ISSN 0105-8517

Petri Nets 2000

21ST INTERNATIONAL CONFERENCE ON
APPLICATION AND THEORY OF PETRI NETS

Aarhus, Denmark, June 26-30, 2000

WORKSHOP PROCEEDINGS
Software Engineering and Petri Nets

Organised by

Mauro Pezzé
Sol M. Shatz

DAIMI PB — 548
June 2000

DEPARTMENT OF COMPUTER SCIENCE \ h—ﬁ \ T
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

T
L]
aall
L

Preface

This booklet contains the proceedings of the Workshop on Software Engineering and
Petri Nets (SEPN), held on June 26, 2000. This workshop was held in conjunction with the
21st International Conference on Application and Theory of Petri Nets (ICATPN-2000),
organised by the CPN group of the Department of Computer Science, University of Aarhus,
Denmark. The SEPN workshop papers are also available in electronic form via the web
page: www.daimi.au.dk,/pn2000/proceedings

The aim of the workshop was to bring together researchers and practitioners with inter-
ests in Petri nets and/or software engineering, with the goal of exploring more closely the
potential impacts and pitfalls in applying net-based formalisms to software development
problems.

All submitted papers were refereed and evaluated under the direction of a program com-
mittee with the following members:

Jonathan Billington, University of South Australia (Australia)
Ugo Buy, University of Illinois at Chicago (USA)

Robert France, Colorado State University (USA)

Dino Mandrioli, Politecnico di Milano (Italy)

Mauro Pezze, Politecnico di Milano (Italy)

Sol Shatz, University of Illinois at Chicago (USA)

The program for the workshop included ten selected papers and two invited talks. The
invited speakers were: Professor Michal Young (Oregon State University, USA) and Pro-
fessor Manfred Broy (Technishe Universitat Munchen, Germany).

Mauro Pezze and Sol Shatz
Co-organizers, SEPN-2000

Table of Contents

J. Merseguer, J. Campos, E. Mena
Performance Evaluation for the Design of Agent-based Systems: A Petri Net Approach 1

A. Chandler, A. Heyworth, L. Blair, D. Seward

Testing Petri Nets for Mobile Robots Using Grobner Bases 21
M. Ceska, V. Janousek, T. Vojnar
Generating and Exploiting State Spaces of Object-Oriented Petri Nets 35

H. Giese, G. Wirtz
The OCoN Approach for Object-Oriented Distributed Software Systems Modeling . 55

S. Philippi
Seamless Object-Oriented Software Development on a Formal Base 75

N. C. Narendra, I. P. Pal
An Architecture for Adaptive Planning and Scheduling of Software Processes Using
Timed Colored Petri Nets 95

A. Burns, A. J. Wellings, F. Burns, A. M. Koelmans, M. Koutny, A. Romanouvsky,
A. Yakovlev
Towards Modelling and Verication of Concurrent Ada Programs Using Petri Nets . 115

J. Vachon, N. Guelfi

COALA: A Design Language for Reliable Distributed Systems Engineering 135
M. Lemmon, K. X. He
Supervisory Plug-ins for Distributed Software 155

K. El-Fakih, H. Yamaguchi, G. v. Bochmann, T. Higashino
Protocol Re-synthesis Based on Extended Petri Nets 173

Performance Evaluation for the Design of
Agent-based Systems: A Petri Net Approach*

José Merseguer, Javier Campos, and Eduardo Mena

Dpto. de Informatica e Ingenieria de Sistemas, University of Zaragoza, Spain
{jmerse, jcampos,emena}@posta.unizar.es

Abstract. Software design and implementation using mobile agents are
nowadays involved in a scepticism halo. There are researchers who ques-
tion its utility because it could be a new technology that does provide
new skills but it could introduce new problems. Security and performance
are the most critical aspects for this new kind of software. In this paper
we present a formal approach to analyse performance for this class of
systems. Our approach is integrated in the early stages of the software
development process. In this way, it is possible to predict the behaviour
without the necessity to carry out the complete implementation phase.
To show the approach, we model a software retrieval service system in
a pragmatic way, later, the corresponding formal model is obtained and
analysed in order to study performance.

Keywords: Software performance, Petri nets, UML, mobile agent

1 Introduction

In the last years, distributed software applications have increased their possibil-
ities making use of Internet capabilities, positioning distributed software devel-
opment as a very interesting approach. The client/server model has become the
key paradigm to support distributed software development. It is widely recog-
nised that there are four main technologies which advocate for client/server de-
velopments: relational database management systems (RDBMS), TP monitors,
groupware and distributed objects. It is well accepted that distributed objects
in conjunction with mobile agents [15, 11] technology are a very interesting ap-
proach to address certain kind of software domains like e-commerce, information
retrieval and network management and administration.

Although there are researchers who question mobile software, it takes sense
in distributed environments [9] because it is a technology with appropriate new
skills for these kind of systems. But it could introduce new problems as the in-
appropriate use of the net resources. In this way time consuming could become
a problem for users. So, we are concerned to develop new techniques and meth-
ods which minimize these problems. In this context, software performance [18]
appears as a discipline inside software engineering to deal with model perfor-
mance on software systems design. Like many people concerned about software

* This work has been developed within the project TAP98-0679 of the Spanish CICYT.

performance, we believe that the performance evaluation must be accomplished
during the early stages of the software development process.

Unified Modeling Language (UML) [2] is widely accepted as a standard no-
tation to model software systems. Unfortunately, UML lacks of the necessary
expressiveness to accurately describe performance skills. There have been sev-
eral approaches to solve this lack [19, 20, 16]. One of the goals of this paper is
the study of the performance indices in mobile agent systems, thus, we propose
a UML with performance annotations (pa-UML) to deal with performance skills
on these kind of systems. Our approach to solve the problem is as follows: we
model the problem domain using pa-UML, describing static and dynamic views
when necessary. pa-UML models will give us the necessary background to obtain
the corresponding formal model expressed as Petri nets [13]. From pa-UML, we
derive a time interpretation of Petri nets leading to Generalized Stochastic Petri
Nets (GSPN) [1]. Thus, we implicitly give a semantics for pa-UML in terms of
Petri nets. Performance indices may be computed for GSPN by applying quan-
titative analysis techniques already developed in the literature.

The rest of the paper is organised as follows. In section 2, we describe a
system, based on agents, which has been taken from [12]. In section 3, we give
our proposal to annotate system performance aspects in UML (pa-UML) and
we develop the pa-UML models for the system presented in section 2. Section 4
is dedicated to transform pa-UML diagrams into Petri nets in order to achieve
the desired formal model. Finally, some performance results and conclusions are
presented.

2 An example: the Software Retrieval Service in the
ANTARCTICA system

In this section we briefly present ANTARCTICA!. The system has been taken
from [12] and it will be used as an example along this paper to study performance
on mobile agent systems.

The goal of the system is to provide mobile computer users with different
services that enhance the capabilities of their computer. One of these services
is the Software Retrieval Service, that allows users to select and download new
software in an easy and efficient way. This service has been thought to work in
a wireless network media and provides several interesting features:

— The system manages the knowledge needed to retrieve software without user
intervention, using an ontology.

— The location and access method to remote software is transparent to users.

There is a “catalog” browsing feature to help user in software selection.

— The system maintains up to date the information related to the available
software.

In the following, we briefly describe the system paying attention in its com-
ponents. There is a “majordomo” named Alfred, which is an agent specialised in

! Autonomous ageNT bAsed aRChitecture for cusTomized mobIle Computing Assis-
tance.

user interaction. There is a Software Manager agent whose task is to create a
catalog which will help the user to select the required software. Another agent,
the Browser will help the user in selecting the software. Finally, a Salesman
agent is in charge of performing any action previous to the installation of the
selected software, like e-commerce.

The system was proposed in [12] using different technologies, namely CORBA
[14], HTTP and mobile agents. Some performance tests were applied to different
implementations, in order to select the best way of accessing remote software.
Conclusions were the following:

— Time corresponding to CORBA and mobile implementations are almost
identical for a wide range of files to be downloaded.

— Mobile agent approaches are fast enough to compete with client/server ap-
proach.

Although considering the importance and the relevance of the results of the
work [12], we would like to stress the enormous cost of implementing different
prototypes in order to evaluate the performance of the different alternatives.
In the rest of this paper, we model the system in a pragmatic way using pa-
UML, annotating consistently the system load (we have annotated the system
load taking as a basis the experiments and experience of the authors of the
cited paper). After that, we can interpret the pa-UML model in terms of Petri
nets and derive the corresponding performance model which will be properly
analysed. This analysis is used to evaluate the system.

3 Modelling the system using pa-UML

In the previous section, we have explained the general features of the target
system. Now, we focus on modelling it using pa-UML notation. We have con-
sidered UML and not the notation of methodologies such as OMT [7], OOSE
[10] or Fusion [6] because of its wider acceptance in the software engineering
community.

The system description in UML accomplishes with static and dynamic views
in order to give a complete description of the system. For the sake of simplicity
and for the convenience of our problem, we only describe the dynamic view of
the system.

Figure 1 shows the use cases needed to describe the dynamic behaviour of
the system. We deal with three different use cases, “show services”, “software
retrieval service” and “e-commerce”. Also, we can see the unique actor which
interacts with the system, the “user”. The use cases are described in the follow-
ing.

Show services use case description.
— Principal event flow: the use case goal is to show to the user the available
services that the system offers. The Software Retrieval Service is one of those
services and it is also described as a use case.

Show

Services

Software

Retrieval

Service

User -
Electronic
Commerce

Fig. 1. Use Cases

Software retrieval service use case description.

— Principal event flow: the user requests the system for the desired software.
The Browser gets a catalog and the majordomo, Alfred, shows it to the user,
who selects the software s/he needs.

— Exceptional event flow: if the user is not satisfied with the catalog presented,
s/he can ask for a refinement. This process could be repeated as many times
as necessary until the user selects a concrete piece of software.

Electronic commerce use case description.

— Principal event flow: the goal is to provide the user an e-commerce activity
and the download of the software selected.

Show services and e-commerce use cases are out of the scope of this article,
thus, we concentrate on the Software Retrieval Service.

Pragmatic object-oriented methodologies such as [6, 7, 10] do not deal with
performance skills. So, we can say that there is not an accepted method to
model and study system performance in the object-oriented software develop-
ment process. This lack implies that there is not a well-defined language or
notation to annotate system load, system delays and routing rates. On the con-
trary, formal specification languages, such as LOTOS [17], or Petri nets [13], have
considered and studied the problem in depth. Thus, there are several proposals
where we can learn from.

As we remarked, it is our objective to propose a UML extension (pa-UML) to
deal with performance on the software development process at the design stage.
We consider that our proposal must accomplish with both, the method and the
notation. First, the method will give us the process to model the system and the
relevant parameters to be taken into account. We advocate for a pattern-oriented
approximation. Lately, design patterns [8] have gained relevance in software de-
velopment due to their simplicity and flexibility. But this will be subject of future
research. Second, concerning the notation, it will be treated in this work.

In order to have a complete performance notation, the UML behavioural and
structural models must be considered. Also, performance will play a prominent
role in the implementation diagrams. In this paper, we are interested only in
behavioural aspects, concretely in the sequence diagram and the state transition
diagrams. Future works will deal with the rest of the UML diagrams to describe
behaviour (use case diagrams, activity diagrams, collaboration diagrams), struc-
tural aspects, and implementation diagrams.

The UML notation to deal with time is based on the use of time restric-
tions. This restrictions are expressed as time functions on message names,
e.g., {(messageOne.receiveTime - messageOne.sendTime) < 1 sec.}. We con-
sider more realistic to annotate the message size. In this way, we could calculate
performance for different net speeds.

3.1 Sequence diagrams

In order to understand the problem, it is interesting a more detailed description
of the Software Retrieval Service use case. Thus, a sequence diagram [2] has been
developed to treat accurately the mentioned use case, see figure 2.

% ‘ Alfred ‘ ‘ SwMana_]e(‘
.

| {1K} M |
! select_sw_Service(info) i

o

(:ug)
get_catalog(info_plus)

wy
create_catal og(info_plus) alog
{100K}
create_browser(c1) BrowserAgent

1.n {100K}
! (lOOK* show_catalog_GUI(c1)
pbserve_GUI_catalog(cl)

[no‘osgx}\ sfied]rﬁ%ﬁicale‘ og(refinement)

(1K})
refine_catalog(refinement_plus)

. b 1K..100K
satisfied] [i nr{giﬁe%d] more._i n;ormali on(}ref inement2, ci)
ci+1 {1K..100K}
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
{1K}
select_sw(name) 1K}
sa‘ ect”_sw(name)

[y
create_sdesman(info_sale) -

delete_browser |

info_sale plus {1K}

e Y

| electronic_commerce
]
i
I
I
I

{1K}
request(info_sale)

Fig. 2. Sequence diagram for the Software Retrieval Service use case

A sequence diagram represents messages sent among objects. Usually, a mes-
sage is considered as no time consuming in the scope of the modelled system.
But in a mobile agent system, we distinguish between messages sent by objects
on the same computer and messages sent among objects on different computers,
those which travel through the net. The first kind of messages will be consid-
ered as no-time consuming. The second kind will consume time as a function
of the message size and the net performance (speed). Here an annotation, in-
side braces, will be made indicating the message size. For instance, in Figure

2, select_sw_service message is labelled with {1 Kbyte}, while show_catalog_GUI
requires the movement of {100 Kbytes}. Also, it will be possible to annotate a
range for the size in the UML common way, like in more_information message,
where a {1K..100K} label appears.

In a sequence diagram, conditions represent the possibility that the message
that they have associated with could be sent. An annotation, also inside braces,
expressing the event probability success will be associated to each condition. A
range is accepted too. See, for instance, the probability {0.9} associated in Figure
2 to the condition not_satisfied. Sometimes, it is possible that the probability is
unknown when modelling. Also, it could be that the probability a message occurs
is a parameter subject to study. In our example, the condition info_need associ-
ated to the more_information message is critical for the system, because it reveals
how much intelligent the Browser is; so, we want to study it. In such situations,
we will annotate an identifier, corresponding to the unknown probability.

3.2 State Transition diagrams

Sequence diagrams show how objects interact, but to take a complete view of the
system dynamics, it is also interesting to understand the life of objects. In UML,
the state transition diagram is the tool that describes this aspect of the system.
For each class with relevant dynamic behaviour a state transition diagram must
be specified.

In a state transition diagram two elements will be considered, the activities
and the guards. Activities represent tasks performed by an object in a given
state. Such activities consume computation time that must be measured and
annotated. The annotation will be inside braces showing the time needed to
perform it. If it is necessary, a minimum and a maximum values could be an-
notated. See, for example, bold labels between braces in Figures 4, 5, 6 and 7.
Guards show conditions in a transition that must hold in order to fire the corre-
sponding event. A probability must be associated to them. It will be annotated
in the same way as guards were annotated in the sequence diagram, and the
same considerations must be taken into account. See, for instance, label {0.9}
joined to condition [not “user.satisfied] in Figure 4.

Message size may be omitted since this information appears in the sequence
diagram. In the example, we have duplicated this information to gain readability.

We now present the state transition diagrams for our system using the pa-
UML notation.

User state transition diagram. In Figure 3, the behaviour of a user is rep-
resented. The user is in the wait state until s/he activates a select_sw_service
event. This event sets the user in the waiting for_catalog state. The ob-
serve_GUI_catalog event, sent by Alfred, allows the user to examine the cat-
alog to look for the desired software, if it is in the catalog, the users selects
the select_sw event, in other case s/he selects the refine_catalog event.

Alfred state transition diagram. The example supposes that Alfred is al-
ways present in the system, no creation event is relevant for our purposes.
So the state transition diagram begins when a view_services event is sent

{1K}
“Alfred.select_sw_service(info)

Waiting for
catalog

[not sﬁiéfqgc}]"Alfred.{lefﬁ

Fig. 3. State transition diagram for the user

atal og(refinement)

{100K1
observe GU

ect_sw(name)

to the user. Alfred’s behaviour is typical for a server object behaviour. It
waits for an event requesting a service (select_sw_service, show_catalog_GUI,
refine_catalog or select_sw). For each of these requests it performs a concrete
action, and when it is completed, a message is sent to the corresponding ob-
ject in order to complete the task. After the message is sent, Alfred returns
to its wait state to serve another request. Figure 4 shows Alfred’s behaviour.
The stereotyped transition < more_services > means that Alfred may at-
tend other services that are not of interest here.

{1K} ,
ASwManager.get_catal og(info_plus)

{100K} .
show_catalog_GUI(ci)

WAIT - \Do:érlez%}e_euuc)

“user.observe_GUI_catalog(ci)
{100K}

{1k}
select_sw_service(info)

<<more_services>>

[Au{s%r.l;msned]sae{ctl Kvina

{0.9 =) {1k}
not ~user.satisfied]refine_catal og(refinement)

1
Do:.:-{dgg %nfo

1K
"browsef.{ref i}ne_catal og(refinement_plus)

Fig. 4. State transition diagram for Alfred

Software Manager state transition diagram. Like Alfred, the Software

Manager behaves as an server object. It is waiting for a request event
(more_information, get_catalog, request) to enable the actions to accomplish
the task. Figure 5 shows its state transition diagram; it is interesting to note
the actions performed to respond the get_catalog request. First, an ontology
is consulted and, after that, two different objects are created, those involved
in task management.

Browser state transition diagram. The state transition diagram in Figure

6 describes the Browser’s life. It is as follows: once the Browser is created it

i{prod} o {1K.100K} .
info_need] more_information(refinement2,ci)

{(0.5sg..50sg}
Do:get_info

{1 min}
Do: create _catalog

(1Kgl)
get_catalog(info_plus)

{1k}
“catalog.create_catalog(info_plus)

{1k}
“salesman.reply(info_sale_plus)

{1sq}
Do:add_info4

Fig. 5. State transition diagram for the Software Manager

Do: create_browser
{1sg}

{lK()
request(info_sale)

~browser.cregte_browser(ci) {1K}

must go to the MU_Place, where it invokes Alfred’s shows_catalog_GUI method
to visualize the previously obtained catalog. At this state it can attend two
different events, refine_catalog or select_sw. If the first event occurs there are
two different possibilities: first, if the Browser has the necessary knowledge
to solve the task, a refinement action is directly performed; second, if it
currently has not this background, the Browser must obtain information
from the Software Manager, by sending a more_information request or by
travelling to the software place. If the select_sw event occurs, the Browser
must create a Salesman instance and die.

[info_need_travel] Do:goto_Sw_place
{100K}
{100K} {100K} {1K}
.creae browser(c ~alfred.show_catalog_GUI cf refine_catal og(refinement_plus)
= © Do:goto_MU_P _catelog GU)WAIT -catalogl P
{1K..100K}
~SwManager.more_in-
formation(refinement2, ci)

{1K} [info_need_local]
reply {1K..100K}

1K]
select_sw(name)

1K
@ delete_browser t:sal aman.crea{tei;al esman(info_sale)

{100K}
Adlfred.show_catalog_GUI(ci+1)

[not info_need or+

[info_need_travel]

Do:goto_MU_PI
{100K..200K}

Fig. 6. State transition diagram for the Browser

Salesman State Transition Diagram. The Salesman’s goal is to give e-
commerce services, as we can see in Figure 7. After its creation it asks
the Software Manager for sale information. With this information the e-
commerce can start. This is a complex task that must be described with its
own use case and sequence diagram which is out of the scope of this paper.

The pa-UML models that we have developed are expressive enough to accom-
plish with different implementations. A necessary condition to design methods

{1k}

{1} ASWManager.re-
create,_salesman(info) (| quest(into. ssle) {1sg} begin_electronic_commerce
. Do: add_info_sale

end_electronic_commerce

Do: electronic_commerc

Fig. 7. State transition diagram for the Salesman

is their independence of final implementation decisions. In that way, we can
use these models to develop applications based on CORBA, mobile agents, etc.
But this gap between design and implementation could be undesirable in cer-
tain cases. For example, in the system that we are treating we are not sure
how many majordomos should attend requests, how many concurrent users can
use the system, etc. However, a formal modelling with Petri nets solves these
questions satisfactorily.

The design proposed in [12] deals with one user and one majordomo. Petri
nets allow to represent cases such as:

1. One user and one majordomo (the proposed system).
2. Several users served by one majordomo.
3. Many users served by many majordomos, once per request.

Thus, increasing the modelling effort, it could be possible to avoid the neces-
sity of implementing the system for predicting performance figures.

4 Modelling with Petri nets

At this point, we have modelled the system with pa-UML notation, taking into
account the load in the sequence diagram and the state transition diagrams. So,
a pragmatic approach of the system has been obtained. But this representation
is not precise enough to express our needs. Remember that we want to predict
the system behaviour in different ways. First, we want to study how the system
works with only one user served by one majordomo. On the other hand, it is
also of our interest to know the system behaviour when several users are served
by only one majordomo, or by several majordomos.

In order to obtain answers to our questions, we need to apply performance
analytic techniques to the developed pa-UML diagrams. But there is a lack in
this field because no performance model exist for UML, so the pragmatic model
is not expressive enough. Also, we need to express system concurrency, but UML
models concurrency in a very poor way. Thus, it is required a formal model of
the system with concurrency capabilities.

To solve these lacks, we have chosen Petri nets as formal model, because it
has the remarked capabilities and also there are well-known analytic techniques
to study system performance in stochastic Petri net models. Thus, we propose
some transformation rules to obtain Petri nets from pa-UML diagrams.

In the following, we model with Petri nets the first two proposed systems, the
third one will be developed in a future work. For the first system, one user and
one majordomo, GSPN have the expressive power to accomplish the task. To
study the second system, several users served by one majordomo, stochastic well-
formed coloured Petri nets [3] are of interest. Once the systems are modelled, we
use analytic techniques implemented in GreatSPN [4] tool to obtain the target
performance requirements.

4.1 Petri net model for a system with one majordomo and one user

First, we are going to obtain a Petri net for each system class, the component
nets. Obviously, every annotated state transition diagram will give us the guide,
and the following general transformation rules will be applied:

Rule 1. Two different kinds of transitions can be identified in a state transition
diagram. Transitions which do not spend net resources and transitions which
do. The first kind will be translated into “immediate” transitions (that fire in
zero time) in the Petri net. The second kind will be “timed” transitions in the
Petri net. The mean of the erponentially distributed random wvariable for the
transition firing time will be calculated as a constant function of the message
size and net speed. More elaborated proposals like those given in [5] could be
taken into account, but we have considered more important to gain simplicity.

Rule 2. Actions inside a state of the state transition diagram are considered
as time consuming, so in the Petri net model they will be consider as timed
transitions. The time will be calculated from the CPU and disk operations needed
to perform the action.

Rule 3. Guards in the state transition diagram will become immediate transi-
tions with the associated corresponding probabilities for the resolution of con-
flicts.

Rule 4. States in the state transition diagram will be places in the Petri net.
But there will be not the unique places in the net, because additional places will
be needed as an input to conflicting immediate transitions (obtained by applying

Rule 3).

Figures 8, 9, 10, 11 and 12 represent the nets needed to model our system
components taking into account the previous transformation rules. According to
GSPN notation [1], immediate transitions (firing in zero time) are drawn as bars
(filled), while timed transitions are depicted as boxes (unfilled). Timed transi-
tions are annotated with firing rates, while immediate transitions are annotated
with probabilities for conflict resolution.

The sequence diagram will be the guide to obtain a complete Petri net for
the system using the previous component nets. We must consider that UML
distinguishes, in a concurrent system, two different kind of messages in a sequence
diagram:

— those represented by a full arrowhead (wait semantics), and

10

alfred_refine_catalog
I

wait_for_service . wait_UserforCatalog P4
“ 1
alfred.select_sw_service
observe_GUI_catalog
mmend_ec
alfred.select_sw -
P7 €lectronic_commerce P6 begin_ec Pl%
| 1
L] 1

Fig. 8. User Petri net component

add_infol P5 Sw_Manager.getcatalog user.observe_GUI_catalog

create GUI
P36
select_sIN_servioe show_GUI_catalog
P4 | o] P3

ait_Alfred
I |
select_software refine_catalog

P6

P9 P7

browser.select_sw_browser browser.refine_cafalog add info2

d_info3

Fig. 9. Alfred Petri net component

— those represented by a half arrowhead (no-wait semantics).

The following transformation rules will be used to obtain the net system. But
first, it must be taken into account that, for every message in the sequence dia-
gram, there are two transitions with the same name in two different component
nets, the net representing the sender and the net representing the receiver.

Rule 5. If the message has wait semantics, only one transition will appear in

the complete net system; this transition will support the incoming and outcoming
arcs from both net components.

brcrwser.ri)ly_l ocal salesman.reply

browser.reply_remote 3 add_info4

more_information_remote
create_catalog

more_information_|local

browser.create_browser

Fig. 10. Software Manager Petri net component

11

delete_browser salesman.create_salesman Pr info_need_travel P16
g I Me 1
L)

1 i
P6 PS select_sw browser

create_browser_agent info_need_local

alfred.show_catalog_GUI wait

reply_remote

refine_catalog_browser
P8 gotg_Sw|Place
SwManager/more_information_remote
P12

N P17

1
1 . 1
not_info_t |_or_local not_info_need

goto_MU_Place2 SwManager.more_information_lgcal
info_need_travell ly_local
o info_ne " | trav o repl y_.o P13
P15 refine P9
Fig. 11. Browser Petri net component
P1 create_salesman P2 SwManager.request begin_add_info_sale
? +{] >{]
w USEr-end_ec add_info_sale
g\ user.electronic_commerce user.begin_ec
< I)
P6 P5 end_add_info_sale

Fig. 12. Salesman Petri net component

Rule 6. If the message has no-wait semantics, the two transitions will appear in
the net system and also an extra place will be added modelling the communication
buffer. This place will receive an arc from the sender transition and will add an
arc to the receiver transition.

The net system for the example is shown in Figure 13. In order to under-
stand how to apply the previous rules, we are going to explain how to obtain
the observe_GUI_catalog transition in the net system (Figure 13) from the ob-
serve_GUI_catalog message sent by Alfred to the user in the sequence diagram.
We can observe in Alfred’s net (Figure 9) and in the user’s net (Figure 8) the
presence of that transition. So, in the net system the transition appears with the
union of the incoming and outcoming arcs of the components, synchronising in
this way both objects.

Finally, we remark with an example that the concurrency expressed in UML
has been achieved in the net system by synchronising component nets. When
create_salesman transition fires one token is placed in P20 and one token is placed
in P31, allowing a concurrent execution of the request and delete_browser transi-
tions.

4.2 Petri net model for a system with one majordomo and several
users

In order to model with Petri nets the situation of several users being served

by one majordomo, we need to include several tokens in some places like, for

12

JasSMoIq 3

S0INSI0LESN 1M

Bojereo b —~
. . geqd oWl %R

QINBS MS J09feS =

LI

ﬁ Bopereo apal
mn_m(L

6Td

TN

ced

vd

% :
Y 30w |w nep) uibeq 91d
€ad

= &
S 0Julppe pue

afes ojul ppe

JSMOIG VS 109
L)

9}

PRIV 1M -

Led

BoferreDiopesn 1em
1

~

Ve

ojui ppe”uiBeq

jeoo o ewou | a.qu
! Lvd

e E|>\m|ouom

ajowes A|desjasmoiq

aulpl 6vd

—
Wwebyiesmolg aalo

zojuri ppe

O
Sed

(oed

9ed

(O Boero mous

_N
IND am1eld

Fig. 13. The Petri net for the whole system

13

instance, wait_UserforService. Since the system must distinguish between differ-
ent tokens (they represent different requests), we add a colour domain for the
requests, thus leading to stochastic well-formed coloured Petri nets [3].

Our objective now is to reach the stochastic well-formed coloured nets for the
components and for the system. Let us begin with the component nets. As in the
previous system, component nets will be obtained from the annotated state tran-
sition diagrams. We begin the translation task (from pragmatic model to formal
model) using the rules stated in the previous section. The Petri nets for Alfred
and the Software Manager will be the same because only one instance of each is
present in the system. On the contrary, the system will have as many instances
of users, browsers and salesmen as required, suppose five for the example.

Now, pay attention on Figure 14, which represents the well-formed coloured
Petri net for the user. The R colour means that the system deals with one to
five requests and the initial marking m1 in place wait_for_service denotes that all
class instances will be used. Moreover, all the places in the net have colour R
and the arcs are labeled with the identity function (<x>), in this way only one
request could be fired once a time.

Figure 15 shows the well-formed coloured Petri net for the Browser. It has
been obtained applying the transformation rules to the Browser‘s STD. Initial
marking m1 in place P1 shows that a maximum of five browsers could be created,
one for each users request. Salesman well-formed coloured Petri net (see Figure
16) has been designed in the same way.

alfred_refine_catalog

wait_for_service wait_UserforCatalog < | P4 Re
<XxX> 1 <X> request:c
x|->< alfred.select_sw_service <X> R sm

<xX> mlm
= end ec observe_GUI_catalog
- _—

> alfred.select_sw Ly
P7
<X> [] <X> <X> _ k <X>
electronic ‘commerce % R begin X glgsR

Fig. 14. User coloured Petri net component

Now, we are going to focus on the complete well-formed coloured net for the
system, see Figure 17. The transformation rules given in the previous section
will give us the guide to construct it. In addition, the following transformation
rules will be applied concerning the colours:

Rule 7. All colours and markings defined in the component nets will be inherited
by the net system.

Rule 8. The places with colour and/or markings in the components nets will
appear in the net system in the same way.

Rule 9. The arcs labelled in the component nets will appear in the net system
in the same way.

14

delete_browser salesman.create_sdesman select_sw_browser info_need_travel P16

<x> <> x> PS5 <x>
P1 1 R< U~ oG R:c
P6 request:c
x X Sm
create_browser_agent x> mLm
P2 afred.show_catalog_G
ot Sw_Place

oto_MU_Place2
goto_ML n_Jocal

<x>

info_need_travel1
<X> =

P18

Fig. 15. Browser coloured Petri net component

P1 create_salesman P2 SwManager.request begin_add_info_sde
<X> <X> <xX> I - - -
U R R:C
[<X> request:c
mm USEr-end_ec add_info_sale Sm
<x> i . <X> mlm
user.electronic_commerce user.begin_ec
<X> MNe <X> <X> [] <XX>
LS UR 1

R
P6 end_add_info_sale

&

Fig. 16. Salesman coloured Petri net component

Rule 10. Conflicting arcs are those that appear labelled in a component net but
not in the component net which it is synchronised. When conflicting arcs appear,
the net system must have the two arcs labelled, preserving in this way the richest
semantic.

As an example of Rule 9 see outcoming arcs for the synchronised transitions
select_sw and alfred.select_sw in Figures 9 and 14 respectively.

We remark that the complete well-formed coloured net for the system de-
scribes concurrency at the same level as the complete net for the system given
in the previous section. Moreover, it introduces a new level of concurrency. The
use of coloured tokens models concurrent user requests of a complete service, as
it can be seen in the select_sw_service transition, that can fire several tokens from
place wait_UserforService representing several user requests.

5 Performance results

The results presented in this section have been obtained from the complete nets
that model the examples; the complete net that models the case in which the
system is used by one user, who is attended by only one majordomo and the
complete net that models the case in which the system is used by several users,
which are attended by only one majordomo.

15

AINBSIOHBSN em

Wwebyesmolg ol

ol
— _ x> _ JIINIBS NS 199 _m/m«I
Bofereo aeslo Bofereo 106 8. oui mnm e
Sigx 2% 0 x> SO 2% F—=c—&0—=x= I o= i
<X 9¢€1
XV AXV
1o ERWW0o p<XA_99 uIbeg P
o pwe e
< % 9Td
@Fs oyui ppe pue
_ _Smo‘_otmmj em
= fes ojui ppe x> POV 1BM - Borered wc_um:
JOSMOIG NS 109 .
<X> a = FO=xs lexs—2 Oz
vd ~ cojul ppe vd wms 1eps =
—_ <X
o 9®Rld MS jouom (Jesmolg 1em .o_m«mmw e
I <x> = <X> U X 6dwd :
|220] UoFeuMOUl d10w Lbd B d
40 pAell peet Ul X>
x> vl o B o
— <XFEX: - I 25d X> Od <X>f
%&: 2Joud [e00|”padu, oJul” 1, —Shoig Boered dule X>
I x> O < =& ..Nn_ & ¥0O6ed
<X>, X
<X> X p I
ww y wwmn_. ,wmv: oJuliou .y, zourppe
w <X o o W_&
S X 99 <X 0Sd [}
bkl G By
< ®/el} pdU ojul =
o C%_%ercm_ﬁ %n_ e - m. - O] IO p3puojui 1ou Mo bopms mous <X>
1senbai _ 4 X
. Q10w A|de. BSMOIQ m:cm: 6v S| __n L
o™ <X> oma" RT NN 06 s 2 pys—1 A.w_ D 30 S
{] x> <X> =
92d Hage i AN 0106 Led g€l €5d Sed INO dKrdn

Fig. 17. The coloured Petri net for the whole system

16

It is of our interest to study the system response time in the presence of a user
request. To obtain the response time, first the throughput of the select_sw_service
transition, in the net system, will be calculated by computing the steady state
distribution of the isomorphic Continuous Time Markov Chain (CTMC) with
GreatSPN [4]; finally, the inverse of the previous result gives the system response
time. We want to know which are the bottlenecks of the system and identify their
importance. There are two possible parts which can decrease system performance.
First, the trips of the Browser from the “user place” to the “software place” (and
way back) in order to obtain new catalogs. Second, the user requests for catalog
refinements, because s/he is not satisfied with it.

In order to study the two possible bottlenecks, we have developed a test
taking into account the following possibilities:

1. When the Browser needs a new catalog (under request of the user) there are
several possibilities:

— The Browser has enough information to accomplish the task or it needs
to ask for the information. It is measured by the not_info_need transi-
tion. We have considered an “intelligent Browser” which does not need
information the 70% of the times that the user asks for a refinement.

— When the Browser needs information to perform the task, it may re-
quest it by a remote procedure call (RPC) (represented in the net sys-
tem by the info_need_local transition) or it may travel through the net to
the Software_place (represented in the net system by the info_need_travel
transition) to get the information and then travel back to the MU_Place.
In this case, we have considered two scenarios. First, a probability equal
to 0.3 to perform a RPC, so a probability equal to 0.7 to travel through
the net. Second, the opposite situation, a probability equal to 0.7 to per-
form a RPC, therefore a probability equal to 0.3 to travel through the
net.

2. To test the user refinement request, we have considered two different possi-
bilities. An “expert user” requesting a mean of 10 refinements, and a “naive
user” requesting a mean of 50 refinements.

3. The size of the catalog obtained by the Browser can also decrease the system
performance. We have used five different sizes for the catalog: 1 Kbyte, 25
Kbytes, 50 Kbytes, 75 Kbytes and 100 Kbytes.

4. The speed of the net is very important to identify bottlenecks. We have con-
sidered two cases: a net with a speed of 100 Kbytes/sec. (“fast” connection
speed) and a net with a speed of 10 Kbytes/sec. (“slow” connection speed).

Figure 18(a) shows system response time (in minutes), for the net in Fig-
ure 13, supposing “fast” connection speed, “expert user” and an “intelligent”
Browser. One of the lines represents a probability equal to 0.7 to travel and
0.3 to perform a RPC, the other line represents the opposite situation. We can
observe that there are small differences between the RPC and travel strategies.
Such a difference is due to the round trip of the agent. As the agent size does
not change, this difference is not relevant for the global system performance.
Thus, we show that the use of mobile agents for this task does not decrease the
performance.

17

30 7

/ 25 /x"

6
5 n
_— 2 20
4 £
__ £ /
. 15 —
~travel 0,3; |10
—~—travel 0,3;| 2 ,3;
RPCO7 | tRPC|00’77 5
~travel 0,7; ~travel G,77 T
RPCO3 | file size RPC 0,3 file size
100 100
1 Kbyte |25 Kbyte |50 Kbyte | 75 Kbyte
1Koyte | 25 Kbyte | 50 Kbyte | 75 Kbyte | Y Vi Vi Vel ovte

‘travel 0,3; RPC 0,7|3,706999 |4,326757 | 4,970673|5,663156 | 6,260957 ‘h’avel 0,3; RPC 0,7] 13,6277 | 16,7842 | 20,0803 | 23,6072 | 26,6667
‘travel 0,7; RPC 0,3]3,7470024,366431|5,011024|5,703856 |6,301197 ‘travel 0,7; RPC 0,3/ 13,8313 | 16,9895 | 20,2758 | 23,8095 | 26,8817

(a) (b)
10 40 7
9 =
. —— 35
_— $ 30
g7 —— E »
S 6 =
£ €
E 5 20 —
4 15
—~travel 0,3; 3 ~travel 0,3; 1o
RPC 0,7 2 RPC 0,7
—~travel 0,7; 1 - travel 0,7; 5
RPC 0,3 0 file size RPC 0,3 o file size
100 100
1 Kbyte |25 Kbyte |50 Kbyte|75 Kb:
yte yte yte yte Kbyte 1 Kbyte |25 Kbyte|50 Kbyte|75 Kbyte Kbyte
‘*lravel 0,3; RPC 0,7/5,63825 | 6,36862 | 7,12555 | 7,93273 | 8,6445 \otravel 0,3; RPC 0,7| 16,7001 | 20,4248 | 24,2954 | 28,4075 | 32,051
|- travel 0,7; RPC 0,3]6,03865 | 6,76956 | 7,52785 | 8,3375 [9,0432 | travel 0.7; RPC 0,3] 18,7477 | 22,4921 26,3421 30,4303 | 34,083

(©) (d)

Fig. 18. Response time for a different scenarios with an “intelligent Browser”. (a) and
(b) represent a “fast” connection speed, (c) and (d) a “slow” connection speed; (a) and
(c) an “expert user” and (b) and (d) a “naive user”.

Figure 18(b) shows system response time (in minutes), supposing “fast con-
nection”, “intelligent” Browser, “naive user”. The lines have identical meaning
than in Figure 18(a). The two solutions still remain identical.

Someone could suspect that there exist small differences because of the net
speed. So, we have decreased the net speed to 10 Kbytes/sec., (Figures 18(c)
and 18(d)). It can be seen how the differences still remain non significant.

Finally, Figure 19 represents a test for an “intelligent Browser”, an “expert”
user, a probability for RPC equal to 0.7 and equal to 0.3 to travel. Now, we
have tested the system for a different number of requests ranging from 1 to
4, thus the coloured model in Figure 17 has been used. Observe that when the
number of requests is increased, the response time for each request increases, i.e.,
tasks cannot execute completely in parallel. Alfred and the Software Manager
are not duplicated with simultaneous requests. Thus, they are the bottleneck
for the designed system with respect to the number of concurrent requests of
the service. Therefore, the next step in the performance analysis of the model
would be to consider several majordomos (we do not include here due to space
limitations).

18

18 §
16
14
12 4
10 5

minutes

@1 Kbyte
50 Kbytes
1100 Kbytes|

o N & o

1request | 2request | 3 request | 4 request

1 Kbyte 3,7069988 | 6,1319598 | 8,3640013 | 10,506961
W50 Kbytes | 4,970673 |7,2605823 | 9,5529232 | 11,862396

1100 Kbytes| 6,2609567 |9,2157405| 12,30315 |15,500271

Fig. 19. Response time for an “intelligent Browser”, an “expert user”, a “fast” con-
nection and also different number of request.

6 Conclusions and further work
The main goal of this paper was to present an approximation to evaluate perfor-

mance in design mobile agent software. We have used as test a system designed
for providing mobile computer users with a software retrieval service. We sum-
marise the contributions in the following items:

— A model to evaluate software performance has been integrated in the software
life cycle. It has been done in the early stages of the modelling process. Thus,
when performance or functional requirements change, it will be easy and less
expensive to assume them. Moreover, the approach will permit to obtain the
performance figures in an automatic way: Starting from the pa-UML models,
the component Petri nets are systematically achieved, and from these the
net system, finally the net system allows performance evaluation.

— In order to apply any technique to analyse rigorously system performance,
the use of a formal model is crucial. So, we have used Petri nets to design
software, avoiding the UML ambiguity.

— Concurrency is ambiguously expressed in UML, but when the translation
to Petri nets is performed, a concurrent well-defined model is gained, so
different kinds of concurrent systems can be analysed.

— The modelled example presents a complex system which is expensive to im-
plement. Our approach offers an analytic way of evaluating such kind of
systems without having to implement several prototypes. The results coin-
cide with those obtained by the ANTARCTICA designers. Their results were
obtained with implemented prototypes.

Concerning future work, we are interested in the following objectives:

— Software design is a complex task. So, we advocate for the reuse of the
knowledge acquired in the application domain. In this way, patterns will be
introduced to design software using agents. Each design pattern will deal
with its own performance skills. So, we will have a pattern design library
with the proper use of the performance parameters.

— As we have said, UML semantics is not defined formally, so our approach
brings a formal semantics based on Petri nets to model the system. In this
article, we have proposed rules to obtain the Petri nets. We will work in
this line to get a formal translation from the pa-UML notation to Petri nets
semantics.

19

References

[1]

[13]
[14]
[15]
[16]

[17]

(18]

[19]

[20]

M. Ajmone Marsan, G. Balbo, and G. Conte, A class of generalized stochastic Petri
nets for the performance evaluation of multiprocessor systems, ACM Transactions
on Computer Systems 2 (1984), no. 2, 93-122.

G. Booch, 1. Jacobson, and J. Rumbaugh, OMG Unified Modeling Language spec-
ification, June 1999, version 1.3.

G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad, Stochastic well-formed
coloured nets for symmetric modelling applications, IEEE Transactions on Com-
puters 42 (1993), no. 11, 1343-1360.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo, GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation
24 (1995), 47-68.

J. Dilley, R. Friedrich, T. Jin, and J. Rolia, Web server performance measurement
and modeling techniques, Performance Evaluation (1998), no. 33, 5-26.

D. Coleman et Al., Object oriented development. the Fusion method, Object Ori-
ented, Prentice Hall, 1994.

J. Rumbaugh et Al., Object oriented modeling and design, Prentice-Hall, 1991.
E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
reusable object-oriented software, Addison-Wesley, 1995.

C. Harrison, D. Chess, and A. Kershenbaum, Mobile agents: are they a good idea?,
Mobile Object Systems: Towards the Programmable Internet, 1997, pp. 46—48.

I. Jacobson, M. Christenson, P. Jhonsson, and G. Overgaard, Object-oriented soft-
ware engineering: A use case driven approach, Addison-Wesley, 1992.

E. Kovacs, K. Rohrle, and M. Reich, Mobile agents OnTheMove -integrating an
agent system into the mobile middleware, Acts Mobile Summit (Rhodos, Grece),
June 1998.

E. Mena, A. Illarramendi, and A. Godi, Customizable software retrieval facility
for mobile computers using agents, Proceedings of the 7th International Confer-
ence on Parallel and Distributed Systems (ICPADS’2000), Workshop International
Flexible Networking and Cooperative Distributed Agents (FNCDA’2000) (Iwate
(Japan)), IEEE Computer Society, July 2000.

T. Murata, Petri nets: Properties, analysis, and applications, Proceedings of the
IEEE 77 (1989), no. 4, 541-580.

Object Management Group, The common object request broker: Architecture and
specification, June 1999, Revision 2.3.

E. Pitoura and G. Samaras, Data management for mobile computing, Kluwer Aca-
demic Publishers, 1998.

R. Pooley and P. King, The unified modeling language and performance engineer-
ing, IEE Proceedings Software, IEE, March 1999.

N. Rico and G.V. Bochman, Performance description and analysis for distrib-
uted systems using a variant of LOTOS, 10th International IFIP Symposium on
Protocol Specification, Testing an Validation, July 1990.

C. U. Smith, Performance engineering of software systems, The Sei Series in Soft-
ware Engineering, Addisson—Wesley, 1990.

G. Waters, P. Linington, D. Akehurst, and A. Symes, Communications software
performance prediction, 13th UK Workshop on Performance Engineering of Com-
puters and Telecommunication Systems (Ilkley), Demetres Kouvatsos Ed., July
1997, pp. 38/1-38/9.

M. Woodside, C. Hrischuck, B. Selic, and S. Bayarov, A wide band approach to in-
tegrating performance prediction into a software design environment, Proceedings
of the 1st International Workshop on Software Performance (WOSP’98), 1998.

20

Testing Petri Nets for Mobile Robots Using Grobner Bases

Angie Chandler!, Anne Heyworth?, Lynne Blair!, Derek Seward®,
! Lancaster University, Department of Computing
2 University of Wales, Bangor, Department of Mathematics
3 Lancaster University, Department of Engineering

Abstract

As autonomous mobile robots grow increasingly complex, the need for a method of modeling and
testing their control systems becomes greater. This paper discusses the use of Petri nets as a means of
modeling and testing the control of a mobile robot, concentrating specifically on the reachability testing
of the Petri net model through the use of Grébner bases.

The designing and testing of the Petri net models for the mobile robot is done initially in component
form, providing a model which is then automatically converted into a Grobner basis to provide a simple
means of reachability testing. Once the testing process is complete, the Petri net modules, which
represent each of the components of the mobile robot are connected to form a single Petri net. This
Petri net is then used for the generation of control code for the robot.

In this paper, the process of testing the modules created to represent the components of the
autonomous mobile robot is shown through a case study, Star Track (a tracked autonomous mobile
robot). Details of both ordinary and colored Petri nets representing certain components of Star Track
are discussed, with both the Petri net model and the equivalent Grébner basis described.

1 Introduction

The dynamic and asynchronous structure of the Petri net is ideally suited to the modeling of an
autonomous mobile robot, provided the model can be thoroughly tested prior to code generation or
execution on board the robot. To this end, the reachability test, as one of the most basic means for
checking the accuracy of the model compared to its expected execution, provides a great deal of
reassurance to the designer of the software, which in turn allows the designer to create more complex
systems reliably.

The need for mathematical analysis of the Petri net models created for the mobile robot, provided an
ideal opportunity for collaboration between mathematics and engineering departments. As a result of
this co-operation, an approach to Petri net analysis formed, based on the relationship between Petri nets
and Grobner bases. The application of Grébner bases has been successfully used in fields such as
operational research and statistics, but is as yet less common in engineering.

The subject of this paper is the application of the Grébner basis to the testing of reachability in a
Petri net model, specifically to a Petri net model of a mobile robot. This application is implemented as
an automatic testing facility within a Petri net toolkit, TRAMP (Toolkit for Rapid Autonomous Mobile
robot Prototyping) intended to model mobile robots and other mechatronic systems from the stages of
conceptual design to a final executable program. These Petri net models are initially formed as
individual modules, each related to a component of the system, in order to allow easier testing and
analysis prior to creation of the final, global, Petri net model [Chandler 99a].

In section 2 of this paper, some previous Petri net applications will be discussed, providing a

background to the choice of Petri nets as a model for the autonomous mobile robot. Section 3 will
detail the Petri net toolkit, TRAMP, before the Grobner bases used as a testing method are studied in

21

further detail (section 4). A case study showing the use of the method for the mobile robot, Star Track,
will be discussed in section 5, followed by conclusions and future work.

2 Choice of Petri Nets

Petri nets are generic enough to provide the capacity for application to a wide variety of
applications, although due to their asynchronous nature they are more commonly used for distributed
systems [Buchholz 92] and other similar processes. However, their uses in distributed systems by no
means exclude applications to the field of robotics. In fact, robots can themselves form part of a
distributed system, as can be seen through the example of an orange-picking robot with point-to-point
communications [Cavalieri 97]. Other areas of robotics can also find use for Petri net modelling as a
method of eliminating deadlock and other temporal inconsistencies [Simon 98] [Caloini 98], athough
these properties require testing through timed Petri nets, an extension which has yet to be made to the
analysis system used here. Alternatively, Petri nets can be used to allow co-operation between multiple
robots [Suh 96], or between a human and arobot [Mascaro 98]. The range of applications for Petri nets
is enormously diverse, and limited only by the range of tools available to implement these possibilities.

