ÉÍE LxJ Q6Y L E!Ó[Q�ÓIU§ÔµUµÊdá J � O Q!Ô»ÊxEG3^ä ?6Ê°E³Ê L QTS J Ô7Êxà L E OIM à Ê°à J
\ J ÊNä

2´ä�å7E5Ê J G·Ê�Êxà J 0Vú�õ��;�xõ­)Bø/õ�ðZõ�ø^ù��°õ+·�0^õ(ú�ù P Ì J à^QTS J Î(EF\^G·Ul] JNL°J]6ÊdÌ:E5]´Uvu JNL°J \RÊ8Y[ERG°G°Uµâ
ÓIU§ÔµUµÊ°U J GNä ÿ \äz J�� Y J�L Ê O G J�L+|�LxJ � OIJ GdÊxUµ\ M Q�X J Q!\6E�É�ü�3 LxJ �^\ J X J \RÊxG P Q�\^]5Q�z·\^Q!UµS J
O G J�L+|�LxJ � OIJ GdÊxUµ\ M Q)X J Q!\ºE!É�ý13 LxJ �[\ J X J \RÊyG�ä

?Iä ��9Iõ8ú�ó � õ­ñ	��ù:9^õ �xö�ù}ö�ôµñx÷	EFÓ´ÊxQ!Uµ\ J]�ÓRá	Ê°à J ì L E�Ì�G JNL ÎNQ�\ZQ�ÔlG·E�] J Î LxJ QFG J Ê°à J G°á´GdÊ J X
Y JNL ÉÍE L X¼Q!\^Î J ä�� J à^QTS J�O G J]F�[S J]´U²u J�LxJ \RÊ�G·U�� J G+ÉÍE L Ê°à J Î�Q�ÊxQ!ÔµE M Ç0ü>n­ÓVáRÊ JFP 2Fýn­ÓVáFÊ J G P ý
3�n­ÓVáRÊ J G P ��ýLn­ÓVáRÊ J G�Q!\^]îü�3q3Ln­ÓVáRÊ J G�ä

H^ä ��9Iõ­ú>�^õyõ�*Zñ	�+ù�9Iõ�ø�õ(ùBU§G©S JNL á�UµXZY/E L ÊxQ�\RÊ©Ê°E	Ul] J \FÊxU�ÉÍá¼Ó/E�Ê°Ê°Ô J \ J Îyã´G�äq� J à^QTS J Î(E!\Iâ
G·Ul] JNL°J]6ÊdÌ:E5Î�QFG J G�ÇIQZ\ J Ê8Ì�UµÊ°àAQ¼G°Y JNJ]�E�É;ü�3q3�n­ÓRáRÊ J G�æ�G J Î�ä-é#zdÉ�QFGdÊ | Î�E!\I\ J Î�ÊxUµEF\
G·Y J�J]^í;Q�\[]6Q)\ J Ê�Ì�UµÊ°à�QZG·Y J�J]6E!É©ü�3>n­ÓVáRÊ J G�æ�G J Î!ä/é#z°G°ÔµE�Ì | Î(EF\I\ J Î(Ê°U§E!\ºG·Y J�J]^í�ä
@»U M!O^L°J ü��^éuQFí�G°àIE�Ì�G	G°á´GdÊ J X L°J G·Y/E!\[G J ÊxUµX J éÍU§\ XZUµ\ O Ê J Gyí P ÉÍE L Ê°à J \ J Ê)Uµ\�@»U M â

OIL°J ü�? P G O YIY[ERG·U§\ M zdÉ�Q!G·Ê | Î(E!\^\ J Î(Ê°U§E!\ G°Y JNJ] P z J#� Y J�L Ê O G J�L+| Q!\^] Q�\ z°Uµ\RÊ J Ô§ÔµU M!J \FÊ |
ì L E�Ì�G J�L äS5+\ J E!É+Êxà J ÔµU§\ J G L°J Y L°J G J \RÊxGZQîY L EFÓ^Q�Ó^UµÔ§U�Êdá J � O Q�Ô;ÊxEã3Iä �AÊxEîÊ L QTS J Ô�Q!\^]
3Iä ?)Ê°E5Y J�L ÉÍE L X Q5ê Ï:W+P Êxà J E!Ê°à JNL ÔµU§\ J�LxJ Y L°J G J \FÊyG;Ê°à J E!YIY/EFG°UµÊ J G°U�Ê O Q�ÊxUµEF\-äÔ� J Î�Q!\
E!Ó^G J�L S J Ê°à^Q�Ê�Ê°à J�LxJ Q L°J G°X¼Q�Ô§Ô-]´Uvu JNL°J \^Î J G�Ó J ÊdÌ JNJ \ºÊ°à J ê Ï:W Q�\^]³Ê L QTS J Ô¡GdÊ L Q�Ê JNM U J GNä
È O ÎyàèQ³]´Uvu J�LxJ \^Î J UlG�] OIJ Ê°E³Ê°à J)L E O \^]AÊ L U§YpE!É�Ê°à J Q M!J \FÊwä ÿ G+Ê°à J Q M!J \RÊ�G·U�� J]´E J G
\IE�Ê5Îyà^Q!\ M!JFP ÊxàIU§G¼]IU²u J�LxJ \^Î J UlG)\IE�Ê LxJ Ô J S�Q�\RÊ)ÉÍE L Ê°à J³M ÔµEFÓ^Q�Ô�G°áVG·Ê J X>Y JNL ÉÍE L X¼Q!\^Î J ä
å;à O G P Ì J G°àIE�Ì¶Êxà^Q�Ê�Êxà J­O G J E!É»XZE!Ó^UµÔ J Q M!J \RÊxGBÉÍE L Ê°à^U§G:ÊyQ!G°ã6]´E J G:\IE!Ê�] J Î LxJ QFG J Ê°à J
Y JNL ÉÍE L X¼Q�\[Î J ä

17

op
q r
s t
u v
w x
y z

{ | } ~ � | � ~

�� � �� ��
� � � � � � � � � �� � � � � �� � � � � � � � ¡¢ £ ¤ ¥ ¦ §
¨ © ª « ¬ ­ ® ¯ ° ± ² ³ ´ ® ¯ µ ¶ · ¸ ¹ º » » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Ä Æ Ä Ç È É Ê Ë Ì Í È Î Ï Ð Ï Ï Ï ÑÒ Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ Ø Ù ß à á â ã á à á ä å æ ç è ç é ê ë ì ê í î ï ð ñ ò ó ô õ ö ÷ ø ù ú ú û ü

ý þ ÿ � � � � � � � � � 	
 � �
 � � � � � � � � � � � � �� � � � �

�

!
"

#
$

%
&
'
(

) *

+ , - . / , 0 .

12 3
45 6
7

8 9 : ; < = > ? @ A
B C D E F G

H I J K L M N O P Q
R S T U V W

X Y Z [\] ^ _ ` a b c d ^ _ e f g h i j k f l m n l o l p q r s t u u u v w x y z v y { | } ~ ~ �
� ¡ ¢ £ ¤ ¥ ¦ § ¨

© ª « ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å ÅÆ Ç È É Ê
Ë
Ì

Í Î
Ï Ð

Ñ Ò
Ó Ô
Õ Ö
× Ø

Ù Ú

Û Ü Ý Þ ß Ü à Þ

áâ ã
äå æ

ç

è é ê ë ì í î ï ð ñ
ò ó ô õ ö ÷

ø ù ú û ü ý þ ÿ � �
� � � � � �

� 	
 � �
 � ! " # $! % & ' () * + , - . / 0 1
2 3 4 5 6 7 8 9 : ; < = > 8 9 ? @ A B C D C C E E F G H E I J K L M N J O P Q R S P Q P T U V W X T

Y Z [\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u uv w x y z

{
|

}
~

�
�

�
�

� � � � � � � �

�� �
�� �
�

� � � � � � � � � �
� � � � � �

 ¡ ¢ £ ¤ ¥ ¦ § ¨ ©
ª « ¬ ­ ® ¯

° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ¶ · ½ ¾ ¿ À Á Â Ã Ã Ã Ä Å Æ Ç È É Ê É Ë Ì Í Î Ï Ð Î Ñ Ò Ó Ô Ô Õ Ö Ò Ô × Ø Ù × Ú Û Ü Ý
Þ ß à á â ã ä å æ ç è é ê ä å ë ì í î ï î ð ð ñ ò ó ô õ õ ò ô ö ÷ ø ù ú ú ù û ü ý þ ÿ � � � ý � � � � � � � 	

� �
 � � � � � � � � � � � � � � � � � � ! " # $ % & ' '() * + ,

-/.10 24365

7/819 :/;=<

¤`¥�¦ ¦�§
E^¦ � gy|�a´cNiR|�g©bdrtn�g�klc�m q f!r?>Ig°mdgyi�b�|�sygyi q mdrtcw|�¨�r�bd® q iA@jrti�bdgyªtªtr�vNgyi�b`ÿ»mdc�¨�|�gxmCB!eED qGF0q iRf
DË¬ F mdgyaFmdgy|�gxi�b q @uk q |}bCB8sycwiFiRgys°bdr�cNi�|�a´gyg�fI~HDËs F¡q iRfIDÍf F¡q @j|�ªtc�¨JB8sycwiFiRgysxbdrtcNi�|�a´gyg�fLK6D qMF-q iRf
DËs F�q iN@ugPO!a´gxm�bB«R|�gxmCB q iVfQDË¬ F�q iRfRDÍf F�q @ji q rt�Tg�«R|�g°mCBFe

@»U M!O^L°J ü��[éÍÓ[í:G°àIE�Ì�G;G·á´G·Ê J X LxJ G°Y[EF\^G J Ê°U§X J éÍU§\�X)U§\ O Ê J Gxí P G O YIY/EFG°Uµ\ M z·É�Q!G·Ê�Î(E!\Iâ
\ J Î(Ê°U§E!\ |^P z°Uµ\RÊ J ÔµÔ§U M!J \RÊ | ì L E�Ì�G J�LwP z·\[Q�U§S J�O G J�L+| ä/å;à J Ô§U§\ J G+à^QTS J U§] J \RÊ°UlÎ�Q�Ô�X J Q!\IU§\ M
Ê°à^Q!\ºU§\~@0U MFOIL°J ü��^é�QRí�ä´å;à J ÊdÌ:E¼G·EFÔ O ÊxUµEF\^G�G·Ê°U§ÔµÔ LxJ X¼Q!Uµ\ºU§] J \RÊ°UlÎ�Q!Ôuä
ÈVE!X J EF\ J Î�E O Ôl] G O G·Y J Î(Ê8Êxà^Q�Ê+Ê°à JNL°J�J�� U§G·Ê�G°X¼Q�Ô§Ô»]´Uvu J�LxJ \^Î J G+Ó J Î�Q O G J E!É�Ê°à J \ J Ê

G·Y J�J]¡ä�È´E P Ì J à^QTS J] J Î LxJ QFG J]pÊ°à J \ J ÊZG·Y J�J]èÊ°E=ü�3 n­ÓRáRÊ J G�æ�G J Î�ä P é�@»U M!O^L°J G5ü��[é�Îwí
Q�\^]pü��[é�]^í°í�äIß}Ê8ÎNQ�\ºÓ J G J�J \ºà^E�Ì½Ê°à J]´U²u J�LxJ \[Î J G�G·Ê°U§Ô§Ô L°J X¼Q�U§\³\IEF\ºG°U M \IUv�[Î�Q!\RÊNä

@»U§\^Q!ÔµÔ§á P @0U MFOIL°J ü�� L°J Y L°J G J \RÊxGBQ�Ê J GdÊ:ÉÍE L Q�\�z·U§\FÊ J Ô§ÔµU M!J \RÊ:ì L E�Ì�G J�L+|IP Q�\8z J�� Y JNL Ê |
O G JNLNP QpY L EFÓ^Q�Ó^UµÔ§U�ÊdápÉÍE L ê Ï;W J � O Q!ÔBÊxEm3^ä � Q�\^] J � O Q�Ô:Ê°Em3Iä ?AÊxEÒÊ L QTS J Ôjä'D�E�Ì P Ì J
à^QTS J Ê J G·Ê J] Êxà J G°á´GdÊ J X ÉÍE L Q]´Uvu J�LxJ \RÊ6\ O X	Ó J�L E�É L°J � OIJ G·ÊxG L Q�\ M U§\ M É L EFX ü�ÊxE
H P Êxà O G�Êxà J Î�E!Ô§E OILxJ]ºXZE´] J Ô0U§\�@0U MFOIL°J ü"��à^QFG�Ó J�J \ O G J]¡ä65+Ó^G JNL S J Ê°à^Q�Ê+Ì�à J \AÊ°à J
\ O X	Ó J�L E�É L°J � O^J G·ÊxG»U§G�U§\^Î LxJ QFG J] P Ê°à J;LxJ G°Y[EF\^G J Ê°U§X J ÉÍE L�J Q!Îyà L°J � OIJ G·Ê0U§\^Î L°J Q!G J G P Ujä J ä P
ÊxQ!G°ã´G�Î�Q!\I\IE�Ê J#�´J Î O Ê J Î(EFXZYIÔ J Ê J ÔµápUµ\èY^Q L Q!ÔµÔ J Ôjä ÿ ÔµÉ L°J] Q�\^]pÊxà J ÈVE�ÉËÊdÌ;Q LxJ¼K Q�\[Q M!JNL
Q LxJ \IE!ÊZ] O YIÔµUlÎ�Q�Ê J] Ì�UµÊ°à=G°U§X O ÔµÊxQ!\ J E O G LxJ � OIJ GdÊyG�ä�å;à O G P Êxà J á Q L°J Ê°à J Ó[E!Ê·ÊxÔ J \ J Îyã
ÉÍE L Êxà J] J G°U M \ J] G°á´GdÊ J X Ì�U�Êxà L°J G·Y J Î(Ê�Ê°EÒÊ°à J \ O X	Ó J�L E�É�Î(EF\^Î OILxLxJ \RÊ L°J � OIJ G·ÊxG	E�É
Ê°à J G J�L SVU§Î J ä¡å;à J�LxJ ÉÍE L°JFP Ê°à J \ J#� Ê�G·Ê J YèUµ\pÊ°à J Y J�L ÉÍE L X¼Q�\^Î J Q!\^Q�Ô§á´G·UlG�E�É©Ê°à J XZE´] J Ô
Ì©E O Ô§]�Ó J ÊxE6Î(EF\^G·Ul] JNL G J S JNL Q!Ô-X¼Q�ïdE L]´EFX)ERG­éÍÌ J]´E5\IE!Ê8U§\^Î(Ô O] J à J�LxJ] OIJ Ê°E6G°Y^Q!Î J
ÔµU§XZU�ÊyQ�Ê°U§E!\[Gxí(ä

18

ST
U V
W
X Y
Z [
\]
^ _
` a

bc de
f gh

i j k l m no p q r s t u vw x x y z { | } ~

� ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ­ « ® ¯ ° ± ² ³ ´ µ ± ¶ · ¸ ¹ ¹ º · º » º ¼ ¼ ½ ¾ ¿ À Á Â ¿Ã Ä Ä Å Æ Ç È É Ê Ë Ì Í Ë Î Ï Ð Ë Ñ Ò Ó Ô Õ Ö × Ø Ù Ö Ú Û Ü Ý Þ Ý Ú ß à á â á ã ã ä å à

æ ç è é ê è ë ì í î ï ð ñ ï ò ó ô õ ö ÷ ø ö ù ú û ü ý þ ÿ ý � �

¤`¥�¦ ¦�§
G^¦ � gy|�a´cwiF|�g�bdrtn�g�klc�m q i @ur�i�bdgyªtªtrtvwgyi�btÿ»mdc�¨�|�gxmCBF~ q i @jgPO!a´gxm�b�«F|�gxmCBF~ q @uk q |}bCB¼sycNiF²
iFgysxbdrtcwi q iVf q ªt|�c�fFr >Igxmdgxi�b�i�«Fn�¬´gxm�c�k�mdg�±�«Rgx|}b�e

� lpÚ©×8ÝOV·Ü�nVÞdÚB×�nãP�×8Û _�Ü�Ù´Ø[ZgL-ÙÐaîÚ�Ù��
å;à J X¼Q�U§\ M EFQ!ÔIE�É/Ê°à^U§GBY^Q�Y J�L Ì;Q!G�Ê°E�Y LxJ G J \RÊBQ�\5Q!YIY L E � UµX¼Q�ÊxUµEF\�ÊxE J S�Q�Ô O Q�Ê J Y J�L ÉÍE L â
XZQ!\^Î J U§\º] J G°U M \6XZE!ÓIU§Ô J Q M!J \FÊ�G°E�ÉËÊdÌ;Q LxJ ä}� J à^QTS J+O G J]ºQ!G©Ê J G·Ê�QZG°á´GdÊ J X] J G·U M \ J]
ÉÍE L Y L E�SVUl]´Uµ\ M X)EFÓIU§Ô J Î�E!XZY O Ê J�L+O G JNL G�Ì�U�ÊxàÒQ5G°E�ÉËÊdÌ;Q LxJ�LxJ Ê L U J S�Q!Ô7G JNL SVUlÎ J äÔ� J G O X�â
XZQ L UlG J Êxà J Î(EF\RÊ L UµÓ O Ê°U§E!\^G:U§\³Êxà J ÉÍE!Ô§Ô§E�Ì�Uµ\ M UµÊ J XZGNÇ
y ÿ XZE´] J Ô!Ê°E J S�Q!Ô O Q�Ê J G°E�ÉËÊdÌ;Q LxJ Y JNL ÉÍE L X¼Q�\[Î J à^Q!G-Ó JNJ \�U§\FÊ J�MFL Q�Ê J]+U§\­Ê°à J G°E�ÉËÊdÌ;Q LxJÔµUµÉ J Î(á´Î(Ô J ä�ß}Ê�à^QFG0Ó JNJ \Z]´E!\ J U§\	Êxà J;J Q L Ô§á�GdÊyQ M!J G7E!É^Êxà J X)E´] J ÔµÔ§U§\ M Y L E´Î J GxG�äTå;à O G P
Ì�à J \ZY J�L ÉÍE L X¼Q�\^Î J E L É O \^Î�ÊxUµEF\^Q�Ô LxJ � O U LxJ X J \RÊxG�Îyà^Q!\ M!JFP U�Ê�Ì�U§ÔµÔ^Ó J�J Q!G°á�Q�\^]�Ô J G°G
J�� Y J \^G°UµS J Ê°E�QFG°G O X J Ê°à J X�ä K E L°J E�S J�LwP Ê°à J Q!YIY L EFQFÎyà	Ì�U§ÔµÔ[Y JNL XZUµÊ�Ê°E�EFÓ´ÊxQ!Uµ\)Ê°à J
Y JNL ÉÍE L X¼Q!\^Î J � M!OILxJ G»U§\)Q!\�Q O Ê°E!X¼Q�Ê°UlÎ�Ì;QTá/Ç�ÈRÊyQ L Ê°U§\ M É L E!X Êxà J Y^Q�â Ð8K Ñ XZE´] J ÔlG P
Ê°à J Î(EFX)Y/E!\ J \RÊ Ï�J Ê L U©\ J ÊyG	Q L°J G°á´GdÊ J X¼Q�ÊxU§ÎNQ�Ô§ÔµáîQ!ÎyàIU J S J] P Q�\^]îÉ L E!X%Ê°à J G J Ê°à J
\ J Ê8G°á´GdÊ J X P �^\[Q�Ô§Ôµá¼Êxà J \ J Ê8G·á´G·Ê J X Q�Ô§ÔµE�Ì�G:Y J�L ÉÍE L XZQ!\^Î J­J STQ!Ô O Q�Ê°U§E!\7ä

y ß�\ÒE L] JNL ÊxE³Q!YIYIÔ§á Q�\VáºÊ J Îyà^\IU�� OIJ Ê°E�Q�\[Q�Ô§áVG J�L U M E L E O G°Ô§á³G°áVG·Ê J X Y JNL ÉÍE L X¼Q!\^Î JFPÊ°à JZO G J E�É:Q5ÉÍE L X¼Q�Ô�XZEV] J Ô�UlG�Î L°O Î(UlQ�Ôjä¡È´E P Ì J à^QTS J	O G J] Ï�J Ê L U�\ J ÊyG+Ê°E�] J G°U M \
G·E!ÉËÊdÌ:Q L°JFP QTS!E!Ul]´U§\ M Ê°à J�Ð+K Ñ Q�X�ÓIU MFO UµÊdá!ä

y W E!\^Î OILxL°J \^Î(áèUlG�Q!X	ÓIU M!O E O G°Ôµá J�� Y LxJ GxG J] U§\ Ð+K Ñ�P Ó O Ê¼Ì�à J \ Êxà J Ê L Q!\^G°Ô§Q�Ê°U§E!\Ê°E Ï�J Ê L U�\ J ÊxG5UlG5Y J�L ÉÍE L X J] P Q Î(EF\^Î O^L°LxJ \RÊ¼Ì J ÔµÔµâ�] J �^\ J] XZE´] J Ô+U§G M Q�U§\ J] P G°E
]´Uvu JNL°J \FÊ�ãVU§\^]IG;E!É�Î�E!\^Î OIL°LxJ \RÊ�G·á´G·Ê J XZG�ÎNQ�\�Ó J Q�\^Q!Ôµá´G J]¡ä

y å;à J X)E´] J ÔµÔ J] J�� Q!X)Y^Ô J Y LxJ G J \RÊxG:Q�Î�E!XZYIÔ J�� G°áVG·Ê J X Ì�àIUlÎyà6UlG J#� Y J \^G·U§S J Ê°E)U§X�âYIÔ J X J \RÊNäQ5 OIL Q!YIY L EFQ!Îyà=E
u J�L G5Q�\¶Q!\^Q�Ô§áRÊ°UlÎ�Ì:QTá E!É J S�Q�Ô O Q�ÊxUµ\ M G O Îyà ãVUµ\[] E�É
G·á´G·Ê J XZG+Ì�UµÊ°àIE O Ê�à[QTSRU§\ M Ê°E6U§XZYIÔ J X J \RÊ�G J S JNL Q!Ô-Y L E�Ê°E!ÊdáVY J G�ä�å;à J)L°J G O ÔµÊxG�Î(EFUµ\Iâ
Î(Ul] J Ì�U�Êxà�Ê°à^EFG J EFÓ´ÊxQ!Uµ\ J]�ÓVá­Ê°à J ÿ D+å ÿ ê W å;ß W ÿ] J G°U M \ J�L G�äwå;à J U L�L°J G O Ô�ÊyG7Ì J�LxJ
E!Ó´ÊyQ�U§\ J]³Ì�UµÊ°àAU§X)Y^Ô J X J \RÊ J]ºY L E�ÊxE�ÊdáVY J GNä

W E!\^Î J�L \IUµ\ M É O Ê OILxJ Ì©E L ã P Ì J Q L°J U§\FÊ J�LxJ G·Ê J]³U§\ºÊ°à J ÉÍEFÔµÔ§E�Ì�U§\ M EFÓ´ï J Î(Ê°U§S J G�Ç
y ÈVE�ÉËÊdÌ;Q LxJ] J G·U M \ U§G�Q Î�E!XZYIÔ J�� ÊxQFG·ã�ä;ÈVE P Ì J Q!]IS!E´Î�Q�Ê J ÉÍE L Êxà JpLxJ�O G J E!É�Ê°à JãV\IE�Ì�Ô J] M!J Q!Î�� O U LxJ]³U§\6Êxà J Q�YIY^ÔµUlÎ�Q�Ê°U§E!\�]´E!X¼Q�U§\-ä´ß�\³Ê°àIUlG�Ì;QTá P Y^Q�Ê·Ê JNL \[G;Ì�UµÔ§Ô-Ó J
Uµ\RÊ L E´] O Î J] Ê°Eè] J G°U M \=G°E�ÉËÊdÌ;Q LxJ6O G°U§\ M Q M!J \FÊyG�ä�_BQFÎyà] J G·U M \=Y^Q�Ê°Ê J�L \ Ì�U§Ô§Ô;] J Q�Ô
Ì�U�Êxà UµÊxG�E�Ì�\ Y JNL ÉÍE L X¼Q!\^Î J G°ãVUµÔ§ÔlG�ä�ÈVE P Ì J Ì�UµÔ§Ô:à^QTS J Q Y^Q�Ê°Ê J�L \] J G·U M \ Ô§U§Ó L Q L á
Ì�U�ÊxàºÊ°à J Y L E!Y J�L�O G J E�É0Ê°à J Y JNL ÉÍE L X¼Q�\[Î J Y^Q L Q�X J Ê J�L G�ä

y ÿ G	Ì J à[QTS J G°Q!U§] P»Ð8KÒÑ G J X¼Q�\RÊ°UlÎ�G�UlG�\^E�Ê] J �^\ J] ÉÍE L XZQ!ÔµÔ§á P G·EAE OIL Q�Y^Y L ERQ!ÎyàÓ L Uµ\ M G8QZÉÍE L X¼Q!Ô»G J X¼Q�\RÊ°UlÎ�G8Ó^Q!G J] E!\ Ï�J Ê L U»\ J ÊyG�ÊxE5XZE´] J Ô»Ê°à J G·á´G·Ê J Xºä/ß�\AÊxàIU§G
Q L Ê°UlÎ(Ô J!P Ì J à^QTS J Y L EFY[ERG J] L°O Ô J G	ÊxEèE!Ó´ÊyQ�U§\ Ê°à J�Ï�J Ê L U;\ J ÊyG�äS� J Ì�UµÔ§Ô�Ì©E L ãèU§\
Ê°àIUlG:ÔµU§\ J Ê°E M!J Ê;Q�ÉÍE L X¼Q�Ô^Ê L Q�\^G°ÔlQ�Ê°U§E!\5É L EFX Êxà J Y[Q�â Ð8K Ñ \IE�ÊyQ�Ê°U§E!\5Ê°E Ï�J Ê L U[\ J ÊxG
G J X¼Q�\RÊ°UlÎ�GNä

19

bÐL�_�L7Ù[L7×8Ý�L'n
���	� û³e#�6�}n�cwiFg'û q md| q i^~�
+e�ÿ q ª�¬´c!~ q iVf�
+e�$0cNi�bdgw~�
�������������������� ��!"�#� $�%&�"'(��)*�+�-,.����)/$0�213��)/!-$

� ��)/�4���&!3)5,6�27.��!5����!-89�&� �-�:��;&��� <6�&)/$0���=�>�38?<@�)/$ 7A!��+�-���-����!B�-C&��)D��8?�d~q�Y$Sû ¯[m q iR| q sxbdrtcwiR|
cNi-$0cwn�aF«Fbdgxm©{��F|}bdgxn�| ¸ D � ����E F ~RiRc!e F�~I��GIH � F#F�e

� F �
+e1ÿ0c�c�s·®[~�h·e@J q sxcw¬R|�cNi[~ q iRfKJFe � «Fn�¬ q «RvN®[~�L2MONQP��6$ RS�"'TMU�+'��	� $V���XWY������<6�����X�07.�"��Z
$ R2����)/$0���F~AJw«FiRg � ������~´�Tgxmd|�rtcNi � e G�e

� G �
+e1$0®Frtcwª q ~}$©e�`;«!bd®Rgyrtªtªtgxb�~@
+e\[Fm q iRsygx|�s°®Fr�iFrt|y~ q iVf�{´e�] q fRf q f^~6^6)*�+�-,.����)/$0�X_`�	�V��Z ����!-8K�"'
���#����<\!"��'a� ��)/������!T��C�8:8K��)/!-$0�989�+'��	�V� $5�\�a��7b7A� $0����)/$0���.�·~^h>c2cdc ¯[m q iF| q sxbdrtcwiF|�cwi/$0cwn­²
aF«Fbdgxmd| õ[¸ D � ����G F ~´iFcFe �#� ~ � G&EbG+H � G� ���e

� E �
+e"$0®Rrtcwª q ~@
+eb[!m q iRsxgy|�s°®FrtiRrt|y~ � e#
 q gxb q ~ q iVf;û³e � rt¬ q «Vf!cF~eNS!"���&)/^\12fhgbiVj#kYN2lm�-7.,\$0���#�
nm'�$V)*��!o�&� '3
o� �#� C�%I��!�����!Xp4$58K�"'X��� '(^.)*�+�-,.����)/$0��1o��)/!�$ f���)/�·~���gxm�k§cNmdn q iRsyg�c-� q ªt« q bdr�cNi¸qõ D � ���#q F ~AE"!+H� ��!e

� q � JFeT`;rtª�ªtgx��~ � eb[Fmdrtg�f!mdrts·®[~�¯:e�Jwrti[~ q iVf9JFe � cwªtr q ~`r=��sB�	��!-;���!`7.��!5����!-89���A���B89���&�-<\!"��8K���6)
���A'K8t�+'��	� $V���9)D�"�-,\�.$0u	<6���·~A��gxm�klc�mdn q iRsxg:c-� q ªt« q bdr�cNi D � ����� F ~ViRc!eAG�G!~ q+H@F# !e

� � `�eA$0cwªtgyn q i¼gxb£�©ªËet~SLmsVvI�"�)m��!-$*���.)D��'w'���;��	����7A89���6)Did)5,6�Bx�<\�-$/���U89��)5,.�+'N~^¹:¬
�}gxsxb�¹©mdr�²
gyi�bdg�fI~q�-mdgyi�bdrtsygX] q ªtªË~ � ����E!e

� ! � JFe � «Rn�¬ q «Fvw®	gxbY�©ªËet~`LmsVv+���)S��!-$*���6)D�"'y8t�+'��	� $V���y���A'z'b���-$����R~A�¡mdgyi�bdrtsygx²*] q ªtªÍ~ � ��� � e
� � � c�e
 q n�n q ~ � e6]©gyªtnZ~ � e6Jwcw®FiR|�cwi^~ q iVfaJ!e6{©ª�rt|�|�r�fFgx|y~�|:����$}���w1m��)/)D��!-�6�	k4n��}��8K���6)/�X���

!"��<@���bs��}�:�bsVvI�"�)0Z>�&!�$*���.)D�"'w�	�>��)/_2��!��°~I�:fRf!rt|�cwiF²0~ºgy|�ªtgx��~ � ���#q�e
� � � $©e#] q m�mdrt|�cNi[~N`�e�$0®Fgy|�|y~ q iVf ��e&��gxmd|�®Rgyi�¬ q «RnZ~bMU�#s	$/�}�o�������6)/�	kY��!"�o)5,6��C:�B�b�+�+'�$0'��"�e�d~

û)cN¬Rrtªtg�¹:¬
�}gxsxb:{��!|}bdgyn�|��!¯/c�¨ q m·fF|�bd®RgQ�¡mdcwv�m q n�n q ¬Rªtg�hji�bdgxmdiFgxb�~ � ����!�~´aFa[e@E" +H�E��!e
��� � � h·ebJ q sycw¬F|�cwi^~1û³e�$0®!mdrt|}bdgyiR|�cNi[~���e#Jw®RcNiR|�|�cNi[~ q iVf9
+e�¹:�Tgxmdv qwq m·fI~�L�sVvI�"�)0Z>��!-$*���.)D��'?�����-)0Z

_2��!"�?���\��$5�e����!�$5�\��k4
�<@�	�T�-�&���:'�!�$5;������-7b7A!"�+�#�-,�~[�:fFfFrt|�cwi!²0~�gy|�ªtgx��~ � ���bF�e
�����	� c�eY��c(� q sy|y~��­e �T�cw®Fmdªtgw~ q iRf°û³e � gxr�s·®[~4MU�#s	$/�}�9�+�����6)/�aL`�4p�,6��MU�&;��yZ0$V�6)D�0��!"�&)/$V�\���&�

�+�����.)���C���)D��8�$V�.)*�z)5,6�:8t�bs	$/�}��8:$0'b'@�}��_`�&!��°~[�Bsxbd|Qû)cN¬Rrtªtg­{�«Rn�n�r�b D � ®Fc�fFcN|y~�
©mdgysyg F ~
Jw«FiRg � ������e

��� F � c�e�û)gyi q ~6��e�hjªtª q m�m q n�gyiVf!rË~ q iRf~�8e�
:cA�iRrË~���<\��)*��8?$}%+�bs��}�K�	�>��)/_2��!��z!"��)/!�$*��;&�����	�b�	$/� $V)/C
���&!?89�#s	$/�}�9�-�&8B7A<\)D��!-�t<\�-$5�\�=�+�����6)/�d~��-mdc�sygxg�fFrtiRvN|�cNk�bd®Fg;!(bd®6hji�bdgxmdi q bdrtcwi q ª'$0cwi!klgxm�²
gyiFsyg7cwi�� q m q ªtªtgyª q iRf�`;rt|}b�mdr�¬F«Fbdg�f8{��F|}bdgxn�| DËhà$f�Ô�B`�{e� F#����� F ~+~�c�md¸!|�®Fcwa�hji�bdgxmdi q bdrtcwi q ª
[�ªtgPO!rt¬Rªtg �©gxbj¨0cNmd¸�rtiRv q iVf�$0c�cNa´gxm q bdrt�Tg�`;rt|}b�mdrt¬R«!bdg�f-�©vNgyi�bd| D0[��Q$0`£�T� F������ F DËhu¨ q bdg
D0J q a q i F F ~Fh�cdc2cm$0cwn�aR«!bdgxm©{!c�sxr�g°bj��~6Jw«Rª��wF������!e

��� G � ¯:eªû)«!m q b q ~�1o��)/!-$��e��)/�	k41S!"��7.��!-)/$*�����3��� �#� C&��$V���m���A'a��7b7 � $/�-�&)/$0���6�d~Ô�¡mdc�sygyg�f!rtiRvw|�c�k»bd®Fg
h>c2cdc ��� D � ����� F ~ViFcFe.EF~ q&E � H@q#���!e

��� E � ¹:¬
�}gys°b=û q i q vwgyn�gyi�bB
©mdcw«Fa[~`p�,6�:����8:89���U�bsVvI�"�)S!"�"u	<A����)os	!��I�b��!+k4
o!"�-,\$V)D�"�)/<\!��t�&� '
�07.�"�	$ R`����)/$/���R~eJN«RiRg � �����!~ � gy��rt|�rtcwi�F�e G�e

��� q � c�e"�-r�bdcw«!m q�q iVf?
+e�{ q n q m q |y~�|T��)*�X89���A�+����8K���.)@����!S8t�bs	$/�}�o�-�&8B7A<\)/$V���N~b��ªt«�¨�gxm��Bs q ²
f!gyn�rtsQ�7«F¬Rªtrt|�®Rgxmd|y~ � �����!e

��� � � e1��c�cwªtgx� q iVfÖ�¡e\��rtiFvF~�p�,6�B<\�6$ R`�"'?89�+'��	� $V���t�����\��<.�+������� 'B7.��!5����!-89�&� �-�:������$V�e����!�Z
$V���N~Rh>c2c{�-mdc�sxgyg�fFrtiFvw|:{!cNkµbj¨ q mdgw~Rh�cdc�~Iû q mds·® � ������e��� ! � �8e � rtsyc q iVf�
+e {8efÿ0c�s·®Rn q i[~`1o��!V���&!�8t��� �-�U'b���	�	!-$ 7A)/$/������� '����A�#� C&�-$5�X����!='�$V��)/!�$/s�Z
<\)D�"'w��C���)D��8?�T<\��$V�\�a�z;&�&!�$0�&�6)3���(W�LXpSLS^F~ � �(bd®6hui�bdgxmdi q bdr�cNi q ª¡h�[�hà�è{��!n�a´cw|�rt«Rn cNi�¡mdcNbdc�sycNª-{!a´gxsyr��Vs q bdr�cNi[~R¯/gy|}bdrtiRv q ia{ q ªtr�f q bdr�cNi[~AJw«Rª�� � �����!e��� � � $©e��8e�{�n�rtbd®^~\1o��!V�	��!�8t��� �-�X������$V�e����!-$V�\�9���m�	�>��)/_2��!��B��C���)D��8:�·~F¯�®Fg:{�gyrI{�gxmdrtgy|0rti	{!c�k§b�²
¨ q mdgTc7iFvwrtiRgxgxmdrtiRvF~I�:fFfFrt|�|�cwi\Hb~�gx|�ª�g°��~ � �����!e

��� � �
+ee~ q bdgxmd|y~ª��e������6���6�&���#�����:�Ô�3�b���\�@�� ��+��¡��A¢��T��£�¤@¥9�� ��S�d��8:8?<\�6$0����)/$/���6�T������)/_2��!��
7.��!5����!-89���A�-��7A!"�"'�$0�)/$0���.� � G&���y¦B�§~¨�����\ "�.�#©K�#�zª4�	�"«V�&��¥K¡��.¬��(c��6���}�.���	�����6�:��«4­`�#¥t®
©.�.���	�� :¡��6¢�¯Y��°���¬���¥9¥?�6�.��¬+¡&�����#�±£�¤@ �����¥9 D/²>°��\°}��¤ F �4�(��¥9�	�"���� ��X���6³�¡&�� "�# ?c2¢e����J#�6°�¤
��´#´bµ � ©6©��.G#¶b· � H�G#¶b· ´ �

� F&¸ � ûU��~¨���\¢. "�}¢@�#�@­3�b]o���� "¬��\�6¬-� �"ÿo�\£@�	°}��¬#�b¡��6¢9£e�"ÿS¡�¤\¡&���I³ �@
�_�$0'��os-�&� 't��7#7A!"�+�b�-,y)*��$V�AZ
)D�0��!"�&)/$V�\�X7.��!V���&!�8t��� �-�m76!��"'�$0�)/$0�&�¹$5�6)*�9�t������)/_2��!���'�����$}���U���.;+$V!"���.8K���.)/�Aª�����¬����+¢@���6�#
�&«4���6� � ��3²D�����	���A¡I���}���A¡&°�~������\ "�6��©w�#�=£@��«º�>»S¡&����ª4�	�"«5����¥K¡��.¬�� DV~�¼X£@ªm� ´ ¶ F � �+´#´ ¶@�

20

Testing Petri Nets for Mobile Robots Using Gröbner Bases

Angie Chandler1, Anne Heyworth2, Lynne Blair1, Derek Seward3.
1 Lancaster University, Department of Computing

2 University of Wales, Bangor, Department of Mathematics
3 Lancaster University, Department of Engineering

Abstract

As autonomous mobile robots grow increasingly complex, the need for a method of modeling and
testing their control systems becomes greater. This paper discusses the use of Petri nets as a means of
modeling and testing the control of a mobile robot, concentrating specifically on the reachability testing
of the Petri net model through the use of Gröbner bases.

The designing and testing of the Petri net models for the mobile robot is done initially in component
form, providing a model which is then automatically converted into a Gröbner basis to provide a simple
means of reachability testing. Once the testing process is complete, the Petri net modules, which
represent each of the components of the mobile robot are connected to form a single Petri net. This
Petri net is then used for the generation of control code for the robot.

In this paper, the process of testing the modules created to represent the components of the
autonomous mobile robot is shown through a case study, Star Track (a tracked autonomous mobile
robot). Details of both ordinary and colored Petri nets representing certain components of Star Track
are discussed, with both the Petri net model and the equivalent Gröbner basis described.

1 Introduction

The dynamic and asynchronous structure of the Petri net is ideally suited to the modeling of an
autonomous mobile robot, provided the model can be thoroughly tested prior to code generation or
execution on board the robot. To this end, the reachability test, as one of the most basic means for
checking the accuracy of the model compared to its expected execution, provides a great deal of
reassurance to the designer of the software, which in turn allows the designer to create more complex
systems reliably.

The need for mathematical analysis of the Petri net models created for the mobile robot, provided an
ideal opportunity for collaboration between mathematics and engineering departments. As a result of
this co-operation, an approach to Petri net analysis formed, based on the relationship between Petri nets
and Gröbner bases. The application of Gröbner bases has been successfully used in fields such as
operational research and statistics, but is as yet less common in engineering.

The subject of this paper is the application of the Gröbner basis to the testing of reachability in a
Petri net model, specifically to a Petri net model of a mobile robot. This application is implemented as
an automatic testing facility within a Petri net toolkit, TRAMP (Toolkit for Rapid Autonomous Mobile
robot Prototyping) intended to model mobile robots and other mechatronic systems from the stages of
conceptual design to a final executable program. These Petri net models are initially formed as
individual modules, each related to a component of the system, in order to allow easier testing and
analysis prior to creation of the final, global, Petri net model [Chandler 99a].

In section 2 of this paper, some previous Petri net applications will be discussed, providing a
background to the choice of Petri nets as a model for the autonomous mobile robot. Section 3 will
detail the Petri net toolkit, TRAMP, before the Gröbner bases used as a testing method are studied in

21

further detail (section 4). A case study showing the use of the method for the mobile robot, Star Track,
will be discussed in section 5, followed by conclusions and future work.

2 Choice of Petri Nets

Petri nets are generic enough to provide the capacity for application to a wide variety of
applications, although due to their asynchronous nature they are more commonly used for distributed
systems [Buchholz 92] and other similar processes. However, their uses in distributed systems by no
means exclude applications to the field of robotics. In fact, robots can themselves form part of a
distributed system, as can be seen through the example of an orange-picking robot with point-to-point
communications [Cavalieri 97]. Other areas of robotics can also find use for Petri net modelling as a
method of eliminating deadlock and other temporal inconsistencies [Simon 98] [Caloini 98], although
these properties require testing through timed Petri nets, an extension which has yet to be made to the
analysis system used here. Alternatively, Petri nets can be used to allow co-operation between multiple
robots [Suh 96], or between a human and a robot [Mascaro 98]. The range of applications for Petri nets
is enormously diverse, and limited only by the range of tools available to implement these possibilities.

Our use of Petri nets as a modeling tool in the field of mobile robotics, was initially inspired by their
ability to represent both the data flowing in the system and the state of the system, simultaneously.
This initial interest was then furthered by the ease with which the model could be translated into
executable code, as required by the TRAMP toolkit discussed in the section 3, below, without the need
to alter any of the components modeled. These factors, combined with the mathematical background
which supported the testing of any models used, and examples of previous applications to the field led
to the eventual use of Petri nets within the TRAMP toolkit.

3 TRAMP

The TRAMP toolkit provides a simple means of modeling, testing and generating code for a mobile
robot. This is initially done in the form of modules, or objects based on the separate components of the
mobile robot, and divided into five categories in an overall object diagram in order to allow the toolkit
user to connect the objects as desired. These five categories, sensors, filters, navigation, low level
control, and actuators are also used to provide certain attributes to each object which may only be
relevant to that category.

Sensors Filters Navigation Control Actuators

Figure 1 Object Diagram Layout

As the arcs in Figure 1 suggest, the flow of information in the system leads from sensors to actuators
via various processing alternatives. Once data has been read in from a sensor, such as a compass, the
data may then be filtered to remove any noise from the readings, before the navigation uses the data to
make a decision on the next move of the robot. With the commands to be issued to the actuators
decided, the navigation module will then pass the information either directly to the actuator (for
example a motor) or via a low level controller, which will translate the information into a form
readable by the actuator and ensure that it behaves exactly as it should.

Once the modules are defined and linked in the object diagram, as shown in Figure 1, the user may
then access the Petri net modules of each of the separate components. These components remain

22

completely unconnected whilst they are tested, which may include testing on board the robot as a
separate module, after which the modules may be linked according to a precise protocol. This is
discussed below.

Linking

 Once all testing of the Petri net is complete, the user may then link the individual components
according to the connections defined in the object diagram, and a specific hierarchy. This hierarchy
makes the navigation module the highest level element, and works outwards in the object diagram
making the sensors and actuators the lowest. The navigation module (or modules) is designed so that
whilst it can be tested in simulation as it stands, several of its transitions actually represent groups of
transitions for use when the Petri net is finally connected. As the Petri nets are linked, the navigation
module (Figure 2) fully expands its complex transitions.

start

initialise

init
done

define map/
behaviour

ready

end

status
known

ready
to move

sensors decision actuators

Figure 2 Navigation Module

The transitions “initialize”, “end”, “sensors” and “actuators” are all substitution transitions [Jensen
96], each expanding into several transitions, providing connections to the other modules. The
remaining “define” and “decision” modules represent the actual method of navigation required of the
robot, and can easily be exchanged for a number of standard defaults, or left for the user to fully
implement.

Initialization and End Expansion

The “initialize” and “end” transitions connect directly to every other module in the system, ensuring
that every initialize routine is called before the main program starts, and that the program shuts down
correctly when it finishes. Each initialize place shown here will be connected to a transition within the
relevant module which is defined as an “initialize” transition and marked for connection outside the
module in a method similar to that used in [Caloini 98]. The expansion of these is shown below, with
an expanded view of the low level section of the motors Petri net.

initialise
 enter

Compass
initialise

GPS
initialise

DC Motor
initialise

end
initialise

initialise
exit

3

Low level components

Compass
module

GPS
module

init.
complete

initialise
send speed
and
direction

Figure 3 Initialize Transition Expansion

23

Figure 3 shows the expansion of the initialise transition to connect to two sensors (the compass and
the GPS – Global Positioning System) and one actuator (the DC motor). Here, there were no filters or
controllers in the system.

Sensor and Actuator Expansion

Similarly, the “sensors” and “actuators” transitions can be expanded. However, here the links
created in the object diagram come into play, as the only connections made are those which are directly
connected to the navigation module. For the expansion of a “sensors” transition, this includes any
filters which are connected to the navigation module, but not any sensors connected only to the filter as
they must be connected through a similar process in the filter module.

Compass
sensors in

sensors
in

sensors
direct

GPS
sensors in

Compass
sensors out

GPS
sensors out

sensors
collec t

sensors
all

sensors
out

Compass
sensors in

sensors
in

sensors
direct

GPS
sensors in

Compass
sensors out

GPS
sensors out

sensors
collec t

sensors
all

sensors
out

Compass
sensors in

sensors
in

sensors
direct

GPS
sensors in

Compass
sensors out

GPS
sensors out

sensors
collec t

sensors
all

sensors
out

Compass
module

GPS
module

Low level components

Figure 4 Sensor Transition Expansion

The configuration for sensor transition expansion (Figure 4) is slightly different to allow for the
possibility that there many be no sensors or filters connected, but the transition must still operate. The
places which link to the lower level modules behave as they do in the “initialize” transition expansion,
connecting in place of the test driver initially provided with each module, to transitions which are
defined from the start as an externally connecting. In this case, the connecting transitions of the
compass can be seen in Figure 7, transitions “request data” and “send data”.

There are also special standardized tokens, which allow this operation to be performed more
smoothly. These tokens contain all possible elements of any expected sensor readings or instructions
to actuators respectively. These readings or instructions can then be easily converted to or from the
tokens created for specific sensor and actuator modules. Here, there were two sensors directly
connected to the navigation module and no filters.

Control from Navigation

The method of expansion described in the previous sub-sections is designed specifically to allow the
navigation module to maintain control over the system as a whole. The bipartite nature of the Petri net
gives the two types of nodes, places and transitions, specific meanings that must be taken into account
within the model. Clearly, the transitions perform the actions, whereas the places merely maintain
state, but there are further implications which can be put into use here. The nature of the places is such
that they have authority over transitions. Transitions cannot fire without, in a sense, instructions from a
place as each input place must contain a token in order to enable the transition. It is analogous to the
handing out of instructions by a superior, and prior to the receipt of permission the task may not be
performed.

Whenever a link is formed between two modules, the module which is further up the hierarchy
contains the place which is linked, whilst the lower level module contains the transition. The lower
level module knows only that an instruction has been received, whilst the higher level module
continues to be aware of its state, despite the departure of the active tokens into a separate module.

24

This predictable method of linking also ensures that the reachability test results performed whilst the
modules were still separated will still be accurate once the modules are reconnected, as the individual
modules remain essentially separate whilst the pre-tested navigation module and connectors form links
to them.

4 Testing through Gröbner Bases

Gröbner basis theory is a branch of computer algebra which provides methods for solving problems
of equivalence in various types of algebraic structure. In the commutative case, computational Gröbner
basis methods have been successfully applied in theorem proving, robotics, image processing, coding
theory and signal processing, amongst others [Buchberger 98] [Holt 96]. All major computer algebra
packages now include implementations of these procedures and there are also pocket calculator
implementations. A formal definition of the Gröbner basis is included as an appendix to this paper.
We also refer the reader to [Fröberg 97] for further details.

In this paper, the application of Gröbner basis procedures to the problem of reachability testing is
discussed for reversible Petri nets and demonstrated with a practical case study.

The generation of the Gröbner basis of a set of polynomials, as is used for the Petri net analysis in
later sections, is done with the use of Buchberger’s algorithm [Buchberger 98]. The algorithm
calculates a Gröbner basis for a set of polynomials by repeatedly testing and appending it with further
polynomials until the appended set satisfies the properties of a Gröbner basis with respect to a chosen
well-ordering of the variables. This method is more formally defined in the appendix.

Once created, the Gröbner basis may be used to find any reachable marking, provided the initial
marking is a home marking, or alternatively determine whether the Petri net is reversible based on
results of reachability testing (see section 5).

5 Case Study – Star Track

Figure 5 Star Track

The Petri nets discussed here are based on real life models, created for use on board the mobile
robot, Star Track (Figure 5), intended to perform navigation with the use of satellite GPS [Yavuz 99].
This robot’s major components consisted of a compass, a GPS receiver, a PC 104 computer, and four
DC motors. These four components formed the main objects within the object diagram, two of which
are considered in the following examples. It should be noted that the Petri nets shown represent the
software interface to the hardware components named, not the hardware components themselves, as the
intention of TRAMP is the generation of control software for use with specific hardware.

25

Motors

start

ready

restart

all
complete

finish

init.
complete

initialise

done

speed and
direction

change
vector
requestvector

change
requested

send
done

send speed
and direction

interpret speed
and direction

interpreted
data

write
to port

1

t1

t2

3

t3
4

t4
5

t5
6

t6

t8

8 t7

7

2

Figure 6 Motors Petri net

As can be seen in the Petri net shown in Figure 6, once the motors have been initialised (t1) the user
may input the required speed and direction (t2) for each motor. The speed and direction information is
then interpreted (t3) and written to the relevant port (t4), provided the system is “ready” (place 3) which,
combined with the user input token, will enable transition t3.

The Gröbner basis for this Petri net is generated from the polynomials of the transitions listed below,
where x represents a token in a given place.

For example, a token at place 1 allows the firing of transition t1 and results in a token in places 2 and 3.
This can be represented by the polynomial:

pol(t1) = x1 - x2x3

And seen in the diagram below:

x1

t1
1

2

3

x2

x3

t1
1

2

3
goes to

Polynomials for the other transitions can be similarly generated:
pol(t2) = x2 – x7

pol(t3) = x3x6 – x4

pol(t4) = x4 – x5

pol(t5) = x7 – x6

pol(t6) = x5 – x3x8

pol(t7) = x3x8 – x1

pol(t8) = x8 – x7

These polynomials are then used to form the Gröbner basis:
{x 4 – x1, x5 – x1, x6 – x2, x7 – x2, x8 – x2, x2x3 – x1}

26

This Gröbner basis can be calculated automatically, either through TRAMP or through a standard
package such as Maple.

This gives a catalogue of markings (reachable places) from an initial marking x1 (i.e., starting with a
token in the place “start”) to be:

{x 1, x4, x5, x2x3, x3, x6, x3x7, x3x8}

These reachable markings are found based on their equivalence to the defined initial marking
modulo the transitions, which can be determined algorithmically, using polynomial reduction with
respect to the Gröbner basis (see appendix).

As the Gröbner basis is only useable when the Petri net is reversible, an undesirable, or unexpected
state within this list would indicate either that the Petri net was not reversible, or that there was an error
in the Petri net itself, allowing the unexpected state. Once the possibility of either an undesirable
reachable place (or alternatively a desirable place which wasn’t reached) or a non-reversible Petri net is
eliminated, the chance of a serious error occurring on board the mobile robot during execution is
greatly reduced.

Should an undesirable state be reachable from the initial marking, it must first be decided whether
the error is in the reversibility of the Petri net or in the reachability. This is best done by checking for
errors in very simple, and obvious, reachability calculations. If the tester claims that a clearly
unreachable state is reachable then it is likely that the Petri net is in fact not reversible, and that is
where the error lies. Should the Petri net appear to be reversible, the user can seek further assistance by
using the “step through” method, which gives a visual representation of the movement of the tokens
through the Petri net, and allows the user to see the error as it occurs.

27

Compass

start

coms
open

raw
data
ready

ascii
data

check
sum

tested
data

data
available

data
ready

return data

initialise

data request

return data

store data

finish

open
comport

send
ready

read in calculate
checksum test

find
bearing

dead reckoning
module

ready

data
requested

request
data require

data

restart

all
complete

data
arrived

finish

send
data

print
data

init.
complete

predict
requested

main
process
exited

Input

Continue

P P

PP

P

P

P
P P P P P

P

P

P P

P

P

P P

PP PP

P

P
P

P

P

P

P

P

PP

P

P

P

P
P

FF
F

F
FF

F

F F

F

F

F

F F

t1
1

t25
4

2

3

18

t3

t4 t5 t6

t15

t16

t17

t18

t19

t7

t8

t14

t10

t12

t13
Halt

Discard

t9

6 7 8

9

10

11

13 12

19

14

15

exiting
17

16

t20

t21 t22 t23

t24

t25

P P P

PP

P

PP

F

P

P

PPP

P

P

P

P

Figure 7 Compass Petri Net

28

Before analyzing the Petri net shown in Figure 7, it is necessary to consider a further extension to
the Petri net theory described in section 2. The compass Petri net is a coloured Petri net with a finite
set of colors.

The extension of an ordinary Petri net to a coloured Petri net provides the ability to represent
different types of token and treat them differently. In a coloured Petri net, the transition is only enabled
by an incoming token if the token’s colour matches the colours allowed by the transition. A coloured
Petri net can always be converted to an ordinary Petri net through additional places and transitions for
each different colour.

The compass Petri net contains a number of different token types in order to represent the
information types required within the compass program, such as the ASCII characters read in from the
compass itself, or the final format of the data when a bearing has been established. However, these
additional token types do not affect the choices made in this Petri net, and are therefore irrelevant to its
analysis. In the case of the compass Petri net shown in Figure 7, there are essentially only two colors
required in the Petri net, “pass” and “fail”, as these are the only two colours relevant to the testing of
the Petri net in simulation. Any other variations in token type serve no purpose in simulation but to
increase the complexity of the analysis.

For the purposes of the calculations to be performed using Gröbner bases, the “pass” tokens have
been labelled x, and the “fail” tokens y. The initial marking of the Petri net is described by a single
“pass” token in the “start” place (1), and “pass” and “fail” tokens in each of the places “input” (18) and
“continue” (19). The additional tokens at places 18 and 19 allow the user to perform the more rigorous
testing of the coloured Petri net.

The “pass” and “fail” tokens are primarily used as a distinction between data received with a correct
checksum and data received with a failed checksum. This colouring is used to ensure that only
uncorrupted data is used to calculate the bearing, which will later be output to the main navigation
module of the mobile robot. Any failed data is instead sent to the “data request” transition, which can
then provide a connection to the “dead reckoning plug-in module” not shown in this diagram. This can
be seen through tracing the route of a “pass” and then a “fail” token through the transitions “read in” (t4

or t21), “calculate checksum” (t5 or t22) and “test” (t6 or t23) to the conclusion of the decision at the
transitions “find bearing” (t7) or “data request” (t16).

As shown in the previous example, the first step in the analysis of the Petri net and generation of the
Grobner basis is to establish the polynomial for each transition. These polynomials are listed below,
with a pass token represented by an x, and a fail token represented by a y.

For example, the polynomial:
pol(t10) = x14x19 – x15x19

represents the following possible transition.

P

14 15

19

t10

P

goes to

14 15

19

t10

P

P

29

Note that pol(t24) is identical to pol(t10) apart from coloring.
pol(t24) = x14y19 – y15y19

14 15

19

t24

P

F

F

14 15

19

t24

F

goes to

Polynomials can be generated for the other transitions as follows.
pol(t3) = x2x18 – x3x18,

pol(t20) = y2y18 – y3y18

pol(t4) = x3x13 – x6

pol(t21) = y3y13 – y6

pol(t5) = x6 – x7

 pol(t22) = y6 – y7

pol(t6) = x7 – x8

 pol(t23) = y7 – y8

pol(t1) = x1 - x2x4

pol(t2) = x5 – x12

pol(t7) = x8 – x10

pol(t8) = x12 – x13

pol(t9) = x11 – x2x14

pol(t11) = y15 – x17

pol(t12) = x3x17 – x16,
pol(t25) = y3x17 – x16

pol(t13) = x2x17 – x16

pol(t14) = x15 – x12

pol(t15) = x4 – x5

pol(t16) = y8 – x9

pol(t17) = x9 – x11

pol(t18) = x10 – x11

pol(t19) = x16 – x1

The complex Gröbner basis automatically generated from these polynomials is shown below. Some
of the resulting expressions are shown graphically to clarify the meaning of the generated polynomials.
The polynomials shown in bold represent expressions which would require tokens to pass through the
entire Petri net more than once in order for one marking to be reachable from the other.

y3y15y19 – y8y19

y18y3y15 – y8y18

x14x19 – x15x19

x16 – y3y15

y3x15 – y8

y19x15x19 – x19y15y19

x14y8y18 – y15y8y18

x14y8x18 – x18y15y8

x14y3y15 – y15y8

x13 – x15

x12 – x15

x11 – y8

x9 – y8

x5 – x15

x4 – x15

x2y18 – y3y18

x2y15 – y3y15

x2x18 – x3x18

y7 – y8

y6 – y8

x17 – y15

x14y19 – y15y19

x2x15 – y3y15

x2x14 – y8

x1 – y3y15

x2y8 – y3
2y15

x3y15 – y3y15

x3y8 – y3y8

y18x3x18 – x18y3y18

x3x15 – y8

x14x3x18 – y8x18

x8 – y8

x7 – y8

x6 – y8

x10 – y8

x15y8 – y15y8

x14y15y8 – y15
2y8

x14y8
2 – y15y8

2

x14y3y18 – y8y18

y3y15
2 – y15y8

y3y15y8 – y8
2

y3y15y19 – x19y8

x18y3y15 – y8x18x17

As can be seen through the graphical representation of these first two polynomials, the polynomials
which form the basis are not necessary in their simplest form, they show combinations of the
polynomials formed by the transitions, with P representing a pass token, and F representing a fail
token.

y7 – y8

tested
data

check
sum

tested
data

test

t237 8

F check
sum

test

t237 8

Fgoes to

30

y6 – y8

tested
data

ascii
data

check
sum

t22 t236 7 8

F tested
data F

check
sum

t22 t236 7 8
ascii
data

check
sum goes to

tested
data

x17 – y15

exiting
all
complete

t11

exiting

t11

exiting all
complete

F P

t11

goes to

This diagram shows the change between a “fail” token and a “pass” token, possible only at specified
transitions.

x14y19 – y15y19

data
arrived

continuecontinue

all
complete

t10

all
complete

t10

data
arrived

F

PP

F

goes to

This diagram shows the token in the “continue” place (19) affecting the output of the transition. The
equivalent polynomials for changes made through the “input” place (18) are shown in the first two
polynomials below.

The remainder of the polynomials forming the Grobner basis for the compass Petri net (shown in
bold) are more difficult to trace through the Petri net diagram, as they require tokens to pass around the
Petri net more than once. This is perfectly acceptable, as the Petri net is expected to be reversible, but
it does lead to polynomials which are misleading at first glance, and similarly to reachable markings
where the path taken is unclear.

The shown completed Gröbner basis, once generated, can be used to find every reachable marking
of the compass Petri net is represents. However, due to the length of this example, these results are not
listed here.

Testing the reachability of this Petri net, given a certain type of token, will confirm that the choices
made by colouring of a given token will behave as the user would expect, beyond the simple testing of
a Petri net with no colourings. This will enable the user to determine errors of this nature prior to the
final generation of executable code for the mobile robot and decrease the necessary debugging time.

6 Conclusions and Future Work

The method for Petri net analysis described here has proved highly reliable and accurate. It is
particularly successful in the detection of Petri nets which have falsely been assumed to be reversible,
and in finding badly designated initial markings of the Petri net which may also stop it from being
reversible.

However, the time taken for performance of these calculations remained, as with many previous
methods, unacceptably long despite the modularity of the model. The motors example shown in
section 5 was completed successfully within a few minutes, but once a colouring was added alongside a
number of places and transitions for the compass example (section 5) the time taken increased beyond
that which could be considered reasonable for the user to wait, Gröbner basis generation taking
approximately an hour.

31

The primary concern of any further work on this technique must be the reduction of the time taken
for results of reachability testing to become available to the user. There are three possible avenues of
research available, which may lead to an appropriate reduction in complexity. The first may consider
the reduction of the Petri net itself. Whilst the TRAMP method of separating objects into individual
components has already greatly decreased the Petri net complexity [Pezze 95] [Caloini 98], it is clear
that further effort must be put into this in order to provide a usable analysis service. This may be
implemented through the use of standard Petri net reduction techniques [Murata 89].

The processing time may then be further reduced through the improved implementation of the
Grobner basis techniques [Fröberg 97], which themselves have a number of efficiency algorithms
which have yet to be utilised in these initial testing procedures.

A further alternative to the Petri net reduction and Gröbner basis efficiency techniques is the
introduction of on-the-fly matrix generation method commonly applied to automata in order to improve
the efficiency of the equivalent of reachability testing [Larsen 97]. If this method were to be applied to
the Gröbner basis reachability test for the Petri net, then the overheads from large Petri nets would
decrease dramatically.

A further desirable development may arise from the introduction of timings to the Petri net, which
are already a widely used tool, and provide a valuable additional level of analysis to the Petri net.

References

[Buchberger 98] An Algorithmic Criterion for the Solvability of a System of Algebraic Equations,
Buchberger B (translation Abramson M and Lumbert R). Grobner Bases and Applications.
Proc. London Math Soc. Vol 251. 1998.

[Buchholz 92] A hierarchical View on GCSPNs and its Impact on Qualitative and Quantitative
Analysis. Buchholz P. Journal of Distributed Computing, 1992, Vol 15, pp 207 – 224

[Caloini 98] A Technique for Designing Robotic Control Systems Based on Petri Nets. Caloini A,
Magnani G, Pezze M. IEEE Transactions on Control Systems Technology, Vol 6, No 1, pp
72-87. 1998.

[Cavalieri 97] Impact of Fieldbus on Communication in Robotic Systems. Cavalieri S, DiStefano A,
Mirabella O. IEEE Transactions on Robotics and Automation, 1997, Vol 13, No. 1, pp 30-48

[Chandler 99] Gröbner Basis Procedures for Testing Petri Nets. Chandler A, Heyworth A. UWB Math
preprint 99.11. 1999

[Chandler 99a] An Object-Oriented Petri Net Toolkit for Mechatronic System Design. Chandler A.
PhD Thesis, Lancaster University, Engineering Department, 1999.

[Fröberg 97] An Introduction to Gröbner Bases. Fröberg R. John Wiley and Sons, 1997.

[Holt 96] Algebraic Methods for Image Processing and Computer Vision. Holt RJ, Huang TS,
Netravali AN. IEEE Transactions on Image Processing, Vol 5, No 6, pp 976-986. 1996.

[Jensen 97] Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use Volume 1.
Jensen K. Spring-Verlag. 1997.

[Larsen 97] Efficient Verification of Real-Time Systems: compact data structure and state-space
reduction. Larsen KG, Larsson F, Pettersson P, Yi W. Proceedings – Real-Time Systems
Symposium, 1997.

[Mascaro 98] Hand-in-Glove Human-Machine Interface and Interactive Control: Task Process
Modelling Using Dual Petri Nets. Mascaro S, Asada HH. Proceedings - IEEE International
Conference on Robotics and Automation, 1998, Vol 2, pp 1289-1295

32

[Murata 89] Petri Nets: Properties, Analysis and Applications. Murata T. Proceedings of the IEEE,
1989, Vol 77, No. 4, pp 541 – 580

[Pezze 95] Graph Models for Reachability Analysis of Concurrent Programs. Pezze M, Taylor RN,
Young M. ACM Transactions on Software Engineering, Vol 4, No 2, pp 171-213. 1995.

[Simon 98] Design and Analysis of Synchronisation for Real-Time Closed-Loops Control in Robotics.
Simon D, Castaneda EC, Freedman P. IEEE Transactions on Control Systems Technology,
1998, Vol 6, No. 4, pp 445-461

[Suh 96] Design of a Supervisory Control System for Multiple Robotic Systems. Suh IH, Yeo HJ, Kim
JH, Ryoo JS, Oh SR, Lee CW, Lee BH. IEEE International Conference on Intelligent Robots
and Systems, 1996, Vol 1, pp 332-339

[Yavuz 99] Conceptual Design and Development of a Navigation System for a Mobile Robot. Yavuz
H, Chandler AK, Bradshaw A, Seward DW. Proceedings of CACD 99 (International
Workshop on Engineering Design), 1999, pp 65 - 80

Appendix A: Gröbner Bases Definitions [Chandler 99]

Let X be a set. Then the elements of X¨ are all power products of the elements of X, including an
identity 1, with multiplication defined in the usual way. The commutativity condition is summarized
by xy=yx for all x, y ∈ X. Let K be a field. Then the elements of K[X¨] are sums of K-multiples of
elements of X¨, with the operations of addition and multiplication defined in the natural way:

∑i ki mi ∑j lj nj = ∑i,j ki mi nj , for ki, lj ∈ K and mi, nj ∈ X¨

Let P ⊆ K[X¨]. Equivalence modulo P is denoted = P. We say that two polynomials are equivalent
modulo P if their difference can be expressed in terms of P, i.e.

f =P g ⇔ f – g = u1p1 + … + unpn for some p1, … , pn ∈ P, u1, … , un ∈ K[X ¨].

An admissible ordering on X¨ is a relation > such that m>1 for all 1≠m ∈X¨, and such that if m>n
then um>un for all u ∈ X¨. We will also require the well-ordering property: that there is no infinite
sequence m1>m2>… of power products m1, m2, … of X¨.

Let > be admissible well-ordering on X¨. The leading term of a polynomial p is the power product
occurring in p that is largest with respect to >, and is denoted LT(p). The leading coefficient of p is
the coefficient of LT(p) and is denoted LC(p). A term t is said to occur in a polynomial p with
coefficient k if t is a term of p. Reduction modulo P with respect to > is written →P and defined as

f →P h ⇔ = f - kmp

where mLT(p) occurs in f with coefficient k′ and k = k′(LC(p))-1 for p ∈ P.
A repeated sequence of reductions (the reflexive, transitive closure of →P) is denoted →*

P. The
symmetric closure of this is denoted ↔*

P coincide.

The Buchberger Algorithm

In 1965 Buchberger invented the concept of a Gröbner basis [Buchberger 98]. If a set of
polynomials Q is a Gröbner basis for P then we can use Q to determine whether two polynomials are
equivalent modulo P. Formally:

i. f =P g ⇔ f =Q g for all f, g ∈ K[X ¨].

33

ii. For all f ∈ K[X¨] there exist f1, … fn ∈ K[X ¨] such that f →P f1 →Q … →Q fn where n ∈ N
and fn is irreducible.

iii. f =P g ⇔ there exists h ∈ K[X ¨]: f →*
Q h and g →*

Q h.

Theorem (Reachability and Equivalence of a Polynomial)

Let N be a reversible Petri net with initial marking M0. Define P:={pol(t): t∈T}. Then a marking M is
reachable in N if and only if pol(M0)=P pol(M).

Proof

First suppose that M is reachable. Then there is a firing sequence M0 →t1 M1 →t2 … →tn-1 Mn-1 →tn

M. Therefore there exist u1, … , un ∈ X¨ such that
pol(M0) – u1pol(t1) = pol(M1), pol(M1) – u2pol(t2) = pol(M2), … , pol(Mn-1) – unpol(tn) = pol(M).
Therefore pol(M0) – pol(M) = u1pol(t1) + … + unpol(tn). Hence pol(M0) =P pol(M).

For the converse, suppose pol(M0) =P pol(M). Then there is a sequence
pol(M0) = u1l1, u1r1 = u2l2, … , un-1rn-1 = unln, unrn = pol(M).

Where pol(t1) = l1 – r1, … , pol(tn) = ln – rn ∈ P, and u1, … , un ∈ X¨. Note that l1, r1, … , ln, rn ∈ X¨.
Now recall that M0 is a marking. Since pol(M0) = u1l1, we can deduce that t1 is enabled. Therefore
there is a marking M1 such that M0 →t1 M1 and pol(M1) = pol(M0) – u1pol(t1). By induction this
implies that there are markings M2, … , Mn such that there is a firing sequence M0 →t1 M1 →t2 … →tn

Mn = M. Hence M is reachable in N.

Corollary (Gröbner Bases Determine Reachability)

Reachability in a reversible Petri net can be determined using a Gröbner basis.

Remark (Catalogue of Reachable Markings)

Recall that Gröbner bases techniques use an ordering on the power products. There is a one-one
correspondence between power products and markings. We can begin to catalogue the markings in
increasing order. Given a Gröbner basis for the polynomials of the transitions of a Petri net it can be
determined whether each marking is reachable: if the power product reduces to the same irreducible
power product as the initial marking then it is reachable. In this way the Gröbner basis can be used to
build up reachable markings.