Our use of Petri nets as amodeling tool in the field of mobile robotics, was initially inspired by their
ability to represent both the data flowing in the system and the state of the system, simultaneously.
This initia interest was then furthered by the ease with which the model could be trandated into
executable code, as required by the TRAMP toolkit discussed in the section 3, below, without the need
to alter any of the components modeled. These factors, combined with the mathematical background
which supported the testing of any models used, and examples of previous applications to the field led
to the eventual use of Petri nets within the TRAMP toolkit.

3TRAMP

The TRAMP toolkit provides a simple means of modeling, testing and generating code for a mobile
robot. Thisisinitially donein the form of modules, or objects based on the separate components of the
mobile robot, and divided into five categories in an overall object diagram in order to allow the toolkit
user to connect the objects as desired. These five categories, sensors, filters, navigation, low level
control, and actuators are also used to provide certain attributes to each object which may only be
relevant to that category.

S=nsors Fliters Navigation Control Actuators

Figure 1 Object Diagram Layout

Asthe arcsin Figure 1 suggest, the flow of information in the system leads from sensors to actuators
via various processing alternatives. Once data has been read in from a sensor, such as a compass, the
data may then be filtered to remove any noise from the readings, before the navigation uses the data to
make a decision on the next move of the robot. With the commands to be issued to the actuators
decided, the navigation module will then pass the information either directly to the actuator (for
example a motor) or via a low level controller, which will tranglate the information into a form
readable by the actuator and ensure that it behaves exactly as it should.

Once the modules are defined and linked in the object diagram, as shown in Figure 1, the user may
then access the Petri net modules of each of the separate components. These components remain

22

completely unconnected whilst they are tested, which may include testing on board the robot as a
separate module, after which the modules may be linked according to a precise protocol. This is
discussed below.

Linking

Once all testing of the Petri net is complete, the user may then link the individual components
according to the connections defined in the object diagram, and a specific hierarchy. This hierarchy
makes the navigation module the highest level element, and works outwards in the object diagram
making the sensors and actuators the lowest. The navigation module (or modules) is designed so that
whilst it can be tested in simulation as it stands, several of its transitions actually represent groups of
transitions for use when the Petri net is finally connected. As the Petri nets are linked, the navigation
module (Figure 2) fully expands its complex transitions.

o define map/

initialise behaviour sensors decision actuators
init | eady oy, | feady
done ‘ ‘ _/ W ‘ ‘ to move

Figure 2 Navigation Module

The transitions “initialize”, “end”, “sensors” and “actuators” are all substitution transitions [Jensen
96], each expanding into several transitions, providing connections to the other modules. The
remaining “define” and “decision” modules represent the actual method of navigation required of the
robot, and can easily be exchanged for a number of standard defaults, or left for the user to fully
implement.

Initialization and End Expansion

The “initialize” and “end” transitions connect directly to every other module in the system, ensuring
that every initialize routine is called before the main program starts, and that the program shuts down
correctly when it finishes. Each initialize place shown here will be connected to a transition within the
relevant module which is defined as an “initialize” transition and marked for connection outside the
module in a method similar to that used in [Caloini 98]. The expansion of these is shown below, with
an expanded view of the low level section of the motors Petri net.

Low level components
Compass Compass
initialise
module

GPS
module

initialise
exit

initialise
enter

Snd speed
{initialise and H

i T diection
DC Moto | init. ;
initialise > ‘ > complete > ;

Figure 3 Initialize Transition Expansion

23

Figure 3 shows the expansion of the initialise transition to connect to two sensors (the compass and
the GPS — Global Positioning System) and one actuator (the DC motor). Here, there were no filters or
controllers in the system.

Sensor and Actuator Expansion

Similarly, the “sensors” and “actuators” transitions can be expanded. However, here the links
created in the object diagram come into play, as the only connections made are those which are directly
connected to the navigation module. For the expansion of a “sensors” transition, this includes any
filters which are connected to the navigation module, but not any sensors connected only to the filter as
they must be connected through a similar process in the filter module.

Senso

direct
sensors Sensors sensors

in collect out

Low level components
Compass Compass @ ‘ ensors
sensorsin module @ ‘ all
GPS GPS GPs

Figure 4 Sensor Transition Expansion

The configuration for sensor transition expansion (Figure 4) is slightly different to allow for the
possibility that there many be no sensors or filters connected, but the transition must still operate. The
places which link to the lower level modules behave as they do in the “initialize” transition expansion,
connecting in place of the test driver initially provided with each module, to transitions which are
defined from the start as an externally connecting. In this case, the connecting transitions of the
compass can be seen in Figure 7, transitions “request data” and “send data”.

There are also special standardized tokens, which allow this operation to be performed more
smoothly. These tokens contain all possible elements of any expected sensor readings or instructions
to actuators respectively. These readings or instructions can then be easily converted to or from the
tokens created for specific sensor and actuator modules. Here, there were two sensors directly
connected to the navigation module and no filters.

Control from Navigation

The method of expansion described in the previous sub-sections is designed specifically to allow the
navigation module to maintain control over the system as a whole. The bipartite nature of the Petri net
gives the two types of nodes, places and transitions, specific meanings that must be taken into account
within the model. Clearly, the transitions perform the actions, whereas the places merely maintain
state, but there are further implications which can be put into use here. The nature of the places is such
that they have authority over transitions. Transitions cannot fire without, in a sense, instructions from a
place as each input place must contain a token in order to enable the transition. It is analogous to the
handing out of instructions by a superior, and prior to the receipt of permission the task may not be
performed.

Whenever a link is formed between two modules, the module which is further up the hierarchy
contains the place which is linked, whilst the lower level module contains the transition. The lower
level module knows only that an instruction has been received, whilst the higher level module
continues to be aware of its state, despite the departure of the active tokens into a separate module.

24

This predictable method of linking also ensures that the reachability test results performed whilst the
modules were still separated will still be accurate once the modules are reconnected, as the individual
modules remain essentially separate whilst the pre-tested navigation module and connectors form links
to them.

4 Testing through Grobner Bases

Groébner basis theory is a branch of computer algebra which provides methods for solving problems
of equivalence in various types of algebraic structure. In the commutative case, computational Grébner
basis methods have been successfully applied in theorem proving, robotics, image processing, coding
theory and signal processing, amongst others [Buchberger 98] [Holt 96]. All major computer algebra
packages now include implementations of these procedures and there are also pocket calculator
implementations. A formal definition of the Grébner basis is included as an appendix to this paper.
We also refer the reader to [Froberg 97] for further details.

In this paper, the application of Grébner basis procedures to the problem of reachability testing is
discussed for reversible Petri nets and demonstrated with a practical case study.

The generation of the Grébner basis of a set of polynomials, as is used for the Petri net analysis in
later sections, is done with the use of Buchberger’s algorithm [Buchberger 98]. The algorithm
calculates a Groébner basis for a set of polynomials by repeatedly testing and appending it with further
polynomials until the appended set satisfies the properties of a Grébner basis with respect to a chosen
well-ordering of the variables. This method is more formally defined in the appendix.

Once created, the Grébner basis may be used to find any reachable marking, provided the initial

marking is a home marking, or alternatively determine whether the Petri net is reversible based on
results of reachability testing (see section 5).

5 Case Study — Star Track

Figure 5 Star Track

The Petri nets discussed here are based on real life models, created for use on board the mobile
robot, Star Track (Figure 5), intended to perform navigation with the use of satellite GPS [Yavuz 99].
This robot’s major components consisted of a compass, a GPS receiver, a PC 104 computer, and four
DC motors. These four components formed the main objects within the object diagram, two of which
are considered in the following examples. It should be noted that the Petri nets shown represent the
software interface to the hardware components named, not the hardware components themselves, as the
intention of TRAMP is the generation of control software for use with specific hardware.

25

Motors

initialise

),

3
2
ready | e ‘ ‘ 2

‘ ‘ send speed

and direction

interpret speed write
and direction 4 to port 5

—| |83 t4
interpreted
‘ data

done

6 Change

vector
@;\
change

request
requested

speed and
direction

1D

regart

send
done

t6 finish

all

complete
8 ﬁ ‘ t7

As can be seen in the Petri net shown in Figure 6, once the motors have been initialised (t;) the user
may input the required speed and direction (t,) for each motor. The speed and direction information is
then interpreted (t3) and written to the relevant port (t4), provided the system is “ready” (place 3) which,
combined with the user input token, will enable transition t

t

Figure 6 Motors Petri net

The Grobner basis for this Petri net is generated from the polynomials of the transitions listed below,
where X represents a token in a given place.

For example, a token at place 1 allows the firing of transitiand results in a token in places 2 and 3.
This can be represented by the polynomial:

pol(tl) = % - XoX3
And seen in the diagram below:

2
t1

1
oesto < >
3 9

t1
1

W

Polynomials for the other transitions can be similarly generated:

pol(t2) = % — %,
POI(t3) = X%Xs — X4

pol(t4) = % — X

pol(td) = % — X

pol(t6) = % — XsXg
pol(t7) = %Xg — %
pol(t8) = % — x;

These polynomials are then used to form the Grébner basis:
{Xa =X, X5 = X1, X — %o, X7 — Xo, Xg — Xo, XoX3 — X}

26

This Grobner basis can be calculated automatically, either through TRAMP or through a standard
package such as Maple.

This gives a catalogue of markings (reachable places) from an initial magKing xstarting with a
token in the place “start”) to be:
{X1, X4, X5, XoX3, X3, Xe, XaX7, XaXe}

These reachable markings are found based on their equivalence to the defined initial marking
modulo the transitions, which can be determined algorithmically, using polynomial reduction with
respect to the Grobner basis (see appendix).

As the Grobner basis is only useable when the Petri net is reversible, an undesirable, or unexpected
state within this list would indicate either that the Petri net was not reversible, or that there was an error
in the Petri net itself, allowing the unexpected state. Once the possibility of either an undesirable
reachable place (or alternatively a desirable place which wasn’t reached) or a non-reversible Petri net is
eliminated, the chance of a serious error occurring on board the mobile robot during execution is
greatly reduced.

Should an undesirable state be reachable from the initial marking, it must first be decided whether
the error is in the reversibility of the Petri net or in the reachability. This is best done by checking for
errors in very simple, and obvious, reachability calculations. If the tester claims that a clearly
unreachable state is reachable then it is likely that the Petri net is in fact not reversible, and that is
where the error lies. Should the Petri net appear to be reversible, the user can seek further assistance by
using the “step through” method, which gives a visual representation of the movement of the tokens
through the Petri net, and allows the user to see the error as it occurs.

27

@

O |

wg

t24

4 2
coms init ® ®
open complete H
send
ready
® t4 5 7 t6 8
‘ ‘ ® @ H ® @ ® ‘ ® tested \
® ‘ ‘ sum ‘ data
read in calculate test
- ®
o 123
® ®
Eneozdmrzckumng ® @
initialise
t15
data request
®
t16
® return data
t17
®
store data 10 v find
® s ® m bearing
available H
finish
) 19 @
data
@ dy 11
18
13 request 12
L1 ZCD @ |l @® jeun, @
requested data
19 ‘ ®i Halt
send ® rtefzn ® 113
data 14 ® @ i
4 /\ % e ; ; ®carmy) ©
10 complete
19 print
[data

Figure 7 Compass Petri Net

28

Before analyzing the Petri net shown in Figure 7, it is necessary to consider a further extension to
the Petri net theory described in section 2. The compass Petri net is a coloured Petri net with a finite
set of colors.

The extension of an ordinary Petri net to a coloured Petri net provides the ability to represent
different types of token and treat them differently. In acoloured Petri net, the transition is only enabled
by an incoming token if the token’s colour matches the colours allowed by the transition. A coloured
Petri net can always be converted to an ordinary Petri net through additional places and transitions for
each different colour.

The compass Petri net contains a number of different token types in order to represent the
information types required within the compass program, such as the ASCII characters read in from the
compass itself, or the final format of the data when a bearing has been established. However, these
additional token types do not affect the choices made in this Petri net, and are therefore irrelevant to its
analysis. In the case of the compass Petri net shown in Figure 7, there are essentially only two colors
required in the Petri net, “pass” and “fail’, as these are the only two colours relevant to the testing of
the Petri net in simulation. Any other variations in token type serve no purpose in simulation but to
increase the complexity of the analysis.

For the purposes of the calculations to be performed using Grébner bases, the “pass” tokens have
been labelled x, and the “fail” tokens y. The initial marking of the Petri net is described by a single
“pass” token in the “start” place (1), and “pass” and “fail” tokens in each of the places “input” (18) and
“continue” (19). The additional tokens at places 18 and 19 allow the user to perform the more rigorous
testing of the coloured Petri net.

The “pass” and “fail” tokens are primarily used as a distinction between data received with a correct
checksum and data received with a failed checksum. This colouring is used to ensure that only
uncorrupted data is used to calculate the bearing, which will later be output to the main navigation
module of the mobile robot. Any failed data is instead sent to the “data request” transition, which can
then provide a connection to the “dead reckoning plug-in module” not shown in this diagram. This can
be seen through tracing the route of a “pass” and then a “fail” token through the transitions “rgad in” (t
or ty), “calculate checksum” {tor t,,) and “test” (§ or t3) to the conclusion of the decision at the
transitions “find bearing” {) or “data request” {§).

As shown in the previous example, the first step in the analysis of the Petri net and generation of the
Grobner basis is to establish the polynomial for each transition. These polynomials are listed below,
with a pass token represented by an x, and a fail token represented by a y.

For example, the polynomial:
POl(tio) = X14X19 — Xa5X19

represents the following possible transition.

t10 t10
14 15 14 15

< S e C 0

19 19

29

Note that pol(ty,) isidentical to pol(tyo) apart from coloring.
POl (t24) = X14Y10 — Y15Y10

t24 t24
14

0 oo O

19

Polynomials can be generated for the other transitions as follows.

pol(ts) = XoX15 — XeX1s, Pol(t) = X4 - XoXa POl(ti3) = XoX17 — X6
Pol(t0) = VoY1 — YaY1s pol(t) = X5 — X2 pol(tis) = X5 — X2
POl(ty) = XaX13 — X pol(ty) = X — X0 pol(tis) = X — X%

POl(tz1) = Yay13— Y6 pol(ts) = X2 — X3 pol(te) = s — X%
pol(ts) = Xs — % Pol(ty) = X131 — XoX14 pol(tiz) = Xo — X1
pol(tz) = Yo — Y7 pol(ti1) = Y15 — X7 pol(tig) = X10 — X11
pol(ts) = X7 — Xg POl(t2) = XsX17 — X6, pol(tig) = X6 — X
pol(ts) = y7—¥e pol(tzs) = YsX17 — X6

The complex Grébner basis automatically generated from these polynomials is shown below. Some
of the resulting expressions are shown graphically to clarify the meaning of the generated polynomials.
The polynomials shown in bold represent expressions which would require tokens to pass through the
entire Petri net more than once in order for one marking to be reachable from the other.

Y3Y1sY19 — YsY19 X2Y18 — YaY1s X14X3X18 — YsX18
Y18YaY15 — YaY1s X2Y15 — YaY1s Xg— Vs
X14X19 — X15X19 X2X18 — XgX18 X7—Ys
X16 — YaY15 Y7—V¥s X6 — VY8
Y3X15— Vs Ye—V¥s X10— Y8
Y19X15X19 — X19Y15Y19 X17 — Y15 X15Y8 — Yi5Ys
X14YsY18 — Y15YsY1s X14Y19 — Y15Y19 X14Y15)2/8 - Y152)2/8
X14Y8X18 — X18Y15Y8 XoX15 — YaY15 X14Ys — YisYs
X14Y3Y15 — Y15Ys XoX14 — Y8 Xl4y3y%8 — YaY1s
X13 — Xi5 X1 — ¥3Y1s YsY15 — Yisys
X12 — X5 X2y — Y3%’15 Y3YisYs — YSZ
X11—Ys X3Y15 — YaY1s YsY15Y19 — X19Ys
Xo— Vs X3Ys — YaYs X18Y3Y15 — YsX18X17
X5 — X5 Y18X3X18 — X18Y3Y18
X4 — X5 X3X15 — Y8

As can be seen through the graphical representation of these first two polynomials, the polynomials
which form the basis are not necessary in their simplest form, they show combinations of the

polynomials formed by the transitions, with P representing a pass token, and F representing a fail
token.

Y7— V8
7 23 8 7 23 8
;@k @ goesto @ tdeg:}d
test test

30

Ye—V¥s

22 4 23 6 02 5 23 4
tested ascii d

X17—VYis
11 1
all)

This diagram shows the change between a “fail” token and a “pass” token, possible only at specified
transitions.

t

1

X14Y19 — Y15Y19

@
d all oesto data all
arh~ed complete, g arrived cor@ete
t10 t10

This diagram shows the token in the “continue” place (19) affecting the output of the transition. The
equivalent polynomials for changes made through the “input” place (18) are shown in the first two
polynomials below.

The remainder of the polynomials forming the Grobner basis for the compass Petri net (shown in
bold) are more difficult to trace through the Petri net diagram, as they require tokens to pass around the
Petri net more than once. This is perfectly acceptable, as the Petri net is expected to be reversible, but
it does lead to polynomials which are misleading at first glance, and similarly to reachable markings
where the path taken is unclear.

The shown completed Grobner basis, once generated, can be used to find every reachable marking
of the compass Petri net is represents. However, due to the length of this example, these results are not
listed here.

Testing the reachability of this Petri net, given a certain type of token, will confirm that the choices
made by colouring of a given token will behave as the user would expect, beyond the simple testing of
a Petri net with no colourings. This will enable the user to determine errors of this nature prior to the
final generation of executable code for the mobile robot and decrease the necessary debugging time.

6 Conclusions and Future Work

The method for Petri net analysis described here has proved highly reliable and accurate. It is
particularly successful in the detection of Petri nets which have falsely been assumed to be reversible,
and in finding badly designated initial markings of the Petri net which may also stop it from being
reversible.

However, the time taken for performance of these calculations remained, as with many previous
methods, unacceptably long despite the modularity of the model. The motors example shown in
section 5 was completed successfully within a few minutes, but once a colouring was added alongside a
number of places and transitions for the compass example (section 5) the time taken increased beyond
that which could be considered reasonable for the user to wait, Grobner basis generation taking
approximately an hour.

31

The primary concern of any further work on this technique must be the reduction of the time taken
for results of reachability testing to become available to the user. There are three possible avenues of
research available, which may lead to an appropriate reduction in complexity. The first may consider
the reduction of the Petri net itself. Whilst the TRAMP method of separating objects into individual
components has already greatly decreased the Petri net complexity [Pezze 95] [Caloini 98], it is clear
that further effort must be put into this in order to provide a usable analysis service. This may be
implemented through the use of standard Petri net reduction techniques [Murata 89].

The processing time may then be further reduced through the improved implementation of the
Grobner basis techniques [Fréberg 97], which themselves have a number of efficiency algorithms
which have yet to be utilised in these initial testing procedures.

A further alternative to the Petri net reduction and Grébner basis efficiency techniques is the
introduction of on-the-fly matrix generation method commonly applied to automata in order to improve
the efficiency of the equivalent of reachability testing [Larsen 97]. If this method were to be applied to
the Grobner basis reachability test for the Petri net, then the overheads from large Petri nets would
decrease dramatically.

A further desirable development may arise from the introduction of timings to the Petri net, which
are already a widely used tool, and provide a valuable additional level of analysis to the Petri net.

References

[Buchberger 98] An Algorithmic Criterion for the Solvability of a System of Algebraic Equations,
Buchberger B (translation Abramson M and Lumbert R). Grobner Bases and Applications.
Proc. London Math Soc. Vol 251. 1998.

[Buchholz 92] A hierarchical View on GCSPNs and its Impact on Qualitative and Quantitative
Analysis. Buchholz P. Journal of Distributed Computing, 1992, Vol 15, pp 207 — 224

[Caloini 98] A Technique for Designing Robotic Control Systems Based on Petri Nets. Caloini A,
Magnani G, Pezze M. IEEE Transactions on Control Systems Technology, Vol 6, No 1, pp
72-87. 1998.

[Cavalieri 97] Impact of Fieldbus on Communication in Robotic Systems. Cavalieri S, DiStefano A,
Mirabella O. IEEE Transactions on Robotics and Automation, 1997, Vol 13, No. 1, pp 30-48

[Chandler 99] Grobner Basis Procedures for Testing Petri Nets. Chandler A, Heyworth A. UWB Math
preprint 99.11. 1999

[Chandler 99a] An Object-Oriented Petri Net Toolkit for Mechatronic System Design. Chandler A.
PhD Thesis, Lancaster University, Engineering Department, 1999.

[Froberg 97] An Introduction to Grébner Bases. Fréberg R. John Wiley and Sons, 1997.

[Holt 96] Algebraic Methods for Image Processing and Computer Vision. Holt RJ, Huang TS,
Netravali AN. IEEE Transactions on Image Processing, Vol 5, No 6, pp 976-986. 1996.

[Jensen 97] Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use Volume 1.
Jensen K. Spring-Verlag. 1997.

[Larsen 97] Efficient Verification of Real-Time Systems: compact data structure and state-space
reduction. Larsen KG, Larsson F, Pettersson P, Yi W. Proceedings — Real-Time Systems
Symposium, 1997.

[Mascaro 98] Hand-in-Glove Human-Machine Interface and Interactive Control: Task Process

Modelling Using Dual Petri Nets. Mascaro S, Asada HH. Proceedings - IEEE International
Conference on Robotics and Automation, 1998, Vol 2, pp 1289-1295

32

[Murata 89] Petri Nets: Properties, Analysis and Applications. Murata T. Proceedings of the IEEE,
1989, Vol 77, No. 4, pp 541 — 580

[Pezze 95] Graph Models for Reachability Analysis of Concurrent Programs. Pezze M, Taylor RN,
Young M. ACM Transactions on Software Engineering, Vol 4, No 2, pp 171-213. 1995.

[Simon 98] Design and Analysis of Synchronisation for Real-Time Closed-Loops Control in Robotics.
Simon D, Castaneda EC, Freedman P. IEEE Transactions on Control Systems Technology,
1998, Vol 6, No. 4, pp 445-461

[Suh 96] Design of a Supervisory Control System for Multiple Robotic Systems. Suh IH, Yeo HJ, Kim
JH, Ryoo JS, Oh SR, Lee CW, Lee BH. IEEE International Conference on Intelligent Robots
and Systems, 1996, Vol 1, pp 332-339

[Yavuz 99] Conceptual Design and Development of a Navigation System for a Mobile Robot. Yavuz
H, Chandler AK, Bradshaw A, Seward DW. Proceedings of CACD 99 (International
Workshop on Engineering Design), 1999, pp 65 - 80

Appendix A: Grobner Bases Definitions [Chandler 99]

Let X be aset. Then the elements of X* are all power products of the elements of X, including an
identity 1, with multiplication defined in the usual way. The commutativity condition is summarized
by xy=yx for all x,y 0 X. Let K beafield. Then the elements of K[X"] are sums of K-multiples of
elements of X*, with the operations of addition and multiplication defined in the natural way:

Zi ki m; ZJ Ij n= Zi,j ki min, for ki, Ij 0K and m;, 0 aox4

Let P O K[X*]. Equivalence modulo P is denoted = . We say that two polynomials are equivalent
modulo P if their difference can be expressed in termsof P, i.e.

f=pg o f—g=up.+..+up,forsomep ..., mOP, u, ..., u OK[X.

An admissible ordering on’Xis a relatior> such that m>1 for allm 0X*, and such that if m>n
then um>un for all @l X*. We will also require the well-ordering property: that there is no infinite
sequence grm,>... of power products mm, ... of X*.

Let > be admissible well-ordering or*X The leading term of a polynomial p is the power product
occurring in p that is largest with respect to >, and is denoted LT(p). The leading coefficient of p is

the coefficient of LT(p) and is denoted LC(p). A term t is said to occur in a polynomial p with
coefficient kif tis aterm of p. Reduction modulo P with respect to > is writieand defined as

f ophe =f-kmp

where mLT(p) occurs in f with coefficient &nd k = KLC(p))™* for pO P.
A repeated sequence of reductions (the reflexive, transitive closure)ois denoted—"p. The
symmetric closure of this is denoted s coincide.

The Buchberger Algorithm

In 1965 Buchberger invented the concept of a Grobner basis [Buchberger 98]. If a set of
polynomials Q is a Grobner basis for P then we can use Q to determine whether two polynomials are
equivalent modulo P. Formally:

i. f=pg = f=ggforallf, g0 K[X"].

33

ii. For al f O K[X"] there exist fy, ... f, 0 K[X*] such that f~ P f, -q ... »qfnwhere ndN
and f, is irreducible.

i f=pg = there exists il KX*]: f - ghand g-"gh.

Theorem (Reachability and Equivalence of a Polynomial)

Let N be a reversible Petri net with initial marking.MDefine P:={pol(t): £T}. Then a marking M is
reachable in N if and only if pol(§y=p pol(M).

Pr oof

First suppose that M is reachable. Then there is a firing sequencet,MM; —t, ... >t My -ty
M. Therefore there exist ul, ... , thX* such that

pol(Mo) — wpol(ty) = pol(My), pol(My) — wpol(tz) = pol(My), ..., pol(M,1) — ypol(t,) = pol(M).
Therefore pol(M) — pol(M) = upol(t) + ... + ypol(t,). Hence pol(N) =p pol(M).

For the converse, suppose pol(M0) =P pol(M). Then there is a sequence
POl(Mo) = Wy, Uil = Wly, ..., Whalna = Wiy, Ul = pol(M).

Where polf) =, —r, ..., pol(t) = l,—r, OP,and g ... , uy, 0 X*. Note thaty, ry, ... , b, r, O X".
Now recall that M is a marking. Since pol(f1= wl;, we can deduce that is enabled. Therefore
there is a marking Msuch that M -t; M; and pol(M) = pol(Mg) — wpol(t;). By induction this
implies that there are markings;M.. , M, such that there is a firing sequencg Mt; M; -t, ... -t,
M, = M. Hence M is reachable in N.

Corollary (Grobner Bases Determine Reachability)

Reachability in a reversible Petri net can be determined using a Groébner basis.

Remark (Catalogue of Reachable Markings)

Recall that Grobner bases techniques use an ordering on the power products. There is a one-one
correspondence between power products and markings. We can begin to catalogue the markings in
increasing order. Given a Grébner basis for the polynomials of the transitions of a Petri net it can be
determined whether each marking is reachable: if the power product reduces to the same irreducible
power product as the initial marking then it is reachable. In this way the Grébner basis can be used to
build up reachable markings.

Generating and Exploiting State Spaces of
Object-Oriented Petri Nets

Milan Ceska, Vladimir Janousek, and Tomas Vojnar

Department of Computer Science and Engineering, Brno University of Technology
Bozetéchova 2, CZ—612 66 Brno, Czech Republic
e-mail: {ceska, janousek, vojnar}@dcse.fee.vutbr.cz

Abstract. The article describes several concepts establishing a basis for
generating and exploiting state spaces of the object-oriented Petri nets
(OOPNSs) associated to the tool called PNtalk. The influence of identi-
fiers of dynamically appearing and disappearing instances upon the state
space explosion problem is explained. Methods of working with identi-
fiers based on sophisticated naming rules and mechanisms for abstract-
ing names are described and compared. Several optimizations of state
space generating algorithms for the context of OOPNs are mentioned, as
well. Finally, some possibilities of specifying properties of systems to be
checked over the state spaces of their OOPN-based models are discussed.

1 Introduction

Current complex distributed applications require dealing with dynamically aris-
ing and disappearing objects which can communicate, synchronize their actions,
and migrate among particular nodes of the distributed environment they are run-
ning in. Particularly, distributed operating systems, groupware allowing a con-
current work of several people on the same project, or applications exploiting
the technology of agents or mobile agents can be listed as examples of the above-
mentioned applications.

A language called PNtalk based on object-oriented Petri nets (OOPNs)
[Jan98] has been developed at the DCSE, TU Brno in order to support modelling,
investigating, and prototyping complex distributed object-oriented software sys-
tems. PNtalk supports intuitive modelling all the key features of these systems,
such as object-orientedness, message sending, parallelism, and synchronisation.
This is achieved through working with active objects encapsulating sets of pro-
cesses described by Petri nets. Processes inside the objects communicate via
a shared memory, while objects themselves communicate by message passing.

Simulation is one of the ways of examining systems modelled by OOPNs and
it is already supported by a prototype version of a tool called PNtalk [CJV97].
Models of software systems created in PNtalk should be usable as prototypes
of these systems, as well. Currently we are working on new implementations
of PNtalk in Prolog and in Smalltalk which should allow to run OOPN-based
prototypes in a truly distributed way.

35

Although we have started with simulation and prototyping, this article con-
centrates on the first steps made towards exploiting formal analysis and verifi-
cation methods in the context of OOPNs. This approach can be considered an
alternative to simulation because although we are not always able to fully verify
or analyse the behaviour of a system, even partial analysis or verification can
reveal some errors which tend to be different from the ones found by simulation
[Val98]. We believe that object-orientation should allow us to relatively easy
extract the subsystems to be verified and to abstract their surroundings.

Among the different attitudes to performing formal analysis or verification,
using state spaces appears to be the most straightforward way for the case of
OOPNs. Methods based on state spaces are quite universal, can be almost fully
automated, and allow a relatively easy implementation. There have been pro-
posed many different ways of alleviating their main deficiency — the state ex-
plosion problem [Val98]. Some of these methods can be adapted and optimized
for the context of OOPNs, as well. Apart from that, it is also necessary to solve
some new problems accompanying state spaces of OOPNs as a formalism with
dynamic instantiation, such as the problem how to efficiently deal with identifiers
of dynamically appearing and disappearing instances.

When working with state spaces of OOPNs (or more generally of any formal-
ism with dynamic instantiation of some kind of components) it is necessary to
pay careful attention to treating identifiers of objects (or in general some other
kind of dynamically appearing and disappearing instances). Otherwise, many
unnecessary states can be generated and the state spaces can even unnecessarily
grow to infinity. This naming problem can be solved either by introducing some
sophisticated rules for assigning identifiers to instances or by not considering
concrete names of instances to be important when testing states to be equal.

The work with instance identifiers influences not only generating state spaces
of OOPNs, but also analyzing them. This is because we need to be able to
describe expected properties of the systems being examined without referring
to the concrete names of the instances involved in states and events of their
state spaces. These names are semantically not important and, what is more,
modellers can hardly work out what identifiers will be used in different states.

In the article, we first present the main ideas behind the OOPN formalism.
Subsequently we discuss possible solutions of the naming problem arising in
state spaces of OOPNs, together with some further optimizations to be used
when generating these state spaces. Finally, we suggest an approach to specifying
properties to be evaluated over states spaces of OOPNs.

2 Key Concepts of OOPNs

The OOPN formalism [CJV97] is characterized by a Smalltalk-based object-
orientation enriched with concurrency and polymorphic transition execution,
which allow message sending, waiting for and accepting responses, creating new
objects, and performing primitive computations. An example demonstrating the
notation of OOPNs is shown in figure 1.

36

message pattern parameter place classname classascendant testingarc initial marking

—Stack is_aiPN o —Main is_a PN

x := self produce. y := s pop.
s push: x self consume: y

| s syncpop: #wantedToken |

return place synchronousport method net transition action transition guard objeét net

Fig.1. An OOPN example (Main’s methods produce and consume are not shown).

This section rephrases the basic ideas of the definition of OOPNs, however,
due to space limitations, without making the description formal and complete.
We explain the necessary notions only. A bit deeper introduction to the OOPN
formalism can be found in [CJV97] and the entire definition of OOPNs in [Jan98].

2.1 The Structure of OOPNs

An object-oriented Petri net is a triple (X, co,0idy) where X is a system of
classes, ¢g an initial class, and oidy the name of an initial object from cq.

XY contains sets of OOPN elements which constitute classes. It comprises
constants CON ST, variables VAR, net elements (such as places P and tran-
sitions T'), class elements (such as object nets ONET, method nets MNET,
synchronous ports SY NC, and message selectors M SG), classes CLASS, ob-
ject identifiers OID, and method net instance identifiers MID. We denote
NET = ONET U MNET and ID = OID U MID. The universe U of an
OOPN contains (nested) tuples of constants, classes, and object identifiers. Let
BIND ={b|b: VAR — U} be the set of all bindings of variables.

Object nets consist of places and transitions. Every place has some initial
marking. Every transition has conditions (i.e. inscribed testing arcs), precon-
ditions (i.e. inscribed input arcs), a guard, an action, and postconditions (i.e.
inscribed output arcs). Method nets are similar to object nets but, in addition,
each of them has a set of parameter places and a return place. Method nets can
access places of the appropriate object nets in order to allow running methods
to modify states of objects which they are running in.

Synchronous ports are special transitions which cannot fire alone but only
dynamically fused to some other transitions which “activate” them from their
guards via message sending. Every synchronous port embodies a set of condi-
tions, preconditions, and postconditions over places of the appropriate object
net, and further a guard, and a set of parameters. Parameters of an activated
port s can be bound to constants or unified with variables defined on the level
of the transition or port that activated s.

37

A class is specified by an object net (an element of ONET'), a set of method
nets (a subset of MNET), a set of synchronous ports (a subset of SYNC),
and a set of message selectors (a subset of MSG) corresponding to its method
nets and ports. Object nets describe possible independent activities of particular
objects, method nets reactions of objects to messages sent to them from outside,
and ports allow to remotely test and change states of objects in an atomic
way. The inheritance mechanism of OOPNs allows an incremental specification
of classes. Inherited methods and synchronous ports can be redefined and new
methods and synchronous ports can be added. A similar mechanism applies for
object net places and transitions.

2.2 The Dynamic Behaviour of OOPNs

The dynamic behaviour of OOPNs corresponds to the evolution of a system
of objects. An object is a system of net instances which contains exactly one
instance of the appropriate object net and a set of currently running instances
of method nets. Every net instance entails its identifier id € ID and a marking
of its places and transitions. A marking of a place is a multiset of elements of
the universe U. A transition marking is a set of invocations. Every invocation
contains an identifier id € M ID of the invoked net instance and a stored binding
b € BIND of the input variables of the appropriate transition.

A state of a running OOPN has the form of a marking. To allow the clas-
sical Petri net-way of manipulating markings, they are represented as multisets
of token elements. In the case of a transition marking, the identifier of the in-
voked method net instance is stored within the appropriate binding in a special
(user-invisible) variable mid. Thus a formal compatibility of place and transition
markings is achieved and it is possible to define a token element as a triple con-
sisting of the identifier of the net instance it belongs to, the appropriate place
or transition, and an element of the universe or a binding. Then we can say for
a marking M that:

M €[(IDx PxU)U(ID xT x BIND)|MS.

A step from a marking of an OOPN into another marking can be described
as the so-called event. Such an event is a 4-tuple

E = (e,id,t,b)

including (1) its type e, (2) the identifier id € ID of the net instance it takes
place in, (3) the transition ¢ € T it is statically represented by, and (4) the
binding tree b containing the bindings used on the level of the invoked transition
as well as within all the synchronous ports (possibly indirectly) activated from
that transition. There are four kinds of events according to the way of evaluating
the action of the appropriate transition: A — an atomic action involving trivial
computations only, N — a new object instantiation via the message new, F — an
instantiation of a Petri-net described method, and J — terminating a method

38

net instance. If an enabled event E occurs in a marking M and changes it into
a marking M’, we call this a step and denote it by

M[E)M'.

For a given OOPN, its initial marking M, corresponds to a single, initially
marked object net instance from the initial class ¢q identified as oidy. The set of
all markings of an OOPN is denoted as M A and the set of all events as EV.

Finally, we introduce the following notation. Given id € ID, net(id) denotes
the net n € NET such that id identifies an instance of n, and oid(id) denotes
oid € OID such that id identifies a net instance belonging to the object identified
by oid. Note that an object is identified by the identifier of its object net instance.

3 The Role of Instance Identifiers in State Spaces of
OOPNs

In this section there is identified a special problem arising in the context of state
spaces of OOPNs, namely the so-called naming problem associated to dealing
with identifiers of instances that can be dynamically created and discarded.
There are suggested and compared two methods trying to minimize the impact
of the presence of names of instances in states upon the state space explosion
problem. From the point of view of the naming problem, OOPNs can be con-
sidered just a representative of formalisms with dynamic instantiation of some
kind of components, such as objects or processes.

3.1 The Naming Problem

State spaces can generally be defined [Val98] as 4-tuples consisting of a set of
states, a set of structural transitions, a set of semantic transitions (i.e. links
between states and structural transitions), and an initial state. This concept can
be used when dealing with state spaces of OOPNs (or any other formalism with
dynamic instantiation), as well. However, in the context of such formalisms there
arises one new phenomenon to be considered. Particularly, it is necessary to pay
careful attention to efficiently handling the naming information present in states
in order not to worsen or even to decrease the state space explosion problem.
Let us denote this phenomenon as the naming problem.

The naming information present in states of dynamically structured models
serves for uniquely identifying the just existing instances of different model com-
ponents which allows to separate their local states and express references among
them. Working with instance identifiers, e.g. in the form of addresses of objects, is
common when running object-oriented programs or simulating object-oriented
models. However, in the context of state spaces, the presence of the naming
information in states can significantly contribute to the state space explosion
problem. This is due to the possibility of unnecessarily generating many states
differing only in the names of the involved instances even if the names cannot

39

influence the future behaviour of the system being examined in any way (up to
renaming). What is worse, sometimes the naming information can make state
spaces of evidently finite-state systems grow to infinity — it suffices to keep
creating and destroying the same instance (from a semantical point of view)
identifying it using still new identifiers.

State space redundancies associated to working with the naming information
have two possible sources. The first one is a specialty of formalisms support-
ing dynamic structuring of some kind and stems from the way these formalisms
assign identifiers to newly arising instances. Redundant states arise when an in-
stance playing a certain role in the modelled system (given by its type, the local
states it can reach, or the way it is referred to) can be created under different
names when going through different state space paths leading to its creation. To
illustrate such a case, we can consider for example a model of a flexible man-
ufacturing system [JV98] with several production cells represented by objects
uniquely distinguished by the machines they encapsulate. Redundant states are
generated when these objects can be created and identified using different combi-
nations of names, possibly reflecting the order in which they were independently
of each other created. A similar situation often arises when a method can be
invoked with the same arguments over the same object via different state space
paths leading to different internal identifiers of the resulting instance.

The second possible source of redundancies associated to identifiers is concur-
rent, symmetrical work with several instances. In this case, some of the symme-
tries existing already on the level of the system under investigation are mapped
onto treating certain instances via their identifiers in a symmetrical way. This
can cause that we would not loose any information and would save some space
if we could ignore the different identifiers of these instances and swap them in
some points of the evolution of the modeled system. As an example, we can take
the symmetrical work with dining (distributed) philosophers in figure 2. The
possibility of exploiting system-level symmetries for reducing state spaces is not
a specialty of formalisms with dynamic instantiation, but it seems to be interest-
ing that at least some of these symmetries manifest themselves in a similar way
to redundancies stemming purely from some internal mechanisms of dynamic
structuring and might thus hopefully be solved together.

The naming problem can be solved either by restricting the semantics of
the applied modelling language or by reducing the resulting state spaces appro-
priately. We prefer the second approach which allows to use different methods
for solving the naming problem in different contexts and to combine them with
methods trying to remove other sources of state space redundancies. When re-
ducing state spaces to project away what we consider to be unnecessary naming
information we have to prove that doing this we do not lose anything or at least
anything important. Such a proof is to be based on specifying what information
is considered important from the point of view of using state spaces for formal
analysis and verification. What is more, even if we do not lose any information
when solving the naming problem, the notion of important information can be
used for showing that such information can be extracted from the appropriately

40

reduced state spaces in an efficient way. (In the context of OOPNS, it is normally
important to be able to distinguish particular instances in states, to express their
ownership relations, and to know how they are manipulated by events surround-
ing particular states. However, we are usually not interested in the concrete
values of identifiers used for implementing the just mentioned mechanisms.)

In this section there are suggested and compared two methods for solving the
naming problem: (1) using sophisticated naming rules for assigning identifiers
to newly arising instances inspired by the way of handling process identifiers in
Spin [Hol97] and (2) the so-called name abstraction as a specialization of the
symmetry method for reducing state spaces [Jen94,CDFH97]. The latter method
is based on not considering concrete names of instances to be important when
checking states to be equal, which leads to working with renaming equivalence
classes of states rather than with the individual states. Both of these methods
together with their pros and cons are discussed in the following in the context
of OOPNs. However, first of all, we define full state spaces of OOPNs in order
to obtain a basis to be reduced using one of the mentioned methods.

Still before discussing the two mentioned principles in more detail we should
note that the problem they should solve cannot be avoided by simply presenting
an algorithm for transforming the formalism with dynamic instantiation under
question into some kind of low-level formalism which should serve as a basis for
formal analysis. When we for example try to transform object-oriented Petri nets
into some kind of “plain” high-level nets, as for example in [SB94], there must
appear a construction generating identifiers which then become a distinguishing
part of tuples representing tokens of originally different net instances folded
together. Thus the problem of naming is carried into the domain of non-object
nets and must be solved within their analysis process.

3.2 Full State Spaces of OOPNs

Full state spaces of OOPNs can be defined using the general concept of state
spaces mentioned above. For a given OOPN, states will correspond to reachable
markings and structural transitions to applicable events. Semantic transitions
will be defined in accordance to the firing rules of OOPNs. Finally, the initial
state will be the initial marking, of course.

Definition 1 (Full State Spaces of OOPNs).

Let an object-oriented Petri net OOPN with its set of markings MA, its
initial marking My, and its set of events EV be given. We define the (full) state
space of OOPN to be the 4-tuple StSp = (S, T, A, My) such that:

1. S = [My).
2. T ={(M,E, M) € S x EV x S| M{[E)M}.
3. VM, M, € MAVE € EV|(My,E,M,) € T & (M, (M, E, M), M,) € Al.

A consequence of the definition of full state spaces of OOPNs ignoring the
naming problem is that when we try to create the first instance of some net whose

41

domain of its instance identifiers is infinite we immediately obtain infinitely many
possible target markings. Moreover, requiring sets of possible identifiers of nets
to be finite will not solve the problem because (1) it can change the semantics of
the model by artificially restricting the number of concurrently existing instances
and (2) there can still be generated unnecessarily many target markings.

3.3 Using Sophisticated Naming Rules

Sophisticated rules for assigning identifiers to newly arising instances attempt to
decrease the degree of nondeterminism potentially present in the management
of names of dynamically arising and disappearing instances and thus to decrease
the number of reachable states.

The simplest nontrivial rule for naming instances is assigning identifiers ac-
cording to some ordering over them. A deficiency of this attitude is that when
we are cyclically creating and destroying some instance we will obtain an infinite
state space. This can be solved by recycling identifiers immediately after they are
released, i.e. by identifying newly arising instances by the smallest and currently
not used identifiers. However, even then there can be generated many different
states which are obviously semantically equal. Such a situation arises when some
configuration of instances characterized by the number of the involved instances,
their types, their trivial marking, and their mutual relations can be reached via
several state space paths in which the instances are created in different orders
and using various auxiliary instances with differently overlapped lifetimes. Then
there can be generated several states containing the given configuration of in-
stances and differing only in the names of some of the involved uninterchangeable
instances (distinguished by their contents or by the way they are referred to).

The just described problem of generating unnecessary states can be decreased
by using mutually independent sequences of identifiers for each type of instance.
These sequences must, of course, be disjoint, which can be achieved for example
via making types of instances a part of their instance identifiers. In such a case,
if we create the first instance of a net ny and then the first instance of a net ns,
they will not be identified 1 and 2 (which would undesirably reflect the order
in which the instances were created), but for example (n;,1) and (nq, 1). After
such an optimization naming redundancies arise only if there appear different
orders of creating instances of the same type, which can be less frequent.

A similar principle to the above can be used to achieve a further reduction
of naming redundancies in the area of identifying method net instances. Here,
we can keep assigning identifiers to method net instances independently for each
transition and its input part binding used within some F event. This is possible
due to each method net instance is referenced only from the marking of the
transition which started it and the appropriate marking element contains the
binding of the transition used when starting the method. However, it is again
necessary so that the different sequences of potential identifiers are disjoint.

To illustrate generating how many unnecessary states we can avoid just via
adding the last optimization above to the previous ones, we can use the following
data. In the case of the system of 3 distributed philosophers from figure 2, we

42

obtain 8127 states instead of 79292 ones. Similarly, for a simple system of 3
restartable cyclic counters from [Voj00], we obtain 34237 states instead of 66151.
However, we shall note that even when applying all the above heuristics there
can still remain some redundancies. Generally, these redundancies stem from
(1) the mechanisms of assigning names to objects from the same classes and to
method net instances started under the same binding of the same transition and
from (2) mapping system-level symmetries (i.e. symmetries existing already on
the level of modeled systems) onto working with instance identifiers.

The problem of generating unnecessary states, which can hardly be avoided
even under advanced naming schemes, can be alleviated to some degree when
using partial order reduction techniques (also known as commutativity-based
methods) [Val98]. This is because these techniques reduce numbers of paths
leading to particular states and thus also possibilities to obtain different permu-
tations of identifiers of the involved characteristic instances. Nevertheless, the
problem is not fully solved this way as it is not always possible to choose only one
interleaving out of a set of the possible ones. Partial order techniques can ignore
different orders of actions only in the case they are invisible (w.r.t. the property
being checked) and do not collide. Furthermore, finding optimal stubborn sets
can be too time-consuming and so an approximation is often taken (especially
in the case of high-level formalisms). Finally, so far we have only considered the
first possible source of redundancies associated to instance identifiers — namely
assigning identifiers to instances being created. However, there is still the pos-
sibility of mapping system-level symmetries onto symmetrical work with some
instances via their identifiers, which makes it possible to reduce state spaces by
swapping the roles of such instances (thus ignoring their different identifiers)
in some points of the evolution of the systems being examined. Unfortunately,
sophisticated naming rules, even when combined with partial-order reduction
methods, cannot provide such a reduction.

A certain kind of sophisticated naming rules similar to the above has origi-
nally been used for solving the naming problem in the already mentioned state
space tool Spin [Hol97]. Spin works with dynamically instantiable processes de-
scribed in a specialized language Promela. Its processes are identified by integers
and can be terminated and their identifiers recycled only in the reverse order
to their creation starting with the “youngest” currently running process. This
principle can be easily implemented, but, on the other hand, if there is a possi-
bility of cyclic instantiation of processes with partially overlapped lifetimes, the
method will not prevent the state space from growing to infinity. (Of course, if
we do not apply artificial limits on the number of running processes.) Moreover,
the fact that identifiers can be recycled only in the reverse order to their alloca-
tion is acceptable in the context of processes, but it is less suited when working
with objects whose life is often independent of their creators.

3.4 Abstracting Away the Naming Information

With respect to the previous discussion, we now suggest another possible method
for solving the naming problem based on not considering concrete values of

43

names of instances to be important when checking states to be equal. In other
words, we are going to define two markings to be equal if there exists a suitable
permutation over the set of all identifiers whose application makes the states
identical. As a consequence, we will replace working with particular states by
working with renaming equivalence classes of them. In the following, we will
try to describe the method at least partially in a formal way — a fully formal
description, together with proofs of the propositions, can be found in [Voj00].

It should be noted here that the concept of name abstraction is a special-
ization of the general notion of symmetries [Jen94] applied for reducing state
explosion caused by the presence of concrete names of instances in states. Un-
like general symmetries, highly specialised renaming symmetries can be used
within all OOPN-based models and allow fully automated ways of treating them
within generating state spaces. Name-abstracted state spaces could be described
as a special case of symmetrically reduced state spaces, but we will define them
straight here to save some space and get closer to their implementation.

The idea of abstracting away the naming information can only be applied
due to the fact that the behaviour of OOPN-based models does not depend on
concrete values of identifiers. Here, it is crucial that the definition of OOPNs
does not allow to use instance identifiers in expressions and that there cannot be
performed trivial computations depending on concrete values of instance names.
Therefore it can be proved that starting from some state concrete names of
instances do not influence the future evolution of the appropriate OOPN in any
way (up to renaming). Thus it is not necessary to distinguish states equal up to
renaming because of the future behaviour they can lead to.

We have said that we want two markings to be equal if there exists a suitable
permutation over the set of all the identifiers allowed in the appropriate OOPN
whose application makes the states identical. However, we do not accept all
permutations. An acceptable permutation must preserve the information about
(1) to which object a given instance belongs to, (2) to which net the instance
belongs, and (3) it cannot change the identifier of the initial object, which is im-
portant for the garbage collecting mechanism. Permutations conform to the just
described requirements will be called renaming permutations in the following.

Definition 2 (Renaming Permutations).

Suppose we have an object-oriented Petri net OOPN with its set of instance
identifiers ID and its initial object identifier oidy. We define renaming permu-
tations over OOPN to be the bijections w: ID < ID such that:

1. W(Oidg) = Oido.
2. Vid € ID [net(id) = net(n(id))).
3. Vid € ID [r(oid(id)) = oid(m(id))].

The concept of renaming permutations provides a basis for defining the so-
called renaming symmetries, i.e. bijections on sets of markings and sets of events.
The formal definition of renaming symmetries can be obtained by a simple but
a little longer extension of bijections working over identifiers to bijections over
markings and events — we will skip the definition here. We denote the renaming

symmetry induced by a renaming permutation 7 as ¢". Now we can define
two markings M, M> to be equal up to renaming iff there exists a renaming
permutation 7 such that ¢™(M;) = M,. The same can be done for events. In
the following, we will denote the renaming equivalence relation by ~. Members
of its equivalence classes will be referred to using the black board alphabet, i.e.
M or E, or via their representatives, i.e. [M] or [E]. Finally, quotient sets w.r.t.
~ will be denoted using ~ as a subscription, as e.g. M A..

The notion of renaming symmetries allows us to formalize the already men-
tioned proposition that concrete names of instances cannot influence anything
else than again names of instances present in the future behaviour of an OOPN-
described system starting from a given state. Such a property is crucial in the
theory of symmetrically reduced state spaces.

Proposition 1. Let us have an object-oriented Petri net OOPN with its set of
markings M A, its set of events EV , and the corresponding set of all renaming
permutations I1. Then the following holds for every My, My € MA, E € EV,
and m € IT: M1[E)My & o™ (Mi)[o™ (E)) 0™ (M>).

Renaming symmetries allow us to propose the expected notion of name-
abstracted state spaces (NA state spaces) of OOPNs. When generating a name-
abstracted state space, concrete identifiers of instances will not be taken into
account and two states or events will be considered equal if they are equal up to
renaming. The definition of name-abstracted state spaces will be based again on
the general concept of state spaces. However, this time states will correspond to
reachable name-abstracted markings, i.e. equivalence classes of M A w.r.t. ~, and
structural transitions to useful name-abstracted events, i.e. equivalence classes of
EV w.r.t. ~. Semantic transitions will be defined in accordance to the firing rules
of OOPNs and to the semantics of renaming. The initial state will be equal to
the equivalence class comprising the initial marking and only the initial marking.

Definition 3 (Name-Abstracted State Spaces).

Let an object-oriented Petri net OOPN with its set of markings MA, its
initial marking My, its set of events EV , and its renaming equivalence relation
~ be given. We define the name-abstracted state space (NA state space) of
OOPN to be the 4-tuple NAStSp = (Sn,Tn, An,[Mo]) such that:

1. Sy ={[M] e MA. | M € [My)}.

2. Ty = {([Mi],[E],[Ms]) € Sx x EV., x S | Mi[E)Ma}.

3. VMl,MQ € MA. VE € EV_, [(Ml,E,Mg) ey & (Ml,(Ml,E,MQ),MQ) S
An].

The above proposed NA state spaces are based on projecting away the naming
information present in particular states and structural transitions of the classical
state spaces. NA state spaces preserve information about reachable states and
events, but their interconnection is preserved only partially. This fact is formal-
ized in proposition 2 from whose structure we can guess that NA state spaces
do not contain information about which particular instances are manipulated by
events when going from one state into another.

45

Proposition 2. Let us have an OOPN with its state space StSp and the corre-
sponding name-abstracted state space N AStSp. Then the following holds:

Yn > 1VM,...,M, € MA_ VE,,...,E,_1 € EV. Vi € {1,...,n} VM, €
M; [(My,Eq,...,M;, ..., By, M,) is a path in NAStSp if and only if IM; €
My,...,M;—y € Mj_y,M;4+1 € Myyq,..., M, € M, dE, € Ey,...,E,_1 €
En—1 such that (M1, Ey,...,M;,...,En_1,M,) is a path in StSp].

The information we are losing in NA state spaces is obviously not important
when we are dealing with isolated states only. On the other hand, if we need to
be able to explore sequences of states and events, this information might become
necessary even if we do not consider concrete names of instances to be important.
This is because it can be useful to know how a particular instance given by its
identifier within some arbitrarily chosen representative of the appropriate NA
state behaves within the events surrounding the state being examined. However,
if we need the information, which is lost in NA state spaces, it is not difficult
to preserve it. For this reason, we define the so-called complete name-abstracted
state spaces (CNA state spaces).

We define CNA state spaces as labelled NA state spaces. Every NA state
will be labelled by a tuple consisting of a representative marking belonging to
the equivalence class represented by the NA state and a set of self-renaming
permutations (i.e. permutations which map the representative marking to it-
self). Every structural transition will be labelled by a set of tuples consisting
of a representative event and a renaming permutation. We require that every
representative event must be firable from the appropriate representative source
marking leading to the appropriate representative target marking after apply-
ing the given renaming. Furthermore, every event firable from the representative
source marking and leading to a marking equal up to renaming to the represen-
tative target marking must be derivable (up to the name of an eventually newly
arising instance) from some of the representative events via a permutation from
the set of source self-renaming permutations. Self-renaming permutations can
decrease the number of target markings we have to process [Jen94].

Definition 4 (Complete Name-Abstracted State Spaces).

Suppose we have an OOPN with its set of markings M A, its set of events
EV, and its set of renaming permutations II. We define the complete name-
abstracted state space (CNA state space) of OOPN to be the triple CN AStSp =
(NAStSp,m,e) such that:

1. NAStSp = (Sn,Tn, AN, [Mo]) is the NA state space of OOPN.

2. m: Sy — MA x 2T such that VM € Sy [m(M) = (M, ®) = (M € M A
Vo € @ [0 (M) = M])].

3. e: Ty — 28V>I sych that for all (M ,E,My) € Ty withm(M;) = (M, $1)
and m(My) = (M, ®2), e((My,E,My)) is the smallest set such that VE' €
E VMé € My [Ml[El>Mé = E'(E,ﬂ') S 6((M1,E, Mg)) [Ml[E>Q7T(M2) /\ElQO (S
Py [eideq(E', 0% (E))]]]-

46

In the definition of CNA state spaces, we have used a predicate eideq which
is fulfilled when applied to two “existing identifier equal” events. Such events
can differ only in the identifier of the newly created object within an N event
and in the identifier of the newly started method net instance within an F event.

We should add that CNA state spaces are close to common symmetrically
reduced state spaces [Jen94]. The use of eideq and not requiring all self-renaming
permutations to be computed is an attempt to ease the automatic generation of
CNA state spaces. (Note that it can be advantageous to try to obtain at least
some self-renaming permutations starting by comparing events enabled in the
same state.) CNA state spaces can be used with all models described by OOPNs.
What is more, as we usually do not consider concrete names of instances to be
important when analyzing properties of systems, there do not arise problems
with the efficiency of extracting information from CNA state spaces even if
the arising equivalence classes are infinite. Finally, CNA state spaces can be
generated completely automatically, although some hints from modellers can
sometimes improve the efficiency of generating them, as we will mention later.

CNA state spaces contain information about reachable states and events
(up to renaming) and also about their concrete interconnection. This allows to
find out how particular instances are manipulated by events. Consequently, it
is possible to obtain a full state space from its CNA-variant and the set of all
renaming permutations. These are the contents of the below proposition. Note
that using the set of all renaming permutations is normally not necessary within
practical verification tasks where concrete names of instances are not important.

Proposition 3. Let us have an object-oriented Petri net OOPN with its CNA
state space CN AStSp and its set of renaming permutations II. Then it is pos-
sible to reconstruct the full state space of OOPN from CNAStSp and II.

The time complexity of generating CNA state spaces is almost the same
as in the case of NA state spaces. This is because state representatives and
renaming symmetries must be computed even when generating NA state spaces,
although in their case they are thrown away after determining the target nodes
of particular semantic transitions (thus saving some memory).

Let us now compare the attitudes of using sophisticated naming rules and
name abstraction. We already know that sophisticated naming rules, possibly
combined with partial order reduction, can remove some of the redundancies
caused by assigning different names to dynamically arising instances with certain
characteristic roles in the modeled system, but it is not guaranteed that they will
remove all of them. Moreover, sophisticated naming rules, even when combined
with partial order reduction, do not help much against system-level symmetries
mapped onto working with certain instances in a symmetrical way via their
identifiers. Name abstraction, on the other hand, can remove all the redundancy
associated to names of dynamically appearing and disappearing instances and
thus can save more memory than the attitudes based on sophisticated naming
rules. This is a consequence of always ignoring all the different possibilities of
identifying uninterchangeable instances within otherwise identical states without
any respect to the way how they were created and what was their role so far.

a7

So, it seems that renaming can save more memory than sophisticated naming
rules, even in the case of using partial order reduction. On the other hand, we
might have to pay for using renaming quite a lot in terms of the time complexity
because testing markings to be equal up to renaming can multiply the overall
time of generating state spaces by O(n!) where n is the maximal number of con-
currently existing instances. Fortunately, this is the worst case scenario only and
we can usually decrease the time complexity using the heuristics briefly men-
tioned in the next subsection. These heuristics are based on renaming insensitive
hashing techniques decreasing numbers of states to be compared and on exploit-
ing the structure of states for selecting instances whose identifiers it is sensible
to permute. What is more, we can help the mechanism of name abstraction
by manually specifying how to find and exploit renaming symmetries at least
among some of the involved instances. In such a case, only the instances uncov-
ered manually have to be processed by the further mentioned heuristics. It is also
interesting that once we allow manual specification of renaming symmetries, the
same mechanism can be used for specifying general symmetries and vice versa.
Modellers can then freely choose how much information to provide manually and
how much work should be done automatically. However, even in such a case, the
above described principles of name abstraction should be respected.

To illustrate the above considerations, we can present some data obtained
from a simple Prolog prototype of an OOPN state space generator, which we
applied to several example models, such as classical philosophers, distributed
philosophers, Russian philosophers, or different versions of simple systems with
restartable counters [Voj00]. State spaces of these models obtained using the
most elaborated sophisticated naming rules (without partial-order reduction)
had about 4.10-4.10* states. When using name abstraction they were reduced
1.1-414 times. From this, it is visible that name abstraction can really lead to sig-
nificant reductions in numbers of states, although there exist systems (as e.g. the
system of distributed philosophers) where already the most elaborated sophis-
ticated rules remove most of the naming redundancies. The speedup obtained
via using name abstraction in our examples ranged from very small negative
values up to 2.10%. However, it is fair to note that the situation would change if
we used better hash functions and if we were testing states to be identical via
a straight comparison of the appropriate blocks of memory. On the other hand,
using such techniques is generally problematic in tools based on functional or
logical languages.

As a conclusion, we can say that more studies are still needed to answer
the question whether and in which cases it is better to allow bigger memory
consumption and when to use name abstraction.

3.5 Generating State Spaces of OOPNs

In this section, we will mention several methods intended to be used in the con-
text of OOPNs to improve the efficiency of the classical algorithm of generating
full state spaces [Jen94] as well as its plain or partial order reduced depth first
variants typically used for formal verification [Pel96].

48

Reducing Numbers of States to be Compared. An important part of the time
needed for generating a state space is spent testing whether a given state has
already been included into the state space or not. In the case of NA state spaces,
this is especially critical due to the time-consuming tests of equivalence up to
renaming. We can reduce the time spent on comparing states by decreasing
numbers of states to be compared. This can be achieved by representing state
spaces by hash tables indexed via suitable hash functions working over states.
Then we have to compare only the states for which the applied hash function
returns the same value.

In the case of (C)NA state spaces, the employed hashing procedure must be
insensitive to the mechanism of name abstraction applied here. To achieve this
we suggest representing states of OOPNs as sequences of states of the just active
objects, states of the active objects as sequences of states of the net instances
encapsulated in the objects, and, finally, states of the net instances as sequences
of the marking elements belonging to the particular instances. Before hashing
on such state sequences, we further have to replace all the identifiers present
in them by the names of the appropriate nets and sort the nested sequences
of marking elements, instances, and objects according to the information they
contain after the replacement of identifiers by the associated typing information.
The described preparation of states for hashing is quite complex, however, it
can fortunately be realized in an incremental way. The described scheme can be
improved by replacing instance identifiers not only by the appropriate typing
information, but also by some associative identification insensitive to renaming
and easy to obtain. Associative identification of instances can be defined by
modellers and can be based on summarizing what trivial objects are stored in
what places of the instances and how these instances are referred to from the rest
of the system. Finally, modellers can help the system by providing procedures
for representing at least some critical parts of states in a unique way.

Improving the Efficiency of Testing the Renaming Equivalence. The worst
case complexity of testing the renaming equivalence cannot be decreased, but
the average one can be improved by exploiting the structure of states instead
of blindly testing all permutations of identifiers. We can represent states as
oriented graphs with two kinds of nodes corresponding to net instances and to
marking elements. Instance nodes should be linked to the appropriate marking
elements and those to the net instances they eventually contain. Testing states
being equal up to renaming is then transformed to a unification of their state
graphs treating identifiers as distinct typed variables. The unification can be
implemented by synchronously traversing both state graphs and unifying their
nodes. Doing this we should prefer unifying marking elements containing trivial
objects or nontrivial objects with types which are unique within the marking
of the appropriate places. Thus we can find differences as soon as possible and
reduce the amount of backtracking stemming from matching objects of the same
type stored in the same place with their different possible counterparts in the
same place of the other state. Furthermore, we can exploit the already mentioned
associative identification of instances here, as well. This can be done in such

49

a way that we do not unnecessarily compare instances with different associative
identification capturing their local states in a renaming insensitive way. Finally,
modellers can again help the system by providing procedures for comparing at
least some selected instances in a manually specified fast way.

More Efficient Garbage Collecting. The definition of OOPNs makes garbage
collecting a part of every event. Performing garbage collecting means that we
have to traverse the appropriate state graph (which can be computed incremen-
tally) and find out which instances cannot be reached from the root. However,
this computation is not necessary in every step because not every step makes
some instance obsolete. It is sufficient to perform garbage collecting only when
firing an event which includes a change of marking via arcs of a transition or
a port inscribed by a loss variable bound to a nontrivial object. Loss variables of
ports and transitions are the variables which appear on input but not on output
arcs. Objects bound to such variables are likely to be lost and we have to check
that using garbage collecting. It is not necessary to work with loss variables of
transitions involved in F events because the complete binding of their variables
is stored within the appropriate invocations in the marking of these transitions.
In the case of J events, we have to start garbage collection also if there remain
some nontrivial objects (different from the result of the event) in the net instance
being finished. Runtime checking whether a loss variable is bound to a nontrivial
object can sometimes be avoided using a static type analysis which can tell us
that the appropriate variable can be bound to trivial objects only.

Computing Enabled Events in an Incremental Way. When we want to explore
successors of a state we first have to compute the set of all the events enabled in
that state. However, when we accept a little bit increased memory requirements
we do not have to check the firability of all transitions in all net instances for
every new state from a scratch. This is because the set of events enabled in
a state can be computed in an incremental way starting with the set of events
enabled in a predecessor state of the given state and just adding or removing
some events according to re-checking the firability of some transitions. More
precisely, we have to examine all the transitions which are connected to at least
one input place whose marking was changed. Furthermore, we have to check
transitions whose guards can use objects whose state was changed in a visible
way. An object is changed in a visible way if there is a port in the class of the
object which can read the contents of an object net place whose marking within
the object was changed or which contains a visibly changed object. However,
note that the just described mechanism can be applied only when we require
that guard expressions of OOPNs cannot test any objects without or before
reading them from some places. Nevertheless, this restriction of the notion of
OOPNs seems to be quite practical.

4 Specifying Properties of Systems To Be Evaluated

In this section, we will discuss several possible ways of specifying properties to
be evaluated over state spaces of systems modeled by OOPNs.

50

Most of the common ways of specifying properties to be checked over state
spaces of models based on different modelling languages [Val98] can be used with
OOPN-based models, too. We can think of using the following attitudes:

— evaluating state space statistics such as numbers of states, numbers of strongly

connected components, bounds of places, Petri net live transitions, etc.,

proposing a wersatile state space query language to allow user-controlled

traversing through state spaces and examining the encountered states,

— instrumenting models by property labels such as end-state labels, progress
labels, assertions, etc. or by property automata,

— using a high level specification language such as some temporal logic.

Most of the above listed attitudes have to be slightly accommodated for
the context of OOPNs and their state spaces. For example, bounds of places
of OOPNs should be computed separately for particular instances and then
a maximum should be chosen, particular property labels should be joint in
a suitable way either with places or transitions of OOPNs, etc. However, there
arises one more general problem here which influences almost all of the mentioned
attitudes (more precisely all of them up to state space statistics). This problem
is querying particular states and events of OOPNs.

The main problem to be solved when querying states and events of OOPNs
stems from the dynamism of OOPNs. We have to prepare tools for exploring
properties of sets of states and events in a way which respects the fact that the
sets of existing instances, their names and relations can be different in every
encountered state and cannot be fully predicted. Therefore it is not possible to
use as simple queries as e.g. in Design/CPN, such as “take the marking of some
place p from the static net instance unambiguously identified by id”.

Within a prototype of an OOPN state space tool, we have suggested a solu-
tion of the above problem based on two groups of functions. First of all, we use
the so-called instance querying functions. They allow us to begin with the unique
initial object net instance or with sets of the just existing instances of certain
nets given statically by their types. Subsequently, they allow to recursively de-
rive sets of the net instances or constants straight or transitively referenced from
the already known instances via the marking of some of their places or transi-
tions. There also exists a function returning the set of method net instances just
running over some given objects.

Instance querying functions are intended to be combined with the so-called
set iterating functions in order to obtain the appropriate characteristics of states.
Set iterating functions allow searching somehow interesting instances or con-
stants in sets returned by the instance querying functions. We can for example
take all the just existing instances of some net, select the ones which contain
some constant in some place, and then go on by exploring some other instances
referenced from the selected ones.

So far we have been speaking about functions for querying OOPN states only.
However, examining events seems to be a little easier. It is enough to have tools
for accessing the particular items of events, i.e. their type, the transition they
are bound to, the instance they are firing in, and the appropriate binding.

51

The functions for querying states and events can be straight used as a part
of a versatile OOPN state space query language for examining the encountered
states and events. Moreover, they can be used for describing terms embedded
in temporal logic formulae specifying properties of systems to be verified using
their OOPN-based models. Finally, they can also be applied when specifying
legal termination states, progress events, or system invariants.

We will now describe a little more some of the instance querying functions.
We describe them in the form of Prolog predicates as they are declared in the pro-
totype tool using them. They all take the current state to be implicit and return
the result via their last parameter. The predicate init (Is) returns the set with
the initial object net instance. The predicate inst (Cs,Ns,Is) returns the set of
the just existing instances belonging to the nets from the set Ns and running over
objects belonging to the classes from Cs. The predicate token(Is,Ps,Cs,Ms) re-
turns the set of tokens belonging to the classes from Cs and stored in the places
from Ps within the instances from Is. The predicate invoc(Is,Ts,Cs,Ns,Bs)
returns the set of invocations of the transitions from Ts within the instances from
Is. The invocations are represented by the appropriate bindings and only the
ones are selected which launch nets from Ns over objects of the classes from Cs.
Finally, the predicate over (Is1,Ns,Is2) collects all the instances of the nets in
Ns which run over the objects in Is1.

Out of the group of the set iterating functions, we can mention for example
the following ones. The predicate sforall(S,X,P,Y) returns true in Y iff the
predicate P over X is fulfilled over every element of the non-empty set S whose
elements are one-by-one bound to X. Otherwise, a counter-example is found and
bound to Y. The predicate select(S1,X,P,S2) selects all the elements X from
S1 which fulfill the predicate P over X.

Let us now present an example of examining states of OOPNs. For this rea-
son, we will use a model of the system of distributed philosophers from [Jan98].
The class describing particular distributed philosophers is shown in figure 2. The
whole model of the system of distributed philosophers contains yet another class
whose only task is to create a group of philosophers and interconnect them into
a ring via the methods leftNb: and rightNb:. Distributed philosophers differ
from the classical ones in not having a shared table which could be used for ex-
changing forks. Instead they have to negotiate about forks via message sending
using the methods giveLFork and giveRFork.

Below we define a Prolog predicate eating neighbours allowing to derive
the set of eating philosophers having an eating neighbour from a given state
of the model of distributed philosophers. The current state is considered to be
implicit. The predicate can be used to check the correctness of the proposed
system which should not allow two neighbours to eat at the same time. Thus
the predicate should always hold for the empty set only. This can be checked by
a suitable state space query which evaluates the predicate eating neighbours
over every state and collects the states where it holds for a non-empty set.
A more abstract approach would be checking the validity of the CTL formula
AG eating neighbours(f).

52

DPhilosopher is_a PN

righth:rightC)fi:ght

. right
thinking -
left return return right
left hungry § right
C) N>
leftPh . . rightPhI

| f:= leftPh giveRFork |

|f := rightPh giveLFork |

f2 f
left fork)
eating
~giveLFork...t1 ..) JRSLA
H f H H

return’ : stop
"""""""""""""""" eating

_) right fork

-..giveRFork..,

| return

Fig. 2. The class of distributed philosophers from [Jan98]

eating_neighbours(EN) :-
inst ([dPhil], [[dPhil,object]], I),

select(I,P, (token([P], [eating],all,El),empty(El,false),

token([P], [left,right],all,LR),

token (LR, [eating],all,E2) ,empty(E2,false)), EN).

5 Conclusions

In the article, we have briefly described the notion of object-oriented Petri nets
associated to the tool called PNtalk and some of the problems accompanying
generating their state spaces. We have especially mentioned the influence of
working with identifiers of dynamically arising and disappearing net instances
upon the state space explosion. Two possible approaches of dealing with the
identifiers, namely sophisticated naming rules and name abstraction, have been
generating state spaces
for optimizing garbage
collection and for computing enabled transitions in an incremental way despite
their non-local influence can be used not only when generating state spaces of

described and compared. Some further optimizations of
of OOPNs have been mentioned, as well. The methods

OOPNs, but also when simulating systems modeled by OOPNs.

53

We have discussed a method allowing to ask analysis or verification questions
over OOPN state spaces, as well. This method avoids referring to uninteresting
and unknown concrete names of instances and can be used within common ways
of specifying properties to be evaluated.

The notions included in the article are supposed to be exploited within formal
analysis and verification on suitably reduced OOPN state spaces which is one
of the goals of our future research. As for reducing OOPNs’ state spaces, we
intend to adapt the theory of partial order reductions for the domain of OOPNs
because there is quite a lot of concurrency in models based on them. We further
intend to do more research on using OOPNs for modelling distributed systems,
and especially the software ones.

Acknowledgment. This work was done within the research intention No.
CEZ:J22/98: 262200012 - “Research in Information and Control Systems” and
it was also supported by the Grant Agency of the Czech Republic under the
contract 102/00/1017 “Modelling, Verifying, and Prototyping Distributed Ap-
plications Using Petri Nets”.

References

[CDFH97] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A Symbolic
Reachability Graph for Coloured Petri Nets. Theoretical Computer Science,
176:39-65, 1997.

[CIV9I7] M. Ceska, V. Janousek, and T. Vojnar. PNtalk — A Computerized Tool for
Object-Oriented Petri Nets Modelling. In F. Pichler and R. Moreno-Diaz,
editors, Proc. of EUROCAST’97., vol. 1333 of Lecture Notes in Computer
Science, Las Palmas de Gran Canaria, Spain, 1997. Springer-Verlag.

[Hol97] G.J. Holzmann. The Model Checker Spin. IEEE Transactions on Software
Engineering, 23(5), May 1997.

[Jan98] V. Janousek. Modelling Objects by Petri Nets. PhD thesis, Faculty of Elec-
trical Engineering and Computer Science, TU Brno, Czech Republic, 1998.

[Jen94] K. Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and
Practical Use, Vol. 2: Analysis Methods. EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, 1994.

[JV98] V. Janousek and T. Vojnar. Modelling a Flexible Manufacturing System.
In J. Stefan, editor, Proceedings of MOSIS 98, Vol. 2, pages 195-200, Sv.
Hostyn, Czech Republic, May 1998. MARQ Ostrava.

[Pel96] D. Peled. Combining Partial Order Reductions with On-the-fly Model-
Checking. Journal of Formal Methods in Systems Design, 8 (1):39-64, 1996.

[SB94] C. Sibertin-Blanc. Cooperative Nets. In R. Valette, editor, Proceedings
of ICATPN’94, volume 815 of Lecture Notes in Computer Science, pages
471-490, Zaragoza, Spain, June 1994. Springer-Verlag.

[Val98] A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg,
editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture
Notes in Computer Science, pages 429-528. Springer-Verlag, 1998.

[Vojo0] T. Vojnar. State Spaces of Object-Oriented Petri Nets. PhD thesis, Fac-
ulty of Electrical Engineering and Computer Science, Brno University of
Technology, Czech Republic, to be finished in 2000.

The OCoN Approach for Object-Oriented
Distributed Software Systems Modeling

Holger Giese and Guido Wirtz

Institut fiir Informatik, Westfélische Wilhelms-Universitdt Miinster
Einsteinstrale 62, 48149 Miinster, GERMANY
{gieseh,guidow}@math.uni-muenster.de

Abstract. The problems of todays software engineering for complex dis-
tributed software systems with control as well as data processing aspects
are manifold. Besides the general problem of software complexity we
additionally have to deal with the problems of concurrency and distribu-
tion. A set of well evolved formalisms especially w.r.t. concurrency exists,
while their integration into the common software engineering framework
is still missing and related attempts have often not gained the intended
acceptance. But ever increasing system complexity as well as a fast grow-
ing market for distributed software effectuate a shift towards high level
behavior modeling. The presented OCoN approach does provide a high
level behavior modeling as extension to the UML de-facto standard for
object-oriented modeling. It is an approach to integrate an adjusted Petri
net formalism with the software engineering world.

1 Introduction

While place/transition nets [9] are accepted as one standard formalism of soft-
ware engineering (cf. [42]) is the situation quite different for high-level Petri
nets (HLPN). With the development of object-oriented analysis and design [44,
15] the shift towards a more high-level design view further boosts, but other
behavioral formalisms like statecharts [28] win recognition. The high-level Petri
net formalisms play no prominent role for object-oriented behavior modeling in
practice.

There are several rational as well as historical reasons for this situation. A
Petri net is a conceptional extension of an automaton and thus it is inherently
more complex than state machines. The adequate handling of concurrency is
still a complex problem and often solutions applying database technology that
provides parallel access transparency to avoid the related problems is more ap-
propriate. Thus, the development of complex software system engineering incor-
porating sophisticated concurrency aspects had been less influential and thus
suitable concepts for object-oriented concurrent behavior modeling are not the
main stream. Nowadays development of object-oriented methods and notations
as well as the UML [40] neglect systems with concurrency.

55

It also has been detected that the expressiveness of the basic Petri net for-
malism is not sufficient to handle real modeling problems and thus several high-
level extensions have been suggested. But as common for formal methods and
software engineering practice, a trade off between expressiveness and efficient
testable system properties exists.

A compositional language and building modular software systems has been
identified as essential for successful designing. But the classical Petri net for-
malism as well as first approaches towards higher-level concepts [20,31] fail to
provide it. Still most extensions put their emphasis on preserving an analyz-
able model while in practice a clear semantics as well as support for embedding
based on abstractions like interfaces are more important. Meyer [37, p. 979]
summarizes the common critiques as follows:

Petri nets, in particular, rely on graphical descriptions of the transitions.
Although intuitive for simple hardware devices, such techniques quickly
yield a combinatorial explosion in the number of states and transitions,
and make it hard to work hierarchically (specifying subsystems indepen-
dently, then recursively embedding their specifications in those of bigger
systems). So they do not seem applicable to large, evolutionary software
systems.

In general is behavior modeling neglected in practice while several newer
trend like the shift towards software architecture [46] may change this. Nowa-
days, software evolves from isolated solutions for business or industry appli-
cations towards distributed environments. It will further interlink information
system structures which are still isolated today and become persuasive. The soft-
ware will often take responsibility for considerable coordination tasks and the
ever increasing demand to improve business processes and process centered tech-
nologies like workflow [45] indicates that this trend will make system behavior
one essential point.

Formal methods and from our point of view especially Petri nets can gain
more acceptance from the resulting change of demands. This is independent from
the fact whether this trend leads to a common software engineering practice
where complete analyzable system models will become the regular case. The
trend towards higher-level abstraction to handle the ever increasing complexity
has led to the success of visual notations in software engineering for structure
modeling. For behavior modeling to achieve more acceptance also a notation
which is scalable as well as has an intuitive semantics is needed. The notation
has to cover concurrency as a specific aspect, design has to deal with in the
future. Petri nets conceptionally provide ingredients for all these aspects.

The object coordination net (OCoN) approach [57,24,27] tries to overcome
the described problems with high-level Petri net formalisms. It has its origin
and roots in an attempt to achieve an equally weighted compromise between the
requirements of concurrency modeling (due to the usage of Petri nets), object-
orientation for structure and behavior and the limits and demands a suitable
visual formalism implies.

56

In the paper the stepwise development of the OCoN approach foundations
is presented. In section 2 the basic notion of contract and its formalization in
terms of protocol nets is studied. Then, a flexible notion of port-passing nets
named coordination nets (CoN) is introduced in section 3. It is used to define
the OCoN notation in section 4 on top of them in combination with the UML.
Visual language aspects are discussed in section 5 and the tight integration with
the UML is studied in section 6 by presenting a schematic example. We finally
compare the approach with the most prominent proposed solutions for object-
oriented nets in section 7 and discuss other related work. We conclude the article
with some remarks on planned further work and the project status.

2 Protocol Nets and Contracts

When behavioral modeling should also provide some degree of modularity, ab-
straction and data hiding [41] are mandatory. While several extensions to the
classical interface notion to achieve a more suitable external specification have
been suggested, is the question of behavior w.r.t. subtyping and inheritance still
an area of research. The phenomena of non uniform service availability for a
class has to be considered for interfaces to provide the needed encapsulation
and separation. For the object-oriented design statecharts [28] for OMT [44] or
path expressions for Fusion[15] have been proposed. Both are used to specify the
external available operations of a class depending on its history.

A general notion of a contract covering the classical as well as additional
aspects is presented in [6]: The cases of syntactical interfaces, behavior contracts,
synchronization effects and quality of service are distinguished. While syntactical
interfaces do not provide enough information to exclude semantical misusage,
can behavior contracts not be managed in an efficient way automatically. Quality
of service considerations are often run-time dependent and thus can only be
specified when instantiating a system on a specific platform. In contrast does
the synchronization aspect represent an aspect that can be considered already
during the design and can be expressed using Petri nets.

The notion of substitutability [55] can be used to characterize behavior subtyp-
ing [1] needed to ensure the secure usage of contracts w.r.t. behavior in contrast
to interface subtyping as supported by most object-oriented languages. When
multiple concurrent clients are possible we also have to ensure view consistency
[35] for a subtype.

Protocol Nets

The identified demand of covering synchronization aspects within contracts is
handled in the OCoN approach by supporting the specification of protocols with a
(nearly) state machine like labeled place/transition net. In order to distinguish
if a behavior has to occur (obligation) or may be used as needed we have to
further distinguish between fair transitions and quiescent (grey) ones that do
guarantee some sort of progress or not (cf. [43]).

57

Juity los Uiy Sefts
JH-ACE - A

Fig. 1. The set of protocol macros

In figure 1 the different kind of operations which are supported by an OCoN
protocol net are defined. The protocols are specified from the perspective of the
client and thus a grey behavior indicates free choice while a normal transition has
to occur. The normal labels indicate a usual or one way request (m) while a label
m does correspond to a reply or event. Only the modification and synchronization
w.r.t. the protocol state itself is described in a protocol net and thus edges for
parameter or reply values do not occur. From left to right and top to the bottom
we have the usual operation request containing of a request as well as a reply,
an operation request with parallel reply, a request with alternative replies (e.g.,
named replies or exceptions can be covered) and an one way call.

«contract»
File

open(string name) -> (true),(false)
read() -> (true, data block),(false)
close()

open

Fig. 2. A File contract described with a protocol net

In practice, for example, a file handle protocol will imply a certain usage,
e.g., a read request will not succeed if not an open request has succeeded before
or if the end of file is already reached. This example protocol of a File can be
described using the defined macros of figure 1. An appropriate protocol for a
file handle with operations open, read and close is presented in figure 2. The
initial state where only an open request is possible is named [closed]. One possible
reply is open; as an acknowledgment for a successful opening which results in
state [opened). If the request fails, an ezception opemn, is replied and the protocol
remains in state [closed]. A file handle in state [opened] can further be used to

58

read data. A successful read request is signaled by reply read; whereas the
reached end of file results in reads and a state change to [eof]. If we are either
in state [opened] or [eof] the close request can be used to close the file handle
and reach the state [closed] again.

The contracts are the essential elements to separate the classes as well as
allow further independent subsystem evolution. Subtyping and contract inher-
itance are suitable concepts to support such efforts. For the OCoN approach a
contract subtyping notion has been developed in [23] that provides the needed
substitutability as well as view consistency.

While the described protocol nets are capable to describe the behavior related
to a single connection in form of a protocol, we have to provide a formalism that
is also capable of expressing multiple connections in parallel.

3 Coordination Nets

For colored Petri nets the extension to hierarchical colored Petri nets [32] and the
composition mechanisms substitution of transitions or places, invocation transi-
tions and fusion sets for transitions or places have been proposed [30]. All these
mechanisms, excluding the invocation, are very Petri net specific and do not
rely on the natural notion of information exchange directly, but encode it into a
net specific view. Consider for example a place fusion which might be a useful
abstraction in a assembly line like structure, but it does not correspond to a
common software interface like a procedure or stream. Nets with procedure calls
as considered in [33] result in considerable analysis problems and thus are usu-
ally provided as add-on and not as basic concept; see,e.g., [19] for an extension
of B(PN)? [5] with procedures. The transition invocation can be considered as
the procedural abstraction common in programming languages and thus pro-
vides the needed general abstraction concept. To model object orientation and
dynamically evolving structures we even have to add references and port passing
capabilities (cf. w-calculus [38]).

The coordination nets (CoN) formalism has been invented in [21] to provide
an abstraction for the specification of the OCoN semantics. We base the formal-
ization on the forthcoming ISO high-level Petri net standard [16], which provides
a non hierarchical high-level Petri net model. Port passing capabilities to model
instance and system behavior even for dynamic evolving structures are added.
For the CoN formalism, the level 2 conformance with the HLPN standard has
been demonstrated in [21]. In extension to high-level Petri nets as defined in the
standard a concept to provide modularity is needed. To achieve this, a system
is built based on a set of coordination net graphs which are allowed to interact.
The formalism should allow to model multiple instances of one object type, each
one providing a set of interfaces with dynamically changing external protocol
state. Several net instances may be used to implement the object behavior to-
gether and thus a mechanism like place sharing for them is necessary to model
the object environment shared by all net instances of an object instance.

59

We do not provide a builtin object notion with the coordination nets. Instead,
we provide an interface based separation using typed ports which consist of an
interface and a protocol net restricting the message occurrences. Our final net

dialect object coordination nets will provide a suitable object and class notion
based on CoNs.

net instances

(IR
(IR
(BRI
[
[
1

AT

1
1
I
I
1
1
I
I
1
1
|
1
net type 1 I
I
I
1
1
I
I
1
1
I
I
1

\” real place

\

\
create net \
\

receive receive

B e

net type 2
send

BUS \ﬂﬂ]%

Fig. 3. Basic structure of a coordination net system

The standard is extended by suitable mechanisms for communication, place
sharing as well as dynamic net and port creation. In figure 3, the basic structure
of a coordination net system is shown. There do exist multiple instances of the
same net type possibly sharing places between a net instance and its child ("real
place arrow connection”). The nets may communicate using a communication
infrastructure. The basic idea for communication is to introduce ports (, 7,
... representing associated or exported interfaces (objects) as pairs of connected
communication endpoints which are represented by port token (see figure 4, 5 for
port usage). These ports can be used to receive a message (?7) using the following
annotation for a transition:

n=¢"{op(ar,...,an)) n=Cs(op(-.)) m=Ch{op(...)),

where 7 is the resulting port and (()) denotes a given marshaling function;
op(ai,...,a,) stands for an operation call with operation name op and input
parameters ai, ..., a,. There may be several distinct return vectors for a call
and thus we use op, as operation name for the return alternative i to an op-
eration op and annotate 6p;(r1, ...,y) for a reply with return vector rq, ...,
m. A corresponding synchronous send can be specified using a port ¢ and the
synchronous send operator ls. Analogous an asynchronous send can be specified
using |, We distinguish provide ports p, o, ...for exported and usage ports ¢,

60

@, ...for associated interfaces. A provide port can receive operation calls op
and sends replies op, whereas an usage port can be used to send requests op
and receive replies op,. Asynchronous and synchronous interaction are distin-
guished, because the synchronous interaction provides more sophisticated ways
to interact. The asynchronous communication is in contrast more efficient and
reduces the coupling between two systems. When useful we do not further spec-
ify if synchronous or asynchronous interaction is wanted and the more general
send operation (!) is used.

To create ports of type P or net instances for a declared net type N also
corresponding annotation expressions are supported. A net creation expression
(¢ =@N) binds to ¢ an usage port corresponding to a special initial provided
standard port (std) each new net instance contains. This initial connection
allows to establish more connections by using these port connections to publish
other ones. After a port creation ((p,¢) = @QP) a pair of new unique connected
usage and provide port instances is bound to ¢ and p. This way the dynamic
creation of active net instances as basic formalism to model instances as well as
multiple active threads of an instance is provided.

Fig. 4. A coordination net graph example

By allowing the described annotations in net declarations, a dynamically
changing set of net instances interacting via port instances can be specified. To
achieve a better visual representation we draw all transitions annotated with
receive terms and imported places with a shadow as shown in figure 4. There
is a request received in transition 1 which is replied with a send expression
in transition 2. Transition 3 creates a new net of type N and propagates the
resulting usage port ¢ together with its other pre-conditions a; and as in form
of a vector to a place. Transition 4 may consume it then. Hence, the parts which a
single coordination net graph distinguishes from a high-level Petri net as defined
in the high-level Petri net standard are the additional annotations. They add
message send, message receive, port creation and net creation to a transition as
shown in figure 4.

The single net graphs are interacting via send and receive annotations which
are using the already introduced ports as addresses. The resulting system consists

61

AN ; b

/ P i
”/ 7 :, =GN Q
! 0=p?{m()) ! . y
| | "real place” i
| \ 1 \
; create net |)
! ¢ = . |

Fig. 5. An example for different ways nets may interact

of a number of net graph instances connected via ports and a marking for all
of them, as presented in figure 5. The left two nets interact via corresponding
usage/provide ports and a synchronized send and receive transition pair. The
synchronous send ensures, that the message is directly received. In the middle a
net creation is presented and the resulting port pair is visualized. The imported
place of the created Net N is linked to the corresponding local place of the
creating net and the standard port (std) of the new net is connected to the
resulting port ¢ of the create expression. A port creation is demonstrated in the
right net. This technique is used to describe instance or subsystem wide sharing
of resources and is realized with some sort of lexical scoping.

/A N " g/ N

¢ ® J e ¢ ®
N/ -
o=p?{(m) e=pT{(m)

Fig. 6. Asynchronous and synchronous interaction

We have decided to provide synchronous as well as asynchronous behavior for
coordination nets to achieve a greater flexibility. The synchronous interaction (cf.
synchronous channels [14]) is useful, because it provides a higher-level abstrac-
tion to describe explicit synchronization where needed while the asynchronous
interaction can be used to combine systems with FIFO queues (cf. FIFO Petri

62

nets as a medium [48]). An example visualization of an asynchronous and syn-
chronous interaction is shown in figure 6. In the left case of an asynchronous
interaction the FIFO queue as medium does decouple both transitions while in
the right case of synchronous interaction both transitions are firing atomically
together.

A suitable typing has to carefully distinguish usual types (literals) that de-
scribe a value domain and represent passive data and ports which are handles or
identifiers that allow to request certain activities or attributes. For ports a typing
that supports subtype polymorphism is essential. Ports represent connections to
other entities in a fashion that should ensure abstraction and autonomy which
are the essential characteristics of object-based systems (see Wegner [54]). The
basic idea for port typing is to associate an interface (signature) and a behavior
to every port connection. Thus the object life cycle and the possible interaction
with an object becomes a part of the usage contract.

I[so] Ilsy]
52

I[s1]

p=¢!(m(a1,az2)) x=»?(@m(r1))

Fig. 7. The usage side of a remote procedure call

A protocol conform usage is presented in figure 7 where the port ¢ is trans-
formed to ¢ by sending m and later transformed to x when receiving the reply m.
The port type and state is annotated using the shortcut I[s;], where I denotes
the interface and protocol and s; the specific protocol state.

4 Object Coordination Nets

The object coordination nets (OCoNs) combine the strength of Petri nets with
the structural modeling techniques of the UML, the de-facto standard for object-
oriented modeling. By combining both techniques in an orthogonal way, the Petri
net mechanisms can be used to express coordination, concurrency and partial
states while the structure is described in terms of objects, classes and associa-
tions. The Petri net concepts lack a suitable structural modeling concept and
thus an orthogonal combination with the object-oriented structural model is
needed and possible. OCoNs are build on top of the CoN formalism to provide
a more high-level as well as more restricted formalism. Structural aspects are
realized with UML mechanisms and the usage of nets is restricted to model
behavior. As demonstrated in [25], the OCoN formalism results in a more accu-
rate representation of the structural model within the formalism compared with
statecharts.

63

provided () Instance used
conFract % contract

wphunuy
[Tay
L]

Fig. 8. The structural concept for a class or subsystem

The CoN formalism is used to describe two specific net forms while the pro-
tocol nets are used to type contracts. Figure 8 presents the relation between
the different nets. The protocol nets are used to describe the guaranteed or as-
sumed behavior of contracts. So called service nets (SN) describe behavior for
a specific task right like a method with its own thread of control in a program-
ming language. An instance wide unique resource allocation net (RAN) is used
to describe the overall instance activities like request acceptance as well as the
allocation of needed resources for the request processing including the creation
of related service nets for a request.

Resource .
action

imported Resource ©
op2 ©—>M myGalculator myNormalizer

Event

Event op Event
int iy
Resource Oﬁ calc normalize TJO
Resource Resource
input output
o O—{_—O
external action
op3
@ (b) ©

Fig. 9. Several basic elements of an OCoN

An overview about the elements of an OCoN is presented in figure 9. The
resource and event pool elements are represented by hexagons and cycles. We
distinguish between them, to describe the more transient character of parame-
ters, the control flow and temporary events by using event pools as well as the
more static resource character of associations and local variables represented by
resource pools. Resources are required as the carriers of activities to perform
the processing of events during the computation and thus events describe the
control flow of a net (see figure 9 (a) and (b)). Based on the distinction between

64

resources and objects produced and consumed through the flow of data and con-
trol, the metaphor of resources which is crucial in distributed systems can be
used to make resource handling explicit. The usage and status of resources can
be specified in detail. A single resource may be represented by more than one
resource pool if the different pools stand for the same resource but different ex-
ternal states. Using a set of useful actions to abstraction from concrete and error
prone explicit port handling, the behavior can be described in terms of requests
and simple contract usages. No explicit send and receive have to be considered
any more and instead the more high-level interactions like call or one way call
are provided directly. The typing of the contracts using interfaces and protocol
nets does further enforce a disciplined usage. Also the creation of instances as
well as subnets is covered using extra forms of actions.

abstract action net

Fig. 10. Embedding of an action with multiple output alternatives

To specify the semantics of OCoN constructs we will use reentrant subnets in
a macro like way and a special kind of transition refinements (see [8]). Valette
[50] refines transitions by subnets called block with one initial and one final tran-
sition. The block is protected from multiple occurrences of the initial transition
before the final transition occurs by assuming that the refined transition is not
2-enabled for any reachable marking. Thus the net must not be reentrant. Suzuki
and Murata [49] generalize this technique and consider the case, where the re-
fined transition is restricted to be at most k-enabled. Work which considers also
distributed input and output has been done by Vogler [53]. He studies a refine-
ment notion depending on the environment of the transition. He demonstrates
that only non distributed input is feasible but distributed output can be used
when environment independent refinement is considered. In contrast to all these
considerations we need a really reentrant (see [13]) construction, otherwise the
parallel occurrence of actions will be limited, but for the presented refinements
this condition is obviously fulfilled due to their restriction to at most a single
token per usage. The general scheme used is presented in figure 10. This way the
call with contract blocking character, the call with parallel reply or a one way
call can be specified.

In figure 11 the corresponding CoN behavior for a regular call with alternative
replies is specified. It is a generalization of the simple call described earlier
in figure 7. The pre-condition edge denotes the necessary port and a request
m(ay, ..., a,) is send using the usage port ¢. For each possible reply immediately

65

a receive is offered which may handle different return parameters as well as the
different transitions can be used to specify different side effects in the embedding
net.

p=9¢!(m(ay,...,an)))

x=¢?{(@n(rn)))

Fig.11. The macro refinement for a regular call

As reverse representation exists for every contract usage port also a provide
port and the owning instance has to provide the described services accordingly
to the protocol net. This has to be done using a so called call forward action
as specified in figure 12. Initially a request is received and the set of resources
exclusivly needed for the request processing is consumed. As post-condition the
received parameters as well as the allocated resource are forwarded to a new
created net. Also the port for receiving the result from the new instantiated net
as well as the port to send the reply to the requesting party are stored as a
pair locally. The created service net will initially receive the forwarded request.
When it terminates it will send the reply and the temporary used resources back.
The reply will be forwarded while the resources are put back to their original
pools. A call action may occur in a service or resource allocation net while a
call forward action for the request acceptance is restricted to occur only in a
resource allocation net.

/
m
I

e
/ 0=p7((u(a))) X =@ (@(r,)

’ p=0¢u((n(a,e))) o=l ((®m(r)))

Fig. 12. The call forward action and request acceptance

When considering the definitions for a call action of figure 11 directly on the
OCoN net level, we can see that a labeled action does essentially fire two times
during the processing of a request. One time when the request is started and
once when it terminates. This step semantic is further described in figure 13.
The two steps correspond very well to the input and output parts of the call
action. While the direct correspondence with a classical Petri net transition is

66

©&© O\QO ©\©

Fig. 13. The two times an action can fire

abandoned, the integrity of an operation request including request sending and
reply receiving is better preserved this way.

By additionally providing a notion of inheritance, the OCoN language can be
considered to fulfill the requirements for an object-oriented language (cf. [54]).
The notion of inheritance for concurrent object oriented languages is a critical
design aspect. As noted already in [1], inheritance can be employed to reuse the
sequential methods, but inheriting the instance wide synchronization seems to
be not practical. Thus in the current used inheritance notion for OCoN classes,
a subclass does inherit all structural properties as well as the associated service
nets of its superclasses, while the resourc allocation net is not inherited. Due to
the syntactical inheritance it is ensured that each subclass contains always all
resources a supertype service net may demand. The overall resource allocation
of a derived class has to be rewritten and reuse is currently not supported for
resource allocation nets.

We have to emphasize that in contrast to the contract subtyping and in-
heritence, implementation inheritance is for the intended usage of OCoNs not
that relevant. The external visible contract or interface hierarchy should be in
general better separated from implementation reuse strategies applying inheri-
tance, otherwise later when the subsystems evolve independently serious design
problems will result.

5 Visual Language

For place/transition nets the popular token game provides a suitable visual rep-
resentation as well as intuitive semantics. We thus have designed the OCoN for-
malism to provide a set of higher-level action types that can be understood w.r.t.
the local effects as a token game. E.g., the enabling does not depend on textual
guards. To model alternative behavior in a graphical rather than textual man-
ner we use methods or external operations with alternative replies (see figure 11)
that indicate the relevant different cases. This way a useful additional abstrac-
tion for predicates is introduced and textual guards transferring the semantics
from the transitions to the annotations can be avoided. This is in contrast to
most HLPN approaches which make heavy use of textual annotations and are
thus not such suitable visual formalisms.