34

���������	��
	�
����������������������
	�
������
 ��
 �!�"���$#%��&'�)(
*,+�-.��#/
101*'�2������
 ���435�6
 �2�879�6
 &

:�; <>=@?BACED AFHG =JILK�<>=NMO; P�QR S%T =@?JUNV AF D G IO=@?WM"X.UNPYQ= AF K	U@Z[?W= S
\6]�^L_�`ba[c$]�dea	f
gihifjc$^lkNa[]m`/n@o�p]�dlo�]%_
dLqsr1dltjp dl]�]m`[p dltNuOv.`[dlfxw/dlp yz]m`[{bp a}|)f
g1~�]�oH�ldlfj� fjt
|

vifl��]ma��]�oH�lf�yj_��euOh	�l�@�@���x�j�$v.`[dlfNuOh �]�oH�s�E]�^lkl�l� p o]m��c�_
p ���O��o�]�{b�j_@uj�b_
dlfjkl{b]��Oulyzf���dL_�`��
�6qNo�{b]j� g>]�]j� y@kNa[�N`�� o �

�����������L�j�j� ~ �l]	_�`ba[p o��]EqN]�{bom`[p �O]�{1{b]�yz]m`H_
�No�fjdlo�]�^Na[{�]�{�aH_
�l� p {b�lp dlt�_/�L_
{bp {�g>f
`
tj]�dl]m`H_�a[p dlts_
dLq�]m N^l� fjp a[p dlt�{�aH_�a[]�{b^L_
o�]�{6f
gia[�l]�fj�@��]�omab��f
`[p]�dea[]�q"¡¢]mab`[p�dl]ma[{
£�¤%¤ ¡1¥/{H¦E_
{b{bfeo�p _�a[]�q§a[f�a[�l]�a[fefj�1o�_
� �]�q§¡1¥EaH_
� �O�W~ �l]�p dN¨Lkl]�dlo�]�f
gip qN]�dea[p �
©]m`[{1f
gJq@|NdL_
c$p o�_
� � |�_
^l^O]�_�`[p dlt%_
dLq�qNp {[_
^l^O]�_�`[p dlt%p dl{�aH_
dlo�]�{1kl^Ofjd�a[�l] {�aH_�a[]
{b^L_
o�]$]m N^l� fj{bp fjd�^N`[fj�l�]�cªp {�]m N^l� _
p dl]�qJ��«�]ma[�lf@qN{�f
g ¬ f
`[�@p dlt�¬2p a[��p qN]�dea[p �
©]m`[{/�L_
{b]�qsfjd­{bfj^l�lp {�a[p o�_�a[]�q�dL_
c$p dltx`[kl�]�{6_
dLqsc$]�oH�L_
dlp {bc${	g>f
`%_
�l{�ab`H_
omab�
p dlt­dL_
c$]�{x_�`[]�qN]�{bom`[p �O]�q®_
dLq�o�fjc$^L_�`[]�qJ�1n@]�yz]m`H_
� fj^Na[p c$p � _�a[p fjdl{�f
g/{�aH_�a[]{b^L_
o�]Etj]�dl]m`H_�a[p dlt�_
� tjf
`[p a[�lc${.g>f
`.a[�l]2o�fjdea[]m @a.f
g ¤%¤ ¡1¥/{._�`[]2c$]�dea[p fjdl]�qJuz_
{
¬]�� ���O¯¢p dL_
� � |euL{bfjc$]6^Ofj{b{bp �lp � p a[p]�{/f
g�{b^O]�o�p g |Np dlt$^N`[fj^O]m`ba[p]�{2f
g1{�|N{�a[]�c${ a[fx�O]
oH�l]�oH�z]�q�f�yz]m`1a[�l] {�aH_�a[]	{b^L_
o�]�{.f
gLa[�l]�p ` ¤%¤ ¡1¥E���L_
{b]�q�c$f@qN]�� {._�`[]2qNp {bo�kl{b{b]�qJ�

° ±l²E³O´Jµ%¶�·�¸�³J¹[µE²

C V SmS D ?lº/»�UNPs¼J< D�½ MO; F º S ; ¾JVOº D M§=@¼J¼J< ;>»
=eºm; UN? F S Dj¿ VJ; S D M D =@< ; ?JÀ�Á%; ºmÂ"MOÃL?W=@Ps;>»
=@< < Ãs= S ; F[Ä; ?JÀ)=@?WM�MO; F =@¼J¼ D = S ; ?JÀ$UN¾OZ D »�º F Á%ÂJ;>»�Â§»
=@?�»�UNPsP)VJ?J;>»
=eº D I F ÃL?W»�Â S UN?J; Å D ºmÂ D ; S =N»�ºm; UN? F I=@?WM$Ps; À S =eº D =@PsUN?JÀ�¼W= S ºm;>»�VJ<>= S ?JUOM D F U@ÆOºmÂ D MO; F º S ; ¾JVOº D M D ?LÇL; S UN?JP D ?lº1ºmÂ D Ã$= S D S VJ? Ä?J; ?JÀ"; ?1È¢É	= S ºm;>»�VJ<>= S < ÃNI�MO; F º S ; ¾JVOº D M®UN¼ D S =eºm; ?JÀ F Ã F º D P F I¢À S UNVJ¼LÁ6= S D =@< < UeÁ%; ?JÀ"=§»�UN? Ä»�V SmS D ?lº�Á/U S G U@Æ F D Ç D S =@<	¼ D UN¼J< D UN?ÊºmÂ D F =@P D ¼ S U@Z D »�ºjI1U S =@¼J¼J< ;>»
=eºm; UN? F D�½ ¼J< UN; ºm; ?JÀºmÂ D º D »�ÂJ?JUN< UNÀNÃ$U@Æ¢=@À D ?lº F U S PsUN¾J; < D =@À D ?lº F »
=@?�¾ D < ; F º D Ms= F D�½ =@Ps¼J< D F U@ÆWºmÂ D =@¾�UeÇ D ÄP D ?lºm; UN? D M�=@¼J¼J< ;>»
=eºm; UN? F ÈË <>=@?JÀNVW=@À D »
=@< < D MBÉEÌ%º�=@< G ¾W= F D MÍUN?ÎUN¾OZ D »�º Ä U S ; D ?lº D MÍÉ D º S ;)? D º FÐÏ�Ñ$Ñ ÉEÌ F�ÒÓ T =@?WÔNÕjÖLÂW= F ¾ D
D ?)M D Ç D < UN¼ D Mx=eº1ºmÂ D/×$C6ØOÙ IjX%ÚÜÛ S ?JU%; ?�U S M D S ºmU F VJ¼J¼�U S º.PsUOM D < < ; ?JÀWI; ?LÇ D F ºm; Àl=eºm; ?JÀWI@=@?WMs¼ S U@ºmU@º[ÃL¼J; ?JÀ$»�UNPs¼J< D�½ MO; F º S ; ¾JVOº D MsUN¾OZ D »�º Ä U S ; D ?lº D M F U@Æ�º[Á6= S D F Ã F[Äº D P F ÈJÉEÌ%º�=@< G­F VJ¼J¼�U S º F ; ?lºmVJ; ºm; Ç D PsUOM D < < ; ?JÀ�=@< <�ºmÂ D G D Ã�Æ D =eºmV S D F U@Æ.ºmÂ D F D F Ã F º D P F I
F VW»�Â®= F UN¾OZ D »�º Ä U S ; D ?lº D MO? D FmF IJP D FmF =@À D F D ?WMO; ?JÀWIW¼W= S =@< < D < ; F P�IW=@?WM F ÃL?W»�Â S UN?J; F =eºm; UN?1È
X6ÂJ; F ; F =N»�ÂJ; D Ç D M­ºmÂ S UNVJÀNÂ�Á/U S G ; ?JÀsÁ%; ºmÂ�=N»�ºm; Ç D UN¾OZ D »�º F D ?W»
=@¼ F VJ<>=eºm; ?JÀ F D º F U@Æ ¼ S U Ä
» D FmF D F M D F » S ; ¾ D MÐ¾LÃYÉ D º S ;�? D º F È/É S UO» D FmF D F ; ? F ;>M D ºmÂ D UN¾OZ D »�º F »�UNPsP)VJ?J;>»
=eº D ÇL;>== F ÂW= S D M§P D PsU S ÃNIOÁ%ÂJ; < D UN¾OZ D »�º F ºmÂ D P F D < Ç D F »�UNPsP)VJ?J;>»
=eº D ¾LÃ­P D FmF =@À D ¼W= FmF ; ?JÀWÈØ ; P)VJ<>=eºm; UN?s; F UN? D U@Æ¢ºmÂ D Á6=zÃ F U@Æ D�½ =@Ps; ?J; ?JÀ F Ã F º D P F PsUOM D < < D Ms¾LÃ Ñ$Ñ ÉEÌ F =@?WM
; º�; F =@< S D =NMOÃ F VJ¼J¼�U S º D M"¾LÃ"=�¼ S U@ºmU@º[ÃL¼ D Ç D S F ; UN?"U@Æ2=�ºmULUN<.»
=@< < D M�ÉEÌ%º�=@< G Ó AC T K�ÔLÝ
Ö�È:�UOM D < F U@Æ F U@Æ�º[Á6= S D F Ã F º D P F » S D =eº D MÊ; ?8ÉEÌ%º�=@< GÞF ÂJUNVJ<>MÞ¾ D V F =@¾J< D = F ¼ S U@ºmU@º[ÃL¼ D FU@Æ�ºmÂ D F D F Ã F º D P F I2= F Á D < <}È C V SmS D ?lºm< ÃÜÁ D = S D Á/U S G ; ?JÀÞUN?Ð? D Á'; Ps¼J< D P D ?lº�=eºm; UN? F
U@Æ%ÉEÌ%º�=@< G ; ?ßÉ S UN< UNÀ"=@?WMÊ; ? Ø P�=@< < º�=@< G Á%ÂJ;>»�Â F ÂJUNVJ<>MÊ=@< < UeÁBºmU S VJ? Ñ$Ñ ÉEÌ Ä ¾W= F D M¼ S U@ºmU@º[ÃL¼ D F ; ?�=�º S VJ< Ã§MO; F º S ; ¾JVOº D M"Á6=zÃNÈ

35

Ë < ºmÂJUNVJÀNÂ"Á D ÂW=zÇ D F º�= S º D M§Á%; ºmÂ F ; P)VJ<>=eºm; UN?"=@?WM§¼ S U@ºmU@º[ÃL¼J; ?JÀWIlºmÂJ; F = S ºm;>»�< D »�UN? Ä» D ?lº S =eº D F UN?®ºmÂ D)à S F º F º D ¼ F P�=NM D ºmUeÁ6= S M F D�½ ¼J< UN; ºm; ?JÀ­ÆáU S P�=@< =@?W=@< Ã F ; F =@?WM�Ç D S ; à Ä»
=eºm; UN?®P D ºmÂJUOM F ; ?�ºmÂ D »�UN?lº D�½ º�U@Æ Ñ$Ñ ÉEÌ F È�X6ÂJ; F =@¼J¼ S Ul=N»�Â�»
=@?®¾ D »�UN? F ;>M D S D M�=@?=@< º D S ?W=eºm; Ç D ºmU F ; P)VJ<>=eºm; UN?�¾ D »
=@V F D =@< ºmÂJUNVJÀNÂ�Á D = S D ?JU@º6=@< Á6=zÃ F =@¾J< D ºmU�ÆáVJ< < ÃsÇ D S ; ÆáÃU S =@?W=@< Ã F D ºmÂ D ¾ D ÂW=zÇL; UNV S U@Æ�= F Ã F º D P�I D Ç D ?ß¼W= S ºm;>=@<2=@?W=@< Ã F ; F U S Ç D S ; à »
=eºm; UN?Þ»
=@?
S D Ç D =@< F UNP D�D SmS U S F Á%ÂJ;>»�Â­º D ?WM�ºmU�¾ D MO; â D S D ?lº/Æ S UNPªºmÂ D UN? D F ÆáUNVJ?WM§¾LÃ F ; P)VJ<>=eºm; UN?Ó K2=@<>ÔNÕzÖ�ÈEã D ¾ D < ; D Ç D ºmÂW=eº­UN¾OZ D »�º Ä U S ; D ?lº�=eºm; UN? F ÂJUNVJ<>MY=@< < UeÁäV F ºmU S D <>=eºm; Ç D < Ã D = F ÃD�½ º S =N»�º6ºmÂ D F VJ¾ F Ã F º D P F ºmUs¾ D Ç D S ; àWD M"=@?WM§ºmU�=@¾ F º S =N»�º6ºmÂ D ; S F V SmS UNVJ?WMO; ?JÀ F ÈË PsUN?JÀ�ºmÂ D MO; â D S D ?lºx=eºHºm; ºmVWM D F ºmU§¼ D S ÆáU S Ps; ?JÀ�ÆáU S P�=@< =@?W=@< Ã F ; F U S Ç D S ; à »
=eºm; UN?1IV F ; ?JÀ F º�=eº D F ¼W=N» D F =@¼J¼ D = S F ºmU�¾ D ºmÂ D PsU F º F º S =@; ÀNÂlºHÆáU S Á6= S M®Á6=zÃ�ÆáU S ºmÂ D »
= F D U@Æ
Ñ$Ñ ÉEÌ F ÈL: D ºmÂJUOM F ¾W= F D M­UN? F º�=eº D F ¼W=N» D F = S Dx¿ VJ; º D VJ?J; Ç D S F =@<}IO»
=@?§¾ D =@< PsU F ºEÆáVJ< < Ã=@VOºmUNP�=eº D M�I.=@?WMß=@< < UeÁª= S D <>=eºm; Ç D < Ã D = F Ãå; Ps¼J< D P D ?lº�=eºm; UN?1ÈiX6Â D S D ÂW=zÇ D ¾ D
D ?ß¼ S U Ä¼�U F D M®P�=@?LÃ®MO; â D S D ?lºxÁ6=zÃ F U@Æ/=@< < D ÇL;>=eºm; ?JÀ­ºmÂ D ; S P�=@; ?ÊM D�à »�; D ?W»�Ã�æçºmÂ D F º�=eº D�D�½ Ä¼J< U F ; UN?�¼ S UN¾J< D P Ó K2=@<>ÔNÕzÖ�È Ø UNP D U@Æ ºmÂ D F D P D ºmÂJUOM F »
=@?�¾ D =NMJ=@¼Oº D M�=@?WM�UN¼Oºm; Ps; Å D M
ÆáU S ºmÂ D »�UN?lº D�½ º6U@Æ Ñ$Ñ ÉEÌ F IL= F Á D < <}È Ë ¼W= S º/Æ S UNPªºmÂW=eºjIL; º%; F =@< F U)? D » D FmF = S Ã)ºmU F UN< Ç D
F UNP D ? D ÁÎ¼ S UN¾J< D P F =N»
»�UNPs¼W=@?LÃL; ?JÀ F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F = F =�ÆáU S P�=@< ; F P'Á%; ºmÂ
MOÃL?W=@Ps;>»2; ? F º�=@?lºm;>=eºm; UN?1I F VW»�Â)= F ºmÂ D ¼ S UN¾J< D P5ÂJUeÁÊºmU D�è »�; D ?lºm< Ã$M D =@<lÁ%; ºmÂ�;>M D ?lºm; àWD S FU@Æ	MOÃL?W=@Ps;>»
=@< < Ã­=@¼J¼ D = S ; ?JÀ�=@?WM"MO; F =@¼J¼ D = S ; ?JÀs; ? F º�=@?W» D F È

ãéÂ D ?sÁ/U S G ; ?JÀ�Á%; ºmÂ F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F%Ï U S PsU S D À D ? D S =@< < Ã$U@Æ�=@?LÃ$ÆáU S P�=@< Ä; F PêÁ%; ºmÂÊMOÃL?W=@Ps;>»); ? F º�=@?lºm;>=eºm; UN?®U@Æ F UNP D G ; ?WM®U@Æ/»�UNPs¼�UN? D ?lº F�Ò ; º$; F ? D » D FmF = S Ã§ºmU¼W=zÃ"»
= S D ÆáVJ<1=eºHº D ?lºm; UN?"ºmUsº S D =eºm; ?JÀ�;>M D ?lºm; àWD S F U@Æ UN¾OZ D »�º F�Ï U S ; ?�À D ? D S =@< F UNP D U@ºmÂ D S
G ; ?WM8U@ÆxMOÃL?W=@Ps;>»
=@< < ÃÜ=@¼J¼ D = S ; ?JÀÞ=@?WMÐMO; F =@¼J¼ D = S ; ?JÀÊ; ? F º�=@?W» D F�Ò È Ñ ºmÂ D S Á%; F D I	P�=@?LÃVJ?J? D » D FmF = S Ã F º�=eº D F »
=@?s¾ D À D ? D S =eº D Ms=@?WM)ºmÂ D F º�=eº D F ¼W=N» D F »
=@? D Ç D ?sVJ?J? D » D FmF = S ; < ÃÀ S UeÁÐºmU�; ? à ?J; º[ÃNÈJX6ÂJ; F ?W=@Ps; ?JÀ)¼ S UN¾J< D Pë»
=@?­¾ D F UN< Ç D M D ; ºmÂ D S ¾LÃ�; ?lº S UOMOVW»�; ?JÀ F UNP D
F UN¼JÂJ; F ºm;>»
=eº D M S VJ< D F ÆáU S = FmF ; ÀN?J; ?JÀÊ;>M D ?lºm; àWD S F ºmUÊ; ? F º�=@?W» D F U S ¾LÃÜ?JU@º�»�UN? F ;>M D S ; ?JÀ»�UN?W» S D º D ?W=@P D F U@Æi; ? F º�=@?W» D F ºmUs¾ D ; Ps¼�U S º�=@?lº%Á%Â D ?"º D F ºm; ?JÀ F º�=eº D F ºmUs¾ D$Dj¿ VW=@<}È

X6Â D Á/U S G Á%; ºmÂs; ? F º�=@?W» D ;>M D ?lºm; àWD S F ; ?OìWV D ?W» D F ?JU@º	UN?J< Ã$À D ? D S =eºm; ?JÀ F º�=eº D F ¼W=N» D FU@Æ Ñ$Ñ ÉEÌ F I2¾JVOº�=@< F U8=@?W=@< ÃLÅ
; ?JÀÞºmÂ D P�È%X6ÂJ; F ; F ¾ D »
=@V F D Á D ? D
D MYºmUÜ¾ D =@¾J< D ºmU
M D F » S ; ¾ D§D�½ ¼ D »�º D Mß¼ S UN¼ D S ºm; D F U@Æ%ºmÂ D F Ã F º D P F ¾ D ; ?JÀ D�½ =@Ps; ? D MßÁ%; ºmÂJUNVOº S D Æ D SmS ; ?JÀºmUÊºmÂ D »�UN?W» S D º D ?W=@P D F U@Æ�ºmÂ D ; ? F º�=@?W» D F ; ?LÇNUN< Ç D MÜ; ? F º�=eº D F =@?WM D Ç D ?lº F U@Æ�ºmÂ D ; S
F º�=eº D F ¼W=N» D F È.X6Â D F D ?W=@P D F = S D F D P�=@?lºm;>»
=@< < Ãå?JU@º); Ps¼�U S º�=@?lº�=@?WM�I.Á%ÂW=eº�; F PsU S D IPsUOM D < < D S F »
=@?"ÂW= S MO< Ã­Á/U S G UNVOº�Á%ÂW=eº%;>M D ?lºm; àWD S F Á%; < <�¾ D V F D M"; ?�MO; â D S D ?lº F º�=eº D F È

íb?�ºmÂ D = S ºm;>»�< D IWÁ D$à S F º�¼ S D F D ?lº%ºmÂ D P�=@; ?�;>M D = F ¾ D ÂJ; ?WM�ºmÂ D Ñ$Ñ ÉEÌ5ÆáU S P�=@< ; F P�ÈØ VJ¾ F Dj¿ V D ?lºm< ÃYÁ D MO; F »�V FmF ¼�U FmF ; ¾J< D F UN< VOºm; UN? F U@Æ$ºmÂ D ?W=@Ps; ?JÀ8¼ S UN¾J< D Pî= S ; F ; ?JÀÜ; ?
F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F I.ºmUNÀ D ºmÂ D S Á%; ºmÂ F UNP D ÆáV S ºmÂ D S UN¼Oºm; Ps; Åj=eºm; UN? F ºmUÞ¾ D V F D M
Á%Â D ?)À D ? D S =eºm; ?JÀ6ºmÂ D F D F º�=eº D F ¼W=N» D F Èzïi; ?W=@< < ÃNIjÁ D F VJÀNÀ D F ºi=@?)=@¼J¼ S Ul=N»�ÂxºmU F ¼ D »�; ÆáÃL; ?JÀ¼ S UN¼ D S ºm; D F ºmUs¾ D$D Çe=@< VW=eº D M§UeÇ D S F º�=eº D F%F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F È

ð ñóò�ôöõÊµE²�¸¢ò1÷�³Jøßµ2ù�úYúÜûÊü5ø

X6Â D Ñ$Ñ ÉEÌ'ÆáU S P�=@< ; F P Ó AC T K�ÔLÝ
Ö�; F »�ÂW= S =N»�º D S ; Å D M8¾LÃY= Ø P�=@< < º�=@< GlÄ ¾W= F D MÐUN¾OZ D »�º Ä
U S ; D ?lº�=eºm; UN? D ? S ;>»�Â D MéÁ%; ºmÂ5»�UN?W»�V SmS D ?W»�ÃY=@?WMé¼�UN< ÃLPsU S ¼JÂJ;>»�º S =@? F ; ºm; UN? D�½OD »�VOºm; UN?1I
Á%ÂJ;>»�Â"=@< < UeÁéP D FmF =@À D F D ?WMO; ?JÀWILÁ6=@; ºm; ?JÀ)ÆáU S =@?WM§=N»
» D ¼Oºm; ?JÀ S D F ¼�UN? F D F IL» S D =eºm; ?JÀ)? D ÁUN¾OZ D »�º F IN=@?WM�¼ D S ÆáU S Ps; ?JÀ$¼ S ; Ps; ºm; Ç D »�UNPs¼JVOº�=eºm; UN? F È Ë ? D�½ =@Ps¼J< D M D PsUN? F º S =eºm; ?JÀxºmÂ D?JU@º�=eºm; UN?"U@Æ Ñ$Ñ ÉEÌ F ; F%F ÂJUeÁ%?"; ? à ÀNV S Dsý È

36

Stack is_a PN

push: x
x

return

x

.
()

t

(x|t)

..

return

xt

(x|t)

pop

Main is_a PN

(x|t)t

..
5‘ .

s := Stack new
s

s s

5‘.
..

.

s syncpop: #wantedToken

s

synchronous portreturn place

class name class ascendant initial markingmessage pattern

object nettransition action

testing arc

transition guard

parameter place

method net

syncpop: x

x := self produce.
s push: x

y := s pop.
self consume: y

st

3‘.

þ2ÿ � ���L��� d ¤%¤ ¡1¥Ð]m l_
c$^l�] £����
	���
 {Ec$]ma[�lf@qN{��
������������_
dLq���� ��� ������_�`[]%dlf
aE{b�lf�¬2dO¦H�

X6ÂJ; F�F D »�ºm; UN? S D ¼JÂ S = F D F ºmÂ D ¾W= F ;>»$;>M D = F U@Æ ºmÂ D M D�à ?J; ºm; UN?®U@Æ Ñ$Ñ ÉEÌ F IJÂJUeÁ D Ç D S IMOV D ºmU F ¼W=N» D < ; Ps; º�=eºm; UN? F I�Á%; ºmÂJUNVOº�P�= G ; ?JÀ­ºmÂ D M D F » S ; ¼Oºm; UN?�ÆáU S P�=@<i=@?WM®»�UNPs¼J< D º D Èã D$D�½ ¼J<>=@; ?§ºmÂ D ? D » D FmF = S Ã�?JU@ºm; UN? F UN?J< ÃNÈ Ë ¾J; º�M D
D ¼ D S ; ?lº S UOMOVW»�ºm; UN?§ºmU�ºmÂ D Ñ$Ñ ÉEÌÆáU S P�=@< ; F P5»
=@?$¾ D ÆáUNVJ?WMx; ? Ó AC T K�ÔLÝ
ÖL=@?WM�ºmÂ DED ?lºm; S D M D�à ?J; ºm; UN?�U@Æ Ñ$Ñ ÉEÌ F ; ? Ó T =@?WÔNÕzÖ�È

� �"!$#&%('*) +�,
-(.�+�-/,
'10�243537698;:
Ë ?=<�>@?�ACBEDGFH<
I�J"AEKLDMACNPOQAEDGI�JRKSAED�; F =ßº S ; ¼J< D ÏUT5VXW�Y�VXZ�[M\�YzÒ Á%Â D S D T ; F = F Ã F º D PîU@Æ
»�<>= FmF D F I W�Y =@?�; ?J; ºm;>=@<1»�<>= FmF IJ=@?WM Z�[M\�Y ºmÂ D ?W=@P D U@Æ =@?�; ?J; ºm;>=@<1UN¾OZ D »�º6Æ S UNP W�Y È

T »�UN?lº�=@; ? F�F D º F U@Æ Ñ$Ñ ÉEÌ D < D P D ?lº F Á%ÂJ;>»�Â�»�UN? F ºm; ºmVOº D »�<>= FmF D F È	í�º"»�UNPs¼ S ; F D F»�UN? F º�=@?lº FR]9^`_1a�b I.Çe= S ;>=@¾J< D F&c&d4e I.? D º D < D P D ?lº F­Ï�F VW»�ÂÜ= F ¼J<>=N» D F&f =@?WMÊº S =@? Ä
F ; ºm; UN? FRb�Ò I »�<>= FmF D < D P D ?lº F�Ï�F VW»�Â8= F UN¾OZ D »�º�? D º F7^`_hg9b IiP D ºmÂJUOMÜ? D º Fjik_hg9b I
F ÃL?W»�Â S UN?JUNV F ¼�U S º F&amlR_1] I.=@?WMÊP D FmF =@À D F D < D »�ºmU S F&inamo�Ò I.»�<>= FmF D F9]`pqdrasa I1UN¾ Ä
Z D »�ºå;>M D ?lºm; àWD S F*^`t�u Ix=@?WM5P D ºmÂJUOMÎ? D ºå; ? F º�=@?W» D ;>M D ?lºm; àWD S F1ikt�u È�ã D M D ?JU@º D
_hg9bwvx^`_hg9bnyzik_hg9b =@?WM t�u{vx^`t�u|yzikt�u È6X6Â D VJ?J; Ç D S F D~} U@Æ)=@?
Ñ$Ñ ÉEÌÍ»�UN?lº�=@; ? F$Ï ? D F º D M Ò ºmVJ¼J< D F U@Æ	»�UN? F º�=@?lº F IJ»�<>= FmF D F IO=@?WM"UN¾OZ D »�º%;>M D ?lºm; àWD S F ÈL� D º
� t�_hu�vk�
�r���4�s�������S� }R� ¾ D ºmÂ D F D º�U@Æ =@< <1¾J; ?WMO; ?JÀ F U@Æ Çe= S ;>=@¾J< D F È

� >@?�ACBED9KSAED"�"»�UN? F ; F ºsU@Æ�¼J<>=N» D F =@?WMßº S =@? F ; ºm; UN? F È Ù Ç D S ÃÊ¼J<>=N» D ÂW= F�F UNP D ; ?J; ºm;>=@<P�= S G ; ?JÀWÈ Ù Ç D S ÃÊº S =@? F ; ºm; UN?8ÂW= F »�UN?WMO; ºm; UN? F�Ï ;}È D È	; ? F » S ; ¾ D MÜº D F ºm; ?JÀß= S » F�Ò I ¼ S D »�UN? ÄMO; ºm; UN? F§Ï ;}È D Èi; ? F » S ; ¾ D Mß; ?J¼JVOºs= S » F�Ò I.=�ÀNVW= S M�I.=@?8=N»�ºm; UN?1I.=@?WMß¼�U F º�»�UN?WMO; ºm; UN? F§Ï ;}È D È
; ? F » S ; ¾ D M�UNVOºm¼JVOºx= S » F�Ò È��1AED@��<�N5KSAED"�)= S D F ; Ps; <>= S ºmU­UN¾OZ D »�º�? D º F ¾JVOºjI�; ?å=NMJMO; ºm; UN?1ID =N»�Â­U@Æ1ºmÂ D PëÂW= F = F D º6U@Æ.¼W= S =@P D º D S ¼J<>=N» D F =@?WM§= S D ºmV S ?­¼J<>=N» D ÈO: D ºmÂJUOM­? D º F »
=@?=N»
» D FmF ¼J<>=N» D F U@Æ	ºmÂ D =@¼J¼ S UN¼ S ;>=eº D UN¾OZ D »�º�? D º F ; ?®U S M D S ºmU�=@< < UeÁ S VJ?J?J; ?JÀ§P D ºmÂJUOM FºmU�PsUOMO; ÆáÃ F º�=eº D F U@ÆiUN¾OZ D »�º F Á%ÂJ;>»�Â"ºmÂ D Ã"= S D S VJ?J?J; ?JÀ�; ?1È

��� KSBC��IX<
KS<
���r�L<
I�D"�§= S D F ¼ D »�;>=@<2º S =@? F ; ºm; UN? F Á%ÂJ;>»�ÂÜ»
=@?J?JU@º à S D =@< UN? D ¾JVOº)UN?J< ÃMOÃL?W=@Ps;>»
=@< < Ã�ÆáV F D MåºmU F UNP D U@ºmÂ D S º S =@? F ; ºm; UN? F Á%ÂJ;>»�Âk�m=N»�ºm; Çe=eº D�� ºmÂ D P Æ S UNPêºmÂ D ; S
ÀNVW= S M F ÇL;>=�P D FmF =@À D F D ?WMO; ?JÀWÈ Ù Ç D S Ã F ÃL?W»�Â S UN?JUNV F ¼�U S º D P)¾�UOMO; D F = F D º�U@Æ�»�UN?WMO; Äºm; UN? F I ¼ S D »�UN?WMO; ºm; UN? F I =@?WMß¼�U F º�»�UN?WMO; ºm; UN? F UeÇ D S ¼J<>=N» D F U@Æ�ºmÂ D =@¼J¼ S UN¼ S ;>=eº D UN¾OZ D »�º
? D ºjI.=@?WM®ÆáV S ºmÂ D S ="ÀNVW= S M�I1=@?WMÊ= F D º$U@Æ/¼W= S =@P D º D S F È�É	= S =@P D º D S F U@Æ6=@?Þ=N»�ºm; Çe=eº D M¼�U S º9�)»
=@?®¾ D ¾�UNVJ?WM�ºmU§»�UN? F º�=@?lº F U S VJ?J; àWD M�Á%; ºmÂ®Çe= S ;>=@¾J< D F M D�à ? D M�UN?�ºmÂ D < D Ç D <U@ÆiºmÂ D º S =@? F ; ºm; UN?§U S ¼�U S º%ºmÂW=eº�=N»�ºm; Çe=eº D M;�NÈ

37

Ë BE� ���C��; F/F ¼ D »�; àWD Ms¾LÃ�=@?�UN¾OZ D »�ºE? D º Ï =@? D < D P D ?lº/U@Æ ^`_hg9b�Ò IL= F D ºEU@Æ�P D ºmÂJUOM
? D º F®Ï = F VJ¾ F D º­U@Æ ik_hg9b�Ò I	= F D º­U@Æ F ÃL?W»�Â S UN?JUNV F ¼�U S º F�Ï = F VJ¾ F D º­U@Æ amlR_1]$Ò I
=@?WM®= F D º�U@Æ	P D FmF =@À D F D < D »�ºmU S F�Ï = F VJ¾ F D º�U@Æ inamo�Ò »�U SmS D F ¼�UN?WMO; ?JÀsºmU§; º F P D ºmÂJUOM? D º F =@?WM)¼�U S º F È Ñ ¾OZ D »�º	? D º F M D F » S ; ¾ D ¼�U FmF ; ¾J< D ; ?WM D ¼ D ?WM D ?lº/=N»�ºm; ÇL; ºm; D F U@Æ�¼W= S ºm;>»�VJ<>= SUN¾OZ D »�º F I@P D ºmÂJUOMs? D º F S D =N»�ºm; UN? F U@Æ¢UN¾OZ D »�º F ºmU$P D FmF =@À D F	F D ?lº	ºmUxºmÂ D P Æ S UNP UNVOº F ;>M D I=@?WM�¼�U S º F =@< < UeÁ,ºmU S D PsU@º D < ÃÐº D F º®=@?WMó»�ÂW=@?JÀ D F º�=eº D F U@Æ�UN¾OZ D »�º F ; ?Í=@?ó=eºmUNPs;>»
Á6=zÃNÈWX6Â D ; ?JÂ D S ; º�=@?W» D P D »�ÂW=@?J; F PäU@Æ Ñ$Ñ ÉEÌ F =@< < UeÁ F =@?�; ?W» S D P D ?lº�=@< F ¼ D »�; à »
=eºm; UN?U@Æ/»�<>= FmF D F ÈWíb?JÂ D S ; º D M®P D ºmÂJUOM F =@?WM F ÃL?W»�Â S UN?JUNV F ¼�U S º F »
=@?å¾ D S D M D�à ? D M®=@?WM®? D ÁP D ºmÂJUOM F =@?WM F ÃL?W»�Â S UN?JUNV F ¼�U S º F »
=@?"¾ D =NMJM D M�È Ë F ; Ps; <>= S P D »�ÂW=@?J; F Pä=@¼J¼J< ; D F ÆáU SUN¾OZ D »�º%? D º�¼J<>=N» D F =@?WM§º S =@? F ; ºm; UN? F È

� ����#&%('h�5 �¡(¢�£P¤".¦¥§'�%(¢�¨�¤"0�-/,50�2r3537698;:
X6Â D MOÃL?W=@Ps;>»�¾ D ÂW=zÇL; UNV S U@Æ Ñ$Ñ ÉEÌ F »�U SmS D F ¼�UN?WM F ºmUÞºmÂ D®D ÇNUN< VOºm; UN?ÐU@Æ$= F Ã F º D P
U@Æ�UN¾OZ D »�º F È Ë ?n<�>@?�ACBED); F = F Ã F º D P9U@Æ�? D ºs; ? F º�=@?W» D F Á%ÂJ;>»�ÂÐ»�UN?lº�=@; ? F D�½ =N»�ºm< ÃÞUN? D
; ? F º�=@?W» D U@Æ	ºmÂ D =@¼J¼ S UN¼ S ;>=eº D UN¾OZ D »�º�? D ºx=@?WM®= F D º�U@Æ/»�V SmS D ?lºm< Ã S VJ?J?J; ?JÀ§; ? F º�=@?W» D FU@Æ P D ºmÂJUOM�? D º F È Ù Ç D S Ã;KSAED©J�K���DM�
KSBCA D ?lº�=@; < F ; º F ;>M D ?lºm; àWD S [M\�ª;t�u =@?WM"=sP�= S G ; ?JÀU@Æ/; º F ¼J<>=N» D F =@?WM�º S =@? F ; ºm; UN? F È Ë¬« �
IX­
J�K�®1<°¯��R�S� ��BCA�; F ="P)VJ< ºm; F D º$U@Æ D < D P D ?lº F U@Æ
ºmÂ D VJ?J; Ç D S F D5} È Ë DGIX�
K���J�DGJ"<
K « �
IX­
J�K�®å; F = F D º�U@Æ6; ?LÇNUO»
=eºm; UN? F È Ù Ç D S Ã±J�KL²
<�BC�
DGJ"<
K
»�UN?lº�=@; ? F =@?);>M D ?lºm; àWD S [M\7ª;ikt�u U@ÆJºmÂ D ; ?LÇNU G D M�? D º	; ? F º�=@?W» D =@?WM�= F ºmU S D M�¾J; ?WMO; ?JÀ
�4ª � t�_hu U@Æ.ºmÂ D ; ?J¼JVOº�Çe= S ;>=@¾J< D F U@ÆiºmÂ D =@¼J¼ S UN¼ S ;>=eº D º S =@? F ; ºm; UN?1ÈË F º�=eº D U@Æ%= S VJ?J?J; ?JÀ Ñ$Ñ ÉEÌ ÂW= F ºmÂ D ÆáU S P U@Æ%= « �
IX­
J�K�®@ÈiX.U�=@< < UeÁBºmÂ D »�<>= F[Ä
F ;>»
=@<1É D º S ;�? D º Ä Á6=zÃ�U@Æ P�=@?J; ¼JVJ<>=eºm; ?JÀsP�= S G ; ?JÀ F ILºmÂ D Ã"= S D S D ¼ S D F D ?lº D M"= F P)VJ< ºm; F D º FU@ÆEºmU G D ? D < D P D ?lº F È�íb?åºmÂ D »
= F D U@Æ6=­º S =@? F ; ºm; UN?åP�= S G ; ?JÀWI�ºmÂ D ;>M D ?lºm; àWD S U@ÆEºmÂ D ; ? ÄÇNU G D M�P D ºmÂJUOM§? D º%; ? F º�=@?W» D ; F%F ºmU S D M­Á%; ºmÂJ; ?§ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¾J; ?WMO; ?JÀ�; ?�= F ¼ D »�;>=@<
Ï V F D S Ä ; ?LÇL; F ; ¾J< D Ò Çe= S ;>=@¾J< Ds³/´
µ ÈNX6ÂLV F =�ÆáU S P�=@<W»�UNPs¼W=eºm; ¾J; < ; º[Ã)U@Æ�¼J<>=N» D =@?WM�º S =@? F ; ºm; UN?P�= S G ; ?JÀ F ; F =N»�ÂJ; D Ç D M­=@?WM�; º%; F ¼�U FmF ; ¾J< D ºmUsM D�à ? D =�ºmU G D ? D < D P D ?lº%= F =�º S ; ¼J< D »�UN? Ä
F ; F ºm; ?JÀ"U@ÆEºmÂ D ;>M D ?lºm; àWD S U@ÆEºmÂ D ? D º$; ? F º�=@?W» D ; º$¾ D < UN?JÀ F ºmUWI¢ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¼J<>=N» DU S º S =@? F ; ºm; UN?1IJ=@?WM�=@? D < D P D ?lº�U@ÆiºmÂ D VJ?J; Ç D S F D U S =s¾J; ?WMO; ?JÀWÈWX6Â D ?�Á D »
=@? F =zÃ�ÆáU S=�P�= S G ; ?JÀ i ºmÂW=eº �

i¶ª Ó Ï"t�u¬·;f¸· } Ò yÊÏ"t�u¹·¦bº· � t�_hu§Ò Ö@»j¼/½
Ë F º D ¼�Æ S UNP'=sP�= S G ; ?JÀ�U@Æ	=@? Ñ$Ñ ÉEÌÍ; ?lºmU­=@?JU@ºmÂ D S P�= S G ; ?JÀ�»
=@?�¾ D M D F » S ; ¾ D M= F ºmÂ D F U Ä »
=@< < D M*AE²
AEKLD}È Ø VW»�Â�=@? D Ç D ?lº%; F =§¾ Ä ºmVJ¼J< D

g¿vBÏ"À�VH[M\LVHÁ�VC��Ò
; ?W»�< VWMO; ?JÀ Ï ý Ò ; º F º[ÃL¼ D À I ÏGÂNÒ ºmÂ D ;>M D ?lºm; àWD S [M*ªzt�u U@ÆEºmÂ D ? D º�; ? F º�=@?W» D ; º$º�= G D F
¼J<>=N» D ; ?1I Ï"ÃlÒ ºmÂ D º S =@? F ; ºm; UN? Á;ª¿b ; º§; F�F º�=eºm;>»
=@< < Ã S D ¼ S D F D ?lº D MÜ¾LÃNIE=@?WM Ï ¾ Ò ºmÂ D¾J; ?WMO; ?JÀ$º S D
D � »�UN?lº�=@; ?J; ?JÀ�ºmÂ D ¾J; ?WMO; ?JÀ F V F D MsUN?�ºmÂ D < D Ç D <JU@Æ�ºmÂ D ; ?LÇNU G D M�º S =@? F ; ºm; UN?= F Á D < < = F Á%; ºmÂJ; ?Ê=@< <1ºmÂ D F ÃL?W»�Â S UN?JUNV F ¼�U S º F�Ï ¼�U FmF ; ¾J< Ã�; ?WMO; S D »�ºm< Ã Ò =N»�ºm; Çe=eº D M"Æ S UNPºmÂW=eº	º S =@? F ; ºm; UN?1ÈeX6Â D S D = S D ÆáUNV S G ; ?WM F U@Æ D Ç D ?lº F =N»
»�U S MO; ?JÀ�ºmU�ºmÂ D Á6=zÃxU@Æ D Çe=@< VW=eºm; ?JÀ
ºmÂ D =N»�ºm; UN?ÊU@Æ2ºmÂ D =@¼J¼ S UN¼ S ;>=eº D º S =@? F ; ºm; UN? �SÄ¦Å =@?Ê=eºmUNPs;>»s=N»�ºm; UN?å; ?LÇNUN< ÇL; ?JÀ§º S ; ÇL;>=@<
»�UNPs¼JVOº�=eºm; UN? F UN?J< ÃNI�Æ Å =­? D ÁBUN¾OZ D »�º�; ? F º�=@?lºm;>=eºm; UN?®ÇL;>=�ºmÂ D P D FmF =@À D9ÇLÈ�É I�Ê Å =@?
; ? F º�=@?lºm;>=eºm; UN?ÜU@Æ�=ÊÉ D º S ; Ä ? D ºsM D F » S ; ¾ D MßP D ºmÂJUOM�I2=@?WMÌË Å º D S Ps; ?W=eºm; ?JÀÞ=®P D ºmÂJUOM

38

? D º�; ? F º�=@?W» D ÈWí�Æ2=@? D ?W=@¾J< D M D Ç D ?lº g UO»
»�V S F ; ?®=�P�= S G ; ?JÀ i =@?WM�»�ÂW=@?JÀ D F ; º�; ?lºmU
=�P�= S G ; ?JÀ ikÍ IOÁ D »
=@< <�ºmÂJ; F =5��DMAU�Ê=@?WM"M D ?JU@º D ; º�¾LÃ

i Ó gRÎHi Í ½
ïJU S =­ÀN; Ç D ? Ñ$Ñ ÉEÌ�IW; º F J�KLJ�DGJ"�
� « �
IX­
J�K�® i~Y »�U SmS D F ¼�UN?WM F ºmU§= F ; ?JÀN< D I�; ?J; ºm;>=@< < ÃP�= S G D MsUN¾OZ D »�ºE? D º6; ? F º�=@?W» D Æ S UNP ºmÂ D ; ?J; ºm;>=@<¢»�<>= FmFqW�Y ;>M D ?lºm; àWD M§= FqZ�[M\�Y ÈLX6Â D ��AEDq<°¯

�
��� « �
IX­
J�K�®
�$U@Æ	=@? Ñ$Ñ ÉEÌ5; F M D ?JU@º D M�= F�ikd =@?WM§ºmÂ D ��AEDÏ<°¯R�
���(AE²
AEKLD"��= FQgRc È
ïi; ?W=@< < ÃNILÁ D ; ?lº S UOMOVW» D ºmÂ D ÆáUN< < UeÁ%; ?JÀ)?JU@º�=eºm; UN?1ÈÑÐ�; Ç D ? [M\7ªÒt�u I�Ó À�Á�Ï@[M\LÒ M D ?JU@º D FºmÂ D ? D º9Ó ªP_hg9b F VW»�Â�ºmÂW=eº [M\ ;>M D ?lºm; àWD F =@?®; ? F º�=@?W» D U@ÆqÓ	I�=@?WM Z�[M\�Ï@[M\LÒ M D ?JU@º D F

Z�[M\7ªh^`t�uBF VW»�ÂxºmÂW=eº [M\ ;>M D ?lºm; àWD F =%? D ºi; ? F º�=@?W» D ¾ D < UN?JÀN; ?JÀ%ºmU%ºmÂ D UN¾OZ D »�ºi;>M D ?lºm; àWD M
¾LÃ Z�[M\ ÈzÌ�U@º D ºmÂW=eº =@?$UN¾OZ D »�ºi; F ;>M D ?lºm; àWD M$¾LÃ�ºmÂ D ;>M D ?lºm; àWD S U@ÆJ; º F UN¾OZ D »�º.? D ºi; ? F º�=@?W» D È

Ô Õ*Ö�òØ×YµqÙ[ò µ2ù®±l²�øN³ÑÚ	²�¸¢ò ±l¶�ò.²E³J¹MÛ�ò1´Wøé¹H²ÝÜ/³ÑÚi³OòÞÜ6÷4Ú	¸¢ò.ø�µ2ù
úYúÜûÊü5ø

íb?sºmÂJ; FEF D »�ºm; UN?�ºmÂ D S D ; F ;>M D ?lºm; àWD M�= F ¼ D »�;>=@<J¼ S UN¾J< D P = S ; F ; ?JÀx; ?sºmÂ D »�UN?lº D�½ ºEU@Æ F º�=eº D
F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F I�?W=@P D < ÃåºmÂ D F U Ä »
=@< < D Må?W=@Ps; ?JÀ�¼ S UN¾J< D P�= FmF UO»�;>=eº D M®ºmUåM D =@< ; ?JÀ
Á%; ºmÂó;>M D ?lºm; àWD S F U@Æ); ? F º�=@?W» D F ºmÂW=eº�»
=@?ó¾ D MOÃL?W=@Ps;>»
=@< < Ãé» S D =eº D M�=@?WMóMO; F »
= S M D M�ÈX6Â D S D = S D F VJÀNÀ D F º D M"=@?WM"»�UNPs¼W= S D M­º[Á/UsP D ºmÂJUOM F º S ÃL; ?JÀ�ºmUsPs; ?J; Ps; Å D ºmÂ D ; Ps¼W=N»�ºU@Æ/ºmÂ D ¼ S D F D ?W» D U@Æ/?W=@P D F U@Æ/; ? F º�=@?W» D F ; ? F º�=eº D F VJ¼�UN?ÊºmÂ D F º�=eº D F ¼W=N» DsD�½ ¼J< U F ; UN?¼ S UN¾J< D P�È1ï S UNPöºmÂ D ¼�UN; ?lº�U@Æ6ÇL; D Á U@Æ/ºmÂ D ?W=@Ps; ?JÀ�¼ S UN¾J< D P�I Ñ$Ñ ÉEÌ F »
=@?Þ¾ D »�UN? Ä
F ;>M D S D M�Z[V F º$= S D ¼ S D F D ?lº�=eºm; Ç D U@Æ2ÆáU S P�=@< ; F P F Á%; ºmÂÊMOÃL?W=@Ps;>»); ? F º�=@?lºm;>=eºm; UN?åU@Æ F UNP D
G ; ?WM"U@Æ »�UNPs¼�UN? D ?lº F I F VW»�Â�= F UN¾OZ D »�º F U S ¼ S UO» D FmF D F È

ß��"!$#&%('h8;¢�£P¤"¡(à16`,
0Lá�â"'�£
Ø º�=eº D F ¼W=N» D F »
=@?ÞÀ D ? D S =@< < Ã�¾ D M D�à ? D M Ó K2=@<>ÔNÕzÖ/= F ¾ Ä ºmVJ¼J< D F »�UN? F ; F ºm; ?JÀ�U@Æ%= F D º�U@Æ
F º�=eº D F IE= F D º­U@Æ F º S VW»�ºmV S =@<6º S =@? F ; ºm; UN? F IE= F D º­U@Æ F D P�=@?lºm;>»§º S =@? F ; ºm; UN? F�Ï ;}È D ÈE< ; ? GOF¾ D º[Á D
D ? F º�=eº D F =@?WM F º S VW»�ºmV S =@<Lº S =@? F ; ºm; UN? F�Ò IN=@?WMs=@?s; ?J; ºm;>=@< F º�=eº D ÈNX6ÂJ; F »�UN?W» D ¼OºE»
=@?¾ D V F D M�Á%Â D ?"M D =@< ; ?JÀ)Á%; ºmÂ F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F�Ï U S =@?LÃsU@ºmÂ D S ÆáU S P�=@< ; F P Á%; ºmÂ
MOÃL?W=@Ps;>»E; ? F º�=@?lºm;>=eºm; UN? Ò I@= F Á D < <}È
ã�UeÁ D Ç D S Ij; ?)ºmÂ D »�UN?lº D�½ º U@Æ F VW»�Â)ÆáU S P�=@< ; F P F ºmÂ D S D= S ; F D F UN? D ? D Áé¼JÂ D ?JUNP D ?JUN?sºmU)¾ D »�UN? F ;>M D S D M�ÈlÉ	= S ºm;>»�VJ<>= S < ÃNIe; º/; F ? D » D FmF = S Ã�ºmU)¼W=zÃ»
= S D ÆáVJ<W=eºHº D ?lºm; UN?�ºmU D�è »�; D ?lºm< Ã)ÂW=@?WMO< ; ?JÀxºmÂ D ?W=@Ps; ?JÀ$; ?OÆáU S P�=eºm; UN?s¼ S D F D ?lº	; ? F º�=eº D F; ?ßU S M D S ?JU@º$ºmU�Á/U S F D ?ÊU S D Ç D ?ÊºmU®M D » S D = F D ºmÂ D F º�=eº D F ¼W=N» DsD�½ ¼J< U F ; UN?Ê¼ S UN¾J< D P�È
� D º�V F M D ?JU@º D ºmÂJ; F ¼JÂ D ?JUNP D ?JUN?�= F ºmÂ D KS� « J�K�®`�SIX<�>E� A « È

X6Â D ?W=@Ps; ?JÀ�; ?OÆáU S P�=eºm; UN?"¼ S D F D ?lº�; ? F º�=eº D F U@Æ	MOÃL?W=@Ps;>»
=@< < Ã F º S VW»�ºmV S D M"PsUOM D < F
F D S Ç D F ÆáU S VJ?J; ¿ V D < Ã);>M D ?lºm; ÆáÃL; ?JÀxºmÂ D Z[V F º D�½ ; F ºm; ?JÀ$; ? F º�=@?W» D F U@Æ�MO; â D S D ?lº2PsUOM D <�»�UNP Ä¼�UN? D ?lº F Á%ÂJ;>»�Â­=@< < UeÁ F ºmU F D ¼W= S =eº D ºmÂ D ; S < UO»
=@< F º�=eº D F =@?WM D�½ ¼ S D FmF S D Æ D S D ?W» D F =@PsUN?JÀºmÂ D P�ÈjãÊU S G ; ?JÀ%Á%; ºmÂ$; ? F º�=@?W» D ;>M D ?lºm; àWD S F I D È ÀWÈ
; ?xºmÂ D ÆáU S P5U@ÆJ=NMJM S D FmF D F U@ÆOUN¾OZ D »�º F I
; F»�UNPsPsUN?ÊÁ%Â D ? S VJ?J?J; ?JÀ�UN¾OZ D »�º Ä U S ; D ?lº D M®¼ S UNÀ S =@P F U S F ; P)VJ<>=eºm; ?JÀ�UN¾OZ D »�º Ä U S ; D ?lº D MPsUOM D < F Èqã�UeÁ D Ç D S I	; ?YºmÂ D »�UN?lº D�½ º­U@Æ F º�=eº D F ¼W=N» D F I	ºmÂ D ¼ S D F D ?W» D U@ÆxºmÂ D ?W=@Ps; ?JÀ
; ?OÆáU S P�=eºm; UN?Ü; ? F º�=eº D F »
=@? F ; ÀN?J; à »
=@?lºm< Ãß»�UN?lº S ; ¾JVOº D ºmU®ºmÂ D F º�=eº D F ¼W=N» D§D�½ ¼J< U F ; UN?
¼ S UN¾J< D P�È�X6ÂJ; F ; F MOV D ºmU­ºmÂ D ¼�U FmF ; ¾J; < ; º[Ã�U@Æ	VJ?J? D » D FmF = S ; < Ã"À D ? D S =eºm; ?JÀ�P�=@?LÃ F º�=eº D FMO; â D S ; ?JÀ�UN?J< Ã�; ?åºmÂ D ?W=@P D F U@Æ2ºmÂ D ; ?LÇNUN< Ç D M�; ? F º�=@?W» D F D Ç D ?Ê; ÆEºmÂ D ?W=@P D F »
=@?J?JU@º

39

; ?OìWV D ?W» D ºmÂ D ÆáVOºmV S D ¾ D ÂW=zÇL; UNV S U@ÆiºmÂ D F Ã F º D Pä¾ D ; ?JÀ D�½ =@Ps; ? D M§; ?®=@?LÃ­Á6=zÃ Ï VJ¼"ºmU
S D ?W=@Ps; ?JÀ Ò È1ãéÂW=eº); F Á/U S F D I F UNP D ºm; P D F ºmÂ D ?W=@Ps; ?JÀ�; ?OÆáU S P�=eºm; UN?ß»
=@?ÞP�= G D F º�=eº D
F ¼W=N» D F U@Æ D ÇL;>M D ?lºm< Ã à ?J; º D ÄbF º�=eº D F Ã F º D P F À S UeÁ ºmUß; ? à ?J; º[ÃÜæ ; º F V è » D F ºmU G D
D ¼» S D =eºm; ?JÀß=@?WMÐM D F º S UeÃL; ?JÀåºmÂ D F =@P D ; ? F º�=@?W» D Ï Æ S UNP = F D P�=@?lºm;>»
=@<%¼�UN; ?lº­U@ÆxÇL; D Á Ò
;>M D ?lºm; ÆáÃL; ?JÀ�; º�V F ; ?JÀ F ºm; < <1? D Á5;>M D ?lºm; àWD S F È

Ø º�=eº D F ¼W=N» D S D MOVJ?WMJ=@?W»�; D F = FmF UO»�;>=eº D M$ºmU$Á/U S G ; ?JÀxÁ%; ºmÂ�ºmÂ D ?W=@Ps; ?JÀ$; ?OÆáU S P�=eºm; UN?ÂW=zÇ D º[Á/Uå¼�U FmF ; ¾J< D F UNV S » D F È X6Â D§à S F ºsUN? D ; F = F ¼ D »�;>=@< º[ÃßU@Æ�ÆáU S P�=@< ; F P F�F VJ¼J¼�U S º Ä; ?JÀsMOÃL?W=@Ps;>» F º S VW»�ºmV S ; ?JÀ�U@Æ F UNP D G ; ?WM"=@?WM F º D P F Æ S UNPªºmÂ D Á6=zÃsºmÂ D F D ÆáU S P�=@< ; F P F
���C��J ®�KÒJ"N�AEKLDGJ ä©AEIC�4DM<RKSAEåÏ� � �
I�J���J�K�®jJ�K���DM�
KSBCA���È�æ D MOVJ?WMJ=@?lº F º�=eº D F = S ; F D Á%Â D ?­=@?�; ? Ä
F º�=@?W» D ¼J<>=zÃL; ?JÀ)=�» D S º�=@; ? S UN< D ; ?�ºmÂ D PsUOM D < < D M F Ã F º D P Ï ÀN; Ç D ?�¾LÃs; º F º[ÃL¼ D INºmÂ D < UO»
=@<
F º�=eº D F ; º�»
=@? S D =N»�Â1I�U S ºmÂ D Á6=zÃ�; º$; F S D Æ D SmS D M�ºmU Ò »
=@?®¾ D » S D =eº D M®VJ?WM D S MO; â D S D ?lº?W=@P D F Á%Â D ?�ÀNUN; ?JÀxºmÂ S UNVJÀNÂ�MO; â D S D ?lº F º�=eº D F ¼W=N» D ¼W=eºmÂ F < D =NMO; ?JÀxºmU�; º F » S D =eºm; UN?1ÈNX.U; < < V F º S =eº D F VW»�Âß=�»
= F D I1Á D »
=@?ß»�UN? F ;>M D S ÆáU S D�½ =@Ps¼J< D =�PsUOM D <2U@Æ�=§ì D�½ ; ¾J< D P�=@? ÄVOÆ�=N»�ºmV S ; ?JÀ F Ã F º D P Ó T K�ÔNÕzÖ6Á%; ºmÂ F D Ç D S =@<2¼ S UOMOVW»�ºm; UN?8» D < < F S D ¼ S D F D ?lº D MÞ¾LÃÊUN¾OZ D »�º FVJ?J; ¿ V D < Ã§MO; F ºm; ?JÀNVJ; F Â D M§¾LÃsºmÂ D P�=N»�ÂJ; ? D F ºmÂ D Ã D ?W»
=@¼ F VJ<>=eº D ÈÑæ D MOVJ?WMJ=@?lº F º�=eº D F = S DÀ D ? D S =eº D M$Á%Â D ?$ºmÂ D F D UN¾OZ D »�º F »
=@?�¾ D » S D =eº D M�=@?WM�;>M D ?lºm; àWD M�V F ; ?JÀ�MO; â D S D ?lº	»�UNP)¾J; Ä?W=eºm; UN? F U@Æ�?W=@P D F I@¼�U FmF ; ¾J< Ã S D ì D »�ºm; ?JÀ$ºmÂ D U S M D S ; ?�Á%ÂJ;>»�ÂsºmÂ D Ã�Á D S D ; ?WM D ¼ D ?WM D ?lºm< ÃU@Æ D =N»�ÂßU@ºmÂ D S » S D =eº D M�È Ë F ; Ps; <>= S F ; ºmVW=eºm; UN?ÜU@Æ�º D ?Ð= S ; F D F Á%Â D ?Ð=�P D ºmÂJUOM8»
=@?Ü¾ D
; ?LÇNU G D M­Á%; ºmÂ§ºmÂ D F =@P D = S ÀNVJP D ?lº F UeÇ D S ºmÂ D F =@P D UN¾OZ D »�º%ÇL;>=sMO; â D S D ?lº F º�=eº D F ¼W=N» D¼W=eºmÂ F < D =NMO; ?JÀ)ºmU­MO; â D S D ?lº�; ?lº D S ?W=@<�;>M D ?lºm; àWD S F U@Æ.ºmÂ D S D F VJ< ºm; ?JÀs; ? F º�=@?W» D È

X6Â D F D »�UN?WM$¼�U FmF ; ¾J< D F UNV S » D U@Æ S D MOVJ?WMJ=@?W»�; D F = FmF UO»�;>=eº D M�ºmU�;>M D ?lºm; àWD S F ; F »�UN?W»�V S Ä
S D ?lºjI F ÃLPsP D º S ;>»
=@<�Á/U S G Á%; ºmÂ F D Ç D S =@<W; ? F º�=@?W» D F ÈLíb?­ºmÂJ; F »
= F D I F UNP D U@Æ1ºmÂ D F ÃLPsP D Äº S ; D F D�½ ; F ºm; ?JÀs=@< S D =NMOÃsUN?­ºmÂ D < D Ç D <¢U@Æ.ºmÂ D F Ã F º D P VJ?WM D S ; ?LÇ D F ºm; Àl=eºm; UN?§= S D P�=@¼J¼ D MUN?lºmU§º S D =eºm; ?JÀ�» D S º�=@; ?Ê; ? F º�=@?W» D F ÇL;>=§ºmÂ D ; S ;>M D ?lºm; àWD S F ; ?ß= F ÃLPsP D º S ;>»
=@<	Á6=zÃNÈ�X6ÂJ; F»
=@?®»
=@V F D ºmÂW=eº�Á D Á/UNVJ<>M�?JU@º�< ULU F D =@?LÃ"; ?OÆáU S P�=eºm; UN?�=@?WM�Á/UNVJ<>M F =zÇ D F UNP D F ¼W=N» D; Æ/Á D »�UNVJ<>M®; ÀN?JU S D ºmÂ D MO; â D S D ?lºx;>M D ?lºm; àWD S F U@ÆEºmÂ D F D ; ? F º�=@?W» D F =@?WM F Á6=@¼®ºmÂ D Pö; ?
F UNP D ¼�UN; ?lº F U@Æ¢ºmÂ D�D ÇNUN< VOºm; UN?sU@Æ¢ºmÂ D PsUOM D < D M F Ã F º D P�È Ë F =@? D�½ =@Ps¼J< D INÁ D »
=@?sº�= G D
ºmÂ D F ÃLPsP D º S ;>»
=@<6Á/U S G Á%; ºmÂYMO; ?J; ?JÀ Ï MO; F º S ; ¾JVOº D M Ò ¼JÂJ; < U F UN¼JÂ D S F ; ? à ÀNV S D Â È2X6Â D¼�U FmF ; ¾J; < ; º[ÃsU@Æ D�½ ¼J< UN; ºm; ?JÀ F Ã F º D P Ä < D Ç D < F ÃLPsP D º S ; D F ÆáU S6S D MOVW»�; ?JÀ F º�=eº D F ¼W=N» D F ; F ?JU@º= F ¼ D »�;>=@< º[Ã�U@ÆWÆáU S P�=@< ; F P F Á%; ºmÂ�MOÃL?W=@Ps;>»/; ? F º�=@?lºm;>=eºm; UN?1Ie¾JVOº2; º F D
D P F ºmUx¾ D ; ?lº D S D F º Ä; ?JÀ)ºmÂW=eº�=eº6< D = F º F UNP D U@Æ.ºmÂ D F D F ÃLPsP D º S ; D F P�=@?J; Æ D F º6ºmÂ D P F D < Ç D F ; ?�= F ; Ps; <>= S Á6=zÃºmU S D MOVJ?WMJ=@?W»�; D F�F º D PsPs; ?JÀÊ¼JV S D < ÃÊÆ S UNP F UNP D ; ?lº D S ?W=@</P D »�ÂW=@?J; F P F U@Æ�MOÃL?W=@Ps;>»
F º S VW»�ºmV S ; ?JÀ�=@?WM§Ps; ÀNÂlº%ºmÂLV F ÂJUN¼ D ÆáVJ< < Ã§¾ D F UN< Ç D M�ºmUNÀ D ºmÂ D S È

X6Â D ?W=@Ps; ?JÀß¼ S UN¾J< D P »
=@?Y¾ D F UN< Ç D M D ; ºmÂ D S ¾LÃ S D F º S ;>»�ºm; ?JÀÞºmÂ D F D P�=@?lºm;>» F U@ÆºmÂ D =@¼J¼J< ; D M§PsUOM D < < ; ?JÀ�<>=@?JÀNVW=@À D U S ¾LÃ S D MOVW»�; ?JÀ)ºmÂ D S D F VJ< ºm; ?JÀ F º�=eº D F ¼W=N» D F =@¼J¼ S U Ä¼ S ;>=eº D < ÃNÈ¢ã D ¼ S D Æ D S ºmÂ D F D »�UN?WMå=@¼J¼ S Ul=N»�Â®Á%ÂJ;>»�ÂÞ=@< < UeÁ F ºmU"V F D MO; â D S D ?lº$P D ºmÂJUOM FÆáU S F UN< ÇL; ?JÀ�ºmÂ D ?W=@Ps; ?JÀs¼ S UN¾J< D Pë; ?�MO; â D S D ?lº�»�UN?lº D�½ º F =@?WM§ºmU�»�UNP)¾J; ? D ºmÂ D PäÁ%; ºmÂ
P D ºmÂJUOM F º S ÃL; ?JÀ�ºmU S D PsUeÇ D U@ºmÂ D S F UNV S » D F U@Æ F º�=eº D F ¼W=N» D S D MOVJ?WMJ=@?W»�; D F È�ãéÂ D ? S D ÄMOVW»�; ?JÀ F º�=eº D F ¼W=N» D F ºmU�¼ S U@Z D »�º6=zÁ6=zÃ�Á%ÂW=eº/Á D »�UN? F ;>M D S ºmU)¾ D VJ?J? D » D FmF = S Ã)?W=@Ps; ?JÀ; ?OÆáU S P�=eºm; UN?�Á D ÂW=zÇ D ºmU)¼ S UeÇ D ºmÂW=eº6MOUN; ?JÀ$ºmÂJ; F Á D MOU�?JU@º/< U F D =@?LÃlºmÂJ; ?JÀ�U S =eº/< D = F º=@?LÃlºmÂJ; ?JÀ); Ps¼�U S º�=@?lºjÈ Ø VW»�Â§=�¼ S ULU@Æ1; F ºmU)¾ D ¾W= F D M�UN? F ¼ D »�; ÆáÃL; ?JÀ)Á%ÂW=eº6; ?OÆáU S P�=eºm; UN?; F »�UN? F ;>M D S D M"; Ps¼�U S º�=@?lº�Æ S UNPäºmÂ D ¼�UN; ?lº�U@Æ2ÇL; D ÁÍU@Æ2V F ; ?JÀ F º�=eº D F ¼W=N» D F ÆáU S ÆáU S P�=@<=@?W=@< Ã F ; F =@?WM"Ç D S ; à »
=eºm; UN?1ÈJãéÂW=eº�; F PsU S D I D Ç D ?�; Æ	Á D MOU�?JU@º�< U F D =@?LÃ§; ?OÆáU S P�=eºm; UN?Á%Â D ? F UN< ÇL; ?JÀ�ºmÂ D ?W=@Ps; ?JÀ§¼ S UN¾J< D P�IJºmÂ D ?JU@ºm; UN?�U@Æ2; Ps¼�U S º�=@?lº�; ?OÆáU S P�=eºm; UN?®»
=@?®¾ DV F D MsÆáU S F ÂJUeÁ%; ?JÀ$ºmÂW=eº F VW»�Â­; ?OÆáU S P�=eºm; UN?§»
=@?�¾ D�D�½ º S =N»�º D M�Æ S UNP ºmÂ D =@¼J¼ S UN¼ S ;>=eº D < Ã

40

S D MOVW» D M F º�=eº D F ¼W=N» D F ; ?s=@? D�è »�; D ?lº2Á6=zÃNÈ Ï íb?)ºmÂ D »�UN?lº D�½ º U@Æ Ñ$Ñ ÉEÌ F Iz; º	; F ?JU S P�=@< < Ã; Ps¼�U S º�=@?lºiºmU�¾ D =@¾J< D ºmU�MO; F ºm; ?JÀNVJ; F Â)¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D F ; ? F º�=eº D F I
ºmU D�½ ¼ S D FmF ºmÂ D ; SUeÁ%? D S F ÂJ; ¼ S D <>=eºm; UN? F IN=@?WM)ºmU G ?JUeÁÐÂJUeÁ8ºmÂ D Ãs= S D P�=@?J; ¼JVJ<>=eº D Ms¾LÃ D Ç D ?lº F	F V SmS UNVJ?WM Ä; ?JÀÜ¼W= S ºm;>»�VJ<>= S F º�=eº D F È©ã�UeÁ D Ç D S I2Á D = S D V F VW=@< < ÃÐ?JU@º§; ?lº D S D F º D MY; ?éºmÂ D »�UN?W» S D º DÇe=@< V D F U@Æ ;>M D ?lºm; àWD S F V F D M§ÆáU S ; Ps¼J< D P D ?lºm; ?JÀsºmÂ D Z[V F º�P D ?lºm; UN? D M§P D »�ÂW=@?J; F P F È Ò
íb?)ºmÂJ; F	F D »�ºm; UN?)ºmÂ D S D = S D F VJÀNÀ D F º D M)=@?WM�»�UNPs¼W= S D M$º[Á/U�P D ºmÂJUOM F ÆáU S F UN< ÇL; ?JÀ�ºmÂ D?W=@Ps; ?JÀ®¼ S UN¾J< D P �/Ï ý Ò V F ; ?JÀ F UN¼JÂJ; F ºm;>»
=eº D MÞ?W=@Ps; ?JÀ S VJ< D F ÆáU S = FmF ; ÀN?J; ?JÀ�;>M D ?lºm; àWD S FºmU�? D Á%< Ã§= S ; F ; ?JÀs; ? F º�=@?W» D F ; ? F ¼J; S D M§¾LÃ­ºmÂ D Á6=zÃ­U@ÆiÂW=@?WMO< ; ?JÀ�¼ S UO» D FmF ;>M D ?lºm; àWD S F ; ?Ø ¼J; ? Ó ã�UN<>ÔLÝ
Ö%=@?WM ÏGÂNÒ ºmÂ D F U Ä »
=@< < D MÊ?W=@P D =@¾ F º S =N»�ºm; UN?ß= F = F ¼ D »�;>=@< ; Åj=eºm; UN?ÞU@Æ%ºmÂ D

F ÃLPsP D º S Ã$P D ºmÂJUOM�ÆáU S	S D MOVW»�; ?JÀ F º�=eº D F ¼W=N» D F Ó T D ?WÔ�¾JI C/× ï�ã�ÔLÝjÖ�ÈeX6Â D <>=eºHº D S P D ºmÂJUOM; F ¾W= F D M®UN?®?JU@º$»�UN? F ;>M D S ; ?JÀ"»�UN?W» S D º D ?W=@P D F U@ÆE; ? F º�=@?W» D F ºmU"¾ D ; Ps¼�U S º�=@?lºxÁ%Â D ?»�Â D » G ; ?JÀ F º�=eº D F ºmU§¾ D�Dj¿ VW=@<}I�Á%ÂJ;>»�Â®< D =NM F ºmU§Á/U S G ; ?JÀ�Á%; ºmÂ S D ?W=@Ps; ?JÀ Dj¿ VJ; Çe=@< D ?W» D»�<>= FmF D F U@Æ F º�=eº D F S =eºmÂ D S ºmÂW=@?åÁ%; ºmÂ®ºmÂ D ; ?WMO; ÇL;>MOVW=@< F º�=eº D F È�Û/U@ºmÂåU@Æ2ºmÂ D F D P D ºmÂJUOM FºmUNÀ D ºmÂ D S Á%; ºmÂ®ºmÂ D ; S ¼ S U F =@?WMå»�UN? F = S D MO; F »�V FmF D M�; ?®ºmÂ D ÆáUN< < UeÁ%; ?JÀ§; ?®ºmÂ D »�UN?lº D�½ ºU@Æ Ñ$Ñ ÉEÌ F ÈSã�UeÁ D Ç D S I à S F º�U@Æ/=@< <}I�Á D M D�à ? D ÆáVJ< < F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F ; ?®U S M D SºmU�UN¾Oº�=@; ?�=�¾W= F ; F ºmUs¾ D S D MOVW» D M"V F ; ?JÀsUN? D U@ÆiºmÂ D P D ?lºm; UN? D M§P D ºmÂJUOM F ÈØ ºm; < <�¾ D ÆáU S D MO; F »�V FmF ; ?JÀ�ºmÂ D º[Á/U)P D ?lºm; UN? D M�¼ S ; ?W»�; ¼J< D F ; ?­PsU S D M D º�=@; <�Á D F ÂJUNVJ<>M?JU@º D ºmÂW=eº2ºmÂ D ¼ S UN¾J< D PBºmÂ D Ã F ÂJUNVJ<>M F UN< Ç D »
=@?J?JU@ºE¾ D =zÇNUN;>M D M�¾LÃ F ; Ps¼J< Ã�¼ S D F D ?lºm; ?JÀ=@?å=@< ÀNU S ; ºmÂJPäÆáU S º S =@? F ÆáU S Ps; ?JÀ�ºmÂ D ÆáU S P�=@< ; F P'Á%; ºmÂÊMOÃL?W=@Ps;>»�; ? F º�=@?lºm;>=eºm; UN?�VJ?WM D S¿ V D F ºm; UN?§; ?lºmU F UNP D G ; ?WM§U@Æ.< UeÁ Ä < D Ç D <WÆáU S P�=@< ; F P Á%ÂJ;>»�Â F ÂJUNVJ<>M F D S Ç D = F =)¾W= F ; F ÆáU SÆáU S P�=@<L=@?W=@< Ã F ; F È
ãéÂ D ?)Á D ÆáU S D�½ =@Ps¼J< D º S Ã�ºmU�º S =@? F ÆáU S P5UN¾OZ D »�º Ä U S ; D ?lº D M$É D º S ;l? D º F; ?lºmU F UNP D G ; ?WM�U@ÆR�H¼J<>=@; ? � ÂJ; ÀNÂ Ä < D Ç D <.? D º F I�= F ÆáU S D�½ =@Ps¼J< D ; ? Ó Ø Û6Ô�¾eÖ�I�ºmÂ D S D P)V F º=@¼J¼ D = S =)»�UN? F º S VW»�ºm; UN?�À D ? D S =eºm; ?JÀ�;>M D ?lºm; àWD S F Á%ÂJ;>»�Â�ºmÂ D ?­¾ D »�UNP D =�MO; F ºm; ?JÀNVJ; F ÂJ; ?JÀ¼W= S º"U@Æ$ºmVJ¼J< D F S D ¼ S D F D ?lºm; ?JÀßºmU G D ? F U@Æ�U S ; ÀN; ?W=@< < ÃYMO; â D S D ?lº"? D º�; ? F º�=@?W» D F ÆáUN<>M D MºmUNÀ D ºmÂ D S ÈWX6ÂLV F ºmÂ D ¼ S UN¾J< D PäU@Æ	?W=@Ps; ?JÀ­; F »
= SmS ; D M"; ?lºmU�ºmÂ D MOUNP�=@; ?�U@Æ	?JUN? Ä UN¾OZ D »�º? D º F =@?WM§P)V F º�¾ D F UN< Ç D M­Á%; ºmÂJ; ?�ºmÂ D ; S =@?W=@< Ã F ; F ¼ S UO» D FmF È

ß�����ç/-(â"âQ) +�¢Ñ+�'*) è�¢�.�'�:70�2r3537698;:
ïJVJ< < F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F »
=@?ß¾ D M D�à ? D MÞV F ; ?JÀ�ºmÂ D À D ? D S =@<E»�UN?W» D ¼Oº�U@Æ F º�=eº D
F ¼W=N» D F P D ?lºm; UN? D M§=@¾�UeÇ D ÈlïJU S =�ÀN; Ç D ? Ñ$Ñ ÉEÌ�I F º�=eº D F Á%; < <�»�U SmS D F ¼�UN?WM)ºmU S D =N»�ÂW=@¾J< DP�= S G ; ?JÀ F =@?WM F º S VW»�ºmV S =@<2º S =@? F ; ºm; UN? F ºmUå=@¼J¼J< ;>»
=@¾J< D­D Ç D ?lº F È ØLD P�=@?lºm;>»�º S =@? F ; ºm; UN? FÁ%; < <2¾ D M D�à ? D MÊ; ?ß=N»
»�U S MJ=@?W» D ºmU"ºmÂ Dsà S ; ?JÀ S VJ< D F U@Æ Ñ$Ñ ÉEÌ F È�ïi; ?W=@< < ÃNI�ºmÂ D ; ?J; ºm;>=@<
F º�=eº D Á%; < <1¾ D ºmÂ D ; ?J; ºm;>=@<1P�= S G ; ?JÀWIOU@Æ »�UNV S F D È
�¦'�é�¡(¤@+�¤"0�¡º!¿ê°ç/-(â"âQ) +�¢Ñ+�'~) è�¢�.�'�:70�243537698;:
ë��

ì/AEDj�
Kk<�>@?�ACBEDGFH<
I�J"AEKLDMACN~OQAEDGI�J&KSAED ^9^`f9_ åmJ�D@�íJ�D"�Ò��AED7<°¯ « �
IX­
J�K�®
�Ò� �rî J�D"�
J�KLJ�DGJ"�
� « �
IX­
J�K�® i~Y
î �
KSNRJ�D"����AEDs<°¯`AE²
AEKLD"� gRc >CAQ®�J�²
AEKSï�ð;A`N�A"äsKSArD@��A Ï ÆáVJ< < Ò2F º�=eº D
F ¼W=N» D <°¯ ^9^`f9_ DM<5>CA&D@��A4ñ�FMDG���S� A a�ÁHaSò¦vÎÏGa�VHb�VCó5VCi~YzÒ ���LBC�¦D@���
DMô
õ ï a±v Ó i~Y�Î ï
ö ï b÷vk�LÏGizø�VXg7VCi±ù
ÒÏª;az·ÒgRcØ·haÌ��izø Ó gRÎHi±ù � ï
ú ï©û izø�VCi±ù`ª;ikd û g¸ªÒgRc Ó ÏGizø
VXg7VCi±ù
ÒÏª¦bíü ÏGizø�VjÏGizø�VXg7VCi±ùjÒ�VCi±ùjÒ©ªhó Ö°ï
Ë »�UN? F Dj¿ V D ?W» D U@ÆEºmÂ D M D�à ?J; ºm; UN?ÞU@ÆEÆáVJ< < F º�=eº D F ¼W=N» D F U@Æ Ñ$Ñ ÉEÌ F ; ÀN?JU S ; ?JÀ§ºmÂ D?W=@Ps; ?JÀ�¼ S UN¾J< D P5; F ºmÂW=eºiÁ%Â D ?�Á D º S Ã�ºmU�» S D =eº D ºmÂ D2à S F º.; ? F º�=@?W» D U@Æ F UNP D ? D ºiÁ%ÂJU F D

41

MOUNP�=@; ?$U@ÆO; º F ; ? F º�=@?W» D ;>M D ?lºm; àWD S F ; F ; ? à ?J; º D Á D ; PsP D MO;>=eº D < Ã�UN¾Oº�=@; ?$; ? à ?J; º D < ÃxP�=@?LÃ¼�U FmF ; ¾J< D º�= S À D º�P�= S G ; ?JÀ F ÈJ:�U S D UeÇ D S I S Dj¿ VJ; S ; ?JÀ F D º F U@Æ	¼�U FmF ; ¾J< D ;>M D ?lºm; àWD S F U@Æ	? D º FºmU�¾ D%à ?J; º D Á%; < <�?JU@º F UN< Ç D ºmÂ D ¼ S UN¾J< D P ¾ D »
=@V F D Ï ý Ò ; º6»
=@?�»�ÂW=@?JÀ D ºmÂ D F D P�=@?lºm;>» F U@ÆºmÂ D PsUOM D <L¾LÃ$= S ºm; à »�;>=@< < Ã S D F º S ;>»�ºm; ?JÀ�ºmÂ D ?LVJP)¾ D S U@ÆW»�UN?W»�V SmS D ?lºm< Ã D�½ ; F ºm; ?JÀ�; ? F º�=@?W» D F=@?WM ÏGÂNÒ ºmÂ D S D »
=@? F ºm; < <1¾ D À D ? D S =eº D M­VJ?J? D » D FmF = S ; < Ã�P�=@?LÃ�º�= S À D º%P�= S G ; ?JÀ F È