In figure 14 the visual integration of contracts described by protocol nets and
the resource allocation as well as service nets is presented. Associations repre-

6/

<<contract>> <<implementation>> <<service>>

<<service>>
Contractlmpl::op2

Contractl Contractimpl Contractimpl::opl
signatures |- _. +opl() - signatures -}y ContractR2
ov10 ropRly - - O
op2() +op3()- -t !
op3() #opd() | Q
protocol net |
|
resource allocation net ' O
|
|

,,,,,

Contract2 R1] resl:.ll_ opzm
<? \
I resl_ res2_ \L
<<contract>> <<contract>>
ContractR1 ContractR2

Fig. 14. Visual seamless embedding of contracts via typed resource pools

sented by resource pools containing related contracts can be used in conformance
with the specified protocol and thus their usage corresponds to a graphical em-
bedding. This seamless visual embedding [26] is the reason for our design decision
to restrict protocol nets to state machines. Then the multiple places of a Petri
net allow to embed the contracts using resource pools representing the different
contract states. The object life-cycle can also be modeled with full Petri nets,
e.g., with subtyping based on branching-bisimulation and abstraction [51], but
then the intended visual embedding as well as a more Petri net independent
contract notion are excluded. In figure 9 (c) the related signature abstraction
relating an action to a servie net has been demonstrated.

6 Integration into the UML

In the OCoN approach the HLPN standard [16] and the UML [40] have been
combined. But in practice usually perfect orthogonality is not achieved. The UML
specification does still contain several inconsistencies, but there are currently
attempts like the pUML initiative [18] that try to improve the situation and thus
using it is still more appropriate than chosing a proprietary solution. For the
included behavioral description techniques we even identified several weaknesses
[22]. For the achieved OCoN integration it has been demonstrated in [25] that
several limitations and problems related to behavior modeling with the UML
notations can be avoided.

68

OCoN

CoN UML

OMG
HLPN meta-model

Fig. 15. The layers to build the OCoN semantics

In figure 15 the abstraction layers of the semantic foundations of the OCoN
approach are visualized. We decided to avoid the considerable weaknesses of
the UML by integrating our approach only with a w.r.t. structural as well as
behavioral questions more consistent subset.

By providing the bus like implementation structure shown in figure 8 for a
class, a clear separation between request specific and overall instance behavior
is achieved. In figure 16 an example of a simple complete UML structure with
added nets is presented. It describes a class Sitelmpl that implements a simple
allocation protocol which provides alternating allocate and release operation calls.
The implementation stores the provided Data in a buffer initially filled with
an empty data item. The buffer is accessed using the Buffer contract which is
implemented by the class Bufferlmpl. The three specific stereotypes <<contract>>
for contracts, <<implementation>> for the overall instance behavior including
the resource allocation net and <<service>> for a service net or method are

«service»
Bufferlmpl::write

«service»

Sitelmpl::allocate Dat

ool

myBifilled] myBlempty]

«contract»
ool Buffer
O erase():()
write(Data):(Bool)
read():(Data)

O

read

«implementation»
Bufferlmpl
arase erase():()
«service» «implementation» wrlte(Pata):(BooI)
Sitelmpl::release Sitelmpl Ifilled] Tempty] read():(Data)
J— +allocate(Data):(Bool) read
y +release()::(Data) write
; ©
v myB myB 1 1 p=
Date
IE (filled]
read - filled] [empty]
@<"
write
[vacant]

Toccupied]

release

Fig.16. An OCoN and UML example

69

used. For the operations Sitelmpl::release and Sitelmpl::allocate the difference
between initial exclusive locking and shared access can be described. While for
the Sitelmpl::release call forward action no initial exclusive locking is specified
will Sitelmpl::allocate demand it. In correspondence is in Sitelmpl::release the
considered resource myB shown with a double bordered hexagon to indicate
that it is an imported resource and thus interference is possible. In contrast has
Sitelmpl::allocate an exclusive resource for myB and thus the resource is drawn
with a single border. Also the number of used contracts Buffer for Sitelmpl are
specified in the UML diagram and we can derive the related net capacities using
the specified multiplicity constraints of the related association.

7 Related Work

The net dynamics of the OCoN approach has been realized introducing the visual
as well as high-level Petri net conform CoN formalism. In the context of the 7-
calculus also a net based calculus named Mobile Nets has been developed [11]. It
extends the m-calculus to contain true concurrency, but this is done by extending
the usual textual binding for m-calculus processes to cover some notion for places
that can be accessed in parallel and thus does not provide the needed visual net
related methapor like the CoN formalism neccessary to build a visual language
upon.

We think it is more promising for the system design with Petri nets to avoid
a Petri net specific mechanism and integrate Petri nets into an usual object-
oriented decomposed system. The approach should rely on the well studied and
successful mechanisms for abstraction and encapsulation. Following [3] we can
classify most earlier proposed solutions to combine object orientation and Petri
nets as either ”Petri nets inside Objects” [10] or ” Objects inside Petri Nets” [4,
52]. Later approaches support more dynamic and expressive models where object
references are controlled in nets related to classes and thus they can support both
concepts.

Another cruicial aspect for the design of an object-oriented Petri net for-
malism is the interaction and if it supports interfaces and polymorphism in
a manner adequate for software. Several approaches support the traditional ap-
proach to connect Petri nets using place fusion [2,34], but places usually provide
no suitable interface directly. Most solutions derived from the algebraic specifi-
cation domain instead provide cooperation in terms of transition fusion [4,10,
7,17] and allow the related behavior to access all cooperating objects of that
activity in a united action. This results in a missing encapsulation and behavior
will not be associated with objects itself which is a common criteria for object-
orientation. The support for message exchange or operations is essentially needed
to achieve encapsulation. The different approaches that support this vary w.r.t.
the level of support for either message passing or the higher-level interaction of a
procedure call construct [47,36,12,29]. The approaches provide an object state
either explicit using one global net per instance [39,34,47,29] or only implicit
as composition of so called method nets [36,12]. A systematic separation into

70

a resource oriented scheduler describing the overall instance state and method
related active method net instances is only realized in the OCoN approach. To
achieve visual scalability the usage of several nets for specific tasks is necessary
while their simple visual separation using regions (cf. [12]) is not sufiicient.

For distributed system design the encapsulation has to be ensured and hence
a notion of contract or interfaces is necessary and thus not type secure approaches
like [12] are not sufficient. Up to our knowledge does no other approach intergrate
an external behavioral specification like a protocol net to provide a contract
notion with behavioral subtyping and thus supports behavioral abstraction.

8 Conclusion and Outlook

The integration of software engineering and especially object-oriented technology
with a high-level Petri net formalism that is extended in a m-calculus style to
also cover dynamic aspects has been presented. The OCoN approach builds an
orthogonal extension to a subset of the UML and adds powerful concurrency
and contract modeling capabilities. A tight integration has been achieved while
proprietary extensions to the UML itself could be avoided.

The contract notion for the OCoN design approach supports the explicit
specification of contractually relations and provides a notation to specify coor-
dination aspects already on an abstract level. We can further express several
design alternatives and evaluate them [27] in order to decide which one is most
suitable. Thus, the OCoN formalism is a suitable notation that can be applied
already during the earlier stages of the design process with emphasis on the
software architecture [46]. A suitable visual notation is a crucial prequisite for
a successful approach. We applied useful Petri net visualization concepts and
achieved to preserve them by applying object-oriented standard techniques in a
systematic fashion.

Our initial application domain has been distributed software systems, while
we have also explored embedded systems and currently investigate the design of
workflow [56] applications. The experience with student classes and courses indi-
cates that even without experienced designers the approach is applicable. While
the results are promising the training for a specific net based notation is still dif-
ficult for beginners. A framework supporting the final implementation of OCoN
designs as well as an integration of the tools into an UML tool and extensions
towards consistency checks and complete simulation capabilities are planned. At
the moment, we study the approach also in an industrial environment to gain
more experience with larger projects.

References

1. P. America. A Behavioural Approach to Subtyping in Object-Oriented Languages.
Techreport, Philips Research Laboratories, 1989. Technical Report 443.

2. M. Baldassari and G. Bruno. An Environement of Object-Oriented Conceptual
Programming Based on PROT Nets. In Advances in Petri Nets, number 340 in
LNCS, pages 1-19. Springer Verlag, 1988.

71

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

R. Bastide. Approaches in unifying Petri nets and the Object-Oriented Approach.
In 1st Workshop on Object-Oriented Programming and Models of Concurrency,
within the 16th International Conference on Application and Theory of Petri nets,
27 June 1995, Turin, Italy, 1995.

E. Battiston, F. D. Cindio, and G. Mauri. Objsa Nets: A Class of High-Level Nets
Having Objects as Domains. In Advances in Petri Nets, number 424 in LNCS,
pages 20-43. Springer Verlag, 1988.

E. Best and R. P. Hopkins. B(pn)? - a Basic Petri Net Programming Notation. In
PARLE’93, LNCS, pages 379-390. Springer Verlag, 1993.

A. Beugnard, J.-M. Jezequel, and D. Watkins. Making Components Contract
Aware. IEEE Computer, 32(7):38-45, July 1999.

O. Biberstein and D. Buchs. Structured Algrbraic Nets with Object-Orientation.
In Applications and Theory of Petri Nets 1995, 16th International Conference,
Turin, Italy, number 935 in LNCS. Springer Verlag, June 1995.

W. Brauer, R. Gold, and W. Vogler. A Survey of Behaviour and Equivalence
Preserving Refinements of Petri Nets. In Advances in Petri Nets, number 483 in
LNCS, pages 1-46. Springer Verlag, 1990.

W. Brauer, W. Reisig, and G. Rozenberg [eds]. Petri Nets: Central Models (part
1) /Applications (part II), volume 254/255 of LNCS. Springer Verlag, Berlin, 1987.
D. Buchs and N. Guelfi. A Concurrent Object-Oriented Petri Net Approach. In
Applications and Theory of Petri Nets 1991, 12th International Conference, Gjern,
Denmark, 1991.

N. Busi. Mobile Petri Nets. In Proc. 3rd Int. Conf. on Formal Methods for
Open Object-based Distributed Systems (FMOODS), February 15-18, 1999, Flo-
rence, Italy, pages 51-66. Kluewer Academic Publishers, 1999.

M. Ceska, V. Janousek, and T. Vojnar. PNtalk - A Computerized Tool for Object
Oriented Petri Nets Modeling. In EUROCAST’97, Las Palmas de Gran Canaria,
Canary Islands, Spain, number 1333 in LNCS. Springer Verlag, 1997.

G. Chehaibar. Use of Reentrant Nets in Modular Analysis of Colored Nets. volume
524, pages 58-77, Berlin, Germany, 1991. Springer Verlag. NewsletterInfo: 40.

S. Christensen and N. D. Hansen. Coloured Petri Nets Extended with Channels
for Synchronous Communication. In LNCS; Application and Theory of Petri Nets
1994, Proceedings 15th International Conference, Zaragoza, Spain, volume 815,
pages 159-178. Springer Verlag, 1994.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jere-
maes. Object-Oriented Development: The Fusion Method. Prentice-Hall, 1994.
Committee Draft ISO/IEC 15909. High-level Petri Nets - Concepts, Definitions
and Graphical Notation, Oct. 1997. Version 3.4.

J. Engelfriet, G. Leih, and G. Rozenberg. Net-Based Description of Parallel Object-
Based Systems. In Foundations of Object-Oriented Languages, number 489 in
LNCS. Springer Verlag, 1990.

A. Evans, R. France, K. Lano, and B. Rumpe. Developing the UMI as a Formal
Modelling Notation. In UML’98 Beyond the notation. International Workshop
Mulhouse France. Ecole Superieure Mulhouse, Universite de Haute-Alsace, 1998.
H. Fleischhack and B. Grahlmann. A Petri Net Semantics for B(PN)? with Proce-
dures. In Proceedings of PDSE’97 (Parallel and Distributed Software Engineering),
Boston MA, pages 15 — 27. IEEE Computer Society, May 1997.

H. J. Genrich and K. Lautenbach. System Modelling with High-Level Petri Nets.
Theor. Comp. Science, 13:109 — 136, Jan 1981.

H. Giese. Object Coordination Nets 2.0 — Semantics Specification. Techreport,
University Miinster, Computer Science, May 1999. 15/99-1.

12

22

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

H. Giese. Towards a Dynamic Model for the UML. In 14th Annual ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and Applica-
tions November 1-5, 1999, Denver, Colorado, USA. Workshop: Rigorous Modeling
and Analysis with the UML: Challenges and Limitations, Nov. 1999. (submitted
statement).

H. Giese. Synchronization Behavior Typing for Contracts in Component-based
Systems. Techreport, University Miinster, Computer Science, Distributed Systems
Group, Feb. 2000. Techreport 03/00-1.

H. Giese, J. Graf, and G. Wirtz. Modeling Distributed Software Systems with Ob-
ject Coordination Nets. pages 107-116, July 1998. Proc. Int. Symposium on Soft-
ware Engineering for Parallel and Distributed Systems (PDSE’98), Kyoto, Japan.
H. Giese, J. Graf, and G. Wirtz. Closing the Gap Between Object-Oriented Model-
ing of Structure and Behavior. In UML’99 - The Second International Conference
on The Unified Modeling Language Fort Collins, Colorado, USA, volume 1723 of
LNCS, pages 534-549, Oct. 1999.

H. Giese, J. Graf, and G. Wirtz. Seamless Visual Object-Oriented Behavior Mod-
eling for Distributed Software Systems. In IEEE Symposium On Visual Languages,
Tokyo, Japan, Sept. 1999.

H. Giese and G. Wirtz. Early Evaluation of Design Options for Distributed Sys-
tems. In Int. Symposium on Software Engineering for Parallel and Distributed
Systems (PDSE’2000), Limerik, Ireland. IEEE Press, June 2000.

D. Harel. Statecharts: A Visual Formalism for complex systems. Science of Com-
puter Programming, 3(8):231-274, 1987.

T. Holvoet and P. Verbaeten. PN-TOX: a Paradigm and Development Environ-
ment for Object Concurrency Specifications. In 1st Workshop on Object-Oriented
Programming Models of Concurrency, Turin, 1995.

P. Huber, K. Jensen, and R. M. Shapiro. Hierarchies in Coloured Petri Nets. In
Advances in Petri Nets, number 483 in LNCS, pages 313-341. Springer Verlag,
1990.

K. Jensen. Coloured Petri Nets. In Petri Nets: Central Models and Their Prop-
erties, Advances in Petri Nets 1986 Part I, number 254 in LNCS, pages 248-299.
Springer Verlag, 1987.

K. Jensen. Coloured Petri Nets: A High Level language for System Design and
Analysis. In Advances in Petri Nets, number 483 in LNCS, pages 342—-416. Springer
Verlag, 1990.

A. Kiehn. Petri Net Systems and their Closure Properties. In Advances in Petri
Nets 1989, number 424 in LNCS, pages 306-328. Springer Verlag, 1990.

C. Lakos. From Coloured Petri Nets to Object Petri Nets. In Applications and
Theory of Petri Nets 1995, 16th International Conference, Turin, [taly, number
935 in LNCS. Springer Verlag, June 1995.

B. Liskov and J. M. Wing. A New Definition of the Subtype Relation. In Proceed-
ings of the European Conference on Object-Oriented Programming ’93, volume 707
of LNCS, pages 118-141, July 1993.

C. Maier and D. Moldt. Object Colored Petri Nets - a Formal Technique for
Object Oriented Modelling. Workshop PNSE’97, Petri Nets in System Engineering,
Modelling, Verification, and Validation, Hamburg, Germany, Sept. 1997.

B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1997. 2nd edition.
R. Milner, J. G. Parrow, and D. J. Walker. A Calculus of Mobiler Processes.
Techreport, Edinburgh Univeristy, 1989. Part I and II. ESC-LFCS-89-85/86.

73

39

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

A. Newman, S. M. Shatz, and X. Xie. An Approach to Object System Modeling by
State-Based Object Petri Nets. Int. Journal of Circuits, Systems, and Computers,
9(1):1-20, Feb. 1998.

Object Management Group. OMG Unified Modelling Language 1.3, June 1999.
OMG document ad/99-06-08.

D. L. Parnas. A Technique for Software Module Specification with Examples.
Communications of the ACM, 15(5):330-336, 1972.

S. L. Pfleeger. Software Engineering: Theory and Practice, 1/e. Prentice Hall,
1998.

W. Reisig. Petri Net Models of Distributed Algorithms. In Computer Science
Today — Recent trends and Developments, number 1000 in LNCS, pages 441-454.
Springer Verlag, 1995.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

T. Schael. Workflow Management Systems for Process Organizations. Number
1096 in LNCS. Springer Verlag, 1998. Second Edition.

M. Shaw and D. Garlan. Software Architecture: Perspectives on an emerging Dis-
cipline. Prentice Hall, 1996.

C. Sibertin-Blanc. Cooperative NETs. In Applications and Theory of Petri Nets
1994, 15th International Conference, Zaragoza, Spain, number 815 in LNCS, pages
471-490. Springer Verlag, June 1994.

Y. Souissi and G. Memmi. Composition of Nets via a Communication Medium.
In Advances in Petri Nets, number 483 in LNCS, pages 457—-470. Springer Verlag,
1990.

I. Suzuki and T. Murata. A method for stepwise refinement and abstraction of
Petri nets. Journal Computer System Science, 27:51-76, 1983.

R. Valette. Analysis of nets by stepwise refinement. Journal Computer System
Science, 18:35—46, 1979.

W. M. P. van der Aalst and T. Basten. Life-Cycle Inheritance: A Petri-Net-Based
Approach. In 18th International Conference on Application and Theory of Petri
Nets, Toulouse, France, June 1997, LNCS, pages 62—81, 1997.

K. van Hee and P. Verkoulen. Integration of a Data Model and High Level Petri
Nets. In Proceedings of the 12th International Conference on Application and
Theory of Petri Nets,Aarhus, Denmark, pages 410-431, June 1991.

W. Vogler. Behaviour preserving refinements of Petri nets. In Graph-Theoretic
Concepts in Computer Science, Proc. WG86, Bernried, volume 246 of LNCS, pages
82-93, 1987.

P. Wegner. Dimensions of Object-Based Language Design. In Object-oriented Pro-
gramming Systems, Languages and Applications (OOPSLA87, Orlando, Florida,
October 4-8, 1987, volume 22 of SPECIAI ISSUE of ACM SIGPLAN notices, pages
168-182. ACM Press, Dec. 1987.

P. Wegner and S. B. Zdonik. Inheritance as an Incremental Modification Mecha-
nism or What Like Is and Isn’t Like. In Proceedings of the European Conference on
Object-Oriented Programming ’88, volume 322 of LNCS, pages 55—77, Aug. 1988.
G. Wirtz and H. Giese. Using UML and Object-Coordination-Nets for workflow
specification. In IEEFE International Conference on Systems, Man, and Cybernetics
(SMC’2000), Nashville, TN, USA, October 8-11, 2000.

G. Wirtz, J. Graf, and H. Giese. Ruling the Behavior of Distributed Software
Components. In Proc. Int. Conf. on Parallel and Distributed Processing Techniques
and Applications (PDPTA’97), Las Vegas, Nevada, July 1997.

74

Seamless Object-Oriented Software
Development on a Formal Base

Stephan Philippi

University of Koblenz-Landau,
Rheinau 1, 56075 Koblenz, Germany
philippi@uni-koblenz.de

Abstract Object-oriented development of complex software systems is
widely recognized as state of the art within the industry as well as the
scientific community. What is less commonly recognized (especially in
the industry) is that object-orientation itself is not properly defined and
neither are popular notations like UML and others. Existing proposals
for the formally based development of object-oriented systems are for
different reasons often not usable for complex and/or concurrent sys-
tems. In addition, the semantics of object-oriented concepts within such
notations only rarely match common programming language implemen-
tations. This mismatch most likely leads to a costly redesign of a given
model during implementation. To overcome these problems approaches
for a seamless object-oriented software development on a formal base are
needed.

This article surveys several proposals for the formally based devel-
opment of object-oriented systems based on Petri-Nets. Subsequently, a
new approach in this area is introduced which supports multiperspective
modeling of concurrent object-oriented systems on arbitrary abstraction
levels and also allows automatic generation of executable Java code.

Keywords: concurrent systems design, Petri-Nets, Java code-generation

1 Introduction

Today object-oriented software development practice often includes multiper-
spective system views using different types of diagrams. The most popular collec-
tion of such diagrams is the so-called unified modeling language (UML) [Rati99].
Even if the emergence of this industry standard is useful from an economical
point of view, there are some serious drawbacks with respect to its application
in the software engineering area. Besides the difficulties in choosing an adequate
subset of diagrams with respect to a specific application domain, further prob-
lems arise from the UML’s lack of formality. In fact, most of the UML notations
are not formally based, i.e. they have no formally defined semantics. In combina-
tion with the fact that a commonly agreed definition of ’object-orientation’ does
not exist, this easily leads to communication problems, as neither the notations

75

nor the underlying concepts are properly defined. Another problem in this con-
text is that a tight integration of different views in a formal sense is not given
with the UML. Thus, contradicting system views representing a non-consistent
model are usual observations within UML projects. Especially considering con-
current systems this is not tolerable, as even for small systems a huge amount of
possible interaction sequences between concurrent parts exists, which results in
difficulties for human understanding. Thus, non-formally based approaches are
not well suited to meet today’s demands as they do not offer a reliable base for
communication and understanding.

Principally, formally based approaches for the object-oriented modeling of
systems are well suited to solve these problems. Nevertheless, proposals in this
area are not widely accepted today. Major drawbacks of approaches like OOZE
[AleGog91], VDM++ [Durr92], and others are that often no visual represen-
tation of models exists and the development of concurrent systems as well as
simulation is not supported. In addition, such approaches are frequently criti-
cised for being too difficult to use!. Another crucial point is that the definitions
of object-oriented concepts in formally based notations only rarely match their
counterparts in programming languages. Theoretically this is not necessarily a
problem, as the realization of object-oriented concepts within common program-
ming languages is not perfect at all, as shows for example the nonvariant instead
of covariant overwriting in Java [ArnGos96]. From a more practical point of
view the use of such formally based notations leads to a mismatch if a given
model serves as architectural layout for the implementation of a system, which
is usually the motivation for creating a model in the software engineering area.

Another family of approaches to model object-oriented systems in a formal
way is based on Petri-Nets [Petri62], which are well known for their graphical
appearance, their simulation capabilities, and their native support for the mod-
eling of concurrent systems. The extension of Petri-Nets with object-oriented
concepts is a promising approach as the resulting notation ideally allows for
the formally based modeling of concurrent object-oriented systems and for the
object-oriented structuring of Petri-Nets. Due to this potential, there has been
considerable research activity in the object-oriented Petri-Net area.

The next section of this article describes from a software engineering point of
view a set of properties for approaches integrating object-oriented concepts and
Petri-Nets. Based on these properties, existing proposals are surveyed and typical
problems discussed. Section three introduces OOPr/T-Models, a novel approach
for the integration of Petri-Nets and object-oriented concepts, which supports
the multiperspective modeling of systems on arbitrary abstraction levels. Section
four describes the formal base of OOPr/T-Models as well as their automatic
translation to executable Java code. Finally, the last section gives a summary
and presents further perspectives.

1 A more detailed discussion of related problems with existing proposals in the area of
formally based development of object-oriented systems can be found in [LanHau94].
A survey on UML formalization approaches is given in [Evans*98], [KeEvRu99].

76

2 Essential properties and related work

Since the mid-eighties, various approaches integrating object-oriented concepts
and Petri-Nets have been published. To be able to evaluate the existing pro-
posals with respect to their applicability in the software development, a set of
essential properties is introduced. The classification of these properties as ’es-
sential’ reflects that from our point of view, omitting one of them results in a
notation which is not well suited for the object-oriented development of complex,
concurrent software systems. Thus, to solve the above stated problems of (non-)
formally based notations, an approach integrating object-oriented concepts and
Petri-Nets ideally fulfills the following criteria:

— Completeness with respect to object-orientation: In order to be able
to structure systems in an object-oriented way, a notation combining object-
orientation and Petri-Nets should at least support object identity, com-
plex objects, classes, encapsulation, inheritance, overriding, and polymor-
phism/late binding.

— Support for seamless development: Ideally, a notation for the model-
ing of object-oriented systems supports every stage of development ranging
from high-level analysis to low-level implementation. If a notation only sup-
ports part(s) of the development cycle, every shift to another notation (e.g.
a programming language) will almost inevitably result in a redesign of the
model, as no commonly accepted definition of object-orientation exists. The
reason for the need to redesign a given model in this context is that differ-
ent notations integrate different object-oriented concepts, and corresponding
concepts often differ significantly from a semantical point of view, as for in-
stance visibility definitions and inheritance.

"When examining object-oriented solutions, you should check that
the method and language, as well as the supporting tools, apply to
analysis and design as well as implementation and maintenance. The
language, in particular, should be a vehicle for thought which will
help you through all stages of your work.” [Meyer97]

— Completeness with respect to Petri-Nets: Petri-Nets are well-known
for their graphical appearance, their power for the modeling of concurrent
systems, and their formal base which allows for simulation and analysis. An
approach integrating object-oriented concepts and Petri-Nets should pre-
serve these properties.

— Concepts to resolve inheritance anomalies: Ideally, a notation for
object-oriented software development allows for the modeling of concur-
rent systems. As a consequence, concepts to resolve inheritance anomalies
[MatYon93] should be supported by such a notation. Inheritance anomalies
occur in concurrent object-oriented systems if synchronization conditions

77

are integrated into the functional description of a method. Problems arise
here, as within every subclass containing additional methods, the inherited
synchronization conditions almost inevitably change. As a consequence, in-
herited methods have to be redefined in subclasses to integrate the modified
synchronization conditions, even if there is no need to do so from a func-
tional point of view. Thus, to be able to benefit from inheritance, a notation
for the development of concurrent object-oriented systems needs to integrate
concepts to avoid the redefinition of methods.

— Modeling ergonomics/usability: System modeling usually starts at a
high level of abstraction, the main task being to collect knowledge in order
to understand the system domain. As this is a very difficult task in its own
right, the designer should not be hampered by a modeling framework which
does not offer the highest possible ergonomical degree, i.e. the formalism
used to support modeling should be as easy as possible to learn and handle.
Thus, modeling ergonomics is one of our main concerns even if this property
is not exactly quantifiable. In particular, former users of Petri-Nets or object-
oriented concepts should with only minor problems be able to use a new
approach combining both. Prerequisite is a 'natural’ solution allowing each
user to feel familiar with the way concepts he already knew are integrated.

The result of the evaluation of existing approaches for the integration of
Petri-Nets and object-oriented concepts is that none of them offers an overall sat-
isfactory solution with respect to the described properties. In detail, approaches
like PROT-Nets [BruBal86], OBJSA-Nets [BaDeMag8], POT/POP [EnLeRo090],
SimCon [HeeVer91], OOCPN [Engl93], PN-TOX [HolVer95], and others are not
complete with respect to our understanding of object-orientation, i.e. impor-
tant concepts are not integrated, like for example inheritance or dynamic bind-
ing. Another common problem from the point of view of software development
is that approaches like Object/Behaviour Diagrams [KapSch91], Object-Nets
[BoNuFe97], OOPN [Stulle97], and others represent objects as Petri-Net struc-
tures. Consequently, dynamic object instantiation is not supported in order to
avoid dynamic Petri-Net structures. In turn, such proposals only allow for the
modeling of systems with a fixed number of objects which have to be identified
during system design. To support the development of software systems, such
approaches (which are partly intended to be used for the modeling of techni-
cal systems) are not well suited, because objects are usually instantiated and
destroyed at a high rate during the runtime of such a system.

Other approaches, e.g. PN-TOX [HolVer95] and OCoN [GiGrWi98], are in-
tended for modeling only certain aspects of object-oriented systems, augmenting
notations like OMT [Rumb*91] or UML. Thus, only parts of the resulting models
have a formally defined semantics. Another point is that approaches like F-Nets
[Deck95], OOPN [Stulle97], and others do not provide a single notation covering
the life-cycle a project ranging from analysis to implementation. In detail, mod-
eling the functional parts of an object-oriented system is not supported, which
leads to the use of other notations whilst shifting from higher to lower abstraction

78

levels. If functional modeling is supported, not necessarily are methods for the
partitioning of the functionality of an object. Such a practice does in consequence
not take full advantage of the structuring capabilities of object-orientation, e.g.
SimCon [HeeVer91] and OPN [Lakos95].

In contrast to the stated problems with object-oriented concepts, most of
the considered approaches are complete with respect to Petri-Nets, i.e. only few
proposals like OPM [Burk94] lack a formal base.

Considering the development of concurrent systems, none of the evaluated
proposals integrates concepts to resolve inheritance anomalies, even if all of them
allow for the modeling of concurrent systems, e.g. [CeJaVo97] and [Maier97].

Finally, modeling ergonomics is generally not considered. In combination with
the fact that tool support is mostly not given, this leads to proposals which are
practically not usable for the development of complex (software) systems?.

To summarize, on the one hand none of the considered proposals for the
integration of Petri-Nets and object-oriented concepts is without weaknesses
with respect to the introduced essential properties. From our point of view,
existing object-oriented Petri-Net approaches are thus only of limited use for
the development of software systems. On the other hand, each of the criteria
(except the integration of concepts to resolve inheritance anomalies) is fulfilled
by at least one of the considered proposals. As a consequence, the development
of a Petri-Net based notation which is practically usable for the seamless, object-
oriented development of complex and/or concurrent software systems should be
possible at least from a theoretical point of view.

One of the most common problems with the existing work in the area of
object-oriented Petri-Nets is that only few proposals are based on one another,
i.e. in most cases the experience from existing work is not taken into account for
the development of novel approaches. In contrast, common pitfalls of existing
proposals had a direct impact on the development of OOPr/T-Models, which
are intended to overcome the limitations of existing approaches with respect to
the introduced properties.

3 Systems modeling with OOPr/T-Models

This section introduces OOPr/T-Models (’object-oriented Predicate/Transition-
Models’), which were developed based on the set of essential properties as well
as on the evaluation of existing object-oriented Petri-Net approaches.

First of all, the scenario to set up multiperspective system views with OOPr/
T-Models is shown. Then the notations used to describe these views are intro-
duced using an object-oriented version of a simple producer/consumer system.
Afterwards, an example on how to resolve inheritance anomalies with OOPr/T-
Models is given using an extended version of the initial example. The formal
base of OOPr/T-Models as well as their automatic translation to Java code are
surveyed in section four.

2 A more complete overview and detailed evaluation of existing object-oriented Petri-
Net proposals is given in [Phil99].

79

3.1 The scenario of OOPr/T-Modeling

The scenario providing an overview on how to use OOPr/T-Models is given
in figure 1. Starting from a system to model, different views have to be set
up, namely a static, a dynamic, and a functional view. The interdependencies
of these views result in the following (cyclic) three-step design process, which
applies to arbitrary development stages ranging from high-level analysis to low-
level implementation. In the latter case OOPr/T-Models can be used as visual
programming language.

1. Usually, the starting point of object-oriented modeling is a class diagram
structuring the system domain into classes with their respective relation-
ships. As Petri-Nets themselves are not very well suited to model the static
aspects of a system, our approach incorporates a subset of UML class dia-
grams [Rati99] for this purpose.

2. For each class a dynamic model is defined using Petri-Nets. Here, dynamic
models integrate conditions for the activation of methods. This allows for
the separation of the functionality of a method and its synchronization con-
ditions, thus resolving inheritance anomalies.

3. For each non-abstract method a single extended (hierarchical) Pr/T-Net
[GenLau81] describes the intended functionality.

manual .
model dyn.amlc —————>]
building view

system
to model

automatic
integration

o

functional
view

Fig. 1. Scenario of OOPr/T-Modeling

Unlike OMT, UML and other basically similar modeling frameworks to set
up multiperspective system views, OOPr/T-Models have a formally defined se-
mantics given through a set of rules which allow for the automatic translation
of OOPr/T-Models into a single Pr/T-Net as described in section four. Thus, it
is not only single views that have a formally defined semantics, but the whole
system consisting of different views and their interdependencies does. From a
designer’s point of view the resulting Pr/T-Net integrating these views should
be transparent, because usually only manually created views are visible. The
notations to set up these views are described in the following sections.

80

3.1.1 Static view

The first step in modeling states the structure of a system using classes which are
related through associations and an inheritance hierarchy. An interface definition
can be assigned to each class, consisting of (class) attribute and method signature
specifications. To visualize this structure a subset of UML class diagrams is used
[Rati99]. Figure 2 shows a class diagram for a producer/consumer system at a
low abstraction level.

controller
+ start ()
A
producer buffer consumer
id :int count : int id :int
b : buffer »| capacity : Int < b : buffer
+ produce () + sync insert (x : int) + consume ()
+ remove() : int

Fig. 2. Class diagram for a producer/consumer system

By definition, each system contains a default 'controller’ class with a ’start’
method as system starting point. The diagram also contains classes ‘producer’,
‘consumer’, and ’buffer’, the latter associated to the former ones. Class ’buffer’
includes two attributes ’count’ and ’capacity’ for storing actual/maximum data
item entries and methods ’insert’ and 'remove’. The ’producer’ and ’consumer’
classes each consist of attributes 'b’, implementing the association to ’buffer’,
and ’id’ as well as a single signature for a method without return value. This
is an important aspect, as patterns of concurrency are not explicitly defined
in OOPr/T-Models in terms of ’threads’ or similar low-level concepts. Instead,
calls to ’asynchronous methods’ not returning any value as well as forward split
transitions within functional descriptions of methods start concurrent processes
implicitly. Here, asynchronous methods can be synchronized by using an addi-
tional keyword (’sync’) extending the signature definition if the activation of
a method without return value should not lead to the implicit start of a new
thread, e.g. method ’insert’ of class "buffer’s.

3.1.2 Dynamic view

The second step in the design process consists of creating a dynamic model for
each class of the system. Dynamic models are used to specify activation condi-
tions for publicly available methods. Like attributes, these conditions are object
properties, i.e. each object holds its own dynamic model during the runtime of

3 In contrast, ’synchronized’ in Java specifies mutually exclusive access.

81

a system. A dynamic model is set up using Petri-Nets with anonymous tokens
where each transition represents a publicly available method of the correspond-
ing class. To each transition a guard may be assigned containing an expression
with attribute identifiers of the associated class. If an object receives a mes-
sage, the addressed method is activated if the preconditions of the associated
transition as well as its guard allow to do so. If a method is activated, tokens
within the dynamic model are consumed by the associated transition. After the
execution of the method is terminated, new tokens are created on outgoing arcs.
Thus, from a designer’s point of view transitions within dynamic models have
no timeless behaviour, as tokens disappear while methods are being executed.
From a semantical point of view, however, this is a syntactical abbreviation, i.e.
a shortcut for a more complex ’real’ Petri-Net structure with additional places
representing currently active methods.

Dynamic models are inherited within a class hierarchy like attributes and
methods. Here, dynamic models are only allowed to be modified in subclasses ac-
cording to refinement rules [Hutten00] based on protocol inheritance [AalBas97].

<_>(®<—>

[count < capacity] [count # 0]

Fig. 3. Dynamic model of class "buffer’

Figure 3 shows the dynamic model for class 'buffer’ of the producer/consu-
mer system. Here, methods ’insert’ and 'remove’ are not allowed to be activated
concurrently to avoid inconsistencies. Similarly, ’insert’ is only allowed to be
activated if the amount of buffer elements is lower than the upper boundary,
whereas ‘remove’ is only allowed to be activated if the buffer is not empty. A
closer look on the use of dynamic models to resolve inheritance anomalies is
given in section 3.2.

3.1.3 Functional view

To be able to model the functionality of a method, high-level Petri-Nets need to
be extended to support specific interfacing services. Figure 4 illustrates a method
from a black-box point of view, with the following types of interactions with the
environment:

1. An input interface: As possible input to a method we consider signature
specified parameters and current attribute values of the object the respective
method belongs to.

82

2. An interaction interface: As the overall behaviour of an object-oriented
system is given through the interaction of its message-passing objects, a
Petri-Net representing a method has to be able to send messages.

3. An output interface: Possible method outputs are new attribute-values
of the current object, and return values to the sender of the message which
activated the execution of the method.

attribute values method parameters

4 interacton -~ - """ "~ !
method [method

new attribute values return value

Fig. 4. Black-box view of a method

This black-box view of a method does not contain the proper objects as
in- and output values. Instead, a finer granularity is given, considering current
attribute values. Thus, the answer to the question what exactly flows through
a Petri-Net representing a method is not objects, but relevant parts of objects.
The reason for the decision not to let the objects themselves flow through a
method is to avoid a situation in which one object moves through different
concurrent threads of one method, as this could lead to different versions of
the same object, each having different attribute values. These versions would
have to be merged at the end of the execution of a method with respect to
its semantics to become consistent. This would be achieved with the help of
additional modeling constructs, which would lead to more complex models.

What follows is a description of Pr/T-Net extensions, introduced to enable
communication from a net-specified method with the environment as described
above.

Input interface extensions for Pr/T-Nets:

The input interface is simply a set of bold printed places. These "preload places’
called net elements serve different tasks. As already mentioned, input values for
methods are parameters, given by the message received from the object for which
a method is to be executed, as well as current attribute values. Considering a
method signature like 'method_name (arg; : types,...,arg, : type,)’, the execut-
ing method needs to access parameters arg,...,arg,. Utilizing preload places,
import of these parameters into a method is achieved simply by assigning such
a place the respective parameter identifier (fig. 5a). If a method is executed,

83

the value of the parameter assigned to the preload place is transparently loaded
into this place, which further behaves like an ordinary one. Preload places are
used analogously to import attribute values by assigning to them the respective
identifiers (fig. 5b), as well as for the initialization of local variables (fig. 5c).
Furthermore, ’self’ can be assigned to preload places (fig. 5d), which explicitly
imports the OID of the object for which the method was activated. Finally,
preload places can be annotated with tuples built from these alternatives. In
summary, preload places are used to define an object-dependent initial marking
for nets describing the functionality of methods in object-oriented models.

parameter attribute type : value “self’
a) b) c) d)
Fig. 5. Preload places serving different tasks

Interacting interface extensions for Pr/T-Nets:

To communicate with the environment of a method we need to be able to send
messages. Therefore, a special kind of transition called 'message transition’ is
introduced (fig. 6).

OID.message(arg ,...¢4g)->return_value

Fig. 6. Message transition

From a designer’s point of view, a message transition is simply a transition
with a message specification in it. The OID of the object the message should
be sent to and the respective method parameters have to be transported to the
message transition, where arcs can be annotated as usual within Pr/T-Nets. If
the method to be activated with a message is a synchronous one, the return
value can be used in further steps of the execution of the method. Analogue to
dynamic models, such a transition does not fire timeless as it has to wait for the
return value of the method to be activated. From a semantical point of view,
this is again only a syntactical abbreviation for a more complex net structure.

Output interface extensions for Pr/T-Nets:

Similar to the input interface special kinds of places are introduced to serve as
output interface. To indicate the end of the execution of a method, a so called

‘exit place’ is introduced by a double circle (fig. 7a). If a token resides on such
a place the execution of the method ends. In case of a synchronous method this
token is returned to the sender of the activating message.

attribute
a) b)
Fig. 7. Exit and postsave place

Attributes often have to be updated at the end of the execution of a method.
To be able to model such a case in a comfortable way, 'postsave places’ are
introduced by bold circles like preload places (fig. 7b). Preload and postsave
places can be distinguished easily in a given net: the former has at least one
outgoing arc and may have incoming arcs, whereas the latter may have incoming
arcs only. A postsave place is annotated with the attribute identifier to which
the token resident on this place should be the new value as soon as the execution
of the method ends. If attributes need to be accessed not only at the start/end
of the execution of a method, message transitions calling the implicitly defined
‘get’ and ’set’ methods of an attribute have to be used.

Using Pr/T-Nets with a place capacity of '1’ extended this way the specifi-
cation of methods produce’ and ’consume’ of the example results in fig. 8.

b, id
b, id b, id b, x b, x
\ 4 v
[] b.insert(id) b.remove() -> x [j
A A
b, id b, id b b b

Fig. 8. Methods of classes 'producer’ and ’consumer’

As ’produce’ gives no return value activation of this method results in the
(implicit) creation of a new concurrent process. This process imports the current
values of attributes b’ and ’id’ into the net, using a single preload place. After-
wards, method ’insert’ of the associated "buffer’ object is activated with the ’id’
of the producer as argument utilizing a message transition. If the amount of data

85

elements stored within the addressed buffer object exceeds the maximum bound-
ary, or if any of the methods ’insert’ or 'remove’ is already active, the producer
process is suspended. If the state of the dynamic model of the ’buffer’ object
allows for the activation of ’insert’, the suspended producer process continues
after termination of this method.

Within method ’consume’ a preload place imports the value of attribute b’
into the net, i.e. the identifier of the associated 'buffer’ instance. This value is
further used as destination of the message sent to activate the 'remove’ method
using a message transition. Here, a ’consumer’ process implicitly activated by
calling its asynchronous ’consume’ method is suspended if the state of the dy-
namic model of the buffer’ instance demands so, i.e. if there is no element to be
removed from the buffer or if a method of this object is currently executed. If the
state of the dynamic model of the associated 'buffer’ object allows for activation
of 'remove’, the consumer process continues after termination of this method.

Even if the producer/consumer example is presented including all implemen-
tation details, OOPr/T-Models offer support for object-oriented modeling on
arbitrary abstraction levels. Class diagrams (which can be organized through
packages) to structure a system domain are in principle useful at every abstrac-
tion level. Dynamic and functional descriptions can be added and stepwise re-
fined in a seamless way if details become more relevant. The descriptions of the
methods of a system may include supertransitions [HuJeSh90] for abstraction
purposes in the early stages and functional decompositions in the later ones.

3.2 Avoiding inheritance anomalies

After having introduced the OOPr/T-Model notations, the subject of this sub-
section is now the description of a slightly modified producer/consumer sys-
tem to illustrate the use of dynamic models to resolve inheritance anomalies
[MatYon93].

Inheritance anomalies are very likely to occur within concurrent object-
oriented systems if there are no concepts to separate the synchronization condi-
tions of a method from its functionality. In case such concepts are not available,
the extension of a superclass by a subclass with additional methods leads to the
redefinition of inherited methods within the subclass. The reason for this need to
redefine inherited methods stems from the integrated synchronization conditions,
which almost inevitably change if a subclass includes additional methods. Due
to these problems, early ’object-oriented’ programming languages for concur-
rent systems like POOL/T [Amer87], PROCOL [BosLaf89], and others offered
no support for the concept of inheritance to avoid related anomalies.

The separation of a the synchronization conditions of a method from its
functionality is realized by OOPr/T-Models through the use of separate dynamic
and functional views. To illustrate this aspect, figure 9 gives a modified version
of the static view of the initial producer/consumer system.

Here, class 'new_buffer’ extends its superclass with an additional method 're-
move_new’. This method intends to remove an element out of the buffer only
if a call to method remove’ has not followed the last activation of ’insert’, i.e.

86

producer

id :int

controller

+ start ()

A4

new_buffer

consumer

b : new_buffer
+ start ()

+ remove_new() : int

id :int
b : new buffer

Y

+ start ()

buffer

count : int
capacity : Int

+insert (x : int) : bool
+ remove() : int

Fig. 9. Extended producer/consumer system

‘remove_new’ is only allowed to be activated immediately after ’insert’. Within
a language not integrating concepts to resolve inheritance anomalies, this acti-
vation condition leads to a reimplementation of the inherited methods ’insert’
and ‘remove’ to be able to indicate which was activated last, even if there is
no need to do so from a functional point of view. OOPr/T-Models avoid such
redefinitions as a consequence of class extensions through the use of separate
dynamic models, which include synchronization conditions. Figure 10 gives the
dynamic model assigned to class 'new_buffer’, which specifies that method ’re-
move_new’ is only allowed to be activated if invoked immediately after 'insert’.
In consequence, the inherited methods ’insert’ and remove’ remain unchanged

in class 'new_buffer’, thus resolving inheritance anomalies.

‘4 new_buffer

-

[count < capacity]

|

remove

[count # 0]

remove

insert

remove_new

[count < capacity]

Fig. 10. Dynamic model for class 'new_buffer’

87

4 OOPr/T-Models and their formal base

Unlike OMT, UML, and other modeling frameworks to set up multiperspective
system views, OOPr/T-Models have a formally defined semantics and allow for
the automatic generation of executable Java code. This section outlines both.

4.1 Translation to Pr/T-Nets

The formal base of the introduced notation is given by a set of translation rules
which generate a Pr/T-Net out of a given OOPr/T-Model. Here, static, dynamic
and functional views are integrated. In consequence, it is not only single views
but the whole system that has a formally defined semantics in terms of a Pr/T-
Net extended with supertransitions and place fusion [HuJeSh90].

The main idea is to use predefined patterns for building a Pr/T-Net-based
object-oriented runtime system which integrates the static, dynamic and func-
tional views of an OOPr/T-Modell. The elementary structure of such a Pr/T-Net
constructed from a given OOPr/T-Model serves the purpose of message routing,
providing the communication infrastructure needed in object-oriented systems.
Figure 11 gives an abstract sketch of the runtime system, which is set up hi-
erarchically with a single place as root called ’system message collector’. Every
message sent in a system is placed here first, utilizing place fusion. Each class of
an object-oriented system is represented by a Pr/T-Net structure, which is con-
nected to the ’system message collector’ by a single transition. The guard of such
a transition evaluates to 'true’ if a message resident on the ’system message col-
lector’ is to be sent to the associated class. If such a transition fires, the message
is taken from the ’system message collector’ to the ’class message collector’ of the
respective class. The Pr/T-Net representation of each class integrates its associ-
ated dynamic and functional models. In order to connect dynamic and functional
models to a class representation, the respective views of an OOPr/T-Model need
to be transformed into Pr/T-Nets first. This translation, which is in detail de-
scribed in [Phil99], allows concurrent reentrant usage of functional models, i.e. a
Pr/T-Net representing a method exists only once within its defining class. The
same holds for dynamic models which are object properties like attributes, but
which exist, like methods, only once within each class. If a message is routed to
the method to activate, and the dynamic model of the respective object allows
for execution, the preload places of the addressed method are initialized.

Figure 12 gives an abstract sketch of the top-level Pr/T-Net structure which
represents a class and serves message routing purposes. If a message resides on
a ’class message collector’, the following cases are distinguished:

— ’create’: In order to instantiate a new object, its definition is needed, i.e. a
class representation has to store static information concerning object defini-
tions to be able to instantiate new ones. This is realized using a prototype
for each class whose structure reflects the attribute definitions of the static
OOPr/T-Model. If a new object is to instantiate, this prototype is dupli-
cated and a new OID generated. This identifier is then returned to the caller

88

-

'system message collector’ |

message message

[message for
‘class 1"]

[message for
‘class n”]

‘class message collector’ P

message message

[message for [message for

1
1
1
1
1
1
‘method1']| | e ‘method n’] |
|
|
e e .
! | ! 1 :
: e | : ! l
(| A !
1 | ! 1
| 5 \4/ |
X ! X ! netstructure I
net structure X I | representing :
representing Lo | L I dynamic model | Net structure
method1” | "7 1 o —___" Tofclass 1" I representing

“class 1

Fig. 11. Abstract sketch of the e.g. system

of the method in order to be able to reference the new object. To store all its
objects, each class integrates a single place called ’extent’, i.e. if an object is
created, the duplicated prototype with its newly generated OID is inserted
into the set of already existing objects of this class residing on the extent.
’get_attribute’, ’set_attribute’ : As the extent storing all objects of a
class is transparent, i.e. not directly accessible from a user’s point of view,
predefined ’get’ and ’set’ basic update methods for each attribute have to
be used. If such a method is invoked, the requested attribute value is ex-
tracted /replaced from the respective object in the extent. Due to the fact,
that basic update methods are the only way to access attributes of an object,
the use of preload and postsave places within functional OOPr/T-Models is
only a syntactical abbreviation of their explicit use.