ß���ßþý¦:�¤"¡(àP)�0Lè�%(¤":�+�¤".�¢Ñ+�'�ÿí8;¢�£P¤"¡(à��5-(â"'�:
Ø UN¼JÂJ; F ºm;>»
=eº D M S VJ< D F ÆáU S = FmF ; ÀN?J; ?JÀ�;>M D ?lºm; àWD S F ºmU$? D Á%< Ã)= S ; F ; ?JÀx; ? F º�=@?W» D F =eºHº D Ps¼Oº	ºmUM D » S D = F D ºmÂ D M D À S D
D U@Æ/?JUN?WM D º D S Ps; ?J; F P ¼�U@º D ?lºm;>=@< < Ã®¼ S D F D ?lº$; ?åºmÂ D P�=@?W=@À D P D ?lºU@Æ¢?W=@P D F U@Æ1MOÃL?W=@Ps;>»
=@< < Ã)= S ; F ; ?JÀ$=@?WM�MO; F =@¼J¼ D = S ; ?JÀx; ? F º�=@?W» D F =@?WM�ºmÂLV F ºmU�M D » S D = F DºmÂ D ?LVJP)¾ D S U@Æ S D =N»�ÂW=@¾J< D F º�=eº D F ÈX6Â D F ; Ps¼J< D F º�?JUN?lº S ; ÇL;>=@< S VJ< D ÆáU S ?W=@Ps; ?JÀ­; ? F º�=@?W» D F ; F = FmF ; ÀN?J; ?JÀs;>M D ?lºm; àWD S F =N» Ä»�U S MO; ?JÀ�ºmU F UNP D U S M D S ; ?JÀ­UeÇ D S ºmÂ D P�È Ë M D�à »�; D ?W»�Ã�U@Æ2ºmÂJ; F =eºHºm; ºmVWM D ; F ºmÂW=eºxÁ%Â D ?
Á D = S D »�ÃO»�< ;>»
=@< < Ã)» S D =eºm; ?JÀ$=@?WM�M D F º S UeÃL; ?JÀ F UNP D ; ? F º�=@?W» D Á D Á%; < <JUN¾Oº�=@; ?�=@?�; ? à ?J; º D
F º�=eº D F ¼W=N» D ÈzX6ÂJ; F »
=@?)¾ D F UN< Ç D Mx¾LÃ S D »�ÃO»�< ; ?JÀ�;>M D ?lºm; àWD S F ; PsP D MO;>=eº D < Ã�=eÆ�º D S ºmÂ D Ã�= S D
S D < D = F D M�Ie;}È D ÈN¾LÃ);>M D ?lºm; ÆáÃL; ?JÀ�? D Á%< Ã�= S ; F ; ?JÀx; ? F º�=@?W» D F ¾LÃ�ºmÂ D F P�=@< < D F ºE=@?WMs»�V SmS D ?lºm< Ã?JU@º�V F D M�;>M D ?lºm; àWD S F ÈSã�UeÁ D Ç D S I D Ç D ?�ºmÂ D ?®ºmÂ D S D »
=@?�¾ D À D ? D S =eº D M�P�=@?LÃ�MO; â D S D ?lº
F º�=eº D F Á%ÂJ;>»�Â�= S D UN¾LÇL; UNV F < Ã F D P�=@?lºm;>»
=@< < Ã Dj¿ VW=@<}È Ø VW»�Âs= F ; ºmVW=eºm; UN?�= S ; F D F Á%Â D ? F UNP D»�UN? à ÀNV S =eºm; UN?)U@Æ�; ? F º�=@?W» D F »�ÂW= S =N»�º D S ; Å D M$¾LÃ$ºmÂ D ?LVJP)¾ D S U@Æ�ºmÂ D ; ?LÇNUN< Ç D M�; ? F º�=@?W» D F IºmÂ D ; S º[ÃL¼ D F IlºmÂ D ; S º S ; ÇL;>=@<¢P�= S G ; ?JÀWIO=@?WM­ºmÂ D ; S P)VOºmVW=@< S D <>=eºm; UN? F »
=@?§¾ D S D =N»�Â D M­ÇL;>=
F D Ç D S =@< F º�=eº D F ¼W=N» D ¼W=eºmÂ F ; ?ÊÁ%ÂJ;>»�ÂåºmÂ D ; ? F º�=@?W» D F = S D » S D =eº D M®; ?ÞMO; â D S D ?lº$U S M D S F=@?WMsV F ; ?JÀ�Çe= S ; UNV F =@V ½ ; < ;>= S Ã); ? F º�=@?W» D F Á%; ºmÂ§MO; â D S D ?lºm< Ã�UeÇ D S <>=@¼J¼ D M�< ; Æ D ºm; P D F ÈLX6Â D ?ºmÂ D S D »
=@?Ê¾ D À D ? D S =eº D M F D Ç D S =@< F º�=eº D F »�UN?lº�=@; ?J; ?JÀ"ºmÂ D ÀN; Ç D ?Þ»�UN? à ÀNV S =eºm; UN?åU@Æ6; ? Ä
F º�=@?W» D F =@?WM�MO; â D S ; ?JÀ�UN?J< Ã�; ?�ºmÂ D ?W=@P D F U@Æ F UNP D U@ÆOºmÂ D ; ?LÇNUN< Ç D MxVJ?J; ?lº D S »�ÂW=@?JÀ D =@¾J< D; ? F º�=@?W» D F$Ï MO; F ºm; ?JÀNVJ; F Â D M"¾LÃ�ºmÂ D ; S »�UN?lº D ?lº F U S ¾LÃ�ºmÂ D Á6=zÃsºmÂ D Ã"= S D S D Æ D SmS D M�ºmU Ò ÈX6Â D Z[V F º M D F » S ; ¾ D M$¼ S UN¾J< D P5U@ÆJÀ D ? D S =eºm; ?JÀ�VJ?J? D » D FmF = S Ã F º�=eº D F »
=@?�¾ D M D » S D = F D M¾LÃ�V F ; ?JÀ�P)VOºmVW=@< < Ã�; ?WM D ¼ D ?WM D ?lº F Dj¿ V D ?W» D F U@Æ�;>M D ?lºm; àWD S F ÆáU S D =N»�Âsº[ÃL¼ D U@Æ�; ? F º�=@?W» D ÈX6Â D F D F Dj¿ V D ?W» D F P)V F ºjILU@Æ.»�UNV S F D IN¾ D MO; F Z[UN; ?lºjIlÁ%ÂJ;>»�Â"»
=@?�¾ D =N»�ÂJ; D Ç D M�ÆáU S D�½ =@Ps¼J< DÇL;>=)P�= G ; ?JÀ�º[ÃL¼ D F U@Æ.; ? F º�=@?W» D F =�¼W= S º6U@Æ1ºmÂ D ; S ; ? F º�=@?W» D ;>M D ?lºm; àWD S F ÈLíb? F VW»�Â"=�»
= F D I; ÆiÁ D » S D =eº D ºmÂ D�à S F º6; ? F º�=@?W» D U@Æi=)? D ºQÓ ø =@?WM�ºmÂ D ?§ºmÂ D�à S F º6; ? F º�=@?W» D U@Æi=)? D ºQÓ ù IºmÂ D ÃÊÁ%; < <2?JU@º)¾ D ;>M D ?lºm; àWD M ý =@?WM ÂÞÏ Á%ÂJ;>»�ÂßÁ/UNVJ<>MÊVJ?WM D F ; S =@¾J< Ã S D ì D »�º�ºmÂ D U S M D S; ?�Á%ÂJ;>»�Â�ºmÂ D ; ? F º�=@?W» D F Á D S D » S D =eº D M Ò IW¾JVOº�ÆáU S D�½ =@Ps¼J< D Ï Ó ø
V ý Ò =@?WM Ï Ó ù�V ý Ò È Ë Æ�º D S
F VW»�Âß=@?ßUN¼Oºm; Ps; Åj=eºm; UN?Þ?W=@Ps; ?JÀ S D MOVJ?WMJ=@?W»�; D F = S ; F D UN?J< Ãå; Æ%ºmÂ D S D =@¼J¼ D = S MO; â D S D ?lºU S M D S F U@Æ	» S D =eºm; ?JÀ�; ? F º�=@?W» D F U@ÆiºmÂ D F =@P D º[ÃL¼ D IJÁ%ÂJ;>»�Â�»
=@?"¾ D < D FmF Æ S Dj¿ V D ?lºjÈË F ; Ps; <>= S ¼ S ; ?W»�; ¼J< D ºmU­ºmÂ D =@¾�UeÇ D »
=@?å¾ D V F D M�ºmU�=N»�ÂJ; D Ç D =�ÆáV S ºmÂ D S�S D MOVW»�ºm; UN?U@Æ/?W=@Ps; ?JÀ S D MOVJ?WMJ=@?W»�; D F ; ?ÊºmÂ D = S D =§U@Æ/;>M D ?lºm; ÆáÃL; ?JÀ�P D ºmÂJUOMÊ? D º�; ? F º�=@?W» D F È ã D S D IÁ D »
=@? G D
D ¼�= FmF ; ÀN?J; ?JÀx;>M D ?lºm; àWD S F ºmU�P D ºmÂJUOMs? D ºE; ? F º�=@?W» D F ; ?WM D ¼ D ?WM D ?lºm< Ã)ÆáU S D =N»�Âº S =@? F ; ºm; UN?�=@?WM§; º F ; ?J¼JVOº�¼W= S º%¾J; ?WMO; ?JÀsV F D M"Á%; ºmÂJ; ? F UNP D Ê D Ç D ?lºjÈJX6ÂJ; F ; F ¼�U FmF ; ¾J< D
MOV D ºmU D =N»�ÂÐP D ºmÂJUOMÐ? D º§; ? F º�=@?W» D ; F S D Æ D S D ?W» D M8UN?J< ÃßÆ S UNP ºmÂ D P�= S G ; ?JÀÞU@Æ�ºmÂ Dº S =@? F ; ºm; UN?ßÁ%ÂJ;>»�Â F º�= S º D Mß; º�=@?WMÞºmÂ D =@¼J¼ S UN¼ S ;>=eº D P�= S G ; ?JÀ D < D P D ?lºs»�UN?lº�=@; ? F ºmÂ D¾J; ?WMO; ?JÀ�U@Æ/ºmÂ D º S =@? F ; ºm; UN?ÊV F D MÊÁ%Â D ? F º�= S ºm; ?JÀ"ºmÂ D P D ºmÂJUOM�È/ã�UeÁ D Ç D S I¢; º�; F =@Àl=@; ?? D » D FmF = S Ã F U�ºmÂW=eº%ºmÂ D MO; â D S D ?lº F Dj¿ V D ?W» D F U@Æ ¼�U@º D ?lºm;>=@<�;>M D ?lºm; àWD S F = S D MO; F Z[UN; ?lºjÈX.U�; < < V F º S =eº D À D ? D S =eºm; ?JÀ�ÂJUeÁ5P�=@?LÃ"VJ?J? D » D FmF = S Ã F º�=eº D F Á D »
=@?�=zÇNUN;>M)Z[V F º�ÇL;>==NMJMO; ?JÀ�ºmÂ D <>= F º	UN¼Oºm; Ps; Åj=eºm; UN?�=@¾�UeÇ D ºmU�ºmÂ D ¼ S D ÇL; UNV F UN? D F IzÁ D »
=@?)V F D ºmÂ D ÆáUN< < UeÁ%; ?JÀMJ=eº�=JÈ¢íb?åºmÂ D »
= F D U@Æ2ºmÂ D F Ã F º D PêU@Æ Ã MO; F º S ; ¾JVOº D Må¼JÂJ; < U F UN¼JÂ D S F Æ S UNP à ÀNV S D Â I¢Á D

42

UN¾Oº�=@; ?éÕ ý Â Ý F º�=eº D F ; ? F º D =NMÐU@Æ)ÝeÔ Â Ô Â UN? D F È Ø ; Ps; <>= S < ÃNI ÆáU S = F ; Ps¼J< D F Ã F º D P U@Æ Ã
S D F º�= S º�=@¾J< D »�ÃO»�< ;>»6»�UNVJ?lº D S F Æ S UNP Ó K	U@Z����jÖ�I@Á D UN¾Oº�=@; ? Ã ¾ Â�Ã Ý F º�=eº D F ; ? F º D =NM)U@Æ���� ý��Oý È
ã�UeÁ D Ç D S I�Á D F ÂW=@< <	?JU@º D ºmÂW=eº D Ç D ?ÊÁ%Â D ?Þ=@¼J¼J< ÃL; ?JÀ�=@< <iºmÂ D =@¾�UeÇ D Â D V S ; F ºm;>» F ºmÂ D S D»
=@? F ºm; < < S D P�=@; ? F UNP D S D MOVJ?WMJ=@?W»�; D F ÈqÐ D ? D S =@< < ÃNIiºmÂ D F D S D MOVJ?WMJ=@?W»�; D F�F º D P9Æ S UNP
Ï ý Ò ºmÂ D P D »�ÂW=@?J; F P F U@Æ	= FmF ; ÀN?J; ?JÀ�?W=@P D F ºmU�UN¾OZ D »�º F Æ S UNPëºmÂ D F =@P D »�<>= FmF D F =@?WM§ºmUP D ºmÂJUOMs? D ºE; ? F º�=@?W» D FEF º�= S º D M�VJ?WM D S ºmÂ D F =@P D ¾J; ?WMO; ?JÀ�U@Æ¢ºmÂ D F =@P D º S =@? F ; ºm; UN?�=@?WMÆ S UNP ÏGÂNÒ P�=@¼J¼J; ?JÀ F Ã F º D P Ä < D Ç D < F ÃLPsP D º S ; D F)Ï ;}È D È F ÃLPsP D º S ; D F D�½ ; F ºm; ?JÀ§=@< S D =NMOÃ§UN?ºmÂ D < D Ç D <�U@Æ PsUOM D < D M F Ã F º D P F�Ò UN?lºmUsÁ/U S G ; ?JÀ�Á%; ºmÂ�; ? F º�=@?W» D ;>M D ?lºm; àWD S F ÈX6Â D ¼ S UN¾J< D PëU@Æ	À D ? D S =eºm; ?JÀ�VJ?J? D » D FmF = S Ã F º�=eº D F IJÁ%ÂJ;>»�Â�»
=@?�ÂW= S MO< Ã­¾ D =zÇNUN;>M D MD Ç D ?ÞVJ?WM D S =NMOÇe=@?W» D MÊ?W=@Ps; ?JÀ F »�Â D P D F I.»
=@?Þ¾ D =@< < D ÇL;>=eº D MåºmU F UNP D M D À S D
D Á%Â D ?V F ; ?JÀÞ¼W= S ºm;>=@<%U S M D SsS D MOVW»�ºm; UN?8º D »�ÂJ?J; ¿ V D F�Ï =@< F U G ?JUeÁ%?Y= F »�UNPsP)VOº�=eºm; ÇL; º[Ã Ä ¾W= F D MP D ºmÂJUOM F�Ò Ó K2=@<>ÔNÕzÖ�È6X6ÂJ; F ; F ¾ D »
=@V F D ºmÂ D F D º D »�ÂJ?J; ¿ V D F S D MOVW» D ?LVJP)¾ D S F U@Æ�¼W=eºmÂ F< D =NMO; ?JÀ$ºmU)¼W= S ºm;>»�VJ<>= S F º�=eº D F =@?WMsºmÂLV F =@< F U�¼�U FmF ; ¾J; < ; ºm; D F ºmU)UN¾Oº�=@; ?­MO; â D S D ?lº/¼ D S P)V Äº�=eºm; UN? F U@Æ%;>M D ?lºm; àWD S F U@Æ6ºmÂ D ; ?LÇNUN< Ç D MÊ»�ÂW= S =N»�º D S ; F ºm;>»s; ? F º�=@?W» D F È.Ì D Ç D S ºmÂ D < D FmF I1ºmÂ D¼ S UN¾J< D PÍ; F ?JU@ºiÆáVJ< < Ã F UN< Ç D MxºmÂJ; F Á6=zÃx= F ; º ; F ?JU@º	=@< Á6=zÃ F ¼�U FmF ; ¾J< D ºmUx»�ÂJULU F D UN?J< ÃxUN? D
; ?lº D S < D =zÇL; ?JÀ$UNVOºEU@Æ.= F D º/U@Æ¢ºmÂ D ¼�U FmF ; ¾J< D UN? D F ÈlÉ	= S ºm;>=@<JU S M D S º D »�ÂJ?J; ¿ V D F »
=@?�; ÀN?JU S DMO; â D S D ?lº6U S M D S F U@Æ.=N»�ºm; UN? F UN?J< Ãs; ?­ºmÂ D »
= F D ºmÂ D Ã­= S D ; ?LÇL; F ; ¾J< D Ï Á$È S È ºjÈlºmÂ D ¼ S UN¼ D S º[Ã¾ D ; ?JÀ�»�Â D » G D M Ò =@?WMåMOU�?JU@º�»�UN< < ;>M D È�ïJV S ºmÂ D S PsU S D I à ?WMO; ?JÀ�UN¼Oºm; P�=@< F ºmVJ¾J¾�U S ? F D º F»
=@?å¾ D ºmULU§ºm; P D Ä »�UN? F VJPs; ?JÀ"=@?WM F U"=@?Ê=@¼J¼ S U ½ ; P�=eºm; UN?®; F U@Æ�º D ?åº�= G D ? Ï D F ¼ D »�;>=@< < Ã; ?­ºmÂ D »
= F D U@Æ.ÂJ; ÀNÂ Ä < D Ç D <WÆáU S P�=@< ; F P F�Ò ÈLïi; ?W=@< < ÃNI F U�Æ�= S Á D ÂW=zÇ D UN?J< Ã­»�UN? F ;>M D S D MsºmÂ Dà S F º/¼�U FmF ; ¾J< D F UNV S » D U@Æ S D MOVJ?WMJ=@?W»�; D F = FmF UO»�;>=eº D M�ºmU�; ? F º�=@?W» D ;>M D ?lºm; àWD S F æ!?W=@P D < Ã
= FmF ; ÀN?J; ?JÀ§;>M D ?lºm; àWD S F ºmU"; ? F º�=@?W» D F ¾ D ; ?JÀ�» S D =eº D M�È ã�UeÁ D Ç D S IJºmÂ D S D ; FxF ºm; < < ºmÂ D ¼�U F[Ä
F ; ¾J; < ; º[Ã®U@Æ6P�=@¼J¼J; ?JÀ F Ã F º D P Ä < D Ç D < F ÃLPsP D º S ; D F UN?lºmU F ÃLPsP D º S ;>»
=@<	Á/U S G Á%; ºmÂ F UNP D; ? F º�=@?W» D F ÇL;>=�ºmÂ D ; S ;>M D ?lºm; àWD S F IOÁ%ÂJ;>»�Â"P�= G D F ; º�¼�U FmF ; ¾J< D ºmU S D MOVW» D F º�=eº D F ¼W=N» D F ¾LÃ
F Á6=@¼J¼J; ?JÀåºmÂ D S UN< D F U@Æ F VW»�ÂÐ; ? F º�=@?W» D F�Ï ºmÂLV F ; ÀN?JU S ; ?JÀ®ºmÂ D ; S MO; â D S D ?lº�;>M D ?lºm; àWD S F�Ò; ? F UNP D ¼�UN; ?lº F U@ÆEºmÂ D�D ÇNUN< VOºm; UN?åU@Æ2ºmÂ D F Ã F º D P F ¾ D ; ?JÀ D�½ =@Ps; ? D M�È�Ú�?OÆáU S ºmVJ?W=eº D < ÃNI
F UN¼JÂJ; F ºm;>»
=eº D MÜ?W=@Ps; ?JÀ S VJ< D F I D Ç D ?8Á%Â D ?Y»�UNP)¾J; ? D MÜÁ%; ºmÂÐ¼W= S ºm;>=@< Ä U S M D S)S D MOVW»�ºm; UN?P D ºmÂJUOM F IW»
=@?J?JU@º%¼ S UeÇL;>M D F VW»�Â�= S D MOVW»�ºm; UN?1ÈË » D S º�=@; ? G ; ?WM�U@Æ F UN¼JÂJ; F ºm;>»
=eº D M�?W=@Ps; ?JÀ S VJ< D F�F ; Ps; <>= S ºmU­ºmÂ D =@¾�UeÇ D ÂW= F U S ; ÀN; Ä?W=@< < Ã§¾ D
D ?�V F D M"ÆáU S F UN< ÇL; ?JÀ�ºmÂ D ?W=@Ps; ?JÀ�¼ S UN¾J< D Pä; ?�ºmÂ D =@< S D =NMOÃ­P D ?lºm; UN? D M F º�=eº D
F ¼W=N» D ºmULUN< Ø ¼J; ? Ó ã�UN<>ÔLÝ
Ö�È Ø ¼J; ?�Á/U S GOF Á%; ºmÂ�MOÃL?W=@Ps;>»
=@< < Ã­; ? F º�=@?lºm;>=@¾J< D ¼ S UO» D FmF D F M D Ä
F » S ; ¾ D M); ?�= F ¼ D »�;>=@< ; Å D M)<>=@?JÀNVW=@À D É S UNP D <>=JÈjí�º F ¼ S UO» D FmF D F = S D ;>M D ?lºm; àWD M�¾LÃ�; ?lº D À D S F=@?WMß»
=@?ß¾ D º D S Ps; ?W=eº D Mß=@?WMÊºmÂ D ; S ;>M D ?lºm; àWD S F S D »�ÃO»�< D MÊUN?J< ÃÊ; ?ÞºmÂ D S D Ç D S F D U S M D SºmU�ºmÂ D ; S » S D =eºm; UN? F º�= S ºm; ?JÀ�Á%; ºmÂÞºmÂ D �HÃNUNVJ?JÀ D F º � »�V SmS D ?lºm< Ã S VJ?J?J; ?JÀ�¼ S UO» D FmF È1X6ÂJ; F¼ S ; ?W»�; ¼J< D »
=@?"¾ D�D = F ; < Ã­; Ps¼J< D P D ?lº D M�IJ¾JVOºjIWUN?§ºmÂ D U@ºmÂ D S ÂW=@?WM�IJ; ÆiºmÂ D S D ; F =s¼�U FmF ; Ä¾J; < ; º[Ã­U@Æi»�ÃO»�< ;>»�; ? F º�=@?lºm;>=eºm; UN?§U@Æi¼ S UO» D FmF D F Á%; ºmÂ"¼W= S ºm;>=@< < Ã�UeÇ D S <>=@¼J¼ D Ms< ; Æ D ºm; P D F IOºmÂ D
P D ºmÂJUOM�Á%; < <.?JU@º�¼ S D Ç D ?lº%ºmÂ D F º�=eº D F ¼W=N» D Æ S UNPäÀ S UeÁ%; ?JÀsºmU­; ? à ?J; º[ÃNÈ Ï�Ñ Æ2»�UNV S F D IJ; ÆÁ D MOU)?JU@º6=@¼J¼J< Ã�= S ºm; à »�;>=@<W< ; Ps; º F UN?sºmÂ D ?LVJP)¾ D S U@Æ S VJ?J?J; ?JÀ)¼ S UO» D FmF D F È Ò :�U S D UeÇ D S I
ºmÂ D Æ�=N»�º/ºmÂW=eº6;>M D ?lºm; àWD S F »
=@?§¾ D S D »�ÃO»�< D M�UN?J< Ãs; ?­ºmÂ D S D Ç D S F D U S M D S ºmU)ºmÂ D ; S =@< < UO»
= Ä
ºm; UN?"; F =N»
» D ¼Oº�=@¾J< D ; ?§ºmÂ D »�UN?lº D�½ º%U@Æi¼ S UO» D FmF D F Il¾JVOº�; º%; F < D FmF6F VJ; º D M"Á%Â D ?"Á/U S G ; ?JÀÁ%; ºmÂ�UN¾OZ D »�º F Á%ÂJU F D < ; Æ D ; F U@Æ�º D ?�; ?WM D ¼ D ?WM D ?lº�U@ÆiºmÂ D ; S » S D =eºmU S F È

ß�� 	�
�á�:�+�,
¢�.�+�¤"¡(à�
�
R¢� Ì+�%('h8;¢�£P¤"¡(à��E¡(2U0L,
£P¢Ñ+�¤"0�¡
ãé; ºmÂ S D F ¼ D »�º.ºmU�ºmÂ D ¼ S D ÇL; UNV F MO; F »�V FmF ; UN?1I
Á D ?JUeÁ F VJÀNÀ D F ºi=@?JU@ºmÂ D S ¼�U FmF ; ¾J< D P D ºmÂJUOMÆáU S F UN< ÇL; ?JÀÜºmÂ D ?W=@Ps; ?JÀ8¼ S UN¾J< D Pî¾W= F D M�UN?�?JU@º�»�UN? F ;>M D S ; ?JÀ8»�UN?W» S D º D Çe=@< V D F U@Æ

43

?W=@P D F U@Æ2; ? F º�=@?W» D F ºmU"¾ D ; Ps¼�U S º�=@?lº�Á%Â D ?å»�Â D » G ; ?JÀ F º�=eº D F ºmU§¾ D�Dj¿ VW=@<}ÈWíb?åU@ºmÂ D SÁ/U S M F IlÁ D = S D ÀNUN; ?JÀ�ºmUsM D�à ? D º[Á/U)P�= S G ; ?JÀ F ºmU�¾ DxDj¿ VW=@<¢; Æ1ºmÂ D S D�D�½ ; F º F = F VJ; º�=@¾J< D¼ D S P)VOº�=eºm; UN?8UeÇ D S ºmÂ D F D ºsU@Æ�=@< <6;>M D ?lºm; àWD S F Á%ÂJU F D =@¼J¼J< ;>»
=eºm; UN?8P�= G D F ºmÂ D F º�=eº D F;>M D ?lºm;>»
=@<}È Ë F =®»�UN? F Dj¿ V D ?W» D I1Á D Á%; < < S D ¼J<>=N» D Á/U S G ; ?JÀ�Á%; ºmÂß¼W= S ºm;>»�VJ<>= S F º�=eº D F ¾LÃÁ/U S G ; ?JÀÊÁ%; ºmÂ S D ?W=@Ps; ?JÀ Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF D F U@Æ�ºmÂ D P�È2íb?ÐºmÂ D ÆáUN< < UeÁ%; ?JÀWI	Á D Á%; < <
º S Ã�ºmU"M D F » S ; ¾ D ºmÂ D P D ºmÂJUOMÊ=eºx< D = F º�¼W= S ºm;>=@< < Ã�; ?Ê=­ÆáU S P�=@<iÁ6=zÃ§æ =�ÆáVJ< < Ã�ÆáU S P�=@<M D F » S ; ¼Oºm; UN?1ILºmUNÀ D ºmÂ D S Á%; ºmÂ�¼ S ULU@Æ F U@Æ.ºmÂ D ¼ S UN¼�U F ; ºm; UN? F IJ»
=@?"¾ D ÆáUNVJ?WM"; ? Ó K	U@Z����zÖ�Èí�º F ÂJUNVJ<>MÊ¾ D ?JU@º D MÞÂ D S D ºmÂW=eº�ºmÂ D »�UN?W» D ¼Oº)U@Æ%?W=@P D =@¾ F º S =N»�ºm; UN?Þ; F = F ¼ D »�;>=@< Ä; Åj=eºm; UN?ÜU@Æ%ºmÂ D À D ? D S =@<E?JU@ºm; UN?ÜU@Æ F ÃLPsP D º S ; D F Ó T D ?WÔ�¾eÖ%=@¼J¼J< ; D MÞÆáU S�S D MOVW»�; ?JÀ F º�=eº DD�½ ¼J< U F ; UN?å»
=@V F D M�¾LÃ�ºmÂ D ¼ S D F D ?W» D U@Æ/»�UN?W» S D º D ?W=@P D F U@ÆE; ? F º�=@?W» D F ; ? F º�=eº D F È�Ú�? Ä< ; G D À D ? D S =@< F ÃLPsP D º S ; D F I2ÂJ; ÀNÂJ< Ã F ¼ D »�;>=@< ; F D M S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F »
=@?Y¾ D V F D MÁ%; ºmÂJ; ?­=@< < Ñ$Ñ ÉEÌ Ä ¾W= F D M�PsUOM D < F =@?WMs=@< < UeÁßÆáVJ< < Ãs=@VOºmUNP�=eº D M)Á6=zÃ F U@Æ�º S D =eºm; ?JÀ�ºmÂ D PÁ%; ºmÂJ; ?�À D ? D S =eºm; ?JÀ F º�=eº D F ¼W=N» D F È@Ì�=@P D Ä =@¾ F º S =N»�º D M F º�=eº D F ¼W=N» D F »�UNVJ<>M�¾ D M D F » S ; ¾ D M= F = F ¼ D »�;>=@<1»
= F D U@Æ F ÃLPsP D º S ;>»
=@< < Ã S D MOVW» D M F º�=eº D F ¼W=N» D F IL¾JVOº%Á D Á%; < <�M D�à ? D ºmÂ D P
F º S =@; ÀNÂlº6Â D S D ºmU F =zÇ D F UNP D F ¼W=N» D =@?WM§À D º�»�< U F D S ºmUsºmÂ D ; S ; Ps¼J< D P D ?lº�=eºm; UN?1ÈX6Â D ;>M D =�U@Æ�=@¾ F º S =N»�ºm; ?JÀ®=zÁ6=zÃ®ºmÂ D ?W=@Ps; ?JÀ®; ?OÆáU S P�=eºm; UN?Ü»
=@?ßUN?J< ÃÊ¾ D =@¼J¼J< ; D M
MOV D ºmU�ºmÂ D Æ�=N»�º�ºmÂW=eº�ºmÂ D ¾ D ÂW=zÇL; UNV S U@Æ Ñ$Ñ ÉEÌ Ä ¾W= F D M§PsUOM D < F MOU D F ?JU@º�M D ¼ D ?WM�UN?»�UN?W» S D º D Çe=@< V D F U@Æ%;>M D ?lºm; àWD S F È�ã D S D Ii; º�; F » S VW»�;>=@<2ºmÂW=eº)ºmÂ D M D�à ?J; ºm; UN?ÜU@Æ Ñ$Ñ ÉEÌ F
MOU D F ?JU@ºE=@< < UeÁÜºmU$V F D ; ? F º�=@?W» D ;>M D ?lºm; àWD S F ; ? D�½ ¼ S D FmF ; UN? F =@?WM)ºmÂW=eº	ºmÂ D S D »
=@?J?JU@º2¾ D¼ D S ÆáU S P D M)º S ; ÇL;>=@<W»�UNPs¼JVOº�=eºm; UN? F M D ¼ D ?WMO; ?JÀ�UN?­»�UN?W» S D º D Çe=@< V D F U@Æ�; ? F º�=@?W» D ?W=@P D F ÈX6Â D S D ÆáU S D ; º�»
=@?é¾ D ¼ S UeÇ D M8ºmÂW=eº F º�= S ºm; ?JÀßÆ S UNP F UNP D F º�=eº D »�UN?W» S D º D ?W=@P D F U@Æ; ? F º�=@?W» D F MOU�?JU@º6; ?OìWV D ?W» D ºmÂ D ÆáVOºmV S D�D ÇNUN< VOºm; UN?­U@Æ1ºmÂ D =@¼J¼ S UN¼ S ;>=eº D Ñ$Ñ ÉEÌ�; ?"=@?LÃ
Á6=zÃ Ï VJ¼­ºmU S D ?W=@Ps; ?JÀ Ò ÈLX6ÂLV F ; º6; F ?JU@º6? D » D FmF = S Ã)ºmUsMO; F ºm; ?JÀNVJ; F Â F º�=eº D F Dj¿ VW=@<¢VJ¼­ºmU
S D ?W=@Ps; ?JÀs¾ D »
=@V F D U@Æ.ºmÂ D ÆáVOºmV S D ¾ D ÂW=zÇL; UNV S ºmÂ D Ã"»
=@?"< D =NM­ºmUWÈã D ÂW=zÇ D F =@;>M�ºmÂW=eº2Á D Á6=@?lº º[Á/UxP�= S G ; ?JÀ F ºmUx¾ D�Dj¿ VW=@<O; Æ�ºmÂ D S D%D�½ ; F º F = F VJ; º�=@¾J< D¼ D S P)VOº�=eºm; UN?"UeÇ D S ºmÂ D F D º%U@Æ =@< <�ºmÂ D ;>M D ?lºm; àWD S F =@< < UeÁ D M�; ?"ºmÂ D =@¼J¼ S UN¼ S ;>=eº D Ñ$Ñ ÉEÌÁ%ÂJU F D =@¼J¼J< ;>»
=eºm; UN?éP�= G D F ºmÂ D F º�=eº D F ;>M D ?lºm;>»
=@<}ÈÏã�UeÁ D Ç D S I	Á D MOUÜ?JU@º�=N»
» D ¼Oº"=@< <
¼ D S P)VOº�=eºm; UN? F È Ë ?®=N»
» D ¼Oº�=@¾J< D ¼ D S P)VOº�=eºm; UN?"P)V F º�¼ S D F D S Ç D ºmÂ D ; ?OÆáU S P�=eºm; UN?�=@¾�UNVOº
Ï ý Ò ºmU�Á%ÂJ;>»�ÂÞUN¾OZ D »�º)="ÀN; Ç D ?Ê; ? F º�=@?W» D ¾ D < UN?JÀ F ºmUWI ÏGÂNÒ ºmU�Á%ÂJ;>»�ÂÞ? D º$ºmÂ D ; ? F º�=@?W» D¾ D < UN?JÀ F Il=@?WM Ï"ÃlÒ ; º6»
=@?J?JU@ºE»�ÂW=@?JÀ D ºmÂ D ;>M D ?lºm; àWD S U@Æ¢ºmÂ D ; ?J; ºm;>=@<�UN¾OZ D »�ºjINÁ%ÂJ;>»�Â�; F ; P Ä¼�U S º�=@?lº2ÆáU S ºmÂ D Àl= S ¾W=@À D »�UN< < D »�ºm; ?JÀ$P D »�ÂW=@?J; F P�ÈlÉ D S P)VOº�=eºm; UN? F »�UN?OÆáU S PBºmU�ºmÂ D Z[V F º
M D F » S ; ¾ D M S Dj¿ VJ; S D P D ?lº F Á%; < <1¾ D »
=@< < D M1IXAEKS� « J�K�®`�LAEI « �ÑDM�
DGJ"<
K��x; ?"ºmÂ D ÆáUN< < UeÁ%; ?JÀWÈ
�¦'�é�¡(¤@+�¤"0�¡÷�Øê��5'�¡(¢�£P¤"¡(à*64'�,
£*-/+�¢Ñ+�¤"0�¡(:
ë��

� �����L<���A`åqA4���
²
AR�
K1<�>@?�ACBEDGFH<
I�J"AEKLDMACNROQAEDGI�J(KSAED ^9^`f9_ åmJ�D@�5J�D"�4��AEDq<°¯rJ�K���DM�
KSBCA
J"N�AEKLDGJ ä©AEIC� t�u �
KSN5J�D"�&J�KLJ�DGJ"�
�s<�>@?�ACBEDQJ"N�AEKLDGJ ä©AEI Z�[M\�Y ï`ð;A7N�A"äsKSA§IXAEKS� « J�K�®9�LAEI « �ÑF
DM�
DGJ"<
K��R<
²
AEI ^9^`f9_ DM<5>CA9D@��A§>EJ ?�ACBEDGJ"<
K���� ��t�u�� t�u ���LBC�ÒD@���
DMô
õ ï�� Ï"Z�[M\�YeÒsv÷Z�[M\�Y ï
ö ï©û [M\jª;t�u Ó Ó À�Á�Ï@[M\LÒsv Ó À�Á�Ï � Ï@[M\LÒHÒ Ö°ï
ú ï©û [M\jª;t�u Ó � Ï"Z�[M\�Ï@[M\LÒHÒ©v�Z�[M\�Ï � Ï@[M\LÒHÒ Ö°ï
X6Â D »�UN?W» D ¼Oº�U@Æ S D ?W=@Ps; ?JÀ­¼ D S P)VOº�=eºm; UN? F ¼ S UeÇL;>M D F =­¾W= F ; F ÆáU S M D�à ?J; ?JÀ­ºmÂ D F U Ä»
=@< < D M�IXAEKS� « J�K�®r� � «§« AEDGI�J"A���Ie;}È D Èz¾J; Z D »�ºm; UN? F UN? F D º F U@ÆWP�= S G ; ?JÀ F =@?WM F D º F U@Æ D Ç D ?lº F ÈX6Â D ÆáU S P�=@<1M D�à ?J; ºm; UN?�U@Æ S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F »
=@?�¾ D UN¾Oº�=@; ? D M"¾LÃ�= F ; Ps¼J< D ¾JVOº=­< ; ºHºm< D < UN?JÀ D S D�½ º D ? F ; UN?®U@ÆE¾J; Z D »�ºm; UN? F Á/U S G ; ?JÀ­UeÇ D S ;>M D ?lºm; àWD S F ºmU"¾J; Z D »�ºm; UN? F UeÇ D SP�= S G ; ?JÀ F =@?WM D Ç D ?lº F æ Á D Á%; < < FHG ; ¼�ºmÂ D M D�à ?J; ºm; UN?sÂ D S D È@ã D M D ?JU@º D ºmÂ D S D ?W=@Ps; ?JÀ

44

F ÃLPsP D º S Ãé; ?WMOVW» D Mó¾LÃ�= S D ?W=@Ps; ?JÀ8¼ D S P)VOº�=eºm; UN?�� = F���� È�Ì�UeÁöÁ D »
=@?5M D�à ? D
º[Á/U®P�= S G ; ?JÀ FRizø I i±ù ºmUå¾ D A��E�L�
�©����DM<hIXAEKS� « J�K�®Ê; âÐºmÂ D S D­D�½ ; F º F = S D ?W=@Ps; ?JÀ¼ D S P)VOº�=eºm; UN?�� F VW»�ÂÞºmÂW=eº � � ÏGizø�ÒRv�i±ù ÈiX6Â D F =@P D »
=@?ß¾ D MOUN? D ÆáU S D Ç D ?lº F È1íb?ºmÂ D ÆáUN< < UeÁ%; ?JÀWIOÁ D Á%; < <.M D ?JU@º D ºmÂ D S D ?W=@Ps; ?JÀ Dj¿ VJ; Çe=@< D ?W» D S D <>=eºm; UN?�¾LÃ��)ÈW: D P)¾ D S FU@Æ ; º F Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF D F Á%; < <1¾ D S D Æ D SmS D M­ºmUsV F ; ?JÀsºmÂ D ¾J<>=N» G ¾�Ul= S M"=@< ¼JÂW=@¾ D ºjIJ;}È D È U S"! I1U S ÇL;>=)ºmÂ D ; S%S D ¼ S D F D ?lº�=eºm; Ç D F IL;}È D È Ó i Ö.U S Ó g Ö�ÈWïi; ?W=@< < ÃNI ¿ VJU@ºm; D ?lº F D º F Á$È S È ºjÈ
�ÍÁ%; < <1¾ D M D ?JU@º D M"V F ; ?JÀ#�Î= F = F VJ¾ F » S ; ¼Oºm; UN?1IJ= F D È ÀWÈ ikd%$ È

X6Â D ?JU@ºm; UN?"U@Æ S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F =@< < UeÁ F V F ºmU�ÆáU S P�=@< ; Å D ºmÂ D =@< S D =NMOÃ�P D ? Äºm; UN? D Må¼ S UN¼�U F ; ºm; UN?åºmÂW=eº�»�UN?W» S D º D ?W=@P D F U@Æ/; ? F º�=@?W» D F »
=@?J?JU@º$; ?OìWV D ?W» D =@?LÃlºmÂJ; ?JÀD < F D ºmÂW=@?§=@Àl=@; ?s?W=@P D F U@Æ�; ? F º�=@?W» D F ¼ S D F D ?lºE; ?sºmÂ D ÆáVOºmV S D ¾ D ÂW=zÇL; UNV S U@Æ1=@? Ñ$Ñ ÉEÌ ÄM D F » S ; ¾ D M F Ã F º D P F º�= S ºm; ?JÀ§Æ S UNPö=­ÀN; Ç D ? F º�=eº D È Ø VW»�ÂÊ=§¼ S UN¼ D S º[Ã�; F » S VW»�;>=@<i; ?åºmÂ DºmÂ D U S Ã­U@Æ F ÃLPsP D º S ;>»
=@< < Ã S D MOVW» D M F º�=eº D F ¼W=N» D F È
6`,
0Lèq0�:�¤@+�¤"0�¡ !�� ì/AEDs���Q���
²
AR�
K*<�>@?�ACBEDGFH<
I�J"AEKLDMACNROQAEDGI�J(KSAED ^9^`f9_ åmJ�D@�5J�D"�4��AED©<°¯
« �
IX­
J�K�®
� ikd9î J�D"�&��AED�<°¯jAE²
AEKLD"� gRcjî �
KSN5D@��A7BC<
I�IXA��G�L<
KSN
J�K�®¦��AED4<°¯j�
����IXAEKS� « J�K�®
�LAEI « �ÑDM�
DGJ"<
K��'&zï)(S��AEKzD@��A�¯E<
��� <
åmJ�K�®h��<
� N���¯E<
I¦AE²
AEI � izø�VCi±ù5ªíikd9îqg ªÌgRc§î
�
KSN'� ª &zô izø Ó gRÎHi±ùQü*����ÏGizø�Ò Ó ���1Ï"g)ÒHÎ�����ÏGi±ùjÒ ï

æ D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F =@< < UeÁ,V F ºmUÐ¼ S UN¼�U F D ºmÂ DÊD�½ ¼ D »�º D M�?JU@ºm; UN?�U@Æ5KS� « AEF
��>���DGIX��BEDMACN7��DM�
DMA9�G�L��BCA���+-, � ��DM�
DMA9�G�L��BCA��/.)U@Æ Ñ$Ñ ÉEÌ F ÈOãéÂ D ?�À D ? D S =eºm; ?JÀ�=s?W=@P D Ä=@¾ F º S =N»�º D M F º�=eº D F ¼W=N» D I »�UN?W» S D º D ;>M D ?lºm; àWD S F U@Æ�; ? F º�=@?W» D F Á%; < </?JU@º�¾ D º�= G D ?ß; ?lºmU=N»
»�UNVJ?lº/=@?WMsº[Á/U F º�=eº D F U S D Ç D ?lº F Á%; < <�¾ D »�UN? F ;>M D S D M Dj¿ VW=@<W; Æ�ºmÂ D Ã�= S D�Dj¿ VW=@<WVJ¼�ºmU
S D ?W=@Ps; ?JÀWÈNX6Â D M D�à ?J; ºm; UN?­U@Æ�?W=@P D Ä =@¾ F º S =N»�º D M F º�=eº D F ¼W=N» D F Á%; < <�¾ D ¾W= F D M�=@Àl=@; ?sUN?ºmÂ D À D ? D S =@<�»�UN?W» D ¼Oº/U@Æ F º�=eº D F ¼W=N» D F È�ã�UeÁ D Ç D S I@ºmÂJ; F ºm; P D F º�=eº D F Á%; < <¢»�U SmS D F ¼�UN?WM�ºmU
S D =N»�ÂW=@¾J< D KS� « AEFH��>���DGIX��BEDMACN « �
IX­
J�K�®
��I@;}È D È Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF D F U@Æ ikd Á$È S È ºjÈ0�)Ie=@?WM
F º S VW»�ºmV S =@<Lº S =@? F ; ºm; UN? F ºmU$V F D ÆáVJ<�KS� « AEFH��>���DGIX��BEDMACN§AE²
AEKLD"��I@;}È D È Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF D F U@Æ
gRc Á$È S È ºjÈ��)È ØLD P�=@?lºm;>»	º S =@? F ; ºm; UN? F Á%; < <L¾ D M D�à ? D M�; ?�=N»
»�U S MJ=@?W» D ºmU�ºmÂ DEà S ; ?JÀ S VJ< D FU@Æ Ñ$Ñ ÉEÌ F =@?WM�ºmU§ºmÂ D F D P�=@?lºm;>» F U@Æ S D ?W=@Ps; ?JÀWÈ�X6Â D ; ?J; ºm;>=@< F º�=eº D Á%; < < ¾ D)Dj¿ VW=@<.ºmUºmÂ D6Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF »�UNPs¼ S ; F ; ?JÀ�ºmÂ D ; ?J; ºm;>=@<LP�= S G ; ?JÀ�=@?WM�UN?J< ÃxºmÂ D ; ?J; ºm;>=@<LP�= S G ; ?JÀWÈ
�¦'�é�¡(¤@+�¤"0�¡�ß=ê°8;¢�£P'�1�
�á�:�+�,
¢�.�+�'�ÿ÷) +�¢Ñ+�'~) è�¢�.�'�:
ë��

ì/AEDj�
Kk<�>@?�ACBEDGFH<
I�J"AEKLDMACN~OQAEDGI�J&KSAED ^9^`f9_ åmJ�D@�íJ�D"�Ò��AED7<°¯ « �
IX­
J�K�®
�Ò� �rî J�D"�
J�KLJ�DGJ"�
� « �
IX­
J�K�® i~Y�î J�D"�9��AEDQ<°¯RAE²
AEKLD"� gRcjî �
KSN�J�D"�9IXAEKS� « J�K�®ÒA��E�ÑJ�²
�
� AEKSBCARIXAE� �
DGJ"<
K
� >CAÒ®�J�²
AEKSï;ð;A~N�A"äsKSA*D@��AÊ?W=@P D Ä =@¾ F º S =N»�º D M F º�=eº D F ¼W=N» D Ï Ì Ë F º�=eº D F ¼W=N» D Ò <°¯
^9^`f9_ DM<�>CA&D@��A4ñ�FMDG���S� A _hdra�ÁHaSò5vBÏGa32RVHb32&VCó42RV Ó i~Y Ö Ò ���LBC�ÒD@���
DMô
õ ï a32ºvk� Ó i Ö ª;ikd%$í��i¶ª Ó i~Y�Î � ï
ö ï b32ºvº�LÏ Ó izø Ö V Ó g Ö V Ó i±ù Ö Ò©ªha32n·ÒgRc5$Ì·;a32¸��izø Ó gRÎHi±ù � ï
ú ï©û� øÑV ù¦ª1ikd%$ û ! ª1gRc5$ Ó Ï øÑV ! V ùLÒ�ª;b32ºü�Ï ø�VjÏ ø�V ! V ùLÒ�V ùLÒ�ª

ó42 Ö°ï
X6Â D =@¾�UeÇ D ¼ S UN¼�U F D MxÌ Ë F º�=eº D F ¼W=N» D F = S D ¾W= F D M�UN?x¼ S U@Z D »�ºm; ?JÀ%=zÁ6=zÃ%ºmÂ D ?W=@Ps; ?JÀ; ?OÆáU S P�=eºm; UN?)¼ S D F D ?lº ; ?�¼W= S ºm;>»�VJ<>= S F º�=eº D F =@?WM F º S VW»�ºmV S =@<lº S =@? F ; ºm; UN? F U@ÆJºmÂ D »�<>= FmF ;>»
=@<

F º�=eº D F ¼W=N» D F È�Ì Ë F º�=eº D F ¼W=N» D F ¼ S D F D S Ç D ; ?OÆáU S P�=eºm; UN?Ê=@¾�UNVOº S D =N»�ÂW=@¾J< D F º�=eº D F =@?WMD Ç D ?lº F IL¾JVOº6ºmÂ D ; S ; ?lº D S »�UN?J? D »�ºm; UN?­; F ¼ S D F D S Ç D M�UN?J< Ã�¼W= S ºm;>=@< < ÃNÈLX6ÂJ; F Æ�=N»�º%; F ÆáU S P�=@< Ä; Å D Må; ?Ê¼ S UN¼�U F ; ºm; UN? Â Æ S UNPêÁ%ÂJU F D F º S VW»�ºmV S D Á D »
=@?åÀNV D FmF ºmÂW=eº)Ì Ë F º�=eº D F ¼W=N» D F
MOU$?JU@ºE»�UN?lº�=@; ?s; ?OÆáU S P�=eºm; UN?s=@¾�UNVOº2Á%ÂJ;>»�Âs¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D F = S D P�=@?J; ¼JVJ<>=eº D M�¾LÃD Ç D ?lº F Á%Â D ?�ÀNUN; ?JÀ)Æ S UNPëUN? D F º�=eº D ; ?lºmU�=@?JU@ºmÂ D S È

45

6`,
0Lèq0�:�¤@+�¤"0�¡�� � ì/AEDs���Q���
²
AR�
K �`� O6,¸åmJ�D@�¦J�D"�4��DM�
DMAr�G�L��BCA a�ÁHaSò �
KSNjD@��A&BC<
I�IXAEF
�G�L<
KSN
J�K�®5KS� « AEFH��>���DGIX��BEDMACNj��DM�
DMA`�G�L��BCA _hdra�ÁHaSò ï�(S��AEK1D@��Aq¯E<
��� <
åmJ�K�®5��<
� N���ô
ûSÓ87 ý û� øÑV ½�½�½ V :9 ª¸ikd%$ û ! øÑV ½�½�½ V ! 9<; ø�ª¿gRc5$ û [¦ª=� ý V ½�½�½ V Ó � û i�=7ª
 = Ó�> øÑV ! ø�V ½�½�½ V =�V ½�½�½ V ! 9<; øÑV :9 Î J��R�r�L�
D@�ÒJ�K�, � � D � �*J ¯&�
KSN5<
KL� � J ¯�? izøhª
 ø�V ½�½�½ VCi�= ; ø�ª = ; øÑVCi�= @(ø�ª = @(ø�V ½�½�½ VCi 9 ª :9A? grø�ª ! øÑV ½�½�½ VXg 9<; ø÷ª
! 9<; ø ���LBC�ÒD@���
D > izø�VXgrø�V ½�½�½ VCi�=°V ½�½�½ VXg 9<; ø�VCi 9 Î J��R�r�L�
D@�ÒJ�K a�ÁHaSò Ö°ï

X6Â D ; ?OÆáU S P�=eºm; UN?�Á D = S D < U F ; ?JÀ�; ?"Ì Ë F º�=eº D F ¼W=N» D F ; F UN¾LÇL; UNV F < Ã)?JU@º/; Ps¼�U S º�=@?lºÁ%Â D ?"Á D = S D M D =@< ; ?JÀ�Á%; ºmÂ�; F UN<>=eº D M F º�=eº D F UN?J< ÃNÈ Ñ ?§ºmÂ D U@ºmÂ D S ÂW=@?WM�IO; Æ Á D ? D
D M­ºmU¾ D =@¾J< D ºmU D�½ ¼J< U S D F Dj¿ V D ?W» D F U@Æ F º�=eº D F =@?WM D Ç D ?lº F IzºmÂJ; F ; ?OÆáU S P�=eºm; UN?�Ps; ÀNÂlº	¾ D »�UNP D? D » D FmF = S Ã D Ç D ?$; ÆWÁ D MOU�?JU@º	»�UN? F ;>M D S »�UN?W» S D º D ?W=@P D F U@ÆW; ? F º�=@?W» D F ºmU�¾ D ; Ps¼�U S º�=@?lºjÈX6ÂJ; F ; F ¾ D »
=@V F D ; ºx»
=@?�¾ D V F D ÆáVJ<.ºmU G ?JUeÁÍÂJUeÁÎ=�¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D ÀN; Ç D ?�¾LÃ"; º F;>M D ?lºm; àWD S Á%; ºmÂJ; ? F UNP D = S ¾J; º S = S ; < Ãå»�ÂJU F D ? S D ¼ S D F D ?lº�=eºm; Ç D U@Æ6ºmÂ D =@¼J¼ S UN¼ S ;>=eº D Ì Ë
F º�=eº D ¾ D ÂW=zÇ D F Á%; ºmÂJ; ?sºmÂ D�D Ç D ?lº F2F V SmS UNVJ?WMO; ?JÀ�ºmÂ D F º�=eº D ¾ D ; ?JÀ D�½ =@Ps; ? D M�È�ã�UeÁ D Ç D S I; Æ6Á D ? D
D MåºmÂ D ; ?OÆáU S P�=eºm; UN?1I�Á%ÂJ;>»�ÂÊ; F < U F º$; ?ßÌ Ë F º�=eº D F ¼W=N» D F I¢; º�; F ?JU@º�MO; è »�VJ< ººmUs¼ S D F D S Ç D ; ºjÈJïJU S ºmÂJ; F S D = F UN?1ILÁ D M D�à ? D ºmÂ D F U Ä »
=@< < D M*BC< « �S� AEDMA&KS� « AEFH��>���DGIX��BEDMACN
��DM�
DMA`�G�L��BCA���+�BC, � ��DM�
DMA9�G�L��BCA��/.eÈ

ã D M D�à ? D�C Ì Ë F º�=eº D F ¼W=N» D F = F <>=@¾ D < < D M8Ì Ë F º�=eº D F ¼W=N» D F È Ù Ç D S ÃÞÌ Ë F º�=eº DÁ%; < <	¾ D <>=@¾ D < < D Må¾LÃ®=§ºmVJ¼J< D »�UN? F ; F ºm; ?JÀ�U@Æ6= S D ¼ S D F D ?lº�=eºm; Ç D P�= S G ; ?JÀ"¾ D < UN?JÀN; ?JÀ§ºmUºmÂ D�Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF S D ¼ S D F D ?lº D MÜ¾LÃßºmÂ D Ì Ë F º�=eº D =@?WMÐ= F D º�U@Æ F D < Æ Ä S D ?W=@Ps; ?JÀ¼ D S P)VOº�=eºm; UN? F�Ï ;}È D È2¼ D S P)VOº�=eºm; UN? F Á%ÂJ;>»�ÂÐP�=@¼ÐºmÂ D S D ¼ S D F D ?lº�=eºm; Ç D P�= S G ; ?JÀåºmUß; º Ä
F D < Æ Ò È Ù Ç D S Ã F º S VW»�ºmV S =@<2º S =@? F ; ºm; UN?ßÁ%; < </¾ D <>=@¾ D < < D Mß¾LÃß= F D º�U@Æ%ºmVJ¼J< D F »�UN? F ; F ºm; ?JÀU@Æ�= S D ¼ S D F D ?lº�=eºm; Ç D�D Ç D ?lº�=@?WMß= S D ?W=@Ps; ?JÀ�¼ D S P)VOº�=eºm; UN?1Èiã D S Dj¿ VJ; S D ºmÂW=eº D Ç D S Ã
S D ¼ S D F D ?lº�=eºm; Ç DxD Ç D ?lº�P)V F º�¾ D$à S =@¾J< D Æ S UNPäºmÂ D =@¼J¼ S UN¼ S ;>=eº D S D ¼ S D F D ?lº�=eºm; Ç D F UNV S » DP�= S G ; ?JÀ"< D =NMO; ?JÀ§ºmU�ºmÂ D =@¼J¼ S UN¼ S ;>=eº D S D ¼ S D F D ?lº�=eºm; Ç D º�= S À D ºxP�= S G ; ?JÀ±�°¯CDMAEI"=@¼J¼J< Ã Ä
; ?JÀxºmÂ D ÀN; Ç D ? S D ?W=@Ps; ?JÀWÈ@ïJV S ºmÂ D S PsU S D I D Ç D S Ã D Ç D ?lº à S =@¾J< D Æ S UNPBºmÂ D S D ¼ S D F D ?lº�=eºm; Ç D
F UNV S » D P�= S G ; ?JÀ�=@?WM­< D =NMO; ?JÀ�ºmUs=)P�= S G ; ?JÀ Dj¿ VW=@<�VJ¼§ºmU S D ?W=@Ps; ?JÀ�ºmU)ºmÂ D S D ¼ S D F D ? Äº�=eºm; Ç D º�= S À D ºEP�= S G ; ?JÀ)P)V F º/¾ D M D S ; Çe=@¾J< D Ï VJ¼­ºmU)ºmÂ D ?W=@P D U@Æi=@? D Ç D ?lºmVW=@< < Ã�? D Á%< Ã= S ; F ; ?JÀ); ? F º�=@?W» D Ò Æ S UNP F UNP D U@Æ1ºmÂ D S D ¼ S D F D ?lº�=eºm; Ç D�D Ç D ?lº F ÇL;>=)=)¼ D S P)VOº�=eºm; UN?�Æ S UNPºmÂ D F D º�U@Æ F UNV S » D F D < Æ Ä S D ?W=@Ps; ?JÀ®¼ D S P)VOº�=eºm; UN? F È ØLD < Æ Ä S D ?W=@Ps; ?JÀå¼ D S P)VOº�=eºm; UN? F »
=@?M D » S D = F D ºmÂ D ?LVJP)¾ D S U@Æ.º�= S À D º%P�= S G ; ?JÀ F Á D ÂW=zÇ D ºmUs¼ S UO» D FmF Ó T D ?WÔ�¾eÖ�È

�¦'�é�¡(¤@+�¤"0�¡D	ÞêFER0�£±è�â"'�+�'Ò8;¢�£P'�1�
�á�:�+�,
¢�.�+�'�ÿ÷) +�¢Ñ+�'*) è�¢�.�'�:
ë��
� �����L<���AjåqA§���
²
A¦�
K ^9^`f9_ åmJ�D@�*J�D"�R��AEDr<°¯ « �
IX­
J�K�®
� ikd9î J�D"�§��AEDr<°¯7AE²
AEKLD"�

gRcjî �
KSN1J�D"����AED&<°¯5IXAEKS� « J�K�®��LAEI « �ÑDM�
DGJ"<
K��G&zï7ð;A;N�A"äsKSA5D@��A�»�UNPs¼J< D º D ?W=@P D Ä
=@¾ F º S =N»�º D M F º�=eº D F ¼W=N» D Ï C Ì Ë F º�=eº D F ¼W=N» D Ò <°¯ ^9^`f9_ DM<`>CAÏD@��AÏDGI�J �S� A]`_hdra�ÁHaSò5v
Ï"_hdra�ÁHaSò/V�H*VXÀeÒ ���LBC�ÒD@���
DMô

õ ï _hdra�ÁHaSò5vBÏGa32RVHb32RVCó42RV Ó i~Y Ö Ò J��&D@��AI, � ��DM�
DMA`�G�L��BCA§<°¯ ^9^`f9_ ï
ö ï H ��a32º� ikdn·;ÂKJ ���LBC�ÒD@���
D û� ª;a32 Ó HÞÏ Ò4vBÏGiºVFL2ÒNM!ÏGi¶ª PO

û3Q ª�L Ó �KR.ÏGiÎÒsv i Ö Ò Ö°ï
ú ï À&��b32º� ÂKSUTWVXJ ���LBC�7D@���
D�¯E<
Ir�
��� Ï ø�V ! V ùLÒÏª¦b32 åmJ�D@� HÞÏ øNÒsvBÏGizø�VFLqø
Ò

�
KSN HÞÏ ùLÒ4vëÏGi±ù�VFLmùjÒCîmÀLÏHÏ øÑV ! V ùLÒHÒ J��§D@��A§� « �
��� A���DQ��AEDQ���LBC�hD@���
D�û g&Ímª
! û ikÍù ª ù Ó izø Ó g&Í�ÎHikÍù M ? Ï"g7V � ÒQªÒÀLÏHÏ øÑV ! V ùOÒHÒ Ó izø Ó gRÎ�����ÏGi±ùjÒ OY?XQ ª
Lqø Ó À�[M\�À�ZOÏ"g Í V[� R Ï"g)ÒHÒ Ö Ö Ö°ï

46

íb?§ºmÂ D M D�à ?J; ºm; UN?"U@Æ C Ì Ë F º�=eº D F ¼W=N» D F ILÁ D ÂW=zÇ D V F D M"=�¼ S D MO;>»
=eº D À�[M\�À�Z Á%ÂJ;>»�Â; F ÆáVJ< à < < D MßÁ%Â D ?8=@¼J¼J< ; D MÞºmU�º[Á/U÷� D�½ ; F ºm; ?JÀ®;>M D ?lºm; àWD S Dj¿ VW=@< ��D Ç D ?lº F È Ø VW»�Â D Ç D ?lº F
»
=@?ÜMO; â D S UN?J< ÃÊ; ?ÞºmÂ D ;>M D ?lºm; àWD S U@Æ6ºmÂ D ? D Á%< ÃÞ» S D =eº D MÊUN¾OZ D »�º)Á%; ºmÂJ; ?8=@?±Æ D Ç D ?lº
=@?WMs; ?sºmÂ D ;>M D ?lºm; àWD S U@Æ¢ºmÂ D ? D Á%< Ã F º�= S º D MsP D ºmÂJUOMs? D ºE; ? F º�=@?W» D Á%; ºmÂJ; ?­=@?7Ê D Ç D ?lºjÈã D F ÂJUNVJ<>MÞ=NMJMåºmÂW=eº C Ì Ë F º�=eº D F ¼W=N» D F = S D »�< U F D ºmU®»�UNPsPsUN? F ÃLPsP D º S ;>»
=@< < Ã
S D MOVW» D M F º�=eº D F ¼W=N» D F Ó T D ?WÔ�¾eÖ�ÈeX6Â D V F D U@Æ À�[M\�À�Z =@?WM�?JU@º S Dj¿ VJ; S ; ?JÀ�=@< < F D < Æ Ä S D ?W=@Ps; ?JÀ¼ D S P)VOº�=eºm; UN? F ºmU)¾ D »�UNPs¼JVOº D M­; F =@?§=eºHº D Ps¼Oº/ºmU D = F D ºmÂ D =@VOºmUNP�=eºm;>»�À D ? D S =eºm; UN?�U@ÆC Ì Ë F º�=eº D F ¼W=N» D F È Ï Ì�U@º D ºmÂW=eº$; º$»
=@?å¾ D =NMOÇe=@?lº�=@À D UNV F ºmU§º S Ã�ºmU"UN¾Oº�=@; ?å=eºx< D = F º
F UNP D F D < Æ Ä S D ?W=@Ps; ?JÀ�¼ D S P)VOº�=eºm; UN? F�F º�= S ºm; ?JÀ�¾LÃÞ»�UNPs¼W= S ; ?JÀ D Ç D ?lº F D ?W=@¾J< D MÞ; ?ÞºmÂ D
F =@P D F º�=eº D È Ò C Ì Ë F º�=eº D F ¼W=N» D F »
=@?)¾ D V F D M�Á%; ºmÂs=@< <OPsUOM D < F M D F » S ; ¾ D M�¾LÃ Ñ$Ñ ÉEÌ F ÈãéÂW=eº�; F PsU S D I�= F Á D V F VW=@< < Ã"MOU­?JU@º�»�UN? F ;>M D S »�UN?W» S D º D ?W=@P D F U@Æ	; ? F º�=@?W» D F ºmU­¾ D; Ps¼�U S º�=@?lºsÁ%Â D ?Y=@?W=@< ÃLÅ
; ?JÀå¼ S UN¼ D S ºm; D F U@Æ F Ã F º D P F IiºmÂ D S D MOUÊ?JU@º­= S ; F D ¼ S UN¾J< D P FÁ%; ºmÂóºmÂ DÊD�è »�; D ?W»�ÃéU@Æ D�½ º S =N»�ºm; ?JÀÐ; ?OÆáU S P�=eºm; UN?éÆ S UNP C Ì Ë F º�=eº D F ¼W=N» D F D Ç D ?�; Æ
ºmÂ D = S ; F ; ?JÀ Dj¿ VJ; Çe=@< D ?W» D »�<>= FmF D F = S D ; ? à ?J; º D È6ïi; ?W=@< < ÃNI C Ì Ë F º�=eº D F ¼W=N» D F »
=@?Y¾ D
À D ? D S =eº D MY»�UNPs¼J< D º D < ÃY=@VOºmUNP�=eºm;>»
=@< < ÃNI/=@< ºmÂJUNVJÀNÂ F UNP D ÂJ; ?lº F Æ S UNP PsUOM D < < D S F »
=@?
F UNP D ºm; P D F ; Ps¼ S UeÇ D ºmÂ D$D�è »�; D ?W»�Ã§U@ÆiÀ D ? D S =eºm; ?JÀ�ºmÂ D P�IW= F Á D Á%; < <1P D ?lºm; UN?"<>=eº D S ÈC Ì Ë F º�=eº D F ¼W=N» D F »�UN?lº�=@; ?�; ?OÆáU S P�=eºm; UN?ó=@¾�UNVOº S D =N»�ÂW=@¾J< D F º�=eº D F =@?WM D Ç D ?lº F
Ï VJ¼�ºmU S D ?W=@Ps; ?JÀ Ò =@?WM�=@< F U§=@¾�UNVOº�ºmÂ D ; S »�UN?W» S D º D ; ?lº D S »�UN?J? D »�ºm; UN?1ÈWX6ÂJ; F =@< < UeÁ F ºmUà ?WMÞUNVOº)ÂJUeÁ ¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D F = S D P�=@?J; ¼JVJ<>=eº D MÞ¾LÃ D Ç D ?lº F È C UN? F Dj¿ V D ?lºm< ÃNI1; º; F ¼�U FmF ; ¾J< D ºmU�UN¾Oº�=@; ?Þ=­ÆáVJ< < F º�=eº D F ¼W=N» D Æ S UNPê; º F C Ì Ë Ä Çe= S ;>=@?lº$=@?WM®ºmÂ D F D ºxU@Æ6=@< <
S D ?W=@Ps; ?JÀ§¼ D S P)VOº�=eºm; UN? F È¢X6Â D F D = S D ºmÂ D »�UN?lº D ?lº F U@Æ2ºmÂ D ¾ D < UeÁÎ¼ S UN¼�U F ; ºm; UN?1È¢Ì�U@º DºmÂW=eºEV F ; ?JÀxºmÂ D F D ºEU@Æ�=@< < S D ?W=@Ps; ?JÀ$¼ D S P)VOº�=eºm; UN? F ; F ?JU S P�=@< < Ã�?JU@ºE? D » D FmF = S Ã$Á%; ºmÂJ; ?¼ S =N»�ºm;>»
=@<OÇ D S ; à »
=eºm; UN?)º�= FHGOF Á%Â D S D »�UN?W» S D º D ?W=@P D F U@Æ¢; ? F º�=@?W» D F = S D ?JU@º2; Ps¼�U S º�=@?lºjÈ
6`,
0Lèq0�:�¤@+�¤"0�¡íß�� ì/AED����Ï���
²
A&�
Kh<�>@?�ACBEDGFH<
I�J"AEKLDMACN&OQAEDGI�J/KSAED ^9^`f9_ åmJ�D@��J�D"�GBC, �
��DM�
DMA&�G�L��BCA]`_hdra�ÁHaSò �
KSN�J�D"�9��AED�<°¯&IXAEKS� « J�K�®9�LAEI « �ÑDM�
DGJ"<
K��I&zïI(S��AEK*J�DÏJ��Q�L<���F
��J">E� ARDM<jIXACBC<
K���DGI��LBEDqD@��Aq¯C�Ñ��� ��DM�
DMA9�G�L��BCA§<°¯ ^9^`f9_ ¯CIX< «]`_hdra�ÁHaSò �
KSNG&zï

X6Â D ºm; P D »�UNPs¼J< D�½ ; º[ÃÐU@Æ$À D ? D S =eºm; ?JÀ C Ì Ë F º�=eº D F ¼W=N» D F ; F =@< PsU F º­ºmÂ D F =@P D
= F ; ?YºmÂ D »
= F D U@Æ�Ì Ë F º�=eº D F ¼W=N» D F ÈEX6ÂJ; F ; F ¾ D »
=@V F D F º�=eº D S D ¼ S D F D ?lº�=eºm; Ç D F =@?WM
S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F P)V F ºE¾ D »�UNPs¼JVOº D M D Ç D ?sÁ%Â D ?�À D ? D S =eºm; ?JÀ$Ì Ë F º�=eº D F ¼W=N» D F I
=@< ºmÂJUNVJÀNÂ"; ?§ºmÂ D ; S »
= F D ºmÂ D Ã"= S D ºmÂ S UeÁ%?�=zÁ6=zÃ�=eÆ�º D S M D º D S Ps; ?J; ?JÀ�ºmÂ D º�= S À D º6?JUOM D FU@Æ ¼W= S ºm;>»�VJ<>= S F D P�=@?lºm;>»�º S =@? F ; ºm; UN? F$Ï ºmÂLV F�F =zÇL; ?JÀ F UNP D P D PsU S Ã Ò È

� D º�V F ?JUeÁª»�UNPs¼W= S D ºmÂ D =eºHºm; ºmVWM D F U@Æ6V F ; ?JÀ F UN¼JÂJ; F ºm;>»
=eº D MÊ?W=@Ps; ?JÀ S VJ< D F =@?WM?W=@P D =@¾ F º S =N»�ºm; UN?1È.ã D =@< S D =NMOÃ G ?JUeÁ ºmÂW=eº F UN¼JÂJ; F ºm;>»
=eº D MÞ?W=@Ps; ?JÀ S VJ< D F I.¼�U FmF ; ¾J< Ã»�UNP)¾J; ? D MÜÁ%; ºmÂY¼W= S ºm;>=@<6U S M D S�S D MOVW»�ºm; UN?1I	»
=@? S D PsUeÇ D F UNP D U@Æ�ºmÂ D S D MOVJ?WMJ=@?W»�; D F»
=@V F D M$¾LÃ$= FmF ; ÀN?J; ?JÀ�MO; â D S D ?lºi?W=@P D F ºmU�MOÃL?W=@Ps;>»
=@< < Ã$= S ; F ; ?JÀ�; ? F º�=@?W» D F Á%; ºmÂs» D S º�=@; ?
»�ÂW= S =N»�º D S ; F ºm;>» S UN< D F ; ?�ºmÂ D PsUOM D < D M F Ã F º D P�Iz¾JVOº	; º	; F ?JU@º	ÀNVW= S =@?lº D
D M�ºmÂW=eº ºmÂ D Ã�Á%; < <
S D PsUeÇ D =@< <�U@ÆiºmÂ D P�ÈW:�U S D UeÇ D S I F UN¼JÂJ; F ºm;>»
=eº D M­?W=@Ps; ?JÀ S VJ< D F I D Ç D ?"Á%Â D ?�»�UNP)¾J; ? D MÁ%; ºmÂ"¼W= S ºm;>=@<¢U S M D S/S D MOVW»�ºm; UN?1IJMOU�?JU@º%Â D < ¼"P)VW»�Â"=@Àl=@; ? F º F Ã F º D P Ä < D Ç D < F ÃLPsP D º S ; D FP�=@¼J¼ D MéUN?lºmUÜÁ/U S G ; ?JÀßÁ%; ºmÂó» D S º�=@; ?é; ? F º�=@?W» D F ; ?ó= F ÃLPsP D º S ;>»
=@<�Á6=zÃÐÇL;>=ÞºmÂ D ; S;>M D ?lºm; àWD S F ÈlÌ�=@P D =@¾ F º S =N»�ºm; UN?1IeUN?sºmÂ D U@ºmÂ D S ÂW=@?WM�Il»
=@? S D PsUeÇ D =@< <OºmÂ D S D MOVJ?WMJ=@?W»�Ã= FmF UO»�;>=eº D M®ºmU�?W=@P D F U@Æ%MOÃL?W=@Ps;>»
=@< < Ãå=@¼J¼ D = S ; ?JÀ�=@?WMÊMO; F =@¼J¼ D = S ; ?JÀ�; ? F º�=@?W» D F =@?WMºmÂLV F »
=@? F =zÇ D PsU S D P D PsU S Ã�ºmÂW=@?®ºmÂ D =eºHºm; ºmVWM D F ¾W= F D M®UN? F UN¼JÂJ; F ºm;>»
=eº D M�?W=@Ps; ?JÀ
S VJ< D F È.X6ÂJ; F ; F =�»�UN? F Dj¿ V D ?W» D U@Æ%=@< Á6=zÃ F ; ÀN?JU S ; ?JÀ�=@< <	ºmÂ D MO; â D S D ?lº�¼�U FmF ; ¾J; < ; ºm; D F U@Æ;>M D ?lºm; ÆáÃL; ?JÀ�VJ?J; ?lº D S »�ÂW=@?JÀ D =@¾J< D ; ? F º�=@?W» D F Á%; ºmÂJ; ?�U@ºmÂ D S Á%; F D ;>M D ?lºm;>»
=@< F º�=eº D F Á%; ºmÂJUNVOº=@?LÃ S D F ¼ D »�º6ºmUsºmÂ D Á6=zÃ�ÂJUeÁ�ºmÂ D Ã§Á D S D » S D =eº D M"=@?WM"Á%ÂW=eº%Á6= F ºmÂ D ; S%S UN< D F U�Æ�= S È

47

Ø UWIz; º F D
D P F ºmÂW=eº S D ?W=@Ps; ?JÀx»
=@? F =zÇ D PsU S D P D PsU S ÃxºmÂW=@? F UN¼JÂJ; F ºm;>»
=eº D M�?W=@Ps; ?JÀ
S VJ< D F I D Ç D ?®; ?®ºmÂ D »
= F D U@ÆEV F ; ?JÀ§¼W= S ºm;>=@<iU S M D S�S D MOVW»�ºm; UN?1È Ñ ?®ºmÂ D U@ºmÂ D S ÂW=@?WM�I�Á DPs; ÀNÂlº2ÂW=zÇ D ºmU$¼W=zÃ$ÆáU S V F ; ?JÀ S D ?W=@Ps; ?JÀ ¿ VJ; º D =x< U@º2; ?�º D S P F U@Æ�ºmÂ D ºm; P D »�UNPs¼J< D�½ ; º[Ã¾ D »
=@V F D º D F ºm; ?JÀ�P�= S G ; ?JÀ F ºmU�¾ D�Dj¿ VW=@<	VJ¼ÊºmU S D ?W=@Ps; ?JÀ�»
=@?ÊP)VJ< ºm; ¼J< Ã®ºmÂ D UeÇ D S =@< <ºm; P D U@Æ�À D ? D S =eºm; ?JÀ F º�=eº D F ¼W=N» D F ¾LÃ ^sÏ Ó6\ Ò Á%Â D S D Ó�; F ºmÂ D P�= ½ ; P�=@<W?LVJP)¾ D S U@Æ.»�UN? Ä»�V SmS D ?lºm< Ã D�½ ; F ºm; ?JÀ$; ? F º�=@?W» D F È@ïJU S ºmVJ?W=eº D < ÃNIeºmÂJ; F ; F ºmÂ D Á/U S F º2»
= F D F » D ?W= S ; UxUN?J< Ã)=@?WMÁ D »
=@?ßV F VW=@< < ÃÞM D » S D = F D ºmÂ D ºm; P D »�UNPs¼J< D�½ ; º[ÃåV F ; ?JÀ�ºmÂ D Â D V S ; F ºm;>» F ¾ S ; D ìWÃÊP D ? Äºm; UN? D M); ?�ºmÂ D ? D�½ º F VJ¾ F D »�ºm; UN?1È@X6Â D F D Â D V S ; F ºm;>» F = S D ¾W= F D M)UN? S D ?W=@Ps; ?JÀ�; ? F D ? F ; ºm; Ç DÂW= F ÂJ; ?JÀxº D »�ÂJ?J; ¿ V D F M D » S D = F ; ?JÀx?LVJP)¾ D S F U@Æ F º�=eº D F ºmU$¾ D »�UNPs¼W= S D M�=@?WMsUN? D�½ ¼J< UN; º Ä; ?JÀ�ºmÂ D F º S VW»�ºmV S D U@Æ F º�=eº D F ÆáU S F D < D »�ºm; ?JÀ­; ? F º�=@?W» D F Á%ÂJU F D ;>M D ?lºm; àWD S F ; º�; F�F D ? F ; ¾J< DºmUÜ¼ D S P)VOº D ÈEãéÂW=eº§; F PsU S D I2Á D »
=@?éÂ D < ¼YºmÂ D P D »�ÂW=@?J; F P U@Æ$?W=@P D =@¾ F º S =N»�ºm; UN?¾LÃÊP�=@?LVW=@< < Ã F ¼ D »�; ÆáÃL; ?JÀ®ÂJUeÁ ºmU à ?WMÜ=@?WM D�½ ¼J< UN; º S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F =eº)< D = F º=@PsUN?JÀ F UNP D U@Æ.ºmÂ D ; ?LÇNUN< Ç D M�; ? F º�=@?W» D F ÈLíb? F VW»�Â"=�»
= F D IlUN?J< ÃsºmÂ D ; ? F º�=@?W» D F VJ?W»�UeÇ ÄD S D M�P�=@?LVW=@< < ÃxÂW=zÇ D ºmU�¾ D ¼ S UO» D FmF D M$¾LÃxºmÂ D ÆáV S ºmÂ D S P D ?lºm; UN? D M)Â D V S ; F ºm;>» F Èjí�º	; F =@< F U; ?lº D S D F ºm; ?JÀ$ºmÂW=eºEUN?W» D Á D =@< < UeÁÐP�=@?LVW=@< F ¼ D »�; à »
=eºm; UN?�U@Æ S D ?W=@Ps; ?JÀ F ÃLPsP D º S ; D F I@ºmÂ D
F =@P D P D »�ÂW=@?J; F P'»
=@?�¾ D V F D M"ÆáU S F ¼ D »�; ÆáÃL; ?JÀ­À D ? D S =@< F ÃLPsP D º S ; D F =@?WM�ÇL;>» D Ç D S F =JÈ:�UOM D < < D S F »
=@?)ºmÂ D ?)Æ S D
D < Ã)»�ÂJULU F D ÂJUeÁ8P)VW»�Â); ?OÆáU S P�=eºm; UN?)ºmU�¼ S UeÇL;>M D P�=@?LVW=@< < Ã�=@?WMÂJUeÁYP)VW»�Â�Á/U S G)F ÂJUNVJ<>Ms¾ D MOUN? D =@VOºmUNP�=eºm;>»
=@< < ÃNÈ�ã�UeÁ D Ç D S I D Ç D ?�; ? F VW»�Â�=�»
= F D I@ºmÂ D=@¾�UeÇ D M D F » S ; ¾ D M"¼ S ; ?W»�; ¼J< D F U@Æi?W=@P D =@¾ F º S =N»�ºm; UN? F ÂJUNVJ<>M§¾ D S D F ¼ D »�º D M�ÈX.U®; < < V F º S =eº D ºmÂ D =@¾�UeÇ D »�UN? F ;>M D S =eºm; UN? F I1Á D »
=@?ß¼ S D F D ?lº F UNP D MJ=eº�=�UN¾Oº�=@; ? D MÆ S UNP = F ; Ps¼J< D É S UN< UNÀ"¼ S U@ºmU@º[ÃL¼ D U@Æ�=@? Ñ$Ñ ÉEÌ F º�=eº D F ¼W=N» D À D ? D S =eºmU S I�Á%ÂJ;>»�ÂßÁ D=@¼J¼J< ; D MÜºmU F D Ç D S =@< D�½ =@Ps¼J< D PsUOM D < F I F VW»�ÂY= F »�<>= FmF ;>»
=@<6¼JÂJ; < U F UN¼JÂ D S F I	MO; F º S ; ¾JVOº D M¼JÂJ; < U F UN¼JÂ D S F I�æ%V FmF ;>=@?�¼JÂJ; < U F UN¼JÂ D S F ILU S MO; â D S D ?lº�Ç D S F ; UN? F U@Æ F ; Ps¼J< D F Ã F º D P F Á%; ºmÂ
S D F º�= S º�=@¾J< D »�UNVJ?lº D S F Ó K	U@Z����zÖ�È Ø º�=eº D F ¼W=N» D F U@Æ�ºmÂ D F D PsUOM D < F UN¾Oº�=@; ? D M8V F ; ?JÀÊºmÂ DPsU F º D <>=@¾�U S =eº D M F UN¼JÂJ; F ºm;>»
=eº D MÐ?W=@Ps; ?JÀ S VJ< D F®Ï Á%; ºmÂJUNVOº§¼W= S ºm;>=@< Ä U S M D SsS D MOVW»�ºm; UN? ÒÂW=NM�=@¾�UNVOº4¾L½ ý � ù Å ¾L½ ý �K] F º�=eº D F ÈJãéÂ D ?�V F ; ?JÀ�?W=@P D =@¾ F º S =N»�ºm; UN?§ºmÂ D Ã"Á D S D S D MOVW» D Mý ½ ý Å ¾ ý ¾/ºm; P D F Èzï S UNP5ºmÂJ; F Ij; º ; F ÇL; F ; ¾J< D ºmÂW=eº ?W=@P D =@¾ F º S =N»�ºm; UN?�»
=@? S D =@< < Ã�< D =NMxºmU F ; À Ä?J; à »
=@?lº S D MOVW»�ºm; UN? F ; ?�?LVJP)¾ D S F U@Æ F º�=eº D F Ie=@< ºmÂJUNVJÀNÂ)ºmÂ D S D/D�½ ; F º F Ã F º D P F%Ï = F D È ÀWÈzºmÂ D
F Ã F º D PöU@Æ6MO; F º S ; ¾JVOº D Må¼JÂJ; < U F UN¼JÂ D S F�Ò Á%Â D S D =@< S D =NMOÃ�ºmÂ D PsU F º D <>=@¾�U S =eº D M F UN¼JÂJ; F[Äºm;>»
=eº D M S VJ< D F S D PsUeÇ D PsU F º)U@Æ/ºmÂ D ?W=@Ps; ?JÀ S D MOVJ?WMJ=@?W»�; D F È.X6Â D F ¼ D
D MOVJ¼ßUN¾Oº�=@; ? D MÇL;>=åV F ; ?JÀÞ?W=@P D =@¾ F º S =N»�ºm; UN?Ü; ?ÐUNV S D�½ =@Ps¼J< D F S =@?JÀ D MÞÆ S UNP Ç D S Ã F P�=@< <6? D Àl=eºm; Ç D
Çe=@< V D F VJ¼§ºmU Â ½ ý ��^eÈ�ã�UeÁ D Ç D S IN; º%; F Æ�=@; S ºmU�?JU@º D ºmÂW=eº6ºmÂ D F ; ºmVW=eºm; UN?§Á/UNVJ<>M§»�ÂW=@?JÀ D ; ÆÁ D V F D M®¾ D ºHº D S ÂW= F Â®ÆáVJ?W»�ºm; UN? F =@?WM®; Æ/Á D Á D S D º D F ºm; ?JÀ F º�=eº D F ºmU"¾ D ;>M D ?lºm;>»
=@<	ÇL;>== F º S =@; ÀNÂlº%»�UNPs¼W= S ; F UN?§U@Æ.ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¾J< UO» GOF U@ÆiP D PsU S ÃNÈ Ñ ?§ºmÂ D U@ºmÂ D S ÂW=@?WM�I
V F ; ?JÀ F VW»�ÂÊº D »�ÂJ?J; ¿ V D F ; F À D ? D S =@< < Ã®¼ S UN¾J< D P�=eºm;>»s; ?ÞºmULUN< F ¾W= F D MÊUN?ÞÆáVJ?W»�ºm; UN?W=@<EU S< UNÀN;>»
=@<¢<>=@?JÀNVW=@À D F ÈË F =ß»�UN?W»�< V F ; UN?1I	Á D »
=@? F =zÃßºmÂW=eº­PsU S D F ºmVWMO; D F = S D F ºm; < <�? D
D M D M8ºmUß=@? F Á D SºmÂ D�¿ V D F ºm; UN?8Á%Â D ºmÂ D S =@?WMÜ; ?ÐÁ%ÂJ;>»�ÂÐ»
= F D F ; º�; F ¾ D ºHº D S ºmUß=@< < UeÁ ¾J; ÀNÀ D S P D PsU S Ã»�UN? F VJPs¼Oºm; UN?�=@?WM"Á%Â D ?"ºmUsV F D ?W=@P D =@¾ F º S =N»�ºm; UN?1È

ß��`_�a¦'�¡('�,
¢Ñ+�¤"¡(àP) +�¢Ñ+�'*) è�¢�.�'�:�0�243537698;:
íb?­ºmÂJ; F6F D »�ºm; UN?1IlÁ D Á%; < <¢P D ?lºm; UN? F D Ç D S =@<WP D ºmÂJUOM F ; ?lº D ?WM D M�ºmU�¾ D V F D M­; ?­ºmÂ D »�UN? Äº D�½ º6U@Æ Ñ$Ñ ÉEÌ F ºmU�; Ps¼ S UeÇ D ºmÂ D�D�è »�; D ?W»�Ã�U@Æ1ºmÂ D »�<>= FmF ;>»
=@<¢=@< ÀNU S ; ºmÂJPªU@Æ1À D ? D S =eºm; ?JÀÆáVJ< < F º�=eº D F ¼W=N» D F Ó T D ?WÔ�¾eÖ = F Á D < <i= F ; º F ¼J<>=@; ?�U S ¼W= S ºm;>=@<.U S M D S�S D MOVW» D M�M D ¼OºmÂ à S F ºÇe= S ;>=@?lº F º[ÃL¼J;>»
=@< < Ã­V F D M§ÆáU S ÆáU S P�=@<�Ç D S ; à »
=eºm; UN? Ó É D <>Ô��jÖ�È

48

� ACN
�LBEJ�K�®G,9� « >CAEIC�9<°¯ � DM�
DMA��`DM<�>CAbBs< « �L�
IXACN�ï Ë ?�; Ps¼�U S º�=@?lº%¼W= S º6U@Æ.ºmÂ D ºm; P D? D
D M D MåÆáU S À D ? D S =eºm; ?JÀ�= F º�=eº D F ¼W=N» D ; F�F ¼ D ?lº�º D F ºm; ?JÀ�Á%Â D ºmÂ D S ="ÀN; Ç D ? F º�=eº D ÂW= F=@< S D =NMOÃ$¾ D
D ?�; ?W»�< VWM D M�; ?lºmUxºmÂ D F º�=eº D F ¼W=N» D U S ?JU@ºjÈ@íb?�ºmÂ D »
= F D U@Æ�Ì Ë F º�=eº D F ¼W=N» D F IºmÂJ; F ; F D F ¼ D »�;>=@< < Ãå» S ; ºm;>»
=@<2MOV D ºmU"ºmÂ D ºm; P D Ä »�UN? F VJPs; ?JÀ"º D F º F U@Æ Dj¿ VJ; Çe=@< D ?W» D VJ¼ÊºmU
S D ?W=@Ps; ?JÀWÈEã D »
=@? S D MOVW» D ºmÂ D ºm; P D F ¼ D ?lº"UN?�»�UNPs¼W= S ; ?JÀ F º�=eº D F ¾LÃéM D » S D = F ; ?JÀ?LVJP)¾ D S F U@Æ F º�=eº D F ºmU"¾ D »�UNPs¼W= S D M�È�X6ÂJ; F »
=@?å¾ D =N»�ÂJ; D Ç D M�¾LÃ S D ¼ S D F D ?lºm; ?JÀ F º�=eº D
F ¼W=N» D F ¾LÃ®ÂW= F Âåº�=@¾J< D F ; ?WM D�½OD MåÇL;>= F VJ; º�=@¾J< D ÂW= F ÂåÆáVJ?W»�ºm; UN? F Á/U S G ; ?JÀ§UeÇ D S F º�=eº D F ÈX6Â D ?ÞÁ D ÂW=zÇ D ºmU�»�UNPs¼W= S D UN?J< Ã�ºmÂ D F º�=eº D F ÆáU S Á%ÂJ;>»�ÂåºmÂ D =@¼J¼J< ; D MÊÂW= F ÂåÆáVJ?W»�ºm; UN?
S D ºmV S ? F ºmÂ D F =@P D Çe=@< V D È

íb?§ºmÂ D »
= F D U@Æ Ï C Ò Ì Ë F º�=eº D F ¼W=N» D F IlºmÂ D$D Ps¼J< UeÃ D M­ÂW= F ÂJ; ?JÀ�¼ S UO» D MOV S D P)V F º%¾ D; ? F D ? F ; ºm; Ç D ºmU�ºmÂ D P D »�ÂW=@?J; F P'U@Æ	?W=@P D =@¾ F º S =N»�ºm; UN?�=@¼J¼J< ; D M�Â D S D È�X.U§=N»�ÂJ; D Ç D ºmÂJ; FÁ D F VJÀNÀ D F º S D ¼ S D F D ?lºm; ?JÀ F º�=eº D F U@Æ Ñ$Ñ ÉEÌ F = F	F Dj¿ V D ?W» D F U@Æ F º�=eº D F U@ÆWºmÂ D Z[V F º/=N»�ºm; Ç DUN¾OZ D »�º F I F º�=eº D F U@ÆEºmÂ D =N»�ºm; Ç D UN¾OZ D »�º F = FxF Dj¿ V D ?W» D F U@Æ F º�=eº D F U@Æ/ºmÂ D ? D º�; ? F º�=@?W» D FD ?W»
=@¼ F VJ<>=eº D Ms; ?�ºmÂ D UN¾OZ D »�º F Il=@?WM�I à ?W=@< < ÃNI F º�=eº D F U@Æ¢ºmÂ D ? D º/; ? F º�=@?W» D F = FEF Dj¿ V D ?W» D FU@Æ6ºmÂ D P�= S G ; ?JÀ D < D P D ?lº F ¾ D < UN?JÀN; ?JÀ�ºmU�ºmÂ D ¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D F È.Û D ÆáU S D ÂW= F ÂJ; ?JÀUN? F VW»�Â F º�=eº D F Dj¿ V D ?W» D F IiÁ D ÆáV S ºmÂ D S ÂW=zÇ D ºmU S D ¼J<>=N» D =@< </ºmÂ D ;>M D ?lºm; àWD S F ¼ S D F D ?lº; ?8ºmÂ D P ¾LÃÞºmÂ D ?W=@P D F U@Æ�ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ? D º F =@?WM F U S º�ºmÂ D ? D F º D M F Dj¿ V D ?W» D FU@Æ/P�= S G ; ?JÀ D < D P D ?lº F I1; ? F º�=@?W» D F I1=@?WMåUN¾OZ D »�º F =N»
»�U S MO; ?JÀ­ºmU"ºmÂ D ; ?OÆáU S P�=eºm; UN?åºmÂ D Ã»�UN?lº�=@; ?s=eÆ�º D S ºmÂ D S D ¼J<>=N» D P D ?lº	U@Æ¢;>M D ?lºm; àWD S F ¾LÃ$ºmÂ D = FmF UO»�;>=eº D M�º[ÃL¼J; ?JÀ$; ?OÆáU S P�=eºm; UN?1ÈX6Â D M D F » S ; ¾ D MÜ¼ S D ¼W= S =eºm; UN?ÜU@Æ F º�=eº D F ÆáU S ÂW= F ÂJ; ?JÀÊ; F ¿ VJ; º D »�UNPs¼J< D�½ IiÂJUeÁ D Ç D S Ii; º»
=@?�ÆáU S ºmVJ?W=eº D < Ã�¾ D S D =@< ; Å D Ms; ?"=@?§; ?W» S D P D ?lº�=@<�Á6=zÃNÈlX6Â D M D F » S ; ¾ D M F »�Â D P D »
=@?§¾ D; Ps¼ S UeÇ D MÞ¾LÃ S D ¼J<>=N»�; ?JÀ®; ? F º�=@?W» D ;>M D ?lºm; àWD S F ?JU@ºsUN?J< ÃÞ¾LÃÊºmÂ D =@¼J¼ S UN¼ S ;>=eº D º[ÃL¼J; ?JÀ; ?OÆáU S P�=eºm; UN?1IJ¾JVOºx=@< F U�¾LÃ F UNP D = FmF UO»�;>=eºm; Ç D ;>M D ?lºm; à »
=eºm; UN?�; ? F D ? F ; ºm; Ç D ºmU S D ?W=@Ps; ?JÀ=@?WM D = F Ã8ºmUÜUN¾Oº�=@; ?1È Ë FmF UO»�;>=eºm; Ç D ;>M D ?lºm; à »
=eºm; UN?éU@Æ�; ? F º�=@?W» D F »
=@?�¾ D M D�à ? D Mé¾LÃ
PsUOM D < < D S F =@?WMÊ»
=@?å¾ D ¾W= F D M®UN? F VJPsP�= S ; Å
; ?JÀ§Á%ÂW=eºxº S ; ÇL;>=@< UN¾OZ D »�º F = S D F ºmU S D M®; ?Á%ÂW=eº ¼J<>=N» D F U@ÆJºmÂ D ; ? F º�=@?W» D F =@?WM�ÂJUeÁÞºmÂ D F D ; ? F º�=@?W» D F = S D S D Æ D SmS D MxºmU�Æ S UNPÍºmÂ D S D F ºU@ÆEºmÂ D F Ã F º D P�È1ïi; ?W=@< < ÃNI�PsUOM D < < D S F »
=@?ÊÂ D < ¼åºmÂ D F Ã F º D Pö¾LÃ®¼ S UeÇL;>MO; ?JÀ§¼ S UO» D MOV S D FÆáU S%S D ¼ S D F D ?lºm; ?JÀs=eº�< D = F º F UNP D » S ; ºm;>»
=@<�¼W= S º F U@Æ F º�=eº D F ; ?�=�VJ?J; ¿ V D Á6=zÃNÈ

c « �SIX<
²�J�K�®±D@��A#d�eíBEJ"AEKSB � <°¯f(LA���DGJ�K�®~D@��A � AEKS� « J�K�®�d��E�ÑJ�²
�
� AEKSBCA�ï/X6Â D Á/U S F º»
= F D »�UNPs¼J< D�½ ; º[ÃÊU@Æ6º D F ºm; ?JÀ�ºmÂ D S D ?W=@Ps; ?JÀ Dj¿ VJ; Çe=@< D ?W» D »
=@?J?JU@º�¾ D M D » S D = F D M�I�¾JVOººmÂ D =zÇ D S =@À D UN? D »
=@?Þ¾ D ; Ps¼ S UeÇ D MÊ¾LÃ D�½ ¼J< UN; ºm; ?JÀ�ºmÂ D F º S VW»�ºmV S D U@Æ F º�=eº D F ; ? F º D =NMU@Æ)¾J< ; ?WMO< Ãéº D F ºm; ?JÀY=@< <x¼ D S P)VOº�=eºm; UN? F U@Æ);>M D ?lºm; àWD S F È6ã D »
=@? S D ¼ S D F D ?lº F º�=eº D F = FU S ; D ?lº D M�À S =@¼JÂ F Á%; ºmÂ®º[Á/U G ; ?WM F U@Æ2?JUOM D F »�U SmS D F ¼�UN?WMO; ?JÀsºmU§? D ºx; ? F º�=@?W» D F =@?WM�ºmUP�= S G ; ?JÀ D < D P D ?lº F È�íb? F º�=@?W» D ?JUOM D F�F ÂJUNVJ<>M�¾ D < ; ? G D M"ºmU�ºmÂ D =@¼J¼ S UN¼ S ;>=eº D P�= S G ; ?JÀD < D P D ?lº F =@?WM"ºmÂJU F D ºmU­ºmÂ D ? D º�; ? F º�=@?W» D F ºmÂ D Ã D Ç D ?lºmVW=@< < Ã�»�UN?lº�=@; ?1ÈWX D F ºm; ?JÀ F º�=eº D F
¾ D ; ?JÀ Dj¿ VW=@<2VJ¼ÊºmU S D ?W=@Ps; ?JÀ�; F ºmÂ D ?Êº S =@? F ÆáU S P D M®ºmU®=�VJ?J; à »
=eºm; UN?ÞU@Æ/ºmÂ D ; S ��DM�
DMA
®�IX�X�L����º S D =eºm; ?JÀÞ;>M D ?lºm; àWD S F = F MO; F ºm; ?W»�º�º[ÃL¼ D MÐÇe= S ;>=@¾J< D F È2X6Â D VJ?J; à »
=eºm; UN?Y»
=@?Y¾ D
; Ps¼J< D P D ?lº D M®¾LÃ F ÃL?W»�Â S UN?JUNV F < Ã­º S =zÇ D S F ; ?JÀ­¾�U@ºmÂ F º�=eº D À S =@¼JÂ F =@?WM�VJ?J; ÆáÃL; ?JÀ§ºmÂ D ; S
?JUOM D F È × UN; ?JÀ)ºmÂJ; F Á D F ÂJUNVJ<>M­¼ S D Æ D S VJ?J; ÆáÃL; ?JÀ�P�= S G ; ?JÀ D < D P D ?lº F »�UN?lº�=@; ?J; ?JÀ)º S ; ÇL;>=@<UN¾OZ D »�º F U S ?JUN?lº S ; ÇL;>=@<EUN¾OZ D »�º F Á%; ºmÂÜº[ÃL¼ D F Á%ÂJ;>»�ÂÜ= S D VJ?J; ¿ V D Á%; ºmÂJ; ?ÜºmÂ D P�= S G ; ?JÀU@Æ	ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¼J<>=N» D F È�X6ÂLV F Á D »
=@? à ?WMåMO; â D S D ?W» D F = F�F ULUN?®= F ¼�U FmF ; ¾J< D =@?WM
S D MOVW» D ºmÂ D =@PsUNVJ?lº2U@Æ¢¾W=N» G º S =N» G ; ?JÀ F º D PsPs; ?JÀxÆ S UNP P�=eº�»�ÂJ; ?JÀxUN¾OZ D »�º F U@Æ�ºmÂ D F =@P D
º[ÃL¼ D F ºmU S D Må; ?ÊºmÂ D F =@P D ¼J<>=N» D Á%; ºmÂÊºmÂ D ; S MO; â D S D ?lº�¼�U FmF ; ¾J< D »�UNVJ?lº D S ¼W= S º F ; ?ÊºmÂ D
F =@P D ¼J<>=N» D U@ÆJºmÂ D U@ºmÂ D S F º�=eº D ÈeïJV S ºmÂ D S PsU S D I
Á D »
=@? D�½ ¼J< UN; º.ºmÂ D =@< S D =NMOÃ�P D ?lºm; UN? D M= FmF UO»�;>=eºm; Ç D ;>M D ?lºm; à »
=eºm; UN?ÐU@Æ�; ? F º�=@?W» D F Â D S D I	= F Á D < <}È2X6ÂJ; F »
=@?8¾ D MOUN? D ; ? F VW»�Â

49

=)Á6=zÃ)ºmÂW=eº%Á D MOU�?JU@º6VJ?J? D » D FmF = S ; < Ãs»�UNPs¼W= S D ; ? F º�=@?W» D F Á%; ºmÂ�MO; â D S D ?lº%= FmF UO»�;>=eºm; Ç D;>M D ?lºm; à »
=eºm; UN?"»
=@¼OºmV S ; ?JÀ)ºmÂ D ; S < UO»
=@< F º�=eº D F ; ?�= S D ?W=@Ps; ?JÀ�; ? F D ? F ; ºm; Ç D Á6=zÃNÈLïi; ?W=@< < ÃNIPsUOM D < < D S F »
=@?®=@Àl=@; ?�Â D < ¼®ºmÂ D F Ã F º D P,¾LÃ�¼ S UeÇL;>MO; ?JÀ­¼ S UO» D MOV S D F ÆáU S »�UNPs¼W= S ; ?JÀ§=eº< D = F º F UNP D F D < D »�º D M"; ? F º�=@?W» D F ; ?�=�P�=@?LVW=@< < Ã F ¼ D »�; àWD M­Æ�= F º�Á6=zÃNÈ
�1<
IXAgd�eíBEJ"AEKLD%h��
I�>C��®�A#Bs<
��� ACBEDGJ�K�®�ï�X6Â D M D�à ?J; ºm; UN?�U@Æ Ñ$Ñ ÉEÌ F P�= G D F Àl= S ¾W=@À D»�UN< < D »�ºm; ?JÀ®=�¼W= S º�U@Æ D Ç D S Ã D Ç D ?lºjÈiÉ D S ÆáU S Ps; ?JÀ�Àl= S ¾W=@À D »�UN< < D »�ºm; ?JÀ®P D =@? F ºmÂW=eº)Á DÂW=zÇ D ºmU�º S =zÇ D S F D ºmÂ D =@¼J¼ S UN¼ S ;>=eº D F º�=eº D À S =@¼JÂ Ï Á%ÂJ;>»�Â"»
=@?�¾ D »�UNPs¼JVOº D M­; ?W» S D P D ? Äº�=@< < Ã Ò =@?WM à ?WM®UNVOº�Á%ÂJ;>»�Âå; ? F º�=@?W» D F »
=@?J?JU@º�¾ D S D =N»�Â D M"Æ S UNP'ºmÂ D S ULU@ºjÈSã�UeÁ D Ç D S IºmÂJ; F »�UNPs¼JVOº�=eºm; UN?Þ; F ?JU@º)? D » D FmF = S Ã®; ? D Ç D S Ã F º D ¼ß¾ D »
=@V F D ?JU@º D Ç D S Ã F º D ¼ßP�= G D F

F UNP D ; ? F º�=@?W» D UN¾ F UN< D º D ÈWí�º�; F�F V è »�; D ?lº�ºmU­¼ D S ÆáU S P,Àl= S ¾W=@À D »�UN< < D »�ºm; ?JÀ­UN?J< Ã"Á%Â D ?à S ; ?JÀ®=@? D Ç D ?lº�Á%ÂJ;>»�Âß; ?W»�< VWM D F =�»�ÂW=@?JÀ D U@Æ6P�= S G ; ?JÀ�ÇL;>=�= S » F U@Æ%=�º S =@? F ; ºm; UN?ÞU S=x¼�U S º2; ? F » S ; ¾ D M�¾LÃ�=j� <��C��²
�
I�J"��>E� A�¾�UNVJ?WM�ºmU�=x?JUN?lº S ; ÇL;>=@<OUN¾OZ D »�ºjÈ��1U FmF Çe= S ;>=@¾J< D F U@Æ¼�U S º F =@?WM�º S =@? F ; ºm; UN? F = S D ºmÂ D Çe= S ;>=@¾J< D F Á%ÂJ;>»�Â§=@¼J¼ D = S UN?�; ?J¼JVOº6¾JVOº/?JU@ºEUN?�UNVOºm¼JVOº= S » F È Ñ ¾OZ D »�º F ¾�UNVJ?WM­ºmU F VW»�Â"Çe= S ;>=@¾J< D F = S D < ; G D < Ã�ºmU�¾ D < U F º%=@?WM§Á D ÂW=zÇ D ºmU�»�Â D » GºmÂW=eº�V F ; ?JÀ§Àl= S ¾W=@À D »�UN< < D »�ºm; ?JÀWÈWí�ºx; F ?JU@º�? D » D FmF = S Ã­ºmU§Á/U S G Á%; ºmÂ®< U FmF Çe= S ;>=@¾J< D F U@Æº S =@? F ; ºm; UN? F ; ?LÇNUN< Ç D M"; ?;Ê D Ç D ?lº F ¾ D »
=@V F D ºmÂ D »�UNPs¼J< D º D ¾J; ?WMO; ?JÀ­U@Æ ºmÂ D ; S Çe= S ;>=@¾J< D F; F6F ºmU S D M­Á%; ºmÂJ; ?§ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ; ?LÇNUO»
=eºm; UN? F ; ?­ºmÂ D P�= S G ; ?JÀ)U@Æ.ºmÂ D F D º S =@? F ; ºm; UN? F Èíb?�ºmÂ D »
= F D U@Æ©Ë D Ç D ?lº F IJÁ D ÂW=zÇ D ºmU F º�= S º�Àl= S ¾W=@À D »�UN< < D »�ºm; UN?�=@< F U�; Æ	ºmÂ D S D S D P�=@; ?
F UNP D ?JUN?lº S ; ÇL;>=@<lUN¾OZ D »�º F6Ï MO; â D S D ?lºiÆ S UNPÍºmÂ D S D F VJ< º U@ÆOºmÂ D6D Ç D ?lº Ò ; ?)ºmÂ D ? D º ; ? F º�=@?W» D¾ D ; ?JÀ à ?J; F Â D M�È�æ%VJ?lºm; P D »�Â D » G ; ?JÀxÁ%Â D ºmÂ D S =�< U FmF Çe= S ;>=@¾J< D ; F ¾�UNVJ?WM)ºmU$=�?JUN?lº S ; ÇL;>=@<UN¾OZ D »�ºx»
=@? F UNP D ºm; P D F ¾ D =zÇNUN;>M D M�V F ; ?JÀ"= F º�=eºm;>»$º[ÃL¼ D =@?W=@< Ã F ; F Á%ÂJ;>»�Âå»
=@?�º D < < V F
ºmÂW=eº%ºmÂ D =@¼J¼ S UN¼ S ;>=eº D Çe= S ;>=@¾J< D »
=@?�¾ D ¾�UNVJ?WM§ºmU�º S ; ÇL;>=@<�UN¾OZ D »�º F UN?J< ÃNÈ

Bs< « �S�ÑDGJ�K�®Id©KS��>E� ACNId©²
AEKLD"�©J�K5�
KGc�KSBEIXA « AEKLDM�
��ð;� � ïeãéÂ D ?�Á D Á6=@?lº.ºmU D�½ ¼J< U S D
F VW»
» D FmF U S F U@Æ1= F º�=eº D Á D�à S F ºEÂW=zÇ D ºmU�»�UNPs¼JVOº D ºmÂ D F D º/U@Æ1=@< <WºmÂ D�D Ç D ?lº F D ?W=@¾J< D M�; ?ºmÂW=eº F º�=eº D È�ã�UeÁ D Ç D S I@Á%Â D ?§Á D =N»
» D ¼Oº6=�< ; ºHºm< D ¾J; º6; ?W» S D = F D M�P D PsU S Ã S Dj¿ VJ; S D P D ?lº FÁ D MOU�?JU@º$ÂW=zÇ D ºmU�»�Â D » G ºmÂ Dsà S =@¾J; < ; º[Ã�U@Æ6=@< < º S =@? F ; ºm; UN? F ; ?ß=@< < ? D º�; ? F º�=@?W» D F ÆáU SD Ç D S ÃÜ? D Á F º�=eº D Æ S UNP = F » S =eº�»�Â1È	X6ÂJ; F ; F ¾ D »
=@V F D ºmÂ D F D º�U@Æ D Ç D ?lº F D ?W=@¾J< D MÐ; ?
= F º�=eº D »
=@?å¾ D »�UNPs¼JVOº D M®; ?Ê=@?®; ?W» S D P D ?lº�=@<iÁ6=zÃ F º�= S ºm; ?JÀ§Á%; ºmÂ®ºmÂ D F D º�U@Æ D Ç D ?lº FD ?W=@¾J< D MÞ; ?ß=�¼ S D M D » D FmF U S F º�=eº D U@Æ/ºmÂ D ÀN; Ç D ? F º�=eº D =@?WM§Z[V F ºs=NMJMO; ?JÀ�U S�S D PsUeÇL; ?JÀ
F UNP D�D Ç D ?lº F =N»
»�U S MO; ?JÀÊºmU S D Ä »�Â D » G ; ?JÀåºmÂ D�à S =@¾J; < ; º[Ã8U@Æ F UNP D º S =@? F ; ºm; UN? F ÈE:�U S D¼ S D »�; F D < ÃNILÁ D ÂW=zÇ D ºmU D�½ =@Ps; ? D =@< <�ºmÂ D º S =@? F ; ºm; UN? F Á%ÂJ;>»�Â"= S D »�UN?J? D »�º D M�ºmUs=eº6< D = F ºUN? D ; ?J¼JVOº­¼J<>=N» D Á%ÂJU F D P�= S G ; ?JÀÊÁ6= F »�ÂW=@?JÀ D M�È	ïJV S ºmÂ D S PsU S D I	Á D ÂW=zÇ D ºmUß»�Â D » Gº S =@? F ; ºm; UN? F Á%ÂJU F D ÀNVW= S M F »
=@?ÊV F D UN¾OZ D »�º F Á%ÂJU F D F º�=eº D Á6= F »�ÂW=@?JÀ D M®; ?Þ="ÇL; F ; ¾J< DÁ6=zÃNÈ Ë ?åUN¾OZ D »�º�; F »�ÂW=@?JÀ D M�; ?Ê=�ÇL; F ; ¾J< D Á6=zÃ"; Æ2ºmÂ D S D ; F =­¼�U S º�; ?®ºmÂ D »�<>= FmF U@Æ2ºmÂ DUN¾OZ D »�º/Á%ÂJ;>»�Â§»
=@? S D =NM�ºmÂ D »�UN?lº D ?lº F U@Æ.=@?­UN¾OZ D »�º/? D º/¼J<>=N» D Á%ÂJU F D P�= S G ; ?JÀ�Á%; ºmÂJ; ?ºmÂ D UN¾OZ D »�º�Á6= F »�ÂW=@?JÀ D MÞU S Á%ÂJ;>»�Â8»�UN?lº�=@; ? F =®ÇL; F ; ¾J< Ãß»�ÂW=@?JÀ D MßUN¾OZ D »�ºjÈ�ã�UeÁ D Ç D S I?JU@º D ºmÂW=eº)ºmÂ D Z[V F º�M D F » S ; ¾ D MÞP D »�ÂW=@?J; F P9»
=@?ß¾ D =@¼J¼J< ; D MßUN?J< ÃÞÁ%Â D ?ÜÁ D S Dj¿ VJ; S DºmÂW=eº§ÀNVW= S M D�½ ¼ S D FmF ; UN? F U@Æ Ñ$Ñ ÉEÌ F »
=@?J?JU@º­º D F º"=@?LÃ8UN¾OZ D »�º F Á%; ºmÂJUNVOº§U S ¾ D ÆáU S D
S D =NMO; ?JÀ�ºmÂ D P�Æ S UNP F UNP D ¼J<>=N» D F ÈiÌ D Ç D S ºmÂ D < D FmF I1ºmÂJ; F S D F º S ;>»�ºm; UN?ßU@Æ%ºmÂ D ?JU@ºm; UN?ßU@Æ
Ñ$Ñ ÉEÌ F6F D
D P F ºmUs¾ D�¿ VJ; º D ¼ S =N»�ºm;>»
=@<}È

i Ü6÷$ò.¸�¹[ùmô�¹H²�j ûå´Jµ2÷$ò1´O³J¹[ò.øÞµ2ù;Ü/ô�øN³OòlkªøPÕ�µ8mÞò�n:o�ÚmÙH·�Úi³Oò.¶

íb?�ºmÂJ; F�F D »�ºm; UN?1I�Á D Á%; < < MO; F »�V FmF�F D Ç D S =@<1¼�U FmF ; ¾J< D Á6=zÃ F U@Æ F ¼ D »�; ÆáÃL; ?JÀ§¼ S UN¼ D S ºm; D F ºmU¾ D$D Çe=@< VW=eº D M§UeÇ D S F º�=eº D F ¼W=N» D F U@Æ F Ã F º D P F PsUOM D < D M"¾LÃ Ñ$Ñ ÉEÌ F È

50

:�U F º�U@Æ	ºmÂ D »�UNPsPsUN?®Á6=zÃ F U@Æ F ¼ D »�; ÆáÃL; ?JÀ§¼ S UN¼ D S ºm; D F ºmU"¾ D »�Â D » G D M�UeÇ D S F º�=eº D
F ¼W=N» D F U@ÆWPsUOM D < F ¾W= F D M�UN?sMO; â D S D ?lº PsUOM D < < ; ?JÀx<>=@?JÀNVW=@À D F Ó K2=@<>ÔNÕzÖW»
=@?)¾ D V F D M�Á%; ºmÂ
Ñ$Ñ ÉEÌ Ä ¾W= F D M­PsUOM D < F ILºmULUWÈJã D »
=@?§ºmÂJ; ? G U@ÆiV F ; ?JÀsºmÂ D ÆáUN< < UeÁ%; ?JÀs=eºHºm; ºmVWM D F��
p D Çe=@< VW=eºm; ?JÀ`��DM�
DMAs�G�L��BCAq��DM�
DGJ���DGJ"B�� F VW»�Â$= F ?LVJP)¾ D S F U@Æ F º�=eº D F I�?LVJP)¾ D S F U@Æ F º S UN?JÀN< Ã»�UN?J? D »�º D M�»�UNPs¼�UN? D ?lº F IO¾�UNVJ?WM F U@Æ ¼J<>=N» D F IJÉ D º S ;�? D º�< ; Ç D º S =@? F ; ºm; UN? F I D º�»@È I
p ¼ S UN¼�U F ; ?JÀY= ²
AEIC���
DGJ�� A~��DM�
DMA1�G�L��BCAq�E�LAEI � � �
K�®��L��®�AÞºmUé=@< < UeÁêV F D S Ä »�UN?lº S UN< < D Mº S =zÇ D S F ; ?JÀ�ºmÂ S UNVJÀNÂ F º�=eº D F ¼W=N» D F =@?WM D�½ =@Ps; ?J; ?JÀ�ºmÂ DxD ?W»�UNVJ?lº D S D M F º�=eº D F I
p J�K���DGI�� « AEKLDGJ�K�® « <�N�AE� ��¾LÃ®¼ S UN¼ D S º[Ã�<>=@¾ D < FxF VW»�ÂÞ= F D ?WM ÄbF º�=eº D <>=@¾ D < F I�¼ S UNÀ S D FmF<>=@¾ D < F IW= FmF D S ºm; UN? F I D º�»@ÈOU S ¾LÃ­¼ S UN¼ D S º[Ã§=@VOºmUNP�=eº�=JI
p V F ; ?JÀ�=5��J ®��;� AE²
AE���G�LACBEJ ä©BC�
DGJ"<
K1� �
K�®��L��®�A F VW»�Â�= F%F UNP D º D Ps¼�U S =@<�< UNÀN;>»@È
:�U F º§U@Æ$ºmÂ D =@¾�UeÇ D < ; F º D M�=eºHºm; ºmVWM D F ÂW=zÇ D ºmU8¾ D F < ; ÀNÂlºm< Ãé=N»
»�UNPsPsUOMJ=eº D MÐÆáU SºmÂ D »�UN?lº D�½ º�U@Æ Ñ$Ñ ÉEÌ F =@?WMßºmÂ D ; S F º�=eº D F ¼W=N» D F È ïJU S D�½ =@Ps¼J< D Ii¾�UNVJ?WM F U@Æ�¼J<>=N» D FU@Æ Ñ$Ñ ÉEÌ F"F ÂJUNVJ<>M�¾ D »�UNPs¼JVOº D M F D ¼W= S =eº D < Ã8ÆáU S ¼W= S ºm;>»�VJ<>= S ; ? F º�=@?W» D F =@?WMYºmÂ D ?

= P�= ½ ; P)VJP F ÂJUNVJ<>MÐ¾ D »�ÂJU F D ?1I2¼W= S ºm;>»�VJ<>= S ¼ S UN¼ D S º[Ã8<>=@¾ D < F­F ÂJUNVJ<>MY¾ D Z[UN; ?lº§; ?
= F VJ; º�=@¾J< D Á6=zÃ D ; ºmÂ D S Á%; ºmÂå¼J<>=N» D F U S º S =@? F ; ºm; UN? F U@Æ Ñ$Ñ ÉEÌ F I D º�»@ÈSã�UeÁ D Ç D S IOºmÂ D S D= S ; F D F UN? D PsU S D À D ? D S =@<@¼ S UN¾J< D PóÂ D S D Á%ÂJ;>»�Âx; ?OìWV D ?W» D F =@< PsU F º.=@< <@U@ÆLºmÂ D P D ?lºm; UN? D M=eºHºm; ºmVWM D F�Ï PsU S D ¼ S D »�; F D < Ã§=@< <¢U@ÆiºmÂ D PëVJ¼"ºmU F º�=eº D F ¼W=N» D F º�=eºm; F ºm;>» F�Ò ÈJX6ÂJ; F ¼ S UN¾J< D P; F ¿ V D S ÃL; ?JÀ�¼W= S ºm;>»�VJ<>= S F º�=eº D F =@?WM D Ç D ?lº F U@Æ Ñ$Ñ ÉEÌ F ÈX6Â D P�=@; ?�¼ S UN¾J< D PëºmU�¾ D F UN< Ç D M§Á%Â D ? ¿ V D S ÃL; ?JÀ F º�=eº D F =@?WM D Ç D ?lº F U@Æ Ñ$Ñ ÉEÌ F
F º D P F Æ S UNP ºmÂ D MOÃL?W=@Ps; F P�U@Æ Ñ$Ñ ÉEÌ F È.ã D ÂW=zÇ D ºmUå¼ S D ¼W= S D ºmULUN< F ÆáU S D�½ ¼J< U S ; ?JÀ¼ S UN¼ D S ºm; D F U@Æ F D º F U@Æ F º�=eº D F =@?WM D Ç D ?lº F ; ?�=�Á6=zÃ­Á%ÂJ;>»�Â S D F ¼ D »�º F ºmÂ D Æ�=N»�º%ºmÂW=eº%ºmÂ D
F D º F U@Æ D�½ ; F ºm; ?JÀÊ; ? F º�=@?W» D F IiºmÂ D ; S ?W=@P D F =@?WM S D <>=eºm; UN? F »
=@?8¾ D MO; â D S D ?lº�; ? D Ç D S ÃD ?W»�UNVJ?lº D S D M F º�=eº D =@?WM�»
=@?J?JU@º�¾ D ÆáVJ< < Ã"¼ S D MO;>»�º D M�È�X6Â D S D ÆáU S D ; º�; F ?JU@º�¼�U FmF ; ¾J< D ºmUV F D = F/F ; Ps¼J< D$¿ V D S ; D F = F D È ÀWÈL; ? ×�D F ; ÀN?�r C ÉEÌ�I F VW»�Â"= F �[º�= G D ºmÂ D P�= S G ; ?JÀ)U@Æ F UNP D¼J<>=N» D ò Æ S UNP ºmÂ D F º�=eºm;>»�? D º�; ? F º�=@?W» D VJ?W=@P)¾J; ÀNVJUNV F < Ã�;>M D ?lºm; àWD M"¾LÃ [M\ � Èãé; ºmÂJ; ?�=)¼ S U@ºmU@º[ÃL¼ D U@Æ =@? Ñ$Ñ ÉEÌ F º�=eº D F ¼W=N» D ºmULUN<}IOÁ D ÂW=zÇ D F VJÀNÀ D F º D M§= F UN< V Ä
ºm; UN?"U@ÆiºmÂ D =@¾�UeÇ D ¼ S UN¾J< D Pë¾W= F D M§UN?§º[Á/U�À S UNVJ¼ F U@Æ.ÆáVJ?W»�ºm; UN? F ÈWïi; S F º%U@Æ =@< <}IOÁ D V F DºmÂ D F U Ä »
=@< < D MjJ�K���DM�
KSBCAI�E�LAEI � J�K�®q¯C�ÑKSBEDGJ"<
K���ÈeX6Â D Ã�=@< < UeÁßV F ºmU�¾ D ÀN; ?)Á%; ºmÂ)ºmÂ D VJ?J; ¿ V D; ?J; ºm;>=@<2UN¾OZ D »�º$? D º�; ? F º�=@?W» D U S Á%; ºmÂ F D º F U@Æ/ºmÂ D Z[V F º D�½ ; F ºm; ?JÀ�; ? F º�=@?W» D F U@Æ%» D S º�=@; ?? D º F ÀN; Ç D ? F º�=eºm;>»
=@< < Ã�¾LÃ§ºmÂ D ; S º[ÃL¼ D F È Ø VJ¾ F Dj¿ V D ?lºm< ÃNIWºmÂ D Ã�=@< < UeÁ5ºmU S D »�V S F ; Ç D < Ã"M D Ä
S ; Ç D F D º F U@ÆWºmÂ D ? D º2; ? F º�=@?W» D F U S »�UN? F º�=@?lº F	F º S =@; ÀNÂlº	U S º S =@? F ; ºm; Ç D < Ã S D Æ D S D ?W» D M�Æ S UNPºmÂ D =@< S D =NMOÃ G ?JUeÁ%?®; ? F º�=@?W» D F ÇL;>=�ºmÂ D P�= S G ; ?JÀ­U@Æ F UNP D U@Æ2ºmÂ D ; S ¼J<>=N» D F U S º S =@? F ; Äºm; UN? F ÈlX6Â D S D =@< F U D�½ ; F º F =�ÆáVJ?W»�ºm; UN? S D ºmV S ?J; ?JÀ$ºmÂ D F D ºEU@Æ�P D ºmÂJUOM�? D º/; ? F º�=@?W» D F Z[V F º
S VJ?J?J; ?JÀsUeÇ D S F UNP D ÀN; Ç D ?"UN¾OZ D »�º F È

íb? F º�=@?W» D)¿ V D S ÃL; ?JÀ�ÆáVJ?W»�ºm; UN? F = S D ; ?lº D ?WM D M�ºmU§¾ D »�UNP)¾J; ? D M�Á%; ºmÂ�ºmÂ D F U Ä »
=@< < D M
��AED�J�DMAEIX�
DGJ�K�®m¯C�ÑKSBEDGJ"<
K��E; ?)U S M D S ºmU�UN¾Oº�=@; ?$ºmÂ D =@¼J¼ S UN¼ S ;>=eº D »�ÂW= S =N»�º D S ; F ºm;>» F U@Æ F º�=eº D F ÈØLD º§; º D S =eºm; ?JÀÊÆáVJ?W»�ºm; UN? F =@< < UeÁ F D = S »�ÂJ; ?JÀ F UNP D ÂJUeÁä; ?lº D S D F ºm; ?JÀÞ; ? F º�=@?W» D F U S »�UN? Ä
F º�=@?lº F ; ? F D º F S D ºmV S ? D M�¾LÃ§ºmÂ D ; ? F º�=@?W» D)¿ V D S ÃL; ?JÀsÆáVJ?W»�ºm; UN? F È�ã D »
=@?�ÆáU S D�½ =@Ps¼J< Dº�= G D =@< <2ºmÂ D Z[V F º D�½ ; F ºm; ?JÀ®; ? F º�=@?W» D F U@Æ F UNP D ? D ºjI F D < D »�º�ºmÂ D UN? D F Á%ÂJ;>»�Â8»�UN?lº�=@; ?
F UNP D »�UN? F º�=@?lº%; ? F UNP D ¼J<>=N» D IJ=@?WM�ºmÂ D ?�ÀNU�UN?"¾LÃ D�½ ¼J< U S ; ?JÀ F UNP D U@ºmÂ D S ; ? F º�=@?W» D F
S D Æ D S D ?W» D M­Æ S UNP ºmÂ D F D < D »�º D M"UN? D F ÈØ U�Æ�= S Á D ÂW=zÇ D ¾ D
D ? F ¼ D = G ; ?JÀ�=@¾�UNVOºiÆáVJ?W»�ºm; UN? F ÆáU S ¿ V D S ÃL; ?JÀ Ñ$Ñ ÉEÌ F º�=eº D F UN?J< ÃNÈ
ã�UeÁ D Ç D S I D�½ =@Ps; ?J; ?JÀ D Ç D ?lº F/F D
D P F ºmU)¾ D =�< ; ºHºm< D�D = F ; D S Èlí�º6; F D ?JUNVJÀNÂ�ºmU�ÂW=zÇ D ºmULUN< FÆáU S =N»
» D FmF ; ?JÀ§ºmÂ D ¼W= S ºm;>»�VJ<>= S ; º D P F U@Æ D Ç D ?lº F I�;}È D È¢ºmÂ D ; S º[ÃL¼ D I¢ºmÂ D º S =@? F ; ºm; UN?åºmÂ D Ã= S D ¾�UNVJ?WM§ºmUWILºmÂ D ; ? F º�=@?W» D ºmÂ D Ã"= S D�à S ; ?JÀs; ?1IW=@?WM­ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¾J; ?WMO; ?JÀWÈ

51

X6Â D ÆáVJ?W»�ºm; UN? F ÆáU S ¿ V D S ÃL; ?JÀ F º�=eº D F =@?WM D Ç D ?lº F »
=@?�¾ D F º S =@; ÀNÂlº�V F D M®= F =�¼W= S ºU@Æ	=sÇ D S F =eºm; < D Ñ$Ñ ÉEÌ F º�=eº D F ¼W=N» D�¿ V D S Ã­<>=@?JÀNVW=@À D ÆáU S D�½ =@Ps; ?J; ?JÀ�ºmÂ D�D ?W»�UNVJ?lº D S D M
F º�=eº D F =@?WM D Ç D ?lº F È.:�U S D UeÇ D S I�ºmÂ D ÃÞ»
=@?Þ¾ D V F D MÊÆáU S M D F » S ; ¾J; ?JÀ"º D S P F D P)¾ D MJM D M; ?�º D Ps¼�U S =@<.< UNÀN;>»xÆáU S P)VJ<>= D F ¼ D »�; ÆáÃL; ?JÀ­¼ S UN¼ D S ºm; D F U@Æ F Ã F º D P F ºmU­¾ D Ç D S ; àWD M�V F ; ?JÀºmÂ D ; S Ñ$Ñ ÉEÌ Ä ¾W= F D MßPsUOM D < F È	ïi; ?W=@< < ÃNI ºmÂ D Ã8»
=@?Ð=@< F UÊ¾ D =@¼J¼J< ; D M8Á%Â D ? F ¼ D »�; ÆáÃL; ?JÀ< D Àl=@<¢º D S Ps; ?W=eºm; UN? F º�=eº D F IO¼ S UNÀ S D FmF D Ç D ?lº F IOU S F Ã F º D Pë; ?LÇe= S ;>=@?lº F È

ã D Á%; < <.?JUeÁÎM D F » S ; ¾ D =�< ; ºHºm< D PsU S D F UNP D U@Æ	ºmÂ D ; ? F º�=@?W» D)¿ V D S ÃL; ?JÀ�ÆáVJ?W»�ºm; UN? F Èã D M D F » S ; ¾ D ºmÂ D P5; ?$ºmÂ D ÆáU S P5U@ÆJÉ S UN< UNÀ6¼ S D MO;>»
=eº D F = F ºmÂ D Ãx= S D M D »�<>= S D M�; ?xºmÂ D ¼ S U ÄºmU@º[ÃL¼ D ºmULUN<WV F ; ?JÀxºmÂ D P�ÈLX6Â D Ãs=@< <Oº�= G D ºmÂ D »�V SmS D ?lº F º�=eº D ºmU�¾ D ; Ps¼J< ;>»�; º6=@?WM S D ºmV S ?ºmÂ D S D F VJ< º/ÇL;>=xºmÂ D ; S <>= F º/¼W= S =@P D º D S ÈNX6Â D ¼ S D MO;>»
=eº D&´�Ç ´�sNtvu0wXx S D ºmV S ? F ºmÂ D F D ºEÁ%; ºmÂºmÂ D ; ?J; ºm;>=@<WUN¾OZ D »�ºE? D º/; ? F º�=@?W» D ÈlX6Â D ¼ S D MO;>»
=eº D&´�Ç�w�sNtFyzw|{ Æ w|{[u0wXx S D ºmV S ? F ºmÂ D F D ºEU@ÆºmÂ D Z[V F º D�½ ; F ºm; ?JÀ�; ? F º�=@?W» D F ¾ D < UN?JÀN; ?JÀ�ºmU�ºmÂ D ? D º F Æ S UNPÍºmÂ D F D º�Æ w =@?WM S VJ?J?J; ?JÀ�UeÇ D SUN¾OZ D »�º F ¾ D < UN?JÀN; ?JÀ�ºmU�ºmÂ D »�<>= FmF D F Æ S UNP yzw ÈeX6Â D ¼ S D MO;>»
=eº DWs~}���È�Ç�tvu0w|{��5w|{�yzw|{��zwXx S D ÄºmV S ? F ºmÂ D F D º6U@Æ1ºmU G D ? F ¾ D < UN?JÀN; ?JÀ�ºmU)ºmÂ D »�<>= FmF D F Æ S UNP yzw =@?WM F ºmU S D M�; ?­ºmÂ D ¼J<>=N» D FÆ S UNP �5w Á%; ºmÂJ; ?åºmÂ D ; ? F º�=@?W» D F Æ S UNP u0w È�X6Â D ¼ S D MO;>»
=eº D¦´�ÇX�~}~�ltvu0w|{��5w|{�yzw|{ Æ w|{/��w<x
S D ºmV S ? F ºmÂ D F D ºiU@ÆW; ?LÇNUO»
=eºm; UN? F U@ÆOºmÂ D º S =@? F ; ºm; UN? F Æ S UNP �5w Á%; ºmÂJ; ?)ºmÂ D ; ? F º�=@?W» D F Æ S UNPu0w È.X6Â D ; ?LÇNUO»
=eºm; UN? F = S D S D ¼ S D F D ?lº D Må¾LÃ®ºmÂ D =@¼J¼ S UN¼ S ;>=eº D ¾J; ?WMO; ?JÀ F =@?WMÊUN?J< Ã®ºmÂ DUN? D F = S D F D < D »�º D M§Á%ÂJ;>»�Â§<>=@VJ?W»�Â"? D º F Æ S UNPÞÆ w UeÇ D S UN¾OZ D »�º F U@Æ.ºmÂ D »�<>= FmF D F Æ S UNP yzw È
ïi; ?W=@< < ÃNINºmÂ D ¼ S D MO;>»
=eº D%}���È��Ntvu0wz�3{ Æ w|{[u0w��zx »�UN< < D »�º F =@< <JºmÂ D ; ? F º�=@?W» D F U@Æ�ºmÂ D ? D º F ; ?
Æ w Á%ÂJ;>»�Â S VJ?�UeÇ D S ºmÂ D UN¾OZ D »�º F ; ? u0wz� È

Ñ VOº�U@ÆiºmÂ D À S UNVJ¼"U@ÆiºmÂ D F D º�; º D S =eºm; ?JÀsÆáVJ?W»�ºm; UN? F IWÁ D »
=@?�P D ?lºm; UN?�ÆáU S D�½ =@Ps¼J< DºmÂ D ÆáUN< < UeÁ%; ?JÀ"UN? D F È1X6Â D ¼ S D MO;>»
=eº D#wK�X}��~�X�<�|t��6{���{���{���x S D ºmV S ? F s<�0�LÈ ; ? � ; âÜºmÂ D
¼ S D MO;>»
=eº DG� UeÇ D S � ; F ÆáVJ< à < < D MåUeÇ D S D Ç D S Ã D < D P D ?lºxU@Æ2ºmÂ D ?JUN? Ä D Ps¼Oº[Ã F D º � Á%ÂJU F DD < D P D ?lº F = S D UN? D Ä ¾LÃ Ä UN? D ¾�UNVJ?WMsºmU � È Ñ ºmÂ D S Á%; F D Il=)»�UNVJ?lº D S Ä D�½ =@Ps¼J< D ; F ÆáUNVJ?WM­=@?WM¾�UNVJ?WM�ºmU � È¢X6Â D ¼ S D MO;>»
=eº D�w�ÈX��È~��sNt����3{���{���{F�<�~x F D < D »�º F =@< <.ºmÂ D�D < D P D ?lº F � Æ S UNP��� Á%ÂJ;>»�Â§ÆáVJ< à < <1ºmÂ D ¼ S D MO;>»
=eº Dg� UeÇ D S � È

� D º%V F ?JUeÁó¼ S D F D ?lº%=@? D�½ =@Ps¼J< D U@Æ D�½ =@Ps; ?J; ?JÀ F º�=eº D F U@Æ Ñ$Ñ ÉEÌ F ÈOïJU S ºmÂJ; F S D = Ä
F UN?1ILÁ D Á%; < <�V F D =)PsUOM D <�U@Æ1ºmÂ D F Ã F º D P U@ÆiMO; F º S ; ¾JVOº D M§¼JÂJ; < U F UN¼JÂ D S F Æ S UNP Ó T =@?WÔNÕzÖ�ÈX6Â D »�<>= FmF M D F » S ; ¾J; ?JÀ�¼W= S ºm;>»�VJ<>= S MO; F º S ; ¾JVOº D M�¼JÂJ; < U F UN¼JÂ D S F ; F2F ÂJUeÁ%?); ? à ÀNV S D Â È@X6Â DÁ%ÂJUN< D PsUOM D <WU@Æ�ºmÂ D F Ã F º D P U@Æ�MO; F º S ; ¾JVOº D Ms¼JÂJ; < U F UN¼JÂ D S F »�UN?lº�=@; ? F Ã D ºE=@?JU@ºmÂ D S »�<>= FmFÁ%ÂJU F D UN?J< Ãsº�= FHG ; F ºmUs» S D =eº D =)À S UNVJ¼­U@Æ.¼JÂJ; < U F UN¼JÂ D S F =@?WM­; ?lº D S »�UN?J? D »�º/ºmÂ D Pë; ?lºmU
= S ; ?JÀ§ÇL;>=�ºmÂ D P D ºmÂJUOM F ��È0�0s Æ0�"�6=@?WM �S´��0�Xs Æ0�"��È × ; F º S ; ¾JVOº D M®¼JÂJ; < U F UN¼JÂ D S F MO; â D SÆ S UNP ºmÂ D »�<>= FmF ;>»
=@<�UN? D F ; ?"?JU@º%ÂW=zÇL; ?JÀ�= F ÂW= S D M�º�=@¾J< D Á%ÂJ;>»�Â"»�UNVJ<>M§¾ D V F D M­ÆáU S D�½ Ä»�ÂW=@?JÀN; ?JÀ�ÆáU S GOF ÈOíb? F º D =NM§ºmÂ D Ã§ÂW=zÇ D ºmU�? D ÀNU@ºm;>=eº D =@¾�UNVOº%ÆáU S GOF ÇL;>=sP D FmF =@À D F D ?WMO; ?JÀ
V F ; ?JÀ�ºmÂ D P D ºmÂJUOM F �S´���È0� Ê }��<� =@?WM �S´���È�� Ê }��<� È

Û D < UeÁ Á D M D�à ? D =�É S UN< UNÀ�¼ S D MO;>»
=eº D5È<��sS´�ÇX� ÇLÈL´��0� � }K�X�5w =@< < UeÁ%; ?JÀ"ºmUåM D S ; Ç DºmÂ D F D º�U@Æ D =eºm; ?JÀÞ¼JÂJ; < U F UN¼JÂ D S F ÂW=zÇL; ?JÀÞ=@? D =eºm; ?JÀÊ? D ; ÀNÂL¾�UNV S Æ S UNP =åÀN; Ç D ? F º�=eº D
U@Æ2ºmÂ D PsUOM D < U@Æ/MO; F º S ; ¾JVOº D M®¼JÂJ; < U F UN¼JÂ D S F È¢X6Â D »�V SmS D ?lº F º�=eº D ; F »�UN? F ;>M D S D M�ºmU"¾ D; Ps¼J< ;>»�; ºjÈEX6Â D ¼ S D MO;>»
=eº D »
=@?Ð¾ D V F D MÜºmUß»�Â D » G ºmÂ D »�U SmS D »�ºm? D FmF U@Æ�ºmÂ D ¼ S UN¼�U F D M
F Ã F º D P Á%ÂJ;>»�Â F ÂJUNVJ<>MÞ?JU@º)=@< < UeÁ º[Á/U�? D ; ÀNÂL¾�UNV S F ºmU D =eº)=eº�ºmÂ D F =@P D ºm; P D ÈiX6ÂLV F
ºmÂ D ¼ S D MO;>»
=eº D F ÂJUNVJ<>M­=@< Á6=zÃ F ÂJUN<>MsÆáU S ºmÂ D�D Ps¼Oº[Ã F D º6UN?J< ÃNÈLX6ÂJ; F »
=@?­¾ D »�Â D » G D Ms¾LÃ= F VJ; º�=@¾J< D F º�=eº D F ¼W=N» D)¿ V D S Ã"Á%ÂJ;>»�Â D Çe=@< VW=eº D F ºmÂ D ¼ S D MO;>»
=eº D§È<��sS´�ÇX� ÇLÈL´��0� � }K�X�5w
UeÇ D S D Ç D S Ã F º�=eº D =@?WM�»�UN< < D »�º F ºmÂ D F º�=eº D F Á%Â D S D ; º�ÂJUN<>M F ÆáU S =8?JUN? Ä D Ps¼Oº[Ã F D ºjÈË PsU S D =@¾ F º S =N»�º$=@¼J¼ S Ul=N»�ÂåÁ/UNVJ<>Må¾ D »�Â D » G ; ?JÀ§ºmÂ D Çe=@< ;>MO; º[Ã®U@Æ/ºmÂ D"C XQ�8ÆáU S P)VJ<>=
d4o È<��sS´�ÇX� ÇLÈL´��0� � }K�X�5w Ï��NÒ È

52

 DPhilosopher is_a PN

leftNb:left

.

giveLFork

return

f

f

f

.

.

giveRFork

return

f

f

f

.
f := leftPh giveRFork

leftPh

return

.
left

left

rightNb:right

return

.
right

right

rightleft

rightPh

thinking

hungry

eating
right forkleft fork

. .

.

.

.

.

f := rightPh giveLFork

.

.

.

f1

f1

(f1, f2)

(f1, f2)

f2

f2

start
eating

stop
eating

left right

þ2ÿ � �v�J� ~ �l]%o�� _
{b{Ef
g1qNp {�ab`[p �lkNa[]�q)^l�lp � fj{bfj^l�l]m`[{2g `[fjcA� �z_
d<�����

È<��sS´�ÇX�z
ÇLÈL´��0� � }K�X�zwlt�¡ Æ x �F¢
´�Ç�w�sNtz£Mµ0�0� ´���¤N{~£<£Mµ0��� ´K�U{F} �z¥ È~��sX¤<¤6{:u<xl{
w�ÈX��È~��sNtvul{���{0t�s~}���È�ÇNtz£��X¤N{X£°È0��s�´�ÇX�<¤N{��X�<�|{�¡3��xC{XÈ�³X¦Xs0§Nt�¡3�3{��X�X�<w�È~xl{

s~}���È�Ç�tz£/�X¤N{~£���È0�0s�{���´����XsX¤6{F�<�<�|{��0�5xl{
s~}���È�Ç�tF�0��{~£°È<��sS´�ÇX�X¤6{F�<�<�U{¨¡~�~xl{HÈ�³~¦<s<§6t�¡~�U{��<�X�Xw�Èzx0xl{4¡ Æ x|©

ª õÊµE²�¸ ÙH·�øL¹[µE²�ø

íb?"ºmÂ D = S ºm;>»�< D ILÁ D ÂW=zÇ D ¾ S ; D ìWÃ§M D F » S ; ¾ D M­ºmÂ D ?JU@ºm; UN?"U@ÆiUN¾OZ D »�º Ä U S ; D ?lº D M§É D º S ;�? D º F= FmF UO»�;>=eº D MåºmU®ºmÂ D ºmULUN</»
=@< < D MßÉEÌ%º�=@< G =@?WM F UNP D U@Æ6ºmÂ D ¼ S UN¾J< D P F =N»
»�UNPs¼W=@?LÃL; ?JÀÀ D ? D S =eºm; ?JÀßºmÂ D ; S F º�=eº D F ¼W=N» D F ÈEã D ÂW=zÇ D®D F ¼ D »�;>=@< < ÃYP D ?lºm; UN? D MYºmÂ D ; ?OìWV D ?W» D U@Æ
Á/U S G ; ?JÀ"Á%; ºmÂß;>M D ?lºm; àWD S F U@Æ%MOÃL?W=@Ps;>»
=@< < Ãå= S ; F ; ?JÀ�=@?WMÞMO; F =@¼J¼ D = S ; ?JÀ�? D º); ? F º�=@?W» D F
VJ¼�UN?ÐºmÂ D F º�=eº D F ¼W=N» D�D�½ ¼J< U F ; UN?1È	X6Á/UÞ¼�U FmF ; ¾J< D =@¼J¼ S Ul=N»�Â D F U@ÆxM D =@< ; ?JÀÞÁ%; ºmÂÐºmÂ D
;>M D ?lºm; àWD S F IO?W=@P D < Ã F UN¼JÂJ; F ºm;>»
=eº D M­?W=@Ps; ?JÀ S VJ< D F =@?WM§?W=@P D =@¾ F º S =N»�ºm; UN?1ILÂW=zÇ D ¾ D
D ?M D F » S ; ¾ D M�=@?WM"»�UNPs¼W= S D M�È Ø UNP D ÆáV S ºmÂ D S UN¼Oºm; Ps; Åj=eºm; UN? F U@Æ À D ? D S =eºm; ?JÀ F º�=eº D F ¼W=N» D FU@Æ Ñ$Ñ ÉEÌ F ÂW=zÇ D ¾ D
D ?ÊP D ?lºm; UN? D M�I1= F Á D < <}È�X6Â D P D ºmÂJUOM F ÆáU S UN¼Oºm; Ps; Å
; ?JÀ"Àl= S ¾W=@À D
»�UN< < D »�ºm; UN?�=@?WM"ÆáU S »�UNPs¼JVOºm; ?JÀ D ?W=@¾J< D M"º S =@? F ; ºm; UN? F ; ?®=@?�; ?W» S D P D ?lº�=@<1Á6=zÃ"M D F ¼J; º D
ºmÂ D ; S ?JUN? Ä < UO»
=@<i; ?OìWV D ?W» D »
=@?å¾ D V F D Må?JU@ºxUN?J< Ã�Á%Â D ?ÊÀ D ? D S =eºm; ?JÀ F º�=eº D F ¼W=N» D F U@Æ
Ñ$Ñ ÉEÌ F IL¾JVOº�=@< F U�Á%Â D ? F ; P)VJ<>=eºm; ?JÀ F Ã F º D P F PsUOM D < D M"¾LÃ Ñ$Ñ ÉEÌ F È

53

ã D ÂW=zÇ D MO; F »�V FmF D M�=�P D ºmÂJUOMs=@< < UeÁ%; ?JÀ�ºmU$= FHG =@?W=@< Ã F ; F U S Ç D S ; à »
=eºm; UN? ¿ V D F ºm; UN? FUeÇ D S Ñ$Ñ ÉEÌ F º�=eº D F ¼W=N» D F IJ= F Á D < <}ÈJX6ÂJ; F P D ºmÂJUOM�=zÇNUN;>M F S D Æ D SmS ; ?JÀ)ºmUsVJ?J; ?lº D S D F ºm; ?JÀ=@?WMsVJ? G ?JUeÁ%?�»�UN?W» S D º D ?W=@P D F U@Æ¢; ? F º�=@?W» D F =@?WMs»
=@?s¾ D V F D MsÁ%; ºmÂJ; ?­»�UNPsPsUN?�Á6=zÃ FU@Æ F ¼ D »�; ÆáÃL; ?JÀs¼ S UN¼ D S ºm; D F ºmUs¾ D$D Çe=@< VW=eº D M�ÈX6Â D ?JU@ºm; UN? F ; ?W»�< VWM D M�; ?$ºmÂ D = S ºm;>»�< D = S D F VJ¼J¼�U F D MxºmU�¾ DED�½ ¼J< UN; º D M$Á%; ºmÂJ; ?�ÆáU S P�=@<=@?W=@< Ã F ; F =@?WMåÇ D S ; à »
=eºm; UN?ÊUN? F VJ; º�=@¾J< Ã S D MOVW» D M Ñ$Ñ ÉEÌ F º�=eº D F ¼W=N» D F Á%ÂJ;>»�ÂÞ; F UN? D
U@Æ�ºmÂ D ÀNUl=@< F U@Æ�UNV S ÆáVOºmV S D S D F D = S »�Â1È Ë F ÆáU SsS D MOVW»�; ?JÀ Ñ$Ñ ÉEÌ Fv« F º�=eº D F ¼W=N» D F IiÁ D; ?lº D ?WMsºmU�=NMJ=@¼Oº2ºmÂ D ºmÂ D U S Ã�U@Æ1¼W= S ºm;>=@<WU S M D SES D MOVW»�ºm; UN? F ÆáU S ºmÂ D MOUNP�=@; ?­U@Æ Ñ$Ñ ÉEÌ F¾ D »
=@V F D ºmÂ D S D ; F ¿ VJ; º D =$< U@º/U@Æ.»�UN?W»�V SmS D ?W»�Ã�; ?­PsUOM D < F ¾W= F D MsUN?�ºmÂ D P�ÈLã D ÆáV S ºmÂ D S; ?lº D ?WM§ºmU­MOU�PsU S D S D F D = S »�Â­UN?�V F ; ?JÀ Ñ$Ñ ÉEÌ F ÆáU S PsUOM D < < ; ?JÀ­MO; F º S ; ¾JVOº D M F Ã F º D P F I=@?WM D F ¼ D »�;>=@< < Ã­ºmÂ D F U@Æ�º[Á6= S D UN? D F È

5.�¬�¡(0<
7â"'�ÿ(à�£P'�¡S+ ï8X6ÂJ; F Á/U S G Á6= F MOUN? D Á%; ºmÂJ; ?ÎºmÂ D S D F D = S »�Â5; ?lº D ?lºm; UN?BÌ�UWÈ
C/Ù"­ � T Â�Â reÔNÕ �LÂ � Â�Â ����� ý Â�Ä �Xæ D F D = S »�Â�; ?åíb?OÆáU S P�=eºm; UN?å=@?WM C UN?lº S UN< Ø Ã F º D P F � =@?WM; ºsÁ6= F =@< F U F VJ¼J¼�U S º D MÜ¾LÃÞºmÂ D Ð S =@?lº Ë À D ?W»�ÃßU@Æ�ºmÂ D®C Å D »�Âzæ D ¼JVJ¾J< ;>»"VJ?WM D S ºmÂ D»�UN?lº S =N»�º ý � Â r����<r ý � ý Ý1�m:�UOM D < < ; ?JÀWI1K D S ; ÆáÃL; ?JÀWI.=@?WMÞÉ S U@ºmU@º[ÃL¼J; ?JÀ × ; F º S ; ¾JVOº D M Ë ¼ Ä¼J< ;>»
=eºm; UN? F Ú F ; ?JÀ�É D º S ;1Ì D º F � È

×Yò1ù�ò1´Jò.²�¸¢ò.ø
� hi\%¯�®"��¯°�G±��ihi�lp fj� _@u	hE�.\6kNa[�l]�p � �]ma�u|±��i¯N`H_
dlo�]�{boH�lp dlp {�u._
dLqÊnO�C®6_jqlql_jqJ� � ne|Nc��Ofj� p o

�E]�_
oH�L_
�lp � p a}|)±E`H_
^l�xg>f
`Ehifj� fjkN`[]�q�¡¢]mab`[pL¥/]ma[{��N²5³0´¨µv¶�´�·`¸-¹�º�»3¼lµv½W¾<¿K·�´�¶WÀX¹F¸Á´�ÂX¹�´Hu
�[¯
�@� Ã����@��Äeu��°����¯e�

� �hU��Å"��¯°��«§� �hi]
�{b�j_@u0Å��0�z_
dlfjkJ�{b]��OuL_
dLq�~/�0Å.f���dL_�`��.¡1¥EaH_
� �x� � hifjc$^lkNa[]m`[p �]�q�~�fefj�Jg>f
`¤ �@��]�omab� ¤ `[p]�dea[]�q�¡¢]mab`[p1¥/]ma[{%«�f@qN]�� � p dltN�IÆ}d§¯i�W¡1p oH�l�]m`�_
dLq����W«�f
`[]�dlf
��\%ÇÈ _ � u]�qNp a[f
`[{�u5ÉU¶¨µ°¹[ÊUµ/Ë�ÌgÍ~Î�Ï"¼�ÐWÀ�²�Ñ ÒKÓ�Ê uOyzfj���1�°Ã�Ã�Ã)f
gNÔ�´¨¹F·`¿K¶�´%Õ�µv·�´�Ö%¸×Â�¼lµv½W¾<¿K·�´�¶
ÀX¹F¸Á´�ÂX¹�´Hu<Ø�_
{/¡�_
� c�_
{EqN]�±E`H_
d­h _
dL_�`[p _@uWn@^L_
p dWuJ�°����¯e�Wn@^N`[p dltj]m`b�ÁÅ.]m`[� _
tN�

� ®/fj� ��¯°� ±�� �N�<®/fj� � c�_
dldW�.~ �l]�«�f@qN]���hi�l]�oH�z]m`/n@^lp dW�6Ù/ÌlÌlÌ�²0¶¨ºvÂ0ÖFº�¹F·`¸-µvÂ0Ö%µvÂ�ÀXµ/Ë�·`Ú|ºv¶�´ÌUÂKÛv¸×Â~´�´�¶�¸×ÂKÛ
uO�vÃ £ Äj¦HuJ«s_�|§�°����¯e�
� �z_
d<���[�ÜÅ����z_
dlfjkJ�{b]��O�UÝ#µ°Þ�´F»×» ¸×ÂKÛ4ÏNß×à[´¨¹F·`Ö�ßFáIÉ�´�·`¶�¸3Õ�´�·`Ö[�i¡1�l\8a[�l]�{bp {�uL¯L_
o�kl� a}|�f
g�r1�]�om�

ab`[p o�_
��r1dltjp dl]�]m`[p dlt�_
dLqshifjc$^lkNa[]m`/n@o�p]�dlo�]juL~ wév.`[dlfNuOh �]�oH�s�E]�^lkl�l� p ojuW�°�����@�� �j]�d<�vâv�äãx�6�j]�dl{b]�dW�å¼lµ�» µv¿K¶�´¨Þ�É�´�·`¶�¸IÕ�´�·`Ö�æ�ç�ºvÖ�¸-¹è¼lµvÂX¹�´Á¾<·`Ö�é%ÐNÂXº�» ávÖ�¸×ÖYÝ:´�·×³�µ°ÞvÖ:ºvÂXÞ
ÉU¶¨º�¹F·`¸-¹�º�»3ÍzÖ�´�éUê0µ�» ÊKë�æ�ÐNÂXº�» ávÖ�¸×ÖCÝ:´�·×³�µ°ÞvÖ[�@r � ~2h	n�«�fjdlfjt
`H_
^l�l{¢fjd�~ �l]�f
`[]ma[p o�_
�
hifjc$^lkNa[]m`En@o�p]�dlo�]j�Jn@^N`[p dltj]m`b�ÁÅ.]m`[� _
tNuW�°���vâN�

� ��Å"���[� Å��5�z_
dlfjkJ�{b]��"_
dLq"~/�5Å.f���dL_�`��s«�f@qN]�� � p dlt­_s¯¢�]m Np �l�])«s_
d@kNg�_
oma[kN`[p dlt­ne|N{�a[]�cs�
Æ}d:�N� �nea[]mg�_
dWu�]�qNp a[f
`�u3ÉU¶¨µ°¹�´�´¨Þv¸×ÂKÛvÖGµ/Ë%ÝìÏUÀ�Ù�À)Ñ Ò�í�é)ê0µ�» Êlëzu�^L_
tj]�{$�°��Ä��N�vî�î@u.n@yO�
®/fj{�aXÇ|NdWuLh �]�oH�s�E]�^lkl�l� p ojuL«s_�|§�°�����@�J« � ��ï ¤ {�ab`H_�yj_@�

� ¡¢]�� �j�[� \��2¡¢]��]�qJ�ªhifjc��lp dlp dltå¡�_�`ba[p _
� ¤ `HqN]m`s�E]�qNkloma[p fjdl{�¬2p a[� ¤ dN�áa[�l]m�á¨l|ß«�f@qN]�� �
hi�l]�oH�@p dltN�3ðKµv¿K¶�ÂXº�»Xµ/ËUñ5µv¶�½'º�»�Ý:´�·×³�µ°ÞvÖN¸×ÂGÀ0ávÖ�·�´�½%Ö6òI´�Ö�¸ ÛvÂluK� £ ��¦H� Ã����@�vâNuO�°���j�@�

� nNvU�vâv� hE�2n@p �O]m`ba[p dN�}vi� _
dloj��hifefj^O]m`H_�a[p yz]§¥/]ma[{��óÆ}dÞ���UÅi_
�]maba[]jui]�qNp a[f
`�u�ÉU¶¨µ°¹�´�´¨Þv¸×ÂKÛvÖ
µ/Ë'Ù[¼�ÐW²zÉ|ÕYÑ Ò�ôNu�yzfj� klc$]G�@�[Ä­f
g�Ô�´¨¹F·`¿K¶�´4Õ�µv·�´�ÖG¸×Âq¼lµv½W¾<¿K·�´�¶4ÀX¹F¸Á´�ÂX¹�´Hu.^L_
tj]�{
â�¯e�H��â���î@uW�J_�`H_
tjf � _@uWn@^L_
p dWu<�jkldl]��°���vâN�Wn@^N`[p dltj]m`b�ÁÅ.]m`[� _
tN�� Åi_
� ���[� � ��Åi_
� c�_�`[p���~ �l]6neaH_�a[]/r� N^l� fj{bp fjd�¡�`[fj�l�]�cs�zÆ}dgõY�e�E]�p {bp t�_
dLqG±��e�Ef �]�d@�O]m`[tNu]�qNp a[f
`[{�u�Ô�´¨¹F·`¿K¶�´�Ö�µvÂ�É�´�·`¶�¸IÕ�´�·`ÖbÙ�æ�ç�ºvÖ�¸-¹�Ý#µ°Þ�´F» Ö[u	yzfj� klc$]���â��@�"f
g'Ô�´¨¹F·`¿K¶�´
Õ�µv·�´�Ö"¸×Âì¼lµv½W¾<¿K·�´�¶�ÀX¹F¸Á´�ÂX¹�´HuL^L_
tj]�{�âe�v����Äj�v�@�Wn@^N`[p dltj]m`b�ÁÅ.]m`[� _
tNuW�°�����@�

� Å.f��¨î�î[� ~/�3Å.f���dL_�`��èÀ0·Áºv·�´4À�¾�º�¹�´�Ö4µ/Ë�ÏNß×à[´¨¹F·-ö�ÏU¶�¸Á´�Â0·�´¨Þ�É�´�·`¶�¸�Õ�´�·`Ö[��¡1�l\Îa[�l]�{bp {�u1¯L_
om�
kl� a}|®f
g%r1�]�omab`[p o�_
�6r1dltjp dl]�]m`[p dlt�_
dLqÞhifjc$^lkNa[]m`)n@o�p]�dlo�]ju v.`[dlf"w/dlp yz]m`[{bp a}|®f
g
~�]�oH�ldlfj� fjt
|euOh �]�oH�s�E]�^lkl�l� p oju@a[fx�O] © dlp {b�l]�q�p d��vî�î�î@�

54

The OCoN Approach for Object-Oriented
Distributed Software Systems Modeling

Holger Giese and Guido Wirtz

Institut für Informatik, Westfälische Wilhelms-Universität Münster
Einsteinstraße 62, 48149 Münster, GERMANY
{gieseh,guidow}@math.uni-muenster.de

Abstract. The problems of todays software engineering for complex dis-
tributed software systems with control as well as data processing aspects
are manifold. Besides the general problem of software complexity we
additionally have to deal with the problems of concurrency and distribu-
tion. A set of well evolved formalisms especially w.r.t. concurrency exists,
while their integration into the common software engineering framework
is still missing and related attempts have often not gained the intended
acceptance. But ever increasing system complexity as well as a fast grow-
ing market for distributed software effectuate a shift towards high level
behavior modeling. The presented OCoN approach does provide a high
level behavior modeling as extension to the UML de-facto standard for
object-oriented modeling. It is an approach to integrate an adjusted Petri
net formalism with the software engineering world.