’ 1,
['create’] class message collector [return]

message

message

list of available 'get’
and 'set’-methods’
i

list
['get’, 'set] [message for user-
defined method

Fig. 12. Schematic pattern for representing classes within Pr/T-Nets

89

— user-defined methods: If a message addresses a user-defined method, this
message is routed to the Pr/T-Net representation of the respective functional
OOPr/T-Model. If the addressed method is inherited, the message to invoke
this method is redirected to the superclass where the corresponding Pr/T-
Net representation is included. This practice avoids the need to represent
the functional model of a method defined in one class within each of its
subclasses. If the message reaches the Pr/T-Net representation of the method
and the dynamic model allows for execution, the preload places of the method
are initialized.

— return message: In order to be able to return a value from a synchronous
method to the sender of the message activating this method, an internal
(transparent) 'return message’ is used. If a class receives such a message, the
value returned is routed to the respective method.

The Pr/T-Net structures extending the described top-level view of a class
representation providing a more detailed insight into the formal base of OOPr/T-
Models are given in [Phil99]. A prototype to support the graphical editing of
OOPr/T-Models is developed in [George99]. This prototype also allows for the
automatic generation of executable Java code, which is described next.

4.2 Java code-generation

Due to the formal base of OOPr/T-Models, they are not only suited to serve as
architectural layout for implementation. Additionally, executable Java code can
be automatically generated, because the formal semantics of OOPr/T-Models
as described in the last section is explicitly defined to be compatible with the
way object-oriented concepts are integrated in Java (other languages are also
possible). This binding to a programming language results from our goal to sup-
port seamless software development ranging from high-level analysis to low-level
implementation and the not commonly accepted definition of object-orientation,
which leads to different programming language interpretations.

At early development stages with their abstract high-level models automatic
code-generation is only rarely useful, as implementation details are not known
or considered. In contrast, this feature can be useful during the design period
to create class frames from the architecture, if a direct use of the destination
language for implementation purposes is preferred. If a particular application
demands a partial or a complete formal model, OOPr/T-Models can be used
down to the visual programming level.

In detail, static, dynamic, and functional views are translated to Java ac-
cording to the following principles:

— Static view: The generation of Java classes from a static OOPr/T-Model is
mostly straightforward. A difference between Java and OOPr/T-Models is
that the latter supports generic classes (templates). To be able to map this
concept to Java, a preprocessing step is introduced which first replaces ab-
stract parameters of generic classes by actual ones. Furthermore, additional

90

classes need to be introduced to the Java code to implement the implicit
start of a new Java thread if a method without return value is activated and
its ’sync’ flag is not set within the OOPr/T-Model.

— Dynamic view: A dynamic model specifies activation conditions for pub-
licly available methods of the class it is assigned to. To integrate a dynamic
model into each instance of a Java class, each place of such a model is trans-
lated into an additional attribute of type ’int’, which stores the amount of
token resident on the corresponding place. If a publicly available method is
to activate, an additional method is called which returns if the current state
of the dynamic model allows for the execution of the method. If so, this ad-
ditional method changes the state of the dynamic model. Then the method
is executed and finally the dynamic model is updated again to indicate that
the execution of the method is terminated. If the dynamic model does not
allow the activation of a method, the requesting thread is suspended until
the dynamic model of the particular object changes.

— Functional view: The generation of Java methods from corresponding
functional OOPr/T-Models is realized with a Pr/T-Net simulator in each
method. Here, each place of a functional model is translated into a pair of
local variables, the first of which indicates if a token resides on the corre-
sponding place. The particular value of this token is then stored within the
second variable. Each transition of a functional OOPr/T-Model is translated
into an ’if’-statement as part of a loop which terminates if a value exists on
the local variable representing the exit place of the functional OOPr/T-
Model. The preconditions to fire a transition are then translated into the
enabling conditions of the corresponding ’if’-statement. If such a condition
holds, values are removed from local variables representing places with in-
coming arcs to the respective transition. Furthermore, new values are pro-
duced and assigned to the local variables representing places with outgoing
arcs from the transition represented by the ’if’-statement.

The described generation of Java code gives reasonable results but is not yet
optimized and has several drawbacks which are mainly related to the transla-
tion of functional models. In fact, the use of a Pr/T-Net simulator within each
method is not the best choice, as only interleaving concurrency is supported
within a method. Additionally, this approach lacks efficiency especially consid-
ering complex methods. We are currently working on a more sophisticated solu-
tion for code-generation which is intended to result in true concurrency within
methods and a more efficient code.

5 Summary and further perspectives

This article has introduced OOPr/T-Models which were developed to overcome
the problems of existing proposals in the area of object-oriented Petri-Nets with
respect to a set of properties which we consider essential. As a result of working in
this direction, OOPr/T-Models are complete with respect to object-orientation

91

and Petri-Nets. Furthermore, concepts to resolve inheritance anomalies are in-
tegrated and a comparatively ergonomical notation is given, even if the latter
can not be proved due to its qualitative nature. Finally, OOPr/T-Models allow
for the multiperspective development of (software) systems with static, dynamic,
and functional views on arbitrary abstraction levels ranging from high-level anal-
ysis to visual programming. In combination with automatic code-generation,
seamless object-oriented software development on a formal base is supported.

OOPr/T-Models have proven to be applicable not only to small systems
like the described producer/consumer example which mainly illustrates concur-
rency synchronization features. An example containing more complex methods
from a functional point of view is described in [Phil00] with the specification
of a system for the concurrent calculation of primes. More complex concurrent
object-oriented systems were created with OOPr/T-Models also, namely a frac-
tal rendering and a ray-tracing system [Hutten00]. The image synthesis of the
latter includes features like different geometric objects, multiple lights sources,
reflection, shading, transparency etc. All these examples were refined down to
the visual programming language level, and executable concurrent Java code was
generated from them.

The overall results from developing the described systems using OOPr/T-
Models are encouraging, even if there still remain some open issues. To be able
to further develop the concepts of OOPr/T-Models and the supporting tool, more
case studies from different application areas are needed. Another field of interest
is the mapping of UML notations to dynamic and functional OOPr/T-Models.
This would allow for the formalization of UML parts and the hiding of Petri-
Nets from a designer’s point of view, if necessary. Integration of an additional
semi-formal (but Petri-Net based) notation to support the communication with
domain experts especially in the early analysis stages is possible as well (e.g.
[Marx98]).

Besides the ongoing work on these topics, future developments will include
extensions of the notation and the tool with concepts to handle persistent data,
integration of mechanisms to model/generate distributed systems (CORBA) as
well as a GUI building facility. Ideally, these improvements will lead to an
integrated CASE-tool for the seamless development of concurrent/distributed
object-oriented (software) systems throughout the whole development process
on the formal base of Petri-Nets.

References

[AalBas97] W.M.P. van der Aalst und T. Basten. Life-cycle Inheritance: A
Petri-net-based approach. Application and Theory of Petri Nets 1997,
Band 1248 von LNCS. Springer-Verlag, Berlin, 1997.

[AleGog91] A. J. Alencar und J. A. Goguen. ’OOZE: An Object Oriented
7 Environment’. P. America, 'ECOOP ’91: European Conference on
Object Oriented Programming’, LNCS 512. Springer-Verlag, 1991.

92

[Amer87]

[ArnGos96]

[BaDeMa88|

[BoNuFe97]

[BosLaf89]

[BruBal86]

[Burk94]

[CeJaVo97]

[Deck95]

[Durr92]

[Engl93]

[EnLeRo90]

[Evans®98]

[GenLau81]

[George99)

[GiGrWi9g]

[HeeVer91]

P. America. ’Inheritance and subtyping in a parallel object-oriented
language’. "ECOOP ’87: European Conference on Object Oriented Pro-
gramming’, LNCS 276. Springer-Verlag, 1987.

K. Arnold und J. Gosling. ’'The Java Programming Language’.
Addison-Wesley, 1996.

E. Battiston, F. DeCindio und G. Mauri. 'OBJSA Nets: a class
of high level nets having objects as domains’. ’Advances in Petri-Nets
1988’, LNCS 340. Springer-Verlag, 1988.

T. Boehme, J. Nuetzel und W. Fengler. ’Objektorientiertes En-
twurfsmodell fir Steuerungssysteme auf Basis der Petri-Netz-Theorie’.
D. Abel E. Schnieder, ’Entwurf komplezer Automatisierungssysteme’,
Braunschweig, 1997.

Jan van den Bos und Chris Laffra. PROCOL -~ A Parallel Object
Language with Protocols. Proceedings of the OOPSLA ’89 Conference
on Object-oriented Programming Systems, Languages and Applications,
S. 95-102, Oktober 1989.

G. Bruno und A. Balsamo. ’Petri net-based object-oriented mod-
elling of distributed systems’. ACM SIGPLAN Notices, 21(11), Novem-
ber 1986.

R. Burkhardt. ’Modellierung dynamischer Aspekte mit dem Objekt-
Prozess-Modell’. Dissertation, Technische Universitat [lmenau, 1994.
M. Ceska, V. Janousek und T. Vojnar. ’PN-Tualk - A Compul-
erized Tool for Object-Oriented Petri Nets Modelling’. ’Proceedings of
the 6th International Workshop on Computer Aided Systems Theory -
EUROCAST97’, LNCS 1333. Springer-Verlag, 1997.

G. Decknatel. 'F-Nets’. Diplomarbeit, Universitdt Koblenz-Landau,
1995.

E. Durr. ’A formal specification language for object-oriented designs’.
P. Dewilde und J. Vandewalle, 'IEEE CompFEuro 92 Proceedings’. IEEE
Press, 1992.

S. English. ’Coloured Petri Nets for object-oriented modelling’. Disser-
tation, University of Brighton, 1993.

J. Engelfriet, G. Leih und G. Rozenberg. ’Net-Based Descrip-
tion of Parallel Object-Based Systems’. ’Foundations of Object-Oriented
Languages’, LNCS 489. Springer-Verlag, 1990.

Andy Evans, Jean-Michel Bruel, Robert France, Kevin Lano
und Bernhard Rumpe. Making UML Precise. Luis Andrade, Ana
Moreira, Akash Deshpande und Stuart Kent, Proceedings of the OOP-
SLA’98 Workshop on Formalizing UML. Why? How?, 1998.

H. J. Genrich und K. Lautenbach. ’System Modelling with High-
Level Petri Nets’. Theoretical Computer Science, 13(1), 1981.

T. George. ’'OOPr/T-Modeller : Ein Werkzeug zur Modellierung
nebenldufiger objektorientierter Systeme auf der Basis von UML und
Petri-Netzen’. Diplomarbeit, Universitdt Koblenz-Landau, 1999.

H. Giese, J. Graf und G. Wirtz. ’Modeling Distributed Software
Systems with Object Coordination Nets’. ’Int. Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE’98)’, Kyoto,
April 1998.

K. M. van Hee und P. A. C. Verkoulen. ’Integration of a Data
Model and High-Level Petri-Nets’. ’Proceedings of the 12th Interna-

93

[HolVer95]

[HuJeShoo]

[Hutten00]

[KapSch91]

[KeEvRu99]

[Lakos95]

[LanHau94]

[Maier97]
[Marx98|

[MatYon93]

[Meyer97]
[Petri62]
[Phil99]

[Phil00]

[Rati99]

[Rumb™91]

[Stulle97]

tional Conference on Applications and Theory of Petri-Nets’, Gjern
(Denmark), 1991.

T. Holvoet und P. Verbaeten. 'PN-TOX: a Paradigm and Develop-
ment Environment for Object Concurrency Specifications’. ’Proceedings
of the 16th International Conference on the Application and Theory of
Petri-Nets’, Turin, 1995.

Peter Huber, Kurt Jensen und Robert M. Shapiro. ’Hierarchies
in Coloured Petri Nets’. G. Rozenberg, ’Advances in Petri Nets 1990,
LNCS 483. Springer-Verlag, 1990.

P. von Hutten. ’'Modellierung eines Ray-Tracers mit OOPr/T-
Modellen’. Diplomarbeit, Universitat Koblenz, erscheint 2000.

G. Kappel und M. Schrefl. ’Using an Object-Oriented Diagram-
Technique for the Design of Information Systems’. H.G. Sol und K.M.
van Hee, ’Dynamic Modelling of Information Systems’. Elsvier Science
Publishers B.V. (North-Holland), 1991.

S. Kent, A. Evans und B. Rumpe. UML Semantics FAQ. A. Mor-
eira und S. Demeyer, Object-Oriented Technology, ECOOP’99 Workshop
Reader. LNCS 1743, Springer Verlag, 1999.

C. Lakos. 'From Coloured Petri Nets to Object Petri Nets’. ’Proceedings
of the 1st Workshop on Object-Oriented Programming and Models of
Concurrency’, Turin, 1995.

K. Lano und H. Haughton. A Comparative Description of Object-
Oriented Specification Languages’. K. Lano und H. Haughton, ’Object-
Oriented Specification Case Studies’. Prentice Hall International, 1994.
C. Maier. ’Objektorientierte Analyse mit gefdarbten Petri-Netzen'.
Diplomarbeit, Universitdat Hamburg, 1997.

T. Marx. ’NetCase : Softwareentwurf und Workflow-Modellierung mit
Petri-Netzen’. Dissertation, Universitat Koblenz-Landau, 1998.

S. Matsuoka und A. Yonezawa. ’Analysis of Inheritance Anomaly
in Object-Oriented Concurrent Programming Languages’. Research Di-
rections in Concurrent Object-Oriented Programming, 1993.
Bertrand Meyer. Object-oriented Software Construction. Prentice
Hall, second edition, New York, N.Y., 1997.

C. A. Petri. 'Kommunikation mit Automaten’. Dissertation, Institut
fiir Instrumentelle Mathematik Bonn, 1962.

S. Philippi. ‘Synthese wvon Petri-Netzen und objektorientierten
Konzepten’. Dissertation, Universitat Koblenz-Landau, 1999.

S. Philippi. 'Modeling of concurrent object-oriented systems using high-
level Petri-Nets’. Proceedings of the 4th World Multiconference on Sys-
temics, Cybernetics and Informatics (SCI’2000), Orlando, USA, 2000.
Rational Software Corporation. "UML-Documentation 1.3’
'www.rational.com/uml’, 1999.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy und
W. Lorensen. ’Object-oriented modeling and design’. Prentice Hall
International, 1991.

M. Stulle. ’Ereignisdiskrete Zustandsrekonstruktion auf der Grund-
lage objektorientierter Petri-Netz-Modelle am Beispiel flexibler Ferti-
gungssysteme’. Dissertation, Technische Universitdt Miinchen, 1997.

94

An Architecture for Adaptive Planning and Scheduling
of Softwar e Processes Using Timed Colored Petri Nets

By

N.C. Narendraand Indradeb P. Pal
Software Engineering Process Group (SEPG)
Hewl ett-Packard | ndia Software Operations Ltd.
29 Cunningham Road
Bangalore - 560 052
Emai | : {ncnaren,ipp}@ndi a. hp. com

Abstract. One of the most vexing problems in managing software projects, is the need to
appropriately plan and schedule them. Since software projects are process-oriented, this gives
rise to the need for planning and scheduling the processes in a software project, so asto be able
to meet the project’s objectives within the time and cost constraints imposed on the software
project. To make matters worse, the parameters of a software project keep changing al the
time, requiring the project team to continuously adapt their processes and replan and reschedule
their activities constantly.

In this paper, we present a Petri Net based formalism called TCPN or Timed Colored Petri Net,
for modeling, planning and scheduling software processes. Our formalism is based on the same
formalism in [4], and we show how it can incorporate planning and scheduling algorithms
developed outside the Petri Net community; in particular, planning algorithms from [8], and
scheduling algorithms from [9]. We also show that it is an overal Planning and Scheduling
architecture, and we also show how this can fit into an adaptive process framework such as the
one described in [1]. Since the original formalism in [4] was developed for modeling general
workflows, we show how it can be adapted to suit the multidimensional nature of software
projects.

1. Introduction

In any software project, planning and scheduling is one of the most critical problems
that the project team could face. The reason for this, is that improper planning and
scheduling will cause severe problems later in the software lifecycle, problems that
could become impossible to fix. Hence proper planning and scheduling — and
appropriate mechanisms for handling risks and unexpected deviations during the
course of the project —iscrucial for the project.

In this paper, we present a Petri Net based formalism called TCPN or Timed Colored
Petri Net, for modeling, planning and scheduling software processes. Our formalism
is based on the Timed Colored Petri Net formalism of [4]. We show how it
incorporates planning algorithms from [8], and scheduling algorithms from [9], i.e.,
planning and scheduling algorithms from outside the Petri Net community. We also

95

show that it is an overall Planning and Scheduling architecture, and we also show how
this can fit into an adaptive process framework [1]. Since the original formalism in [4]
was developed for modeling workflows in general, we show how it can be adapted to
suit the multidimensional nature of software projects.

This paper is organized as follows. We present some preliminary definitions in the
next section. In Section 3, our planning algorithm is presented. We show how — once
planning is done - scheduling can be done, in Section 4. In Section 5, we demonstrate
how our algorithm incorporates the adaptivity that is a crucial aspect of software
processes. In Section 6, we present an example from areal-life project that illustrates
our ideas. The paper concludesin Section 7 with suggestions for future work.

2. Préiminaries

Every software project is composed of the following basic entities:

Activities: These are the steps followed during the software project, and are

usually composed into two types of processes in the project:
Engineering processes: these are the "regular” processes implemented by the
project team in order to develop their deliverables
Support processes: these are the processes that are required to be executed by
the project team in coordination with central groups such as the SEPG, SQA,
etc. Although these may not provide immediate benefit to the software
project, they are useful for providing project-level process performance
information to the central groups, which can in turn be used to improve
future projects

Artifacts: These are theinternal and external deliverables produced by the project

team.

Agents: These are the roles played by different individuals in the project team,

e.g., Project Manager, Technical Lead, Testing Engineer, etc.

Resources: These are the software and hardware resources needed to execute the

project, e.g., software tools, special-purpose hardware, etc.

From the above definitions, it is clear that software development is truly a multi-
dimensional activity, involving both engineering and support processes, and where
the project team needs to balance among activities, artifacts, agents and resources.

Most software projects can be modeled as per a 3-tier architecture, thus:

The goals of the project and the organization to which it belongs, is the top tier.
These goals are usually business-driven, and can be mapped into goals for
particular software processes

The middle tier typically models the usual lifecycles that the software projects
follow, e.g., waterfall, V-model, spiral, etc.

The lowest tier represents the actual processes defined and followed in the
project; it is an instantiation of the lifecycle that the project team has chosen, and
which has been modeled in the middle tier

96

In [1], the first author has described a similar 3-tier architecture for general workflow
processes, which finds application in software projects also. The corresponding layers
from [1] are Planning, Schema and Process L ayers, respectively.

We now present the Petri Net definitions. A Timed Colored Petri Net (TCPN) (see
Fig. 1) isafive-tuple N = (P, T,l,O,TS) satisfying the following requirements:
i) Pisafinite set of places

i) Tisafinite set of transitions

iii) | belonging to T is the set of input places for each transition, i.e, the pre-set
of T

iv) O belonging to T is the set of output places for each transition, i.e., the post-
setof T

V) TS is the time set, i.e.,, the set of execution times for each transition
(expressed as execution intervals)

vi) Also, each place p in P has a set of allowed colors attached to it and this

means that a token residing in p must have a value which is an element of
this set. In other words, the colors specify the different types associated with
each token. In the software project context, each token represents a resource
(such as a human, or computer resource) which is consumed during a
transition.

Fig.1

O

Placep
Transition

A marking M of the Petri Net represents the state of the Net, i.e., the distribution of
tokens over places. Whenever atransition fires, the marking changes, since tokens get
redistributed over the Net; hence a transition firing causes a state change in the Petri
Net. A marking M" is said to be reachable from a marking M' if it possible to reach
M" from M" by a sequence of transition firings.

97

A Petri netissaid to be liveif for every reachable state M' and every transitiont, there
isastate M" reachablefrom M" which enablest.

A Petri net is said to be bounded or k-safe if and only if for each place p there is a
natural number k such that for every reachable state the number of tokensin p is less
than or equal tok. If k is 1, then the Petri net is said to be safe.

Paths connect nodes by a sequence of arcs. Hence a Petri net is strongly connected if
and only if for every pair of nodes (i.e., places and transitions) x and y, there is a path
leading from x toy.

A workflow net (see[6]) isaPetri Net with the following properties:
It has a unique sink place o (with no output transitions) and a unique source place
i (with noinput transitions)
If we add atransition from o toi (hereafter referred to as the augmented wor kflow
net), then the resulting Petri net becomes strongly connected.

We call our TCPN representation well-defined if and only if it is live and bounded.
Hereafter in this paper, we will be dealing only with well-defined TCPNs, due to the
following reasons:
We will seein later sections, that due to our planning and scheduling algorithms,
the TCPNsthat will be generated, will haveto belive
We will also see in later sections, that the constraints and invariants on the
activities and resources of the software project, will ensure that a finite bound can
be determined on the resources (and hence, tokens)

A Petri net that islive and bounded, is said to be sound. In [6], it has been proved
that workflow nets are sound.

Prop 1: For our software domain, it is clear that our TCPN must be a workflow net.
Proof:
All software projects should have uniquely defined starting and ending points
The software processes should be defined so that the resulting augmented
workflow net is strongly connected, since there should be a path from any place

to any transition in the TCPN representation of the software project's processes
QED

Prop 2: All well-defined TCPNs are sound.
Proof:

From Prop 1, it is clear that the TCPN is aworkflow net. From Theorem 1in [6], a
workflow net is sound if and only if its augmented workflow net islive and bounded.

From the above definitions, it is clear that the augmented workflow net for the

TCPN islive and bounded, since the underlying TCPN representation is well-defined.
QED

98

A workflow net is said to be free-choice, if and only if the following holds:
For any two transitions, either their presets are identical or they do not have any
place in common

Although most workflow models are supposed to be free-choice [Aalst3, pg. 38],
TCPNs representing software projects need not be. Thisis due to the fact that parallel
execution threads in a software project may still have dependencies on each other.
Our example in Section 6 will illustrate this fact.

3. Planning Algorithm

3.1 Planningin Software Projects

Thetask of planning involvesthe following activities;
Determining the project requirements and goals — this will involve not only
product requirements, but also process requirements (such as, for example, the
number of defects that need to be caught during reviews, the maximum number
of defects that can be tolerated in any lifecycle phase, or the productivity goals
for specified project activities)
I dentifying the resources and staffing available for the project
Fixing the schedul e of the project via negotiations with the customer
Identifying the major risksin the project [12]

Once these are identified, the planning process basically boils down to determining
the project delivery lifecycle, and the different processes that should form part of the
lifecycle. This will also involve sequencing the support activities that go along with
thelifecycle, such asthefollowing:
Data collection and submission to the central Software Engineering Process
Group (SEPG), who will then do data collation and analysis
Planning Software Quality Assurance (SQA) activities, such as end-of-phase
previews/postmortems, audits, process reviews within the project, in consultation
with the central SQA group
Participation by project team members in organization-wide process
improvement activities, in order to support the central SEPG in its activities
These activities should also be executed as per predefined processes, and they also
need to be sequenced along with the “regular” project activities.

Since planning is typically a complex and iterative activity involving making
choices from among several alternatives, there is a need to encode the relative
usefulness of the different choices in terms of the impact that they will make on the
overall delivery lifecycle. It is usually convenient to represent these as predicates, in
the normal (either conjunctive or disjunctive) form that predicates are usually
represented. These predicates are needed either as preconditions or postconditions of

99

activities. Preconditions specify the conditions necessary for an activity to be
executed successfully, and postconditions specify the state of the project (from the
perspective of that activity) once the activity is successfully executed.

Hence predicates can be specified for the project artifacts that are produced/used
during any activity in the software project, and these predicates can be used to derive
the appropriate software processes for the project. Some examples are;

The review should catch at least a minimum number of errors; in other words, the
review should have been effective enough to weed out a sufficiently large
number of problems in the artifact. Such metrics are typically derived from
organization metrics data, and are assigned to the project team by the Senior
Management, in the form of quantitative process goals

There should have been sufficient participation in the review by the project team
— in other words, the appropriate team members (decided by skill level,
experience, etc.) should have participated in the review

Thus each of these predicates can also be encoded against each of the artifacts in
the project, and it will be the responsibility of the project team to ensure that they plan
the project activities so that all these predicates are met.

3.2 Object-Centered Planning

From the description above, it becomes clear that the planning algorithm that we
use, should be *object-centered”. In other words, the predicates used in planning
should be oriented towards the objects in the projects (viz., agents, artifacts,
resources, activities), which will greatly enhance planning efficiency [8].

Hence we have adapted the Object-Centered Planning (OCP) approach presented
in [8] for our purposes. The OCP approach consists of the following steps:

Initial domain description; here, the objects, the sorts (i.e., object classes) that
they belong to, the different states and substates that they can exist in for each
sort, are described and represented as predicates
State transition diagrams are then described for each sort in the domain, where
each node in the diagram represents a substate class - adisjoint set of substates
State invariant construction - here, we consider the different ways in which the
different sorts can interact with other, and from this we can construct a set of
logical invariants for the model. Invariants are nothing but predicates that should
aways hold during project execution. (more on thisin Section 3.3).
Operator specification; here, parametrized operators that model the effect of
actions are specified in terms of the they affect classes of substates

N.B: In the software domain, the operators are nothing but the activities performed
by the project team, which can be represented as transitions in the TCPN formalism
(thiswill be described in detail later in this section).

The OCP algorithm basically operates asfollows[8]:

100

It is a search through a space of partial plans. (The partial plans are nothing but
those derived from the project lifecycle model, from which the actual processes
can be derived.) First an open node in the set of partial plansisretracted

If the node does NOT meet the termination condition such that the substates of
the node meets a goal condition (i.e., its postconditions as expressed in the form
of predicates and invariants do not meet a goal condition), then we find the
difference between the objects' current states and their desired states

An operator (or operator sequence) is then picked that reduces the difference

If the operator (or operator sequence) is applicable (i.e., its precondition is met),
then it is applied to the existing node; otherwise, the weakest precondition of an
instantiation of the operator (or operator sequence) is generated, and is used to
open anew node

If the node DOES meet the termination condition, then the node's parent is then
opened, the algorithm is then applied on the parent

In the next section, we will describe how this algorithm can be mapped onto our

TCPN formalism.

3.3 Mapping OCP Onto the TCPN Formalism

As aready described above, the OCP formulation easily maps onto the entitiesin a

software project, due to the object-centered nature of OCP. The mapping is given in
the table below:

OCP Softwar e Proj ect

Sort = object class Resource class; this includes the
classes of the agents (i.e.,, people
performing certain roles in the software
project) and classes of the resources
(i.e., hardware and software)

Objects Agents and Resources
Operator Change of state as a result of an
activity executing — in our TCPN

formalism, this represents the execution
of atransition

Predicate The predicates can be used to define
certain conditions on the resources and
how they can be utilized in the project.
Each predicate will represent either a
precondition or a postcondition on an
activity

These predicates are usually derived

101

from the collective experiences of past
projects in the organization, and also
from historical metrics data which is
usually stored in adatabase [3].

In our TCPN formalism, these are
modeled as places

Substate State of the TCPN at any given time

Invariants Invariants in the software project,

i.e., predicates that cannot be violated
throughout the project execution — this
could be items like resources, cost, etc.

Using this mapping, it becomes easy to map the OCP algorithm in our TCPN
formalism, and obtain a TCPN representation of the software project plan.

The other major aspect of software project planning, and one that has not been
considered so far, isrisk modeling. Risks are essentially negations of preconditions or
postconditions of certain activities in the project plan. Hence, in our TCPN
representation, we use the risk modeling method presented in [2] (which is adapted
from [12]), and we represent risk modeling as alternate paths in the TCPN
representation. In order to do so, we need to consider the following different aspects

of ri

sk modeling:

the risk factor, i.e., the characteristic that affects the probability of a risk event
occurring

the risk event, which represents the occurrence of a negative incident - or a
discovery of information that reveal s negative circumstances

the risk outcome, which describes the state of the project after the risk has
materialized

the risk conseguences, which represents the state of the project after corrective
action has been taken

the risk effect, which represents the impact of the risk on the customer and the
project

the utility loss, which captures the severity of the loss to the project and to the
organization

Hence, we model risks in the following manner:

determine the risk factors, risk events, risk outcomes and risk consequences of
any activity

model therisk events as negations of preconditions of the activity

model the risk outcomes as negations of postconditions of the activity

model the risk consequences, risk effect and utility loss as alternative place-
transition sequences in the TCPN representation, in order to deal with the risk
(thiswill be done at the appropriate places which are the pre-sets of the transition
representing the activity in question)

102

4.0 Scheduling Algorithm

4.1 Introduction to Scheduling

Scheduling basically involves assigning tasks to resources. Typically, before one
begins the process of scheduling, the basic assumption is that an initial plan of the
project is in place, so that an initial schedule can be drawn up. Hence planning and
scheduling inherently follow each other in an iterative fashion, until a satisfactory
plan and schedule is reached.

There are typically two basic scheduling approaches [9];

Profile-based approaches: these approaches typically consist of characterizing
resource demand as a function of time, and incrementally performing "leveling
actions" to (hopefully) ensure that resource usage peaks fall below the total
capacity of the resource

Clique-based approaches. given a current schedule, this approach builds a
"conflicts graph" whose nodes are activities and whose edges represent
overlapping resource capacity requests of the connected activities. Fully
connected subgraphs (cliques) are identified and if the number of nodes in the
cliqueis greater than the resource capacity, then we have a conflict

In the context of Petri Nets, some work on Petri Net based scheduling has been
donein [4]. Thistechnique uses a Timed Colored Petri Net formalism very similar to
ours. In order to represent scheduling, areachability graph is generated. The nodes of
this graph are the states in which a Petri Net can exist, and two nodes are connected
by a directed edge if one node is reachable from the other by a state change. Hence,
reachability graphs can be used to generate feasible schedules. Since there is no time
delay for transitions in our TCPN formalism, all our schedules are eager schedules,
i.e., schedules where resource assignment to tasks happens immediately. Hence, since
[4] has shown that the reachability graph can generate all eager schedules, we can use
the reachability graph algorithm described therein. In Fig.2, below, we present an
example of areachability graph.

Fig. 2

- jj@@@

03

If we map the above concepts to the software domain, we see the following (some
of these have already been observed by the authors from their own experiences):

- Conflict detection and resolution are more important than mere resource leveling;

thisis due to the fact that in software projects, a certain amount of "overloading"
is tolerated and sometimes even necessary (due to the demanding, dynamic and
semi-chaotic nature of software development)
Since historical data and past experience data is usually available with most
software project teams, either in a database (see [3]) or can be deduced from the
past experiences of team members, there is always some level of initial
scheduling that can be done by the project team

Hence, we select the clique-based approach, and assume that an initial schedule
exists. This scheduleis prepared based on the plan derived in Section 3 using the OCP
algorithm. Let us assume that this is not consistent, i.e., that there are conflicting
reguirements on resources.

The generic solver that we use, is based on the one described in [9], and a basic
algorithmic template is described briefly here. The template identifies three basic
stepsthat require instantiation:

Exists-Unresolvable-Conflict, which detects an unresolvable conflict,
Select-Conflict-Set, which identifies the set of activities included in the resource
conflict to be considered next, and

Select-Leveling-Constraint, which chooses a temporal ordering constraint to
solve the conflict by reducing (leveling) resource requirementsin conflict.

Before we apply the generic solver to the clique-based approach that we have
chosen here, we first describe what a clique is. A clique in a graph G(V,E) is a
completely connected subset C of V. The size of C is the number of verticesin C. The
clique in G with maximum size is called the maximum clique. For any vertex v;, the
we denote by J; the set of vertices connected withv;.

Along with the clique information, we need to maintain two graphs for each
resource r;. The first graph is the Possible Intersection Graph (P1G), whose vertices
are the activities requiring r; and whose edges represent the fact that the execution
intervals of its two vertices may overlap/intersect in the current solution. The second
graph is the Definite Intersection Graph (DIG), whose vertices are the activities
requiring r; and whose edges represent unresolvable conflicts as described in Exists-
Unresolvable-Conflict. It is clear that DIG; is a subset of PIG;.

N.B: The "execution intervals' mentioned are nothing but the starting and ending
times for each transition, i.e., the starting and ending times taken for activities in the
project, and these are in the time set TS defined in Section 2.

If the resource r; has capacity ¢;, then a clique of size at least ¢; + 1 in the graph

PIG; iscalled acritical cliqueinG, and represents a potential resource conflict in the
current solution.

104

The algorithm for determining the cliquesis as follows:

Input parameters are the following: a current clique C and a set of verticeslp used

to enlarge the current clique C as the search progresses

Given G = (V,E) the algorithm starts with C = F and Ip = V; this corresponds to

the search level i = 0.

At any level i of the search tree, the set C is a clique with i vertices C = {vy, W,

..., Vi} and the set I is obtained by the incremental intersection of V, J;, Jz, ..., J,

where the J; have been defined above.

At each step of the algorithm, any of the following conditions hold:

» The current cligue C has size less or equal to ¢;, and it is not possible to
enlarge it over the threshold - in this case, the search endsin failure

> Theset CU{vi} isaclique with size greater thanc;, in which case the clique
withsizec; + 1 is collected into the set of cliques

» In any other case, the algorithm is recursively invoked on the parameters C
U {vi} and Ip.ney to check for larger cliques.

The predicate Exists-Unresolvable-Conflict is realized by determining the minimal
critical sets, i.e, the minimal set of activities that may potentially conflict, using the
DIG. Thisis done for each resource r;. If no such minimal critical sets exist, then all
the conflicts are solvable.

The function Select-Conflict-Set is executed by implementing what [9] calls a
"least commitment strategy”. That is, the set of activities with the least temporal
flexibility (i.e., a function of the degree to which the activities can be reciprocally
shifted in time) is selected. In other words, the less the temporal flexibility, the more
critical it isto resolve first.

The function Select-Leveling-Constraint simply chooses the appropriate leveling
constraint according to the least commitment strategy described above.

4.2 Mapping onto the TCPN For malism
We now map the scheduling algorithm described above, to our TCPN formalism.

Recall that we have seen that we can use the reachability graph to generate all
eager schedules. Hence, each path in the reachability graph from the root to any |eaf
node represents a possible schedule. The question that we need to answer therefore,
is, how to generate the next state from any node in the tree? Since the reachability
graph could potentially become infinitely large, the other question to answer is, how
to limit the combinatorial explosion?

This is where the scheduling algorithm described in Section 4.1 can be used. The
constraints and possible resource conflicts detected during the course of executing
that algorithm will limit the number of reachable states from any node in the
reachability graph. Hence, the scheduling algorithm of Section 4.1 can be run at every

105

node in the reachability graph, and the next set of reachable states can be derived by
not considering those states resulting in conflicts.

5.0 Handling Adaptivity in Software Projects

The previous sections of our paper described our TCPN formalism and showed how a
general planning and a general scheduling algorithm can be mapped onto our
formalism. However, software projects are highly adaptive and semi-chaotic, hence
any planning and scheduling architecture for software projects needs to incorporate
adaptivity intoit.

In [1], we have shown three levels of adaptivity in the workflow context (in
increasing order of impact on the software organization), which are also applicable to
software projects:
> Adaptivity at process level, i.e., changing certain processes in order to improve
project execution

» Adaptivity at lifecycle level, i.e., changing the very delivery lifecycle in order to
make substantial changesin the way the software product is devel oped

» Adaptivity at goal level, i.e., changes in goals resulting in complete re-
engineering and re-orientation of the software projects themselves

It stands to reason that adaptivity can be handled efficiently by focussing only on
incremental replanning and rescheduling, i.e., only for those portions of the software
processes that are actually affected by the change. Hence, our approach to incremental
replanning and rescheduling is as follows:

- If the change involves changesin the constraints on the activities, then replanning
needs to be looked into first. We first need to determine at what point in the
lifecycle the change will begin to affect; we call this the "starting stage". For
example, a change in the project requirements may necessitate repeating the
design step, or may affect only the coding step. Another example, would be a
change in the quality requirements, that may impact only the testing activity,
resulting in (perhaps) aminor change to the test plan.

The next step is to propagate the changed constraints downstream from the
starting stage, and determine how much of the rest of the lifecycle is affected by
the change. The last activity that is affected by the change, is called the "ending
stage”.

In such a situation, we need to rerun the OCP algorithm from the starting stage
to the ending stage, with the constraints at the starting stage being the start
constraints, and the constraints at the ending stage being the goal conditions of
the OCP algorithm.

If the change does not involve changes in constraints on activities, or if the above
step results in changes in constraints on resources, then the scheduling algorithm
described in Section 4 needs to be invoked on the portion of the Petri Net that is

106

between the starting and ending stages. Again, this results in redeveloping the
reachability graph between the highest node (in the reachability graph)
corresponding to the starting stage, and the lowest node (in the reachability
graph) corresponding to the ending stage, as per the algorithm in Section 4.

The above two steps need to be iterated until afeasible solution isfound.

In software projects, the other aspect of adaptivity, isthe need to suitably "change-
proof" the software lifecycle model, so that future changes to the project are
anticipated and taken into account. This can be done using the risk modeling approach
described in Section 3.3. As is common in most software organizations, all the most
common types of possible risks can be modeled in arisk database (similar to the one
described in [3]) and can be used to suitably build in risk management while planning
and scheduling. Hopefully, this will minimize replanning and rescheduling.

6.0 An Example - Introduction

The example that we have chosen, is simple enough to be used in this paper as an
illustration, but it is also derived from a real-life software project in our organization
that exhibited all the characteristics that make software project planning and
scheduling a complex and demanding activity.

The project, which we will call ABC, is essentially to develop a set of modules that
will emulate the behavior of one operating system on another one. The ABC project
possesses the following characteristics:

- The requirements are not clearly defined by the customers, who are themselves
not very sure of what is to be expected; hence the project team needs to make
assumptions which could beinvalidated at any time by the customers
Like any typical software project, ABC's schedule is quite tight. However,
resources are more flexible, since project team members have offered to work
overtime if necessary to get the job done, especially since this project is
considered to be crucial to the long-term success of the organization.

The project’s lifecycle can be evolutionary, consisting of several basic three-phase
waterfall models comprising design, coding and testing. Hence the project consists of
design-coding-testing cycles executed one after another. Of course, this is done per
module, hence the project lifecycle will be a set of design-coding-testing cycles
executed both sequentially and in parallel. Needless to say, since all the modules are
supposed to interact with each other, there will also be dependencies/interactions
among the 3-phase cycles corresponding to the modules. A representation of the
project, for two parallel but interdependent modules, and for one cycle in the overall
evolutionary lifecycle, is given in Fig.3 below. Please note the two arrows originating
from transitions in Module #2 and ending in places in Module #1 - they depict the
dependencies/interactions among the two 3-phase cycles.

107

Module
#2

Fig.3

108

6.1 Planning Algorithm I mplementation

The first step in planning the ABC project, is to identify the following, as per the
OCP algorithm:

Object Classes: The object classes for our example, are the following

> Project Manager

> Engineer

» Project Quality Interface (he/she is the individual who interfaces with the
central SEPG and SQA groups, and helps the PM in coordinating the SEPG
and SQA functionsin the project team)

Objects: The objectsin the ABC project, are the Project Manager (PM) and the 4

engineers

Invariants: There are certain invariants on the activities in the ABC project.

Some of them are:

» All theactivitiesin any 3-phase cycle will have to be executed sequentially

» Certain dependency invariants exist between modules, which are depicted as
constraints. For example, Module #1 cannot be completed until the interface
of Module #2 is completed, since Module #2 needs to interact with Module
#1 using theinterface

» We can (and in fact, we should) also have invariants derived from historical
data from past projectsin a historical database [3]; this helps during planning
and scheduling, since it minimizes the combinatorial explosion

Operators: These are essentially the activities executed by the project team,

which changes the substates of each of the artifactsin the project

Predicates: Predicates are used to denote preconditions and postconditions of an

activity. For example, for a coding activity for a module in any 3-phase cycle to

start, the following could be the preconditions:

» Thedesign should have been completed, reviewed and baselined

» The modul€'s interface dependencies with all other modules are also part of
the design which has been reviewed and baselined

The postconditions could be the following:
» The code has been reviewed and baselined
» Thecodeis consistent with the design at the time of coding

Substates: The substate of the project at any given time, is the substate of its
encoded TCPN representation

Basically, the planning algorithm can be implemented as explained in Section 3.2.
We start with the design activity in any module (which is an object in our adapted
OCP algorithm), and check the extent to which it meets the goal conditions. We note
the difference between the goal conditions and the current state of the module, and

109

select an operator (or operator sequence) that reduces the difference. In this case,
there could be several operatorsto choose from (i.e., one or all of the following):
Coding the module
Developing the interface to the other modules in the system
Leaving thismodule asit is, and designing and/or coding any other module

In case no operator is applicable, we choose the one that generates the weakest
precondition (i.e., the operator that violates the predicates the least) and it is used to
open anew node in our search space.

So far, we have not mentioned risk management in this planning exercise. Some
possible risksto this project are:
Sudden changes in customer requirements
Attrition
Lack of understanding of the domain, which could render the planning estimates
useless

These risks are modeled using the modified Riskit methodology described in
Section 3.3. This can be done by adding alternate paths in the completed TCPN after
the planning algorithm is implemented.

6.2 Scheduling Algorithm Implementation

As explained in Section 4.1, we assume that a preliminary schedule exists, and we
select the cligue-based approach. The search procedure is essentially the one
described in [4], and involves generation of the reachability graph. The Possible
Intersection Graphs (PIG) and Definite Intersection Graphs (DIG) are used in order to
curtail the size of the reachability graph, as described in Section 4.1.

6.3 Handling Adaptivity

6.3.1 Replanning

Dueto the evolutionary nature of the ABC project, it is clear that change is a constant
in this project. Since software development is a multi-dimensional activity, the
following are some of the changes encountered by the team:

- The customer reorders the priority of certain modules in the system, thus forcing
the project team to replan and reschedule from where they were before the
reordering
One of the team members falls ill and is absent for a week, forcing others to
make up for this loss. This may not cause a replanning per se, but causes a
rescheduling of activities among the existing team members, which in turn results
in replanning the activities that the sick team member is supposed to accomplish

110

The organizational SQA group announces an unscheduled audit, due to a
directive from senior management; this results in significant replanning and
rescheduling, since even the 10% overtime is not sufficient for the audit

We will illustrate the first change, i.e., customer reordering, only. In this case, the
OCP algorithm must be re-implemented from the stage when the change was ordered.
There are essentially three cases here:

Completed activities: since these activities have already been completed, the
postconditions of these activities can be used as preconditions for future activities
that will be planned

Activities yet to be started: these will be invalidated by the reordered priorities,
since they should be replanned afresh

Activities in progress. the fate of these activities has to be decided after the
replanning is done. If these activities are to be executed (i.e., if the operator
sequence contains these activities), then the project team can simply continue
where they left off and complete these activities. Otherwise, the activities will
have to be scrapped in favor of the new set of activities.

6.3.2 Rescheduling
In the case of rescheduling, the reachability graph needs to be modified from the
"starting stage" to the "ending stage”, as explained in Section 5. Thiswill also involve
modifying the PIGs and DIGs for those resource that are affected. Once again, there
are three cases:
Resources that are not needed between the "starting" and "ending stages"; the
constraints on the state of the reachability graph at the "starting stage" for these
resources remain unchanged
Resources that are yet to be used: these will be invalidated by the change, and
will have to rescheduled afresh
Resources that are in the process of being used: here, the extent to which these
resources have to be reassigned, will depend on the extent of the scheduling
change. Some of the activities being executed by these resources may need to be
modified - this may in turn trigger a replanning, depending on the effect it will
have on the currently running set of activities (i.e., operator sequence as
mentioned in Section 6.3.1).

7.0 Conclusions and Future Work

In this paper, we presented a Timed Colored Petri Net (TCPN) formalism for
representing processes in software projects. We also showed how planning and
scheduling algorithms from outside the Petri Net community can be incorporated into
our formalism, thereby enhancing the power and usefulness of our formalism. We
have also shown how this can also serve as an Adaptive Planning and Scheduling
architecture, by aligning it with an adaptive process framework from [1]. We have
also illustrated the algorithms with a real-life example from a software project.
Although this paper has not described the TCPN formalism itself in any detail, we

111

believe that our major contribution is that we have shown how planning and
scheduling algorithms from outside the Petri Net or Software Engineering
Community can be used to plan and schedul e software processes using Petri Nets.

Our paper brings up several avenues for future work:
Efficient implementation of our idea, and experimentation with several real-life
examples
A more mathematically rigorous characterization of software processes,
including deriving properties similar to those derived in [5] for workflow nets.
Also, since Petri Nets are most suited for performance modeling, another open
issue is how to appropriately model and analyze the performance of software
processes, perhaps using stochastic models[14].
Modeling of our TCPN formalism in a distributed environment, and
implementation thereof; that is, distributing portions of the TCPN and its
associated planning and scheduling algorithms among different servers, and the
coordination issues resulting therein. Also, how can our ideas be embedded into
an agent-based environment such as the one described in [13], where the TCPN
for each agent (which will describe the agent's execution methodology) can
dynamically adapt to changed circumstances. This also brings up the issue of
implementing adaptive planning and scheduling (as in Section 5) among
distributed servers. A beginning has been made in [11], but more remains to be
done.

8.0 Acknowledgments

The authors wish to acknowledge Akshya Prakash, Padma Ravichander and V.S.
Subrahmanyam for supporting their work.

References

[1] N.C. Narendra, “Adaptive Workflow Management — An Integrated Approach
and System Architecture,” ACM Symposium on Applied Computing 2000, to appear

[2] N.C. Narendra, “Goal-based and Risk-based Creation of Adaptive Workflow
Processes,” American Association for Artificial Intelligence (AAAI) Spring
Symposium 2000, to appear

[3] Rajesh Bhave and N.C. Narendra “An Innovative Strategy for Organizational
Learning,” World Congress on Total Quality (WCTQ) 2000

[4] W.M.P. van der Aalst, "Petri Net Based Scheduling,” Computing Science
Reports 95/23, Eindhoven University of Technology, Eindhoven, 1995, also available
from http://wwwis.win.tue.nl/~wsinwa/orspec.ps

[5] W.M.P. van der Aalst, "How to Capture Dynamic Change and Management
Information? An Approach Based on Generic Workflow Models," Technical Report,
UGA-CS-TR-99-01, University of Georgia, Department of Computer Science,
Athens, USA, 1999, also available from http://wwwis.win.tue.nl/~wsinwa/genwf.ps

112

[6] W.M.P. van der Aadst, "Petri-net-based Workflow Management Software", In
A. Sheth, editor, Proceedings of the NFS Workshop on Workflow and Process
Automation in Information Systems, pages 114--118, Athens, Georgia, May 1996.

[7] Ellis, C., Keddara, K., and Wainer, J., "Modeling Workflow Dynamic Change
Using Timed Hybrid Flow Nets', Proceedings of the Petri Net Workshop on
Workflow Management: Net Based Concepts, Models, Techniques and Tools, June
1998.