1 Introduction

While place/transition nets [9] are accepted as one standard formalism of soft-
ware engineering (cf. [42]) is the situation quite different for high-level Petri
nets (HLPN). With the development of object-oriented analysis and design [44,
15] the shift towards a more high-level design view further boosts, but other
behavioral formalisms like statecharts [28] win recognition. The high-level Petri
net formalisms play no prominent role for object-oriented behavior modeling in
practice.

There are several rational as well as historical reasons for this situation. A
Petri net is a conceptional extension of an automaton and thus it is inherently
more complex than state machines. The adequate handling of concurrency is
still a complex problem and often solutions applying database technology that
provides parallel access transparency to avoid the related problems is more ap-
propriate. Thus, the development of complex software system engineering incor-
porating sophisticated concurrency aspects had been less influential and thus
suitable concepts for object-oriented concurrent behavior modeling are not the
main stream. Nowadays development of object-oriented methods and notations
as well as the UML [40] neglect systems with concurrency.

55

It also has been detected that the expressiveness of the basic Petri net for-
malism is not sufficient to handle real modeling problems and thus several high-
level extensions have been suggested. But as common for formal methods and
software engineering practice, a trade off between expressiveness and efficient
testable system properties exists.

A compositional language and building modular software systems has been
identified as essential for successful designing. But the classical Petri net for-
malism as well as first approaches towards higher-level concepts [20,31] fail to
provide it. Still most extensions put their emphasis on preserving an analyz-
able model while in practice a clear semantics as well as support for embedding
based on abstractions like interfaces are more important. Meyer [37, p. 979]
summarizes the common critiques as follows:

Petri nets, in particular, rely on graphical descriptions of the transitions.
Although intuitive for simple hardware devices, such techniques quickly
yield a combinatorial explosion in the number of states and transitions,
and make it hard to work hierarchically (specifying subsystems indepen-
dently, then recursively embedding their specifications in those of bigger
systems). So they do not seem applicable to large, evolutionary software
systems.

In general is behavior modeling neglected in practice while several newer
trend like the shift towards software architecture [46] may change this. Nowa-
days, software evolves from isolated solutions for business or industry appli-
cations towards distributed environments. It will further interlink information
system structures which are still isolated today and become persuasive. The soft-
ware will often take responsibility for considerable coordination tasks and the
ever increasing demand to improve business processes and process centered tech-
nologies like workflow [45] indicates that this trend will make system behavior
one essential point.

Formal methods and from our point of view especially Petri nets can gain
more acceptance from the resulting change of demands. This is independent from
the fact whether this trend leads to a common software engineering practice
where complete analyzable system models will become the regular case. The
trend towards higher-level abstraction to handle the ever increasing complexity
has led to the success of visual notations in software engineering for structure
modeling. For behavior modeling to achieve more acceptance also a notation
which is scalable as well as has an intuitive semantics is needed. The notation
has to cover concurrency as a specific aspect, design has to deal with in the
future. Petri nets conceptionally provide ingredients for all these aspects.

The object coordination net (OCoN) approach [57,24, 27] tries to overcome
the described problems with high-level Petri net formalisms. It has its origin
and roots in an attempt to achieve an equally weighted compromise between the
requirements of concurrency modeling (due to the usage of Petri nets), object-
orientation for structure and behavior and the limits and demands a suitable
visual formalism implies.

56

In the paper the stepwise development of the OCoN approach foundations
is presented. In section 2 the basic notion of contract and its formalization in
terms of protocol nets is studied. Then, a flexible notion of port-passing nets
named coordination nets (CoN) is introduced in section 3. It is used to define
the OCoN notation in section 4 on top of them in combination with the UML.
Visual language aspects are discussed in section 5 and the tight integration with
the UML is studied in section 6 by presenting a schematic example. We finally
compare the approach with the most prominent proposed solutions for object-
oriented nets in section 7 and discuss other related work. We conclude the article
with some remarks on planned further work and the project status.

2 Protocol Nets and Contracts

When behavioral modeling should also provide some degree of modularity, ab-
straction and data hiding [41] are mandatory. While several extensions to the
classical interface notion to achieve a more suitable external specification have
been suggested, is the question of behavior w.r.t. subtyping and inheritance still
an area of research. The phenomena of non uniform service availability for a
class has to be considered for interfaces to provide the needed encapsulation
and separation. For the object-oriented design statecharts [28] for OMT [44] or
path expressions for Fusion[15] have been proposed. Both are used to specify the
external available operations of a class depending on its history.

A general notion of a contract covering the classical as well as additional
aspects is presented in [6]: The cases of syntactical interfaces, behavior contracts,
synchronization effects and quality of service are distinguished. While syntactical
interfaces do not provide enough information to exclude semantical misusage,
can behavior contracts not be managed in an efficient way automatically. Quality
of service considerations are often run-time dependent and thus can only be
specified when instantiating a system on a specific platform. In contrast does
the synchronization aspect represent an aspect that can be considered already
during the design and can be expressed using Petri nets.

The notion of substitutability [55] can be used to characterize behavior subtyp-
ing [1] needed to ensure the secure usage of contracts w.r.t. behavior in contrast
to interface subtyping as supported by most object-oriented languages. When
multiple concurrent clients are possible we also have to ensure view consistency
[35] for a subtype.

Protocol Nets

The identified demand of covering synchronization aspects within contracts is
handled in the OCoN approach by supporting the specification of protocols with a
(nearly) state machine like labeled place/transition net. In order to distinguish
if a behavior has to occur (obligation) or may be used as needed we have to
further distinguish between fair transitions and quiescent (grey) ones that do
guarantee some sort of progress or not (cf. [43]).

57

m

≡
m m

m

≡
m

m2

m1≡
m

m

m
m

≡
m

Fig. 1. The set of protocol macros

In figure 1 the different kind of operations which are supported by an OCoN
protocol net are defined. The protocols are specified from the perspective of the
client and thus a grey behavior indicates free choice while a normal transition has
to occur. The normal labels indicate a usual or one way request (m) while a label
m does correspond to a reply or event. Only the modification and synchronization
w.r.t. the protocol state itself is described in a protocol net and thus edges for
parameter or reply values do not occur. From left to right and top to the bottom
we have the usual operation request containing of a request as well as a reply,
an operation request with parallel reply, a request with alternative replies (e.g.,
named replies or exceptions can be covered) and an one way call.

Fig. 2. A File contract described with a protocol net

In practice, for example, a file handle protocol will imply a certain usage,
e.g., a read request will not succeed if not an open request has succeeded before
or if the end of file is already reached. This example protocol of a File can be
described using the defined macros of figure 1. An appropriate protocol for a
file handle with operations open, read and close is presented in figure 2. The
initial state where only an open request is possible is named [closed]. One possible
reply is open1 as an acknowledgment for a successful opening which results in
state [opened]. If the request fails, an exception opene is replied and the protocol
remains in state [closed]. A file handle in state [opened] can further be used to

58

read data. A successful read request is signaled by reply read1 whereas the
reached end of file results in read2 and a state change to [eof]. If we are either
in state [opened] or [eof] the close request can be used to close the file handle
and reach the state [closed] again.

The contracts are the essential elements to separate the classes as well as
allow further independent subsystem evolution. Subtyping and contract inher-
itance are suitable concepts to support such efforts. For the OCoN approach a
contract subtyping notion has been developed in [23] that provides the needed
substitutability as well as view consistency .

While the described protocol nets are capable to describe the behavior related
to a single connection in form of a protocol, we have to provide a formalism that
is also capable of expressing multiple connections in parallel.

3 Coordination Nets

For colored Petri nets the extension to hierarchical colored Petri nets [32] and the
composition mechanisms substitution of transitions or places, invocation transi-
tions and fusion sets for transitions or places have been proposed [30]. All these
mechanisms, excluding the invocation, are very Petri net specific and do not
rely on the natural notion of information exchange directly, but encode it into a
net specific view. Consider for example a place fusion which might be a useful
abstraction in a assembly line like structure, but it does not correspond to a
common software interface like a procedure or stream. Nets with procedure calls
as considered in [33] result in considerable analysis problems and thus are usu-
ally provided as add-on and not as basic concept; see,e.g., [19] for an extension
of B(PN)2 [5] with procedures. The transition invocation can be considered as
the procedural abstraction common in programming languages and thus pro-
vides the needed general abstraction concept. To model object orientation and
dynamically evolving structures we even have to add references and port passing
capabilities (cf. π-calculus [38]).

The coordination nets (CoN) formalism has been invented in [21] to provide
an abstraction for the specification of the OCoN semantics. We base the formal-
ization on the forthcoming ISO high-level Petri net standard [16], which provides
a non hierarchical high-level Petri net model. Port passing capabilities to model
instance and system behavior even for dynamic evolving structures are added.
For the CoN formalism, the level 2 conformance with the HLPN standard has
been demonstrated in [21]. In extension to high-level Petri nets as defined in the
standard a concept to provide modularity is needed. To achieve this, a system
is built based on a set of coordination net graphs which are allowed to interact.
The formalism should allow to model multiple instances of one object type, each
one providing a set of interfaces with dynamically changing external protocol
state. Several net instances may be used to implement the object behavior to-
gether and thus a mechanism like place sharing for them is necessary to model
the object environment shared by all net instances of an object instance.

59

We do not provide a builtin object notion with the coordination nets. Instead,
we provide an interface based separation using typed ports which consist of an
interface and a protocol net restricting the message occurrences. Our final net
dialect object coordination nets will provide a suitable object and class notion
based on CoNs.

net instances

net type 1

BUS

receivereceive

”real place”

create net

net type 2

send

send

Fig. 3. Basic structure of a coordination net system

The standard is extended by suitable mechanisms for communication, place
sharing as well as dynamic net and port creation. In figure 3, the basic structure
of a coordination net system is shown. There do exist multiple instances of the
same net type possibly sharing places between a net instance and its child (”real
place arrow connection”). The nets may communicate using a communication
infrastructure. The basic idea for communication is to introduce ports ζ, η,
. . . representing associated or exported interfaces (objects) as pairs of connected
communication endpoints which are represented by port token (see figure 4, 5 for
port usage). These ports can be used to receive a message (?) using the following
annotation for a transition:

η = ζ?〈〈op(a1, . . . , an)〉〉 η = ζ!s〈〈op(. . .)〉〉 η = ζ!a〈〈op(. . .)〉〉,

where η is the resulting port and 〈〈〉〉 denotes a given marshaling function;
op(a1, . . . , an) stands for an operation call with operation name op and input
parameters a1, . . . , an. There may be several distinct return vectors for a call
and thus we use opi as operation name for the return alternative i to an op-
eration op and annotate opi(r1, . . . , rm) for a reply with return vector r1, . . . ,
rm. A corresponding synchronous send can be specified using a port ζ and the
synchronous send operator !s. Analogous an asynchronous send can be specified
using !a We distinguish provide ports ρ, %, . . . for exported and usage ports φ,

60

ϕ, . . . for associated interfaces. A provide port can receive operation calls op

and sends replies opi whereas an usage port can be used to send requests op

and receive replies opi. Asynchronous and synchronous interaction are distin-
guished, because the synchronous interaction provides more sophisticated ways
to interact. The asynchronous communication is in contrast more efficient and
reduces the coupling between two systems. When useful we do not further spec-
ify if synchronous or asynchronous interaction is wanted and the more general
send operation (!) is used.

To create ports of type P or net instances for a declared net type N also
corresponding annotation expressions are supported. A net creation expression
(φ= @N) binds to φ an usage port corresponding to a special initial provided
standard port (std) each new net instance contains. This initial connection
allows to establish more connections by using these port connections to publish
other ones. After a port creation ((ρ,φ) = @P) a pair of new unique connected
usage and provide port instances is bound to φ and ρ. This way the dynamic
creation of active net instances as basic formalism to model instances as well as
multiple active threads of an instance is provided.

1
2

3 4

φ=@N

〈a1, a2, φ〉
a1

a2

%=ρ?〈〈m(. . .)〉〉
σ=%!a〈〈m(. . .)〉〉

%

σ

%

ρ

Fig. 4. A coordination net graph example

By allowing the described annotations in net declarations, a dynamically
changing set of net instances interacting via port instances can be specified. To
achieve a better visual representation we draw all transitions annotated with
receive terms and imported places with a shadow as shown in figure 4. There
is a request received in transition 1 which is replied with a send expression
in transition 2. Transition 3 creates a new net of type N and propagates the
resulting usage port φ together with its other pre-conditions a1 and a2 in form
of a vector to a place. Transition 4 may consume it then. Hence, the parts which a
single coordination net graph distinguishes from a high-level Petri net as defined
in the high-level Petri net standard are the additional annotations. They add
message send, message receive, port creation and net creation to a transition as
shown in figure 4.

The single net graphs are interacting via send and receive annotations which
are using the already introduced ports as addresses. The resulting system consists

61

std

φ

create net
”real place”

φ

ρ
φ

send

%=ρ?〈〈m()〉〉

ϕ=φ!s〈〈m()〉〉

φ=@N

(ρ,φ)=@P

ρ

Nreceive

Fig. 5. An example for different ways nets may interact

of a number of net graph instances connected via ports and a marking for all
of them, as presented in figure 5. The left two nets interact via corresponding
usage/provide ports and a synchronized send and receive transition pair. The
synchronous send ensures, that the message is directly received. In the middle a
net creation is presented and the resulting port pair is visualized. The imported
place of the created Net N is linked to the corresponding local place of the
creating net and the standard port (std) of the new net is connected to the
resulting port φ of the create expression. A port creation is demonstrated in the
right net. This technique is used to describe instance or subsystem wide sharing
of resources and is realized with some sort of lexical scoping .

ε ε

%=ρ?〈〈m〉〉

ρ

φ ϕ

ϕ=φ!s〈〈m〉〉

φ

ϕ=φ!a〈〈m〉〉

φ

ϕϕφ

ρ

%=ρ?〈〈m〉〉

Fig. 6. Asynchronous and synchronous interaction

We have decided to provide synchronous as well as asynchronous behavior for
coordination nets to achieve a greater flexibility. The synchronous interaction (cf.
synchronous channels [14]) is useful, because it provides a higher-level abstrac-
tion to describe explicit synchronization where needed while the asynchronous
interaction can be used to combine systems with FIFO queues (cf. FIFO Petri

62

nets as a medium [48]). An example visualization of an asynchronous and syn-
chronous interaction is shown in figure 6. In the left case of an asynchronous
interaction the FIFO queue as medium does decouple both transitions while in
the right case of synchronous interaction both transitions are firing atomically
together.

A suitable typing has to carefully distinguish usual types (literals) that de-
scribe a value domain and represent passive data and ports which are handles or
identifiers that allow to request certain activities or attributes. For ports a typing
that supports subtype polymorphism is essential. Ports represent connections to
other entities in a fashion that should ensure abstraction and autonomy which
are the essential characteristics of object-based systems (see Wegner [54]). The
basic idea for port typing is to associate an interface (signature) and a behavior
to every port connection. Thus the object life cycle and the possible interaction
with an object becomes a part of the usage contract.

I[s1]

ϕϕ

I[s0]
I[s2]

χ

χ=ϕ?〈〈m(r1)〉〉ϕ=φ!〈〈m(a1, a2)〉〉
int

r1

φ
I

int

int

a1

a2

Fig. 7. The usage side of a remote procedure call

A protocol conform usage is presented in figure 7 where the port φ is trans-
formed to ϕ by sending m and later transformed to χ when receiving the reply m.
The port type and state is annotated using the shortcut I[si], where I denotes
the interface and protocol and si the specific protocol state.

4 Object Coordination Nets

The object coordination nets (OCoNs) combine the strength of Petri nets with
the structural modeling techniques of the UML, the de-facto standard for object-
oriented modeling. By combining both techniques in an orthogonal way, the Petri
net mechanisms can be used to express coordination, concurrency and partial
states while the structure is described in terms of objects, classes and associa-
tions. The Petri net concepts lack a suitable structural modeling concept and
thus an orthogonal combination with the object-oriented structural model is
needed and possible. OCoNs are build on top of the CoN formalism to provide
a more high-level as well as more restricted formalism. Structural aspects are
realized with UML mechanisms and the usage of nets is restricted to model
behavior. As demonstrated in [25], the OCoN formalism results in a more accu-
rate representation of the structural model within the formalism compared with
statecharts.

63

Fig. 8. The structural concept for a class or subsystem

The CoN formalism is used to describe two specific net forms while the pro-
tocol nets are used to type contracts. Figure 8 presents the relation between
the different nets. The protocol nets are used to describe the guaranteed or as-
sumed behavior of contracts. So called service nets (SN) describe behavior for
a specific task right like a method with its own thread of control in a program-
ming language. An instance wide unique resource allocation net (RAN) is used
to describe the overall instance activities like request acceptance as well as the
allocation of needed resources for the request processing including the creation
of related service nets for a request.

(c)

action

(a) (b)

Fig. 9. Several basic elements of an OCoN

An overview about the elements of an OCoN is presented in figure 9. The
resource and event pool elements are represented by hexagons and cycles. We
distinguish between them, to describe the more transient character of parame-
ters, the control flow and temporary events by using event pools as well as the
more static resource character of associations and local variables represented by
resource pools. Resources are required as the carriers of activities to perform
the processing of events during the computation and thus events describe the
control flow of a net (see figure 9 (a) and (b)). Based on the distinction between

64

resources and objects produced and consumed through the flow of data and con-
trol, the metaphor of resources which is crucial in distributed systems can be
used to make resource handling explicit. The usage and status of resources can
be specified in detail. A single resource may be represented by more than one
resource pool if the different pools stand for the same resource but different ex-
ternal states. Using a set of useful actions to abstraction from concrete and error
prone explicit port handling, the behavior can be described in terms of requests
and simple contract usages. No explicit send and receive have to be considered
any more and instead the more high-level interactions like call or one way call
are provided directly. The typing of the contracts using interfaces and protocol
nets does further enforce a disciplined usage. Also the creation of instances as
well as subnets is covered using extra forms of actions.

abstract action net

action

⇒

Fig. 10. Embedding of an action with multiple output alternatives

To specify the semantics of OCoN constructs we will use reentrant subnets in
a macro like way and a special kind of transition refinements (see [8]). Valette
[50] refines transitions by subnets called block with one initial and one final tran-
sition. The block is protected from multiple occurrences of the initial transition
before the final transition occurs by assuming that the refined transition is not
2-enabled for any reachable marking. Thus the net must not be reentrant . Suzuki
and Murata [49] generalize this technique and consider the case, where the re-
fined transition is restricted to be at most k-enabled. Work which considers also
distributed input and output has been done by Vogler [53]. He studies a refine-
ment notion depending on the environment of the transition. He demonstrates
that only non distributed input is feasible but distributed output can be used
when environment independent refinement is considered. In contrast to all these
considerations we need a really reentrant (see [13]) construction, otherwise the
parallel occurrence of actions will be limited, but for the presented refinements
this condition is obviously fulfilled due to their restriction to at most a single
token per usage. The general scheme used is presented in figure 10. This way the
call with contract blocking character, the call with parallel reply or a one way
call can be specified.

In figure 11 the corresponding CoN behavior for a regular call with alternative
replies is specified. It is a generalization of the simple call described earlier
in figure 7. The pre-condition edge denotes the necessary port and a request
m(a1, . . . , an) is send using the usage port φ. For each possible reply immediately

65

a receive is offered which may handle different return parameters as well as the
different transitions can be used to specify different side effects in the embedding
net.

χ

χ=ϕ?〈〈m1(r1)〉〉

ϕ

ϕ

ϕ

χ

≡
m

χ=ϕ?〈〈mn(rn)〉〉

ϕ=φ!〈〈m(a1, . . . , an)〉〉

φ

Fig. 11. The macro refinement for a regular call

As reverse representation exists for every contract usage port also a provide
port and the owning instance has to provide the described services accordingly
to the protocol net. This has to be done using a so called call forward action
as specified in figure 12. Initially a request is received and the set of resources
exclusivly needed for the request processing is consumed. As post-condition the
received parameters as well as the allocated resource are forwarded to a new
created net. Also the port for receiving the result from the new instantiated net
as well as the port to send the reply to the requesting party are stored as a
pair locally. The created service net will initially receive the forwarded request.
When it terminates it will send the reply and the temporary used resources back.
The reply will be forwarded while the resources are put back to their original
pools. A call action may occur in a service or resource allocation net while a
call forward action for the request acceptance is restricted to occur only in a
resource allocation net.

e1

en en

e1

φ=@N
〈%,ϕ〉 〈%,ϕ〉

χ=ϕ?〈〈m(r,e)〉〉

σ=%!a〈〈m(r)〉〉

%=ρ?〈〈m(a)〉〉

ϕ=φ!a〈〈m(a, e)〉〉

ρ

≡
e1

en

e1

en

m, N

Fig. 12. The call forward action and request acceptance

When considering the definitions for a call action of figure 11 directly on the
OCoN net level, we can see that a labeled action does essentially fire two times
during the processing of a request. One time when the request is started and
once when it terminates. This step semantic is further described in figure 13.
The two steps correspond very well to the input and output parts of the call
action. While the direct correspondence with a classical Petri net transition is

66

Fig. 13. The two times an action can fire

abandoned, the integrity of an operation request including request sending and
reply receiving is better preserved this way.

By additionally providing a notion of inheritance, the OCoN language can be
considered to fulfill the requirements for an object-oriented language (cf. [54]).
The notion of inheritance for concurrent object oriented languages is a critical
design aspect. As noted already in [1], inheritance can be employed to reuse the
sequential methods, but inheriting the instance wide synchronization seems to
be not practical. Thus in the current used inheritance notion for OCoN classes,
a subclass does inherit all structural properties as well as the associated service
nets of its superclasses, while the resourc allocation net is not inherited. Due to
the syntactical inheritance it is ensured that each subclass contains always all
resources a supertype service net may demand. The overall resource allocation
of a derived class has to be rewritten and reuse is currently not supported for
resource allocation nets.

We have to emphasize that in contrast to the contract subtyping and in-
heritence, implementation inheritance is for the intended usage of OCoNs not
that relevant. The external visible contract or interface hierarchy should be in
general better separated from implementation reuse strategies applying inheri-
tance, otherwise later when the subsystems evolve independently serious design
problems will result.

5 Visual Language

For place/transition nets the popular token game provides a suitable visual rep-
resentation as well as intuitive semantics. We thus have designed the OCoN for-
malism to provide a set of higher-level action types that can be understood w.r.t.
the local effects as a token game. E.g., the enabling does not depend on textual
guards. To model alternative behavior in a graphical rather than textual man-
ner we use methods or external operations with alternative replies (see figure 11)
that indicate the relevant different cases. This way a useful additional abstrac-
tion for predicates is introduced and textual guards transferring the semantics
from the transitions to the annotations can be avoided. This is in contrast to
most HLPN approaches which make heavy use of textual annotations and are
thus not such suitable visual formalisms.

In figure 14 the visual integration of contracts described by protocol nets and
the resource allocation as well as service nets is presented. Associations repre-

67

ContractR1
<<contract>>

op1()
op2()
op3()

[R1]

op1

res1_

ContractImpl::op1

op2

op1

[S2][S1]

Contract1
<<contract>>

[R2]

...

res1_

op2

ContractR2

res1_

op4

self

...

self

res2_

...

res2_

...
......

#op4()

+op1()

+op3()
+op2()

resource allocation net

signatures

<<implementation>>

Contract2

signatures

ContractR2
<<contract>>

ContractImpl

protocol net

<<service>>

[S1] [S2]

<<service>>
ContractImpl::op2

Fig. 14. Visual seamless embedding of contracts via typed resource pools

sented by resource pools containing related contracts can be used in conformance
with the specified protocol and thus their usage corresponds to a graphical em-
bedding. This seamless visual embedding [26] is the reason for our design decision
to restrict protocol nets to state machines. Then the multiple places of a Petri
net allow to embed the contracts using resource pools representing the different
contract states. The object life-cycle can also be modeled with full Petri nets,
e.g., with subtyping based on branching-bisimulation and abstraction [51], but
then the intended visual embedding as well as a more Petri net independent
contract notion are excluded. In figure 9 (c) the related signature abstraction
relating an action to a servie net has been demonstrated.

6 Integration into the UML

In the OCoN approach the HLPN standard [16] and the UML [40] have been
combined. But in practice usually perfect orthogonality is not achieved. The UML
specification does still contain several inconsistencies, but there are currently
attempts like the pUML initiative [18] that try to improve the situation and thus
using it is still more appropriate than chosing a proprietary solution. For the
included behavioral description techniques we even identified several weaknesses
[22]. For the achieved OCoN integration it has been demonstrated in [25] that
several limitations and problems related to behavior modeling with the UML
notations can be avoided.

68

HLPN

CoN UML

OCoN

OMG
meta-model

Fig. 15. The layers to build the OCoN semantics

In figure 15 the abstraction layers of the semantic foundations of the OCoN
approach are visualized. We decided to avoid the considerable weaknesses of
the UML by integrating our approach only with a w.r.t. structural as well as
behavioral questions more consistent subset.

By providing the bus like implementation structure shown in figure 8 for a
class, a clear separation between request specific and overall instance behavior
is achieved. In figure 16 an example of a simple complete UML structure with
added nets is presented. It describes a class SiteImpl that implements a simple
allocation protocol which provides alternating allocate and release operation calls.
The implementation stores the provided Data in a buffer initially filled with
an empty data item. The buffer is accessed using the Buffer contract which is
implemented by the class BufferImpl. The three specific stereotypes <<contract>>
for contracts, <<implementation>> for the overall instance behavior including
the resource allocation net and <<service>> for a service net or method are

Fig. 16. An OCoN and UML example

69

used. For the operations SiteImpl::release and SiteImpl::allocate the difference
between initial exclusive locking and shared access can be described. While for
the SiteImpl::release call forward action no initial exclusive locking is specified
will SiteImpl::allocate demand it. In correspondence is in SiteImpl::release the
considered resource myB shown with a double bordered hexagon to indicate
that it is an imported resource and thus interference is possible. In contrast has
SiteImpl::allocate an exclusive resource for myB and thus the resource is drawn
with a single border. Also the number of used contracts Buffer for SiteImpl are
specified in the UML diagram and we can derive the related net capacities using
the specified multiplicity constraints of the related association.

7 Related Work

The net dynamics of the OCoN approach has been realized introducing the visual
as well as high-level Petri net conform CoN formalism. In the context of the π-
calculus also a net based calculus named Mobile Nets has been developed [11]. It
extends the π-calculus to contain true concurrency , but this is done by extending
the usual textual binding for π-calculus processes to cover some notion for places
that can be accessed in parallel and thus does not provide the needed visual net
related methapor like the CoN formalism neccessary to build a visual language
upon.

We think it is more promising for the system design with Petri nets to avoid
a Petri net specific mechanism and integrate Petri nets into an usual object-
oriented decomposed system. The approach should rely on the well studied and
successful mechanisms for abstraction and encapsulation. Following [3] we can
classify most earlier proposed solutions to combine object orientation and Petri
nets as either ”Petri nets inside Objects” [10] or ”Objects inside Petri Nets” [4,
52]. Later approaches support more dynamic and expressive models where object
references are controlled in nets related to classes and thus they can support both
concepts.

Another cruicial aspect for the design of an object-oriented Petri net for-
malism is the interaction and if it supports interfaces and polymorphism in
a manner adequate for software. Several approaches support the traditional ap-
proach to connect Petri nets using place fusion [2, 34], but places usually provide
no suitable interface directly. Most solutions derived from the algebraic specifi-
cation domain instead provide cooperation in terms of transition fusion [4, 10,
7, 17] and allow the related behavior to access all cooperating objects of that
activity in a united action. This results in a missing encapsulation and behavior
will not be associated with objects itself which is a common criteria for object-
orientation. The support for message exchange or operations is essentially needed
to achieve encapsulation. The different approaches that support this vary w.r.t.
the level of support for either message passing or the higher-level interaction of a
procedure call construct [47,36, 12, 29]. The approaches provide an object state
either explicit using one global net per instance [39,34, 47, 29] or only implicit
as composition of so called method nets [36,12]. A systematic separation into

70

a resource oriented scheduler describing the overall instance state and method
related active method net instances is only realized in the OCoN approach. To
achieve visual scalability the usage of several nets for specific tasks is necessary
while their simple visual separation using regions (cf. [12]) is not sufiicient.

For distributed system design the encapsulation has to be ensured and hence
a notion of contract or interfaces is necessary and thus not type secure approaches
like [12] are not sufficient. Up to our knowledge does no other approach intergrate
an external behavioral specification like a protocol net to provide a contract
notion with behavioral subtyping and thus supports behavioral abstraction.

8 Conclusion and Outlook

The integration of software engineering and especially object-oriented technology
with a high-level Petri net formalism that is extended in a π-calculus style to
also cover dynamic aspects has been presented. The OCoN approach builds an
orthogonal extension to a subset of the UML and adds powerful concurrency
and contract modeling capabilities. A tight integration has been achieved while
proprietary extensions to the UML itself could be avoided.

The contract notion for the OCoN design approach supports the explicit
specification of contractually relations and provides a notation to specify coor-
dination aspects already on an abstract level. We can further express several
design alternatives and evaluate them [27] in order to decide which one is most
suitable. Thus, the OCoN formalism is a suitable notation that can be applied
already during the earlier stages of the design process with emphasis on the
software architecture [46]. A suitable visual notation is a crucial prequisite for
a successful approach. We applied useful Petri net visualization concepts and
achieved to preserve them by applying object-oriented standard techniques in a
systematic fashion.

Our initial application domain has been distributed software systems, while
we have also explored embedded systems and currently investigate the design of
workflow [56] applications. The experience with student classes and courses indi-
cates that even without experienced designers the approach is applicable. While
the results are promising the training for a specific net based notation is still dif-
ficult for beginners. A framework supporting the final implementation of OCoN
designs as well as an integration of the tools into an UML tool and extensions
towards consistency checks and complete simulation capabilities are planned. At
the moment, we study the approach also in an industrial environment to gain
more experience with larger projects.

References

1. P. America. A Behavioural Approach to Subtyping in Object-Oriented Languages.
Techreport, Philips Research Laboratories, 1989. Technical Report 443.

2. M. Baldassari and G. Bruno. An Environement of Object-Oriented Conceptual
Programming Based on PROT Nets. In Advances in Petri Nets, number 340 in
LNCS, pages 1–19. Springer Verlag, 1988.

71

3. R. Bastide. Approaches in unifying Petri nets and the Object-Oriented Approach.
In 1st Workshop on Object-Oriented Programming and Models of Concurrency,
within the 16th International Conference on Application and Theory of Petri nets,
27 June 1995, Turin, Italy, 1995.

4. E. Battiston, F. D. Cindio, and G. Mauri. Objsa Nets: A Class of High-Level Nets
Having Objects as Domains. In Advances in Petri Nets, number 424 in LNCS,
pages 20–43. Springer Verlag, 1988.

5. E. Best and R. P. Hopkins. B(pn)2 - a Basic Petri Net Programming Notation. In
PARLE’93, LNCS, pages 379–390. Springer Verlag, 1993.

6. A. Beugnard, J.-M. Jezequel, and D. Watkins. Making Components Contract
Aware. IEEE Computer, 32(7):38–45, July 1999.

7. O. Biberstein and D. Buchs. Structured Algrbraic Nets with Object-Orientation.
In Applications and Theory of Petri Nets 1995, 16th International Conference,
Turin, Italy, number 935 in LNCS. Springer Verlag, June 1995.

8. W. Brauer, R. Gold, and W. Vogler. A Survey of Behaviour and Equivalence
Preserving Refinements of Petri Nets. In Advances in Petri Nets, number 483 in
LNCS, pages 1–46. Springer Verlag, 1990.

9. W. Brauer, W. Reisig, and G. Rozenberg [eds]. Petri Nets: Central Models (part
I)/Applications (part II), volume 254/255 of LNCS. Springer Verlag, Berlin, 1987.

10. D. Buchs and N. Guelfi. A Concurrent Object-Oriented Petri Net Approach. In
Applications and Theory of Petri Nets 1991, 12th International Conference, Gjern,
Denmark, 1991.

11. N. Busi. Mobile Petri Nets. In Proc. 3rd Int. Conf. on Formal Methods for
Open Object-based Distributed Systems (FMOODS), February 15-18, 1999, Flo-
rence, Italy, pages 51–66. Kluewer Academic Publishers, 1999.

12. M. Ceska, V. Janousek, and T. Vojnar. PNtalk - A Computerized Tool for Object
Oriented Petri Nets Modeling. In EUROCAST’97, Las Palmas de Gran Canaria,
Canary Islands, Spain, number 1333 in LNCS. Springer Verlag, 1997.

13. G. Chehaibar. Use of Reentrant Nets in Modular Analysis of Colored Nets. volume
524, pages 58–77, Berlin, Germany, 1991. Springer Verlag. NewsletterInfo: 40.

14. S. Christensen and N. D. Hansen. Coloured Petri Nets Extended with Channels
for Synchronous Communication. In LNCS; Application and Theory of Petri Nets
1994, Proceedings 15th International Conference, Zaragoza, Spain, volume 815,
pages 159–178. Springer Verlag, 1994.

15. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jere-
maes. Object-Oriented Development: The Fusion Method. Prentice-Hall, 1994.

16. Committee Draft ISO/IEC 15909. High-level Petri Nets - Concepts, Definitions
and Graphical Notation, Oct. 1997. Version 3.4.

17. J. Engelfriet, G. Leih, and G. Rozenberg. Net-Based Description of Parallel Object-
Based Systems. In Foundations of Object-Oriented Languages, number 489 in
LNCS. Springer Verlag, 1990.

18. A. Evans, R. France, K. Lano, and B. Rumpe. Developing the UMl as a Formal
Modelling Notation. In UML’98 Beyond the notation. International Workshop
Mulhouse France. Ecole Superieure Mulhouse, Universite de Haute-Alsace, 1998.

19. H. Fleischhack and B. Grahlmann. A Petri Net Semantics for B(PN)2 with Proce-
dures. In Proceedings of PDSE’97 (Parallel and Distributed Software Engineering),
Boston MA, pages 15 – 27. IEEE Computer Society, May 1997.

20. H. J. Genrich and K. Lautenbach. System Modelling with High-Level Petri Nets.
Theor. Comp. Science, 13:109 – 136, Jan 1981.

21. H. Giese. Object Coordination Nets 2.0 – Semantics Specification. Techreport,
University Münster, Computer Science, May 1999. 15/99-I.

72

22. H. Giese. Towards a Dynamic Model for the UML. In 14th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions November 1-5, 1999, Denver, Colorado, USA. Workshop: Rigorous Modeling
and Analysis with the UML: Challenges and Limitations, Nov. 1999. (submitted
statement).

23. H. Giese. Synchronization Behavior Typing for Contracts in Component-based
Systems. Techreport, University Münster, Computer Science, Distributed Systems
Group, Feb. 2000. Techreport 03/00-I.

24. H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Systems with Ob-
ject Coordination Nets. pages 107–116, July 1998. Proc. Int. Symposium on Soft-
ware Engineering for Parallel and Distributed Systems (PDSE’98), Kyoto, Japan.

25. H. Giese, J. Graf, and G. Wirtz. Closing the Gap Between Object-Oriented Model-
ing of Structure and Behavior. In UML’99 - The Second International Conference
on The Unified Modeling Language Fort Collins, Colorado, USA, volume 1723 of
LNCS, pages 534–549, Oct. 1999.

26. H. Giese, J. Graf, and G. Wirtz. Seamless Visual Object-Oriented Behavior Mod-
eling for Distributed Software Systems. In IEEE Symposium On Visual Languages,
Tokyo, Japan, Sept. 1999.

27. H. Giese and G. Wirtz. Early Evaluation of Design Options for Distributed Sys-
tems. In Int. Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE’2000), Limerik, Ireland. IEEE Press, June 2000.

28. D. Harel. Statecharts: A Visual Formalism for complex systems. Science of Com-
puter Programming, 3(8):231–274, 1987.

29. T. Holvoet and P. Verbaeten. PN-TOX: a Paradigm and Development Environ-
ment for Object Concurrency Specifications. In 1st Workshop on Object-Oriented
Programming Models of Concurrency, Turin, 1995.

30. P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in Coloured Petri Nets. In
Advances in Petri Nets, number 483 in LNCS, pages 313–341. Springer Verlag,
1990.

31. K. Jensen. Coloured Petri Nets. In Petri Nets: Central Models and Their Prop-
erties, Advances in Petri Nets 1986 Part I, number 254 in LNCS, pages 248–299.
Springer Verlag, 1987.

32. K. Jensen. Coloured Petri Nets: A High Level language for System Design and
Analysis. In Advances in Petri Nets, number 483 in LNCS, pages 342–416. Springer
Verlag, 1990.

33. A. Kiehn. Petri Net Systems and their Closure Properties. In Advances in Petri
Nets 1989, number 424 in LNCS, pages 306–328. Springer Verlag, 1990.

34. C. Lakos. From Coloured Petri Nets to Object Petri Nets. In Applications and
Theory of Petri Nets 1995, 16th International Conference, Turin, Italy, number
935 in LNCS. Springer Verlag, June 1995.

35. B. Liskov and J. M. Wing. A New Definition of the Subtype Relation. In Proceed-
ings of the European Conference on Object-Oriented Programming ’93, volume 707
of LNCS, pages 118–141, July 1993.

36. C. Maier and D. Moldt. Object Colored Petri Nets - a Formal Technique for
Object Oriented Modelling. Workshop PNSE’97, Petri Nets in System Engineering,
Modelling, Verification, and Validation, Hamburg, Germany, Sept. 1997.

37. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. 2nd edition.

38. R. Milner, J. G. Parrow, and D. J. Walker. A Calculus of Mobiler Processes.
Techreport, Edinburgh Univeristy, 1989. Part I and II. ESC-LFCS-89-85/86.

73

39. A. Newman, S. M. Shatz, and X. Xie. An Approach to Object System Modeling by
State-Based Object Petri Nets. Int. Journal of Circuits, Systems, and Computers,
9(1):1–20, Feb. 1998.

40. Object Management Group. OMG Unified Modelling Language 1.3, June 1999.
OMG document ad/99-06-08.

41. D. L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, 15(5):330–336, 1972.

42. S. L. Pfleeger. Software Engineering: Theory and Practice, 1/e. Prentice Hall,
1998.

43. W. Reisig. Petri Net Models of Distributed Algorithms. In Computer Science
Today – Recent trends and Developments, number 1000 in LNCS, pages 441–454.
Springer Verlag, 1995.

44. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

45. T. Schael. Workflow Management Systems for Process Organizations. Number
1096 in LNCS. Springer Verlag, 1998. Second Edition.

46. M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging Dis-
cipline. Prentice Hall, 1996.

47. C. Sibertin-Blanc. Cooperative NETs. In Applications and Theory of Petri Nets
1994, 15th International Conference, Zaragoza, Spain, number 815 in LNCS, pages
471–490. Springer Verlag, June 1994.

48. Y. Souissi and G. Memmi. Composition of Nets via a Communication Medium.
In Advances in Petri Nets, number 483 in LNCS, pages 457–470. Springer Verlag,
1990.

49. I. Suzuki and T. Murata. A method for stepwise refinement and abstraction of
Petri nets. Journal Computer System Science, 27:51–76, 1983.

50. R. Valette. Analysis of nets by stepwise refinement. Journal Computer System
Science, 18:35–46, 1979.

51. W. M. P. van der Aalst and T. Basten. Life-Cycle Inheritance: A Petri-Net-Based
Approach. In 18th International Conference on Application and Theory of Petri
Nets, Toulouse, France, June 1997, LNCS, pages 62–81, 1997.

52. K. van Hee and P. Verkoulen. Integration of a Data Model and High Level Petri
Nets. In Proceedings of the 12th International Conference on Application and
Theory of Petri Nets,Aarhus, Denmark, pages 410–431, June 1991.

53. W. Vogler. Behaviour preserving refinements of Petri nets. In Graph-Theoretic
Concepts in Computer Science, Proc. WG86, Bernried, volume 246 of LNCS, pages
82–93, 1987.

54. P. Wegner. Dimensions of Object-Based Language Design. In Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA87, Orlando, Florida,
October 4-8, 1987, volume 22 of SPECIAl ISSUE of ACM SIGPLAN notices, pages
168–182. ACM Press, Dec. 1987.

55. P. Wegner and S. B. Zdonik. Inheritance as an Incremental Modification Mecha-
nism or What Like Is and Isn’t Like. In Proceedings of the European Conference on
Object-Oriented Programming ’88, volume 322 of LNCS, pages 55–77, Aug. 1988.

56. G. Wirtz and H. Giese. Using UML and Object-Coordination-Nets for workflow
specification. In IEEE International Conference on Systems, Man, and Cybernetics
(SMC’2000), Nashville, TN, USA, October 8-11, 2000.

57. G. Wirtz, J. Graf, and H. Giese. Ruling the Behavior of Distributed Software
Components. In Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’97), Las Vegas, Nevada, July 1997.

74

Seamless Object-Oriented Software

Development on a Formal Base

Stephan Philippi

University of Koblenz-Landau,
Rheinau 1, 56075 Koblenz, Germany

philippi@uni-koblenz.de

Abstract Object-oriented development of complex software systems is
widely recognized as state of the art within the industry as well as the
scientific community. What is less commonly recognized (especially in
the industry) is that object-orientation itself is not properly defined and
neither are popular notations like UML and others. Existing proposals
for the formally based development of object-oriented systems are for
different reasons often not usable for complex and/or concurrent sys-
tems. In addition, the semantics of object-oriented concepts within such
notations only rarely match common programming language implemen-
tations. This mismatch most likely leads to a costly redesign of a given
model during implementation. To overcome these problems approaches
for a seamless object-oriented software development on a formal base are
needed.

This article surveys several proposals for the formally based devel-
opment of object-oriented systems based on Petri-Nets. Subsequently, a
new approach in this area is introduced which supports multiperspective
modeling of concurrent object-oriented systems on arbitrary abstraction
levels and also allows automatic generation of executable Java code.

Keywords: concurrent systems design, Petri-Nets, Java code-generation

1 Introduction

Today object-oriented software development practice often includes multiper-
spective system views using different types of diagrams. The most popular collec-
tion of such diagrams is the so-called unified modeling language (UML) [Rati99].
Even if the emergence of this industry standard is useful from an economical
point of view, there are some serious drawbacks with respect to its application
in the software engineering area. Besides the difficulties in choosing an adequate
subset of diagrams with respect to a specific application domain, further prob-
lems arise from the UML’s lack of formality. In fact, most of the UML notations
are not formally based, i.e. they have no formally defined semantics. In combina-
tion with the fact that a commonly agreed definition of ’object-orientation’ does
not exist, this easily leads to communication problems, as neither the notations

75

nor the underlying concepts are properly defined. Another problem in this con-
text is that a tight integration of different views in a formal sense is not given
with the UML. Thus, contradicting system views representing a non-consistent
model are usual observations within UML projects. Especially considering con-
current systems this is not tolerable, as even for small systems a huge amount of
possible interaction sequences between concurrent parts exists, which results in
difficulties for human understanding. Thus, non-formally based approaches are
not well suited to meet today’s demands as they do not offer a reliable base for
communication and understanding.

Principally, formally based approaches for the object-oriented modeling of
systems are well suited to solve these problems. Nevertheless, proposals in this
area are not widely accepted today. Major drawbacks of approaches like OOZE
[AleGog91], VDM++ [Durr92], and others are that often no visual represen-
tation of models exists and the development of concurrent systems as well as
simulation is not supported. In addition, such approaches are frequently criti-
cised for being too difficult to use1. Another crucial point is that the definitions
of object-oriented concepts in formally based notations only rarely match their
counterparts in programming languages. Theoretically this is not necessarily a
problem, as the realization of object-oriented concepts within common program-
ming languages is not perfect at all, as shows for example the nonvariant instead
of covariant overwriting in Java [ArnGos96]. From a more practical point of
view the use of such formally based notations leads to a mismatch if a given
model serves as architectural layout for the implementation of a system, which
is usually the motivation for creating a model in the software engineering area.

Another family of approaches to model object-oriented systems in a formal
way is based on Petri-Nets [Petri62], which are well known for their graphical
appearance, their simulation capabilities, and their native support for the mod-
eling of concurrent systems. The extension of Petri-Nets with object-oriented
concepts is a promising approach as the resulting notation ideally allows for
the formally based modeling of concurrent object-oriented systems and for the
object-oriented structuring of Petri-Nets. Due to this potential, there has been
considerable research activity in the object-oriented Petri-Net area.

The next section of this article describes from a software engineering point of
view a set of properties for approaches integrating object-oriented concepts and
Petri-Nets. Based on these properties, existing proposals are surveyed and typical
problems discussed. Section three introduces OOPr/T-Models, a novel approach
for the integration of Petri-Nets and object-oriented concepts, which supports
the multiperspective modeling of systems on arbitrary abstraction levels. Section
four describes the formal base of OOPr/T-Models as well as their automatic
translation to executable Java code. Finally, the last section gives a summary
and presents further perspectives.

1 A more detailed discussion of related problems with existing proposals in the area of
formally based development of object-oriented systems can be found in [LanHau94].
A survey on UML formalization approaches is given in [Evans∗98], [KeEvRu99].

76

2 Essential properties and related work

Since the mid-eighties, various approaches integrating object-oriented concepts
and Petri-Nets have been published. To be able to evaluate the existing pro-
posals with respect to their applicability in the software development, a set of
essential properties is introduced. The classification of these properties as ’es-
sential’ reflects that from our point of view, omitting one of them results in a
notation which is not well suited for the object-oriented development of complex,
concurrent software systems. Thus, to solve the above stated problems of (non-)
formally based notations, an approach integrating object-oriented concepts and
Petri-Nets ideally fulfills the following criteria:

– Completeness with respect to object-orientation: In order to be able
to structure systems in an object-oriented way, a notation combining object-
orientation and Petri-Nets should at least support object identity, com-
plex objects, classes, encapsulation, inheritance, overriding, and polymor-
phism/late binding.

– Support for seamless development: Ideally, a notation for the model-
ing of object-oriented systems supports every stage of development ranging
from high-level analysis to low-level implementation. If a notation only sup-
ports part(s) of the development cycle, every shift to another notation (e.g.
a programming language) will almost inevitably result in a redesign of the
model, as no commonly accepted definition of object-orientation exists. The
reason for the need to redesign a given model in this context is that differ-
ent notations integrate different object-oriented concepts, and corresponding
concepts often differ significantly from a semantical point of view, as for in-
stance visibility definitions and inheritance.

’When examining object-oriented solutions, you should check that
the method and language, as well as the supporting tools, apply to
analysis and design as well as implementation and maintenance. The
language, in particular, should be a vehicle for thought which will
help you through all stages of your work.’ [Meyer97]

– Completeness with respect to Petri-Nets: Petri-Nets are well-known
for their graphical appearance, their power for the modeling of concurrent
systems, and their formal base which allows for simulation and analysis. An
approach integrating object-oriented concepts and Petri-Nets should pre-
serve these properties.

– Concepts to resolve inheritance anomalies: Ideally, a notation for
object-oriented software development allows for the modeling of concur-
rent systems. As a consequence, concepts to resolve inheritance anomalies
[MatYon93] should be supported by such a notation. Inheritance anomalies
occur in concurrent object-oriented systems if synchronization conditions

77

are integrated into the functional description of a method. Problems arise
here, as within every subclass containing additional methods, the inherited
synchronization conditions almost inevitably change. As a consequence, in-
herited methods have to be redefined in subclasses to integrate the modified
synchronization conditions, even if there is no need to do so from a func-
tional point of view. Thus, to be able to benefit from inheritance, a notation
for the development of concurrent object-oriented systems needs to integrate
concepts to avoid the redefinition of methods.

– Modeling ergonomics/usability: System modeling usually starts at a
high level of abstraction, the main task being to collect knowledge in order
to understand the system domain. As this is a very difficult task in its own
right, the designer should not be hampered by a modeling framework which
does not offer the highest possible ergonomical degree, i.e. the formalism
used to support modeling should be as easy as possible to learn and handle.
Thus, modeling ergonomics is one of our main concerns even if this property
is not exactly quantifiable. In particular, former users of Petri-Nets or object-
oriented concepts should with only minor problems be able to use a new
approach combining both. Prerequisite is a ’natural’ solution allowing each
user to feel familiar with the way concepts he already knew are integrated.

The result of the evaluation of existing approaches for the integration of
Petri-Nets and object-oriented concepts is that none of them offers an overall sat-
isfactory solution with respect to the described properties. In detail, approaches
like PROT-Nets [BruBal86], OBJSA-Nets [BaDeMa88], POT/POP [EnLeRo90],
SimCon [HeeVer91], OOCPN [Engl93], PN-TOX [HolVer95], and others are not
complete with respect to our understanding of object-orientation, i.e. impor-
tant concepts are not integrated, like for example inheritance or dynamic bind-
ing. Another common problem from the point of view of software development
is that approaches like Object/Behaviour Diagrams [KapSch91], Object-Nets
[BoNuFe97], OOPN [Stulle97], and others represent objects as Petri-Net struc-
tures. Consequently, dynamic object instantiation is not supported in order to
avoid dynamic Petri-Net structures. In turn, such proposals only allow for the
modeling of systems with a fixed number of objects which have to be identified
during system design. To support the development of software systems, such
approaches (which are partly intended to be used for the modeling of techni-
cal systems) are not well suited, because objects are usually instantiated and
destroyed at a high rate during the runtime of such a system.

Other approaches, e.g. PN-TOX [HolVer95] and OCoN [GiGrWi98], are in-
tended for modeling only certain aspects of object-oriented systems, augmenting
notations like OMT [Rumb∗91] or UML. Thus, only parts of the resulting models
have a formally defined semantics. Another point is that approaches like F-Nets
[Deck95], OOPN [Stulle97], and others do not provide a single notation covering
the life-cycle a project ranging from analysis to implementation. In detail, mod-
eling the functional parts of an object-oriented system is not supported, which
leads to the use of other notations whilst shifting from higher to lower abstraction

78

levels. If functional modeling is supported, not necessarily are methods for the
partitioning of the functionality of an object. Such a practice does in consequence
not take full advantage of the structuring capabilities of object-orientation, e.g.
SimCon [HeeVer91] and OPN [Lakos95].

In contrast to the stated problems with object-oriented concepts, most of
the considered approaches are complete with respect to Petri-Nets, i.e. only few
proposals like OPM [Burk94] lack a formal base.

Considering the development of concurrent systems, none of the evaluated
proposals integrates concepts to resolve inheritance anomalies, even if all of them
allow for the modeling of concurrent systems, e.g. [CeJaVo97] and [Maier97].

Finally, modeling ergonomics is generally not considered. In combination with
the fact that tool support is mostly not given, this leads to proposals which are
practically not usable for the development of complex (software) systems2.

To summarize, on the one hand none of the considered proposals for the
integration of Petri-Nets and object-oriented concepts is without weaknesses
with respect to the introduced essential properties. From our point of view,
existing object-oriented Petri-Net approaches are thus only of limited use for
the development of software systems. On the other hand, each of the criteria
(except the integration of concepts to resolve inheritance anomalies) is fulfilled
by at least one of the considered proposals. As a consequence, the development
of a Petri-Net based notation which is practically usable for the seamless, object-
oriented development of complex and/or concurrent software systems should be
possible at least from a theoretical point of view.

One of the most common problems with the existing work in the area of
object-oriented Petri-Nets is that only few proposals are based on one another,
i.e. in most cases the experience from existing work is not taken into account for
the development of novel approaches. In contrast, common pitfalls of existing
proposals had a direct impact on the development of OOPr/T-Models, which
are intended to overcome the limitations of existing approaches with respect to
the introduced properties.

3 Systems modeling with OOPr/T-Models

This section introduces OOPr/T-Models (’object-oriented Predicate/Transition-
Models’), which were developed based on the set of essential properties as well
as on the evaluation of existing object-oriented Petri-Net approaches.

First of all, the scenario to set up multiperspective system views with OOPr/
T-Models is shown. Then the notations used to describe these views are intro-
duced using an object-oriented version of a simple producer/consumer system.
Afterwards, an example on how to resolve inheritance anomalies with OOPr/T-
Models is given using an extended version of the initial example. The formal
base of OOPr/T-Models as well as their automatic translation to Java code are
surveyed in section four.
2 A more complete overview and detailed evaluation of existing object-oriented Petri-

Net proposals is given in [Phil99].

79

3.1 The scenario of OOPr/T-Modeling

The scenario providing an overview on how to use OOPr/T-Models is given
in figure 1. Starting from a system to model, different views have to be set
up, namely a static, a dynamic, and a functional view. The interdependencies
of these views result in the following (cyclic) three-step design process, which
applies to arbitrary development stages ranging from high-level analysis to low-
level implementation. In the latter case OOPr/T-Models can be used as visual
programming language.

1. Usually, the starting point of object-oriented modeling is a class diagram
structuring the system domain into classes with their respective relation-
ships. As Petri-Nets themselves are not very well suited to model the static
aspects of a system, our approach incorporates a subset of UML class dia-
grams [Rati99] for this purpose.

2. For each class a dynamic model is defined using Petri-Nets. Here, dynamic
models integrate conditions for the activation of methods. This allows for
the separation of the functionality of a method and its synchronization con-
ditions, thus resolving inheritance anomalies.

3. For each non-abstract method a single extended (hierarchical) Pr/T-Net
[GenLau81] describes the intended functionality.

 system
to model

 manual
 model
 building

 Pr/T-Net

integration

 static

 dynamic
 view

 functional
 view

 Java

 view

 automatic

Fig. 1. Scenario of OOPr/T-Modeling

Unlike OMT, UML and other basically similar modeling frameworks to set
up multiperspective system views, OOPr/T-Models have a formally defined se-
mantics given through a set of rules which allow for the automatic translation
of OOPr/T-Models into a single Pr/T-Net as described in section four. Thus, it
is not only single views that have a formally defined semantics, but the whole
system consisting of different views and their interdependencies does. From a
designer’s point of view the resulting Pr/T-Net integrating these views should
be transparent, because usually only manually created views are visible. The
notations to set up these views are described in the following sections.

80

3.1.1 Static view

The first step in modeling states the structure of a system using classes which are
related through associations and an inheritance hierarchy. An interface definition
can be assigned to each class, consisting of (class) attribute and method signature
specifications. To visualize this structure a subset of UML class diagrams is used
[Rati99]. Figure 2 shows a class diagram for a producer/consumer system at a
low abstraction level.

count : int
capacity : Int

+ sync insert (x : int)
+ remove() : int

buffer

+ produce ()

id : int
b : buffer

producer

+ consume ()

id : int
b : buffer

consumer

+ start ()

controller

Fig. 2. Class diagram for a producer/consumer system

By definition, each system contains a default ’controller’ class with a ’start’
method as system starting point. The diagram also contains classes ‘producer’,
’consumer‘, and ’buffer’, the latter associated to the former ones. Class ’buffer’
includes two attributes ’count’ and ’capacity’ for storing actual/maximum data
item entries and methods ’insert’ and ’remove’. The ’producer’ and ’consumer’
classes each consist of attributes ’b’, implementing the association to ’buffer’,
and ’id’ as well as a single signature for a method without return value. This
is an important aspect, as patterns of concurrency are not explicitly defined
in OOPr/T-Models in terms of ’threads’ or similar low-level concepts. Instead,
calls to ’asynchronous methods’ not returning any value as well as forward split
transitions within functional descriptions of methods start concurrent processes
implicitly. Here, asynchronous methods can be synchronized by using an addi-
tional keyword (’sync’) extending the signature definition if the activation of
a method without return value should not lead to the implicit start of a new
thread, e.g. method ’insert’ of class ’buffer’3.

3.1.2 Dynamic view

The second step in the design process consists of creating a dynamic model for
each class of the system. Dynamic models are used to specify activation condi-
tions for publicly available methods. Like attributes, these conditions are object
properties, i.e. each object holds its own dynamic model during the runtime of
3 In contrast, ’synchronized’ in Java specifies mutually exclusive access.

81

a system. A dynamic model is set up using Petri-Nets with anonymous tokens
where each transition represents a publicly available method of the correspond-
ing class. To each transition a guard may be assigned containing an expression
with attribute identifiers of the associated class. If an object receives a mes-
sage, the addressed method is activated if the preconditions of the associated
transition as well as its guard allow to do so. If a method is activated, tokens
within the dynamic model are consumed by the associated transition. After the
execution of the method is terminated, new tokens are created on outgoing arcs.
Thus, from a designer’s point of view transitions within dynamic models have
no timeless behaviour, as tokens disappear while methods are being executed.
From a semantical point of view, however, this is a syntactical abbreviation, i.e.
a shortcut for a more complex ’real’ Petri-Net structure with additional places
representing currently active methods.

Dynamic models are inherited within a class hierarchy like attributes and
methods. Here, dynamic models are only allowed to be modified in subclasses ac-
cording to refinement rules [Hutten00] based on protocol inheritance [AalBas97].

insert remove

[count < capacity] [count ≠ 0]

buffer

Fig. 3. Dynamic model of class ’buffer’

Figure 3 shows the dynamic model for class ’buffer’ of the producer/consu-
mer system. Here, methods ’insert’ and ’remove’ are not allowed to be activated
concurrently to avoid inconsistencies. Similarly, ’insert’ is only allowed to be
activated if the amount of buffer elements is lower than the upper boundary,
whereas ’remove’ is only allowed to be activated if the buffer is not empty. A
closer look on the use of dynamic models to resolve inheritance anomalies is
given in section 3.2.

3.1.3 Functional view

To be able to model the functionality of a method, high-level Petri-Nets need to
be extended to support specific interfacing services. Figure 4 illustrates a method
from a black-box point of view, with the following types of interactions with the
environment:

1. An input interface: As possible input to a method we consider signature
specified parameters and current attribute values of the object the respective
method belongs to.

82

2. An interaction interface: As the overall behaviour of an object-oriented
system is given through the interaction of its message-passing objects, a
Petri-Net representing a method has to be able to send messages.

3. An output interface: Possible method outputs are new attribute-values
of the current object, and return values to the sender of the message which
activated the execution of the method.

method

attribute values method parameters

return valuenew attribute values

method
interaction

Fig. 4. Black-box view of a method

This black-box view of a method does not contain the proper objects as
in- and output values. Instead, a finer granularity is given, considering current
attribute values. Thus, the answer to the question what exactly flows through
a Petri-Net representing a method is not objects, but relevant parts of objects.
The reason for the decision not to let the objects themselves flow through a
method is to avoid a situation in which one object moves through different
concurrent threads of one method, as this could lead to different versions of
the same object, each having different attribute values. These versions would
have to be merged at the end of the execution of a method with respect to
its semantics to become consistent. This would be achieved with the help of
additional modeling constructs, which would lead to more complex models.

What follows is a description of Pr/T-Net extensions, introduced to enable
communication from a net-specified method with the environment as described
above.

Input interface extensions for Pr/T-Nets:

The input interface is simply a set of bold printed places. These ’preload places’
called net elements serve different tasks. As already mentioned, input values for
methods are parameters, given by the message received from the object for which
a method is to be executed, as well as current attribute values. Considering a
method signature like ’method name (arg1 : type1,...,argn : typen)’, the execut-
ing method needs to access parameters arg1,...,argn. Utilizing preload places,
import of these parameters into a method is achieved simply by assigning such
a place the respective parameter identifier (fig. 5a). If a method is executed,

83

the value of the parameter assigned to the preload place is transparently loaded
into this place, which further behaves like an ordinary one. Preload places are
used analogously to import attribute values by assigning to them the respective
identifiers (fig. 5b), as well as for the initialization of local variables (fig. 5c).
Furthermore, ’self’ can be assigned to preload places (fig. 5d), which explicitly
imports the OID of the object for which the method was activated. Finally,
preload places can be annotated with tuples built from these alternatives. In
summary, preload places are used to define an object-dependent initial marking
for nets describing the functionality of methods in object-oriented models.

attributeparameter

a) b) c)

type : value

d)

´self´

Fig. 5. Preload places serving different tasks

Interacting interface extensions for Pr/T-Nets:

To communicate with the environment of a method we need to be able to send
messages. Therefore, a special kind of transition called ’message transition’ is
introduced (fig. 6).

OID.message(arg ,...arg)->return_valuen1

Fig. 6. Message transition

From a designer’s point of view, a message transition is simply a transition
with a message specification in it. The OID of the object the message should
be sent to and the respective method parameters have to be transported to the
message transition, where arcs can be annotated as usual within Pr/T-Nets. If
the method to be activated with a message is a synchronous one, the return
value can be used in further steps of the execution of the method. Analogue to
dynamic models, such a transition does not fire timeless as it has to wait for the
return value of the method to be activated. From a semantical point of view,
this is again only a syntactical abbreviation for a more complex net structure.

Output interface extensions for Pr/T-Nets:

Similar to the input interface special kinds of places are introduced to serve as
output interface. To indicate the end of the execution of a method, a so called

84

’exit place’ is introduced by a double circle (fig. 7a). If a token resides on such
a place the execution of the method ends. In case of a synchronous method this
token is returned to the sender of the activating message.

attribute

a) b)

Fig. 7. Exit and postsave place

Attributes often have to be updated at the end of the execution of a method.
To be able to model such a case in a comfortable way, ’postsave places’ are
introduced by bold circles like preload places (fig. 7b). Preload and postsave
places can be distinguished easily in a given net: the former has at least one
outgoing arc and may have incoming arcs, whereas the latter may have incoming
arcs only. A postsave place is annotated with the attribute identifier to which
the token resident on this place should be the new value as soon as the execution
of the method ends. If attributes need to be accessed not only at the start/end
of the execution of a method, message transitions calling the implicitly defined
’get’ and ’set’ methods of an attribute have to be used.

Using Pr/T-Nets with a place capacity of ’1’ extended this way the specifi-
cation of methods ’produce’ and ’consume’ of the example results in fig. 8.

b.insert(id)

b, id

b, id

b, idb, id

b, id

producer.produce ()

b.remove() -> x

b

b, x

bb

b, x

consumer.consume ()

Fig. 8. Methods of classes ’producer’ and ’consumer’

As ’produce’ gives no return value activation of this method results in the
(implicit) creation of a new concurrent process. This process imports the current
values of attributes ’b’ and ’id’ into the net, using a single preload place. After-
wards, method ’insert’ of the associated ’buffer’ object is activated with the ’id’
of the producer as argument utilizing a message transition. If the amount of data

85

elements stored within the addressed buffer object exceeds the maximum bound-
ary, or if any of the methods ’insert’ or ’remove’ is already active, the producer
process is suspended. If the state of the dynamic model of the ’buffer’ object
allows for the activation of ’insert’, the suspended producer process continues
after termination of this method.

Within method ’consume’ a preload place imports the value of attribute ’b’
into the net, i.e. the identifier of the associated ’buffer’ instance. This value is
further used as destination of the message sent to activate the ’remove’ method
using a message transition. Here, a ’consumer’ process implicitly activated by
calling its asynchronous ’consume’ method is suspended if the state of the dy-
namic model of the ’buffer’ instance demands so, i.e. if there is no element to be
removed from the buffer or if a method of this object is currently executed. If the
state of the dynamic model of the associated ’buffer’ object allows for activation
of ’remove’, the consumer process continues after termination of this method.

Even if the producer/consumer example is presented including all implemen-
tation details, OOPr/T-Models offer support for object-oriented modeling on
arbitrary abstraction levels. Class diagrams (which can be organized through
packages) to structure a system domain are in principle useful at every abstrac-
tion level. Dynamic and functional descriptions can be added and stepwise re-
fined in a seamless way if details become more relevant. The descriptions of the
methods of a system may include supertransitions [HuJeSh90] for abstraction
purposes in the early stages and functional decompositions in the later ones.

3.2 Avoiding inheritance anomalies

After having introduced the OOPr/T-Model notations, the subject of this sub-
section is now the description of a slightly modified producer/consumer sys-
tem to illustrate the use of dynamic models to resolve inheritance anomalies
[MatYon93].

Inheritance anomalies are very likely to occur within concurrent object-
oriented systems if there are no concepts to separate the synchronization condi-
tions of a method from its functionality. In case such concepts are not available,
the extension of a superclass by a subclass with additional methods leads to the
redefinition of inherited methods within the subclass. The reason for this need to
redefine inherited methods stems from the integrated synchronization conditions,
which almost inevitably change if a subclass includes additional methods. Due
to these problems, early ’object-oriented’ programming languages for concur-
rent systems like POOL/T [Amer87], PROCOL [BosLaf89], and others offered
no support for the concept of inheritance to avoid related anomalies.

The separation of a the synchronization conditions of a method from its
functionality is realized by OOPr/T-Models through the use of separate dynamic
and functional views. To illustrate this aspect, figure 9 gives a modified version
of the static view of the initial producer/consumer system.

Here, class ’new buffer’ extends its superclass with an additional method ’re-
move new’. This method intends to remove an element out of the buffer only
if a call to method ’remove’ has not followed the last activation of ’insert’, i.e.

86

+ remove_new() : int

new_buffer

count : int
capacity : Int

+ insert (x : int) : bool
+ remove() : int

buffer

+ start ()

id : int
b : new_buffer

producer

+ start ()

id : int
b : new buffer

consumer

+ start ()

controller

Fig. 9. Extended producer/consumer system

’remove new’ is only allowed to be activated immediately after ’insert’. Within
a language not integrating concepts to resolve inheritance anomalies, this acti-
vation condition leads to a reimplementation of the inherited methods ’insert’
and ’remove’ to be able to indicate which was activated last, even if there is
no need to do so from a functional point of view. OOPr/T-Models avoid such
redefinitions as a consequence of class extensions through the use of separate
dynamic models, which include synchronization conditions. Figure 10 gives the
dynamic model assigned to class ’new buffer’, which specifies that method ’re-
move new’ is only allowed to be activated if invoked immediately after ’insert’.
In consequence, the inherited methods ’insert’ and ’remove’ remain unchanged
in class ’new buffer’, thus resolving inheritance anomalies.

insert remove

[count < capacity] [count ≠ 0]

remove_new

new_buffer

insert

[count < capacity]

remove

Fig. 10. Dynamic model for class ’new buffer’

87

4 OOPr/T-Models and their formal base

Unlike OMT, UML, and other modeling frameworks to set up multiperspective
system views, OOPr/T-Models have a formally defined semantics and allow for
the automatic generation of executable Java code. This section outlines both.

4.1 Translation to Pr/T-Nets

The formal base of the introduced notation is given by a set of translation rules
which generate a Pr/T-Net out of a given OOPr/T-Model. Here, static, dynamic
and functional views are integrated. In consequence, it is not only single views
but the whole system that has a formally defined semantics in terms of a Pr/T-
Net extended with supertransitions and place fusion [HuJeSh90].

The main idea is to use predefined patterns for building a Pr/T-Net-based
object-oriented runtime system which integrates the static, dynamic and func-
tional views of an OOPr/T-Modell. The elementary structure of such a Pr/T-Net
constructed from a given OOPr/T-Model serves the purpose of message routing,
providing the communication infrastructure needed in object-oriented systems.
Figure 11 gives an abstract sketch of the runtime system, which is set up hi-
erarchically with a single place as root called ’system message collector’. Every
message sent in a system is placed here first, utilizing place fusion. Each class of
an object-oriented system is represented by a Pr/T-Net structure, which is con-
nected to the ’system message collector’ by a single transition. The guard of such
a transition evaluates to ’true’ if a message resident on the ’system message col-
lector’ is to be sent to the associated class. If such a transition fires, the message
is taken from the ’system message collector’ to the ’class message collector’ of the
respective class. The Pr/T-Net representation of each class integrates its associ-
ated dynamic and functional models. In order to connect dynamic and functional
models to a class representation, the respective views of an OOPr/T-Model need
to be transformed into Pr/T-Nets first. This translation, which is in detail de-
scribed in [Phil99], allows concurrent reentrant usage of functional models, i.e. a
Pr/T-Net representing a method exists only once within its defining class. The
same holds for dynamic models which are object properties like attributes, but
which exist, like methods, only once within each class. If a message is routed to
the method to activate, and the dynamic model of the respective object allows
for execution, the preload places of the addressed method are initialized.

Figure 12 gives an abstract sketch of the top-level Pr/T-Net structure which
represents a class and serves message routing purposes. If a message resides on
a ’class message collector’, the following cases are distinguished:

– ’create’: In order to instantiate a new object, its definition is needed, i.e. a
class representation has to store static information concerning object defini-
tions to be able to instantiate new ones. This is realized using a prototype
for each class whose structure reflects the attribute definitions of the static
OOPr/T-Model. If a new object is to instantiate, this prototype is dupli-
cated and a new OID generated. This identifier is then returned to the caller

88

[message for
 ´method 1´]

net structure
representing
 ´method 1´

.

.

’system message collector’

message

’class message collector’

[message for
 ´class 1´]

[message for
 ´class n´]

[message for
 ´method n´]

.

.

net structure
representing
 ´class 1´

message

message

.

message

 net structure
 representing
dynamic model
 of ´class 1´

.

Fig. 11. Abstract sketch of the e.g. system

of the method in order to be able to reference the new object. To store all its
objects, each class integrates a single place called ’extent’, i.e. if an object is
created, the duplicated prototype with its newly generated OID is inserted
into the set of already existing objects of this class residing on the extent.

– ’get attribute’, ’set attribute’ : As the extent storing all objects of a
class is transparent, i.e. not directly accessible from a user’s point of view,
predefined ’get’ and ’set’ basic update methods for each attribute have to
be used. If such a method is invoked, the requested attribute value is ex-
tracted/replaced from the respective object in the extent. Due to the fact,
that basic update methods are the only way to access attributes of an object,
the use of preload and postsave places within functional OOPr/T-Models is
only a syntactical abbreviation of their explicit use.

’class message collector’

message

[message for user-
defined method]

’list of available ’get’
 and ’set’-methods’

[’return’][’create’]

[’get’, ’set’]

list

list

list

list

message

message

message.

.

Fig. 12. Schematic pattern for representing classes within Pr/T-Nets

89

– user-defined methods: If a message addresses a user-defined method, this
message is routed to the Pr/T-Net representation of the respective functional
OOPr/T-Model. If the addressed method is inherited, the message to invoke
this method is redirected to the superclass where the corresponding Pr/T-
Net representation is included. This practice avoids the need to represent
the functional model of a method defined in one class within each of its
subclasses. If the message reaches the Pr/T-Net representation of the method
and the dynamic model allows for execution, the preload places of the method
are initialized.

– return message: In order to be able to return a value from a synchronous
method to the sender of the message activating this method, an internal
(transparent) ’return message’ is used. If a class receives such a message, the
value returned is routed to the respective method.

The Pr/T-Net structures extending the described top-level view of a class
representation providing a more detailed insight into the formal base of OOPr/T-
Models are given in [Phil99]. A prototype to support the graphical editing of
OOPr/T-Models is developed in [George99]. This prototype also allows for the
automatic generation of executable Java code, which is described next.

4.2 Java code-generation

Due to the formal base of OOPr/T-Models, they are not only suited to serve as
architectural layout for implementation. Additionally, executable Java code can
be automatically generated, because the formal semantics of OOPr/T-Models
as described in the last section is explicitly defined to be compatible with the
way object-oriented concepts are integrated in Java (other languages are also
possible). This binding to a programming language results from our goal to sup-
port seamless software development ranging from high-level analysis to low-level
implementation and the not commonly accepted definition of object-orientation,
which leads to different programming language interpretations.

At early development stages with their abstract high-level models automatic
code-generation is only rarely useful, as implementation details are not known
or considered. In contrast, this feature can be useful during the design period
to create class frames from the architecture, if a direct use of the destination
language for implementation purposes is preferred. If a particular application
demands a partial or a complete formal model, OOPr/T-Models can be used
down to the visual programming level.

In detail, static, dynamic, and functional views are translated to Java ac-
cording to the following principles:

– Static view: The generation of Java classes from a static OOPr/T-Model is
mostly straightforward. A difference between Java and OOPr/T-Models is
that the latter supports generic classes (templates). To be able to map this
concept to Java, a preprocessing step is introduced which first replaces ab-
stract parameters of generic classes by actual ones. Furthermore, additional

90

classes need to be introduced to the Java code to implement the implicit
start of a new Java thread if a method without return value is activated and
its ’sync’ flag is not set within the OOPr/T-Model.

– Dynamic view: A dynamic model specifies activation conditions for pub-
licly available methods of the class it is assigned to. To integrate a dynamic
model into each instance of a Java class, each place of such a model is trans-
lated into an additional attribute of type ’int’, which stores the amount of
token resident on the corresponding place. If a publicly available method is
to activate, an additional method is called which returns if the current state
of the dynamic model allows for the execution of the method. If so, this ad-
ditional method changes the state of the dynamic model. Then the method
is executed and finally the dynamic model is updated again to indicate that
the execution of the method is terminated. If the dynamic model does not
allow the activation of a method, the requesting thread is suspended until
the dynamic model of the particular object changes.

– Functional view: The generation of Java methods from corresponding
functional OOPr/T-Models is realized with a Pr/T-Net simulator in each
method. Here, each place of a functional model is translated into a pair of
local variables, the first of which indicates if a token resides on the corre-
sponding place. The particular value of this token is then stored within the
second variable. Each transition of a functional OOPr/T-Model is translated
into an ’if’-statement as part of a loop which terminates if a value exists on
the local variable representing the exit place of the functional OOPr/T-
Model. The preconditions to fire a transition are then translated into the
enabling conditions of the corresponding ’if’-statement. If such a condition
holds, values are removed from local variables representing places with in-
coming arcs to the respective transition. Furthermore, new values are pro-
duced and assigned to the local variables representing places with outgoing
arcs from the transition represented by the ’if’-statement.

The described generation of Java code gives reasonable results but is not yet
optimized and has several drawbacks which are mainly related to the transla-
tion of functional models. In fact, the use of a Pr/T-Net simulator within each
method is not the best choice, as only interleaving concurrency is supported
within a method. Additionally, this approach lacks efficiency especially consid-
ering complex methods. We are currently working on a more sophisticated solu-
tion for code-generation which is intended to result in true concurrency within
methods and a more efficient code.

5 Summary and further perspectives

This article has introduced OOPr/T-Models which were developed to overcome
the problems of existing proposals in the area of object-oriented Petri-Nets with
respect to a set of properties which we consider essential. As a result of working in
this direction, OOPr/T-Models are complete with respect to object-orientation

91

and Petri-Nets. Furthermore, concepts to resolve inheritance anomalies are in-
tegrated and a comparatively ergonomical notation is given, even if the latter
can not be proved due to its qualitative nature. Finally, OOPr/T-Models allow
for the multiperspective development of (software) systems with static, dynamic,
and functional views on arbitrary abstraction levels ranging from high-level anal-
ysis to visual programming. In combination with automatic code-generation,
seamless object-oriented software development on a formal base is supported.

OOPr/T-Models have proven to be applicable not only to small systems
like the described producer/consumer example which mainly illustrates concur-
rency synchronization features. An example containing more complex methods
from a functional point of view is described in [Phil00] with the specification
of a system for the concurrent calculation of primes. More complex concurrent
object-oriented systems were created with OOPr/T-Models also, namely a frac-
tal rendering and a ray-tracing system [Hutten00]. The image synthesis of the
latter includes features like different geometric objects, multiple lights sources,
reflection, shading, transparency etc. All these examples were refined down to
the visual programming language level, and executable concurrent Java code was
generated from them.

The overall results from developing the described systems using OOPr/T-
Models are encouraging, even if there still remain some open issues. To be able
to further develop the concepts of OOPr/T-Models and the supporting tool, more
case studies from different application areas are needed. Another field of interest
is the mapping of UML notations to dynamic and functional OOPr/T-Models.
This would allow for the formalization of UML parts and the hiding of Petri-
Nets from a designer’s point of view, if necessary. Integration of an additional
semi-formal (but Petri-Net based) notation to support the communication with
domain experts especially in the early analysis stages is possible as well (e.g.
[Marx98]).

Besides the ongoing work on these topics, future developments will include
extensions of the notation and the tool with concepts to handle persistent data,
integration of mechanisms to model/generate distributed systems (CORBA) as
well as a GUI building facility. Ideally, these improvements will lead to an
integrated CASE-tool for the seamless development of concurrent/distributed
object-oriented (software) systems throughout the whole development process
on the formal base of Petri-Nets.

References

[AalBas97] W.M.P. van der Aalst und T. Basten. Life-cycle Inheritance: A
Petri-net-based approach. Application and Theory of Petri Nets 1997,
Band 1248 von LNCS. Springer-Verlag, Berlin, 1997.

[AleGog91] A. J. Alencar und J. A. Goguen. ’OOZE: An Object Oriented
Z Environment’. P. America, ’ECOOP ’91: European Conference on
Object Oriented Programming’, LNCS 512. Springer-Verlag, 1991.

92

[Amer87] P. America. ’Inheritance and subtyping in a parallel object-oriented
language’. ’ECOOP ’87: European Conference on Object Oriented Pro-
gramming’, LNCS 276. Springer-Verlag, 1987.

[ArnGos96] K. Arnold und J. Gosling. ’The Java Programming Language’.
Addison-Wesley, 1996.

[BaDeMa88] E. Battiston, F. DeCindio und G. Mauri. ’OBJSA Nets: a class
of high level nets having objects as domains’. ’Advances in Petri-Nets
1988’, LNCS 340. Springer-Verlag, 1988.

[BoNuFe97] T. Boehme, J. Nuetzel und W. Fengler. ’Objektorientiertes En-
twurfsmodell für Steuerungssysteme auf Basis der Petri-Netz-Theorie’.
D. Abel E. Schnieder, ’Entwurf komplexer Automatisierungssysteme’,
Braunschweig, 1997.

[BosLaf89] Jan van den Bos und Chris Laffra. PROCOL – A Parallel Object
Language with Protocols. Proceedings of the OOPSLA ’89 Conference
on Object-oriented Programming Systems, Languages and Applications,
S. 95–102, Oktober 1989.

[BruBal86] G. Bruno und A. Balsamo. ’Petri net-based object-oriented mod-
elling of distributed systems’. ACM SIGPLAN Notices, 21(11), Novem-
ber 1986.

[Burk94] R. Burkhardt. ’Modellierung dynamischer Aspekte mit dem Objekt-
Prozess-Modell’. Dissertation, Technische Universität Ilmenau, 1994.

[CeJaVo97] M. Ceska, V. Janousek und T. Vojnar. ’PN-Talk - A Comput-
erized Tool for Object-Oriented Petri Nets Modelling’. ’Proceedings of
the 6th International Workshop on Computer Aided Systems Theory -
EUROCAST‘97’, LNCS 1333. Springer-Verlag, 1997.

[Deck95] G. Decknatel. ’F-Nets’. Diplomarbeit, Universität Koblenz-Landau,
1995.

[Durr92] E. Durr. ’A formal specification language for object-oriented designs’.
P. Dewilde und J. Vandewalle, ’IEEE CompEuro 92 Proceedings’. IEEE
Press, 1992.

[Engl93] S. English. ’Coloured Petri Nets for object-oriented modelling’. Disser-
tation, University of Brighton, 1993.

[EnLeRo90] J. Engelfriet, G. Leih und G. Rozenberg. ’Net-Based Descrip-
tion of Parallel Object-Based Systems’. ’Foundations of Object-Oriented
Languages’, LNCS 489. Springer-Verlag, 1990.

[Evans∗98] Andy Evans, Jean-Michel Bruel, Robert France, Kevin Lano
und Bernhard Rumpe. Making UML Precise. Luis Andrade, Ana
Moreira, Akash Deshpande und Stuart Kent, Proceedings of the OOP-
SLA’98 Workshop on Formalizing UML. Why? How?, 1998.

[GenLau81] H. J. Genrich und K. Lautenbach. ’System Modelling with High-
Level Petri Nets’. Theoretical Computer Science, 13(1), 1981.

[George99] T. George. ’OOPr/T-Modeller : Ein Werkzeug zur Modellierung
nebenläufiger objektorientierter Systeme auf der Basis von UML und
Petri-Netzen’. Diplomarbeit, Universität Koblenz-Landau, 1999.

[GiGrWi98] H. Giese, J. Graf und G. Wirtz. ’Modeling Distributed Software
Systems with Object Coordination Nets’. ’Int. Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE’98)’, Kyoto,
April 1998.

[HeeVer91] K. M. van Hee und P. A. C. Verkoulen. ’Integration of a Data
Model and High-Level Petri-Nets’. ’Proceedings of the 12th Interna-

93

tional Conference on Applications and Theory of Petri-Nets’, Gjern
(Denmark), 1991.

[HolVer95] T. Holvoet und P. Verbaeten. ’PN-TOX: a Paradigm and Develop-
ment Environment for Object Concurrency Specifications’. ’Proceedings
of the 16th International Conference on the Application and Theory of
Petri-Nets’, Turin, 1995.

[HuJeSh90] Peter Huber, Kurt Jensen und Robert M. Shapiro. ’Hierarchies
in Coloured Petri Nets’. G. Rozenberg, ’Advances in Petri Nets 1990’,
LNCS 483. Springer-Verlag, 1990.

[Hutten00] P. von Hutten. ’Modellierung eines Ray-Tracers mit OOPr/T-
Modellen’. Diplomarbeit, Universität Koblenz, erscheint 2000.

[KapSch91] G. Kappel und M. Schrefl. ’Using an Object-Oriented Diagram-
Technique for the Design of Information Systems’. H.G. Sol und K.M.
van Hee, ’Dynamic Modelling of Information Systems’. Elsvier Science
Publishers B.V. (North-Holland), 1991.

[KeEvRu99] S. Kent, A. Evans und B. Rumpe. UML Semantics FAQ. A. Mor-
eira und S. Demeyer, Object-Oriented Technology, ECOOP’99 Workshop
Reader. LNCS 1743, Springer Verlag, 1999.

[Lakos95] C. Lakos. ’From Coloured Petri Nets to Object Petri Nets’. ’Proceedings
of the 1st Workshop on Object-Oriented Programming and Models of
Concurrency’, Turin, 1995.

[LanHau94] K. Lano und H. Haughton. ’A Comparative Description of Object-
Oriented Specification Languages’. K. Lano und H. Haughton, ’Object-
Oriented Specification Case Studies’. Prentice Hall International, 1994.

[Maier97] C. Maier. ’Objektorientierte Analyse mit gefärbten Petri-Netzen’.
Diplomarbeit, Universität Hamburg, 1997.

[Marx98] T. Marx. ’NetCase : Softwareentwurf und Workflow-Modellierung mit
Petri-Netzen’. Dissertation, Universität Koblenz-Landau, 1998.

[MatYon93] S. Matsuoka und A. Yonezawa. ’Analysis of Inheritance Anomaly
in Object-Oriented Concurrent Programming Languages’. Research Di-
rections in Concurrent Object-Oriented Programming, 1993.

[Meyer97] Bertrand Meyer. Object-oriented Software Construction. Prentice
Hall, second edition, New York, N.Y., 1997.

[Petri62] C. A. Petri. ’Kommunikation mit Automaten’. Dissertation, Institut
für Instrumentelle Mathematik Bonn, 1962.

[Phil99] S. Philippi. ’Synthese von Petri-Netzen und objektorientierten
Konzepten’. Dissertation, Universität Koblenz-Landau, 1999.

[Phil00] S. Philippi. ’Modeling of concurrent object-oriented systems using high-
level Petri-Nets’. Proceedings of the 4th World Multiconference on Sys-
temics, Cybernetics and Informatics (SCI’2000), Orlando, USA, 2000.

[Rati99] Rational Software Corporation. ’UML-Documentation 1.3’.
’www.rational.com/uml’, 1999.

[Rumb∗91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy und
W. Lorensen. ’Object-oriented modeling and design’. Prentice Hall
International, 1991.

[Stulle97] M. Stulle. ’Ereignisdiskrete Zustandsrekonstruktion auf der Grund-
lage objektorientierter Petri-Netz-Modelle am Beispiel flexibler Ferti-
gungssysteme’. Dissertation, Technische Universität München, 1997.

94

An Architecture for Adaptive Planning and Scheduling
of Software Processes Using Timed Colored Petri Nets

By

N.C. Narendra and Indradeb P. Pal
Software Engineering Process Group (SEPG)

Hewlett-Packard India Software Operations Ltd.
29 Cunningham Road
Bangalore - 560 052

Email: {ncnaren,ipp}@india.hp.com

Abstract. One of the most vexing problems in managing software projects, is the need to
appropriately plan and schedule them. Since software projects are process-oriented, this gives
rise to the need for planning and scheduling the processes in a software project, so as to be able
to meet the project’s objectives within the time and cost constraints imposed on the software
project. To make matters worse, the parameters of a software project keep changing all the
time, requiring the project team to continuously adapt their processes and replan and reschedule
their activities constantly.

In this paper, we present a Petri Net based formalism called TCPN or Timed Colored Petri Net,
for modeling, planning and scheduling software processes. Our formalism is based on the same
formalism in [4], and we show how it can incorporate planning and scheduling algorithms
developed outside the Petri Net community; in particular, planning algorithms from [8], and
scheduling algorithms from [9]. We also show that it is an overall Planning and Scheduling
architecture, and we also show how this can fit into an adaptive process framework such as the
one described in [1]. Since the original formalism in [4] was developed for modeling general
workflows, we show how it can be adapted to suit the multidimensional nature of software
projects.

1. Introduction

In any software project, planning and scheduling is one of the most critical problems
that the project team could face. The reason for this, is that improper planning and
scheduling will cause severe problems later in the software lifecycle, problems that
could become impossible to fix. Hence proper planning and scheduling – and
appropriate mechanisms for handling risks and unexpected deviations during the
course of the project – is crucial for the project.

In this paper, we present a Petri Net based formalism called TCPN or Timed Colored
Petri Net, for modeling, planning and scheduling software processes. Our formalism
is based on the Timed Colored Petri Net formalism of [4]. We show how it
incorporates planning algorithms from [8], and scheduling algorithms from [9], i.e.,
planning and scheduling algorithms from outside the Petri Net community. We also

95

show that it is an overall Planning and Scheduling architecture, and we also show how
this can fit into an adaptive process framework [1]. Since the original formalism in [4]
was developed for modeling workflows in general, we show how it can be adapted to
suit the multidimensional nature of software projects.

This paper is organized as follows. We present some preliminary definitions in the
next section. In Section 3, our planning algorithm is presented. We show how – once
planning is done - scheduling can be done, in Section 4. In Section 5, we demonstrate
how our algorithm incorporates the adaptivity that is a crucial aspect of software
processes. In Section 6, we present an example from a real-life project that illustrates
our ideas. The paper concludes in Section 7 with suggestions for future work.

2. Preliminaries

Every software project is composed of the following basic entities:
• Activities: These are the steps followed during the software project, and are

usually composed into two types of processes in the project:
• Engineering processes: these are the "regular" processes implemented by the

project team in order to develop their deliverables
• Support processes: these are the processes that are required to be executed by

the project team in coordination with central groups such as the SEPG, SQA,
etc. Although these may not provide immediate benefit to the software
project, they are useful for providing project-level process performance
information to the central groups, which can in turn be used to improve
future projects

• Artifacts: These are the internal and external deliverables produced by the project
team.

• Agents: These are the roles played by different individuals in the project team,
e.g., Project Manager, Technical Lead, Testing Engineer, etc.

• Resources: These are the software and hardware resources needed to execute the
project, e.g., software tools, special-purpose hardware, etc.

From the above definitions, it is clear that software development is truly a multi-
dimensional activity, involving both engineering and support processes, and where
the project team needs to balance among activities, artifacts, agents and resources.

Most software projects can be modeled as per a 3-tier architecture, thus:
• The goals of the project and the organization to which it belongs, is the top tier.

These goals are usually business-driven, and can be mapped into goals for
particular software processes

• The middle tier typically models the usual lifecycles that the software projects
follow, e.g., waterfall, V-model, spiral, etc.

• The lowest tier represents the actual processes defined and followed in the
project; it is an instantiation of the lifecycle that the project team has chosen, and
which has been modeled in the middle tier

96

In [1], the first author has described a similar 3-tier architecture for general workflow
processes, which finds application in software projects also. The corresponding layers
from [1] are Planning, Schema and Process Layers, respectively.

We now present the Petri Net definitions. A Timed Colored Petri Net (TCPN) (see
Fig. 1) is a five-tuple N = (P,T,I,O,TS) satisfying the following requirements:
i) P is a finite set of places
ii) T is a finite set of transitions
iii) I belonging to T is the set of input places for each transition, i.e, the pre-set

of T
iv) O belonging to T is the set of output places for each transition, i.e., the post-

set of T
v) TS is the time set, i.e., the set of execution times for each transition

(expressed as execution intervals)
vi) Also, each place p in P has a set of allowed colors attached to it and this

means that a token residing in p must have a value which is an element of
this set. In other words, the colors specify the different types associated with
each token. In the software project context, each token represents a resource
(such as a human, or computer resource) which is consumed during a
transition.

A marking M of the Petri Net represents the state of the Net, i.e., the distribution of
tokens over places. Whenever a transition fires, the marking changes, since tokens get
redistributed over the Net; hence a transition firing causes a state change in the Petri
Net. A marking M" is said to be reachable from a marking M' if it possible to reach
M" from M' by a sequence of transition firings.

Fig.1

i
o

Transition
t

Place p

97

A Petri net is said to be live if for every reachable state M' and every transition t, there
is a state M" reachable from M' which enables t.

A Petri net is said to be bounded or k-safe if and only if for each place p there is a
natural number k such that for every reachable state the number of tokens in p is less
than or equal to k . If k is 1, then the Petri net is said to be safe.

Paths connect nodes by a sequence of arcs. Hence a Petri net is strongly connected if
and only if for every pair of nodes (i.e., places and transitions) x and y, there is a path
leading from x to y.

A workflow net (see [6]) is a Petri Net with the following properties:
• It has a unique sink place o (with no output transitions) and a unique source place

i (with no input transitions)
• If we add a transition from o to i (hereafter referred to as the augmented workflow

net), then the resulting Petri net becomes strongly connected.

We call our TCPN representation well-defined if and only if it is live and bounded.
Hereafter in this paper, we will be dealing only with well-defined TCPNs, due to the
following reasons:
• We will see in later sections, that due to our planning and scheduling algorithms,

the TCPNs that will be generated, will have to be live
• We will also see in later sections, that the constraints and invariants on the

activities and resources of the software project, will ensure that a finite bound can
be determined on the resources (and hence, tokens)

A Petri net that is live and bounded, is said to be sound. In [6], it has been proved
that workflow nets are sound.

Prop 1 : For our software domain, it is clear that our TCPN must be a workflow net.
Proof:

• All software projects should have uniquely defined starting and ending points
• The software processes should be defined so that the resulting augmented

workflow net is strongly connected, since there should be a path from any place
to any transition in the TCPN representation of the software project's processes

QED

Prop 2 : All well-defined TCPNs are sound.
Proof:
From Prop 1, it is clear that the TCPN is a workflow net. From Theorem 1 in [6], a

workflow net is sound if and only if its augmented workflow net is live and bounded.

From the above definitions, it is clear that the augmented workflow net for the
TCPN is live and bounded, since the underlying TCPN representation is well-defined.

QED

98

A workflow net is said to be free-choice, if and only if the following holds:
• For any two transitions, either their presets are identical or they do not have any

place in common

Although most workflow models are supposed to be free-choice [Aalst3, pg. 38],
TCPNs representing software projects need not be. This is due to the fact that parallel
execution threads in a software project may still have dependencies on each other.
Our example in Section 6 will illustrate this fact.

3. Planning Algorithm

3.1 Planning in Software Projects

The task of planning involves the following activities:
• Determining the project requirements and goals – this will involve not only

product requirements, but also process requirements (such as, for example, the
number of defects that need to be caught during reviews, the maximum number
of defects that can be tolerated in any lifecycle phase, or the productivity goals
for specified project activities)

• Identifying the resources and staffing available for the project
• Fixing the schedule of the project via negotiations with the customer
• Identifying the major risks in the project [12]

Once these are identified, the planning process basically boils down to determining
the project delivery lifecycle, and the different processes that should form part of the
lifecycle. This will also involve sequencing the support activities that go along with
the lifecycle, such as the following:
• Data collection and submission to the central Software Engineering Process

Group (SEPG), who will then do data collation and analysis
• Planning Software Quality Assurance (SQA) activities, such as end-of-phase

previews/postmortems, audits, process reviews within the project, in consultation
with the central SQA group

• Participation by project team members in organization-wide process
improvement activities, in order to support the central SEPG in its activities

These activities should also be executed as per predefined processes, and they also
need to be sequenced along with the “regular” project activities.

Since planning is typically a complex and iterative activity involving making
choices from among several alternatives, there is a need to encode the relative
usefulness of the different choices in terms of the impact that they will make on the
overall delivery lifecycle. It is usually convenient to represent these as predicates, in
the normal (either conjunctive or disjunctive) form that predicates are usually
represented. These predicates are needed either as preconditions or postconditions of

99

activities. Preconditions specify the conditions necessary for an activity to be
executed successfully, and postconditions specify the state of the project (from the
perspective of that activity) once the activity is successfully executed.

Hence predicates can be specified for the project artifacts that are produced/used
during any activity in the software project, and these predicates can be used to derive
the appropriate software processes for the project. Some examples are:
• The review should catch at least a minimum number of errors; in other words, the

review should have been effective enough to weed out a sufficiently large
number of problems in the artifact. Such metrics are typically derived from
organization metrics data, and are assigned to the project team by the Senior
Management, in the form of quantitative process goals

• There should have been sufficient participation in the review by the project team
– in other words, the appropriate team members (decided by skill level,
experience, etc.) should have participated in the review

Thus each of these predicates can also be encoded against each of the artifacts in
the project, and it will be the responsibility of the project team to ensure that they plan
the project activities so that all these predicates are met.

3.2 Object-Centered Planning

From the description above, it becomes clear that the planning algorithm that we
use, should be “object-centered”. In other words, the predicates used in planning
should be oriented towards the objects in the projects (viz., agents, artifacts,
resources, activities), which will greatly enhance planning efficiency [8].

Hence we have adapted the Object-Centered Planning (OCP) approach presented
in [8] for our purposes. The OCP approach consists of the following steps:
• Initial domain description; here, the objects, the sorts (i.e., object classes) that

they belong to, the different states and substates that they can exist in for each
sort, are described and represented as predicates

• State transition diagrams are then described for each sort in the domain, where
each node in the diagram represents a substate class - a disjoint set of substates

• State invariant construction - here, we consider the different ways in which the
different sorts can interact with other, and from this we can construct a set of
logical invariants for the model. Invariants are nothing but predicates that should
always hold during project execution. (more on this in Section 3.3).

• Operator specification; here, parametrized operators that model the effect of
actions are specified in terms of the they affect classes of substates

N.B: In the software domain, the operators are nothing but the activities performed
by the project team, which can be represented as transitions in the TCPN formalism
(this will be described in detail later in this section).

The OCP algorithm basically operates as follows [8]:

100

• It is a search through a space of partial plans. (The partial plans are nothing but
those derived from the project lifecycle model, from which the actual processes
can be derived.) First an open node in the set of partial plans is retracted

• If the node does NOT meet the termination condition such that the substates of
the node meets a goal condition (i.e., its postconditions as expressed in the form
of predicates and invariants do not meet a goal condition), then we find the
difference between the objects' current states and their desired states

• An operator (or operator sequence) is then picked that reduces the difference
• If the operator (or operator sequence) is applicable (i.e., its precondition is met),

then it is applied to the existing node; otherwise, the weakest precondition of an
instantiation of the operator (or operator sequence) is generated, and is used to
open a new node

• If the node DOES meet the termination condition, then the node's parent is then
opened, the algorithm is then applied on the parent

In the next section, we will describe how this algorithm can be mapped onto our
TCPN formalism.

3.3 Mapping OCP Onto the TCPN Formalism

As already described above, the OCP formulation easily maps onto the entities in a
software project, due to the object-centered nature of OCP. The mapping is given in
the table below:

OCP Software Project

Sort = object class Resource class; this includes the
classes of the agents (i.e., people
performing certain roles in the software
project) and classes of the resources
(i.e., hardware and software)

Objects Agents and Resources
Operator Change of state as a result of an

activity executing – in our TCPN
formalism, this represents the execution
of a transition

Predicate The predicates can be used to define
certain conditions on the resources and
how they can be utilized in the project.
Each predicate will represent either a
precondition or a postcondition on an
activity

These predicates are usually derived

101

from the collective experiences of past
projects in the organization, and also
from historical metrics data which is
usually stored in a database [3].

In our TCPN formalism, these are
modeled as places

Substate State of the TCPN at any given time
Invariants Invariants in the software project,

i.e., predicates that cannot be violated
throughout the project execution – this
could be items like resources, cost, etc.

Using this mapping, it becomes easy to map the OCP algorithm in our TCPN
formalism, and obtain a TCPN representation of the software project plan.

The other major aspect of software project planning, and one that has not been
considered so far, is risk modeling. Risks are essentially negations of preconditions or
postconditions of certain activities in the project plan. Hence, in our TCPN
representation, we use the risk modeling method presented in [2] (which is adapted
from [12]), and we represent risk modeling as alternate paths in the TCPN
representation. In order to do so, we need to consider the following different aspects
of risk modeling:
• the risk factor, i.e., the characteristic that affects the probability of a risk event

occurring
• the risk event, which represents the occurrence of a negative incident - or a

discovery of information that reveals negative circumstances
• the risk outcome , which describes the state of the project after the risk has

materialized
• the risk consequences, which represents the state of the project after corrective

action has been taken
• the risk effect, which represents the impact of the risk on the customer and the

project
• the utility loss, which captures the severity of the loss to the project and to the

organization

Hence, we model risks in the following manner:
• determine the risk factors, risk events, risk outcomes and risk consequences of

any activity
• model the risk events as negations of preconditions of the activity
• model the risk outcomes as negations of postconditions of the activity
• model the risk consequences, risk effect and utility loss as alternative place-

transition sequences in the TCPN representation, in order to deal with the risk
(this will be done at the appropriate places which are the pre-sets of the transition
representing the activity in question)

102

4.0 Scheduling Algorithm

4.1 Introduction to Scheduling

Scheduling basically involves assigning tasks to resources. Typically, before one
begins the process of scheduling, the basic assumption is that an initial plan of the
project is in place, so that an initial schedule can be drawn up. Hence planning and
scheduling inherently follow each other in an iterative fashion, until a satisfactory
plan and schedule is reached.

There are typically two basic scheduling approaches [9];
• Profile-based approaches: these approaches typically consist of characterizing

resource demand as a function of time, and incrementally performing "leveling
actions" to (hopefully) ensure that resource usage peaks fall below the total
capacity of the resource

• Clique-based approaches: given a current schedule, this approach builds a
"conflicts graph" whose nodes are activities and whose edges represent
overlapping resource capacity requests of the connected activities. Fully
connected subgraphs (cliques) are identified and if the number of nodes in the
clique is greater than the resource capacity, then we have a conflict

In the context of Petri Nets, some work on Petri Net based scheduling has been
done in [4]. This technique uses a Timed Colored Petri Net formalism very similar to
ours. In order to represent scheduling, a reachability graph is generated. The nodes of
this graph are the states in which a Petri Net can exist, and two nodes are connected
by a directed edge if one node is reachable from the other by a state change. Hence,
reachability graphs can be used to generate feasible schedules. Since there is no time
delay for transitions in our TCPN formalism, all our schedules are eager schedules,
i.e., schedules where resource assignment to tasks happens immediately. Hence, since
[4] has shown that the reachability graph can generate all eager schedules, we can use
the reachability graph algorithm described therein. In Fig.2, below, we present an
example of a reachability graph.

Fig. 2

103

If we map the above concepts to the software domain, we see the following (some
of these have already been observed by the authors from their own experiences):
• Conflict detection and resolution are more important than mere resource leveling;

this is due to the fact that in software projects, a certain amount of "overloading"
is tolerated and sometimes even necessary (due to the demanding, dynamic and
semi-chaotic nature of software development)

• Since historical data and past experience data is usually available with most
software project teams, either in a database (see [3]) or can be deduced from the
past experiences of team members, there is always some level of initial
scheduling that can be done by the project team

Hence, we select the clique-based approach, and assume that an initial schedule
exists. This schedule is prepared based on the plan derived in Section 3 using the OCP
algorithm. Let us assume that this is not consistent, i.e., that there are conflicting
requirements on resources.

The generic solver that we use, is based on the one described in [9], and a basic
algorithmic template is described briefly here. The template identifies three basic
steps that require instantiation:
• Exists-Unresolvable-Conflict, which detects an unresolvable conflict,
• Select-Conflict-Set, which identifies the set of activities included in the resource

conflict to be considered next, and
• Select-Leveling-Constraint, which chooses a temporal ordering constraint to

solve the conflict by reducing (leveling) resource requirements in conflict.

Before we apply the generic solver to the clique-based approach that we have
chosen here, we first describe what a clique is. A clique in a graph G(V,E) is a
completely connected subset C of V. The size of C is the number of vertices in C. The
clique in G with maximum size is called the maximum clique. For any vertex vi, the
we denote by Ji the set of vertices connected with vi.

Along with the clique information, we need to maintain two graphs for each
resource rj. The first graph is the Possible Intersection Graph (PIGj), whose vertices
are the activities requiring rj and whose edges represent the fact that the execution
intervals of its two vertices may overlap/intersect in the current solution. The second
graph is the Definite Intersection Graph (DIGj), whose vertices are the activities
requiring rj and whose edges represent unresolvable conflicts as described in Exists-
Unresolvable-Conflict . It is clear that DIGj is a subset of PIGj.

N.B: The "execution intervals" mentioned are nothing but the starting and ending
times for each transition, i.e., the starting and ending times taken for activities in the
project, and these are in the time set TS defined in Section 2.

If the resource rj has capacity cj, then a clique of size at least cj + 1 in the graph
PIGj is called a critical clique in G, and represents a potential resource conflict in the
current solution.

104

The algorithm for determining the cliques is as follows:
• Input parameters are the following: a current clique C and a set of vertices I∆ used

to enlarge the current clique C as the search progresses
• Given G = (V,E) the algorithm starts with C = Φ and I∆ = V; this corresponds to

the search level i = 0.
• At any level i of the search tree, the set C is a clique with i vertices C = {v1, v2,

…, vi} and the set I∆ is obtained by the incremental intersection of V, J1, J2, …, Ji,
where the Ji have been defined above.

• At each step of the algorithm, any of the following conditions hold:
Ø The current clique C has size less or equal to cj, and it is not possible to

enlarge it over the threshold - in this case, the search ends in failure
Ø The set C U {vi} is a clique with size greater than cj, in which case the clique

with size cj + 1 is collected into the set of cliques
Ø In any other case, the algorithm is recursively invoked on the parameters C

U {vi} and I∆-new to check for larger cliques.

The predicate Exists-Unresolvable-Conflict is realized by determining the minimal
critical sets, i.e, the minimal set of activities that may potentially conflict, using the
DIGj. This is done for each resource rj. If no such minimal critical sets exist, then all
the conflicts are solvable.

The function Select-Conflict-Set is executed by implementing what [9] calls a
"least commitment strategy". That is, the set of activities with the least temporal
flexibility (i.e., a function of the degree to which the activities can be reciprocally
shifted in time) is selected. In other words, the less the temporal flexibility, the more
critical it is to resolve first.

The function Select-Leveling-Constraint simply chooses the appropriate leveling
constraint according to the least commitment strategy described above.

4.2 Mapping onto the TCPN Formalism

We now map the scheduling algorithm described above, to our TCPN formalism.

Recall that we have seen that we can use the reachability graph to generate all
eager schedules. Hence, each path in the reachability graph from the root to any leaf
node represents a possible schedule. The question that we need to answer therefore,
is, how to generate the next state from any node in the tree? Since the reachability
graph could potentially become infinitely large, the other question to answer is, how
to limit the combinatorial explosion?

This is where the scheduling algorithm described in Section 4.1 can be used. The
constraints and possible resource conflicts detected during the course of executing
that algorithm will limit the number of reachable states from any node in the
reachability graph. Hence, the scheduling algorithm of Section 4.1 can be run at every

105

node in the reachability graph, and the next set of reachable states can be derived by
not considering those states resulting in conflicts.

5.0 Handling Adaptivity in Software Projects

The previous sections of our paper described our TCPN formalism and showed how a
general planning and a general scheduling algorithm can be mapped onto our
formalism. However, software projects are highly adaptive and semi-chaotic, hence
any planning and scheduling architecture for software projects needs to incorporate
adaptivity into it.

In [1], we have shown three levels of adaptivity in the workflow context (in
increasing order of impact on the software organization), which are also applicable to
software projects:
Ø Adaptivity at process level, i.e., changing certain processes in order to improve

project execution
Ø Adaptivity at lifecycle level, i.e., changing the very delivery lifecycle in order to

make substantial changes in the way the software product is developed
Ø Adaptivity at goal level, i.e., changes in goals resulting in complete re-

engineering and re-orientation of the software projects themselves

It stands to reason that adaptivity can be handled efficiently by focussing only on
incremental replanning and rescheduling, i.e., only for those portions of the software
processes that are actually affected by the change. Hence, our approach to incremental
replanning and rescheduling is as follows:
• If the change involves changes in the constraints on the activities, then replanning

needs to be looked into first. We first need to determine at what point in the
lifecycle the change will begin to affect; we call this the "starting stage". For
example, a change in the project requirements may necessitate repeating the
design step, or may affect only the coding step. Another example, would be a
change in the quality requirements, that may impact only the testing activity,
resulting in (perhaps) a minor change to the test plan.

The next step is to propagate the changed constraints downstream from the
starting stage, and determine how much of the rest of the lifecycle is affected by
the change. The last activity that is affected by the change, is called the "ending
stage".

In such a situation, we need to rerun the OCP algorithm from the starting stage
to the ending stage, with the constraints at the starting stage being the start
constraints, and the constraints at the ending stage being the goal conditions of
the OCP algorithm.

• If the change does not involve changes in constraints on activities, or if the above
step results in changes in constraints on resources, then the scheduling algorithm
described in Section 4 needs to be invoked on the portion of the Petri Net that is

106

between the starting and ending stages. Again, this results in redeveloping the
reachability graph between the highest node (in the reachability graph)
corresponding to the starting stage, and the lowest node (in the reachability
graph) corresponding to the ending stage, as per the algorithm in Section 4.

• The above two steps need to be iterated until a feasible solution is found.

In software projects, the other aspect of adaptivity, is the need to suitably "change-
proof" the software lifecycle model, so that future changes to the project are
anticipated and taken into account. This can be done using the risk modeling approach
described in Section 3.3. As is common in most software organizations, all the most
common types of possible risks can be modeled in a risk database (similar to the one
described in [3]) and can be used to suitably build in risk management while planning
and scheduling. Hopefully, this will minimize replanning and rescheduling.

6.0 An Example - Introduction

The example that we have chosen, is simple enough to be used in this paper as an
illustration, but it is also derived from a real-life software project in our organization
that exhibited all the characteristics that make software project planning and
scheduling a complex and demanding activity.

The project, which we will call ABC, is essentially to develop a set of modules that
will emulate the behavior of one operating system on another one. The ABC project
possesses the following characteristics:
• The requirements are not clearly defined by the customers, who are themselves

not very sure of what is to be expected; hence the project team needs to make
assumptions which could be invalidated at any time by the customers

• Like any typical software project, ABC’s schedule is quite tight. However,
resources are more flexible, since project team members have offered to work
overtime if necessary to get the job done, especially since this project is
considered to be crucial to the long-term success of the organization.

The project’s lifecycle can be evolutionary, consisting of several basic three-phase
waterfall models comprising design, coding and testing. Hence the project consists of
design-coding-testing cycles executed one after another. Of course, this is done per
module, hence the project lifecycle will be a set of design-coding-testing cycles
executed both sequentially and in parallel. Needless to say, since all the modules are
supposed to interact with each other, there will also be dependencies/interactions
among the 3-phase cycles corresponding to the modules. A representation of the
project, for two parallel but interdependent modules, and for one cycle in the overall
evolutionary lifecycle, is given in Fig.3 below. Please note the two arrows originating
from transitions in Module #2 and ending in places in Module #1 - they depict the
dependencies/interactions among the two 3-phase cycles.

107

Fig.3

i

o

design

coding

testing

Module
#1

Module
#2

Release readiness review

108

6.1 Planning Algorithm Implementation

The first step in planning the ABC project, is to identify the following, as per the
OCP algorithm:
• Object Classes: The object classes for our example, are the following
Ø Project Manager
Ø Engineer
Ø Project Quality Interface (he/she is the individual who interfaces with the

central SEPG and SQA groups, and helps the PM in coordinating the SEPG
and SQA functions in the project team)

• Objects: The objects in the ABC project, are the Project Manager (PM) and the 4
engineers

• Invariants: There are certain invariants on the activities in the ABC project.
Some of them are:
Ø All the activities in any 3-phase cycle will have to be executed sequentially
Ø Certain dependency invariants exist between modules, which are depicted as

constraints. For example, Module #1 cannot be completed until the interface
of Module #2 is completed, since Module #2 needs to interact with Module
#1 using the interface

Ø We can (and in fact, we should) also have invariants derived from historical
data from past projects in a historical database [3]; this helps during planning
and scheduling, since it minimizes the combinatorial explosion

• Operators: These are essentially the activities executed by the project team,
which changes the substates of each of the artifacts in the project

• Predicates: Predicates are used to denote preconditions and postconditions of an
activity. For example, for a coding activity for a module in any 3-phase cycle to
start, the following could be the preconditions:
Ø The design should have been completed, reviewed and baselined
Ø The module's interface dependencies with all other modules are also part of

the design which has been reviewed and baselined

The postconditions could be the following:
Ø The code has been reviewed and baselined
Ø The code is consistent with the design at the time of coding

• Substates: The substate of the project at any given time, is the substate of its
encoded TCPN representation

Basically, the planning algorithm can be implemented as explained in Section 3.2.
We start with the design activity in any module (which is an object in our adapted
OCP algorithm), and check the extent to which it meets the goal conditions. We note
the difference between the goal conditions and the current state of the module, and

109

select an operator (or operator sequence) that reduces the difference. In this case,
there could be several operators to choose from (i.e., one or all of the following):
• Coding the module
• Developing the interface to the other modules in the system
• Leaving this module as it is, and designing and/or coding any other module

In case no operator is applicable, we choose the one that generates the weakest
precondition (i.e., the operator that violates the predicates the least) and it is used to
open a new node in our search space.

So far, we have not mentioned risk management in this planning exercise. Some
possible risks to this project are:
• Sudden changes in customer requirements
• Attrition
• Lack of understanding of the domain, which could render the planning estimates

useless

These risks are modeled using the modified Riskit methodology described in
Section 3.3. This can be done by adding alternate paths in the completed TCPN after
the planning algorithm is implemented.

6.2 Scheduling Algorithm Implementation

As explained in Section 4.1, we assume that a preliminary schedule exists, and we
select the clique-based approach. The search procedure is essentially the one
described in [4], and involves generation of the reachability graph. The Possible
Intersection Graphs (PIG) and Definite Intersection Graphs (DIG) are used in order to
curtail the size of the reachability graph, as described in Section 4.1.

6.3 Handling Adaptivity

6.3.1 Replanning

Due to the evolutionary nature of the ABC project, it is clear that change is a constant
in this project. Since software development is a multi-dimensional activity, the
following are some of the changes encountered by the team:
• The customer reorders the priority of certain modules in the system, thus forcing

the project team to replan and reschedule from where they were before the
reordering

• One of the team members falls ill and is absent for a week, forcing others to
make up for this loss. This may not cause a replanning per se, but causes a
rescheduling of activities among the existing team members, which in turn results
in replanning the activities that the sick team member is supposed to accomplish

110

• The organizational SQA group announces an unscheduled audit, due to a
directive from senior management; this results in significant replanning and
rescheduling, since even the 10% overtime is not sufficient for the audit

We will illustrate the first change, i.e., customer reordering, only. In this case, the
OCP algorithm must be re-implemented from the stage when the change was ordered.
There are essentially three cases here:
• Completed activities: since these activities have already been completed, the

postconditions of these activities can be used as preconditions for future activities
that will be planned

• Activities yet to be started: these will be invalidated by the reordered priorities,
since they should be replanned afresh

• Activities in progress: the fate of these activities has to be decided after the
replanning is done. If these activities are to be executed (i.e., if the operator
sequence contains these activities), then the project team can simply continue
where they left off and complete these activities. Otherwise, the activities will
have to be scrapped in favor of the new set of activities.

6.3.2 Rescheduling
In the case of rescheduling, the reachability graph needs to be modified from the

"starting stage" to the "ending stage", as explained in Section 5. This will also involve
modifying the PIGs and DIGs for those resource that are affected. Once again, there
are three cases:
• Resources that are not needed between the "starting" and "ending stages" ; the

constraints on the state of the reachability graph at the "starting stage" for these
resources remain unchanged

• Resources that are yet to be used : these will be invalidated by the change, and
will have to rescheduled afresh

• Resources that are in the process of being used: here, the extent to which these
resources have to be reassigned, will depend on the extent of the scheduling
change. Some of the activities being executed by these resources may need to be
modified - this may in turn trigger a replanning, depending on the effect it will
have on the currently running set of activities (i.e., operator sequence as
mentioned in Section 6.3.1).

7.0 Conclusions and Future Work

In this paper, we presented a Timed Colored Petri Net (TCPN) formalism for
representing processes in software projects. We also showed how planning and
scheduling algorithms from outside the Petri Net community can be incorporated into
our formalism, thereby enhancing the power and usefulness of our formalism. We
have also shown how this can also serve as an Adaptive Planning and Scheduling
architecture, by aligning it with an adaptive process framework from [1]. We have
also illustrated the algorithms with a real-life example from a software project.
Although this paper has not described the TCPN formalism itself in any detail, we

111

believe that our major contribution is that we have shown how planning and
scheduling algorithms from outside the Petri Net or Software Engineering
Community can be used to plan and schedule software processes using Petri Nets.

Our paper brings up several avenues for future work:
• Efficient implementation of our idea, and experimentation with several real-life

examples
• A more mathematically rigorous characterization of software processes,

including deriving properties similar to those derived in [5] for workflow nets.
Also, since Petri Nets are most suited for performance modeling, another open
issue is how to appropriately model and analyze the performance of software
processes, perhaps using stochastic models [14].

• Modeling of our TCPN formalism in a distributed environment, and
implementation thereof; that is, distributing portions of the TCPN and its
associated planning and scheduling algorithms among different servers, and the
coordination issues resulting therein. Also, how can our ideas be embedded into
an agent-based environment such as the one described in [13], where the TCPN
for each agent (which will describe the agent's execution methodology) can
dynamically adapt to changed circumstances. This also brings up the issue of
implementing adaptive planning and scheduling (as in Section 5) among
distributed servers. A beginning has been made in [11], but more remains to be
done.

8.0 Acknowledgments

The authors wish to acknowledge Akshya Prakash, Padma Ravichander and V.S.
Subrahmanyam for supporting their work.

References

[1] N.C. Narendra, “Adaptive Workflow Management – An Integrated Approach
and System Architecture,” ACM Symposium on Applied Computing 2000, to appear

[2] N.C. Narendra, “Goal-based and Risk-based Creation of Adaptive Workflow
Processes,” American Association for Artificial Intelligence (AAAI) Spring
Symposium 2000, to appear

[3] Rajesh Bhave and N.C. Narendra “An Innovative Strategy for Organizational
Learning,” World Congress on Total Quality (WCTQ) 2000

[4] W.M.P. van der Aalst, "Petri Net Based Scheduling," Computing Science
Reports 95/23, Eindhoven University of Technology, Eindhoven, 1995, also available
from http://wwwis.win.tue.nl/~wsinwa/orspec.ps

[5] W.M.P. van der Aalst, "How to Capture Dynamic Change and Management
Information? An Approach Based on Generic Workflow Models," Technical Report,
UGA-CS-TR-99-01, University of Georgia, Department of Computer Science,
Athens, USA, 1999, also available from http://wwwis.win.tue.nl/~wsinwa/genwf.ps

112

[6] W.M.P. van der Aalst, "Petri-net-based Workflow Management Software", In
A. Sheth, editor, Proceedings of the NFS Workshop on Workflow and Process
Automation in Information Systems, pages 114--118, Athens, Georgia, May 1996.

[7] Ellis, C., Keddara, K., and Wainer, J., "Modeling Workflow Dynamic Change
Using Timed Hybrid Flow Nets", Proceedings of the Petri Net Workshop on
Workflow Management: Net Based Concepts, Models, Techniques and Tools, June
1998.

[8] D.E. Kitchin and T.L. McCluskey, "Object-Centered Planning," 15th
Workshop of the UK Planning and Scheduling Special Interest Group, Liverpool John
Moores University, Liverpool 1996; available from
ftp://helios.hud.ac.uk/pub/artform/sig_96.ps

[9] A. Cesta, A. Oddi and S.F. Smith, "Scheduling Multi-Capacitated Resources
under Complex Temporal Constraints," Technical Report CMU-RI-TR-98-17,
Robotics Institute, Carnegie-Mellon University, 1998; available from
http://www.cs.cmu.edu/afs/cs/project/ozone/www/PCP/publications/cl-pro-
techrpt.html

[10] C. Cheng and S.F. Smith, "Generating Feasible Schedules under Complex
Constraints," in Proceedings of 12th National Conference on AI (AAAI-94), 1994.

[11] T. Bauer and P. Dadam, "Efficient Distributed Control of Enterprise-Wide and
Cross-Enterprise Workflows," Proceedings Workshop Enterprise-wide and Cross-
enterprise Workflow Management: Concepts, Systems, Applications, 29.
Jahrestagung der GI (Informatik '99), S. 25 - 32, 1999; available from
http://www.informatik.uni-ulm.de/dbis/papers/1999/BaDa99a.pdf

[12] J. Kontio, D. Getto and D. Landes, "Experiences in improving risk
management processes using the concepts of the Riskit method," available from
http://mordor.cs.hut.fi/~jkontio/fse6-rm.pdf

[13] Q. Chen, P. Chundi, U. Dayal and M. Hsu, "Dynamic Agents", International
Journal of Cooperative Information Systems, 1998

[14] M. Silva and J. Campos, "Structural Performance Analysis of Stochastic Petri
Nets," In Procs. IEEE Intern. Computer Performance and Dependability Symp., pp.
61-70, Erlangen, Germany, April 1995; available from
http://www.cps.unizar.es/~jcampos/

113

114

Towards Modelling and Veri�cation of

Concurrent Ada Programs

Using Petri Nets

A. Burns1, A.J. Wellings1, F. Burns2, A.M. Koelmans2

, M. Koutny2, A. Romanovsky2, and A. Yakovlev2

1 Real-Time Systems Research Group

Department of Computer Science

University of York, U.K.
2 Asynchronous Systems Laboratory

Department of Computing Science

University of Newcastle upon Tyne, U.K.

Abstract. Ada 95 is an expressive concurrent programming language

with which it is possible to build complex multi-tasking applications.

Much of the complexity of these applications stems from the interactions

between the tasks. This paper argues that Petri nets o�er a promising,

tool-supported, technique for checking the logical correctness of the task-

ing algorithms. The paper illustrates the e�ectiveness of this approach

by showing the correctness of an Ada implementation of the atomic ac-

tion protocol using a variety of Petri net tools, including PED, PEP and

INA for P/T nets and Design/CPN for Coloured Petri nets.

1 Introduction

As high-integrity systems become more sophisticated, the resulting complexity
is easier to manage if the applications are represented as concurrent processes
rather than sequential ones. Inevitably, the introduction of concurrency brings
problems of process interaction and coordination. In trying to solve these prob-
lems, language and operating system researchers have introduced new high-level
programming constructs. These design abstractions are often closely related to
the speci�c domain being addressed. For example, in the world of software fault-
tolerance, the notion of conversations [24] and atomic actions [11, 19] are in-
troduced to facilitate the safe and reliable communication between a group of
processes in the presence of hardware and software failures, in addition to pro-
viding a structuring technique for such systems. Research languages such as
Concurrent Pascal have been used as the basis for experimentation [18], or a set
of procedural extensions or object extensions have been produced. For exam-
ple, Arjuna uses the latter approach to provide a transaction-based toolkit for
C++ [29]. However, it is now accepted that the procedural and object exten-
sions are unable to cope with all the subtleties involved in synchronisation and
co-operation between several communicating concurrent processes.

115

The main disadvantage of domain-speci�c abstractions is that they seldom
make the transition into general-purpose programming languages or operating
systems. For example, no mainstream language or operating systems supports
the notion of a conversation [9]. The result is that all the hard-earned research
experience is not promulgated into industrial use.

If high-level support is not going to be found in mainstream languages,
the required functionality must be programmed with lower-level primitives that
are available. For some years now we have been exploring the use of the Ada
programming language as a vehicle for implementing reliable concurrent sys-
tems [32]. The Ada 95 programming language de�nes a number of expressive
concurrency features [1]. Used together they represent a powerful toolkit for
building higher-level protocols/design abstractions that have wide application.
For example, [32] recently showed how Ada 95 can be used to implement Atomic
Actions. And, as such an abstraction is not directly available in any current pro-
gramming language, this represents a signi�cant step in moving these notions
into general use. An examination of this, and other applications, shows that a
number of language features are used in tandem to achieve the required result.
Features include:

{ Tasks - basic unit of concurrency.
{ Asynchronous Transfer of Control (ATC) - an asynchronous means of a�ect-
ing the behaviour of other tasks.

{ Protected Types - abstract data types whose operations are executed in
mutual exclusion, and which supports condition synchronisation.

{ Requeue - a synchronisation primitive that allows a guarded command to
be prematurely terminated with the calling task placed on another guarded
operation.

{ Exceptions - a means of abandoning the execution of a sequential program
segment.

{ Controlled types - a feature that allows manipulation of object initialisation,
�nalisation and assignment.

The expressive power of the Ada 95 concurrency features is therefore clear.
What is not as straightforward is how to be con�dent that the higher-level
abstractions produced are indeed correct. As a number of interactions are asyn-
chronous this presents a signi�cant veri�cation problem. The idea of veri�cation
using Model Checking with a �nite state model (FSM) of an Ada program was
�rst presented in [10]. This method constructed a set of FSMs of individual
tasks interacting via channels, and applied analysis of the interleaving seman-
tics of the product of FSMs using the software tool Uppaal. In this paper, we
investigate a complementary approach based on Petri nets and their power to
model causality between elementary events or actions directly. This can be ad-
vantageous for asynchronous nature of interactions between tasks. Petri nets,
both ordinary [26] and high level (e.g. coloured nets [17]) o�er a wide range of
analysis tools to model and verify the logical correctness according to two cru-
cial kinds of properties: (i) safety - an incorrect state cannot be entered (from

116

any legal initial state of the system); and (ii) liveness - a desirable state will be
entered (from all legal initial states of the system).

Petri nets have generally been applied to the veri�cation of Ada programs,
e.g. [28, 23, 8]. This work has mostly been focused on the syntactic extraction
of Petri nets from Ada code in such a way that the veri�cation of properties,
such as deadlock detection, could be done more eÆciently. To alleviate state
space explosion techniques like structural reduction [28] and decomposition [23]
of `Ada nets' have been proposed.

Our research is based on applying Petri nets to model concurrent Ada code,
and using Petri nets tools, such as PEP and Design/CPN, to verify its correct-
ness. However, we propose to deal with the unavoidable complexity of the result-
ing programs within a compositional approach employing a versatile library of
design abstractions with well understood and formally veri�ed properties. Con-
�dence in the abstraction can be signi�cantly increased and the development
activity itself supported by modelling, simulation and analysis of the dynamic
behaviour of the Petri net model; the behaviour can be analysed either by ex-
ploring the set of reachable states of the net or its partial order semantics, such
as the unfolding pre�x. This library can then be used to tackle the veri�cation
of complex designs. Thus, while we are ultimately interested in eÆcient model
checking too, the main focus of this paper is on the semantic modelling of salient
task interaction mechanisms from Ada 95. To the best of our knowledge, there
has been no attempt of using Petri nets to analyse Ada 95 models of Atomic Ac-
tions, particularly with ATC and exceptions. However, some work on analysing
Ada 95 programs (with ATC, protected objects, and requeue statement) with
Petri nets has been recently reported in [15].

This paper is organised as follows. An introduction to model checking based
on Petri nets is given in the next section. We use our existing study of Atomic
Actions to illustrate the adopted procedure. A simple model is introduced in
Section 3 and its re�nement in Section 4. Conclusions are presented in Section 5.

2 Model Checking using Petri Nets

Model checking is a technique in which the veri�cation of a system is carried out
using a �nite representation of its state space. Basic properties, such as absence
of deadlock or satisfaction of a state invariant (e.g. mutual exclusion), can be
veri�ed by checking individual states. More subtle properties, such as guarantee
of progress, require checking for speci�c cycles in a graph representing the states
and possible transitions between them. Properties to be checked are typically
described by formulae in a branching time or linear time temporal logic [13].

The main drawback of model checking is that it su�ers from the combina-
torial explosion problem. That is, even a relatively small system speci�cation
may, and often does, yield a very large state space which despite being �nite re-
quires computational power for its management beyond the e�ective capability
of available computers. To help cope with the state explosion problem a num-
ber of techniques have been proposed which can roughly be classi�ed as aiming

117

at implicit compact representation of the full state space of a reactive concur-
rent system, or at an explicit representation of a reduced, yet suÆcient, state
space of the system. Examples of the former are algorithms based on the bi-
nary decision diagrams (BDDs) [7]. Techniques aimed at reduced representation
of state spaces are typically based on the independence of some actions, which
is a characteristic feature of reactive concurrent systems, often relying on the
partial order view of concurrent computation. Brie
y, in a sequential system,
it is the actual order of the execution of individual actions which is usually of
importance, whereas in a concurrent system the actual order in which, say, two
messages were sent and then received may be irrelevant to the correctness of the
whole system. Examples include partial order veri�cation [16, 21] and stubborn
set method [31]. The partial order view of concurrent computation is also the
basis of the algorithms employing McMillan's unfoldings [14], where the entire
state space is represented implicitly using an acyclic directed graph representing
system's actions and local states.

Model checking is a technique that requires tool support. For Petri nets,
there are many tools of di�erent maturity available. These tools are categorised
according to many parameters [33]. In our study, we used three relatively ma-
ture tools. One is PEP [2, 3], which uses ordinary Place/Transition nets and a
number of model checking methods, such as reachability analysis and unfold-
ing pre�x. The second one is INA (Integrated Net Analyzer) [27]. The third is
Design/CPN [34], which is based on the Coloured Petri nets and has extensive
facilities for simulation and occurrence (reachbility) graph analysis.

2.1 The PEP Tool

The PEP tool [2, 3, 22] provides a modelling and veri�cation environment based
on Petri nets, however, its principal method of inputting large designs is to use a
simple concurrent programming language. The tool compiles a program into an
internal representation in terms of a 1-safe Petri net which can then be veri�ed
for correctness using a variety of techniques, including ones supported by other
model checking tools, such as SPIN or SMV. The relevant correctness properties,
can be speci�ed in a general-purpose logic notation, such as CTL* or S4. The
PEP system incorporates model checkers based on unfolding and structural net
theory.

The PEP tool's additional advantage is that it is based on a compositional
Petri net model, both P/T-net based and high-level net based [4{6]. It therefore
provides a sound ground to develop a compositional model supporting design
abstractions.

2.2 The INA Tool

The INA tool is an interactive analysis tool which incorporates a large number
of powerful methods for analysis of P/T nets. These methods include analysis of:
(i) structural properties, such as state-machine decomposability, deadlock-trap
analysis, T- and P-invariant analysis, structural boundedness ; (ii) behavioural

118

properties, such as boundedness, safeness, liveness, deadlock-freeness, dynamic
con
ict-freenes; (iii) speci�c user-de�ned properties, such as those de�ned by
predicates and CTL formulas and traces to pre-de�ned states. These analyses
employ various techniques, such as linear-algebraic methods (for invariants),
reachability and coverability graph traversals, reduced reachability graph based
on stubborn sets and symmetries.

The INA tool uses a combination of interactive techniques, where the user is
prompted for various speci�cations and queries, and �le-processing techniques.
The basic Petri net �le format is compatible with other tools, such as PED and
PEP, using Petri net graphical editors.

2.3 The Design/CPN Tool

Coloured Petri Nets (CP-nets) are an extension of the basic Petri Net model [17].
A CP-net model consists of a collection of places, transitions, and arcs between
these places and transitions. The model contains tokens that
ow around the
model and are stored in the places. The essential feature of CP-nets is that
they allow complex data types, i.e. objects, to be attached to the tokens. These
objects contain attributes re
ecting the system being modelled. The
ow of
the tokens is determined by so called guards, which are conditions, attached to
the arcs of the model, that determine whether a transition is allowed to �re.
These guards therefore determine the dynamic behaviour of the model; they
allow sophisticated behavioural properties to be modelled. The only software tool
currently capable of simulating and analysing CP-Net models and generating an
executable code (in the ML programming language) is Design/CPN [34]. In the
Design/CPN system, guards are speci�ed in ML. Crucially, Design/CPN allows
entry of hierarchical models, which greatly aids in the understanding of complex
models.

3 Model of Simple Atomic Actions

3.1 Atomic Actions

An atomic action is a dynamic mechanism for controlling the joint execution of
a group of tasks such that their combined operation appears as an indivisible

actions [19, 25]. Essentially, an action is atomic if the tasks performing it can
detect no state change except those performed by themselves, and if they do not
reveal their state changes until the action is complete. Atomic actions can be
extended to include forward or backward error recovery. In this paper we will fo-
cus only on forward error recovery using exception handling [11]. If an exception
occurs in one of the tasks active in an atomic action then that exception is raised
in all processes active in the action. The exception is said to be asynchronous
as it originates from another process.

119

3.2 Atomic Actions in Ada

To show how atomic actions can be programmed in Ada [32], consider a simple
non-nested action between, say, three tasks. The action is encapsulated in a
package with three visible procedures, each of which is called by the appropriate
task. It is assumed that no tasks are aborted and that there are no deserter
tasks [18].

package simple_action is

procedure T1(params : param); -- from Task 1

procedure T2(params : param); -- from Task 2

procedure T3(params : param); -- from Task 3

end simple_action;

The body of the package automatically provides a well-de�ned boundary,
so all that is required is to provide the indivisibility. A protected object, Con-
troller, can be used for this purpose. The package's visible procedures call the
appropriate entries and procedures in the protected object.

The body of the package is given below.

with Ada.Exceptions; use Ada.Exceptions;

package body action is

type Vote_T is (Commit, Aborted);

protected controller is

entry Wait_Abort(E: out Exception_Id);

entry Done;

entry Cleanup (Vote : Vote_t; Result : out Vote_t);

procedure Signal_Abort(E: Exception_Id);

private

entry Wait_Cleanup(Vote : Vote_t; Result : out Vote_t);

Killed : boolean := False;

Releasing_cleanup : Boolean := False;

Releasing_Done : Boolean := False;

Reason : Exception_Id;

Final_Result : Vote_t := Commit;

informed : integer := 0;

end controller;

-- any local protected objects for communication between actions

protected body controller is

entry Wait_Abort(E: out Exception_id) when killed is

begin

E := Reason;

informed := informed + 1;

if informed = 3 then

Killed := False;

120

informed := 0;

end if;

end Wait_Abort;

entry Done when Done'Count = 3 or Releasing_Done is

begin

if Done'Count > 0 then

Releasing_Done := True;

else

Releasing_Done := False;

end if;

end done;

entry Cleanup (Vote: Vote_t;

Result: out Vote_t) when True is

begin

if Vote = Aborted then

Final_result := Aborted;

end if;

requeue Wait_Cleanup with abort;

end Cleanup;

procedure Signal_Abort(E: Exception_id) is

begin

killed := True;

reason := E;

end Signal_Abort;

entry Wait_Cleanup (Vote : Vote_t; Result: out Vote_t)

when Wait_Cleanup'Count = 3 or Releasing_Cleanup is

begin

Result := Final_Result;

if Wait_Cleanup'Count > 0 then

Releasing_Cleanup := True;

else

Releasing_Cleanup := False;

Final_Result := Commit;

end if;

end Wait_Cleanup;

end controller;

procedure T1(params: param) is

X : Exception_ID;

Decision : Vote_t;

begin

select

Controller.Wait_Abort(X);

raise_exception(X);

then abort

begin

121

-- code to implement atomic action

Controller.Done; --signal completion

exception

when E: others =>

Controller.Signal_Abort (Exception_Identity(E));

end;

end select;

exception

-- if any exception is raised during

-- the action all tasks must participate in the recovery

when E: others =>

-- Exception_Identity(E) has been raised in all tasks

-- handle exception

if handled_ok then

Controller.Cleanup(Commit, Decision);

else

Controller.Cleanup(Aborted, Decision);

end if;

if Decision = Aborted then

raise atomic_action_failure;

end if;

end T1;

procedure T2(params : param) is ...;

procedure T3(params : param) is ...;

end action;

Each component of the action (T1, T2, and T3) has identical structure. The
component executes a select statement with an abortable part. The triggering
event is signalled by the controller protected object if any component indicates
that an exception has been raised and not handled locally in one of the com-
ponents. The abortable part contains the actual code of the component. If this
code executes without incident, the controller is informed that this component
is ready to commit the action.

If any exceptions are raised during the abortable part, the controller is in-
formed and the identity of the exception passed.

If the controller has received noti�cation of an unhandled exception, it re-
leases all tasks waiting on theWait Abort triggering event (any task late in arriv-
ing will receive the event immediately it tries to enter into its select statement).
The tasks have their abortable parts aborted (if started), and the exception is
raised in each task by the statement after the entry call to the controller. If the
exception is successfully handled by the component, the task indicates that it is
prepared to commit the action. If not, then it indicates that the action must be
aborted. If any task indicates that the action is to be aborted, then all tasks will

122

raise the exception Atomic Action Failure. Figure 1 shows the approach using a
simply state transition diagram.

Executing and
waiting for an abort

Signal abort
Action component

done
Abort triggered and
Raising an exception

Exception handled

Waiting cleanup

Enter Action

Exit Action Failed Exit Action Normally

Fig. 1. Simple state transition diagram illustrating Atomic Action with forward error

recovery for the system with two tasks

3.3 Modelling the Ada Implementation in P/T nets

We now consider Petri nets for this Ada code. For the sake of simplicity, we
consider only two tasks here. We �rst look at ordinary P/T nets, i.e. nets without
token typing. Each of the client tasks will have an identical PN, specialised only
in its labelling of transitions and places. The controller will also be modelled
as a single Petri net. Graphical capturing of Petri nets is done using Petri net
editor PED [20], which allows hierarchical and fragmented construction of P/T
nets, and export to an extensive range of formats including those accepted by
analysis tools such as PEP and INA. Figure 2 presents the task model (a) and
the controller model (b).

Places and transitions which are not shaded, such as start1 and arr1 are
individual for the task net (we show the net for Task 1). Those places and
transitions which are shaded are so called logical places and transitions { they
are used to interconnect subnets to form larger nets. In other words, by declaring
places or transitions in di�erent subnets as logical, we virtually merge such places
and transitions in the overall net provided that they have the same label, e.g.
waitAbort and sigAbort1. Note that the net models use test or read-only arcs,

123

commitAll
doneAll

abortAll

restart12

sendAbComm1

restart11

sendComm1sendAbort1

except12

sigAbort1

except11
done1

arr1

voteAbort

voteNotAbort

noIntTasks

Killed

notKilled

waitAbort

fail1success1

voted1

handling1

locDone1

comp1

start1

2

2

sigAbort2sigAbort1

doneAll

abortAll

commitAll

sync

voteAbort

voteNotAbort

start

synced

noIntTasks

Killed

notKilled

waitAbort

Fig. 2. P/T net models: (a) Task model (b) Controller model

which are represented graphically by arcs with a black dot at the transition end,
and weighted arcs. The former are used to show the fact that transitions in the
task net can test the state of shared variable, such as Killed , which is modelled
by two complementary places notKilled and Killed in the controller net.

Our basic idea of modelling the Ada code for the Atomic Action behaviour
with P/T nets is as follows. We represent states of each task as unshaded places
and key actions local to the task as unshaded transitions. Arriving in the Atomic
Action by the task is represented by transition arr1. This also generates a token
in the place waitAbort, which belongs to the controller and counts the number of
tasks that have actually entered the Atomic Action. The place labelled comp1

corresponds to the state of the task in which the task performs normal compu-
tation. From this state the task may either: (a) execute transition done1 and go
to the Local Done state of normal completion of the action (place locDone1),
or (b) it may raise an exception by �ring transition sigAbort1 (this corresponds
to executing the Signal Abort procedure, which switches the state of the Killed

ag from false to true { a token is toggled from place notKilled to Killed), or
(c) it may be forced to go to the Error-Handling state (place handling1), either
from the Normal Computation state or from the the Local Done state because
of some tasks (including itself) has raised an exception, in which case transition
except12 will be �red.

Subsequent action of the task depends on whether the task ends in the Local
Done or in the Error-Handling state. If the former, the task provides a condi-
tion for the controller to �re a shared transition doneAll (corresponding to the

124

execution of the Done entry by all tasks). If the task is in the Error-Handling
state, it handles the exception, and, depending on the result of the handling,
votes either for Action Commit or Action Abort.

The voting mechanism used in Atomic Actions allows one task voting for
Abort to force the entire operation into Failure. In our Petri net model, this is
achieved by using three transitions sendAbort1, sendComm1 or sendAbComm1,
individual to the task. These transitions are connected to two complementary
places voteNotAbort and voteAbort in the controller net. Initially, when the vot-
ing begins, a token is assumed to be placed into place voteNotAbort. While none
of the tasks vote for Abort, the token remains in this place, and if the task votes
for Commit, which corresponds to the handling ok
ag being set in the task,
transition sendComm1 �res due to the reading arc from place voteNotAbort. As
soon as one of the tasks votes for Abort, transition sendAbort1 is �red, which tog-
gles the token from voteNotAbort to voteAbort in the controller. This corresponds
to assigning the state of the global
ag Final result to aborted in the Cleanup

entry. After that, in all tasks, regardless of their individual voting, transition
sendAbComm1 will �re due to the reading arc from place voteAbort.

Voting is complete when the task is in the state where it is ready to check the
value of the decision
ag. This corresponds to a token in the voted1 place. At
this point all tasks synchronise on �ring shared transitions commitAll or abortAll,
which are respectively preconditioned by the controller's places voteNotAbort

and voteAbort. If the former �res it puts a token in the local success1 place,
otherwise the local fail1 is marked. The task subsequently �res one of the two
possible restart transitions which corresponds to bringing the task to the state
where it is ready to execute the Atomic Action again.

Using the PED tool we constructed the model of the system from the task and
controller fragments. Once the appropriate places and transitions are merged the
actual behavioural interaction between task and controller is achieved through
the following two main mechanisms:

{ (i) synchronisation on shared transitions, which is similar to rendez-vous
(blocking) synchronisation, and

{ (ii) communication via shared places, which is similar to asynchronous (non-
blocking) communication.