[8] D.E. Kitchin and T.L. McCluskey, "Object-Centered Planning," 15th
Workshop of the UK Planning and Scheduling Special Interest Group, Liverpool John
Moores University, Liverpool 1996; available from
ftp://helios.hud.ac.uk/pub/artform/sig_96.ps

[9] A. Cesta, A. Oddi and S.F. Smith, "Scheduling Multi-Capacitated Resources
under Complex Temporal Constraints,” Technical Report CMU-RI-TR-98-17,
Robotics Institute, Carnegie-Mellon University, 1998; available from
http://www.cs.cmu.edu/afs/cs/proj ect/ozone/www/PCP/publications/cl-pro-
techrpt.html

[10] C. Cheng and S.F. Smith, "Generating Feasible Schedules under Complex
Constraints," in Proceedings of 12" National Conference on Al (AAAI-94), 1994,

[11] T. Bauer and P. Dadam, "Efficient Distributed Control of Enterprise-Wide and
Cross-Enterprise Workflows," Proceedings Workshop Enterprise-wide and Cross-
enterprise Workflow Management: Concepts, Systems, Applications, 29.
Jahrestagung der Gl (Informatik '99), S. 25 - 32, 1999; available from
http://www.informatik.uni-ulm.de/dbis/papers/1999/BaDa99a. pdf

[12] J. Kontio, D. Getto and D. Landes, "Experiences in improving risk
management processes using the concepts of the Riskit method,” available from
http://mordor.cs.hut.fi/~jkontio/fse6-rm.pdf

[13] Q. Chen, P. Chundi, U. Dayal and M. Hsu, "Dynamic Agents", International
Journal of Cooperative Information Systems, 1998

[14] M. Silva and J. Campos, "Structural Performance Analysis of Stochastic Petri
Nets," In Procs. IEEE Intern. Computer Performance and Dependability Symp., pp.
61-70, Erlangen, Germany, April 1995; available from
http://www.cps.unizar.es/~jcampos/

113

114

Towards Modelling and Verification of
Concurrent Ada Programs
Using Petri Nets

A. Burns', A.J. Wellings', F. Burns?, A.M. Koelmans?
, M. Koutny?, A. Romanovsky?, and A. Yakovlev?

! Real-Time Systems Research Group
Department of Computer Science
University of York, U.K.

2 Asynchronous Systems Laboratory
Department of Computing Science
University of Newcastle upon Tyne, U.K.

Abstract. Ada 95 is an expressive concurrent programming language
with which it is possible to build complex multi-tasking applications.
Much of the complexity of these applications stems from the interactions
between the tasks. This paper argues that Petri nets offer a promising,
tool-supported, technique for checking the logical correctness of the task-
ing algorithms. The paper illustrates the effectiveness of this approach
by showing the correctness of an Ada implementation of the atomic ac-
tion protocol using a variety of Petri net tools, including PED, PEP and
INA for P/T nets and Design/CPN for Coloured Petri nets.

1 Introduction

As high-integrity systems become more sophisticated, the resulting complexity
is easier to manage if the applications are represented as concurrent processes
rather than sequential ones. Inevitably, the introduction of concurrency brings
problems of process interaction and coordination. In trying to solve these prob-
lems, language and operating system researchers have introduced new high-level
programming constructs. These design abstractions are often closely related to
the specific domain being addressed. For example, in the world of software fault-
tolerance, the notion of conversations [24] and atomic actions [11,19] are in-
troduced to facilitate the safe and reliable communication between a group of
processes in the presence of hardware and software failures, in addition to pro-
viding a structuring technique for such systems. Research languages such as
Concurrent Pascal have been used as the basis for experimentation [18], or a set
of procedural extensions or object extensions have been produced. For exam-
ple, Arjuna uses the latter approach to provide a transaction-based toolkit for
C++ [29]. However, it is now accepted that the procedural and object exten-
sions are unable to cope with all the subtleties involved in synchronisation and
co-operation between several communicating concurrent processes.

115

The main disadvantage of domain-specific abstractions is that they seldom
make the transition into general-purpose programming languages or operating
systems. For example, no mainstream language or operating systems supports
the notion of a conversation [9]. The result is that all the hard-earned research
experience is not promulgated into industrial use.

If high-level support is not going to be found in mainstream languages,
the required functionality must be programmed with lower-level primitives that
are available. For some years now we have been exploring the use of the Ada
programming language as a vehicle for implementing reliable concurrent sys-
tems [32]. The Ada 95 programming language defines a number of expressive
concurrency features [1]. Used together they represent a powerful toolkit for
building higher-level protocols/design abstractions that have wide application.
For example, [32] recently showed how Ada 95 can be used to implement Atomic
Actions. And, as such an abstraction is not directly available in any current pro-
gramming language, this represents a significant step in moving these notions
into general use. An examination of this, and other applications, shows that a
number of language features are used in tandem to achieve the required result.
Features include:

— Tasks - basic unit of concurrency.

— Asynchronous Transfer of Control (ATC) - an asynchronous means of affect-
ing the behaviour of other tasks.

— Protected Types - abstract data types whose operations are executed in
mutual exclusion, and which supports condition synchronisation.

— Requeue - a synchronisation primitive that allows a guarded command to
be prematurely terminated with the calling task placed on another guarded
operation.

— Exceptions - a means of abandoning the execution of a sequential program
segment.

— Controlled types - a feature that allows manipulation of object initialisation,
finalisation and assignment.

The expressive power of the Ada 95 concurrency features is therefore clear.
What is not as straightforward is how to be confident that the higher-level
abstractions produced are indeed correct. As a number of interactions are asyn-
chronous this presents a significant verification problem. The idea of verification
using Model Checking with a finite state model (FSM) of an Ada program was
first presented in [10]. This method constructed a set of FSMs of individual
tasks interacting via channels, and applied analysis of the interleaving seman-
tics of the product of FSMs using the software tool Uppaal. In this paper, we
investigate a complementary approach based on Petri nets and their power to
model causality between elementary events or actions directly. This can be ad-
vantageous for asynchronous nature of interactions between tasks. Petri nets,
both ordinary [26] and high level (e.g. coloured nets [17]) offer a wide range of
analysis tools to model and verify the logical correctness according to two cru-
cial kinds of properties: (i) safety - an incorrect state cannot be entered (from

116

any legal initial state of the system); and (ii) liveness - a desirable state will be
entered (from all legal initial states of the system).

Petri nets have generally been applied to the verification of Ada programs,
e.g. [28,23,8]. This work has mostly been focused on the syntactic extraction
of Petri nets from Ada code in such a way that the verification of properties,
such as deadlock detection, could be done more efficiently. To alleviate state
space explosion techniques like structural reduction [28] and decomposition [23]
of ‘Ada nets’ have been proposed.

Our research is based on applying Petri nets to model concurrent Ada code,
and using Petri nets tools, such as PEP and Design/CPN, to verify its correct-
ness. However, we propose to deal with the unavoidable complexity of the result-
ing programs within a compositional approach employing a versatile library of
design abstractions with well understood and formally verified properties. Con-
fidence in the abstraction can be significantly increased and the development
activity itself supported by modelling, simulation and analysis of the dynamic
behaviour of the Petri net model; the behaviour can be analysed either by ex-
ploring the set of reachable states of the net or its partial order semantics, such
as the unfolding prefix. This library can then be used to tackle the verification
of complex designs. Thus, while we are ultimately interested in efficient model
checking too, the main focus of this paper is on the semantic modelling of salient
task interaction mechanisms from Ada 95. To the best of our knowledge, there
has been no attempt of using Petri nets to analyse Ada 95 models of Atomic Ac-
tions, particularly with ATC and exceptions. However, some work on analysing
Ada 95 programs (with ATC, protected objects, and requeue statement) with
Petri nets has been recently reported in [15].

This paper is organised as follows. An introduction to model checking based
on Petri nets is given in the next section. We use our existing study of Atomic
Actions to illustrate the adopted procedure. A simple model is introduced in
Section 3 and its refinement in Section 4. Conclusions are presented in Section 5.

2 Model Checking using Petri Nets

Model checking is a technique in which the verification of a system is carried out
using a finite representation of its state space. Basic properties, such as absence
of deadlock or satisfaction of a state invariant (e.g. mutual exclusion), can be
verified by checking individual states. More subtle properties, such as guarantee
of progress, require checking for specific cycles in a graph representing the states
and possible transitions between them. Properties to be checked are typically
described by formulae in a branching time or linear time temporal logic [13].
The main drawback of model checking is that it suffers from the combina-
torial explosion problem. That is, even a relatively small system specification
may, and often does, yield a very large state space which despite being finite re-
quires computational power for its management beyond the effective capability
of available computers. To help cope with the state explosion problem a num-
ber of techniques have been proposed which can roughly be classified as aiming

117

at implicit compact representation of the full state space of a reactive concur-
rent system, or at an explicit representation of a reduced, yet sufficient, state
space of the system. Examples of the former are algorithms based on the bi-
nary decision diagrams (BDDs) [7]. Techniques aimed at reduced representation
of state spaces are typically based on the independence of some actions, which
is a characteristic feature of reactive concurrent systems, often relying on the
partial order view of concurrent computation. Briefly, in a sequential system,
it is the actual order of the execution of individual actions which is usually of
importance, whereas in a concurrent system the actual order in which, say, two
messages were sent and then received may be irrelevant to the correctness of the
whole system. Examples include partial order verification [16,21] and stubborn
set method [31]. The partial order view of concurrent computation is also the
basis of the algorithms employing McMillan’s unfoldings [14], where the entire
state space is represented implicitly using an acyclic directed graph representing
system’s actions and local states.

Model checking is a technique that requires tool support. For Petri nets,
there are many tools of different maturity available. These tools are categorised
according to many parameters [33]. In our study, we used three relatively ma-
ture tools. One is PEP [2,3], which uses ordinary Place/Transition nets and a
number of model checking methods, such as reachability analysis and unfold-
ing prefix. The second one is INA (Integrated Net Analyzer) [27]. The third is
Design/CPN [34], which is based on the Coloured Petri nets and has extensive
facilities for simulation and occurrence (reachbility) graph analysis.

2.1 The PEP Tool

The PEP tool [2, 3,22] provides a modelling and verification environment based
on Petri nets, however, its principal method of inputting large designs is to use a
simple concurrent programming language. The tool compiles a program into an
internal representation in terms of a 1-safe Petri net which can then be verified
for correctness using a variety of techniques, including ones supported by other
model checking tools, such as SPIN or SMV. The relevant correctness properties,
can be specified in a general-purpose logic notation, such as CTL* or S4. The
PEP system incorporates model checkers based on unfolding and structural net
theory.

The PEP tool’s additional advantage is that it is based on a compositional
Petri net model, both P/T-net based and high-level net based [4-6]. It therefore
provides a sound ground to develop a compositional model supporting design
abstractions.

2.2 The INA Tool

The INA tool is an interactive analysis tool which incorporates a large number
of powerful methods for analysis of P/T nets. These methods include analysis of:
(i) structural properties, such as state-machine decomposability, deadlock-trap
analysis, T- and P-invariant analysis, structural boundedness ; (ii) behavioural

118

properties, such as boundedness, safeness, liveness, deadlock-freeness, dynamic
conflict-freenes; (iii) specific user-defined properties, such as those defined by
predicates and CTL formulas and traces to pre-defined states. These analyses
employ various techniques, such as linear-algebraic methods (for invariants),
reachability and coverability graph traversals, reduced reachability graph based
on stubborn sets and symmetries.

The INA tool uses a combination of interactive techniques, where the user is
prompted for various specifications and queries, and file-processing techniques.
The basic Petri net file format is compatible with other tools, such as PED and
PEP, using Petri net graphical editors.

2.3 The Design/CPN Tool

Coloured Petri Nets (CP-nets) are an extension of the basic Petri Net model [17].
A CP-net model consists of a collection of places, transitions, and arcs between
these places and transitions. The model contains tokens that flow around the
model and are stored in the places. The essential feature of CP-nets is that
they allow complex data types, i.e. objects, to be attached to the tokens. These
objects contain attributes reflecting the system being modelled. The flow of
the tokens is determined by so called guards, which are conditions, attached to
the arcs of the model, that determine whether a transition is allowed to fire.
These guards therefore determine the dynamic behaviour of the model; they
allow sophisticated behavioural properties to be modelled. The only software tool
currently capable of simulating and analysing CP-Net models and generating an
executable code (in the ML programming language) is Design/CPN [34]. In the
Design/CPN system, guards are specified in ML. Crucially, Design/CPN allows
entry of hierarchical models, which greatly aids in the understanding of complex
models.

3 Model of Simple Atomic Actions

3.1 Atomic Actions

An atomic action is a dynamic mechanism for controlling the joint execution of
a group of tasks such that their combined operation appears as an indivisible
actions [19,25]. Essentially, an action is atomic if the tasks performing it can
detect no state change except those performed by themselves, and if they do not
reveal their state changes until the action is complete. Atomic actions can be
extended to include forward or backward error recovery. In this paper we will fo-
cus only on forward error recovery using exception handling [11]. If an exception
occurs in one of the tasks active in an atomic action then that exception is raised
in all processes active in the action. The exception is said to be asynchronous
as it originates from another process.

119

3.2 Atomic Actions in Ada

To show how atomic actions can be programmed in Ada [32], consider a simple
non-nested action between, say, three tasks. The action is encapsulated in a
package with three visible procedures, each of which is called by the appropriate
task. It is assumed that no tasks are aborted and that there are no deserter
tasks [18].

package simple_action is

procedure T1(params : param); -- from Task 1
procedure T2(params : param); -- from Task 2
procedure T3(params : param); -- from Task 3

end simple_action;

The body of the package automatically provides a well-defined boundary,
so all that is required is to provide the indivisibility. A protected object, Con-
troller, can be used for this purpose. The package’s visible procedures call the
appropriate entries and procedures in the protected object.

The body of the package is given below.

with Ada.Exceptions; use Ada.Exceptions;
package body action is

type Vote_T is (Commit, Aborted);
protected controller is
entry Wait_Abort(E: out Exception_Id);
entry Done;
entry Cleanup (Vote : Vote_t; Result : out Vote_t);
procedure Signal_Abort(E: Exception_Id);
private
entry Wait_Cleanup(Vote : Vote_t; Result : out Vote_t);
Killed : boolean := False;
Releasing_cleanup : Boolean := False;
Releasing_Done : Boolean := False;
Reason : Exception_Id;
Final_Result : Vote_t := Commit;
informed : integer := 0;
end controller;

-- any local protected objects for communication between actions

protected body controller is
entry Wait_Abort(E: out Exception_id) when killed is

begin
E := Reason;
informed := informed + 1;

if informed = 3 then
Killed := False;

120

informed := 0;
end if;
end Wait_Abort;

entry Done when Done’Count = 3 or Releasing_Done is

begin
if Done’Count > O then
Releasing_Done := True;
else
Releasing_Done := False;
end if;
end done;

entry Cleanup (Vote: Vote_t;

Result: out Vote_t) when True is
begin

if Vote = Aborted then

Final_result := Aborted;

end if;

requeue Wait_Cleanup with abort;
end Cleanup;

procedure Signal_Abort(E: Exception_id) is

begin
killed := True;
reason := E;

end Signal_Abort;

entry Wait_Cleanup (Vote : Vote_t; Result: out Vote_t)
when Wait_Cleanup’Count = 3 or Releasing_Cleanup is
begin
Result := Final_Result;
if Wait_Cleanup’Count > O then

Releasing_Cleanup := True;
else
Releasing_Cleanup := False;
Final_Result := Commit;
end if;

end Wait_Cleanup;
end controller;

procedure T1(params: param) is
X : Exception_ID;
Decision : Vote_t;
begin
select
Controller.Wait_Abort(X);
raise_exception(X);
then abort
begin

121

-- code to implement atomic action
Controller.Done; --signal completion
exception
when E: others =>
Controller.Signal_Abort (Exception_Identity(E));
end;
end select;
exception
-- if any exception is raised during
-- the action all tasks must participate in the recovery
when E: others =>
-- Exception_Identity(E) has been raised in all tasks

-- handle exception
if handled_ok then
Controller.Cleanup(Commit, Decision);
else
Controller.Cleanup(Aborted, Decision);
end if;
if Decision = Aborted then
raise atomic_action_failure;
end if;
end T1;

procedure T2(params : param) is ...;
procedure T3(params : param) is ...;

end action;

Each component of the action (T1, T2, and T8) has identical structure. The
component executes a select statement with an abortable part. The triggering
event is signalled by the controller protected object if any component indicates
that an exception has been raised and not handled locally in one of the com-
ponents. The abortable part contains the actual code of the component. If this
code executes without incident, the controller is informed that this component
is ready to commit the action.

If any exceptions are raised during the abortable part, the controller is in-
formed and the identity of the exception passed.

If the controller has received notification of an unhandled exception, it re-
leases all tasks waiting on the Wait_Abort triggering event (any task late in arriv-
ing will receive the event immediately it tries to enter into its select statement).
The tasks have their abortable parts aborted (if started), and the exception is
raised in each task by the statement after the entry call to the controller. If the
exception is successfully handled by the component, the task indicates that it is
prepared to commit the action. If not, then it indicates that the action must be
aborted. If any task indicates that the action is to be aborted, then all tasks will

122

raise the exception Atomic_Action_Failure. Figure 1 shows the approach using a
simply state transition diagram.

Enter Action

Executing and
waiting for an abort

'

_ | Aborttriggeredand | _ Action component
Raising an exception done

'

Exception handled

'

Waiting cleanup

‘ Y

Fig. 1. Simple state transition diagram illustrating Atomic Action with forward error
recovery for the system with two tasks

Signal abort

3.3 Modelling the Ada Implementation in P/T nets

We now consider Petri nets for this Ada code. For the sake of simplicity, we
consider only two tasks here. We first look at ordinary P/T nets, i.e. nets without
token typing. Each of the client tasks will have an identical PN, specialised only
in its labelling of transitions and places. The controller will also be modelled
as a single Petri net. Graphical capturing of Petri nets is done using Petri net
editor PED [20], which allows hierarchical and fragmented construction of P/T
nets, and export to an extensive range of formats including those accepted by
analysis tools such as PEP and INA. Figure 2 presents the task model (a) and
the controller model (b).

Places and transitions which are not shaded, such as startl and arrl are
individual for the task net (we show the net for Task 1). Those places and
transitions which are shaded are so called logical places and transitions — they
are used to interconnect subnets to form larger nets. In other words, by declaring
places or transitions in different subnets as logical, we virtually merge such places
and transitions in the overall net provided that they have the same label, e.g.
waitAbort and sigAbortl. Note that the net models use test or read-only arcs,

123

startl
waitAbort
arrl
sigAbortl A oikilled d
Killed sigAbort2
nolntTasks
ntTasks
c
voteNotAbort ed
sendComm1
voteNotAbort
oteAbort
doneAll .
1 abortAll vgteAbort
2
succes} i
c . faill abortAll

restart12 XI doneAll

Fig. 2. P/T net models: (a) Task model (b) Controller model

restartll

which are represented graphically by arcs with a black dot at the transition end,
and weighted arcs. The former are used to show the fact that transitions in the
task net can test the state of shared variable, such as Killed, which is modelled
by two complementary places notKilled and Killed in the controller net.

Our basic idea of modelling the Ada code for the Atomic Action behaviour
with P/T nets is as follows. We represent states of each task as unshaded places
and key actions local to the task as unshaded transitions. Arriving in the Atomic
Action by the task is represented by transition arrl. This also generates a token
in the place waitAbort, which belongs to the controller and counts the number of
tasks that have actually entered the Atomic Action. The place labelled compl
corresponds to the state of the task in which the task performs normal compu-
tation. From this state the task may either: (a) execute transition donel and go
to the Local Done state of normal completion of the action (place locDonel),
or (b) it may raise an exception by firing transition sigAbortl (this corresponds
to executing the Signal_Abort procedure, which switches the state of the Killed
flag from false to true — a token is toggled from place notKilled to Killed), or
(c) it may be forced to go to the Error-Handling state (place handlingl), either
from the Normal Computation state or from the the Local Done state because
of some tasks (including itself) has raised an exception, in which case transition
exceptl2 will be fired.

Subsequent action of the task depends on whether the task ends in the Local
Done or in the Error-Handling state. If the former, the task provides a condi-
tion for the controller to fire a shared transition doneAll (corresponding to the

124

execution of the Done entry by all tasks). If the task is in the Error-Handling
state, it handles the exception, and, depending on the result of the handling,
votes either for Action Commit or Action Abort.

The voting mechanism used in Atomic Actions allows one task voting for
Abort to force the entire operation into Failure. In our Petri net model, this is
achieved by using three transitions sendAbortl, sendComm1 or sendAbComm1,
individual to the task. These transitions are connected to two complementary
places voteNotAbort and voteAbort in the controller net. Initially, when the vot-
ing begins, a token is assumed to be placed into place voteNotAbort. While none
of the tasks vote for Abort, the token remains in this place, and if the task votes
for Commit, which corresponds to the handling_ok flag being set in the task,
transition sendComm1 fires due to the reading arc from place voteNotAbort. As
soon as one of the tasks votes for Abort, transition sendAbort1 is fired, which tog-
gles the token from voteNotAbort to voteAbort in the controller. This corresponds
to assigning the state of the global flag Final_result to aborted in the Cleanup
entry. After that, in all tasks, regardless of their individual voting, transition
sendAbComm1 will fire due to the reading arc from place voteAbort.

Voting is complete when the task is in the state where it is ready to check the
value of the decision flag. This corresponds to a token in the votedl place. At
this point all tasks synchronise on firing shared transitions commitAll or abortAll,
which are respectively preconditioned by the controller’s places voteNotAbort
and voteAbort. If the former fires it puts a token in the local successl place,
otherwise the local faill is marked. The task subsequently fires one of the two
possible restart transitions which corresponds to bringing the task to the state
where it is ready to execute the Atomic Action again.

Using the PED tool we constructed the model of the system from the task and
controller fragments. Once the appropriate places and transitions are merged the
actual behavioural interaction between task and controller is achieved through
the following two main mechanisms:

— (i) synchronisation on shared transitions, which is similar to rendez-vous
(blocking) synchronisation, and

— (ii) communication via shared places, which is similar to asynchronous (non-

blocking) communication.

3.4 Verification of the P/T-net model

This P/T net model of the Ada code can be exported from PED to analysis
tools, such as INA or PEP. We used PEP, in which we could simulate the token
game and perform reachabilty analysis to verify by Model Checking the key
properties of the algorithm. First, if ‘Task1’ is in place successl then it must not
be possible for any of the other tasks (say 2) to be in fail2. This is presented to
the reachability analysis tool by the following logic statement:

successl,fail2

125

This test gives the <NO> result, i.e. such a marking in which these two places
are marked is not reachable.

Similarly, to the test for reachability of a marking in which both tasks end
in success state:

successl,success?2
the tool reacts with <YES> and produces:

_SEQUENCE:
arr2,done2,arrl,donel,doneAll

which is a firing sequence leading to the global success state.
When setting the option Calculate all paths to true, the tool produces
the following list of firing sequences:

_SEQUENCE:

arr2,done2,arrl,donel,doneAll
arr2,arrl,done2,donel,doneAll
arrl,arr2,done2,donel,doneAll
arrl,donel,arr2,done2,doneAll
arr2,arrl,donel,done2,doneAll
arrl,arr2,donel,done2,doneAll

This set, however, includes only those paths which go through the locDone
states, but not those which are the result of succcesful handling and overall
Commit, voting. This is caused by the fact the system searches for all paths
satisfying the shortest length criterion.

The effect of a coherent error handling can be tested by:

faill,fail2
This results in:

_SEQUENCE:
arrl,donel,arr2,sigAbort2,except2l,sendAbort2,except12,sendAbComml,sync,abortAll
arr2,arrl,donel,sighAbort2,except2l,sendAbort2,except12,sendAbComml,sync,abortAll

all together over 600 paths. These assertions imply inconsistency is not possible.
We have also used tool INA to verify the various behavioural (safety and
liveness) properties. The results of this analysis are:

Safety Properties:

Safe - No

Bounded - Yes

Dead State Reachable - No

Covered by Transition-Invariants - Yes

126

These results mean that several tasks can enter the controller simultane-
ously, but that the total number of tasks is bounded. All transitions belong to
a transition-invariant, which means that the net is structurally live, i.e. it is
sufficiently rich in connections to make it live.

Resettable, reversable (to home state) - Yes
Dead transitions exist - No

Live - Yes

Live and Safe - No

The computed reachability graph has 76 states.

The INA tool allows to state properties in the form of CTL (Computa-
tional Tree Logic) [12] formulas. We can formulate properties of interest, such
as whether there exists a path which leads to a state where one task ends in
success while the other in fail:

EF((P18&P21)V(P19 &P20))

Here P18 (P19) stands for successl (success2) and P21(P20) for fail2 (faill).
The result of the check is:

sl sat EF((P18 &P21)V(P19 &P20)):FALSE

Another interesting property would be, whether there is a path that leads to
a state in which both tasks end in success but the flag Killed (place P7 below)
has been set to true:

sl sat EF(P7&(P18 &P19)): FALSE

For comparison, we have tried a modified net model for a task — we omitted a
read arc leading to transition donel which tests flag notKilled. This modification
may correspond to allowing the code for a task to be non-sequential — a task
may signal abort and at the same time pass to Local Done (the effect of inertia
or delay in reacting to the abort). Interestingly, such a modification does not
lead to the violation of deadlock-freeness or the property of both tasks ending
either in success or fail. But for the last property above it returns:

sl sat EF(P7 &(P18 &P19)): TRUE

4 CPN Modelling and Analysis

We modelled Atomic Actions using Coloured Petri nets (CPNs) and analysed
the model using the Design/CPN tool. The three main CPNs for the model are
shown in Figures 3, 4 and 5.

They capture the system hierarchically, as a composition of the controller
and task nets. Due to the ability of CPNs to distinguish objects by their token
colours and values, we can use the same net structure for all tasks and encode

127

1{tsk=task(1),flg=true}++

[rasisz

Task 1'{tsk=task(2).flg=true}
init_task _/Start_n
4 4 N
Control
H | Control#3. : wt
1'da++1'dc
Ve,
Voted
_ 1va++lve

Fig. 3. CPN model of the Atomic Action: Top Hierarchy level

=task(1).flg=true}++
1'{tsk=task(2) flg=true}

Except_nb

Fig. 4. CPN model of Tasks

128

individual tasks simply by their token values. Another advantage of this type of
modelling is that we can parameterise a system model with n tasks and analyse it
for different number of tasks by simply setting the n parameter to an appropriate
value.

The list of colour definitions (with parameter n = |T'asks| set to 2) is:

val n=2;

color Flag = bool;

color Taskn = index task with 1..n;

color Task = record tsk : Taskn * flg : Flag;
color Signal = with s;

var ar, re, ts, cp, sn, sn_, va, vc : Task;
var ca, vt : Signal;

var ab, dw, ex, sy, wt, aa, te : Signal;

var ha, sa, sc, da, dc, dn : Task;

val init_task = 1‘{tsk=task(l),flg=true}++
1‘{tsk=task(2) ,flg=truel};

Here we show the results of the analysis using Design/CPN. Most of the
statistics we produced using functions directly available from the Design/CPN
menus.

From the Statistics it can be seen that the O-graph (Occurrence Graph, i.e.
reachability graph) for n = |T'asks| = 2 has 63 nodes and 114 arcs. The number
of strongly connected components (Scc-graph) are less than the O-graph nodes,
implying that an infinite occurrence sequence exists.

Statistics
Occurrence Graph Scc Graph
Nodes: 63 Nodes: 13
Arcs: 114 Arcs: 14
Secs: 0 Secs: 0

Status: Full

For the Boundedness Properties Integer bounds are as expected. The Signal
nodes can never be more than one and the Task nodes never exceed two. We
also show some of the best Upper Multi-set Bounds to show the task and signal
distribution. The best Lower Multi-set Bounds are all empty.

Boundedness Properties

Best Integers Bounds Upper Lower
Control’Fail_n 1 1 0
Control’Killed 1 1 0
Control’LocDone_n 1 2 0

Best Upper Multi-set Bounds:

129

<

Control’Fail_n 1 1¢s
Control’Killed 1 1¢s

Control’LocDone_n 1 1‘{tsk=task(l),flg=true}++1‘{tsk=task(2),flg=true}
Control’NoIntTasks 1 2‘s

~
) 1'{tsk=task(1),flg=true}++
Wait [PIlou] ritsk=task(2).fig=true}
Wait -
& Wait
Abort
ca
init_task init_task
Wait S
W SigAbort
vt
ca
G0 [F]lwo]
Wait @ @ | Restart_nf | | Restart_ns
n'dw| vt
E“El [#flg va=true andalso e
Wail - #lg ve=true] te
CommitAll
sy
Sy
AbortAll
[#flg va=false orelse
#flg ve=false]
J

DoneAl te L
1'da++1'dc /

Fig. 5. CPN model of Controller

The Home Properties show that it is possible to reach any marking from any
other marking in the O-graph. The Liveness Properties show there are no Dead
Markings. Some of the Fairness Properties of the O-graph are shown below.
Only Arr_n is Impartial which implies that repeated cycles of the whole graph
require occurence of of firing of this node.

Liveness Properties Fairness Properties
Dead Markings: None Control’AbortAll 1 Fair
Live Transitions Instances: Control’CommitAll 1 Fair

130

Control’DoneAll 1 Fair

Control’AbortAll 1 Control’Restart_nf 1 Fair
Control’CommitAll 1 Control’Restart_ns 1 Fair
Control’Restart_nf 1 Control’SigAbort 1 Fair
Control’Restart_ns 1 Control’Sync 1 Fair
Control’SigAbort 1 Tasks’Arr_n 1 Impartial
Control’Sync 1 Tasks’Done_n 1 Just

The following are examples of the testing of more specific properties formu-
lated as Queries to O-graph and its nodes. These queries are based on functions
that are defined in ML.

Function Success_ tests all markings in which the Success_n node is active.
A function Fail_ can be defined in a similar manner.

Function

fun Success_ (s: Test) : Node list

= PredAllNodes (fn n =>

cf(s, Mark.Control’Success_n 1 n) > 0);

Test Result

Success_(s); val it = [29] : Node list
Fail_(s); val it = [63] : Node list
Success_(s) <> Fail_(s); val it = true : bool
length(Success_(s))+length(Fail_(s))=2; val it = true : bool

This means that Success and Fail do occur, that they cannot occur si-
multaneously, and that there can be only one of each. All these results are as
expected.

We can test for specific occurrences of the Success_n node (node 29) to be
activated. It shows that there are only two possible occurrences that can lead
to this happening, i.e. one from Voted causing Commitall (node 60) or Doneall
(node 20).

Functions and Tests Result

Success_(s); val it = [29] : Node list
InNodes(29) ; val it = [60,20] : Node list
DutNodes (60) ;0utNodes (20) ; val it = [29] : Node list

val it = [29] : Node list

State or occurrence 60 represents transition CommitAll being activated which
leads to Successn. State or occurrence 20 represents transition DoneAll being
activated which also leads to Successn. There are no other such occurrences.

131

Finally, the following table shows how the Occurence graph increases as the
number of Tasks is increased.

| Tasks | Nodes Arcs | Tasks | Nodes Arcs
2 63 114 5 7568 25883
3 298 689 6 39331 158444
4 1481 4220 7 207667 969677

5 Conclusion

We have shown that a relatively complicated Ada program using tasking can
be modelled and verified using Petri nets (ordinary P/T nets and Coloured)
and Model Checking. This significantly improves confidence in the correctness
of higher-level abstraction such as atomic actions.

This paper is a preliminary attempt in pursuing our chosen direction of re-
search, in which we would like to develop a more comprehensive methodology
for verifying high-integrity systems built of Atomic Actions and implemented in
Ada 95.

The major new aspects of this work, which also reveal the potentially ex-
ploitable advantages of the Petri net approach over the State Machine one [10],
are:

— Refinement of both states and transitions;

— Analysis of behaviour at the true concurrency and causality level;

— High-level aspects of modelling, such as parametrisation, are possible using
high-level Petri nets.

For example, if refinement with threads (e.g., task spawning), recursive atomic
actions, etc. were possible in the modelled systems, then Petri nets would provide
a much more efficient way of modelling than state machines.

We have only shown ways of modelling interaction mechanisms at the seman-
tical level. Part of the intended future work would be to develop new methods
of extracting Petri nets from the Ada 95 syntax.

Although this paper has not introduced real-time issues, the choice of tool
and modelling technique implies that the approach can be extended to a timed
Petri net approach.

References

1. Ada 95: Information technology - Programming languages - Ada. Language and
Standard Libraries. ISO/IEC 8652:1995(E), Intermetrics, Inc., 1995.

132

2. E.Best: Partial Order Verification with PEP. Proc. of POMIV’96, Partial Order
Methods in Verification. G. Holzmann, D. Peled, V. Pratt (eds), Am. Math. Soc.
(1997) 305-328.

3. E.Best and B.Grahlmann: PEP - more than a Petri Net Tool. Proc. of Tools and Al-
gorithms for the Construction and Analysis of Systems, 2nd International Workshop,
TACAS’96, Passau, March 1996, T. Margaria, B. Steffen (eds). Springer-Verlag, Lec-
ture Notes in Computer Science 1055, Springer-Verlag (1996) 397-401.

4. E.Best, R.Devillers, J.Hall: The Petri Box Calculus: a New Causal Algebra with
Multilabel Communication. Advances in Petri Nets 1992, Lecture Notes in Com-
puter Science 609, Springer-Verlag (1992) 21-69.

5. E.Best, R.Devillers, and M.Koutny: Petri Nets, Process Algebras and Concurrent
Programming Languages. Lectures on Petri Nets IT: Applications, Advances in Petri
Nets. Lecture Notes in Computer Science 1492, Springer-Verlag (1998) 1-84.

6. E.Best, H.Fleischhack, W.Fraczak, R.P.Hopkins, H.Klaudel and E.Pelz: M-nets: An
Algebra of High-level Petri Nets, with an Application to the Semantics of Concurrent
Programming Languages. Acta Informatica 35 (1998) 813-857.

7. R.E.Bryant: Symbolic Boolean Manipulation with Ordered Binary-decision Dia-
grams. ACM Computing Surveys 24 (1992) 293-318.

8. D.Buchs, C.Buffard and P.Racloz: Modelling and Validation of Tasks with Algebraic
Structured Nets. Proc. of Ada in Europe’95, Lecture Notes in Computer Science
1031, Springer-Verlag (1995) 284-297.

9. A.Burns and A.J.Wellings: Real-Time Systems and Programming Languages (Sec-
ond edition) Addison Wesley (1996).

10. A.Burns and A.J.Wellings: How to Verify Concurrent Ada Programs - The Appli-
cation of Model Checking. Ada Letters, Volume XIX, Number 2 (1999) 78-83.

11. R.H.Campbell and B.Randell: Error Recovery in Asynchronous Systems. IEEE
Transactions on Software Engineering SE-12 (1986) 811-826.

12. E.M.Clarke and E.A. Emerson: Synthesis of synchronization skeletons for branch-
ing time temporal logic. In Dexter Kozen, editor, Logic of Programs: Workshop,
LNCS, vol. 131, Springer-Verlag, 1981.

13. E.M.Clarke and J.Wing: Formal Methods: State of the Art and Future Directions.
Report, Carnegie Mellon University (June 1996).

14. J.Esparza: Model Checking Based on Branching Processes. Science of Comp. Prog.
23, 151-195 (1994).

15. R.K. Gedela and S.M. Shatz. Modeling of advanced tasking in Ada-95: a Petri
net perspective. Proc. 2-nd Int. Workshop on Software Engineering for Parallel and
Distributed Systems (PDSE’97), Boston, MA, pp. 4-14 (May 1997).

16. P.Godefroid and P.Wolper: A Partial Approach to Model Checking. Information
and Computation, 110(2), 305-326 (1994).

17. K.Jensen:Coloured Petri Nets. Basic Concepts. EATCS Monographs on Theoretical
Computer Science (1992).

18. K.H.Kim: Approaches to Mechanization of the Conversation Scheme Based on
Monitors. IEEE Transactions on Software Engineering SE-8 (1982) 189-197.

19. D.B.Lomet: Process Structuring, Synchronisation and Recovery using Atomic Ac-
tions. Proc. of ACM Conference Language Design for Reliable Software. SIGPLAN
(1977) 128-137.

20. PED. http://www-dssz.Informatik.TU-Cottbus.DE/“wwwdssz/ — the home page
of PED (a Hierachical Petri Net Editor).

21. D. Peled: Combining Partial Order Reductions with On-the-fly Model-checking.
Formal Methods in Systems design 8(1), 39-64 (1996).

133

22. PEP. http://wuw.informatik.uni-hildesheim.de/"pep/HomePage.html — the
home page of PEP (a Programming Environment Based of Petri Nets).

23. M. Pezze, R.N. Taylor and M. Young: Graph Models for Reachability Analysis of
Concurrent Programs. ACM Transactions on Software Engineering and Methodol-
ogy 4/2 (April 1995) 171-213.

24. B. Randell: System Structure for Software Fault Tolerance. IEEE Trans. on Soft-
ware Engineering 1(2) 220-232 (1975).

25. B. Randell, P. Lee and P. Treleaven: Reliability issues in computing systems design.
ACM Computing Surveys 10(2): 123-165 (1978).

26. W.Reisig: Petri Nets. An Introduction. Springer-Verlag, EATCS Monographs on
Theoretical Computer Science Vol.3, (1985).

27. S. Roch and P.H. Starke: INA: Integrated Net Analyzer, Version 2.2, Manual
Humboldt-Univeritdt zu Berlin, Instutut fir Informatik, April 1999.

28. S.M. Shatz, S. Tu, T. Murata and S. Duri: An Application of Petri Net Reduc-
tion for Ada Tasking Deadlock Analysis. IEEE Trans. on Parallel and Distributed
Systems 7 (12), 1309-1324 (December 1996).

29. S.K.Shrivastava, G.N.Dixon and G.D.Parrington: An Overview of the Arjuna Dis-
tributed Programming System. IEEE Software 8 (1991) 66-73.

30. S.Tu, S.M.Shatz and T.Murata: Theory and Application of Petri Net Reduction for
Ada-Tasking Feadlock Analysis. TR 91-15, EECS Dept., Univ. of Illinois, Chicago
(1991).

31. A.Valmari: The State Explosion Problem. Lectures on Petri Nets II: Applications,
Advances in Petri Nets. Lecture Notes in Computer Science 1492, Springer-Verlag
(1998) 429-528.

32. A.J.Wellings and A.Burns: Implementing Atomic Actions in Ada 95, IEEE Trans-
actions on Software Engineering 23 (1996) 107-123.

33. The Home page of Petri net Tools on the Web:
http://www.daimi.aau.dk/"petrinet/tools/

34. The Home page of the Design/CPN tool: http://www.daimi.au.dk/designCPN/

134

COALA: A Design Language for Reliable Distributed
Systems Engineering

Julie Vachon?, Nicolas Gudfi

1 Swiss Federal Institute of Technology,Programmning Methods Laboratory,
1015 Lausanne Ecublens, Switzerland
emdl: Julie.Vachon@epfl.ch
2 Luxembaurg University of Applied Scence, Software Engineering Compeénce Cente,
L-1359 Luxembaurg-Kirchberg, Luxembaurg
email: Nicolas.Guefi@ist.lu

Abstract This pape presents COALA, alanguagdor the formal design of fault
tolerant distributed systems Advanced transaction models have already proved
their interest for the design of reli able distributed systems. Unfortunaely, these
mades often conskt in low level algorithmic approabeswhich are not enough
rigorously defined nor supported by a development methodology. In the field of
forma approaches for distributed systems we believe that effort is not suffi -
ciently directed towards pradicad enginea@ing where rigor is of interest. The
principal contributions of this work are twofold: (1) it provides the Coordinded
Atomic Action transaction modelwith a forma engneeing framework; (2) it
demonstates the practical intereg of the Peti netbased objed-oriented specifi -
cation formalism CO-OPN/2as an uncerlying tool all owing rigorous and meth-
odological engineering of complex reliable distributed systems This pape aso
shortly introducesa concrete examp e where high level Peti nets appear to bea
very useful developmenttool when integrated in the software lif e cycle of com-
plex distributed systems.

Keywords: distributed ystemsdesign, developmentmethoddogy, formd meth-
ods, object orientation, Pdri nets, fault tolerance, advanced transaction mocels.

1 Introduction

Theconceptof transadionhasbeen devebpedto deal with theeventud lossof database
integrity when concurrentprograms operate on it. Indead, thes programscan be
stoppeddueto hardwarésoftwarefailures or caninterfere with each othe. In general
concurrency anégilures are thetwo source of potential errors thatiead to databasein-
consigencies.Forthisreason,the transation modelis usedas a basic unit of consstent
and reliable computing within the database doman. Managing trans&tionsis not an
eagy task and theubjed hasbeen studed thoraighly ([1], [17], [7]). Trans&tion man-

135

agemrent must deal with prodems related to ruming sets of operations, that read or
modify shared dita, whie always keeping thedatabasein a consident stae, even when
concurrentaccesses and faiures ocur.

In orderto increasethe fl exibility of the traditional transad¢ion modelsome advanced
modelk havebeen propsed. More flexibility is required paticularly in contexts where
longiived andopen-endedctivitiesoccur (such asin compute-aideddesgn andman-
ufacturing projeds (CAD/CAM)). The AAD propertes (abmicity, consistengy, isola-
tion, anddurability) of thetraditional modelseam to strong andsomeime inadequag
for long durétion activitieswhich need to cooperate. Long lived activitiesare morein-
clined © conflicts since they often rmaintain locks for bng period of ime on humeous
objeds. Shorttransadions, waiting for lock resouces mustbe ddayed. Longduration
activities are also morevulnerale to fail ures.All thesefacts unfortunately tendto in-
creasesthe risks for deallocks and abottions. Hence, aborting a long transadion is
clealy undesiable for alargequantity of importantwork might belost. Moreover, the
isolation propery of the traditional modelgoesagainst the cooperation needsof these
activities. The objedives of newmodes are of many kinds. Most of them try to stati-
cally divideor to dynamicaly restrudurelong transadionsinto smaller subtransetions
S0 asto: increaseconcurreng andcooperéionbetweentransa&tions;relaxtheisoldion
propert/; and,in caseof cancellation, proposealternative solutions other thancoming
back to theinitial state.

Coordinatd atomic actions(CA actions)presntageneraltechniquefor achieving fault
tolerance byintegratng the concepts of converséion (that endoses aoperative activi-
ties),transadion (that ensures consistentaccessto sharel oljeds), and exception han-
dling (for error recovery) into a uniform struduring framework. More predsely, CA
actions([19],[20],[21][23],[24]) useconversdonsasamechansmfor controlling con-
currency and communcation between threadstha havebeen desgnedto cooperag
with each other. Concurrent accesses to sharedobjects thatareexterna to a CA adion
are controled by the assciatedtransation mechanismthat guarantesthe ACID prop-
erties In particular, objests which are aternd to a CA action, and can hencebe share
with otherconarrent CA adions,must beatomic andindividualy responsble for their
ownintegrity. In asenseCA actionscanbeseen asadisciplinedapproat to using mul-
ti-threadednesedtransation while providing themwith well-structured exceptionhan-
dling.

Although ome efforts havebeen devotedto the formalization of advancedtransadion
modelks, thiswork clealy appeas to be insufficient To ensurethe delivery of reliable
complex distributed sysenms, it is importantthatformali zation li eswithin the scope of
a complete devdopment process covering the whole softwarelife cycle. This projed
therdore aimsat providing the CA adion modelwith acomplete formal bags alowing
system devebpmentaccordng to a safe andmethodlog cal softwareengineaing ap-
proad. To reaizethis, we first decided to providethe CA adion modelwith aforma
design language called COALA. COALA is meant for the definition of CA actions
whichare usel to desgn complex distributed applications. COALA hasaclearandsim-

136

ple synta as well as aformal semanticswhich precisdy defines the CA acion model
COALA'’s formal semanticsis expressedin the Pdri net-basel objed oriented spedfi -
cation formalism CO-OPNR ([2],[3],[4]). CO-ORN/2 is a spedfi cation formalism
which all ows modula description, refinement, prototype implementtion andtesing.
The main reasonmotivating the choice of CO-OPNR asthetargetlanguage of COA-
LA’s sananticsisthat it includesmostof the essental charaderigtics ([14]) necessay
to provideforma, structuredand operational semanticsfor distributedsysemsinwhich
concurrencyatomicity and consitencyof data structures areto beconsidered. A soft
ware enghneering framework has been developed for CO-OPNZ2 in order to provide
methods andtechniques supprting the main phase of the softwareli fe cycle (andysis,
design,implementation, verification and validation). Evenif all thesetechniquesarenot
yet fully integraed in this project, they repregnta goodframework for the definition
of avaluable developmentmethodology for COALA. A major contribution of this pa
per isto showthat highlevel Petri nets can provideusdul sermanic and methodologica
means for he development of high level transadion models like CA actions.

This papelis aganisad as bllow; thesecondsection presensthestate of theart of new
advance transadion modek for distributed systems, the third andfourth sections ex-
plain the syntax and semantics of COALA while the fifth sedion introduce a small
banking exanple. The paperends by shortly sumnmarizing the devdopment methodol-
ogy wepropase for COALA.

2 State of the Art

2.1 Traditional Transaction Systems

The main four propertes assciated with transations are commonly known as the
«ACID» propertes.

(1) Atomicity: atransation istreated asa unit of operdion, the effeds of all the oper-
ations of atransa&tion persis or nonedo; (2) Consistency: a transa&tion is a program
which mustmap oneconsident databaseto anoter; (3) Isolation: concurrent transac
tions mustbe executed as if they were exeauted serially, in isolaion (serializability),
other ransations mustnot seethe effeds of any uncommitted transadion (faiure iso-
lation); (4) Durability: the effeds producel by a transadion mustbe madevisible and
permanent assoonasthe transation commits.

A transadion sysem saitsfying these popeaties elievestheuse from manyhardprob-
lemsrelated to the maintenane of the database consstency.Differentalgorithmic so-
lutionsexistwhich all ow controled accessto shareddata objeds. Themostwell-known
methods are the strict two-phaselocking, the timestamp ordering and the optimistic
concurrencycontrol strategies. Thesemethods differ in the strategy usedto ensurese-
rializability and recoverdility of the conarrent transation opeations applied to
shareddata ([1],[7]).

137

2.2 Advanced Transaction Models

Nested transactions ([15]) areanintrinsically recursive modd which providesfor finer

grained recoveryandbetter cortrol of reliable transa&tion execution. Appropriate de-

sign of subtransetions anhep localize falureswithin a (parent) transadion. Paralel-

ismand modLlerity can be &ploited within transations © as to enhance performance.

The simplicity and the structuring capabilities of this modelhelp manaying the com-

plexity of sysems Onthe other hand, the nested transation modelremains quite con-
servaive regarding solutions proposel to control concurrency and to maintain data
considency.

Thesplit-transaction model ([16]) was proposed san axswerto some spedfi ¢ trans-

action prablems encounéredin open-ende@divities. The man objective is to allow

dynanic recorfiguration of long transadions andto restrudure them so asto refled

some possble dynamic changein the (use or application) requirements. In the split-

transation modd, partal results (that will not changetanbe comnitted, thus prevent

ing or reducng loss of work in case of failure. This early releasng of committed re-

sources allows more concurrency while reduchg isolation between transa&tions and
still ensuringserilizable accesses to resoucesfor al transations. However, for non-
interadive applications, the usdulnessof this modelis less obvious.

Thesaga model ([13]) relaxesthe requirement thatalong transation beexecuted as a
single atomic adion. Since shoter transations reduceprobabilities of conflicts, fail-

ures, deadlocksandabortions, a sagais definedasa set of comporent subtransetions
exeauted in sequace orin paralel. Isolation being li mited to subtransadions(notto the
whole saga), this modelallows morefl exible cooperéion between long activities rep-

resented by sayas.Moreover, the concept being relatively simple, the sagamodel does
not require very complex or novel implementtion mechanisms. Contrarily to neded

transations, this model allows only two levds of nesting and the outer level (saga
doesn'tprovidefull atomicity. Saga mustbe designel staticaly and do not allow dy-

namic restructuring. Thereisnohigh-level suppat (loop, branch,etc.) to control theex-

ecution flow of componensubtranactons within asaga, netherarethere mebhansms
allowing conditionalcreation of componensubtransadions.As for recovery,themodel

doesn'tded with thefailure of compensting transadionsandhene doesnot guarantee
their suaessfulcompletion.

The flex transaction model ([12]) solvestrans&tion processing problems involving
datain multiple autonomousn possbly heterogeneusdatabasesystans. Transations
accessing multiple databaseare oftenlong-lived and may neal to cooperate. Propose

featurescontributeto amorefl exible andpreciseorderingof subtransadions execution.

However,with regadsto sagas,the Flexmodelneitherredly increases cooperaiton nor
améli orate consistengy maintenance Unfortunatly, asfor saga, structuring posdbili-

tiesremain limited to a two-level nestng, while fail ure andconaurrency atomicity are
still notensured atthe outmostlevd.

TheConTract model ([22]) propsesmechanismsto facilitate persstence, consigen-

cy, recovery, semantic synchronization and cooperdon. Failure and concurrency ato-

micity is not ensuredeat the ConTract levd but the model propcses somealternative

solutions more adaptel to the requiremens of long lived adivities: recovery mecha

nismsbasedon conext managenent(savingfesbring), consigency control using com-

138

pensaton andsemantic synchroniation, etc. Contrarily to former models presentedin
this section, inconsistengy problems due totherelaxation of the isohtion propery have
beenaddresed.However, the ConTrad modd still leavesplace for inconsstency, but
this seansthe price to paywhen isolation isn'tguaranteedany more and when actions
need © becompensed instead of béng aborted.

2.3 Discussion: CA Actions and Advanced Transaction M odels

CA actions exhibit all the ACID propatiesandthusensire the maintenance of object
considency. As for nestedtransations,CA adionsprovidemodularity, s&fe concurren-
cy andfinergrained recovery.Since CA actions aremulti-threadel units of work, co-
opeaation is en@psubted inside the action: threads coopeate inside a CA action by
exchanging information throughinternalobjects. Thereis therdore noneedto bre& or
relax the isoldion property to allow for more cooperdéion Cooperation is made easy
and sde. Contraily to mostof the models introduced, control flow between subtrans-
actionscanbespedfi ed:insidea CA adion, threalsexeate sequeritl instrudionsand
can thuscontol the execution of sulirans&tions using sequéce and conditond in-
structionsfor example. Longtransa&tions can easiy be desgnedanddivided into sub-
transations so as to release resourcesearlier for other compding suliransations and
to allow for finergrainedrecovery in caseof failure. The CA adionmodelalsoprovides
means fa coordinded forward error ecoveay, thus alowingaterndive solutons b be
exeauted (by the partcipating threals of a CA adion) instead of aborting andcoming
back to theinitial state. The modé also allows for persistencgy issuesand recovery from
system failures.Finally, and similarly to the ConTract model, CA adions mustnotbe
consideed asyet another transadion model but asa new compréensive framework
whichaimsat providingall theadequad mechansmsnecessay to ensureboththemod-
ular design and the sde exeaution of large rédi able distributed systems. CA action con-
cepts aeintroduced in Section 3throudh the presentation of COALA.

2.4 Formalization and M ethodol ogy

Reli able distributed sysens developmentis acomplex and ®stly activity. We believe
thataforma and nmethodologicd framework can beof grea use for enginees.
Formalization is animportant step in language and modeldesign which contributes to
clarify concepts, syrtax and semanics; it can hep classifying modek and facilitates
forma reasoning.Transadion sysemspreseted in the previoussection have moreor
lessbeen formali zed. Nested transadions and split-transa&tionshaveshortly been spee
ified in ACTA ([5]). Atomic adions and sagashave also been charaterized using
ACTA in [6], whichallowed better comparison of some of thesemodek’ properies. As
for ConTracts, mechanismsto describeandexecute their compugtionshave been intro-
ducedin [18]. Finally, Flex transa&tions have been formalized using Predcate Peti
Nets ([12).

As faraswe know, formd development methodologiesfor advaned ransation mod-
els have not ben deely invedigated and worlgtill nealsto be doe in this aea Most
researcheswho have aken ughe subjet of advanedtransation modes have doked
at it from analgorithmic and implementation point of view. Our work rather posiions

139

itsef at a higher lgel, trying to integratethe CA action transation modelintoaforma
and methodblogical enginesring framework. We believe, as shownin this pape, that
high level Petri nets and more precisdy the CO-OPNR formalism, areaided tool for
building this framework.

3 The COALA Language

3.1 COALA Basic Concepts

Thissubsetion shatly explainsthemain concetsof CA adions([23],[24]) astheyare
consideed in COALA ([19],[21]).

Roles. A CA adion is viewed as a collection of roles, each of thembeing assocated
with aportion d code(asubprogram).The ulimate goalof aCA action consigs in co-
ordinatingits rolesso as to cohemtly manageall the system's softwareentities,i.e. the
system's dbjeds. An exeautionthread enters aCA action by activating the roleit wants
to exeaute. Wheneach role hasbeenactivated,the CA action stats and eachthread thus
exeautes its role. This exeaution is coordinded by the CA adion which seesthat all
ACID properies (which ensurethe consistent state of objects) ae respeded.

Objects. The CA adion concept defines two kindsof objects, namely internal andex
ternal ojeds. An internal objed is anobjed locd to a CA adionandit is share be-
tween all its roles. It is used for the coordinaion of roles or for other internal
computdions.An externalobject is aglobd oljed which can bemodified by he rokes
of different CA actions. Operdionson external objeds are constraned by the ACID
propertes. External objeds may be shaed simultaneously by several CA actions but
the effed of the opeationsappliedto themmustbe the sameasif the CA adionshad
been exeaited oneafter anoter. In othe words,the scheduk of operations appled to
external ohjeds mustbeserializable Referenes o external objeds arepassed to roles
through their paraneters. Internd objeds are declared inside the CA action’s body.

Outcomes. The exeaution of a CA action consktsin coordnating the execution of the

its roles. A CA adion endswith oneof the following outomes:

* Normaloutcome The ACID propeties were sagfied during executionandthe CA
action comnitsits operéions;

* Exceptonal outcome The ACID propertieswere saisfied butan exception mustbe
signaled b the enclosing CA adion;

« Abort outome The CA action hasaborted and has undoaits ogerations while sat-
isfying the ACID properties

« Failure outcome A major probem occurred,prevening the CA adion notonly
from committing but also from abotting (i.e. the CA actionends without garaniee
ing the stisfaction of the ACID properties).

All the roles of theCA action end with thesame outcome; in the caeof anexceptonal

outcomeall the rolessignd the sameexcepion to the enclosing CA adion.

140

Exceptions and Handlers. There are two types of exceptionsin CA actions: internal
andinterface exceptions.Internal exceptionsarelocal to agiven CA adion, which must
therdore handke themon its own; ead role of a CA action has a s of subppgrans,
called handlers to handletheseinternal exceptionsor a combindion of them. Internal
exceptions areraisel by roles. When someoles ofa CA action raise different internal
exceptions concurrerly, all roles areinterruptal and a reslution agorithm then deter-
mines which handle mustbe activated by all the roles to hande these concurrent ex-
ceptons.Handlers aresubpogranswhichtry to bringthe syseminto anewconsitent
state. Handlesare notauthorized to raiseinterna exceptionsdulingtheir exeaition. As
for interface exceptions, they aresignalled. Whena role signals an excepton, it stops
itscurrent execution, wats for theother roles b end and agregwith themto propagag
the exception at the outside level, thatisto say to the enclosing CA action. Both roles
and handlerscansignal interface exceptions.When signaled exceptions are propagat
ed, thesituationis thesame as if thes excetions were raisedat the levd of theenclos-
ing CA action. In addition, two defaut interface exceptions are made avail able to all
CA adiors: the Abort exception and he Fail exception. Theseexceptonscan beraised
or signalled

Behaviour of CA actions. The exeaution of aCA adion alwayscorrespondsaoneof
thefollowing senaio:
(1) Eachrole executesand endssucessfuly. No exception is raised during exeaition
of roles The CA adion endswith anormalouttome
(2) Some of therolesconcurrently raiseinternalexceptions dutingthe exeaution. These
raisedexceptions can be idantica or different. In any case,the CA action usesa resoll-
tion graphto dedde which exception handler hasto beexecutedto copewith thesecon-
currentexceptions.All the rokesof the CA action are informed of e exceptions being
raisedandof theexcepion handle whichthey mustexeaite. Oncehandlersare adivat-
ed, thefoll owing cases can ocaur:
* |f all the exception handlers end sucaessully, the CA adionends vith anarmal
outcome
* |If someof the exception handles signal an interface exception during their exe:
cution and if these exceptions arethe sane, then the underying sysem forces dl
thehandles to signalthis exception to the enclosing CA action. The CA action is
sad to end with anexceptional outame;
* |If someof the exception handles signal an interface exception during their exe:
cution but theseexception aredifferent,the underlyi ng systen triesto abortthe CA
acton. If it suceeals,the CA action ends wih theabortoutcome and dl theroles
signalanAbort exception to the enclosing CA adion; if the abortoperaton fails,
the CA actionendswith the failure outomeand aFail exception issignalledto the
enclosingCA adion. Theundealying system also ties to abortthe CA adion if an
excetionis raisedin a handler program For example, this casecan occur when a
nested CA adion, called during he exeation of ahandle, signalk an exception
which is consejuently raisedat the hander level. Snceraised exeptions ae na
allowed in handlers, the underlying systen mustabort the ation.

141

(3) Someof therolessignd an inerfae excepion duingtheir execution and theseex-
ceptonsareall thesame. In thiscase theunderlying sysemforcesall therolesto signal
this exception tothe entosing CA action. TheCA action ends wih an excepional out-
come

(4) Sore of the rokssignal an interface exception during heir execution but hes e-
ceptons are different. In this case,the underlyi ng sysem performs anabortoperdion
andif it suceeds all the olessignal anAbort excgotion andendwith an abortoutcome
if it fails, theyall signalaFail exceptionand endwith an failure outcome

(5) A rolesignak aninterfaceexceptionwhile anatherrole raisesan internal excepton.
Theraised exception is ignored, and the CA action coninuesexecuting accordingly to
caxes(3) or (4).

3.2 COALA Syntax

COALA has asimple and dear s/ntax to define CA actions and their componerg (ex-
ceptons, roles, handers etc.) However, for the definition of objects and expresgns,
COALA usesthe CO-OPN2 formal speification language. Each COALA program
thuscomprises aset of CO-OPNZR2 moduleswhich define abstad data types and object
classs. We do not presentCO-OPNR’s syntax andin this part, but it canbefoundin

([2).

Interface and body. The COALA definition of a CA action is madeof two parts: an
Interface section, which is visible to other CA adions,and aBody section, which is pri
vate and hiddento the outside world. The Interface of a CA adion has the following
shape:

CAA <CAAName>
Interface
Use Il Thelist of CO-OPN/2 modles(abstract
<ModuleName1>, I/ data types and classes) which are used
<ModuleName2,> ...; //intheInterface part of the CA action.
Roles

/I The listdf its (parameteized)roles
<RoleNamd >: <Parametrtype>,..;
<RoleName>: <Parametrtype>,......
Exceptions
Il Thelist of the (parameeri zed) interface exceptionswhich the CA actioncan
/I signal to an enclosing CA acton
<ExcepionName> : Raranetertype>;
Body
Use /I Thelist of CO-OPN/2 madules (abstract data
<ModuleName1>, I types and dasses) which are usedin
<ModuleName2>,..; //the Body part of the CA action.
Use CAA II'The list of neged CA adions.
<CaaNamd >, <CaaName2,>,... ;
Objects
/I The list of the CA adion'sinternal objeds; the behavour of
/I these oljects are specified in separateCO-OPN/2 pedfication modulies
<Objectl>:<type>;
<Object2>:<type>; ...

142

Exceptions /I Theligt of the (parameterized)
<ExcepionName> : ®aranetertype>;// internal exceptions that can be
/1 raised within the CA action.
Handlers
Il Thelist of the (parameeri zed) exception hardlers of the CA adion.

<HandlerNamel> : Paranetertype>,...;
<HandlerName2> : Paranetertype>,...;
Resolution

<ExcepionNamel>(<ParamtaName,..>) <ExceptionName2>(<RrameerName...>)
-><HandlerNane>(<RerameterName...>);

/I The CA action resolution graph whid lists all the combinations
Il of interna exceptionswhich can beraised concurrently, together with the
/I handlers which mustbeactivated in each case. If a combination ofnternal
Il exceptions can't be foundin thelist during execution, this meanstiat nohandler //
was foreseen to hande the case: an abat exception must be signdled bythe
/lundelying system.

Where <VarNamel>: JypeNamd> //Local variables and their types;
<VarNane2>: JypeName>; /I Types are spedfied using CO-OPN/2»

Role <RoleNamel> (ParaneterName>,<ParaneteName>, ...);
Begin <instructons>;End /I Role program.
Where <VarName>: <TypeName>;// Local variablesandther types

Handler ;HandlerName>;
Begin <indructions> End // Roleprogram.
Where <VarName>: <TypeName’; // Local variables and their types;

End <Hand|erl.\.l.ame>;
End <RoleNamel1>;

Role <RoleNane2>(<ParaneterName>, <ParamderName, ...);

End ;bAAName;

Roles and handlersinstructions. The behaiour of arole or ahandler is descibed by
an instruction block, that is asequenceof instructions. COALA's instuctionsmay con-
tain variables but also expressions and conditionswhich refer to CO-OPNZ2 spedfi ca-

tion modules declaredin the Usefields of aCA adion.

Variable. Name to which a (typed) value is essodated. A variable nustbein the
scopeof theinstruction blodk whereit is used. Variables arededared in the Where
field of arole,ahandle, a resolution gragh, etc.

Expression. Snce COALA uses CO-OPNZ speificationsfor the definition of

data typesand objet classes, anexpressin is atermwritten overthe globd signa-

ture of a CO-OPN/2 spedfi cation and oversomesortal sd of dedared GOALA
variables.

Condition. Booleanexpression basel ontheterms huilt overthe CO-OPNR globa
signatire.

Instructions An instruction blockis anon enpty sequene of instructionsdelim-

ited byBegin and End keywords. An instruction is étherempty or is oneof the fol

lowing:
1. AssignaTov; - Asdgns pressionato variablev.
2. Execute 0.m(@l,.., an); - If methodm of the object referened byo can be exe-

143

cuted given paameers al,..., an and a&cordingto the correspanding CO-OPN/2
spedfi cation, thentheinstruction succeeds.If not, thenan internal exception
(i.e. apredefned eception raisedby the underlying sysem)is raised.

3. If cTheninstructionBlock1 ElseinstructionBlock2;- If condition cistrue (according
to themode of the given CO-OM/2 spedfi cation), theninstuctionBlocklis exe
cuted.If cis fdse, then instructionBlock2 is executed.

4. RaiseexceptionName(al,..., an); - Allows aroleto raisean internal exception
within a CA adion. exceptionName mustbe the name of aninternalexception
defined in the bodyof the CA action or the Abort or Fail exceptions.al,..., anare
expresfons which paraneterize the exceptionraised.

5. Signal exceptionNameal,.., an) - All ows arole or an excepion hander to signal
an interface exceptionto an enclosing CA adion. The name of the exception
(exceptionName) is either one of theexceptionsdefinedin theinterface d the CA
adion, or he Abort or Fail exception. When sigralling an exception, arole/han-
dler interruptsits execution and waits for the other roleshandles of the CA
adion o end ® asto propagae the exception being signall ed.

6. Call roleNamef@l,.., an) Of caaName - All ows the adivation of role roleName of
(nested) CA actioncaaName If an instance ofcaaName already exists andtsrole
roleName hasnt yet been fulfilled, then roleNameis ectivated with its ectual
paranetersal,.., an pasedon. Otherwise,the underying sysem first createsa
newinstance of caaNane, (with its owninternalobjeds), beforeadivating the
role roleName Theactual parametersal,..., an areexpressions which may contain
variables referring to external objects. Note thatthis instruction is blockingand
execution resimesonly dter CA action caaNameis ended.

3.3 COALA Semantics

COALA's sanantics ([D],[21]) is cefined asatranshtion from COALA programs inb
their forma description in CO-OPNZ2. Sinee ojedsand abstract data types of a C@-
LA programsare aready defined in CO-OPNZ2, part of the semanticsis diredly ob-
tained. Theothe partmustded with the semantic definitionof CA adions coordindion
mechanisms,of roleshanders programsand of externaloljeds atomicity. For this, we
propose aetof CO-ORM/2 geneic classs speifying the geeralbehaiour of (1) CA
actions, (2) Rolesand(3) Internal/ Externd objects affected by CA adions. Each CA ac
tion, each role and each object of a COALA proglam is being semanticaly descibed
by aCO-OPN/2 obgd, which isan instance of one of thethreegeneic clas®s or § an
instanceof oneof their subchs®s.Inded, paticular instances and subchsesmustbe
creded to expres the precisesemanics of agiven GQOALA program.

¢ ClassCaa descibesall the coordinaion mechanisns d the CA action. Thisincludes
statingall theroles syrchronously, solving distributed raised exceptions and man-
aging howthey mustbe handlel, coordnaing ending roles, signalling exceptions,
efc.

¢ ClassRoledescibeshow aroleis darted, how t endsand how i interpres the
instructions whth it hasto execute (see instructions desaibedin Sedion 3.2)

¢ Class IntExtObject describes how an obpd in a CA adion proces®sthe operdion

144

requess it receives,while together ensuring respet of the operations' ACID prop-
erties. Class IntExtObiject refers to anoher GQO-OPNZ2 dass @lledobjverson to keep
trace of the differentobject state verdons hateach CA action sees & one given
time. More predsely, theseobject state versons rgresentthe different views that
ead indvidud CA adion (operating on the object) has of the ohjed's stae. When
a CA action commits, theview it hasof the obpd's shte becomes the current state
of the object. If it aborts, no change is madeto the object's current state.

This objed-oriented approach adoptd to buid COALA's semantics presens many ad-
vantages. Amongothers this semantic defini tion ismodular, generic, clea andquitein-
tuitive. The semantics of a COALA programis ohtained by extending the geneic
classes introducel aboveand by crating the apprriate instaneswhich represat the
CA adionsin the programandtheir componens (roles, internalexternal objects, etc.)
Figure 1 illustraes an exanple of a CO-OPNR classhierarchy usedfor the semantics
of a COALA program The genericity andmodularity quditiesof this approab allow
to transhte COALA progransintoasetof CO-OPNR objectsby asimple exensbn of
the geneic classes (Caa, Rde, IntExtObject) into spedfi ¢ subcbssesand by creaing go-
propride instances of hesesubclasses.

We gve bdow ashortandpartal il lustration of howroles are traslated into CO-OPN/

2 objeds belonging to the abstract class Role which spedfi esthe generc medansms

and the basc behaviour that anyrole must have.Roles specific to a CA adion are de-

scribed by individual classeswhich inherit from the abstract classRole Each of these

subclasses dl ow the credion of role 0bjeds having a particular programto execute.

A role objectisa CO-ORN/2 object whichisitsdf a high-level Peri net As shownon

Figures2 and 3, arole objed is cmmposed of

« a<tof internal transitions (white rectangular boxes)which spedcfy its internal
behaviour. The nain internal behavour of arole objed consbtsin interpretng the
instructions whth therole hasto exeate.

« asetof methods(bladk redangularboxeg which allow other COOPN/2 objeds to
modify its state. In the semantics Caa objects usarole object methodsto act on
themand coordinag their execution (tointerruptroles to synchronie them, etc.)

As mentioned, the main internaltranstion of role objeds is calledeva and is usel for
interpreting COALA instructions. Figure 2 ill ustraes the evaluation of theinstrudion
"Call roleName(a_1,..,a n) Of caaName'. As shownon the picture, the instruction is read
from place Instr. To interpretit, the evduation context (contaning the valuesassigne
to variables) is requird andisthustaken fom place Ctxt and put back intoit right after.
When evaluating a Cal instruction, transition eva putsthe identty of the role to be
calledalongwithitsevaluatedparametersin placeRdeToCal. Thes valueswil | befetch
from this place assoon asthe CA actionobjed whose rot isbeing cdled @an synchro-
nize with the methodcalRole of the caling objed. This synchronizationis illustrated by
Figure 3. Onthis figure, the Cdl instrudionis performed by roe object ¢ while therole
objed being called is identified by r. The interpretation of this instruction consigsin
evaluating the argumaets in the context and then putting the result together with the

145

idenity of therole object to be called (i.e. r) in place RoleToCdl. Approptiate tokensin
this place dl ow methodcalRde of roeobject ¢ to eventud y fire. It does ndeed a soon
asthemethod satRdes of thecaaobjed coorinating roler, triesto synchroiize sequen-
tially with (1) themethod calRde of objed ¢ and (2) he method start of object r.

Rde objeds have many othermethods(not shown on Figures 2 and 3) which areused

to define the exception handling mechansm, the way roles operate on CA adions ex-
ternd objeds, etc.

| Class CauSpccial2| | Class CaaSpecial3

Object CanSpecial3-Id1

Object CanSpecial2-Tdl Object CaaSpecial2-Td2

Class CaaSpeciall

Obiject CaaSpeciall-Id1

Legend * Class IntExtObject

[:zenericelass
[: specific subclass

(@) specific object instance

—* . inheritance relationship

—&= : object instanciation
Object Paul’shoak Object Mary’shook ~ Object Account2 Object Accour

Class Role

Class Class Class
RoleA*of*CaaSpeciall RoleX*of*CaaSpecial2 RoleW*of*CaaSpecial3
Object : : ()bj%@ LO Object : : Object
RoleA*of*CaaSpeciall-1d1 RoleX*of*CaaSpecial2-Idl RoleX*of*CaaSpecial2-1d2 RoleR*of*CaaSpecial-1d3

Class Class
RoleB*o[*CaaSpecial | RoleY*ol*CaaSpecial2

Object \/_: obj\c‘:O LO Object

RoleB*of*CaaSpeciall-1d1 RoleY*of*CaaSpecial2-Idl RoleY*of*CaaSpecial2-1d2

Figure 1 : Inheritance hierarchy and object instancesfor the semantics

146

callRole (r, args)

RoleToCall

InstrQ

CallRole r withargs args

start(args,
CaaObj)

Figure 2 : Rde object c evaluding aCdl Rde instruction

Caa Object a

endRoles

(r’rlist)
CaaObj

acceptTest

(r'rlist)
syncRoles

syncRoles With
Sclf.startRoles(rlist, clist, caaObj)..
. = Sell.acceptTest(rlist, oulc) ..
startRoles (jr’rlist); {g’clist), CaaObj) Self.endRoles(rlist, clist, outc) ::
. “ R Objs caaObyj, Roles rlist ->
~) N Objs caaObj, Roles rlist

‘ O O
N
RoleToCall

I —
O start (args, CaaOhj) Q

Role Object ¢ Role Object r

Figure 3: Syrchronisation betveen the calling role object ¢ and thecdledrole objec r

147

4 Small Example

This sedion introduce a small banking example to illustrate COALA concepts and
syntax. The complee COALA design of this example is given in [19]. Of course this
simple example cannotfully il lustrate the power of COALA anditsintered for reliable
distributed sysems engineaing. For this purpae, [21] present a complde casestudy
where an Inernetauction saviceis desgned usng COALA and s implemented ushg
aJavalibrary egecially desgned for COALA. The example consideed in this sdion
illustratesa joint withdrawimplicating two personsand two joint accounts.These two
persors own together two joint accountsandwant to withdrawacertain amourt of mon-
ey from thejoint accounthaving the highestbdance

The bank wih which thesetwo persons degaoffers its clients a speial kind of account

called "joint account". A joint account is owned bytwo clients, called co-owers. Each

owne is given a personalidentfi cation number(pin) which he mustuseto identify
himsdf. The condtions gpied © joint accountsand pins ae the following:

« A withdrawoperation on ajoint account requiresthe auhorisaion of bothits -
owners.

¢ Thebalanceof the joint accourt canbe consulted by ay co-owner(without the
authorigation of the othe co-owner).

¢ Money can bedeposied (by anyone) onhejoint acourt without any autorisa-
tion.

« Aclientgives his authorisdion for the exeaution of atransadion by prwiding his
pin, whichmusthenceforth be validated. If he makes amistake, vali daton fails and
the operation is immediately aborted.

The COALA programcorrespading to this banking exanple is madeof two pars:

¢ a QOALA speification considing of two main CA adions: JointWithdraw and With
draw. TheseCA adions rder to three othersmdl complementary CA actions (Wait-
PIN, WaitInfoAmount and WaitResdAmount) which ae simply used © forcethe
syrchronization of threads.

« a CO-OPNR speification (dasses and dattypeg descibingthe objects used by
the CA actions: IntegerContainer, PIN and Account.

CA action JointWithdraw. The Jantwithdraw CA adion presets two clients, named
clientl and client2. They are the co-ownersof two joint accounts, accountl and account2.
Each joint accounthasanappoined co-ownerwho takes care of the main transa&tions
opeaatedon theaccount:clientl is regponsible for transadionson acountl while dient2 is
resporsible for transations on account2

In CA adion JointWithdraw, role clientl desaibesthe behaviour of a clientwho wantsto
withdraw a certain anount of money out of one ofwto given joint accounts More pre
cisely, the moneymustbe withdrawnfrom the account having the greatest balance.
Client1 thus nformsthe oher co-ownerglient2, about he anount to withdraw.Each cli-
ent consuts his appointed account and tells the other how much morey thereis left.
Each clienthenceforth knowsonwhich acmourt themoneymustbetakenfrom. Thecli-
ent respondile for the accounthaving the highed baancemustperform the withdraw
by calling role withdrawer of CA adion Withdraw. On his side, the other client calls role
partner of this sane CA action.

148

However, if thereis nat enoudn moneyon a single account, the missing amourt is
drawn out theotheraccount. If somemoneyisstill missing, theexception NotEnoughMon-
ey must be signaled. Rgure 6 paiilly descibesthe COALA dedgn of CA action Join-
twithdraw. Figure4 illustratesoneof the normd (i.e.with no exception) executionof CA
action Jdntwithdraw. Boxesdelimit the execution partunder the control of each CA ac
tion. Circlesrepresentobjeds. As for "X" symbols,they denot Execute instructionsin
therole programs.

CA action Withdraw. As mentioned,a withdrawoperation requires the authotisaion
of both co-ownersHence the clientwithdrawing the money (the withdrawer) mustnot
only give is own pin but must also getthe pin of the other co-owner(his patner). Note
thatclientshave asingle try to enter their pin whenthey are promptel for it. If thewrong
pin is entered,then an Abort exception is raised, andthe whole CA adion Withdraw is
aborted.

If the pin validaton processsuceeds, two casescan ocalr:

e Thereis enough noney on the account. Therequired mong is drawnout the
acourt and the bdance is updagd.

« Thereis not emowgh money onthe aaccount.All themoney onhe acountis drawn
out, the talanceisthus putto 0 and the excepton missing is rmised. The wiidrawe's
exception handle takes up heexeaitionand ndicatesthe amourt of missing
money b the enclosing CA adions by assigning this anountto the externd objec
commonAmount. If no prdlem ocaurs during his handing phag, CA action withdraw
simply ends with a normé outcome.

Figure5 illustrates the normd execution of CA adion Withdraw.

CA actionsWaitPin, Waitl nfoAmount and WaitReadAmount. ThesenestedCA ac
tions are used to coordinae the work of two threals, more predsely to syndironize
these two threals. They al have the sane shge and achieve the same work: a first
threa entersthe CA action by cdling oneof the two roles thisthrea is suspendedntil
the seond rde is cdled by anothethreal. Since the bady of the roles areempty, these
CA actions end (with a normal outcome) right after the initial synchroniation of the
roles.

149

CA Action JointWithdraw

CA Action CA Action CA Action
WaitInfoAmount WaitRead Amount Withdraw
Client1 first first withdrawer
X XX XX KX
Client2 | second second partner
X—X X—X X—X

Internal objects O O O
L

templ commonAmount temp2

External objects O O
e

account amount

Figure4 : A normal exeaution of CA action Jointwithdraw

CA Action Withdraw |
|
CA Action :
WaitPIN :
|
Withdrawer first :
*X—X XK —X—
L -
Partner second
X

partnerPIN withdrawerPIN

|

I

I

I

Internal objects :

Ll e I

|

|

I
External objects
L

account amount

Figure5: A norma execaution of CA action Withdraw

150

Acceptance Test

CAA JointWithdraw,
Interface
Use Accaunt, Integers
Roles
dientl: acountType, integer,
dient2: acountType;
Exceptions
NotEnoughMoney;
Body
Use Boolears,

Use CAA Withdraw, WaitinfoAmount, WaitReadAmount;

Object tenpl, tenp2,commonAmount: integerContainer;
Handler

FailHardler; Aborthandler;
Resolution

Abart -> Aborthardler,

Role cliertl (acoourt, anount);
Begin
Execute commonAmourt.put(amaount);
Call first of WaitinfoAmount;
Executeacmountbalarcgmorey);
Executetempl.put(money);
Call first of WaitReadAmourt;
Executetempl.gef(tl);
Executetemp?.ge{(t2);
If (t1>=t2)=true)then Begin
Call withdrawer(@caount,
commonAmount)
of Withdraw;
Execute commonAmourt.get(ca)
If (ca>0=true) Then
Call partne of Withdraw;
End
ElseBegin
Call partne of Withdrawend,;
Execute canmonAmaunt.get(ca);
If (ca>0=true) Then
Call withdrawer(accaunt,
commonAmount)
of Withdraw;
End;
ExecutecommonAmourt.gei(cg);
If (ca>0=true) Then
signal NatEnoughMoney;
End

Wheretl, t2, ca moneyamount: integer;
account:accountType
Handler FalHardler,
Begn Sgnd Fal; End
End FaiHardler;

Handler Aborthardler;
Begin Signal Abort; End
End Aborthardler,

End dientl;

Role diert2 (acount);

/I The instruction block of this role is
very similar to the one found in role
clientl, it followsa symmdric pattern.
Anong others, client2 enters nested CA
actions as clientl does, following the
sameif-then-else scheme, but calling the
oppositeroles. Another differenceisthat
client2 has only one parameer: no
amount parameter. Indeed it is only
clientl’s responsihility to indicate how
much money must be withdrawn. Han-
diersareidentical for both roles. //

End client2;
End JointWithdraw;

Comments:

(1) In CA action JointWithdraw,

templ, temp2 and commarAnount are

local objects allowing roles clientl

andclient2 to communicate between

each others. These objeds behave
like buffers and thus provide met-

ods such as get and put to modfy

andaccess thar content.

(2) CA actions WaitInfoAmount and

WaitReaddAnount are used to syn-

chronize clientl and client2 so that

they can get values of local objeds

at thetimely moment.

(3) The commonAnount objedt cort

tains theamount of moneyhat must
bewithdrawn.lt is passed as an ex-

terna parametr to CA action With-

draw which decrements its value
accordingly.

Figure 6: COALA design of CA action JointWithdraw

151

5 Development M ethodology

COALA is aformad languag€or the desgn of distributed systems; it hasa syntax, a

semantics but nodevelopmentmethadology yet. Oneof the objectives of thiswork aims

at providing COALA with the devdopment methodblogy developed for CO-ORN/2.

CO-OPNR's development methoddogy is preseted in detail s in [8], [9] andits gpli-

cation is shownin [10] and [11]. It providesan integraed forma framework designed

espedally for this classof high levd Peri nets which coversspedfi cation, desgn, im-

plementation, simulation andtest. Thework presented in this pgperaimsat adaptingthis

engineeing frameworkto COALA. The devebpmeit methodology for COALA will
mainly consigs in the following phass:

« Definition of requirements(functional and safey requirenens).

« Abstract desgn in COALA.

« Fomal refinenment of the design conssting in seveal stepsand using anadgted
notion of arefinementfunction for COALA to progessively reach addail ed
design.

« Implementation carriedou as adired trandation of the detail ed design into an
implementation languaggeventudly using a et of preddined li braries)

¢ Test using kst ses allowing for the formal CO-OPNZR2 semantics of the design
written in COALA.

e Simulation, automdic generéion of executable codebased on the axiomatic
semantics of GO-OPNZ2.

Validation and verification could be parly addresed,in the COALA development

methodblogy, usingthe COOPN/2 ndion of “contract”. A contractis assigned to each

COALA desgn step(abstract or refined). Contrads mustbe preserval duringthewhde

developmentprocess Henae, properies expressel and satisfiedat theabstract level wil |

still be presentat implementation level. Formal andinformd proofs are propcsed to
guaantee the presevation of this propery. Contracts are means to addressvalidation
and verfication issues.

6 Conclusions

This paperhadtwo main objectives. First weintroduced COALA asaformallanguage
for the desgn of reliable distributed sysems basel onthe concepts providedby the Co-
ordinated Atomic Action framework. Secondly, we havedesaibedthe intereg of the
forma engineeing framework of CO-OPN/2 to addressemantic andmethodologica
issue in the context of distributed sysems development This was made by defininga
new design language, GOALA, with apredse syntx and a semntcs gven in tems of
CO-OPNR spedfi cations.We havethensummnarized how techniques avail able in the
CO-OPNR framework could be exploited to provide COALA with an engineering
methodblogy allowing formd devebpmaent of distributed systams. This paper repre
sents a contribution which aims at increasng the level of rigor and methodologyused
in the engineering of distributed systens designed using an advaned transadion
scheme basa on highlevel Peri nes.

152

7 Acknowledgments

This work has been partally suppoted by the Espri Long Term Research Projed
20072 Dedgn for Validation” (DeVa) with the financal suppat of the OFES(Office
Fédéra pour I'Education et la Sdence), and by the Swiss National ScienceFounda
tion'. We woud like to thank ourcolleagues far al the hepful disaussons ad collabo-
ration wehadconcening this work.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10

(11

P.A. Berngtein, V. Hadzlacos and N. Goadman. Corcurrency control and recovey in
databasesystems Addison-Wesley Seliesin Compute Sciene. Addision-Wesley, 1987.

O. Biberstein. CO-OPN/2:An Ohjed-Oriented Formalism for the Specification of Con-
current Systems PhD thesis, University of Geneva Geneva, Switzerland, 197. Thesis
No 2919.

O. Biberstein, D. Buchs and N. Gudfi . Objed-Oriented Nets with Algebraic Secifica-
tions: The CO-OPN/2formdism. InAdvanasin Peti Nets on Object-Orientation, G.
Agha and F. De Cindo (Ed.), Lecture Notes in Computer Science, Springer-Verlag,
2000 To apgear.

D. Buchsand N. Guelfi. A conarrent obed-oriented Petri nets approah for system
spedfication. In M. Silva, editor, 12thInternationa Corference onApplicationandThe-
ory of Peri Nets, pages 432-454, Aahus Denmak, June 1991.

P.K. Chrysanthis and K.Ramanritham. Acta: aframework for gpedfyingand resoning
abou transation structure and behavor. In Proceedingsof the ACM Special Interes
Groupon Managementof Data (SIGMOD) 199Q pp 194-2@, New York, 1990. ACM
Press.

P.K. Chrysanthisand K. Ranamiitham. Acta: The saga conthues. In Database Transac-
tion Modés for Advance Apdications chapte 10, p. 349397, Morgan Kaufmann Pub-
lishers, 19.

G. Coulouris J. Dollimoreand T. Kindberg. Distributed Systems: Corcepts and Design.
Addison-Wesley, second edition, 1994.

G. Di Marzo Seugendo. AFaoma Devdopement and Vdidation Methadologyfor Sys-
tem Design. In Fifth International Corference on Informaion SysgemsAndyss and Syn-
theds (ISAS'®), 199.

G. Di Marzo Seugendo. Stepwie Refinement of Formal SpedficationsBasel on Logcal
Formulae:from COOPN/2Spedficationsto Java Programs PID thesis, Swiss Federal
Institute of Technoloy (EPFL), Lausanne, Switzerland, 1999Thess No 290.

G. Di Marzo Setugendo and N. Gudfi. Using Ohjea-Oriented Algebraic Netsfor theRe-
verse Engineering of JavaPrograns: A Case Study In Proceedingsof the International
Conference on Appication of Concurencyto SytemDedgn (CSD'9§, IEEE Computer
Society Press, 1998, pp. 166-176. Also avalable as Technicd Report(EPFL-DI No 98/
267).

G. Di Marzo Serugendo N. Guelfi, A. Romanovsky and A. F. Zorzo. Formd Devel op-
ment andv/alidation of Java Dependdle Didributed Sysems. InFifth |EEE Internation-

153

(12

(13

(14

(19

(16

(17

(18

(19

(20

(21

(22

(23

(24

al Confeaence on Engineering of Complex Compute Sysems (ICECCS99), IEEE
Compute Sciety Press, 199.

A.K. Elmagamid, Y. Leu,W. Litwin and M. Rusikiewicz. A multidatabase transaction
maodd for interbae. In Proceedings of the 16th VLDB Confeence pages507518, Bris-
bane, Australia, 190.

H. Garcia-Molina and K. Salem. Sagas In Proceedingsof the ACM Special Interes
Group on Managemat of Data (SIGMOD) 1987, pages 249-259 San Francisco, may
1987.

N. Gudfi, O.Biberstein, D. Buchs,E. CanverM-C. Gaudg F. von Henke and. Schw-
ier, Compaison of Object-Oriented Formal Methods Technical Reportof the Espiit
Long Term Research Project 20072 ‘ ‘Design Faor Validation'’, University of Newcadle
Upon Tyre, Depatmentof Computing Sdence 1997.

J.E.B. Moss Neded Transactions: Anintroduction, chepter 14, pages 39%5-425.Van Nos-
trand Renhold, New York, 1987.

C. Py G. Kaser and N. Hutchinson. Split-transadions for openended ativities. In Pro-
ceedings of the 14th internationa conferenae on VLDB pages26-37, Los Angees, Sep-
tember 1988.

K. Ramamritham and P.K. Chrysanthis. Advancesin conairrency control and transac-
tion processing. Exeautive Briefing Seie. IEEE Compute Sciety Press, 1997.

F. Schwenkreis. A formal approach to synchronize lorg-lived computaions. In Proceed-
ings of the 5th Austalasian Corference onInformaion Sysems Melbourng 1994

J.Vachon D. Buchs, M. Buffo, G. Di Marzo Seugendo B. Randdl, A. Romanovsky,
R.J.Stroudand J. Xu. Coak - aformd languagefor coordinded atomic adions. In 3rd
Year Report, ESPRT Long Term Reagad Projec 20072 on Desgn for Validation.
LAA S Francd, novembe1998

J. Vachon, The Semartics of COALA in CO-OPN2, Technical ReportEPFL-DI No 98/
300, SwissFederal Institute of Techndogy in Lausanne,CH-1015 Lausanne, Switzer-
land, Junel1999.

J.Vachon, COALA Adesignlanguagefor reliable distri butedsystems PhDthesis, Swiss
Federal Institute of Techndogy (EPFL), Lausanne, Switzedand, 20M. To appear.

H. Wachterand A. Reuter. Thecontract mockl. In Database Transation Models for Ad-
vanceApplications, chapte 7, pages 219-263. Morgan Kaufmann Publishers, 1992.

J.Xu, B. Randdl, A. RomanovskyR.J. Stroud, A.F. Zorzo, E. Canver and F.vonHenke,
Rigarous Development of a Safety-Critical Sysem Based on Coordinded Atomic Ac-
tions. In Proceedingsof the 29th Int. Synp. on Fault-Tolerant Computing (FTCS-29),
IEEE CS Pess, Madison, WI, USA, June 199.

A. Zorzo, A. Romanowsky, J. Xu, B.Randel, R.J. Stroud, I. Welch, Using Coordinatel
Atomic Actions to Design Complex Safdy-Critical Systems A Production Cell Case
Sudy. In Software: Practice and Experence 29(8), pp.677-697 199.

154

Supervisory Plug-ins for Distributed Software

Michael Lemmon and Kevin X. He

Dept. of Electrical Engineering
University of Notre Dame, Notre Dame, IN 46556
lemmon,xhe@maddog.ee.nd.edu

Abstract. This paper demonstrates the use of supervisory control theory in syn-
thesizing plug-ins for distributed software. The plug-ins are software objects that
supervisean existing distributed system so that certain properties such as fairness
and deadlock freedom are guaranteed. The distributed application is modeled as
bounded ordinary Petri net and system analysis is accomplished through a partial
order method known as unfolding. The unfolding constructs an event structure
that provides a natural encapuslation of concurrent threads of execution whose
selective disablement by the supervisory plug-in assures the desired application
property. The synthesis of the plug-in is based on results from supervisory con-
trol theory and the synthesized plug-ins are "optimal” in that they are maximally
permissive. We demonstrate our approach on a distributed cache system.

1 Introduction

Distributed software may be viewed as a collection of objects that interact through
message passing. Such software is of growing importance and it appears in applications
such as military command and control, commercial telecommunications, and emergent
Internet applications. Distributed software is required in networks of embedded proces-
sors that are used to control major components of the national infrastructure such as
the electric power grid and air traffic control system. Due to the critical nature of such
applications, it is essential that we develop systematic methods for assuring the quality
of such distributed software.

Assuring the quality of distributed software can be extremely difficult. Difficulties
arise due to the concurrent and decentralized nature of the applications. The "open”
nature of many distributed software architectures also introduces many challenges. As
an example, consider a network controlling an electric power distribution system. This
system consists of older (so-calllegjacy hardware and software components, as well
as newer components. The open nature of the architecture allows newer components to
enter and leave the system freely. For such systems we need to ensure that the entry or
departure of newer components does not interfere with the performance of the legacy
components. Assuring re-usability of legacy components under software upgrades can
be difficult for a variety of reasons. In the first place, the concurrent nature of the ap-
plications means that analyses of the overall system are hampered by state-space ex-
plosion. In the second place, these systems can be dynamic in that objects may enter or
leave the system at run-time. In such a dynamic environment it can be extremely diffi-
cult to analyze system behavior due to uncertainty in the suite of objects comprising the

155

current system. In the third place, the mandate for open software architectures means
that designers have limited control over legacy components, thereby complicating the

design process. Finally, newer and older objects may interact in unpredicatable ways
that introduce new or emergent patterns of behavior. Such emergent behaviors can be
very difficult to identify due to the large scale nature of the system’s state space.

Solving the preceding problems requires a formal and scalable analysis method for
distributed systems. This paper presents a formal approach to the design of distributed
software that applies methods from supervisory control theory [1]. Supervisory control
theory is concerned with the regulation of discrete-event systems. It provides a clear
characterization of optimal supervision. In this paper, we use this theory to synthesize
plug-insto a distributed application that enforce specified properties such as fairness or
deadlock freedom. The underlying formal model is a bounded Petri net. We analyze the
net’s behavior by a partial order method known as unfolding [2]. Unfolding transforms
the original system into an event structure from which we can encapsulate concurrent
threads of execution that can be selectively disabled by the synthesized plug-ins to
enforce the desired behavioral properties [13]. The use of supervisory control theory
ensures that the resulting systenogimalin the sense of being maximally permissive.

We demonstrate our ideas on a distributed cache system.

Remark: While the results in this paper only pertain to bounded Petri nets, it should
be noted that many of the definitions also apply to unbounded networks as well. In fact,
there is every reason to believe that the underlying principles advocated in this paper can
also be applied to restricted classes of unbounded nets. What has not been demonstrated
for unbounded nets, however, is the optimality or existence of such supervisors.

The remainder of this paper is organized as follows. Section 2 articulates the su-
pervisory control problem for distributed software. Section 3 discusses the synthesis
of supervisory plug-ins using a partial order method known as unfolding. Section 4
shows how these ideas can be applied to the the run-time reconfiguration of distributed
software. Section 5 summarizes the principal results and future directions of this work.

2 Supervising Distributed Software

This section articulates a framework in which to pose the problem of desiguing
pervisory plug-indor a distributed application. By supervisory plug-inwe mean a
software object that can be composed with the base application to restrict the base ap-
plication’s behavior without adding any new behaviors. This restriction of the original
system behavior is referred to as thgpervisory control problerm the control sys-

tems literature. We therefore pose the problem of designing supervisory plug-ins as a
supervisory control problem.

The underlying design paradigm in this paper is illustrated in figure 1. For the mo-
ment, ignore the details in this figure and focus on the feedback connection. We see
that this system consists of the base application software (what we refer toarit)e
and the plug-in component (what we refer to as shpervisoy. The supervisor uses
information from the plant to control the base application’s behavior. As noted in the
first paragraph, this control actually restricts or disables the plant from executing certain

156

actions that are considered undesirable. The "restrictive” nature of this control is what
control theorists refer to as a "supervision” (as opposed to regulation).

1 PLANT ! 0-0-0-0
B W-W-W @ ! > | W= {t1} ifu=B
Zu ={A,B} uncontrolled inputs 1 ! objectives u 0] otherwise
- : f :‘;) v1-v2-vl-v2
ZW _{W} Vl@ ; measureable I (Vi):Vi
y
! outputs

2, ={viv2.v3} | T

| W= 1 ifv=v3
z 0 otherwise

z :{0 1} supervisor
2 ,

'
vl [v2 | V3 |}

Fig. 1. Supervisory Control Loop

From a pragmatic point of view, there are many ways in which the block diagram
in figure 1 can be viewed. One view treats the supervisor as a mobile software object
that the user downloads to a pre-existing object in the base application. This view is
particularly useful in dynamically reconfigurable software [3] [4] where plug-ins are
composed with the base application at run-time in order to take advantage of changes in
the structure of the application. As noted earlier, such changes can occur frequently in
network based applications. In another, more conventional viewpoint, the "plug-ins” be-
come patches to the original program. These patches are synthesized to correct "bugs”
in the original application software. In this case, the block diagram in figure 1 is an
archetype for the software design process, in which we iteratively analyze and correct
"bugs” in a given application.

The loop in figure 1 is the classical control loop used in all of traditional control
theory [5]. We now begin filling in the details of figure 1. In the loop, the pRris
treated as &wo-portsystem. In other words, the plant is a system with two types of
inputs and two types of outputs. Plant inputs are categorized as either dmitrgl
signalsor uncontrolled disturbance signal3he control inputs are chosen by the de-
signer/supervisor to regulate plant behavior. The uncontrolled disturbance input is not
completely known by the designer. The disturbance is really used to enable a set of pos-
sible next events that the plant can generate. In this regard, therefore, the uncontrolled
disturbance injects some degree of non-determinisminto the plant state’s evolution. The
system outputs are also categorized into two distinct groupsobjeetivesignal is an
output that quantifies the system’s performance. In our case, we take the object signal
to be a "warning” that the system has entered a forbidden state. The other output signal
is called themeasuremerdignal. This signal is directly observed by the supervisor and
is used by the supervisor to help direct the plant’s behavior.

With the loop in figure 1, we now associate thepervisory control problemn
particular, our problem is to findsupervisorthat prevents the plant from entering any
previously specified forbidden state. In general, there may be a nhumber of supervisors

157

that accomplish this objective. For instance, if we have a supervisor that disables all
plant transitions, then we would have achieved the objective (assuming we started in a
safe state to begin with). Such solutions to the supervisory control problem, however,
are highly undesirable because they are extremely restrictive. In particular, we would
like to determine anaximally permissiveupervisor. If such a maximally permissive
policy exists, then we say it is "optimal”. Supervisory control in traditional control of
discrete event systems is concerned with the existence of and method for synthesiz-
ing the maximally permissive (i.e., optimal) supervisor. The application of this theory
to software design means that we can clarify what it means for a particular software
solution to beoptimal

The preceding discussion is still somewhat informal. We now provide a complete
formal description of the supervisory control problem. We begin by considering the base
application. Let's assume that the plant can be represented by a net §stdi, o)
whereN = (S T,F) is an ordinary bounded Petri net with placgransitionsT, and
directed arc& C (Sx T)U (T x S). g is the initial marking of the net system.

For notational purposes, let’s review some basic Petri net concepts. The current state
of the Petri net is represented by tarking .: S— Z*. pmaps each place in the Petri
net onto a non-negative integerjifs) > 0, then we say that placeis marked. Given
a transitiort € T, we define the preset vf{denoted ast) as all places € Ssuch that
(s,t) € F. Similarly, the postset of transitian(denoted ase) is the set of all places
se Ssuch thaft,s) € F. A markingpis said to be reachable fropg through transition

t (also denoted g% AN W) if and only if u(s) > O for all s€ ot and

Ho(S)+1lifscte—et
M(S) =< Ho(s)—1 if sc ot —te
Ho(s) otherwise

A string of transitionsy =t1,t>, - - - ,ty is called aroccurrence sequendkthere exists a

sequence of marking vectops, i1, - - -, ln such thaty_ LN W fori=1,....n. The set
of all markings reachable fropy is denoted aR(uo).