3.4 Veri�cation of the P/T-net model

This P/T net model of the Ada code can be exported from PED to analysis
tools, such as INA or PEP. We used PEP, in which we could simulate the token
game and perform reachabilty analysis to verify by Model Checking the key
properties of the algorithm. First, if `Task1' is in place success1 then it must not
be possible for any of the other tasks (say 2) to be in fail2. This is presented to
the reachability analysis tool by the following logic statement:

success1,fail2

125

This test gives the <NO> result, i.e. such a marking in which these two places
are marked is not reachable.

Similarly, to the test for reachability of a marking in which both tasks end
in success state:

success1,success2

the tool reacts with <YES> and produces:

_SEQUENCE:

arr2,done2,arr1,done1,doneAll

which is a �ring sequence leading to the global success state.

When setting the option Calculate all paths to true, the tool produces
the following list of �ring sequences:

_SEQUENCE:

arr2,done2,arr1,done1,doneAll

arr2,arr1,done2,done1,doneAll

arr1,arr2,done2,done1,doneAll

arr1,done1,arr2,done2,doneAll

arr2,arr1,done1,done2,doneAll

arr1,arr2,done1,done2,doneAll

This set, however, includes only those paths which go through the locDone

states, but not those which are the result of succcesful handling and overall
Commit voting. This is caused by the fact the system searches for all paths
satisfying the shortest length criterion.

The e�ect of a coherent error handling can be tested by:

fail1,fail2

This results in:

_SEQUENCE:

arr1,done1,arr2,sigAbort2,except21,sendAbort2,except12,sendAbComm1,sync,abortAll

arr2,arr1,done1,sigAbort2,except21,sendAbort2,except12,sendAbComm1,sync,abortAll

...

all together over 600 paths. These assertions imply inconsistency is not possible.

We have also used tool INA to verify the various behavioural (safety and
liveness) properties. The results of this analysis are:

Safety Properties:

Safe - No

Bounded - Yes

Dead State Reachable - No

Covered by Transition-Invariants - Yes

126

These results mean that several tasks can enter the controller simultane-
ously, but that the total number of tasks is bounded. All transitions belong to
a transition-invariant, which means that the net is structurally live, i.e. it is
suÆciently rich in connections to make it live.

Resettable, reversable (to home state) - Yes

Dead transitions exist - No

Live - Yes

Live and Safe - No

The computed reachability graph has 76 states.
The INA tool allows to state properties in the form of CTL (Computa-

tional Tree Logic) [12] formulas. We can formulate properties of interest, such
as whether there exists a path which leads to a state where one task ends in
success while the other in fail:

EF((P18&P21)V(P19 &P20))

Here P18 (P19) stands for success1 (success2) and P21(P20) for fail2 (fail1).
The result of the check is:

s1 sat EF((P18 &P21)V(P19 &P20)):FALSE

Another interesting property would be, whether there is a path that leads to
a state in which both tasks end in success but the
ag Killed (place P7 below)
has been set to true:

s1 sat EF(P7&(P18 &P19)): FALSE

For comparison, we have tried a modi�ed net model for a task { we omitted a
read arc leading to transition done1 which tests
ag notKilled. This modi�cation
may correspond to allowing the code for a task to be non-sequential { a task
may signal abort and at the same time pass to Local Done (the e�ect of inertia
or delay in reacting to the abort). Interestingly, such a modi�cation does not
lead to the violation of deadlock-freeness or the property of both tasks ending
either in success or fail. But for the last property above it returns:

s1 sat EF(P7 &(P18 &P19)): TRUE

4 CPN Modelling and Analysis

We modelled Atomic Actions using Coloured Petri nets (CPNs) and analysed
the model using the Design/CPN tool. The three main CPNs for the model are
shown in Figures 3, 4 and 5.

They capture the system hierarchically, as a composition of the controller
and task nets. Due to the ability of CPNs to distinguish objects by their token
colours and values, we can use the same net structure for all tasks and encode

127

VoteNA
Vote

Start_n
Task

1‘{tsk=task(1),flg=true}++
1‘{tsk=task(2),flg=true}

Wait
Abort

Wait

NotKilled
Wait s

Killed
Wait

NoIntTasks
Wait LocDone_

n

Done

VoteA
Vote

Voted_n
Voted

SigAbort_
n

Wait

Tasks

H Tasks#2

Control

H Control#3

ar

wt

wt

ex

n‘sy
dn

vc

va

va1‘va++1‘vc

vt

vt

1‘da++1‘dc

ex

ex

ex

n‘dw

sy

vt

ab

vt

vt

init_task

Fig. 3. CPN model of the Atomic Action: Top Hierarchy level

Arr_n

Comp_n
Comp

SigAbort_n

Except_na Except_nb Done_n

Handlen
Handle

SendCom_n
C

SendAb_n
C

SendAbCom_
n C

SigAbort_
n

Wait
P Ou

VoteA

VoteP I/O

VoteNA

VoteP I/O

Voted_nVoted
P Ou

LocDone_
n

Done
P I/O

NoIntTasks
Wait
P Ou

Killed
Wait

P I/O

NotKilledWait
sP I/O

Wait
Abort

Wait
P I/O

Start_n
Task

1‘{tsk=task(1),flg=true}++
1‘{tsk=task(2),flg=true}

P In

ar

wt

wt

wt

ar

sn

cp cp

ex ha
dn

cp
cp

sc sa sa

vc

va
va

vt

vt

vt

ex

ex

ex

dw

aa

ex

ex

ab

Fig. 4. CPN model of Tasks

128

individual tasks simply by their token values. Another advantage of this type of
modelling is that we can parameterise a system model with n tasks and analyse it
for di�erent number of tasks by simply setting the n parameter to an appropriate
value.

The list of colour de�nitions (with parameter n = jTasksj set to 2) is:

val n=2;

color Flag = bool;

color Taskn = index task with 1..n;

color Task = record tsk : Taskn * flg : Flag;

color Signal = with s;

var ar, re, ts, cp, sn, sn_, va, vc : Task;

var ca, vt : Signal;

var ab, dw, ex, sy, wt, aa, te : Signal;

var ha, sa, sc, da, dc, dn : Task;

val init_task = 1`{tsk=task(1),flg=true}++

1`{tsk=task(2),flg=true};

Here we show the results of the analysis using Design/CPN. Most of the
statistics we produced using functions directly available from the Design/CPN
menus.

From the Statistics it can be seen that the O-graph (Occurrence Graph, i.e.
reachability graph) for n = jTasksj = 2 has 63 nodes and 114 arcs. The number
of strongly connected components (Scc-graph) are less than the O-graph nodes,
implying that an in�nite occurrence sequence exists.

Statistics

Occurrence Graph Scc Graph

Nodes: 63 Nodes: 13

Arcs: 114 Arcs: 14

Secs: 0 Secs: 0

Status: Full

For the Boundedness Properties Integer bounds are as expected. The Signal
nodes can never be more than one and the Task nodes never exceed two. We
also show some of the best Upper Multi-set Bounds to show the task and signal
distribution. The best Lower Multi-set Bounds are all empty.

Boundedness Properties

Best Integers Bounds Upper Lower

Control'Fail_n 1 1 0

Control'Killed 1 1 0

Control'LocDone_n 1 2 0

...

Best Upper Multi-set Bounds:

129

Control'Fail_n 1 1`s

Control'Killed 1 1`s

Control'LocDone_n 1 1`{tsk=task(1),flg=true}++1`{tsk=task(2),flg=true}

Control'NoIntTasks 1 2`s

...

SigAbort

Start
Wait s

Restart_nsRestart_nf

Fail_n
Test

Success_n
Test

AbortAll

[#flg va=false orelse
 #flg vc=false]

DoneAll

CommitAll

[#flg va=true andalso
 #flg vc=true]

Synced
Sync

Sync

VoteA
Vote

P In

SigAbort_
n

Wait
P In

VoteNA
Vote

P I/O

NotKilled
Wait

sP Ou

Wait
Abort

Wait
P In

Killed
Wait

P In

LocDone_
n

Done
P In

Start_n
Task

1‘{tsk=task(1),flg=true}++
1‘{tsk=task(2),flg=true}P Ou

Voted_n
Voted
P In

NoIntTasks
Wait

P In

n‘sy

sy

1‘va++1‘vc

te

te

te

te

te

1‘da++1‘dc

sy

n‘dw

sy

1‘va++1‘vc

aa

aa

ab

vt

ab

vt

vt

ca

ca

init_task init_task

Fig. 5. CPN model of Controller

The Home Properties show that it is possible to reach any marking from any
other marking in the O-graph. The Liveness Properties show there are no Dead
Markings. Some of the Fairness Properties of the O-graph are shown below.
Only Arr n is Impartial which implies that repeated cycles of the whole graph
require occurence of of �ring of this node.

Liveness Properties Fairness Properties

------------------------------- -------------------------

Dead Markings: None Control'AbortAll 1 Fair

Live Transitions Instances: Control'CommitAll 1 Fair

130

Control'DoneAll 1 Fair

Control'AbortAll 1 Control'Restart_nf 1 Fair

Control'CommitAll 1 Control'Restart_ns 1 Fair

Control'Restart_nf 1 Control'SigAbort 1 Fair

Control'Restart_ns 1 Control'Sync 1 Fair

Control'SigAbort 1 Tasks'Arr_n 1 Impartial

Control'Sync 1 Tasks'Done_n 1 Just

...

The following are examples of the testing of more speci�c properties formu-
lated as Queries to O-graph and its nodes. These queries are based on functions
that are de�ned in ML.

Function Success tests all markings in which the Success n node is active.
A function Fail can be de�ned in a similar manner.

Function

fun Success_ (s: Test) : Node list

= PredAllNodes (fn n =>

cf(s, Mark.Control'Success_n 1 n) > 0);

The following tests can be run using these functions:

Test Result

-- -------------------------------

Success_(s); val it = [29] : Node list

Fail_(s); val it = [63] : Node list

Success_(s) <> Fail_(s); val it = true : bool

length(Success_(s))+length(Fail_(s))=2; val it = true : bool

--- -------------------------------

This means that Success and Fail do occur, that they cannot occur si-
multaneously, and that there can be only one of each. All these results are as
expected.

We can test for speci�c occurrences of the Success n node (node 29) to be
activated. It shows that there are only two possible occurrences that can lead
to this happening, i.e. one from Voted causing Commitall (node 60) or Doneall
(node 20).

Functions and Tests Result

--- -------------------------------

Success_(s); val it = [29] : Node list

InNodes(29); val it = [60,20] : Node list

OutNodes(60);OutNodes(20); val it = [29] : Node list

val it = [29] : Node list

--- -------------------------------

State or occurrence 60 represents transition CommitAll being activated which
leads to Success n. State or occurrence 20 represents transition DoneAll being
activated which also leads to Success n. There are no other such occurrences.

131

Finally, the following table shows how the Occurence graph increases as the
number of Tasks is increased.

--

Size of Occurence Graph with number of Tasks

--

|Tasks| Nodes Arcs |Tasks| Nodes Arcs

--

2 63 114 5 7568 25883

3 298 689 6 39331 158444

4 1481 4220 7 207667 969677

5 Conclusion

We have shown that a relatively complicated Ada program using tasking can
be modelled and veri�ed using Petri nets (ordinary P/T nets and Coloured)
and Model Checking. This signi�cantly improves con�dence in the correctness
of higher-level abstraction such as atomic actions.

This paper is a preliminary attempt in pursuing our chosen direction of re-
search, in which we would like to develop a more comprehensive methodology
for verifying high-integrity systems built of Atomic Actions and implemented in
Ada 95.

The major new aspects of this work, which also reveal the potentially ex-
ploitable advantages of the Petri net approach over the State Machine one [10],
are:

{ Re�nement of both states and transitions;
{ Analysis of behaviour at the true concurrency and causality level;
{ High-level aspects of modelling, such as parametrisation, are possible using
high-level Petri nets.

For example, if re�nement with threads (e.g., task spawning), recursive atomic
actions, etc. were possible in the modelled systems, then Petri nets would provide
a much more eÆcient way of modelling than state machines.

We have only shown ways of modelling interaction mechanisms at the seman-
tical level. Part of the intended future work would be to develop new methods
of extracting Petri nets from the Ada 95 syntax.

Although this paper has not introduced real-time issues, the choice of tool
and modelling technique implies that the approach can be extended to a timed
Petri net approach.

References

1. Ada 95: Information technology - Programming languages - Ada. Language and

Standard Libraries. ISO/IEC 8652:1995(E), Intermetrics, Inc., 1995.

132

2. E.Best: Partial Order Veri�cation with PEP. Proc. of POMIV'96, Partial Order

Methods in Veri�cation. G. Holzmann, D. Peled, V. Pratt (eds), Am. Math. Soc.

(1997) 305-328.

3. E.Best and B.Grahlmann: PEP - more than a Petri Net Tool. Proc. of Tools and Al-

gorithms for the Construction and Analysis of Systems, 2nd International Workshop,

TACAS'96, Passau, March 1996, T. Margaria, B. Ste�en (eds). Springer-Verlag, Lec-

ture Notes in Computer Science 1055, Springer-Verlag (1996) 397-401.

4. E.Best, R.Devillers, J.Hall: The Petri Box Calculus: a New Causal Algebra with

Multilabel Communication. Advances in Petri Nets 1992, Lecture Notes in Com-

puter Science 609, Springer-Verlag (1992) 21-69.

5. E.Best, R.Devillers, and M.Koutny: Petri Nets, Process Algebras and Concurrent

Programming Languages. Lectures on Petri Nets II: Applications, Advances in Petri

Nets. Lecture Notes in Computer Science 1492, Springer-Verlag (1998) 1-84.

6. E.Best, H.Fleischhack, W.Fraczak, R.P.Hopkins, H.Klaudel and E.Pelz: M-nets: An

Algebra of High-level Petri Nets, with an Application to the Semantics of Concurrent

Programming Languages. Acta Informatica 35 (1998) 813-857.

7. R.E.Bryant: Symbolic Boolean Manipulation with Ordered Binary-decision Dia-

grams. ACM Computing Surveys 24 (1992) 293-318.

8. D.Buchs, C.Bu�ard and P.Racloz: Modelling and Validation of Tasks with Algebraic

Structured Nets. Proc. of Ada in Europe'95, Lecture Notes in Computer Science

1031, Springer-Verlag (1995) 284-297.

9. A.Burns and A.J.Wellings: Real-Time Systems and Programming Languages (Sec-

ond edition) Addison Wesley (1996).

10. A.Burns and A.J.Wellings: How to Verify Concurrent Ada Programs - The Appli-

cation of Model Checking. Ada Letters, Volume XIX, Number 2 (1999) 78-83.

11. R.H.Campbell and B.Randell: Error Recovery in Asynchronous Systems. IEEE

Transactions on Software Engineering SE-12 (1986) 811-826.

12. E.M.Clarke and E.A. Emerson: Synthesis of synchronization skeletons for branch-

ing time temporal logic. In Dexter Kozen, editor, Logic of Programs: Workshop,

LNCS, vol. 131, Springer-Verlag, 1981.

13. E.M.Clarke and J.Wing: Formal Methods: State of the Art and Future Directions.

Report, Carnegie Mellon University (June 1996).

14. J.Esparza: Model Checking Based on Branching Processes. Science of Comp. Prog.

23, 151-195 (1994).

15. R.K. Gedela and S.M. Shatz. Modeling of advanced tasking in Ada-95: a Petri

net perspective. Proc. 2-nd Int. Workshop on Software Engineering for Parallel and

Distributed Systems (PDSE'97), Boston, MA, pp. 4-14 (May 1997).

16. P.Godefroid and P.Wolper: A Partial Approach to Model Checking. Information

and Computation, 110(2), 305-326 (1994).

17. K.Jensen:Coloured Petri Nets. Basic Concepts. EATCSMonographs on Theoretical

Computer Science (1992).

18. K.H.Kim: Approaches to Mechanization of the Conversation Scheme Based on

Monitors. IEEE Transactions on Software Engineering SE-8 (1982) 189-197.

19. D.B.Lomet: Process Structuring, Synchronisation and Recovery using Atomic Ac-

tions. Proc. of ACM Conference Language Design for Reliable Software. SIGPLAN

(1977) 128-137.

20. PED. http://www-dssz.Informatik.TU-Cottbus.DE/~wwwdssz/ { the home page

of PED (a Hierachical Petri Net Editor).

21. D. Peled: Combining Partial Order Reductions with On-the-
y Model-checking.

Formal Methods in Systems design 8(1), 39-64 (1996).

133

22. PEP. http://www.informatik.uni-hildesheim.de/~pep/HomePage.html { the

home page of PEP (a Programming Environment Based of Petri Nets).

23. M. Pezze, R.N. Taylor and M. Young: Graph Models for Reachability Analysis of

Concurrent Programs. ACM Transactions on Software Engineering and Methodol-

ogy 4/2 (April 1995) 171-213.

24. B. Randell: System Structure for Software Fault Tolerance. IEEE Trans. on Soft-

ware Engineering 1(2) 220-232 (1975).

25. B. Randell, P. Lee and P. Treleaven: Reliability issues in computing systems design.

ACM Computing Surveys 10(2): 123-165 (1978).

26. W.Reisig: Petri Nets. An Introduction. Springer-Verlag, EATCS Monographs on

Theoretical Computer Science Vol.3, (1985).

27. S. Roch and P.H. Starke: INA: Integrated Net Analyzer, Version 2.2, Manual

Humboldt-Univerit�at zu Berlin, Instutut f�ur Informatik, April 1999.

28. S.M. Shatz, S. Tu, T. Murata and S. Duri: An Application of Petri Net Reduc-

tion for Ada Tasking Deadlock Analysis. IEEE Trans. on Parallel and Distributed

Systems 7 (12), 1309-1324 (December 1996).

29. S.K.Shrivastava, G.N.Dixon and G.D.Parrington: An Overview of the Arjuna Dis-

tributed Programming System. IEEE Software 8 (1991) 66-73.

30. S.Tu, S.M.Shatz and T.Murata: Theory and Application of Petri Net Reduction for

Ada-Tasking Feadlock Analysis. TR 91-15, EECS Dept., Univ. of Illinois, Chicago

(1991).

31. A.Valmari: The State Explosion Problem. Lectures on Petri Nets II: Applications,

Advances in Petri Nets. Lecture Notes in Computer Science 1492, Springer-Verlag

(1998) 429-528.

32. A.J.Wellings and A.Burns: Implementing Atomic Actions in Ada 95, IEEE Trans-

actions on Software Engineering 23 (1996) 107-123.

33. The Home page of Petri net Tools on the Web:

http://www.daimi.aau.dk/~petrinet/tools/

34. The Home page of the Design/CPN tool: http://www.daimi.au.dk/designCPN/

134

COALA: A Design Language for Reliable Distributed
Systems Engineering

Julie Vachon1, Nicolas Guelfi 2

1 Swiss Federal Institute of Technology,Programming Methods Laboratory,
1015 Lausanne Ecublens, Switzerland

email: Julie.Vachon@epfl.ch
2 Luxembourg University of Applied Science, Software Engineering Competence Center,

L-1359 Luxembourg-Kirchberg, Luxembourg
email: Nicolas.Guelfi@ist.lu

Abstract This paper presents COALA, a language for the formal design of fault
tolerant distributed systems. Advanced transaction models have already proved
their interest for the design of reli able distributed systems. Unfortunately, these
models often consist in low level algorithmic approaches which are not enough
rigorously defined nor supported by a development methodology. In the field of
formal approaches for distributed systems, we believe that effort is not suffi -
ciently directed towards practical engineering where rigor is of interest. The
principal contributions of this work are twofold: (1) it provides the Coordinated
Atomic Action transaction model with a formal engineering framework; (2) it
demonstrates the practical interest of the Petri net based object-oriented specifi -
cation formalism CO-OPN/2 as an underlying tool all owing rigorous and meth-
odological engineering of complex reli able distributed systems. This paper also
shortly introduces a concrete example where high level Petri nets appear to be a
very useful development tool when integrated in the software lif e cycle of com-
plex distributed systems.

Keywords: distributed systems design, development methodology, formal meth-
ods, object orientation, Petri nets, fault tolerance, advanced transaction models.

1 Introduction

The concept of transaction has been developed to deal with the eventual loss of database
integrity when concurrent programs operate on it. Indeed, these programs can be
stopped due to hardware/software failures or can interfere with each other. In general,
concurrency and failures are the two sources of potential errors that lead to database in-
consistencies. For this reason, the transaction model is used as a basic unit of consistent
and reli able computing within the database domain. Managing transactions is not an
easy task and the subject has been studied thoroughly ([1], [17], [7]). Transaction man-

135

agement must deal with problems related to running sets of operations, that read or
modify shared data, while always keeping the database in a consistent state, even when
concurrent accesses and failures occur.

In order to increase the fl exibil ity of the traditional transaction model some advanced
models have been proposed. More flexibility is required particularly in contexts where
long-lived and open-ended activi ties occur (such as in computer-aided design and man-
ufacturing projects (CAD/CAM)). The ACID properties (atomicity, consistency, isola-
tion, and durabil ity) of the traditional model seem to strong and sometime inadequate
for long duration activi ties which need to cooperate. Long lived activi ties are more in-
clined to conflicts since they often maintain locks for long period of time on numerous
objects. Short transactions, waiting for lock resources, must be delayed. Long duration
activities are also more vulnerable to fail ures. Al l these facts unfortunately tend to in-
creases the risks for deadlocks and abortions. Hence, aborting a long transaction is
clearly undesirable for a large quantity of important work might be lost. Moreover, the
isolation property of the traditional model goes against the cooperation needs of these
activities. The objectives of new models are of many kinds. Most of them try to stati-
cally divide or to dynamicall y restructure long transactions into smaller subtransactions
so as to: increase concurrency and cooperation between transactions; relax the isolation
property; and, in case of cancellation, propose alternative solutions other than coming
back to the initial state.

Coordinated atomic actions (CA actions) present a general technique for achieving fault
tolerance by integrating the concepts of conversation (that encloses cooperative activi -
ties), transaction (that ensures consistent access to shared objects), and exception han-
dling (for error recovery) into a uniform structuring framework. More precisely, CA
actions ([19],[20],[21],[23],[24]) use conversations as a mechanism for controlling con-
currency and communication between threads that have been designed to cooperate
with each other. Concurrent accesses to shared objects that are external to a CA action
are controlled by the associated transaction mechanism that guarantees the ACID prop-
erties. In particular, objects which are external to a CA action, and can hence be shared
with other concurrent CA actions, must be atomic and individually responsible for their
own integrity. In a sense CA actions can be seen as a disciplined approach to using mul-
ti-threaded nested transaction while providing them with well-structured exception han-
dling.

Although some efforts have been devoted to the formalization of advanced transaction
models, this work clearly appears to be insuffi cient. To ensure the deli very of reli able
complex distributed systems, it is important that formali zation li es within the scope of
a complete development process covering the whole software li fe cycle. This project
therefore aims at providing the CA action model with a complete formal basis allowing
system development according to a safe and methodological software engineering ap-
proach. To realize this, we fi rst decided to provide the CA action model with a formal
design language called COALA. COALA is meant for the definition of CA actions
which are used to design complex distributed applications. COALA has a clear and sim-

136

ple syntax as well as a formal semantics which precisely defines the CA action model.
COALA’s formal semantics is expressed in the Petri net-based object oriented specifi -
cation formalism CO-OPN/2 ([2],[3],[4]). CO-OPN/2 is a specifi cation formali sm
which all ows modular description, refinement, prototype implementation and testing.
The main reason motivating the choice of CO-OPN/2 as the target language of COA-
LA’s semantics is that it includes most of the essential characteristics ([14]) necessary
to provide formal, structured and operational semantics for distributed systems in which
concurrency, atomicity and consistency of data structures are to be considered. A soft-
ware engineering framework has been developed for CO-OPN/2 in order to provide
methods and techniques supporting the main phases of the software li fe cycle (analysis,
design, implementation, verification and validation). Even if all these techniques are not
yet fully integrated in this project, they represent a good framework for the defini tion
of a valuable development methodology for COALA. A major contribution of this pa-
per is to show that high level Petri nets can provide useful semantic and methodological
means for the development of high level transaction models li ke CA actions.

This paper is organised as follow; the second section presents the state of the art of new
advanced transaction models for distributed systems, the third and fourth sections ex-
plain the syntax and semantics of COALA while the fi fth section introduces a small
banking example. The paper ends by shortly summarizing the development methodol-
ogy we propose for COALA.

2 State of the Art

2.1 Traditional Transaction Systems

The main four properties associated with transactions are commonly known as the
«ACID» properties.
(1) Atomicity: a transaction is treated as a unit of operation, the effects of all the oper-
ations of a transaction persist or none do; (2) Consistency: a transaction is a program
which must map one consistent database to another; (3) Isolation: concurrent transac-
tions must be executed as if they were executed serially, in isolation (serializabili ty),
other transactions must not see the effects of any uncommitted transaction (failure iso-
lation); (4) Durability: the effects produced by a transaction must be made visible and
permanent as soon as the transaction commits.

A transaction system satisfying these properties reli eves the user from many hard prob-
lems related to the maintenance of the database consistency. Different algorithmic so-
lutions exist which all ow controlled access to shared data objects. The most well-known
methods are the strict two-phase locking, the timestamp ordering and the optimistic
concurrency control strategies. These methods differ in the strategy used to ensure se-
rializability and recoverability of the concurrent transaction operations applied to
shared data ([1],[7]).

137

2.2 Advanced Transaction Models

Nested transactions ([15]) are an intrinsically recursive model which provides for finer
grained recovery and better control of reliable transaction execution. Appropriate de-
sign of subtransactions can help localize failures within a (parent) transaction. Parallel-
ism and modularity can be exploited within transactions so as to enhance performance.
The simplicity and the structuring capabilities of this model help managing the com-
plexity of systems. On the other hand, the nested transaction model remains quite con-
servative regarding solutions proposed to control concurrency and to maintain data
consistency.
The split-transaction model ([16]) was proposed as an answer to some specifi c trans-
action problems encountered in open-ended activi ties. The main objective is to allow
dynamic reconfi guration of long transactions and to restructure them so as to reflect
some possible dynamic change in the (user or application) requirements. In the split-
transaction model, partial results (that will not change) can be committed, thus prevent-
ing or reducing loss of work in case of fail ure. This early releasing of committed re-
sources allows more concurrency while reducing isolation between transactions and
sti ll ensuring serializable accesses to resources for all transactions. However, for non-
interactive applications, the usefulness of this model is less obvious.
The saga model ([13]) relaxes the requirement that a long transaction be executed as a
single atomic action. Since shorter transactions reduce probabilit ies of conflicts, fail-
ures, deadlocks and abortions, a saga is defined as a set of component subtransactions
executed in sequence or in parallel. Isolation being limited to subtransactions (not to the
whole saga), this model allows more fl exible cooperation between long activities rep-
resented by sagas. Moreover, the concept being relatively simple, the saga model does
not require very complex or novel implementation mechanisms. Contrarily to nested
transactions, this model all ows only two levels of nesting and the outer level (saga)
doesn't provide full atomicity. Sagas must be designed staticall y and do not allow dy-
namic restructuring. There is no high-level support (loop, branch, etc.) to control the ex-
ecution fl ow of component subtransactions within a saga, neither are there mechanisms
allowing conditional creation of component subtransactions. As for recovery, the model
doesn't deal with the failure of compensating transactions and hence does not guarantee
their successful completion.
The flex transaction model ([12]) solves transaction processing problems involving
data in multiple autonomous an possibly heterogeneous database systems. Transactions
accessing multiple database are often long-lived and may need to cooperate. Proposed
features contribute to a more fl exible and precise ordering of subtransactions execution.
However, with regards to sagas, the Flex model neither reall y increases cooperation nor
ameli orate consistency maintenance. Unfortunately, as for sagas, structuring possibil i-
ties remain limited to a two-level nesting, while fail ure and concurrency atomicity are
sti ll not ensured at the outmost level.
The ConTract model ([22]) proposes mechanisms to facili tate persistence, consisten-
cy, recovery, semantic synchronization and cooperation. Failure and concurrency ato-
micity is not ensured at the ConTract level but the model proposes some alternative
solutions more adapted to the requirements of long lived activities: recovery mecha-
nisms based on context management (saving/restoring), consistency control using com-

138

pensation and semantic synchronization, etc. Contrarily to former models presented in
this section, inconsistency problems due to the relaxation of the isolation property have
been addressed. However, the ConTract model stil l leaves place for inconsistency, but
this seems the price to pay when isolation isn't guaranteed any more and when actions
need to be compensated instead of being aborted.

2.3 Discussion: CA Actions and Advanced Transaction Models

CA actions exhibit all the ACID properties and thus ensure the maintenance of object
consistency. As for nested transactions, CA actions provide modularity, safe concurren-
cy and fi ner grained recovery. Since CA actions are multi-threaded units of work, co-
operation is encapsulated inside the action: threads cooperate inside a CA action by
exchanging information through internal objects. There is therefore no need to break or
relax the isolation property to allow for more cooperation. Cooperation is made easy
and safe. Contrarily to most of the models introduced, control flow between subtrans-
actions can be specifi ed: inside a CA action, threads execute sequential instructions and
can thus control the execution of subtransactions using sequence and conditional in-
structions for example. Long transactions can easily be designed and divided into sub-
transactions so as to release resources earlier for other competing subtransactions and
to allow for fi ner grained recovery in case of failure. The CA action model also provides
means for coordinated forward error recovery, thus allowing alternative solutions to be
executed (by the participating threads of a CA action) instead of aborting and coming
back to the initial state. The model also allows for persistency issues and recovery from
system failures. Finally, and similarly to the ConTract model, CA actions must not be
considered as yet another transaction model but as a new comprehensive framework
which aims at providing all the adequate mechanisms necessary to ensure both the mod-
ular design and the safe execution of large reli able distributed systems. CA action con-
cepts are introduced in Section 3 through the presentation of COALA.

2.4 Formalization and Methodology

Reli able distributed systems development is a complex and costly activi ty. We believe
that a formal and methodological framework can be of great use for engineers.
Formalization is an important step in language and model design which contributes to
clarify concepts, syntax and semantics; it can help classifying models and facilitates
formal reasoning. Transaction systems presented in the previous section have more or
less been formali zed. Nested transactions and split-transactions have shortly been spec-
ified in ACTA ([5]). Atomic actions and sagas have also been characterized using
ACTA in [6], which allowed better comparison of some of these models’ properties. As
for ConTracts, mechanisms to describe and execute their computations have been intro-
duced in [18]. Finall y, Flex transactions have been formalized using Predicate Petri
Nets ([12]).
As far as we know, formal development methodologies for advanced transaction mod-
els have not been deeply investigated and work sti ll needs to be done in this area. Most
researchers who have taken up the subject of advanced transaction models have looked
at it from an algorithmic and implementation point of view. Our work rather positions

139

itself at a higher level, trying to integrate the CA action transaction model into a formal
and methodological engineering framework. We believe, as shown in this paper, that
high level Petri nets and more precisely the CO-OPN/2 formalism, are a ideal tool for
building this framework.

3 The COALA Language

3.1 COALA Basic Concepts

This subsection shortly explains the main concepts of CA actions ([23],[24]) as they are
considered in COALA ([19],[21]).

Roles. A CA action is viewed as a collection of roles, each of them being associated
with a portion of code (a subprogram). The ultimate goal of a CA action consists in co-
ordinating its roles so as to coherently manage all the system's software entities, i.e. the
system's objects. An execution thread enters a CA action by activating the role it wants
to execute. When each role has been activated, the CA action starts and each thread thus
executes its role. This execution is coordinated by the CA action which sees that all
ACID properties (which ensure the consistent state of objects) are respected.

Objects. The CA action concept defines two kinds of objects, namely internal and ex-
ternal objects. An internal object is an object local to a CA action and it is shared be-
tween all its roles. It is used for the coordination of roles or for other internal
computations. An external object is a global object which can be modified by the roles
of different CA actions. Operations on external objects are constrained by the ACID
properties. External objects may be shared simultaneously by several CA actions but
the effect of the operations applied to them must be the same as if the CA actions had
been executed one after another. In other words, the schedule of operations applied to
external objects must be serializable. References on external objects are passed to roles
through their parameters. Internal objects are declared inside the CA action’s body.

Outcomes. The execution of a CA action consists in coordinating the execution of the
its roles. A CA action ends with one of the following outcomes:
• Normal outcome. The ACID properties were satisfied during execution and the CA

action commits its operations;
• Exceptional outcome. The ACID properties were satisfied but an exception must be

signalled to the enclosing CA action;
• Abort outcome. The CA action has aborted and has undone its operations while sat-

isfying the ACID properties;
• Failure outcome. A major problem occurred, preventing the CA action not only

from committing but also from aborting (i.e. the CA action ends without guarantee-
ing the satisfaction of the ACID properties).

All the roles of the CA action end with the same outcome; in the case of an exceptional
outcome all the roles signal the same exception to the enclosing CA action.

140

Exceptions and Handlers. There are two types of exceptions in CA actions: internal
and interface exceptions. Internal exceptions are local to a given CA action, which must
therefore handle them on its own; each role of a CA action has a set of subprograms,
called handlers, to handle these internal exceptions or a combination of them. Internal
exceptions are raised by roles. When some roles of a CA action raise different internal
exceptions concurrently, all roles are interrupted and a resolution algorithm then deter-
mines which handler must be activated by all the roles to handle these concurrent ex-
ceptions. Handlers are subprograms which try to bring the system into a new consistent
state. Handlers are not authorized to raise internal exceptions during their execution. As
for interface exceptions, they are signalled. When a role signals an exception, it stops
its current execution, waits for the other roles to end and agrees with them to propagate
the exception at the outside level, that is to say to the enclosing CA action. Both roles
and handlers can signal interface exceptions. When signalled exceptions are propagat-
ed, the situation is the same as if these exceptions were raised at the level of the enclos-
ing CA action. In addition, two default interface exceptions are made avail able to all
CA actions: the Abort exception and the Fail exception. These exceptions can be raised
or signalled.

Behaviour of CA actions. The execution of a CA action always corresponds to one of
the following scenario:
(1) Each role executes and ends successfully. No exception is raised during execution
of roles. The CA action ends with a normal outcome;
(2) Some of the roles concurrently raise internal exceptions during the execution. These
raised exceptions can be identical or different. In any case, the CA action uses a resolu-
tion graph to decide which exception handler has to be executed to cope with these con-
current exceptions. All the roles of the CA action are informed of the exceptions being
raised and of the exception handler which they must execute. Once handlers are activat-
ed, the foll owing cases can occur:

* If all the exception handlers end successfully, the CA action ends with a normal
outcome;
* If some of the exception handlers signal an interface exception during their exe-
cution and if these exceptions are the same, then the underlying system forces all
the handlers to signal this exception to the enclosing CA action. The CA action is
said to end with an exceptional outcome;
* If some of the exception handlers signal an interface exception during their exe-
cution but these exception are different, the underlyi ng system tries to abort the CA
action. If i t succeeds, the CA action ends with the abort outcome and all the roles
signal an Abort exception to the enclosing CA action; if the abort operation fails,
the CA action ends with the failure outcome and a Fail exception is signalled to the
enclosing CA action. The underlying system also tries to abort the CA action if an
exception is raised in a handler program. For example, this case can occur when a
nested CA action, called during the execution of a handler, signals an exception
which is consequently raised at the handler level. Since raised exceptions are not
allowed in handlers, the underlyi ng system must abort the action.

141

(3) Some of the roles signal an interface exception during their execution and these ex-
ceptions are all the same. In this case, the underlying system forces all the roles to signal
this exception to the enclosing CA action. The CA action ends with an exceptional out-
come;
(4) Some of the roles signal an interface exception during their execution but these ex-
ceptions are different. In this case, the underlyi ng system performs an abort operation
and if it succeeds all the roles signal an Abort exception and end with an abort outcome;
if i t fails, they all signal a Fail exception and end with an failure outcome;
(5) A role signals an interface exception while another role raises an internal exception.
The raised exception is ignored, and the CA action continues executing accordingly to
cases (3) or (4).

3.2 COALA Syntax

COALA has a simple and clear syntax to define CA actions and their components (ex-
ceptions, roles, handlers, etc.) However, for the definition of objects and expressions,
COALA uses the CO-OPN/2 formal specification language. Each COALA program
thus comprises a set of CO-OPN/2 modules which define abstract data types and object
classes. We do not present CO-OPN/2’s syntax and in this part, but it can be found in
([2]).

Interface and body. The COALA definition of a CA action is made of two parts: an
Interface section, which is visible to other CA actions, and a Body section, which is pri-
vate and hidden to the outside world. The Interface of a CA action has the following
shape:

CAA <CAAName>
Interface

Use // The list of CO-OPN/2 modules (abstract
 <ModuleName1>, // data types and classes) which are used
 <ModuleName2,>, ... ; // in the Interface part of the CA action.
 Roles

// The list of its (parameterized) roles
<RoleName1> : <Parameter type>, ...;
<RoleName2> : <Parameter type>, ...; ...

Exceptions
// The list of the (parameteri zed) interface exceptions which the CA action can
// signal to an enclosing CA action

<ExceptionName> : <Parameter type>; ... ;
Body

Use // The list of CO-OPN/2 modules (abstract data
<ModuleName1>, // types and classes) which are used in

 <ModuleName2>, ...; // the Body part of the CA action.
Use CAA // The list of nested CA actions.

<CaaName1>, <CaaName2,>, ... ;
Objects

// The list of the CA action's internal objects; the behaviour of
// these objects are specifi ed in separate CO-OPN/2 specif ication modules.
<Object1>:<type>;
<Object2>:<type>; ...;

142

Exceptions // The list of the (parameterized)
 <ExceptionName> : <Parameter type>; // internal exceptions that can be

// raised within the CA action.
Handlers
// The list of the (parameteri zed) exception handlers of the CA action.
<HandlerName1> : <Parameter type>, ...;
<HandlerName2> : <Parameter type>, ...;
Resolution
<ExceptionName1>(<ParameterName,...>),<ExceptionName2>(<ParameterName,...>)

-> <HandlerName>(<ParameterName,...>);
// The CA action resolution graph which li sts all the combinations
// of internal exceptions which can be raised concurrently, together with the
// handlers which must be activated in each case. If a combination of internal
// exceptions can't be found in the list during execution, this means that no handler //
was foreseen to handle the case: an abort exception must be signalled by the
// underlying system.

Where <VarName1>: <TypeName1>; // Local variables and their types;
<VarName2>: <TypeName2>; // Types are specif ied using CO-OPN/2.»
...

Role <RoleName1> (<ParameterName>, <ParameterName>, ...);
Begin <instructions>;End // Role program.
Where <VarName>: <TypeName>; // Local variables and their types;

...
Handler <HandlerName>;

Begin <instructions>; End // Role program.
Where <VarName>: <TypeName>; // Local variables and their types;

...
End <HandlerName>;

End <RoleName1>;

Role <RoleName2> (<ParameterName>, <ParameterName>, ...);
....

End <CAAName>;

Roles and handlers instructions. The behaviour of a role or a handler is described by
an instruction block, that is a sequence of instructions. COALA 's instructions may con-
tain variables but also expressions and conditions which refer to CO-OPN/2 specifi ca-
tion modules declared in the Use fields of a CA action.
• Variable. Name to which a (typed) value is associated. A variable must be in the

scope of the instruction block where it is used. Variables are declared in the Where
field of a role, a handler, a resolution graph, etc.

• Expression. Since COALA uses CO-OPN/2 specifications for the definition of
data types and object classes, an expression is a term written over the global signa-
ture of a CO-OPN/2 specifi cation and over some sorted set of declared COALA
variables.

• Condition. Boolean expression based on the terms built over the CO-OPN/2 global
signature.

• Instructions An instruction block is a non empty sequence of instructions delim-
ited by Begin and End keywords. An instruction is either empty or is one of the fol-
lowing:

1. Assign a To v; - Assigns expression a to variable v.
2. Execute o.m(a1,..., an); - If method m of the object referenced by o can be exe-

143

cuted given parameters a1,..., an and according to the corresponding CO-OPN/2
specifi cation, then the instruction succeeds. If not, then an internal exception
(i.e. a predefined exception raised by the underlyi ng system) is raised.

3. If c Then instructionBlock1 Else instructionBlock2; - If condition c is true (according
to the model of the given CO-OPN/2 specifi cation), then instructionBlock1 is exe-
cuted. If c is false, then instructionBlock2 is executed.

4. Raise exceptionName(a1,..., an); - All ows a role to raise an internal exception
within a CA action. exceptionName must be the name of an internal exception
defined in the body of the CA action or the Abort or Fail exceptions. a1,..., an are
expressions which parameterize the exception raised.

5. Signal exceptionName(a1,..., an) - All ows a role or an exception handler to signal
an interface exception to an enclosing CA action. The name of the exception
(exceptionName) is either one of the exceptions defined in the interface of the CA
action, or the Abort or Fail exception. When signall ing an exception, a role/han-
dler interrupts its execution and waits for the other roles/handlers of the CA
action to end so as to propagate the exception being signall ed.

6. Call roleName(a1,..., an) Of caaName - All ows the activation of role roleName of
(nested) CA action caaName. If an instance of caaName already exists and its role
roleName hasn't yet been fulfi ll ed, then roleName is activated with its actual
parameters a1,..., an passed on. Otherwise, the underlying system first creates a
new instance of caaName, (with its own internal objects), before activating the
role roleName. The actual parameters a1,..., an are expressions which may contain
variables referring to external objects. Note that this instruction is blocking and
execution resumes only after CA action caaName is ended.

3.3 COALA Semantics

COALA's semantics ([20],[21]) is defined as a translation from COALA programs into
their formal description in CO-OPN/2. Since objects and abstract data types of a COA-
LA programs are already defined in CO-OPN/2, part of the semantics is directly ob-
tained. The other part must deal with the semantic defini tion of CA actions coordination
mechanisms, of roles/handlers programs and of external objects atomicity. For this, we
propose a set of CO-OPN/2 generic classes specifying the general behaviour of (1) CA
actions, (2) Roles and (3) Internal/External objects affected by CA actions. Each CA ac-
tion, each role and each object of a COALA program is being semanticall y described
by a CO-OPN/2 object, which is an instance of one of the three generic classes or is an
instance of one of their subclasses. Indeed, particular instances and subclasses must be
created to express the precise semantics of a given COALA program.

• Class Caa describes all the coordination mechanisms of the CA action. This includes
starting all the roles synchronously, solving distributed raised exceptions and man-
aging how they must be handled, coordinating ending roles, signall ing exceptions,
etc.

• Class Role describes how a role is started, how it ends and how it interprets the
instructions which it has to execute (see instructions described in Section 3.2)

• Class IntExtObject describes how an object in a CA action processes the operation

144

requests it receives, while together ensuring respect of the operations' ACID prop-
erties. Class IntExtObject refers to another CO-OPN/2 class called objVersion to keep
trace of the different object state versions that each CA action sees at one given
time. More precisely, these object state versions represent the different views that
each individual CA action (operating on the object) has of the object's state. When
a CA action commits, the view it has of the object's state becomes the current state
of the object. If it aborts, no change is made to the object's current state.

This object-oriented approach adopted to build COALA's semantics presents many ad-
vantages. Among others, this semantic defini tion is modular, generic, clear and quite in-
tuitive. The semantics of a COALA program is obtained by extending the generic
classes introduced above and by creating the appropriate instances which represent the
CA actions in the program and their components (roles, internal/external objects, etc.)
Figure 1 ill ustrates an example of a CO-OPN/2 class hierarchy used for the semantics
of a COALA program. The genericity and modularity quali ties of this approach allow
to translate COALA programs into a set of CO-OPN/2 objects by a simple extension of
the generic classes (Caa, Role, IntExtObject) into specifi c subclasses and by creating ap-
propriate instances of these subclasses.

We give below a short and partial il lustration of how roles are translated into CO-OPN/
2 objects belonging to the abstract class Role which specifi es the generic mechanisms
and the basic behaviour that any role must have. Roles specific to a CA action are de-
scribed by individual classes which inherit from the abstract class Role. Each of these
subclasses all ow the creation of role objects having a particular program to execute.
A role object is a CO-OPN/2 object which is itself a high-level Petri net. As shown on
Figures 2 and 3, a role object is composed of
• a set of internal transitions (white rectangular boxes) which specify its internal

behaviour. The main internal behaviour of a role object consists in interpreting the
instructions which the role has to execute.

• a set of methods (black rectangular boxes) which allow other CO-OPN/2 objects to
modify its state. In the semantics Caa objects uses role object methods to act on
them and coordinate their execution (to interrupt roles, to synchronize them, etc.)

As mentioned, the main internal transition of role objects is called eval and is used for
interpreting COALA instructions. Figure 2 ill ustrates the evaluation of the instruction
"Call roleName(a_1,...,a_n) Of caaName". As shown on the picture, the instruction is read
from place Instr. To interpret it, the evaluation context (containing the values assigned
to variables) is required and is thus taken from place Ctxt and put back into it right after.
When evaluating a Call instruction, transition eval puts the identity of the role to be
called along with its evaluated parameters in place RoleToCall. These values wil l be fetch
from this place as soon as the CA action object whose role is being call ed can synchro-
nize with the method callRole of the call ing object. This synchronization is il lustrated by
Figure 3. On this figure, the Call instruction is performed by role object c while the role
object being called is identified by r. The interpretation of this instruction consists in
evaluating the arguments in the context and then putting the result together with the

145

identity of the role object to be called (i.e. r) in place RoleToCall . Appropriate tokens in
this place all ow method callRole of role object c to eventuall y fire. It does indeed as soon
as the method startRoles of the caa object coordinating role r, tries to synchronize sequen-
tially with (1) the method callRole of object c and (2) the method start of object r.

Role objects have many other methods (not shown on Figures 2 and 3) which are used
to define the exception handling mechanism, the way roles operate on CA actions ex-
ternal objects, etc.

Figure 1 : Inheritance hierarchy and object instances for the semantics

146

Figure 2 : Role object c eva1uating a CallRole instruction

Figure 3 : Synchronisation between the calli ng role object c and the call ed role object r

147

4 Small Example

This section introduces a small banking example to il lustrate COALA concepts and
syntax. The complete COALA design of this example is given in [19]. Of course, this
simple example can not fully il lustrate the power of COALA and its interest for reli able
distributed systems engineering. For this purpose, [21] presents a complete case study
where an Internet auction service is designed using COALA and is implemented using
a Java li brary especially designed for COALA. The example considered in this section
illustrates a joint withdraw implicating two persons and two joint accounts. These two
persons own together two joint accounts and want to withdraw a certain amount of mon-
ey from the joint account having the highest balance.
The bank with which these two persons deal, offers its cli ents a special kind of account
called "joint account". A joint account is owned by two clients, called co-owners. Each
owner is given a personal identifi cation number (pin) which he must use to identify
himself. The conditions applied to joint accounts and pins are the following:
• A wi thdraw operation on a joint account requires the authorisation of both its co-

owners.
• The balance of the joint account can be consulted by any co-owner (without the

authorisation of the other co-owner).
• Money can be deposited (by anyone) on the joint account without any authorisa-

tion.
• A client gives his authorisation for the execution of a transaction by providing his

pin, which must henceforth be validated. If he makes a mistake, vali dation fails and
the operation is immediately aborted.

The COALA program corresponding to this banking example is made of two parts:
• a COALA specification consisting of two main CA actions: JointWithdraw and With-

draw. These CA actions refer to three other small complementary CA actions (Wait-
PIN, WaitInfoAmount and WaitReadAmount) which are simply used to force the
synchronization of threads.

• a CO-OPN/2 specification (classes and data types) describing the objects used by
the CA actions: IntegerContainer, PIN and Account.

CA action JointWithdraw. The JointWithdraw CA action presents two clients, named
client1 and client2. They are the co-owners of two joint accounts, account1 and account2.
Each joint account has an appointed co-owner who takes care of the main transactions
operated on the account: client1 is responsible for transactions on account1 while client2 is
responsible for transactions on account2.
In CA action JointWithdraw, role client1 describes the behaviour of a cli ent who wants to
withdraw a certain amount of money out of one of two given joint accounts. More pre-
cisely, the money must be withdrawn from the account having the greatest balance.
Client1 thus informs the other co-owner, client2, about the amount to withdraw. Each cli-
ent consults his appointed account and tells the other how much money there is left.
Each cli ent henceforth knows on which account the money must be taken from. The cli-
ent responsible for the account having the highest balance must perform the withdraw
by calli ng role withdrawer of CA action Withdraw. On his side, the other client calls role
partner of this same CA action.

148

However, if there is not enough money on a single account, the missing amount is
drawn out the other account. If some money is sti ll missing, the exception NotEnoughMon-
ey must be signalled. Figure 6 partiall y describes the COALA design of CA action Join-
tWithdraw. Figure 4 illustrates one of the normal (i.e. with no exception) execution of CA
action JointWithdraw. Boxes delimit the execution part under the control of each CA ac-
tion. Circles represent objects. As for "X" symbols, they denote Execute instructions in
the role programs.

CA action Withdraw. As mentioned, a withdraw operation requires the authorisation
of both co-owners. Hence, the client withdrawing the money (the withdrawer) must not
only give is own pin but must also get the pin of the other co-owner (his partner). Note
that clients have a single try to enter their pin when they are prompted for it. If the wrong
pin is entered, then an Abort exception is raised, and the whole CA action Withdraw is
aborted.
If the pin vali dation process succeeds, two cases can occur:
• There is enough money on the account. The required money is drawn out the

account and the balance is updated.
• There is not enough money on the account. Al l the money on the account is drawn

out, the balance is thus put to 0 and the exception missing is raised. The withdrawer's
exception handler takes up the execution and indicates the amount of missing
money to the enclosing CA actions by assigning this amount to the external object
commonAmount. If no problem occurs during this handling phase, CA action Withdraw
simply ends with a normal outcome.

Figure 5 il lustrates the normal execution of CA action Withdraw.

CA actions WaitPin, WaitInfoAmount and WaitReadAmount. These nested CA ac-
tions are used to coordinate the work of two threads, more precisely to synchronize
these two threads. They all have the same shape and achieve the same work: a fi rst
thread enters the CA action by call ing one of the two roles; this thread is suspended until
the second role is call ed by another thread. Since the body of the roles are empty, these
CA actions end (with a normal outcome) right after the initial synchronization of the
roles.

149

.

Figure 4 : A normal execution of CA action JointWithdraw

Figure 5 : A normal execution of CA action Withdraw

150

Figure 6 : COALA design of CA action JointWithdraw

CAA JointWithdraw;
Interface
Use Account, Integers;
Roles

client1 : accountType, integer;
client2 : accountType;

Exceptions
NotEnoughMoney;

Body
Use Booleans;
Use CAA Withdraw, WaitInfoAmount, WaitReadAmount;
Object temp1,temp2,commonAmount: integerContainer;
Handler

FailHandler; Aborthandler;
Resolution

Abort -> Aborthandler;

Role client1 (account, amount);
Begin
 Execute commonAmount.put(amount);
 Call first of WaitInfoAmount;
 Execute account.balance(money);
 Execute temp1.put(money);
 Call first of WaitReadAmount;
 Execute temp1.get(t1);
 Execute temp2.get(t2);
 If ((t1>=t2)=true) then Begin

 Call withdrawer(account,
commonAmount)

of Withdraw;
 Execute commonAmount.get(ca);
 If (ca > 0 = true) Then

Call partner of Withdraw;
 End
 Else Begin

Call partner of Withdraw end;
Execute commonAmount.get(ca);
If (ca > 0 = true) Then

Call withdrawer(account,
commonAmount)

of Withdraw;
 End;
 Execute commonAmount.get(ca);
 If (ca > 0 = true) Then

signal NotEnoughMoney;
End

Where t1, t2, ca, money, amount: integer;
 account: accountType;

Handler FailHandler;
Begin Signal Fail; End
End FailHandler;

Handler Aborthandler;
Begin Signal Abort; End
End Aborthandler;

End client1;

Role client2 (account);
...

// The instruction block of this role is
very similar to the one found in role
client1, it follows a symmetric pattern.
Among others, client2 enters nested CA
actions as client1 does, following the
same if-then-else scheme, but calling the
opposite roles. Another difference is that
client2 has only one parameter: no
amount parameter. Indeed it is only
client1’s responsibili ty to indicate how
much money must be withdrawn. Han-
dlers are identical for both roles. //

End client2;
End JointWithdraw;

Comments:
(1) In CA action JointWithdraw,
temp1, temp2 and commonAmount are
local objects allowing roles client1
and client2 to communicate between
each others. These objects behave
like buffers and thus provide meth-
ods such as get and put to modify
and access their content.
(2) CA actions WaitInfoAmount and
WaitReadAmount are used to syn-
chronize client1 and client2 so that
they can get values of local objects
at the timely moment.
(3) The commonAmount object con-
tains the amount of money that must
be withdrawn. It is passed as an ex-
ternal parameter to CA action With-
draw which decrements its value
accordingly.

151

5 Development Methodology

COALA is a formal language for the design of distributed systems; it has a syntax, a
semantics but no development methodology yet. One of the objectives of this work aims
at providing COALA with the development methodology developed for CO-OPN/2.
CO-OPN/2’s development methodology is presented in detail s in [8], [9] and its appli-
cation is shown in [10] and [11]. It provides an integrated formal framework designed
especially for this class of high level Petri nets which covers specifi cation, design, im-
plementation, simulation and test. The work presented in this paper aims at adapting this
engineering framework to COALA. The development methodology for COALA wil l
mainly consists in the following phases:
• Definition of requirements (functional and safety requirements).
• Abstract design in COALA.
• Formal refinement of the design consisting in several steps and using an adapted

notion of a refinement function for COALA to progressively reach a detail ed
design.

• Implementation carried out as a direct translation of the detail ed design into an
implementation language (eventuall y using a set of predefined li braries)

• Test, using test sets allowing for the formal CO-OPN/2 semantics of the design
written in COALA.

• Simulation, automatic generation of executable code based on the axiomatic
semantics of CO-OPN/2.

Validation and verification could be partly addressed, in the COALA development
methodology, using the CO-OPN/2 notion of “contract”. A contract is assigned to each
COALA design step (abstract or refined). Contracts must be preserved during the whole
development process. Hence, properties expressed and satisfied at the abstract level wil l
sti ll be present at implementation level. Formal and informal proofs are proposed to
guarantee the preservation of this property. Contracts are means to address validation
and verification issues.

6 Conclusions

This paper had two main objectives. First, we introduced COALA as a formal language
for the design of reliable distributed systems based on the concepts provided by the Co-
ordinated Atomic Action framework. Secondly, we have described the interest of the
formal engineering framework of CO-OPN/2 to address semantic and methodological
issues in the context of distributed systems development. This was made by defini ng a
new design language, COALA, with a precise syntax and a semantics given in terms of
CO-OPN/2 specifi cations. We have then summarized how techniques avail able in the
CO-OPN/2 framework could be exploited to provide COALA with an engineering
methodology allowing formal development of distributed systems. This paper repre-
sents a contribution which aims at increasing the level of rigor and methodology used
in the engineering of distributed systems designed using an advanced transaction
scheme based on high level Petri nets.

152

7 Acknowledgments

This work has been partially supported by the Esprit Long Term Research Project
20072 “Design for Validation” (DeVa) with the fi nancial support of the OFES (Office
Fédéral pour l'Education et la Science), and by the Swiss National Science Founda-
tion'. We would like to thank our colleagues for all the helpful discussions and collabo-
ration we had concerning this work.

References
[1] P.A. Bernstein, V. Hadzil acos and N. Goodman. Concurrency control and recovery in

database systems. Addison-Wesley Series in Computer Science. Addision-Wesley, 1987.

[2] O. Biberstein. CO-OPN/2: An Object-Oriented Formalism for the Specification of Con-
current Systems. PhD thesis, University of Geneva, Geneva, Switzerland, 1997. Thesis
No 2919.

[3] O. Biberstein, D. Buchs and N. Guelfi . Object-Oriented Nets with Algebraic Specifica-
tions: The CO-OPN/2 formalism. InAdvances in Petri Nets on Object-Orientation, G.
Agha and F. De Cindio (Ed.), Lecture Notes in Computer Science, Springer-Verlag,
2000. To appear.

[4] D. Buchs and N. Guelfi . A concurrent object-oriented Petri nets approach for system
specification. In M. Silva, editor, 12th International Conference on Application and The-
ory of Petri Nets, pages 432–454, Aarhus, Denmark, June 1991.

[5] P.K. Chrysanthis and K. Ramamritham. Acta: a framework for specif ying and reasoning
about transaction structure and behavior. In Proceedings of the ACM Special Interest
Group on Management of Data (SIGMOD) 1990, pp 194-203, New York, 1990. ACM
Press.

[6] P.K. Chrysanthis and K. Ramamritham. Acta: The saga continues. In Database Transac-
tion Models for Advance Applications, chapter 10, p. 349-397, Morgan Kaufmann Pub-
lishers, 1992.

[7] G. Coulouris, J. Dollimore and T. Kindberg. Distributed Systems: Concepts and Design.
Addison-Wesley, second edition, 1994.

[8] G. Di Marzo Serugendo. A Formal Developement and Validation Methodology for Sys-
tem Design. In Fifth International Conference on Information Systems Analysis and Syn-
thesis (ISAS'99), 1999.

[9] G. Di Marzo Serugendo. Stepwise Refinement of Formal Specif ications Based on Logical
Formulae: from COOPN/2 Specif ications to Java Programs. PhD thesis, Swiss Federal
Institute of Technology (EPFL), Lausanne, Switzerland, 1999. Thesis No 2919.

[10] G. Di Marzo Serugendo and N. Guelf i. Using Object-Oriented Algebraic Nets for the Re-
verse Engineering of Java Programs: A Case Study. In Proceedings of the International
Conference on Application of Concurrency to System Design (CSD'98), IEEE Computer
Society Press, 1998, pp. 166-176. Also available as Technical Report (EPFL-DI No 98/
267).

[11] G. Di Marzo Serugendo, N. Guelf i, A. Romanovsky and A. F. Zorzo. Formal Develop-
ment and Validation of Java Dependable Distributed Systems. In Fifth IEEE Internation-

153

al Conference on Engineeri ng of Complex Computer Systems (ICECCS'99), IEEE
Computer Society Press, 1999.

[12] A.K. Elmagarmid, Y. Leu, W. Litwin and M. Rusinkiewicz. A multidatabase transaction
model for interbase. In Proceedings of the 16th VLDB Conference, pages 507-518, Bris-
bane, Australi a, 1990.

[13] H. Garcia-Molina and K. Salem. Sagas. In Proceedings of the ACM Special Interest
Group on Management of Data (SIGMOD) 1987, pages 249-259, San Francisco, may
1987.

[14] N. Guelf i, O. Biberstein, D. Buchs, E. Canver, M-C. Gaudel, F. von Henke and D. Schw-
ier, Comparison of Object-Oriented Formal Methods, Technical Report of the Esprit
Long Term Research Project 20072 ‘ ‘Design For Vali dation’ ’, University of Newcastle
Upon Tyne, Department of Computing Science, 1997.

[15] J.E.B. Moss. Nested Transactions: An introduction, chapter 14, pages 395-425. Van Nos-
trand Reinhold, New York, 1987.

[16] C. Pu, G. Kaiser and N. Hutchinson. Split-transactions for open-ended activit ies. In Pro-
ceedings of the 14th international conference on VLDB, pages 26-37, Los Angeles, Sep-
tember 1988.

[17] K. Ramamritham and P.K. Chrysanthis. Advances in concurrency control and transac-
tion processing. Executive Briefi ng Serie. IEEE Computer Society Press, 1997.

[18] F. Schwenkreis. A formal approach to synchronize long-li ved computations. In Proceed-
ings of the 5th Australasian Conference on Information Systems, Melbourne, 1994.

[19] J. Vachon, D. Buchs, M. Buffo, G. Di Marzo Serugendo, B. Randell , A. Romanovsky,
R.J. Stroud and J. Xu. Coala - a formal language for coordinated atomic actions. In 3rd
Year Report, ESPRIT Long Term Reaseach Project 20072 on Design for Validation.
LAAS Francd, november 1998.

[20] J. Vachon, The Semantics of COALA in CO-OPN/2, Technical Report EPFL-DI No 98/
300, Swiss Federal Institute of Technology in Lausanne, CH-1015, Lausanne, Switzer-
land, June 1999.

[21] J. Vachon, COALA: A design language for reliable distri buted systems, PhD thesis, Swiss
Federal Institute of Technology (EPFL), Lausanne, Switzerland, 2000. To appear.

[22] H. Wachter and A. Reuter. The contract model. In Database Transaction Models for Ad-
vance Applications, chapter 7, pages 219-263. Morgan Kaufmann Publishers, 1992.

[23] J. Xu, B. Randell, A. Romanovsky, R.J. Stroud, A.F. Zorzo, E. Canver and F. von Henke,
Rigorous Development of a Safety-Critical System Based on Coordinated Atomic Ac-
tions. In Proceedings of the 29th Int. Symp. on Fault-Tolerant Computing (FTCS-29),
IEEE CS Press, Madison, WI, USA, June 1999.

[24] A. Zorzo, A. Romanovsky, J. Xu, B.Randell, R.J. Stroud, I. Welch, Using Coordinated
Atomic Actions to Design Complex Safety-Crit ical Systems: A Production Cell Case
Study. In Software: Practice and Experience, 29(8), pp. 677-697, 1999.

154

Supervisory Plug-ins for Distributed Software

Michael Lemmon and Kevin X. He

Dept. of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556

lemmon,xhe@maddog.ee.nd.edu

Abstract. This paper demonstrates the use of supervisory control theory in syn-
thesizing plug-ins for distributed software. The plug-ins are software objects that
supervisean existing distributed system so that certain properties such as fairness
and deadlock freedom are guaranteed. The distributed application is modeled as
bounded ordinary Petri net and system analysis is accomplished through a partial
order method known as unfolding. The unfolding constructs an event structure
that provides a natural encapuslation of concurrent threads of execution whose
selective disablement by the supervisory plug-in assures the desired application
property. The synthesis of the plug-in is based on results from supervisory con-
trol theory and the synthesized plug-ins are ”optimal” in that they are maximally
permissive. We demonstrate our approach on a distributed cache system.

1 Introduction

Distributed software may be viewed as a collection of objects that interact through
message passing. Such software is of growing importance and it appears in applications
such as military command and control, commercial telecommunications, and emergent
Internet applications. Distributed software is required in networks of embedded proces-
sors that are used to control major components of the national infrastructure such as
the electric power grid and air traffic control system. Due to the critical nature of such
applications, it is essential that we develop systematic methods for assuring the quality
of such distributed software.

Assuring the quality of distributed software can be extremely difficult. Difficulties
arise due to the concurrent and decentralized nature of the applications. The ”open”
nature of many distributed software architectures also introduces many challenges. As
an example, consider a network controlling an electric power distribution system. This
system consists of older (so-calledlegacy) hardware and software components, as well
as newer components. The open nature of the architecture allows newer components to
enter and leave the system freely. For such systems we need to ensure that the entry or
departure of newer components does not interfere with the performance of the legacy
components. Assuring re-usability of legacy components under software upgrades can
be difficult for a variety of reasons. In the first place, the concurrent nature of the ap-
plications means that analyses of the overall system are hampered by state-space ex-
plosion. In the second place, these systems can be dynamic in that objects may enter or
leave the system at run-time. In such a dynamic environment it can be extremely diffi-
cult to analyze system behavior due to uncertainty in the suite of objects comprising the

155

2

current system. In the third place, the mandate for open software architectures means
that designers have limited control over legacy components, thereby complicating the
design process. Finally, newer and older objects may interact in unpredicatable ways
that introduce new or emergent patterns of behavior. Such emergent behaviors can be
very difficult to identify due to the large scale nature of the system’s state space.

Solving the preceding problems requires a formal and scalable analysis method for
distributed systems. This paper presents a formal approach to the design of distributed
software that applies methods from supervisory control theory [1]. Supervisory control
theory is concerned with the regulation of discrete-event systems. It provides a clear
characterization of optimal supervision. In this paper, we use this theory to synthesize
plug-insto a distributed application that enforce specified properties such as fairness or
deadlock freedom. The underlying formal model is a bounded Petri net. We analyze the
net’s behavior by a partial order method known as unfolding [2]. Unfolding transforms
the original system into an event structure from which we can encapsulate concurrent
threads of execution that can be selectively disabled by the synthesized plug-ins to
enforce the desired behavioral properties [13]. The use of supervisory control theory
ensures that the resulting system isoptimalin the sense of being maximally permissive.
We demonstrate our ideas on a distributed cache system.

Remark: While the results in this paper only pertain to bounded Petri nets, it should
be noted that many of the definitions also apply to unbounded networks as well. In fact,
there is every reason to believe that the underlying principles advocated in this paper can
also be applied to restricted classes of unbounded nets. What has not been demonstrated
for unbounded nets, however, is the optimality or existence of such supervisors.

The remainder of this paper is organized as follows. Section 2 articulates the su-
pervisory control problem for distributed software. Section 3 discusses the synthesis
of supervisory plug-ins using a partial order method known as unfolding. Section 4
shows how these ideas can be applied to the the run-time reconfiguration of distributed
software. Section 5 summarizes the principal results and future directions of this work.

2 Supervising Distributed Software

This section articulates a framework in which to pose the problem of designingsu-
pervisory plug-insfor a distributed application. By asupervisory plug-in, we mean a
software object that can be composed with the base application to restrict the base ap-
plication’s behavior without adding any new behaviors. This restriction of the original
system behavior is referred to as thesupervisory control problemin the control sys-
tems literature. We therefore pose the problem of designing supervisory plug-ins as a
supervisory control problem.

The underlying design paradigm in this paper is illustrated in figure 1. For the mo-
ment, ignore the details in this figure and focus on the feedback connection. We see
that this system consists of the base application software (what we refer to as theplant)
and the plug-in component (what we refer to as thesupervisor). The supervisor uses
information from the plant to control the base application’s behavior. As noted in the
first paragraph, this control actually restricts or disables the plant from executing certain

156

3

actions that are considered undesirable. The ”restrictive” nature of this control is what
control theorists refer to as a ”supervision” (as opposed to regulation).

v1-v2-v1-v2

Σu

w

y

z

Σ

Σ

Σ

={W}

={0,1}

={v1,v2,v3}

={A,B} l

l

l

l

u

y

w

z

: {w} → T

(vi)=vi

(v)= { 1 if v=v3
0 otherwise

(u)= { {t1} if u=B
φ otherwise

v1
v2

v3

supervisor

PLANT

measureable
outputs

controlled inputs

objectivesuncontrolled inputs

w-w-w

B-A-B-A

0-0-0-0

t1

t2

t3

v1 v2 v3

A

B *

* *

Fig. 1. Supervisory Control Loop

From a pragmatic point of view, there are many ways in which the block diagram
in figure 1 can be viewed. One view treats the supervisor as a mobile software object
that the user downloads to a pre-existing object in the base application. This view is
particularly useful in dynamically reconfigurable software [3] [4] where plug-ins are
composed with the base application at run-time in order to take advantage of changes in
the structure of the application. As noted earlier, such changes can occur frequently in
network based applications. In another, more conventional viewpoint, the ”plug-ins” be-
come patches to the original program. These patches are synthesized to correct ”bugs”
in the original application software. In this case, the block diagram in figure 1 is an
archetype for the software design process, in which we iteratively analyze and correct
”bugs” in a given application.

The loop in figure 1 is the classical control loop used in all of traditional control
theory [5]. We now begin filling in the details of figure 1. In the loop, the plantP is
treated as atwo-port system. In other words, the plant is a system with two types of
inputs and two types of outputs. Plant inputs are categorized as either beingcontrol
signalsor uncontrolled disturbance signals. The control inputs are chosen by the de-
signer/supervisor to regulate plant behavior. The uncontrolled disturbance input is not
completely known by the designer. The disturbance is really used to enable a set of pos-
sible next events that the plant can generate. In this regard, therefore, the uncontrolled
disturbance injects some degree of non-determinism into the plant state’s evolution. The
system outputs are also categorized into two distinct groups. Theobjectivesignal is an
output that quantifies the system’s performance. In our case, we take the object signal
to be a ”warning” that the system has entered a forbidden state. The other output signal
is called themeasurementsignal. This signal is directly observed by the supervisor and
is used by the supervisor to help direct the plant’s behavior.

With the loop in figure 1, we now associate thesupervisory control problem. In
particular, our problem is to find asupervisorthat prevents the plant from entering any
previously specified forbidden state. In general, there may be a number of supervisors

157

4

that accomplish this objective. For instance, if we have a supervisor that disables all
plant transitions, then we would have achieved the objective (assuming we started in a
safe state to begin with). Such solutions to the supervisory control problem, however,
are highly undesirable because they are extremely restrictive. In particular, we would
like to determine amaximally permissivesupervisor. If such a maximally permissive
policy exists, then we say it is ”optimal”. Supervisory control in traditional control of
discrete event systems is concerned with the existence of and method for synthesiz-
ing the maximally permissive (i.e., optimal) supervisor. The application of this theory
to software design means that we can clarify what it means for a particular software
solution to beoptimal.

The preceding discussion is still somewhat informal. We now provide a complete
formal description of the supervisory control problem. We begin by considering the base
application. Let’s assume that the plant can be represented by a net systemG = (N,µ0)
whereN = (S,T,F) is an ordinary bounded Petri net with placesS, transitionsT, and
directed arcsF ⊂ (S×T)∪ (T×S). µ0 is the initial marking of the net system.

For notational purposes, let’s review some basic Petri net concepts. The current state
of the Petri net is represented by themarking µ: S→ Z+. µ maps each place in the Petri
net onto a non-negative integer. Ifµ(s) > 0, then we say that places is marked. Given
a transitiont ∈ T, we define the preset oft (denoted as•t) as all placess∈ Ssuch that
(s, t) ∈ F. Similarly, the postset of transitiont (denoted ast•) is the set of all places
s∈ Ssuch that(t,s) ∈ F . A markingµ is said to be reachable fromµ0 through transition

t (also denoted asµ0
t→ µ) if and only if µ(s)> 0 for all s∈ •t and

µ(s) =




µ0(s) + 1 if s∈ t •−• t
µ0(s)−1 if s∈ •t− t•

µ0(s) otherwise

A string of transitionsσ = t1, t2, · · · , tn is called anoccurrence sequenceif there exists a

sequence of marking vectorsµ0,µ1, · · · ,µn such thatµi−1
ti→ µi for i = 1, . . . ,n. The set

of all markings reachable fromµ0 is denoted asR(µ0).
To embed the net systemG = (N,µ0) into the control loop in figure 1, we define an

augmented plantas the 5-tuple,

P = (G, `w, `u, `z, `y)

where`w : Σw→ Pow(T) maps symbols in the disturbance alphabetΣw onto a set of
transitions,̀ u : Σu → Pow(T) maps symbols in a control alphabetΣu onto a set of
transitions.̀ u and `w are input functions. A transitiont is said to beuncontrollable
if and only if there exists no control symbolλ such thatt ∈ `u(λ). The output maps
`z : R(µ0)→ Σz and`y : R(µ0)→ Σy map the net system’s current marking onto a symbol
in an objective alphabet,Σz, or measurement alphabet,Σy, respectively.

Thesupervisoris a mapS : Σy→ Σu from the measurement symbols to the control
symbols. The supervised plantP |S is the interconnection of the augmented plant and
supervisor shown in figure 1. We can view this supervised system as an input/output
system that accepts a string of disturbance symbols and generates a string of objective
symbols. In particular, consider a sequence of objective symbolsσw = w1,w2, · · · ,wn.

158

5

We say that the occurrence sequenceσ = t1, t2, · · · , tn is acceptedby the supervised plant
P |S with input sequenceσw if and only if there exists a sequence of reachable markings
µ0,µ1, · · · ,µn such that

– µ0
t1→ µ0

t2→ ··· tn→ µn

– ti ∈ `w(wi) for all i = 1, . . . ,n, and
– ti /∈ `u(S(`y(µi−1))) for i = 1, . . . ,n.

The sequence of objective symbolsσz = z0,z1,z2 · · · ,zn is generated by this occurrence
sequence ifzi = `z(µi). From these definitions, we see that the action of the supervisor is
to disablespecified transitions from firing when the net system reaches a given marking
in the domain of̀ u. Because supervision is based on the marking of the plant’s Petri
net, we refer toS as amarking based supervisor.

The system in figure 1 represents a specific supervisory control system in which
plant’s network,(S,T,F) has the form shown in the figure. The output alphabets are
Σy = {v1,v2,v3} andΣz = {0,1}. In this example, we define the input maps so that
`u(B) = {t1} and`u(A) = /0. The disturbance input map is`w(w) = T. With these defi-
nitions, we see that the control input only disables transitiont1 when the control symbol
is B. Moreover, we see that the disturbance input was chosen so that at any instant, all
transitions that have their presets marked (and which have not been disabled by the su-
pervisor) will be free to fire. The output map`y is chosen so that the supervisor can see
all markings generated by the system. The other output mapping,`z, generates a 1 if
the marked state isv3. Note thatv3 is a deadlocked place from which the net system
cannot fire another transition. Therefore the objective map warns us when the system is
deadlocked. The supervisor shown in figure 1 is represented as a table for the supervisor
map. It shows that we generate the output symbolB when the system marks statev1.
Sincev1 has a transition,t1, leading to the deadlocked markingv3, it is apparent that
the action of the supervisor is to prevent the system from reaching the deadlocked state.
This is accomplished by disablingt1 from firing if placev1 is marked. We therefore see
that the supervisor,S , in this example is a deadlock-avoidance supervisor.

The preceding discussion shows a supervisor that prevents the plant from reaching
deadlocked marking. The deadlock avoidance property is aspecificationon the closed
loop system’s desired behavior. We now generalize the ideas presented in the preceding
paragraph. Let the subsetRf ⊂R(µ0) be a collection offorbidden markingsin the orig-
inal net system. Assume that`z is chosen to signal the system’s entry into a forbidden
marking. In other words, let̀z(µ) = 1 if and only ifµ∈Rf . Let’s partition the transitions
T into a set ofcontrollable Tc anduncontrollabletransitions. Recall that an uncontrol-
lable transition is a transition that cannot be disabled by the supervisor. Therefore if
t ∈ Tu, we know thatt /∈ `u(u) for any u ∈ Σu. Let L(G) denote the set of all occur-
rence sequences that can be accepted byG. LetK be a sublanguage ofL(G) (also called
the specification language) such that all occurrence sequences inK generate objective
sequences that have no ones(1) in them (i.e., no forbidden markings are entered). Con-
sider the supervised plantP |S and letL(P |S) denote the set of all occurrence sequences
in L(G)accepted byP |S for any input sequenceσw ∈ Σ∗w. The supervisorS is said to be
legal if L(P |S)⊆K. We say that the supervisor ismaximally permissiveif for any other

159

6

legal supervisorS ′, thenL(P |S ′) ⊆ L(P |S). Thesupervisory control problemasks us
to find the maximally permissive legal supervisor. The language generated by this max-
imally permissive supervisor is denoted asK↑ and is called thesupremal controllable
sublanguage.

Since a bounded ordinary Petri net can be represented as a finite state machine, the
results of [10] can be used to infer the existence of the supremal controllable sublan-
guage. In other words, the supervisory control problem always has anoptimalsolution
(optimality being interpreted in the sense of maximal permissivity) and this means that
our problem statement is well-posed. The chief contribution of supervisory control the-
ory is to ensure that the problem of finding an optimal supervisor for a discrete-event
system is meaningful.

Let’s consider a specific example that illustrates the application of this framework
to the design of supervisory plug-ins for distributed software. We consider a distributed
cache system in which two local cache memories synchronize their contents to the
contents in a global memory bus. Each local cache has memory and a processor to
control memory access. The global bus also has memory and a processor. The global
bus and local caches interact through message passing.

We assume that the local cache and global bus each have three states:invalid,
shared, or owned. When the data in the local cache and global bus are synchronized
then all objects are in thesharedstate. The data in a cache becomes unsynchronized
when the local cache updates its memory. When a local cache wants to perform this
update, it changes its local state toowned and sends the messageinvalidate to the
other cache and global bus. Upon receipt of this message the global bus and other cache
change their internal states toinvalid.

The local cache can also invalidate the global bus if it detects a loss of synchrony
through aread-onlymessage. This provides a means of fault identification for mem-
ory faults. In this case, the local cache issues aread-only request to the global bus.
The global bus responds with the requested data and if this data is inconsistent with the
local cache’s copy, then the local cache issues aninvalidate signal.

Once invalidated, the cache memories need to be resynchronized to the global bus.
This resynchronization is initiated by the local cache that changed its local memory.
After updating its memory, the local cache sends thecomplete-update message to
the global bus. The global bus responds with aread-write request for the updated
data. Theowned local cache responds to this request with the desired data and then
changes its internal state toinvalid. Upon receipt of the data, the global bus changes
its state toowned. We now have both local caches invalidated and they can each change
their internal state toshared by issuingread-write requests to the global bus.

The software controlling the communication between the local caches and the global
bus can be viewed as distinct objects. We will formally model these objects as ordinary
Petri nets. For instance, letNlc = (S,T,F) be a Petri net for one of the local caches. The
messages sent and received by this object are a subsetSmeasof Ssuch that ifs∈ Smes,
then eithers• = /0 or •s= /0. In other words, messages are places that are either sinks
or sources of the object Petri net. We define theprivate variables, Spriv, of the object as
all other places (i.e.Spriv = S−Smes). Thepublic methodsof the object are transitions

160

7

that are connected to message places. In particular, we define theith public method as
a subsetMi ⊂ T such that ift ∈Mi then

– •t−Smes 6= /0 or t •−Smes 6= /0
– and if for anyt1, t2 ∈ Mi , we know•t1−Smes= •t2−Smes and t1 •−Smes = t2 •
−Smes.

In other words, public methods are collections of transitions whose arcs to message
places all have the same connectivity pattern. Petri net objects for the local cache and
global bus objects are shown in figure 2. In this figure, private places are represented by
open circles. Note that in figure 2, arcs going to (from) message places do not terminate
(originate) in an open circle. Message places are not explicitly shown in this figure. Also
note in this figure that all transitions are public method. This, however, is not always
the case as we can define objects that have internal private transitions.

invalid
shared owned

read-write

read

ack-read

ack-write

waiting

waiting

ack-invalid
invalidate

waitinginvalidate ack-invalid

ack-invalid

invalidate

complete-update

waiting

read-write

ack-write

shared owned

ack-invalid
invalidate

read ack-read

ack-write read-write

read ack-read

invalid

complete_update
read-write

waiting

ack-write

Fig. 2. Distributed Cache System Object Petri Nets (local cache on left, global bus on right)

We now formulate the supervisory control problem for the distributed software sys-
tem comprised of the objects in figure 2. Recall that the formulation of the problem
starts with a specification of the system’s forbidden markings. One obvious set of for-
bidden markings would consist of those markings from which the entire system isdead-
locked. Assuming that we can identify the deadlocked markingsMdead, (this is done be-
low using a partial order method), we can then define the objective map`z to take values
of 1 whenµ∈ Mdeadand zero otherwise. We’re interested in designing another object
(called aplug-in) that can selectively disable system transitions to enforce deadlock-
avoidance.

Since the plug-in is an object as well, it can only interact with the other objects
through their public methods. Therefore, our supervisor can only disable those transi-
tions that are found in public methods. In this particular example, all of the transitions
are in a public method and so we have complete controllability over this system. How-
ever, this need not be the case in general. For objects in which there are transitions
representing private methods, these transitions cannot be directly disabled. Theuncon-
trollability of various transitions in the network makes the problem of identifying a
supervisory controller much more difficult. One of the chief accomplishments of super-
visory control theory was the articulation of a framework for such uncontrollable net

161

8

systems and the identification of necessary and sufficient conditions for the existence
of legal controllers enforcing a desired specification language.

It is important to note that thesupervisednet system is not an ordinary Petri net. The
supervisor disables transitions when a specified set of places are marked in the plant.
This disabling action cannot always be represented by a Petri net. It is well known [6]
that Petri net languages are not closed under the recursive operation used to compute
the supremal controllable sublanguage. This result, therefore, implies that an optimal
(maximally-permissive) marking based supervisor does not necessarily have a repre-
sentation as an ordinary Petri net. On the basis of this result, therefore, we can partition
results on supervisory control into marking-based supervisors and Petri-net based su-
pervisors [7] [8] . The framework presented above uses a marking-based supervisor and
in this case, we know a maximally permissive supervisor can always be found. There
are obvious benefits in being able to represent the supervisor as a Petri net. For some
classes of specifications (deadlock), necessary and sufficient conditions for the exis-
tence of a marking-based supervisor and Petri-net based supervisory have recently been
proposed [9].

3 Synthesis of Supervisory Plug-ins

Most existing approaches [11] [12] [13] for the synthesis of maximally permissive su-
pervisors involve some sort of search of the Petri net’s state space. The problem with
this, of course, is that distributed software has a high degree of concurrency, so it’s
impractical to search exhaustively for critical transitions leading to forbidden mark-
ings. This means that clever and efficient means of search must be employed if we are
to automate the design of supervisory plug-ins for this class of software. This section
summarizes recent results in [13] in which a partial order method known as network
unfolding is used to synthesize marking based supervisors. Partial order methods [14]
[15] [16] represent an important approach that can greatly reduce the complexity of
network analysis. This point was first made in [17] where unfolding was proposed as a
means taming state-explosion problems encountered in the verification of asynchronous
digital circuits. Since that time a variety of researchers have used unfolding [20] [18]
[19] to characterize network properties and in [13], this idea was extended to synthesize
supervisors enforcing this set of characterized properties. In this section we summarize
the approach to supervisor synthesis and then illustrate its application to the design of
supervisory plug-ins that enforce deadlock-freedom for the distributed cache example
in the preceding section.

Consider a net system(N′,µ′0), whereN′ = (S′,T ′,F ′) is an ordinary Petri net and
µ′0 is the initial marking. Let min(N′) be those places inN with empty presets. We define
anoccurrence netas a net system(N ′,µ′0) such that every place is preceded by at most
one transition (i.e.,| • s| ≤ 1 for all s∈ S′), no transition is in self-conflict and a place
s∈min(N′) if and only if it is marked byµ′0. A branching processβ = (N′,h′) of net
systemN consists of an occurrence netN′ and a net homomorphism,h′, from N′ to N.
The net homomorphism preserves the causal ordering of transitions. Specifically this
means that if•t1 = •t2 andh′(t1) = h′(t2) thent1 = t2. In general a given network may

162

9

have many branching processes and the unfolding is the maximal branching process
(denoted asβm).

The unfolding of a deadlock-free net system will always be of infinite size. Nonethe-
less, it is often possible to find a branching processβc that is a finitary prefix of the
unfoldingβm such that all the reachable marking of the original net systemN can be
enumerated fromβc. An important prefix of this type was introduced in [17] and subse-
quent variations were presented in [20]. A key concept in the characterization of such
prefixes is the concept of aconfiguration. Let Nm be the occurrence net associated with
the unfoldingβm. A set of transitions,C, is said to be a configuration if and only if all
transitions inC are in precedence and no two transitions inC are in conflict.. Given a
transitiont ∈ T, we define thecauseof t (denoted as[t]) as the set of all transitions
precedingt. The cause is easily shown to be a configuration.

The cut of a configurationC is defined as

Cut(C) = (minN′ ∪C•)−•C

whereC• (•C) is the postset (preset) of transitions inC. The cut of the configuration
contains those places that are marked after firing all transitions inC.

Given an unfoldingβm, we define the set ofend transitions Tend as any transition
such that

– there is no transitionT ′ ∈ Tm such thatt < t ′,
– or there exists a transitiont ′ ∈T such that[t ′]⊂ [t] andhm(Cut([t ′])) = hm(Cut([t])).
– or the marking ofhm(Cut([t])) is the initial markingµ0.

The transitions inTend represent a natural place to cut the unfolding because these tran-
sitions either represent local deadlocks (the first condition) or they represent transitions
that enable other configurations within the net system (the final two conditions). We
define the branching processβc by removing those nodes in the unfolding that follow
transitions inTend. It has been shown thatβc is a finitary prefix that enumerates all
reachable markings inR(µ0). In this regard, we can construe the net systemNc associ-
ated withβc as a reduced reachability graph.

Recognizing the importance ofTend, we refer to the cause of any transitiont ∈
Tendas abase configuration. Base configurations encapsulate causally related strings of
transitions and as such they represent a thread of execution that can be seen, intuitively,
as basis threads from which all other system behaviors can be generated. Another way
of viewing the base configuration is as ameta-statefor the system. From the standpoint
of supervisory control, these meta-states can be selectively disabled to enforce, in a
modular manner, various specifications on the system behavior. The unfolding process
provides an a means of automatically identifying these meta-states as we construct the
net system’s reduced reachability graph. The unfolding process also allows us to easily
identify the markings enabling these meta-states. This means that unfolding can be
readily used to synthesize supervisory controllers for Petri nets, a fact that was first
advocated in [13].

As an example, let’s consider the Petri net shown in figure 3 and construct its un-
folding. The original network,N, is shown in the top part of this figure with an initial
marking of placess1 ands3. The associated occurrence net forN is shown in the second

163

10

graph in figure 3. We constructN′ from N by following the markings that are reachable
from the initial marking. In figure 3, the first transition that is enabled is transitiont3
and this results in the marking{s2,s4}. We construct the network associated with this
transition as shown in thefirst tier of the occurrence net in figure 3. The second tier
is constructed by considering the markings reachable from{s2,s4}. In this case, there
are two possible transitions that can be enabled,t1 andt4. However, the network has a
choice in which transition is fired. The mappings reached by choosing either of these
transitions forms thesecond tierof this particular unfolding. Note that our unfolding
has now identified two different paths that the Petri net can follow. These represent two
different concurrent executions of the system. The finalthird tier of the unfolding is
obtained by firing the transitionst2 andt4.

s1

s2

s3 s4 s5

t1

t2

t3

t4

t3 t1

t4

t2 t4

s1

s5 s4

s2 s1’

s3

s5’’

s5’s4’

first tier second tier

third tier

configuration 1: {t3,t1,t2,t4}

configuration 2: {t3 t4}

critical transition = t4

Original Petri Net, N
maps onto occurrence net,
N’, through the net
homomorphism, h’

Fig. 3. Unfolding of Petri Net

164

11

Since unfolding preserves precedence relations between transitions, it can be used to
identify critical transitionswhose controllability ensures the existence of a maximally
permissive supervisor disabling a specified base configuration. In figure 3, we have the
finite prefixβc for the unfolded system. In this unfolding there are two base executions.
These base configurations are formed from the set of transitionsBC1 = {t1, t2, t3, t4} and
BC2 = {t2, t4}. The first executionBC1 is a cycle, in that upon completion of the exe-
cution, the network reaches a marking from whichBC1 can be re-enabled. The second
execution,BC2, is deadlocked. The unfolding in figure 3 explicitly shows how the net-
work can be deadlocked when it chooses to execute base configurationBC2. In order to
prevent deadlock, we simply need to find that transition which disablesBC2 from being
executed while keeping configurationBC1 alive.

In figure 3, it is apparent that the critical transition disablingBC2 is transitiont4.
This transition can be fired inBC2 when the net marking is{s2,s4}. If we then intro-
duce a supervisory map,S , that disablest4 when these two places are marked then we
can ensure that the deadlocked base configuration cannot be executed. Moreover, by
disabling the execution ofBC2 and noting thatBC1 contains all transitions of the origi-
nal net systemN , we see that this proposed supervisor in fact enforces the liveness of
the supervised system. It is, of course, crucial, in this example thatt4 be controllable.
If t4 is not controllable, then it may be possible to look at those controllable transitions
preceding the critical transition and see if disabling any of them will achieve the same
result (namely disablingBC2 and keepingBC1 alive). In this example, unfortunately,
there are no such controllable transitions precedingt4 and therefore the controllabil-
ity of transitiont4 is necessary and sufficient for the existence of a supervisory policy
enforcing system liveness.

We now apply these ideas to the supervisory control of the distributed cache system.
This particular system has a deadlock that is relatively difficult to detect. We want to
synthesize a plug-in that makes the system deadlock free. Using the unfolding meth-
ods in [19], we find that the distributed cache system is deadlocked whenever one local
processor sharing data with the global bus is trying to invalidate the other local cache’s
memory, and at the same time the other cache is requesting to read data from the global
bus. The configuration in figure 4 shows how the deadlock occurs. Local cache 1 sends
out the invalidatemessage and awaits acknowledgement from local cache 2. In the
meantime, local cache 2 sends out aread request to the global bus and awaits its re-
sponse. The global bus, however, cannot respond because its memory was invalidated
by local cache 1. In this case both local caches and the global bus cannot proceed and
the system is deadlocked.

The situation illustrated in figure 4 is a race condition that is referred to ascyclic lock
in [19]. Cyclic locks occur when a sequence of transitions in concurrent base configu-
rations are interleaved in such a way that both configurations are waiting for resources
that the other configuration needs to release. The sequence of transitions leading up to
this race condition is called alock sequence. Lock sequences can be identified during
the algorithmic construction of the net system’s unfolding. The data in the unfolding
can also be used to identify those markings that must be disabled in order to prevent the
lock sequence from firing. It therefore becomes possible to use the unfolding method

165

12

invalid

Local bus 1

Global bus

local bus 2

owned

read-write

waiting

ack-write

shared

shared

invalidate(to local bus 2)
invalidate

invalid

waiting

invalid
waiting

read

shared

read

waiting

ack-read

invalid

ack-invalid

Fig. 4. Race Condition in Distributed Cache System

to synthesize a supervisory controller that enforces deadlock freedom in a maximally
permissive manner.

In the distributed cache example, our plug-in must not let the global bus invalidate
its memory if there is a read request in its message queue. By disabling this transition,
we force the global bus to respond to theread request sent by the other local cache. On
the other hand, we must also disable a local bus’ read request if there is aninvalidate

request on the local cache’s message queue. This restriction forces the local cache to
acknowledge the invalidation request and let the data update proceed.

The implementation of this supervisory action is rather simple. We only need to
develop two types of supervisory plug-ins, one for the global bus and the other for the
two local caches. Pseudo code for the global bus plug-in is

if((Private_State==SHARED) &&

(message_queue(invalidate)) &&

(message_queue(read)))

disable(Shared2Invalidate)

In this pseudocode, the variablePrivate_State is the global bus state and the function
message_queue checks the message queue for the specified message. If the conjunc-
tion of these conditions is true, then the functiondisable disables the invalidation of
the global bus’ memory. Pseudo code for the plug-ins on the local caches is

if(message_queue(invalidate)){

Disable(Send_read_request);

} else {

Enable_all();

}

166

13

This pseudocode simply tests to see if the local cache has aninvalidatemessage on
its message queue. In which case, theread_request is disabled. If the message queue
does not have aninvalidate message queued up, then theread_request action is
re-enabled.

4 Runtime Reconfiguration of Distributed Software

This section speculates on the application of supervisory control to the runtime recon-
figuration of distributed software. Due to the open and dynamic nature of the physical
layer in embedded network systems, there is a real need for distributed software that
can monitor its own health and then autonomously reconfigure itself to improve its per-
formance. This is the notion ofdynamic reconfigurableor adaptivesoftware [3] [4].

The underlying paradigm is shown below in figure 5. Ignoring the details in this
figure, we see that the basic control loop of figure 1 has been embedded into a larger
control loop. The objective signal is now used by aswitching elementto select which
supervisors are to be applied to our software system. To use the switching element we
must monitor the behavior of the augmented plant to detect anomalous behavior. Upon
detection of an anomaly that adversely effects system performance (as represented by
the objective symbols), the switching element reconfigures the software system by se-
lecting a different set of supervisory plug-ins to control the plant. This reconfiguration,
of course, is done at run-time using pre-compiled objects that are simply ”plugged-into”
the augmented plant.

A more detailed examination of figure 5 shows how the monitoring is actually ac-
complished. We see that the objective signal is passed through a mappingQ : Σ∗z→ℜ.
Q maps each string of objective symbols onto a real number that represents theQuality
of Serviceor QoSprovided by the plant for this particular input sequence. The QoS is a
real number and can represent a number of practical performance measures. Returning
to our distributed cache example, one useful measure of QoS is the time it takes for the
system to return to theshared state after the global bus has been invalidated. If this
resynchronization time is too long, then this means something is wrong within the sys-
tem and our switching element is used to reconfigure the software. The reconfiguration
decision is made by a simple threshold test on the length of the resynchronization time
as output byQ. So in figure 5, we see that the mapQ is followed by a thresholding
element that provides a binary output to the switching element indicating whether or
not the system needs to be reconfigured.

The actual nature of the reconfiguration depends on the suite of supervisory plug-
ins we have at our disposal. In the preceding section, it was shown that this system has
a cyclic lock that can be fixed through a deadlock-avoidance plug-in. It is also possible
to introduce plug-ins for other specifications. In this distributed cache example, we
consider afairnessspecification.

To motivate this fairness specification, let’s assume that one of the local caches
issues aninvaliate message, but for some reason the cache is unable to complete
updating its memory. This may happen due to a processor fault. If this happens, then
read requests from the other local bus will be blocked because the global bus has
been invalidated. However, since the local cache never issues thecomplete-update

167

14

measureable
outputs

controlled inputs

objectivesuncontrolled inputs

w-w-w Q

threshold

deadlock
avoidance
plug-in

plug-in to disable
 local cache 1

plug-in to disable
 local cache 2

switching
element

Distributed Cache
System’s augmented
plant.

Fig. 5.Runtime Reconfigurable Distributed Software

message, the global bus is blocked from leaving theinvalid state. This type failure in
the local cache, therefore, is sufficient to deadlock the entire distributed cache system.
In other words, our distributed software system is not fault tolerant since it fails globally
when a single local cache is faulty.

We want to fix this problem without rewriting the existing protocols in the local
caches and global bus. We solve our problem by introducing a plug-in that can be ap-
plied when this type of fault is detected. Obviously, this fault results in extremely long
(i.e. unbounded) resynchronization times, so the simple threshold test mentioned above
can be used to detect this type of fault. The most obvious action to be taken at this time
is to simply isolate the faulty local cache from the entire system. This is accomplished
by introducing a supervisory plug-in on the faulty cache that disables the transitions

168

15

sendinginvalidatemessages. In figure 5, the additional two supervisors connected to
the switching element are the plug-ins disabling these transitions.

Remark: Note that in addition to applying plug-ins to isolate the faulty cache, we
must also reinitialize the global bus as well. Recall that the deadlock induced by this
fault leaves the global bus in a state from which it is deadlocked unless acomplete-update

message is received. By simply disabling messages from the faulty cache, however, we
do not clear this deadlock. It is therefore essential that in addition to turning on the
plug-ins, that the global bus is re-initialized. This re-initialization is not shown in figure
5. However, it must be realized that re-initialization is an important part of dynamic
software reconfiguration.

Remark: One important aspect of supervisory control in this application is the ap-
parent composability of the supervisors. Our early work indicates that these supervisory
plug-ins can be composed in such a manner that they do not interfere with each other.
This is obviously apparent in the distributed cache example, where we can apply the
deadlock-avoidance and fairness plug-ins without losing either property. Whether or
not this composability is a general property of supervisory plug-ins is currently being
investigated and will be reported upon in the future.

5 Conclusions

The primary contribution of this paper is the proposed application of supervisory con-
trol theory to the synthesis of supervisory plug-ins for distributed software. This the-
ory ensures that the synthesis problem is a well-posed optimization problem in which
we search for maximally permissive marking-based supervisors. The theory applies to
bounded net systems with uncontrollable transitions and this means that it is relevant
to open architecture software systems where a designer has limited access to object
methods. Moreover, recent advances in partial order method analyses provide system-
atic methods for the synthesis of such supervisors for certain classes of specifications
such as deadlock and fairness. In short, the methods presented in this paper apparently
provide a systematic and tractable set of methods that may be used to automate the de-
sign of high quality distributed software. This conjecture was exemplified by using the
framework to formulate an approach to run-time reconfigurable software.

This paper is aconceptpaper and there remain a number of important issues that
must be addressed before this concept can be implemented in practice. Some of these
issues are itemized below.

– This paper’s restriction to bounded Petri net immediately suggests that traditional
finite-state machine methods for verification and supervision might be applied as
well. The potential benefit that partial order methods bring to this analysis is a re-
duction in the analysis’ complexity. Even though this paper has not formally quan-
tified that reduction in complexity, it is possible to speculate that the computational
savings obtained using this method will vary greatly with the complexity of the pro-
cess being studied. Systems having a few sparsely connected fundamental cycles
(such as the dining philosopher’s problem) are well served by this method. Other
problems having many densely connected fundamental cycles may be better served

169

16

using the binary decision diagrams employed in the verification of finite-state ma-
chines. Future work is needed to quantify where and when partial order methods
are most valuable.

– There is an important question concerning the implementation of the supervisor in a
distributed system. Clearly, the supervisor requires access to at least a partial global
state before it can disable a method. Identifying such states in a distributed system
can be extremely difficult. One approach that has been suggested is for supervisors
to use time-stamped messages to construct a partial system state that is known to
be valid at a specified time in the past. The firing of object methods, therefore, must
also accomodate such a delay. This is, probably, a function to be implemented in
network middleware. These ideas are also being explored by our group.

– Our recent work in this area suggests that supervisory approaches indeed provide
a method for composing software plug-ins in a non-interfering manner. Formally
proving this conjecture is currently under way and will be reported on in the future.

– Another important direction of work concerns the fact that our plug-ins are only
supervisory. Supervision is, by definition, a restriction of the executions that the
base application can generate. There is, however, great interest in being able to
develop plug-ins that can also augment or add to overall system behaviors in a
modular manner. The apparent modular nature of our base configurations suggests
that the unfolding methods adopted in this paper might also be used to design plug-
ins that augment a system’s executions in a modular manner.

– While the Petri net is a useful low-level model for analysis purposes, its use is
inconvenient for program specification. There is significant interest in our ability to
integrate high-level modeling formalisms such as the Unified Modeling Language
(UML) with our Petri net tools.

– The application of these methods for the runtime reconfiguration of distributed soft-
ware represents an application of these methodologies that can have an enormous
impact on the development of mobile Internet based software. Future work is defi-
nitely need to more fully explore the scalability of these methods for such applica-
tions.

This paper represents an initial attempt to assess the relevance of existing control theo-
ries to software engineering. In particular, it seems that software development is often
an ad hoc process in which the user (rather than the designer) is responsible for assur-
ing software reliability. As distributed software becomes increasingly important in the
control and management of critical systems like the electric power grid or air traffic
control, it is essential that these software systems beengineeredin the same sense that
we engineer planes, spacecraft, and other physical systems. In other words, our hope
is that the methodologies presented in this paper provide a framework in which to for-
mally engineer critical distributed object software with provable guarantees of program
quality.

References

1. P.J. Ramadge and W.M. Wonham, “Supervisory control of a class of discrete event pro-
cesses”,SIAM Journal of Control and Optimization, 25(1), pp. 206-230, 1987.

170

17

2. J. Engelfriet, “Branching processes of Petri nets”,Acta Informatica, 28, 575-591, 1991.
3. R. Laddaga (guest editor), special issue on “Robust software and self-adaptation”IEEE In-

telligent Systems and Their Applications, Vol. 14, No. 3, May/June 1999.
4. J. Veitch and R. Laddaga (guest editors), special issue on distributed dynamic systems, Com-

munications of the ACM, Vol 41, No. 5, May 1998.
5. J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, MacMillan Press, 1992.
6. A. Giua, “Blocking and Controllability of Petri Nets in Supervisory Control”,IEEE Trans.

on Automatic Control, Vol 39(4), 1994.
7. K. Yamalidou, J. Moody, M.D. Lemmon and P.J. Antsaklis, Feedback Control of Petri nets

based on Place Invariants,Automatica, Vol. 32, No. 1, pp. 15-28, 1996.
8. J.O. Moody, P.J. Antsaklis, and M.D. Lemmon, “Application of Automatic Petri Net Con-

trol Design”, proceedings of INRIA/IEEE Conference sur les technologies emergentes et
l’automatisation de systemes de fabrication, October 10-13, Paris, France.

9. K.X. He and M.D. Lemmon, ”On the transformation of liveness-enforcing marking based
supervisors into monitor supervisors”, submitted to the IEEE Conference on Decision and
Control, Sydney Australia, December 2000.

10. W.M.Wonham and P.J. Ramadge, “On the supremal controllable sublanguage of a given
language”,SIAM Journal of Control and Optimization, 25(3), pp. 637-659, May 1987.

11. R.S. Sreenivas, “On supervisory policies that enforce liveness in complete controlled Petri
nets with directed cut-places and cut-transitions”,IEEE Trans. on Automatic Control, Vol.
44(6), June 1999, pp. 1221-1225.

12. Y. Li and W.M. Wonham, “control of vector discrete-event systems: controller synthesis”,
IEEE Transactions on Automatic Control, Vol. 39(3), pp. 512-530, 1994.

13. K.X. He and M.D. Lemmon, ”On the existence of liveness-enforcing supervisory policies
of discrete-event systems modeled byn-safe Petri nets”,Proceedings of IFAC conference on
Control System Design, Special issue on Petri nets, Slovakia, June 2000.

14. Vogler, W. (1992),Modular Construction and Partial Order Semantics of Petri Nets, Lecture
Notes in Computer Science, Vol. 625, Springer-Verlag, 1992.

15. P. Godefroid.Partial-Order Methods for the Verification of Concurrent Systems – An Ap-
proach to the State-Explosion Problem.PhD thesis, University of Liege, Computer Science
Department, November 1994.

16. P. Godefroid and P. Wolper, ”Using Partial Orders for the Efficient Verification of Dead-
lock Freedom and Safety Properties,”Formal Methods in System Design, Kluwer Academic
Publishers, Vol. 2, No. 2, April 1993, pp. 149-164.

17. K. McMillan,”Using unfoldings to avoid the state explosion problem in the verification of
asynchronous circuits”,Computer Aided Verification, 4th International Workshop (CAV’92),
(Bochmann and Probst (eds.), LLNCS Vol 663, Springer Verlag, 164-177, 1992.

18. A. Kondratyev, M. Kishinevsky, A. Taubing, and S. Ten, “Structural approach for the analysis
of Petri nets by reduced unfoldings”,Proceedings of the 17th International Conference on
Application and Theory of Petri Nets, Osaka Japan, June 24-28, 1996.

19. K.X. He and M.D. Lemmon, “Liveness verification of discrete event systems modeled byn-
safe Petri nets”, to appear in Proceedings of the 21st International Conference on Application
and Theory of Petri Nets, Denmark, June 2000.

20. J. Esparza, S. Romer, and W. Vogler, “An improvement of McMillan’s unfolding algorithm”,
Proceedings of Tools and Algorithms for the Construction and Analysis of Systems, (T. Ma-
garia and B. Steffen, eds.), LNCS Vol. 1055, Springer-Verlag, 1996.

171

172

Protocol Re-synthesis

Based on Extended Petri Nets?

Khaled El-Fakih1, Hirozumi Yamaguchi2,

Gregor v. Bochmann1, and Teruo Higashino2

1 School of Information Technology and Engineering, University of Ottawa,

150 Louis Pasteur, Ottawa, Ontario K1N 6N5, Canada

fkelfakih,bochmanng@site.uottawa.ca
2 Graduate School of Engineering Science, Osaka University,

1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan

fh-yamagu,higashinog@ics.es.osaka-u.ac.jp

Abstract. Protocol synthesis is used to derive a speci�cation of a dis-

tributed system from the speci�cation of the services to be provided by

the system to its users. Maintaining such a system involves applying fre-

quent minor modi�cations to the service speci�cation due to changes in

the user requirements. In order to reduce the maintenance costs of such a

system, we present an original method that consists of a set of rules that

avoid complete protocol synthesis after these modi�cations. These rules

are given for a system modeled as an extended Petri net. An application

example is given along with some experimental results.

1 Introduction

Synthesis methods have been used (for surveys see [5, 6]) to derive a speci�ca-

tion of a distributed system (hereafter called protocol speci�cation) automatically

from a given speci�cation of the service to be provided by the distributed system

to its users (called service speci�cation). The service speci�cation is written like

a program of a centralized system, and does not contain any speci�cation of

the message exchange between di�erent physical locations. However, the proto-

col speci�cation contains the speci�cation of communications between protocol

entities (PE's) at the di�erent locations.

A number of existing protocol synthesis strategies have been described in

the literature. The �rst strategy, [9, 3, 4, 8, 10, 12, 14, 17, 18], aims at implement-

ing complex control-
ows using several computational models such as LOTOS,

Petri nets, FSM/EFSM and temporal logic. The second strategy, [20, 23, 19, 24,

22], aims at satisfying the timing constraints speci�ed by a given service speci-

�cation in the derived protocol speci�cation. This strategy deals with real-time

distributed systems. The last strategy, [21, 25, 11, 15, 7, 16], deals with the man-

agement of distributed resources such as �les and databases. The objective here,

? This work was partially funded by Communications and Information Technology

Ontario (CITO).

173

is to determine how the values of these distributed resources are updated or ex-

changed between PE's for a given �xed resource allocation on di�erent physical

locations.

Some methods in the last strategy, especially these presented in our previous

research work[26], have tried to synthesize a service speci�cation by deriving its

corresponding protocol speci�cation with minimum communication costs and

optimal allocation of resources.

As an example, we consider a Computer Supported CooperativeWork (CSCW)

software development process. This process is distributed among engineers (de-

velopers, designers, managers and others). Each engineer has his own machine

(PE) and participates in the development process using distributed resources

(drafts, source codes, object codes, multimedia video and audio �les, and oth-

ers) placed on di�erent machines. Considering the need for using these resources

between di�erent computers, we derive, using our protocol synthesis method,

the engineer's sub-processes (protocol speci�cation) knowing the whole software

development cycle (service speci�cation) and we decide on an allocation of re-

sources that would minimize the communication costs. Both the service and

protocol speci�cations are described using extended Petri nets.

In realistic applications, maintaining a system modeled by a given extended

Petri net speci�cation, involves modifying its speci�cation as a result of changes

in the user requirements. Synthesizing the whole system after each modi�ca-

tion is considered expensive and time consuming. Therefore, it is important to

re-synthesize the modi�ed parts of service speci�cation in order to reduce the

maintenance cost, which was reported to account for as much as two-thirds of

the cost of software production [30].

In this paper, we present a new method for re-synthesizing the protocol

speci�cation from a modi�ed service speci�cation. The method consists of a

set of rules that would be applied to di�erent PE's after a modi�cation to the

service speci�cation, in order to produce new synthesized (henceforth called re-

synthesized) PE's. The parts of the protocol speci�cation that correspond to

the unmodi�ed parts of the service speci�cation are preserved intact. As shown

later, this method reduces the cost of synthesizing the whole system after each

modi�cation.

This paper is organized as follows. Section 2 gives examples of service and

protocol speci�cations, and Section 3 describes the protocol synthesis method.

Based on this method, we present in Section 4 protocol re-synthesis method along

with some application examples in Section 5. Section 6 concludes this paper and

includes our insights for future research.

2 Service Speci�cation and Protocol Speci�cation

2.1 Petri Net Model with Registers

We use an extended Petri net model called a Petri Net with Registers (PNR in

short) [15] to describe both service and protocol speci�cations of a distributed

174

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1

i>R1

[R1<-R2+i,
 R2<-R1+R2+i]

G1 ? i

R1 R2

G1

3

1

fire

2 5 6

(a) (b)

transition t transition t

Fig. 1. Register Values and Token Locations before and after Firing of Transition in

PNR

system. In this model, an I/O event between users and the system followed by

the calculation of new values of variables inside the system is associated with

the �ring of a transition. Since distributed systems contain some variables (e.g.

databases and �les) and their values are updated according to inputs from users,

they can be modeled by PNR naturally.

Each transition t in PNR has a label hC(t); E(t);S(t)i, where C(t) is a pre-

condition statement (one of the �ring conditions of t), E(t) is an event expression
(which represents I/O) and S(t) is a set of substitution statements (which repre-

sents parallel updates of data values). Consider, for example, transition t of Fig. 1

where C(t) =\i > R1", E(t) =\G1?i" and S(t) =\R1 R2+i; R2 R1+R2+i".

i is an input variable, which keeps an input value and its value is referred by

only the transition t. R1 and R2 are registers, which keep assigned values until

new values are assigned, and their values may be referred and updated by all

the transitions in PNR (that is, global variables). G1 is a gate, a service access

point (interaction point) between users and the system. Note that \?" in E(t)
means that E(t) is an input event.

A transition may �re if (a) each of its input place has one token, (b) the value

of C(t) is true and (c) an input value is given through the gate in E(t) (if E(t) is
an input event). Assume that an integer of value 3 has been given through gate

G1, and the current values of registers R1 and R2 are 1 and 2, respectively. In

this case the value of \i > R1" is true and the transition may �re. If it �res, the

event \G1?i" is executed and the input value 3 is assigned to input variable i.

Then \R1 R2+ i" and \R2 R1+R2+ i" are executed in parallel. Therefore

after the �ring, the tokens are moved and the values of registers R1 and R2 are

changed to �ve (= 2 + 3) and six (= 1 + 2 + 3), respectively (Fig. 1(b)).

Formally, E(t) is one of the following three events: \Gs !exp", \Gs ?iv", or

\�". \Gs !exp" is an output event and it means that the value of expression

\exp", whose arguments are registers, is output through gate Gs. \Gs ?iv" is

175

G1?i1
[R2<-retrieve(R1,i1)]

keyword(i1)

keyword(i2)
G2?i2
[R4<-retrieve(R3,R2,i2)]

G1!R4
[]

true

R1 R2 R3 R4

G1 G2

T1

T2

T3

Fig. 2. Service Speci�cation

an input event and it means that the value given through Gs is assigned to the

input variable \iv". \�" is an internal event, which is unobservable from the

users. S(t) is a set of substitution statements, each of the form \Rw expw",

where Rw is a register and expw is an expression whose arguments are from the

input variable in E(t) and registers. If t �res, E(t) is executed followed by the

parallel execution of statements in S(t).

2.2 Service Speci�cation

At a highly abstracted level, a distributed system is regarded as a centralized

system which works and provides services as a single \virtual" machine. The

number of actual PE's and communication channels among them are hidden. The

speci�cation of the distributed system at this level is called a service speci�cation

and denoted by Sspec.

Actual resources of a distributed system may be located on some physical

machines, called protocol entities. However, only one virtual machine is assumed

at this level. Fig. 2 shows Sspec of a simple database system which has only three

transitions. The system receives a keyword (input variable i1) through gate G1,

retrieves an entry corresponding to the keyword from a database (register R1),

and stores the result to register R2. This is done on transition T1. Then the

system receives another keyword (input variable i2) through gate G2, retrieves

an entry corresponding to the keyword and the retrieved entry (register R2)

from another database (register R3), and stores the result to register R4. This

is done on transition T2. Finally the system outputs the second result (the value

of register R4) through G1 on transition T3 and returns to the initial state.

176

R3 R4 R1 R2

G1 G2

keyword(i1)

keyword(i2)

G1?i1

Rtmp1

ID(Mb2, w)

[Rtmp1.R2<-w]

ID(Mb2, w)

[Rtmp1.i1<-i1]

ID(Mb1, w)

[Rtmp3.i1<-w]
g31?w

[R2<-retrieve
 (R1, Rtmp3.i1)]

τ

g13?w

g13!Mb1[Rtmp1.i1]

g32!Mg1[]

g32?w

g31!Mb2[R2]

g23?w

[Rtmp1.i2<-w]
g12?w

true

[R4<-retrieve
 (R3, Rtmp1.R2,
 Rtmp1.i2)]

τ
true

G1!R4
true

true

true

ID(Ma2, w)

Rtmp2 Rtmp3

g12g13 g21 g31g32g23

[Rtmp2.i2<-i2]
G2?i2

true true
g21!Mb2[Rtmp2.i2] g23!Ma2[]

τ
true

τ
true

PE1 PE2 PE3

ID(Mg1, w)

true

t1.1

t1.2 t1.6

t2.1

t2.3 t2.2

t1.3

t1.4

t1.5

t2.4

t2.5

t2.7t2.6

t2.8

t3.1

Fig. 3. Protocol Speci�cation

2.3 Protocol Speci�cation

A distributed system is a communication system which consists of p protocol

entities PE1, PE2, ... and PEp. We assume a duplex and reliable communication

channel with in�nite capacity bu�ers at both ends, between any pair of PEi and

PEj . The PEi (PEj) side of the communication channel is represented as gate

gij (gji). Moreover, we assume that some resources (registers and gates) are

allocated to certain PE's of the distributed system.

Two PE's communicate with each other by exchanging messages. If PEi ex-

ecutes an output event \gij !M [Rw]", the value of register Rw located on PEi is

sent to PEj through the communication channel between them and put into the

bu�er at PEj 's end. M is an identi�er to distinguish several values which may

exist at the same time on the same channel. PEj can take the value identi�ed

by M from the bu�er, by executing an input event \gji?w" with a pre-condition

ID(M;w). ID(M;w) is a predicate whose value is true i� the identi�er in input

variable w isM . Note that more than one register's or input variable's value can

be sent at a time. If a received data contains multiple values, they are distin-

guished by suÆx such as w:R1 and w:i. A set of an identi�er and register/input

values is called a message. A message may contain no value and sending such a

message is represented as an output event \gij !M []".

In order to implement a distributed system which consists of p PE's, we

must specify the behavior of these PE's. A speci�cation of PEk is called a

177

protocol entity speci�cation and denoted by Pspeck. A set of p protocol entity

speci�cations h Pspec1, ..., Pspecp i is called a protocol speci�cation and denoted

by Pspech1;pi. We need a protocol speci�cation to implement the distributed

system.

As an example, let us assume that there are three PE's PE1, PE2 and PE3

in order to implement the service speci�cation of Fig. 2. We also assume that an

allocation of resources to these PE's has been �xed as follows. PE1 has the gate

G1 and the registers R3 and R4, PE2 has the gate G2, and PE3 has the registers

R1 and R2. Note that in addition to these registers, we assume that each PEi

has another register Rtmpi to keep received values given through gates (inputs

and message contents). Rtmpi can contain several values. The values can be

distinguished by adding the name of the value as suÆx, such as Rtmp1:R3
1. Fig.

3 shows an example of Pspech1;3i, which provides the service of Fig. 2, based on

this allocation of resources.

According to the speci�cation of Fig. 3, PE1 �rst receives an input (input

variable i1) through G1 and stores it to Rtmp1:i1 (on transition t1:1). Then it

sends the value of Rtmp1:i1 to PE3 as a message (on transition t1:2), since PE3

needs the value of i1 to change the value of R2. PE3 receives and stores the

value to Rtmp3:i1 on transition t1:3. Then it changes the value of R2 using its

own value and the value of Rtmp3:i1 on transition t1:4, and sends a message

to PE2 on transition t1:5. When PE2 receives the message on transition t1:6,

PE2 knows that it can now check the value of C(T2) and execute E(T2). PE2

receives an input (input variable i2) and stores it to Rtmp2:i2 on transition t2:1,

and sends two messages. One is to send the value of i2 to PE1 (on transition

t2:3) and another is to incite PE3 to send the value of R2 to PE1 (on transition

t2:2). PE1 receives these values and stores them to Rtmp1:i2 and Rtmp1:R2

on transitions t2:6 and t2:7, respectively. Then it changes the value of R4 on

transition t2:8. Finally, PE1 outputs the value of R4 on transition t3:1 and PE1,

PE2 and PE3 return to their initial states.

As exempli�ed in the above discussion, PE's cooperate with each other by

exchanging messages. The communication between di�erent PE's may be quite

complex and it is diÆcult to design protocols that behave correctly. Therefore we

would like to derive a protocol speci�cation automatically, such that it provides

the same service as a given service speci�cation.

3 Synthesis Overview

A method for deriving protocol speci�cation with an optimal allocation of re-

sources from a given service speci�cation is presented in this section. This method

is based on a set of rules (called henceforth synthesis rules) that specify how to

execute each transition Tx = hC(Tx); E(Tx);S(Tx)i of the service speci�cation

by the corresponding PE's in the protocol speci�cation. Furthermore, based on

1 We can realize such a register that contains several values by using several registers.

However, for simplicity of discussion, we use these registers.

178

these rules, it decides on an optimal allocation of resources (registers and gates)

amongst di�erent derived PE's.

3.1 Synthesis Rules

For executing a transition Tx = hC(Tx); E(Tx);S(Tx)i of the service speci�cation
by the corresponding set of transitions tx:1; tx:2; ::: of the PE's in the protocol

speci�cation, we proceed as follows.

{ The PE that has gate Gs used in E(Tx) (say PEstart(Tx)) checks the value

of C(Tx) (pre-condition statement) and executes E(Tx) (event expression).
{ After that, the PE sends messages called �-messages to the PE's which have

the registers used in the arguments of S(Tx) (substitution statements).

{ In response, these PE's send the register values to the PE's which have the

registers to be updated in S(Tx) (PEsubst(Tx) denotes the set of those PE's)
as messages called �-messages.

{ The substitution statements are executed and noti�cation messages called

-messages are sent to those PE's which will start the execution of the next

transitions.

For example, for transition T2 of the service speci�cation in Fig. 2, PEstart(T2)

is PE2 and PEsubst(T2) is fPE1g. PE2 checks the value of pre-condition state-

ment "keyword(i2)" and executes "G2?i2" on transition t2:1. Then PE2 sends

an �-message \Ma2" to PE3 on transition t2:2 since PE3 has register R2 which

is used to substitute the value of R4. PE2 also sends the input value to PE1

as a �-message \Mb2" on transition t2:3. PE3 receives the �-message \Ma2"

on transition t2:4 and sends the value of R2 to PE1 as a �-message \Mb2" on

transition t2:5. PE1 receives these two �-messages on transitions t2:6 and t2:7,

and then executes \R4 retrieve(R3; R2; i2)" on transition t2:8 using its own

register R3 and the received values of R2 and i2. The PE's which will start the

execution of next transition T3 is PE1 itself. Therefore, PE1 does not send any

-message. Then PE1 starts the execution of T3 on transition t3:1.

In Fig. 4, we present the details of the above rules [26], that are classi�ed into

action and message rules. Action rules specify which PE checks the pre-condition

and executes the event and substitution statements of Tx. Message rules specify

how the PE's exchange messages, and the contents and types of these messages.

Three types of messages are exchanged for the execution of Tx. (1) �-messages

are sent by the PE that starts the execution of Tx (i.e. PEstart(Tx)) to inform

those PE's who need to send their registers' values to other PE's, that they can

go ahead and send these values. Thus, an �-message does not contain values of

registers. (2) �-messages are sent in order to let each PE which executes some

substitution statements of Tx (i.e. PEk2PEsubst(Tx)) know the timing and some

values of registers' it needs for executing these statements. (3)
-messages are

sent to each PEm2PEstart(Tx � �), note that Tx � � is the set of each next

transition of Tx, to let it know the timing and some values of registers it needs

to start executing the next transitions (i.e. transitions in Tx � �).

179

We let Tx = hC(Tx); E(Tx);S(Tx)i be a transition of Sspec.

[Action Rules]

(A1) The PE which has the gate appearing in E(Tx) (denoted by Gs) checks that

(a) the value of C(Tx) is true,
(b) the execution of the previous transitions of Tx has been �nished and

(c) an input has been given through Gs if E(Tx) is an input event.

Then the PE executes E(Tx). This PE is denoted by PEstart(Tx).

(A2) After (A1), the PE's which have at least one register whose value is changed

in the substitution statements S(Tx) execute the corresponding statements in

S(Tx). The set of these PE's is denoted by PEsubst(Tx).

[Message Rules]

(M�1) Each PEk2PEsubst(Tx) must receive at least one �-message from some

PE's (each called PEj) in order to know the timing and values of registers

it needs for executing its substitution statements (see (M�2)), except where

PEk=PEstart(Tx), in this case PEk already knows the timing to start execut-

ing its substitution statements of Tx.

(M�2) If PEk2PEsubst(Tx) needs the value of some register (say Rz) in order

to execute its substitution statements, then PEk must receive Rz through a

�-message if Rz is not in PEk.

(M�3) Each PEj that sends some values of registers to PEk2PEsubst(Tx) through
a �-message, knows the timing to send these values by receiving an �-message

from PEstart(Tx). Note, if PEj=PEstart(Tx) then PEj knows the timing to

send these values without receiving an �-message.

(M�) After (A1), the only PE that can send �-messages to the PE's which need

them is PEstart(Tx).

(M
1) Each PEm2PEstart(Tx � �), where Tx � � is the set of next transitions of

Tx, must receive a
-message from each PEk2PEsubst(Tx) after (A2), except

where m = k. This allows PEm to know that the execution of the substitution

statements of Tx had been �nished.

(M
2) Each PEm2PEstart(Tx � �) must receive at least one
-message from some

PEl (where m 6= l) in order to know that the execution of Tx had been �nished

and/or to know some values of registers it needs to evaluate and execute its

condition and event expression, respectively.

(M
3) Each PEl that sends a
-message to PEm2PEstart(Tx � �) :
(a) must be in PEsubst(Tx) (see (M
1)), or

(b) must receive an �-message from PEstart(Tx) to know the timing to send

the
-message to PEm, or

(c) it is itself PEstart(Tx). In this case, PEl sends the
-message to let PEm

know the timing and/or some values of registers to start evaluating and

executing its condition and event expressions.

(M
4) If PEm2PEstart(Tx ��) needs the value of some register (say Rv) in order to

evaluate and/or execute its substitution statements, then PEm must receive

Rv through a
-message if Rz is not in PEm.

Fig. 4. Derivation Method in Detail

180

3.2 Integer Linear Programming Model for Protocol Derivation

Based on the above synthesis rules, we determine a behavior of the derived PE's

that would minimize their communication cost while optimally allocating their

resources, using an Integer Linear Programming (ILP) model. This cost could be

based on the number of messages to be exchanged between di�erent PE's [25].

Moreover, other cost criteria can also be considered such as the costs of resource

allocation, size of messages exchanged between di�erent PE's, and frequencies

of transition execution.

The ILP Model (for details see [26, 25]) consists of an objective function

that minimizes the communication cost and decides on an optimal allocation of

resources, based on a set of constraints. These constraints are based on the above

synthesis rules, and they consist of 0-1 integer variables indicating (a) whether

a PE should send a message or not, (b) whether a message contains a register

value or not, or (c) whether a register/gate is allocated to a PE or not.

4 Protocol Re-synthesis

In this section, we present our new method for re-synthesizing the protocol

speci�cation from a modi�ed service speci�cation. The method consists of a

set of rules that would be applied to di�erent PE's after a modi�cation to the

service speci�cation, in order to produce new synthesized (re-synthesized) PE's.

For each simple modi�cation (henceforth called atomic modi�cation) made on

the service speci�cation Sspec, we de�ne its corresponding atomic re-synthesis

rules. As shown later, these atomic re-synthesis rules can also be sequentially ap-

plied to deal with more than one modi�cation. Note that the atomic re-synthesis

rules are based on the synthesis rules described in Section 3. Consequently, we

show next to the description of each re-synthesis rule its corresponding synthesis

rule.

4.1 Atomic Modi�cations and Their Corresponding Re-synthesis

Rules

For each of the following possible atomic modi�cations to Sspec, we present its

corresponding atomic re-synthesis rules. Note that each modi�cation to Sspec

changes the label of a transition Tx in Sspec from hE(Tx); C(Tx);S(Tx)i to
hE 0(Tx); C

0(Tx);S
0(Tx)i. For convenience, we denote the following sets of regis-

ters:

{ Revx: the set of registers that PEstart(Tx) needs to evaluate C(Tx) or execute
E(Tx)

{ Rrsubx
i
: the set of registers that are used in PEi 2PEsubst(Tx) to execute

the statements in S(Tx)
{ Rcsubx

i
: the set of registers that are de�ned (i.e. referenced) by the left-

hand-sides of the substitution statements in S(Tx) in PEi 2PEsubst(Tx).

181

[Atomic Modi�cations]

1. Revx Revx n fRhg
2. Revx Revx [fRhg
3. Rrsubx

k
 Rrsubx

k
n fRhg

4. Rrsubx
k
 Rrsubx

k
[fRhg

5. Rcsubx
k
 Rcsubx

k
n fRhg

6. Rcsubx
k
 Rcsubx

k
[fRhg

[Atomic Re-synthesis Rules]

1. Revx Revx n fRhg:
The following rules take into account that the value of Rh which has been

sent to PEstart(Tx) is no longer necessary after the modi�cation. These rules

are applied to the part of the protocol speci�cation where each previous

transition (say Tw) of Tx is executed, if applicable.

(a) Each PE (say PEl) which sends a
-message including the value of Rh

to PEstart(Tx), should exclude the value of Rh from the
-message (c.f.

synthesis rule (M
4)).

(b) If (a) is done, then the
-message can be deleted only if

{ PEl 62PEsubst(Tw) (c.f. synthesis rule (M
1)),

{ there is still at least one
-message sent to PEstart(Tx) after deleting

it (c.f. synthesis rule (M
2)) and

{ it no longer has values (c.f. synthesis rule (M
4)).

(c) If (b) is done, then an �-message sent to PEl can be deleted only if PEl

no longer sends �- and
-messages (c.f. synthesis rule (M
3)(b)).

2. Revx Revx [fRhg:
The following rules take into account that the value of Rh must be sent to

PEstart(Tx) after the modi�cation. These rules are applied to the part of

the protocol speci�cation where each previous transition (say Tw) of Tx is

executed, if applicable.

(a) One of the PE's which have Rh and send
-messages to PEstart(Tx)

should include the value of Rh in its
-message to PEstart(Tx), if such

a PE exists (c.f. synthesis rule (M
4)).

(b) Otherwise, one of the PE's which have Rh should send a new
-message

which includes the value of Rh to PEstart(Tx). If the PE does not re-

ceive �-messages and is not PEstart(Tx), PEstart(Tw) should send an

�-message to the PE. (c.f. synthesis rule (M
3)).

3. Rrsubx
k
 Rrsubx

k
n fRhg:

The following rules take into account that the value of Rh sent to PEk is no

longer necessary after the modi�cation. These rules are applied to the part

of the protocol speci�cation where Tx is executed.

(a) Each PE (say PEj) which sends a �-message including the value of Rh to

PEk should exclude the value from the �-message (c.f. synthesis rule

(M�2)).

(b) If (a) is done, then the �-message can be deleted only if

182

{ there is still at least one �-message sent to PEk after deleting it (c.f.

synthesis rule (M�1)) and

{ it no longer has values (c.f. synthesis rule (M�2)).

(c) If (b) is done, the �-message sent to PEj can be deleted only if PEj no

longer sends �- and
-messages. (c.f. synthesis rule (M�3)).

4. Rrsubx
k
 Rrsubx

k
[fRhg:

The following rules take into account that the value of Rh must be sent

to PEk after the modi�cation. These rules are applied to the part of the

protocol speci�cation where Tx is executed.

(a) One of the PE's which have Rh and send �-messages to PEk should

include the value of Rh to its �-message to PEk, if such a PE exists. (c.f.

synthesis rule (M�2)).

(b) Otherwise, one of PE's which have Rh should send a new �-message

which includes Rh to PEk. If the PE does not receive �-messages and is

not PEstart(Tx), PEstart(Tx) should send an �-message to the PE.

5. Rcsubx
k
 Rcsubx

k
n fRhg:

Removing a substitution statement. Usually, this may cause an additional

modi�cation Rrsubx
k
 Rrsubx

k
nfRh1

; Rh2
; :::; Rhk

g, since the deleted state-

ment uses values of registers. In this case, we consider that the atomic mod-

i�cation (3) was made on Sspec k times and apply its corresponding atomic

re-synthesis rule (3) k times.

6. Rcsubx
k
 Rcsubx

k
[fRhg:

Adding a substitution statement. Usually, this may cause an additional mod-

i�cation Rrsubx
k
 Rrsubx

k
[fRh1

; Rh2
; :::; Rhk

g, since the added statement

uses values of registers. As the case of the re-synthesis rule (5), we apply the

atomic re-synthesis rule (4) k times.

4.2 Modi�cations to the Service Speci�cation

In this section, we describe how modi�cations to Sspec can be represented as the

set of atomic modi�cations presented in the previous subsection. We consider

modi�cations to the label of a transition Tx of Sspec.

{ If E(Tx) (or C(Tx)) is modi�ed to E 0(Tx) (or C
0(Tx)), then this modi�cation

can be represented as a set of the atomic modi�cations of type (1) and/or

(2) which involve adding and/or removing registers from the set of registers

Revx that PEstart(Tx) needs to execute E(Tx) (or evaluate C(Tx)).
{ If S(Tx) is modi�ed to S 0(Tx), then this modi�cation can be represented by

a sequence of atomic modi�cations of type (3), (4), (5) or (6), respectively.

4.3 Changing the Resource Allocation for the Protocol Speci�cation

In some application areas, the allocation of resources between di�erent PE's is

necessary. For example, in distributed databases, adding a copy of an existing

register to some PE's is necessary to increase the fault tolerance and balance the

load amongst these PE's. Here we consider the case where a copy of an existing

183

register Rh in PEj is added to another PE PEk. For each transition Tx where

the value of Rh is changed (de�ned) in the substitution statement S(Tx), PEk

must execute this substitution statement to update the value of register Rh.

Consequently, this modi�cation can be represented by the atomic modi�cation

(6).

5 Example and Experimental Results

5.1 Modeling the ISPW-6 Example

Protocol synthesis methods have been applied to many applications such as

communication protocols, factory manufacturing systems[14], distributed coop-

erative work management[13] and so on.

In this section, we apply our synthesis method [26] to the distributed devel-

opment of software that involves �ve engineers (project manager, quality assur-

ance, design, and two software engineers). Each engineer has his own machine

connected with the others, and participates in the development through a gate

(interfaces) of this machine, using distributed resources placed on this machine.

This distributed development process includes scheduling and assigning tasks,

design modi�cation, design review, code modi�cation, test plans modi�cation,

modi�cation of unit test packages, unit testing, and progress monitoring tasks.

The engineers cooperate with each other to �nish these sub-sequential tasks.

The reader may refer to ISPW-6 [28] for a complete description of this process,

which was provided as an example to help the understanding and comparison of

various approaches to process modeling.

Figure 5 shows a work
ow model of the above development process using

PNR, where the engineers and resources needed to accomplish the tasks are

indicated. We note that for convenience, we do not show the progress monitoring

process tasks in Fig. 5.

We regard this work
ow as the service speci�cation, and we derive its cor-

responding protocol speci�cation using the method and programs used in our

previous work[26], where we have developed two programs that generate for the

given speci�cation its corresponding ILP problem constraints, and derive the

protocol speci�cations using the synthesis rules. The tool lp solve[29] is used

to solve the ILP problem and obtain the minimal number of messages to be

exchanged between the derived protocol entities. It took 639 seconds on MMX-

Pentium 200MHz PC to synthesize the given speci�cation. The optimal alloca-

tion of the registers is shown in Table 1 and the minimum number of messages

to be exchanged between the di�erent PE's is 40.

5.2 Experimental Results

In this section, we show the e�ectiveness of our re-synthesis method by compar-

ing the time it takes to synthesize the given service speci�cation again after an

assumed modi�cation to the time it takes using our re-synthesis method.

We consider the following modi�cations to the given service speci�cation:

184

M
N

G
?

re
q

,n
tf

R
re

q

D
E

!R
re

q
,R

d
es

ig
n

,

R

d
es

ig
n

_r
f

Sc
he

du
le

 a
nd

A
ss

ig
n

T
as

ks
M

od
if

y
D

es
ig

n

R
de

si
gn

R
de

si
gn

_f
b

S
E

1!
R

d
es

ig
n

S
E

2!
R

d
es

ig
n

Q
A

!R
d

es
ig

n

D
E

!R
d

es
ig

n
D

E
?

rv
w

,d
cs

S
E

1?
rv

w
,d

cs

S
E

2?
rv

w
,d

cs

Q
A

?
rv

w
,d

cs

[R
rv

w
_d

e
<

-
rv

w
 R

dc
s_

de
 <

-
dc

s
]

[R
rv

w
_s

e1
 <

-
rv

w
 R

dc
s_

se
1

<
-

dc
s

]

[R
rv

w
_s

e2
 <

-
rv

w
 R

dc
s_

se
2

<
-d

cs
]

[R
rv

w
_q

a
<

-
rv

w
 R

dc
s_

qa
 <

-
dc

s
]

Q
A

!R
rv

w
_d

e,
R

rv
w

_s
e1

,R
rv

w
_s

e2
,R

rv
w

_q
a,

R
d

cs
_d

e,
R

d
cs

_s
e1

,R
d

cs
_s

e2
,R

d
cs

_q
a

au
th

or
iz

at
io

n(
nt

f)
=

=
"y

es
"

M
N

G
!R

d
cs

dc
s=

=
"M

in
or

 C
ha

ng
es

 R
ec

om
m

en
de

d"

R
co

de

R
te

st
_f

b

D
E

!R
co

d
e,

R
d

es
ig

n
,

R
te

st
_f

b
D

E
?

m
cd

[R
te

st
pl

an
 <

-
ts

p
]

Q
A

!R
re

q
,R

te
st

p
la

n
Q

A
?

ts
p

Q
A

!R
te

st
p

la
n

,R
u

n
it

te
st

,

 R

d
es

ig
n

,R
te

st
_f

b
Q

A
?

u
tp

[R
un

itt
es

t <
-

ut
p

]

Q
A

!R
te

st
re

su
lt

Q
A

D
E

!R
te

st
re

su
lt

[R
te

st
re

su
lt

<
-

 R
un

(R
un

itt
es

t,R
ob

je
ct

)
]

Q
A

?
al

s

D
E

?
al

s
[R

al
s_

qa
 <

-
al

s
]

[R
al

s_
qa

 <
-

al
s

]

M
N

G
!"

co
m

p
le

te
"

Q
A

?
d

cs
dc

s=
=

"M
od

ify
U

ni
t T

es
t P

ac
ka

ge
"

dc
s=

=
"M

od
ify

U
ni

t T
es

t P
ac

ka
ge

 a
nd

 S
ou

rc
e

C
od

e"Q
A

?
d

cs

Q
A

?
d

cs
dc

s=
=

"C
om

pl
et

e"

Q
A

!R
al

s_
q

a,
R

al
s_

d
e

R
ev

ie
w

 D
es

ig
n

dc
s=

=
"C

om
pl

et
e" Q

A
?

d
cs

[R
co

de
 <

-m
cd

 R
ob

je
ct

<
-c

om
pi

le
d(

m
cd

)
]

M
od

if
y

C
od

e

M
od

if
y

T
es

t P
la

ns
M

od
if

y
T

es
t U

ni
t P

ac
ka

ge

T
es

t U
ni

t

R
ob

je
ct

R
te

st
pl

an

R
rv

w
_q

a

R
rv

w
_s

e1

R
rv

w
_s

e2

R
rv

w
_d

e

R
dc

s_
qa

R
dc

s_
se

1

R
dc

s_
se

2

R
dc

s_
de

R
un

itt
es

t

R
te

st
re

su
lt

R
al

s_
de

R
al

s_
qa

D
ev

el
op

 C
ha

ng
e

an
d

T
es

t U
ni

t
M

N
G

D
E

S
E

1
S

E
2

Q
A

[R
re

q
<

-
re

q
]

D
E

?
d

sg

[R
de

si
gn

 <
-

ds
g

]

M
N

G
!R

d
cs

M
N

G
!R

d
cs

[R
de

si
gn

_r
f <

-
R

rv
w

_d
e+

R
rv

w
_s

e1
+

R
rv

w
_s

e2
+

R
rv

w
_q

a
]

[R
de

si
gn

_r
f <

-
R

rv
w

_d
e+

R
rv

w
_s

e1
+

R
rv

w
_s

e2
+

R
rv

w
_q

a
]

dc
s=

=
"M

aj
or

 C
ha

ng
es

 R
ec

om
m

en
de

d"

Q
A

?
d

cs

Q
A

?
d

cs

[R
te

st
_f

b
<

-
R

te
st

re
su

lt

+
 R

al
s_

qe
 +

 R
al

s_
de

]

[R
te

st
_f

b
<

-
R

te
st

re
su

lt

+
 R

al
s_

qe
 +

 R
al

s_
de

]

R
dc

s

[R
dc

s
<

-
dc

s
]

[R
dc

s
<

-
dc

s
]

[R
dc

s
<

-
dc

s
]

T
1

T
3

T
4

T
6

T
8

T
10

T
5

T
7

T
9

T
11

T
12

T
13

T
18

T
14

T
15

T
16

T
17

T
19

T
20

T
21

T
22

T
23

T
24

T
25

T
26

T
27

T
28

T
29

T
30

T
31

T
32

T
33

T
34

T
2

Fig. 5. Modeling the Core Problem in the ISPW-6 Example

185

PEmng PEde PEse1 PEse2 PEqa

Gate MNG DE SE1 SE2 QA

Register Rreq

Rdesign

Rdesign fb

Rrvw de

Rdcs de

Rcode

Rtest fb

Rtestplan

Rrvw se1

Rdcs se1

Runittest

Rtestresult

Rrvw se2

Rdcs se2

Rrvw qa

Rdcs qa

Rdcs

Robject

Ralc qa

Rals de

Table 1. Optimal Allocation of Resources for Engineers' Machines

Synthesis Time (sec.) Number of Messages

Re-synthesis Complete Synthesis Re-synthesis Complete Synthesis

case1 1 958 44 44

case2 1 1021 46 46

case3 1 940 40 40

case4 1 1640 42 42

MMX-Pentium 200 MHz, 128MB Memory

Table 2. Experimental Results

1. An additional source code (register Rcode new) is placed on the machine of

the software engineer 1 (SE1), and the design engineer (DE) modi�es and

compiles it as well as Rcode, in \Modify Code" (transitions T19 and T20).

2. An additional new unit test (register Runittest new) is placed on the machine

of the software engineer 2 (SE2), and the QA engineer (QA) modi�es it as

well as Runittest, in \Modify Test Unit Package" (T23 and T24). Moreover,

an additional test is done using the unit test in \Test Unit" (T25).

3. DE analyzes the test feedback (register Rtest fb) and gives his comments to

QA. For this purpose, a new register Rreport is introduced on DE's machine

and his comments are stored on it in transition T20. Then it is shown to QA

on T25.

4. For fault tolerance, a new copy of the existing code Rcode (placed on PEde)

is placed on PEmng.

After each modi�cation, we have used the programs developed in [26] to

measure the time (in seconds) it takes to synthesize the given speci�cation.

Moreover, we have also measured the time it took to re-derive the protocol

speci�cations using the re-synthesis rules and a program that we have developed

for this purpose. Table 2 shows these times. The reader can clearly see that the

re-synthesize time is much less than the time for a complete synthesis. This is

mainly due to the fact that by using the re-synthesis rules, we do not have to

re-derive the whole protocol speci�cations after each modi�cation. Moreover, we

186

do not have to re-optimize the number of messages sent between di�erent PE's

because (as shown in Table 2) the re-derived protocol speci�cations still have

optimal (or near-optimal in general cases) solutions.

6 Conclusion and Further Research

Based on our previous work on protocol synthesis of systems modeled as ex-

tended Petri nets, we have developed a set of rules that avoid complete synthe-

sis after incremental modi�cations to such a system. These rules are applied to

the a�ected parts of derived protocol speci�cation. This would make protocol

synthesis and maintenance more practical for realistic applications.

Currently, we are developing a re-synthesis method to speci�cations modeled

as �nite state machines. Moreover, we are investigating the extension of our

re-synthesis method to speci�cations modeled as timed Petri nets.

References

1. T. Murata, \Petri Nets: Properties, Analysis and Applications," Proc. of the IEEE,

Vol. 77, No. 4, pp. 541{580, 1989.
2. R. Milner, \Communication and Concurrency," Prentice-Hall, 1989.
3. V. Carchiolo, A. Faro and D. Giordano, \Formal Description Techniques and Auto-

mated Protocol Synthesis," Journal of Information and Software Technology, Vol.

34, No. 8, pp. 513{421, 1992.
4. H. Erdogmus and R. Johnston, \On the Speci�cation and Synthesis of Commu-

nicating Processes," IEEE Trans. on Software Engineering, Vol. SE-16, No. 12,

1990.
5. R. Probert and K. Saleh, \Synthesis of Communication Protocols: Survey and

Assessment," IEEE Trans. on Computers, Vol. 40, No. 4, pp. 468{476, 1991.
6. K. Saleh, \Synthesis of Communication Protocols: an Annotated Bibliography,"

ACM SIGCOMM Computer Communication Review, Vol. 26, No. 5, pp. 40{59,

1996.
7. R. Gotzhein and G. v. Bochmann, \Deriving Protocol Speci�cations from Service

Speci�cations Including Parameters," ACM Trans. on Computer Systems, Vol. 8,

No. 4, pp. 255{283, 1990.
8. R. Langerak, \Decomposition of Functionality; a Correctness-Preserving LOTOS

Transformation," Proc. of 10th IFIP WG6.1 Symp. on Protocol Speci�cation, Test-

ing and Veri�cation (PSTV-10), pp. 229{242, 1990.
9. C. Kant, T. Higashino and G. v. Bochmann, \Deriving Protocol Speci�cations

from Service Speci�cations Written in LOTOS," Distributed Computing, Vol. 10,

No. 1, pp. 29{47, 1996.
10. P. -Y. M. Chu and M. T. Liu, \Protocol Synthesis in a State-transition Model,"

Proc. of COMPSAC '88, pp. 505{512, 1988.
11. T. Higashino, K. Okano, H. Imajo and K. Taniguchi, \Deriving Protocol Speci�-

cations from Service Speci�cations in Extended FSM Models," Proc. of 13th Int.

Conf. on Distributed Computing Systems (ICDCS-13), pp. 141{148, 1993.
12. M. Nakamura, Y. Kakuda and T. Kikuno, \Component-based Protocol Synthesis

from Service Speci�cations," Computer Communications Journal, Vol. 19, No. 14,

pp.1200-1215, Dec. 1996.

187

13. K. Yasumoto, T. Higashino and K. Taniguchi, \Software Process Description Using

LOTOS and its Enaction," Proc. of the 16th Int. Conf. on Software Engineering

(ICSE-16), pp. 169-179, 1994.
14. D. Y. Chao and D. T. Wang, \A Synthesis Technique of General Petri Nets,"

Journal of System Integration, Vol. 4, pp. 67{102, 1994.
15. H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, \Synthesis of Protocol

Entities' Speci�cations from Service Speci�cations in a Perti Net Model with Reg-

isters," Proc. of 15th Int. Conf. on Distributed Computing Systems (ICDCS-15),

pp. 510{517, 1995.
16. H. Kahlouche and J. J. Girardot, \A Stepwise Requirement Based Approach for

Synthesizing Protocol Speci�cations in an Interpreted Petri Net Model," Proc. of

INFOCOM '96, pp. 1165{1173, 1996.
17. A. Al-Dallal and K. Saleh, \Protocol Synthesis Using the Petri Net Model," Prof.

of 9th Int. Conf. on Parallel and Distributed Computing and Systems (PDCS'97),

1997.
18. A. Khoumsi and K. Saleh, "Two Formal Methods for the Synthesis of Discrete

Event Systems," Computer Networks and ISDN Systems, Vol. 29, No. 7, pp. 759{

780, 1997.
19. M. Kapus-Koler, \Deriving Protocol Speci�cations from Service Speci�cations with

Heterogeneous Timing Requirements," Proc. of 1991 Int. Conf. on Software Engi-

neering for Real Time Systems, pp. 266{270, 1991.
20. A. Khoumsi, G. v. Bochmann and R. Dssouli, \On Specifying Services and Syn-

thesizing Protocols for Real-time Applications," Proc. of 14th IFIP WG6.1 Symp.

on Protocol Speci�cation, Testing and Veri�cation (PSTV-14), pp. 185{200, 1994.
21. A. Khoumsi and G. v. Bochmann, \Protocol Synthesis Using Basic LOTOS and

Global Variables," Proc. of 1995 Int. Conf. on Network Protocols (ICNP'95), 1995.
22. A. Nakata, T. Higashino and K. Taniguchi, \Protocol Synthesis from Timed

and Structured Speci�cations," Proc. of 1995 Int. Conf. on Network Protocols

(ICNP'95), pp. 74{81, 1995.
23. H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, \Protocol Synthesis

from Time Petri Net Based Service Speci�cations," Proc. of 1997 Int. Conf. on

Parallel and Distributed Systems (ICPADS'97), pp. 236{243, 1997.
24. J. -C. Park and R. E. Miller, \Synthesizing Protocol Speci�cations from Service

Speci�cations in Timed Extended Finite State Machines," Proc. of 17th Int. Conf.

on Distributed Computing Systems (ICDCS-17), 1997.
25. K. El-Fakih, H. Yamaguchi and G.v. Bochmann, \A Method and a Genetic Algo-

rithm for Deriving Protocols for Distributed Applications with Minimum Commu-

nication Cost," Proc. of the 11th IASTED Int. Conf. on Parallel and Distributed

Computing and Systems (PDCS'99), 1999.
26. H. Yamaguchi, K. El-Fakih, G.v. Bochmann and T. Higashino, \A Petri Net Based

Method for Deriving Distributed Speci�cation with Optimal Allocation of Re-

sources," Proc. of the ASIC Int. Conf. on Software Engineering Applied to Net-

working and Parallel/ Distributed Computing (SNPD'00), pp. 19{26, 2000.
27. S.S. Skiena, \The ALGORITHMDesign Manual," TELOS - The Electronic Library

of Science (A Springer-Verlag Imprint), 1998.
28. Kellner, M. et al. : \ISPW-6 Software Process Example," Proc. of the 1st Int. Conf.

on the Software Process, pp. 176-186, 1991.
29. \lp solve," ftp://ftp.ics.ele.tue.nl/pub/lp solve/

30. G. Rothermel and M. J. Harrold, \Analyzing Regression Test Selection Tech-

niques," IEEE Trans. on Software Engineering, Vol. 22, No. 8, pp. 529{551, 1996.

188

	Workshop on Software Engineering and Petri Nets
	Preface
	Table of Contents
	Performance Evaluation for the Design of Agent-based Systems: A Petri Net Approach
	Testing Petri Nets for Mobile Robots Using Grobner Bases
	Generating and Exploiting State Spaces of Object-Oriented Petri Nets
	The OCoN Approach for Object-Oriented Distributed Software Systems Modeling
	Seamless Object-Oriented Software Development on a Formal Base
	An Architecture for Adaptive Planning and Scheduling of Software Processes Using Timed Colored Petri Nets
	Towards Modelling and Verification of Concurrent Ada Programs Using Petri Nets
	COALA: A Design Language for Reliable Distributed Systems Engineering
	Supervisory Plug-ins for Distributed Software
	Protocol Re-synthesis Based on Extended Petri Nets