To embed the net syste@= (N, L) into the control loop in figure 1, we define an
augmented plards the 5-tuple,

P= (67€W7£U7627£y)

where/y, : Zw — Pow(T) maps symbols in the disturbance alphabgtonto a set of
transitions,,, : £, — Pow(T) maps symbols in a control alphalgt onto a set of
transitions./, and 4, are input functions. A transitioh is said to beuncontrollable

if and only if there exists no control symbalsuch that € ¢,(A). The output maps
47: R(po) — Zz and?y : R(Mo) — Xy map the net system’s current marking onto a symbol
in an objective alphabeX,, or measurement alphabgy, respectively.

Thesupervisolis a mapS : Xy, — Z,, from the measurement symbols to the control
symbols. The supervised platS is the interconnection of the augmented plant and
supervisor shown in figure 1. We can view this supervised system as an input/output
system that accepts a string of disturbance symbols and generates a string of objective
symbols. In particular, consider a sequence of objective syntypis wy,Wo, - - - Wh.

158

We say that the occurrence sequeaeets,ty, - - -, t, isacceptedy the supervised plant
P|S with input sequencey, if and only if there exists a sequence of reachable markings
Mo, M1, - - -, Un Such that

By,

—ti € bw(w) foralli=1,...,n,and
—t & Lu(S(by(pi-1))) fori=1,...,n.

The sequence of objective symbols= zy,2,2 - - -, z, is generated by this occurrence
sequence if; = /;(14). From these definitions, we see that the action of the supervisor is
to disablespecified transitions from firing when the net system reaches a given marking
in the domain offy,. Because supervision is based on the marking of the plant’s Petri
net, we refer t& as amarking based supervisor

The system in figure 1 represents a specific supervisory control system in which
plant’s network,(S, T,F) has the form shown in the figure. The output alphabets are
Zy = {vi,V2,v3} andZ; = {0,1}. In this example, we define the input maps so that
Lu(B) ={t1} and/,(A) = 0. The disturbance input map dg(w) = T. With these defi-
nitions, we see that the control input only disables transttievhen the control symbol
is B. Moreover, we see that the disturbance input was chosen so that at any instant, all
transitions that have their presets marked (and which have not been disabled by the su-
pervisor) will be free to fire. The output mdpis chosen so that the supervisor can see
all markings generated by the system. The other output mapgfingenerates a 1 if
the marked state ig;. Note thatvs is a deadlocked place from which the net system
cannot fire another transition. Therefore the objective map warns us when the system is
deadlocked. The supervisor shown in figure 1 is represented as a table for the supervisor
map. It shows that we generate the output syntbalhen the system marks statg
Sincev; has a transitiontz, leading to the deadlocked marking, it is apparent that
the action of the supervisor is to prevent the system from reaching the deadlocked state.
This is accomplished by disablingfrom firing if placev; is marked. We therefore see
that the superviso8, in this example is a deadlock-avoidance supervisor.

The preceding discussion shows a supervisor that prevents the plant from reaching
deadlocked marking. The deadlock avoidance propertysgeaificatioron the closed
loop system’s desired behavior. We now generalize the ideas presented in the preceding
paragraph. Let the subsef C R(lp) be a collection oforbidden markingén the orig-
inal net system. Assume thétis chosen to signal the system’s entry into a forbidden
marking. In other words, le%(1) = 1 if and only ifu € R;. Let’s partition the transitions
T into a set ofcontrollable T anduncontrollabletransitions. Recall that an uncontrol-
lable transition is a transition that cannot be disabled by the supervisor. Therefore if
t € Ty, we know thatt ¢ ¢,(u) for anyu € %,. Let L(G) denote the set of all occur-
rence sequences that can be acceptdd.lhetK be a sublanguage &fG) (also called
the specification language) such that all occurrence sequenkegenerate objective
sequences that have no origésin them (i.e., no forbidden markings are entered). Con-
sider the supervised plaRtS and letL (P |S) denote the set of all occurrence sequences
in L(G)accepted by |S for any input sequenas, € . The superviso$ is said to be
legalif L(P|S) C K. We say that the supervisormsaximally permissivi for any other

159

legal supervisoB’, thenL(P|S’) C L(P|S). Thesupervisory control problerasks us

to find the maximally permissive legal supervisor. The language generated by this max-
imally permissive supervisor is denotedkisand is called thessupremal controllable
sublanguage

Since a bounded ordinary Petri net can be represented as a finite state machine, the
results of [10] can be used to infer the existence of the supremal controllable sublan-
guage. In other words, the supervisory control problem always haptimalsolution
(optimality being interpreted in the sense of maximal permissivity) and this means that
our problem statement is well-posed. The chief contribution of supervisory control the-
ory is to ensure that the problem of finding an optimal supervisor for a discrete-event
system is meaningful.

Let’s consider a specific example that illustrates the application of this framework
to the design of supervisory plug-ins for distributed software. We consider a distributed
cache system in which two local cache memories synchronize their contents to the
contents in a global memory bus. Each local cache has memory and a processor to
control memory access. The global bus also has memory and a processor. The global
bus and local caches interact through message passing.

We assume that the local cache and global bus each have three isteddid;
shared or owned When the data in the local cache and global bus are synchronized
then all objects are in thgharedstate. The data in a cache becomes unsynchronized
when the local cache updates its memory. When a local cache wants to perform this
update, it changes its local statedened and sends the messaipevalidate to the
other cache and global bus. Upon receipt of this message the global bus and other cache
change their internal statesiavalid.

The local cache can also invalidate the global bus if it detects a loss of synchrony
through aread-only message. This provides a means of fault identification for mem-
ory faults. In this case, the local cache issuaszad-only request to the global bus.

The global bus responds with the requested data and if this data is inconsistent with the
local cache’s copy, then the local cache issuesmmalidate signal.

Once invalidated, the cache memories need to be resynchronized to the global bus.
This resynchronization is initiated by the local cache that changed its local memory.
After updating its memory, the local cache sendsdbmeplete-update message to
the global bus. The global bus responds withead-write request for the updated
data. Theowned local cache responds to this request with the desired data and then
changes its internal state tavalid. Upon receipt of the data, the global bus changes
its state toowned. We now have both local caches invalidated and they can each change
their internal state tehared by issuingread-write requests to the global bus.

The software controlling the communication between the local caches and the global
bus can be viewed as distinct objects. We will formally model these objects as ordinary
Petri nets. For instance, IBi. = (S T,F) be a Petri net for one of the local caches. The
messages sent and received by this object are a sBhggbf Ssuch that ifs € Syes
then eitherse = 0 or es= 0. In other words, messages are places that are either sinks
or sources of the object Petri net. We definepihigate variables Sy, of the object as
all other places (i.€Syiy = S— Sneg. Thepublic methodsf the object are transitions

160

that are connected to message places. In particular, we defiith fheblic method as
a subseM; C T such that it € M; then

— ot —Snes# O Orte —Spes#0
— and if for anyty,t; € M;j, we knowet; — Spes= o2 — Syesandt; @ —Sypes=1to @
_STIES

In other words, public methods are collections of transitions whose arcs to message
places all have the same connectivity pattern. Petri net objects for the local cache and
global bus objects are shown in figure 2. In this figure, private places are represented by
open circles. Note that in figure 2, arcs going to (from) message places do not terminate
(originate) in an open circle. Message places are not explicitly shown in this figure. Also
note in this figure that all transitions are public method. This, however, is not always
the case as we can define objects that have internal private transitions.

ack-invalid
T invalidate

shared owned

ack-read
waiting
invalidate ack-nvalid

read

ack-invalid é/o\l
aldate | invalic / D\\
ackinvalid

invalid
1@/?

complete-update
acianite complete_update

ack-write read-write

ack-read read ack-read

waiting

ack-write

read-write

Fig. 2. Distributed Cache System Object Petri Nets (local cache on left, global bus on right)

We now formulate the supervisory control problem for the distributed software sys-
tem comprised of the objects in figure 2. Recall that the formulation of the problem
starts with a specification of the system’s forbidden markings. One obvious set of for-
bidden markings would consist of those markings from which the entire systbsads
locked Assuming that we can identify the deadlocked markivgs.g (this is done be-
low using a partial order method), we can then define the objectivéptapake values
of 1 whenp € Mgeagand zero otherwise. We're interested in designing another object
(called aplug-in) that can selectively disable system transitions to enforce deadlock-
avoidance.

Since the plug-in is an object as well, it can only interact with the other objects
through their public methods. Therefore, our supervisor can only disable those transi-
tions that are found in public methods. In this particular example, all of the transitions
are in a public method and so we have complete controllability over this system. How-
ever, this need not be the case in general. For objects in which there are transitions
representing private methods, these transitions cannot be directly disablathcdre
trollability of various transitions in the network makes the problem of identifying a
supervisory controller much more difficult. One of the chief accomplishments of super-
visory control theory was the articulation of a framework for such uncontrollable net

161

systems and the identification of necessary and sufficient conditions for the existence
of legal controllers enforcing a desired specification language.

Itis important to note that th&uperviseadhet system is not an ordinary Petri net. The
supervisor disables transitions when a specified set of places are marked in the plant.
This disabling action cannot always be represented by a Petri net. It is well known [6]
that Petri net languages are not closed under the recursive operation used to compute
the supremal controllable sublanguage. This result, therefore, implies that an optimal
(maximally-permissive) marking based supervisor does not necessarily have a repre-
sentation as an ordinary Petri net. On the basis of this result, therefore, we can partition
results on supervisory control into marking-based supervisors and Petri-net based su-
pervisors [7] [8] . The framework presented above uses a marking-based supervisor and
in this case, we know a maximally permissive supervisor can always be found. There
are obvious benefits in being able to represent the supervisor as a Petri net. For some
classes of specifications (deadlock), necessary and sufficient conditions for the exis-
tence of a marking-based supervisor and Petri-net based supervisory have recently been
proposed [9].

3 Synthesis of Supervisory Plug-ins

Most existing approaches [11] [12] [13] for the synthesis of maximally permissive su-
pervisors involve some sort of search of the Petri net’s state space. The problem with
this, of course, is that distributed software has a high degree of concurrency, so it's
impractical to search exhaustively for critical transitions leading to forbidden mark-
ings. This means that clever and efficient means of search must be employed if we are
to automate the design of supervisory plug-ins for this class of software. This section
summarizes recent results in [13] in which a partial order method known as network
unfolding is used to synthesize marking based supervisors. Partial order methods [14]
[15] [16] represent an important approach that can greatly reduce the complexity of
network analysis. This point was first made in [17] where unfolding was proposed as a
means taming state-explosion problems encountered in the verification of asynchronous
digital circuits. Since that time a variety of researchers have used unfolding [20] [18]
[19] to characterize network properties and in [13], this idea was extended to synthesize
supervisors enforcing this set of characterized properties. In this section we summarize
the approach to supervisor synthesis and then illustrate its application to the design of
supervisory plug-ins that enforce deadlock-freedom for the distributed cache example
in the preceding section.

Consider a net systeN’, i), whereN’ = (S, T',F’) is an ordinary Petri net and
Hp is the initial marking. Let miN’) be those places iN with empty presets. We define
anoccurrence neas a net systerfN ’, 1) such that every place is preceded by at most
one transition (i.e.,e s < 1 for all s€ S), no transition is in self-conflict and a place
se min(N’) if and only if it is marked by,. A branching proces§ = (N’,h') of net
systemN consists of an occurrence ¢t and a net homomorphisiy, from N’ to N.
The net homomorphism preserves the causal ordering of transitions. Specifically this
means that ibt; = ety andh’(t1) = W (t2) thent; =ty. In general a given network may

162

have many branching processes and the unfolding is the maximal branching process
(denoted afi).

The unfolding of a deadlock-free net system will always be of infinite size. Nonethe-
less, it is often possible to find a branching procgsshat is a finitary prefix of the
unfolding B such that all the reachable marking of the original net systeoan be
enumerated frorfic. An important prefix of this type was introduced in [17] and subse-
quent variations were presented in [20]. A key concept in the characterization of such
prefixes is the concept of@nfiguration Let Ny, be the occurrence net associated with
the unfoldingBm. A set of transitionsC, is said to be a configuration if and only if all
transitions inC are in precedence and no two transition€iare in conflict.. Given a
transitiont € T, we define thecauseof t (denoted ast]) as the set of all transitions
preceding. The cause is easily shown to be a configuration.

The cut of a configuratio€ is defined as

Cut(C) = (minN'UCe) — oC

whereCe (oC) is the postset (preset) of transitionsGn The cut of the configuration
contains those places that are marked after firing all transitio@s in

Given an unfoldind3m, we define the set aénd transitions ¥'d as any transition
such that

— there is no transitiol’ € T, such that < t/,
— orthere exists a transitiaghe T such thaft] C [t] andhm(Cut([t'])) = hm(Cut([t])).
— or the marking ohm(Cut([t])) is the initial markingJo.

The transitions iT ®"represent a natural place to cut the unfolding because these tran-
sitions either represent local deadlocks (the first condition) or they represent transitions
that enable other configurations within the net system (the final two conditions). We
define the branching proceBgs by removing those nodes in the unfolding that follow
transitions inTe" It has been shown thé is a finitary prefix that enumerates all
reachable markings iR(lp). In this regard, we can construe the net syshymassoci-
ated withf; as a reduced reachability graph.

Recognizing the importance d®"% we refer to the cause of any transitior
Tendas abase configuratiorBase configurations encapsulate causally related strings of
transitions and as such they represent a thread of execution that can be seen, intuitively,
as basis threads from which all other system behaviors can be generated. Another way
of viewing the base configuration is asgneta-statdor the system. From the standpoint
of supervisory control, these meta-states can be selectively disabled to enforce, in a
modular manner, various specifications on the system behavior. The unfolding process
provides an a means of automatically identifying these meta-states as we construct the
net system’s reduced reachability graph. The unfolding process also allows us to easily
identify the markings enabling these meta-states. This means that unfolding can be
readily used to synthesize supervisory controllers for Petri nets, a fact that was first
advocated in [13].

As an example, let’'s consider the Petri net shown in figure 3 and construct its un-
folding. The original networkN, is shown in the top part of this figure with an initial
marking of places; andss. The associated occurrence netffbis shown in the second

163

10

graph in figure 3. We construbl from N by following the markings that are reachable
from the initial marking. In figure 3, the first transition that is enabled is transigon
and this results in the markings,, s4}. We construct the network associated with this
transition as shown in thigrst tier of the occurrence net in figure 3. The second tier

is constructed by considering the markings reachable feirs4}. In this case, there

are two possible transitions that can be enaltledndts. However, the network has a
choice in which transition is fired. The mappings reached by choosing either of these
transitions forms theecond tierof this particular unfolding. Note that our unfolding
has now identified two different paths that the Petri net can follow. These represent two
different concurrent executions of the system. The fthatl tier of the unfolding is
obtained by firing the transitioris andt,.

@

s2 \
t1 / t3

l—(e

RN
RVaN]

t2 t4

maps onto occurrence net,
Original Petri Net, N N’, through the net
homomaorphism, h’

; configuration 1: {t3,t1,t2,t4}

critical transition = t4

Fig. 3. Unfolding of Petri Net

164

11

Since unfolding preserves precedence relations between transitions, it can be used to
identify critical transitionswhose controllability ensures the existence of a maximally
permissive supervisor disabling a specified base configuration. In figure 3, we have the
finite prefix 3¢ for the unfolded system. In this unfolding there are two base executions.
These base configurations are formed from the set of transBiOns: {t1,to,t3,t4} and
BC, = {t2,ta}. The first executioBC; is a cycle, in that upon completion of the exe-
cution, the network reaches a marking from whig® can be re-enabled. The second
executionBC,, is deadlocked. The unfolding in figure 3 explicitly shows how the net-
work can be deadlocked when it chooses to execute base configuB&tiolm order to
prevent deadlock, we simply need to find that transition which dis&fle$rom being
executed while keeping configurati&g; alive.

In figure 3, it is apparent that the critical transition disabIB@ is transitionty.
This transition can be fired iBC, when the net marking i$sz,s4}. If we then intro-
duce a supervisory map, that disables; when these two places are marked then we
can ensure that the deadlocked base configuration cannot be executed. Moreover, by
disabling the execution dC, and noting thaBC; contains all transitions of the origi-
nal net systeniN , we see that this proposed supervisor in fact enforces the liveness of
the supervised system. It is, of course, crucial, in this exampletm controllable.
If t4 is not controllable, then it may be possible to look at those controllable transitions
preceding the critical transition and see if disabling any of them will achieve the same
result (namely disablin@®C, and keepingBC; alive). In this example, unfortunately,
there are no such controllable transitions precedjnand therefore the controllabil-
ity of transitiont, is necessary and sufficient for the existence of a supervisory policy
enforcing system liveness.

We now apply these ideas to the supervisory control of the distributed cache system.
This particular system has a deadlock that is relatively difficult to detect. We want to
synthesize a plug-in that makes the system deadlock free. Using the unfolding meth-
ods in [19], we find that the distributed cache system is deadlocked whenever one local
processor sharing data with the global bus is trying to invalidate the other local cache’s
memory, and at the same time the other cache is requesting to read data from the global
bus. The configuration in figure 4 shows how the deadlock occurs. Local cache 1 sends
out theinvalidate message and awaits acknowledgement from local cache 2. In the
meantime, local cache 2 sends outead request to the global bus and awaits its re-
sponse. The global bus, however, cannot respond because its memory was invalidated
by local cache 1. In this case both local caches and the global bus cannot proceed and
the system is deadlocked.

The situationillustrated in figure 4 is a race condition that is referreddgdis lock
in [19]. Cyclic locks occur when a sequence of transitions in concurrent base configu-
rations are interleaved in such a way that both configurations are waiting for resources
that the other configuration needs to release. The sequence of transitions leading up to
this race condition is called lack sequencd.ock sequences can be identified during
the algorithmic construction of the net system’s unfolding. The data in the unfolding
can also be used to identify those markings that must be disabled in order to prevent the
lock sequence from firing. It therefore becomes possible to use the unfolding method

165

12

mvalld waiting shared / wamng \
DHOHDTQ

1

read-write Q
invalidate
ack write « invalidate(to Iocall bus 2)

|

I L .
k-invali

Owned shared shared ' ac | alid
Global bus 4:—’@ invalid

Local bus 1

|

I

I

}
ack-read | read I

read |
1

|

I

NP ORN

A \ !
invalid P " /
waitin invalid | waiting
!

local bus 2 Q—> 4>©—> HO—»D—\\T»O //

Fig. 4. Race Condition in Distributed Cache System

to synthesize a supervisory controller that enforces deadlock freedom in a maximally
permissive manner.

In the distributed cache example, our plug-in must not let the global bus invalidate
its memory if there is a read request in its message queue. By disabling this transition,
we force the global bus to respond to #ead request sent by the other local cache. On
the other hand, we must also disable a local bus’ read request if ther¢ris@nidate
request on the local cache’s message queue. This restriction forces the local cache to
acknowledge the invalidation request and let the data update proceed.

The implementation of this supervisory action is rather simple. We only need to
develop two types of supervisory plug-ins, one for the global bus and the other for the
two local caches. Pseudo code for the global bus plug-in is

if ((Private_State==SHARED) &&
(message_queue(invalidate)) &&
(message_queue(read)))

disable(Shared2Invalidate)

In this pseudocode, the varialleivate_Stateis the global bus state and the function
message_queue checks the message queue for the specified message. If the conjunc-
tion of these conditions is true, then the functibisable disables the invalidation of

the global bus’ memory. Pseudo code for the plug-ins on the local caches is

if (message_queue(invalidate)){
Disable(Send_read_request) ;
} else {
Enable_all();
}

166

13

This pseudocode simply tests to see if the local cache hagwliidate message on
its message queue. In which case,thed_request is disabled. If the message queue
does not have aimvalidate message queued up, then thead_request action is
re-enabled.

4 Runtime Reconfiguration of Distributed Software

This section speculates on the application of supervisory control to the runtime recon-
figuration of distributed software. Due to the open and dynamic nature of the physical
layer in embedded network systems, there is a real need for distributed software that
can monitor its own health and then autonomously reconfigure itself to improve its per-
formance. This is the notion afynamic reconfigurabler adaptivesoftware [3] [4].

The underlying paradigm is shown below in figure 5. Ignoring the details in this
figure, we see that the basic control loop of figure 1 has been embedded into a larger
control loop. The objective signal is now used bgwitching elementb select which
supervisors are to be applied to our software system. To use the switching element we
must monitor the behavior of the augmented plant to detect anomalous behavior. Upon
detection of an anomaly that adversely effects system performance (as represented by
the objective symbols), the switching element reconfigures the software system by se-
lecting a different set of supervisory plug-ins to control the plant. This reconfiguration,
of course, is done at run-time using pre-compiled objects that are simply "plugged-into”
the augmented plant.

A more detailed examination of figure 5 shows how the monitoring is actually ac-
complished. We see that the objective signal is passed through a m&ppkjg— O.

Q maps each string of objective symbols onto a real number that represe@gdtity

of Serviceor QoSprovided by the plant for this particular input sequence. The QoS is a
real number and can represent a number of practical performance measures. Returning
to our distributed cache example, one useful measure of QoS is the time it takes for the
system to return to thehared state after the global bus has been invalidated. If this
resynchronization time is too long, then this means something is wrong within the sys-
tem and our switching element is used to reconfigure the software. The reconfiguration
decision is made by a simple threshold test on the length of the resynchronization time
as output byQ. So in figure 5, we see that the m@pis followed by a thresholding
element that provides a binary output to the switching element indicating whether or
not the system needs to be reconfigured.

The actual nature of the reconfiguration depends on the suite of supervisory plug-
ins we have at our disposal. In the preceding section, it was shown that this system has
a cyclic lock that can be fixed through a deadlock-avoidance plug-in. It is also possible
to introduce plug-ins for other specifications. In this distributed cache example, we
consider dairnessspecification.

To motivate this fairness specification, let's assume that one of the local caches
issues aninvaliate message, but for some reason the cache is unable to complete
updating its memory. This may happen due to a processor fault. If this happens, then
read requests from the other local bus will be blocked because the global bus has
been invalidated. However, since the local cache never issuestpeete-update

167

14

|
objectives

Distributed Cache
System’s augmented

plant. | measureable
| outputs

threshold

iiiiiiiiiiiiiiiiii

deadlock
i avoidance -~
plug-in

[:
|| plug-in to disable!

|
|
} / ' local cache 1 .
! Lo |
|

|
|

|

|

—

o 1 lug-in to disable
switchin P -~
eIementg | 1 local cache 2

\ |

L |

\)7777

Fig. 5. Runtime Reconfigurable Distributed Software

message, the global bus is blocked from leavingitivealid state. This type failure in

the local cache, therefore, is sufficient to deadlock the entire distributed cache system.
In other words, our distributed software system is not fault tolerant since it fails globally
when a single local cache is faulty.

We want to fix this problem without rewriting the existing protocols in the local
caches and global bus. We solve our problem by introducing a plug-in that can be ap-
plied when this type of fault is detected. Obviously, this fault results in extremely long
(i.e. unbounded) resynchronization times, so the simple threshold test mentioned above
can be used to detect this type of fault. The most obvious action to be taken at this time
is to simply isolate the faulty local cache from the entire system. This is accomplished
by introducing a supervisory plug-in on the faulty cache that disables the transitions

168

15

sendinginvalidate messages. In figure 5, the additional two supervisors connected to
the switching element are the plug-ins disabling these transitions.

Remark: Note that in addition to applying plug-ins to isolate the faulty cache, we
must also reinitialize the global bus as well. Recall that the deadlock induced by this
fault leaves the global bus in a state from which itis deadlocked unlesspd ete-update
message is received. By simply disabling messages from the faulty cache, however, we
do not clear this deadlock. It is therefore essential that in addition to turning on the
plug-ins, that the global bus is re-initialized. This re-initialization is not shown in figure
5. However, it must be realized that re-initialization is an important part of dynamic
software reconfiguration.

Remark: One important aspect of supervisory control in this application is the ap-
parent composability of the supervisors. Our early work indicates that these supervisory
plug-ins can be composed in such a manner that they do not interfere with each other.
This is obviously apparent in the distributed cache example, where we can apply the
deadlock-avoidance and fairness plug-ins without losing either property. Whether or
not this composability is a general property of supervisory plug-ins is currently being
investigated and will be reported upon in the future.

5 Conclusions

The primary contribution of this paper is the proposed application of supervisory con-
trol theory to the synthesis of supervisory plug-ins for distributed software. This the-
ory ensures that the synthesis problem is a well-posed optimization problem in which
we search for maximally permissive marking-based supervisors. The theory applies to
bounded net systems with uncontrollable transitions and this means that it is relevant
to open architecture software systems where a designer has limited access to object
methods. Moreover, recent advances in partial order method analyses provide system-
atic methods for the synthesis of such supervisors for certain classes of specifications
such as deadlock and fairness. In short, the methods presented in this paper apparently
provide a systematic and tractable set of methods that may be used to automate the de-
sign of high quality distributed software. This conjecture was exemplified by using the
framework to formulate an approach to run-time reconfigurable software.

This paper is a&onceptpaper and there remain a number of important issues that
must be addressed before this concept can be implemented in practice. Some of these
issues are itemized below.

— This paper’s restriction to bounded Petri net immediately suggests that traditional
finite-state machine methods for verification and supervision might be applied as
well. The potential benefit that partial order methods bring to this analysis is a re-
duction in the analysis’ complexity. Even though this paper has not formally quan-
tified that reduction in complexity, it is possible to speculate that the computational
savings obtained using this method will vary greatly with the complexity of the pro-
cess being studied. Systems having a few sparsely connected fundamental cycles
(such as the dining philosopher’s problem) are well served by this method. Other
problems having many densely connected fundamental cycles may be better served

169

16

using the binary decision diagrams employed in the verification of finite-state ma-
chines. Future work is needed to quantify where and when partial order methods
are most valuable.

— There is an important question concerning the implementation of the supervisorin a
distributed system. Clearly, the supervisor requires access to at least a partial global
state before it can disable a method. Identifying such states in a distributed system
can be extremely difficult. One approach that has been suggested is for supervisors
to use time-stamped messages to construct a partial system state that is known to
be valid at a specified time in the past. The firing of object methods, therefore, must
also accomodate such a delay. This is, probably, a function to be implemented in
network middleware. These ideas are also being explored by our group.

— Our recent work in this area suggests that supervisory approaches indeed provide
a method for composing software plug-ins in a non-interfering manner. Formally
proving this conjecture is currently under way and will be reported on in the future.

— Another important direction of work concerns the fact that our plug-ins are only
supervisory. Supervision is, by definition, a restriction of the executions that the
base application can generate. There is, however, great interest in being able to
develop plug-ins that can also augment or add to overall system behaviors in a
modular manner. The apparent modular nature of our base configurations suggests
that the unfolding methods adopted in this paper might also be used to design plug-
ins that augment a system’s executions in a modular manner.

— While the Petri net is a useful low-level model for analysis purposes, its use is
inconvenient for program specification. There is significant interest in our ability to
integrate high-level modeling formalisms such as the Unified Modeling Language
(UML) with our Petri net tools.

— The application of these methods for the runtime reconfiguration of distributed soft-
ware represents an application of these methodologies that can have an enormous
impact on the development of mobile Internet based software. Future work is defi-
nitely need to more fully explore the scalability of these methods for such applica-
tions.

This paper represents an initial attempt to assess the relevance of existing control theo-
ries to software engineering. In particular, it seems that software development is often
an ad hoc process in which the user (rather than the designer) is responsible for assur-
ing software reliability. As distributed software becomes increasingly important in the
control and management of critical systems like the electric power grid or air traffic
control, it is essential that these software systemsrgneeredn the same sense that

we engineer planes, spacecraft, and other physical systems. In other words, our hope
is that the methodologies presented in this paper provide a framework in which to for-
mally engineer critical distributed object software with provable guarantees of program
quality.

References

1. P.J. Ramadge and W.M. Wonham, “Supervisory control of a class of discrete event pro-
cesses”SIAM Journal of Control and Optimizatio25(1), pp. 206-230, 1987.

170

w N

[

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

17

J. Engelfriet, “Branching processes of Petri nefgta Informatica 28, 575-591, 1991.
R. Laddaga (guest editor), special issue on “Robust software and self-adaptaténin-
telligent Systems and Their Application®l. 14, No. 3, May/June 1999.

. J. Veitch and R. Laddaga (guest editors), special issue on distributed dynamic systems, Com-

munications of the ACM, Vol 41, No. 5, May 1998.

. J. Doyle, B. Francis, and A. Tannenbaum, Feedback Control Theory, MacMillan Press, 1992.
. A. Giua, “Blocking and Controllability of Petri Nets in Supervisory ContréEEE Trans.

on Automatic Contrgl\Vol 39(4), 1994.

. K. Yamalidou, J. Moody, M.D. Lemmon and P.J. Antsaklis, Feedback Control of Petri nets

based on Place Invarian&sutomatica Vol. 32, No. 1, pp. 15-28, 1996.

. J.O. Moody, P.J. Antsaklis, and M.D. Lemmon, “Application of Automatic Petri Net Con-

trol Design”, proceedings of INRIA/IEEE Conference sur les technologies emergentes et
l'automatisation de systemes de fabricati@ctober 10-13, Paris, France.

. KX. He and M.D. Lemmon, "On the transformation of liveness-enforcing marking based

supervisors into monitor supervisors”, submitted to the IEEE Conference on Decision and
Control, Sydney Australia, December 2000.

W.M.Wonham and P.J. Ramadge, “On the supremal controllable sublanguage of a given
language” SIAM Journal of Control and Optimizatip@5(3), pp. 637-659, May 1987.

R.S. Sreenivas, “On supervisory policies that enforce liveness in complete controlled Petri
nets with directed cut-places and cut-transitionEEE Trans. on Automatic Contro\/ol.

44(6), June 1999, pp. 1221-1225.

Y. Li and W.M. Wonham, “control of vector discrete-event systems: controller synthesis”,
IEEE Transactions on Automatic Contyddol. 39(3), pp. 512-530, 1994.

K.X. He and M.D. Lemmon, "On the existence of liveness-enforcing supervisory policies
of discrete-event systems modeledrbgafe Petri nets"Proceedings of IFAC conference on
Control System Desigispecial issue on Petri nets, Slovakia, June 2000.

Vogler, W. (1992)Modular Construction and Partial Order Semantics of Petri Né&gscture
Notes in Computer Science, Vol. 625, Springer-Verlag, 1992.

P. GodefroidPartial-Order Methods for the Verification of Concurrent Systems — An Ap-
proach to the State-Explosion ProbleRhD thesis, University of Liege, Computer Science
Department, November 1994.

P. Godefroid and P. Wolper, "Using Partial Orders for the Efficient Verification of Dead-
lock Freedom and Safety Propertiesgrmal Methods in System Desjgfluwer Academic
Publishers, Vol. 2, No. 2, April 1993, pp. 149-164.

K. McMillan,”Using unfoldings to avoid the state explosion problem in the verification of
asynchronous circuitsComputer Aided Verification, 4th International Workshop (CAV;92)
(Bochmann and Probst (eds.), LLNCS Vol 663, Springer Verlag, 164-177, 1992.

A. Kondratyev, M. Kishinevsky, A. Taubing, and S. Ten, “Structural approach for the analysis
of Petri nets by reduced unfoldingsProceedings of the 17th International Conference on
Application and Theory of Petri Net®saka Japan, June 24-28, 1996.

K.X. He and M.D. Lemmon, “Liveness verification of discrete event systems modeled by
safe Petri nets”, to appear in Proceedings of the 21st International Conference on Application
and Theory of Petri Nets, Denmark, June 2000.

J. Esparza, S. Romer, and W. Vogler, “An improvement of McMillan’s unfolding algorithm”,
Proceedings of Tools and Algorithms for the Construction and Analysis of Sygerita-

garia and B. Steffen, eds.), LNCS Vol. 1055, Springer-Verlag, 1996.

171

172

Protocol Re-synthesis
Based on Extended Petri Nets*

Khaled El-Fakih!, Hirozumi Yamaguchi?,
Gregor v. Bochmann!, and Teruo Higashino?

! School of Information Technology and Engineering, University of Ottawa,
150 Louis Pasteur, Ottawa, Ontario KIN 6N5, Canada
{kelfakih,bochmann}@site.uottawa.ca
2 Graduate School of Engineering Science, Osaka University,

1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan
{h-yamagu,higashino}@ics.es.osaka-u.ac. jp

Abstract. Protocol synthesis is used to derive a specification of a dis-
tributed system from the specification of the services to be provided by
the system to its users. Maintaining such a system involves applying fre-
quent minor modifications to the service specification due to changes in
the user requirements. In order to reduce the maintenance costs of such a
system, we present an original method that consists of a set of rules that
avoid complete protocol synthesis after these modifications. These rules
are given for a system modeled as an extended Petri net. An application
example is given along with some experimental results.

1 Introduction

Synthesis methods have been used (for surveys see [5,6]) to derive a specifica-
tion of a distributed system (hereafter called protocol specification) automatically
from a given specification of the service to be provided by the distributed system
to its users (called service specification). The service specification is written like
a program of a centralized system, and does not contain any specification of
the message exchange between different physical locations. However, the proto-
col specification contains the specification of communications between protocol
entities (PE’s) at the different locations.

A number of existing protocol synthesis strategies have been described in
the literature. The first strategy, [9, 3,4,8,10,12,14,17,18], aims at implement-
ing complex control-flows using several computational models such as LOTOS,
Petri nets, FSM/EFSM and temporal logic. The second strategy, [20, 23,19, 24,
22], aims at satisfying the timing constraints specified by a given service speci-
fication in the derived protocol specification. This strategy deals with real-time
distributed systems. The last strategy, [21,25,11,15,7,16], deals with the man-
agement of distributed resources such as files and databases. The objective here,

* This work was partially funded by Communications and Information Technology
Ontario (CITO).

173

is to determine how the values of these distributed resources are updated or ex-
changed between PE’s for a given fixed resource allocation on different physical
locations.

Some methods in the last strategy, especially these presented in our previous
research work[26], have tried to synthesize a service specification by deriving its
corresponding protocol specification with minimum communication costs and
optimal allocation of resources.

As an example, we consider a Computer Supported Cooperative Work (CSCW)
software development process. This process is distributed among engineers (de-
velopers, designers, managers and others). Each engineer has his own machine
(PE) and participates in the development process using distributed resources
(drafts, source codes, object codes, multimedia video and audio files, and oth-
ers) placed on different machines. Considering the need for using these resources
between different computers, we derive, using our protocol synthesis method,
the engineer’s sub-processes (protocol specification) knowing the whole software
development cycle (service specification) and we decide on an allocation of re-
sources that would minimize the communication costs. Both the service and
protocol specifications are described using extended Petri nets.

In realistic applications, maintaining a system modeled by a given extended
Petri net specification, involves modifying its specification as a result of changes
in the user requirements. Synthesizing the whole system after each modifica-
tion is considered expensive and time consuming. Therefore, it is important to
re-synthesize the modified parts of service specification in order to reduce the
maintenance cost, which was reported to account for as much as two-thirds of
the cost of software production [30].

In this paper, we present a new method for re-synthesizing the protocol
specification from a modified service specification. The method consists of a
set of rules that would be applied to different PE’s after a modification to the
service specification, in order to produce new synthesized (henceforth called re-
synthesized) PE’s. The parts of the protocol specification that correspond to
the unmodified parts of the service specification are preserved intact. As shown
later, this method reduces the cost of synthesizing the whole system after each
modification.

This paper is organized as follows. Section 2 gives examples of service and
protocol specifications, and Section 3 describes the protocol synthesis method.
Based on this method, we present in Section 4 protocol re-synthesis method along
with some application examples in Section 5. Section 6 concludes this paper and
includes our insights for future research.

2 Service Specification and Protocol Specification

2.1 Petri Net Model with Registers

We use an extended Petri net model called a Petri Net with Registers (PNR in
short) [15] to describe both service and protocol specifications of a distributed

174

Gl Gl
—® —®

i>R1 . i>R1
; ire ;
transition t GL7i transition t GL7i

[R1<-R2+i, [R1<-R2+i,

R2<-R1+R2+i] R2<-R1+R2+i]
1 2 5 6
(@ (b)

Fig. 1. Register Values and Token Locations before and after Firing of Transition in
PNR

system. In this model, an I/O event between users and the system followed by
the calculation of new values of variables inside the system is associated with
the firing of a transition. Since distributed systems contain some variables (e.g.
databases and files) and their values are updated according to inputs from users,
they can be modeled by PNR naturally.

Each transition ¢ in PN R has a label (C(t),£(t),S(t)), where C(t) is a pre-
condition statement (one of the firing conditions of ¢), £(t) is an event expression
(which represents I/O) and S(t) is a set of substitution statements (which repre-
sents parallel updates of data values). Consider, for example, transition ¢ of Fig. 1
where C(t) =“i > Ry”,E(t) =“G171” and S(t) =“Ry < Ro+i,Re + Ri+Ro+i”.
i is an input variable, which keeps an input value and its value is referred by
only the transition ¢t. Ry and Rs are registers, which keep assigned values until
new values are assigned, and their values may be referred and updated by all
the transitions in PN R (that is, global variables). G is a gate, a service access
point (interaction point) between users and the system. Note that “?” in £(t)
means that £(t) is an input event.

A transition may fire if (a) each of its input place has one token, (b) the value
of C(t) is true and (c) an input value is given through the gate in £(t) (if £(¢) is
an input event). Assume that an integer of value 3 has been given through gate
(1, and the current values of registers R; and R, are 1 and 2, respectively. In
this case the value of “¢ > R;” is true and the transition may fire. If it fires, the
event “G17i” is executed and the input value 3 is assigned to input variable i.
Then “R; <+ Rs+14” and “Rs + R; + Rz +1” are executed in parallel. Therefore
after the firing, the tokens are moved and the values of registers R; and R, are
changed to five (= 2 + 3) and six (= 1 + 2 + 3), respectively (Fig. 1(b)).

Formally, £(t) is one of the following three events: “Gy lexp”, “G, 7iv”, or
“r7. “Gys lexp” is an output event and it means that the value of expression
“exp”, whose arguments are registers, is output through gate G5. “Gs 7iv” is

175

keyword(i1)
G1?il
[R2<-retrieve(R1,i1)]

kevword(i2)
G2?i2
[R4<-retrieve(R3,R2,i2)]

true

G1!R4

[]

Fig. 2. Service Specification

an input event and it means that the value given through G is assigned to the
input variable “iv”. “7” is an internal event, which is unobservable from the
users. S(t) is a set of substitution statements, each of the form “R,, <+ ezxp,”,
where R,, is a register and exp,, is an expression whose arguments are from the
input variable in £(t) and registers. If ¢ fires, £(¢) is executed followed by the

parallel execution of statements in S(t).

2.2 Service Specification

At a highly abstracted level, a distributed system is regarded as a centralized
system which works and provides services as a single “virtual” machine. The
number of actual PE’s and communication channels among them are hidden. The
specification of the distributed system at this level is called a service specification
and denoted by Sspec.

Actual resources of a distributed system may be located on some physical
machines, called protocol entities. However, only one virtual machine is assumed
at this level. Fig. 2 shows Sspec of a simple database system which has only three
transitions. The system receives a keyword (input variable i;) through gate Gy,
retrieves an entry corresponding to the keyword from a database (register R;),
and stores the result to register R,. This is done on transition 77. Then the
system receives another keyword (input variable i) through gate Gs, retrieves
an entry corresponding to the keyword and the retrieved entry (register Rs)
from another database (register R3), and stores the result to register Ry4. This
is done on transition T». Finally the system outputs the second result (the value
of register Ry) through G; on transition T3 and returns to the initial state.

176

GL PE1 G2 PE2 PE3
@ @

kevword(i1)
G1?i1
[Rtmpl.il<-i1]
true ID(Mg1, w) ID(Mb1, w)
g13!Mb1[Rtmp1.i1] g23?w 9317w
[Rtmp3.il<-w]
true
® ® r
[R2<-retrieve
(R1, Rtmp3.i1)]
kevword(i2) true
true G27i2 g32!Mg1[]
[Rtmp2.i2<-i2]
ID(Mb2, w) ID(Mb2, w) true true
| g127w g13?2w g21!Mb2[Rtmp2.i2] g23!Ma2[] @
[Rimpl.i2<-w] [Rtmpl.R2<-w]
ID(Ma2, w)
true 9322w
true
T
[R4<-retrieve true
(R3, RtmpL.R2, g31!Mb2[R2]
Rtmp1.i2)]
true
G1!R4

g13 ;12 921 923 ;32 931

Fig. 3. Protocol Specification

2.3 Protocol Specification

A distributed system is a communication system which consists of p protocol
entities PE;, PEs, ... and PFE,. We assume a duplex and reliable communication
channel with infinite capacity buffers at both ends, between any pair of PFE; and
PE;. The PE; (PEj) side of the communication channel is represented as gate
9ij (gji). Moreover, we assume that some resources (registers and gates) are
allocated to certain PE’s of the distributed system.

Two PE’s communicate with each other by exchanging messages. If PE; ex-
ecutes an output event “g;;!M[R,]”, the value of register R,, located on PE; is
sent to PE; through the communication channel between them and put into the
buffer at PE;’s end. M is an identifier to distinguish several values which may
exist at the same time on the same channel. PE; can take the value identified
by M from the buffer, by executing an input event “g;;?w” with a pre-condition
ID(M,w). ID(M,w) is a predicate whose value is true iff the identifier in input
variable w is M. Note that more than one register’s or input variable’s value can
be sent at a time. If a received data contains multiple values, they are distin-
guished by suffix such as w.R; and w.i. A set of an identifier and register/input
values is called a message. A message may contain no value and sending such a
message is represented as an output event “g;;!M[]”.

In order to implement a distributed system which consists of p PE’s, we
must specify the behavior of these PE’s. A specification of PEj is called a

177

protocol entity specification and denoted by Pspeci. A set of p protocol entity
specifications (Pspeci, ..., Pspecy) is called a protocol specification and denoted
by PspecthP?. We need a protocol specification to implement the distributed
system.

As an example, let us assume that there are three PE’s PE;, PE> and PEj3
in order to implement the service specification of Fig. 2. We also assume that an
allocation of resources to these PE’s has been fixed as follows. PE; has the gate
G and the registers R3 and Ry, PFEs has the gate G5, and PEj3 has the registers
R, and R,. Note that in addition to these registers, we assume that each PE;
has another register Rtmp; to keep received values given through gates (inputs
and message contents). Rtmp; can contain several values. The values can be
distinguished by adding the name of the value as suffix, such as Rtmp;.R3'. Fig.
3 shows an example of Pspect!®), which provides the service of Fig. 2, based on
this allocation of resources.

According to the specification of Fig. 3, PE; first receives an input (input
variable 41) through G and stores it to Rtmp;.i; (on transition ¢;_1). Then it
sends the value of Rtmp;.i; to PE3 as a message (on transition ¢; 2), since PEs
needs the value of i; to change the value of Ry. PFE3 receives and stores the
value to Rtmps.i; on transition ¢; 3. Then it changes the value of Ry using its
own value and the value of Rtmps.i; on transition ¢; 4, and sends a message
to PFE, on transition ¢; 5. When PFE, receives the message on transition tq g,
PE, knows that it can now check the value of C(T») and execute &£(T»). PEs
receives an input (input variable i») and stores it to Rtmps.i on transition ts 1,
and sends two messages. One is to send the value of is to PE; (on transition
t2.3) and another is to incite PE3 to send the value of Ry to PE; (on transition
t22). PE; receives these values and stores them to Rtmp;.ia and Rtmp;.Rs
on transitions ts ¢ and to7, respectively. Then it changes the value of R4 on
transition ts g. Finally, PFE; outputs the value of R4 on transition t3; and PE;,
PE5 and PEj5 return to their initial states.

As exemplified in the above discussion, PE’s cooperate with each other by
exchanging messages. The communication between different PE’s may be quite
complex and it is difficult to design protocols that behave correctly. Therefore we
would like to derive a protocol specification automatically, such that it provides
the same service as a given service specification.

3 Synthesis Overview

A method for deriving protocol specification with an optimal allocation of re-
sources from a given service specification is presented in this section. This method
is based on a set of rules (called henceforth synthesis rules) that specify how to
execute each transition T, = (C(Ty),E(T:),S(T)) of the service specification
by the corresponding PE’s in the protocol specification. Furthermore, based on

! We can realize such a register that contains several values by using several registers.
However, for simplicity of discussion, we use these registers.

178

these rules, it decides on an optimal allocation of resources (registers and gates)
amongst different derived PE’s.

3.1 Synthesis Rules

For executing a transition T, = (C(T}), (1), S(T;)) of the service specification
by the corresponding set of transitions t,.1,%;.2,... of the PE’s in the protocol
specification, we proceed as follows.

— The PE that has gate G5 used in £(T,) (say PEstart(7},)) checks the value
of C(T,) (pre-condition statement) and executes £(T;) (event expression).
After that, the PE sends messages called a-messages to the PE’s which have
the registers used in the arguments of S(T,) (substitution statements).

— In response, these PE’s send the register values to the PE’s which have the
registers to be updated in S(7T,) (PEsubst (7,) denotes the set of those PE’s)
as messages called -messages.

— The substitution statements are executed and notification messages called
~v-messages are sent to those PE’s which will start the execution of the next
transitions.

For example, for transition T of the service specification in Fig. 2, PEstart(75)
is PE; and PEsubst(T5) is {PE;}. PE, checks the value of pre-condition state-
ment ”keyword(iz)” and executes ”G»7iy” on transition to;. Then PEs sends
an a-message “Ma>” to PE3 on transition ¢, 5 since PE3 has register R, which
is used to substitute the value of Rs. PEs also sends the input value to PE;
as a [-message “Mbs” on transition t3. PE3 receives the a-message “Mas”
on transition ¢2 4 and sends the value of R> to PE; as a -message “Mbs” on
transition to 5. PE; receives these two (3-messages on transitions t; ¢ and t5.7,
and then executes “R4 < retrieve(Rg3, Ra,i2)” on transition ¢, g using its own
register R3 and the received values of R, and ¢2. The PE’s which will start the
execution of next transition 75 is PFE; itself. Therefore, PE; does not send any
v-message. Then PE; starts the execution of 75 on transition ¢3 ;.

In Fig. 4, we present the details of the above rules [26], that are classified into
action and message rules. Action rules specify which PE checks the pre-condition
and executes the event and substitution statements of T,. Message rules specify
how the PE’s exchange messages, and the contents and types of these messages.

Three types of messages are exchanged for the execution of T),. (1) a-messages
are sent by the PE that starts the execution of T, (i.e. PEstart(7,)) to inform
those PE’s who need to send their registers’ values to other PE’s, that they can
go ahead and send these values. Thus, an a-message does not contain values of
registers. (2) B-messages are sent in order to let each PE which executes some
substitution statements of T, (i.e. PE;€PEsubst(T;)) know the timing and some
values of registers’ it needs for executing these statements. (3) y-messages are
sent to each PE,,cPEstart(T, e o), note that T, e e is the set of each next
transition of T}, to let it know the timing and some values of registers it needs
to start executing the next transitions (i.e. transitions in 7}, e e).

179

We let T, = (C(T%), E(Ty),S(T%)) be a transition of Sspec.

[Action Rules]

(A1) The PE which has the gate appearing in £(T,) (denoted by Gs) checks that

(a) the value of C(T}) is true,

(b) the execution of the previous transitions of T, has been finished and

(c) an input has been given through G, if £(T%) is an input event.

Then the PE executes £(T%). This PE is denoted by PEstart(T%).

(A2) After (A1), the PE’s which have at least one register whose value is changed
in the substitution statements S(T%) execute the corresponding statements in
S(T:). The set of these PE’s is denoted by PEsubst(T%).

[Message Rules]

(Mg1) Each PE,€PEsubst(T,) must receive at least one (-message from some
PE’s (each called PE;) in order to know the timing and values of registers
it needs for executing its substitution statements (see (Mgs)), except where
PE,=PEstart(T%), in this case PE; already knows the timing to start execut-
ing its substitution statements of T7.

(Mg2) If PE,€PEsubst(7T,) needs the value of some register (say R.) in order
to execute its substitution statements, then PE; must receive R, through a
B-message if R, is not in PE.

(Mgs) Each PE; that sends some values of registers to PE; €PEsubst (7}) through
a [B-message, knows the timing to send these values by receiving an a-message
from PEstart(T:). Note, if PE;=PEstart(7,) then PE; knows the timing to
send these values without receiving an a-message.

(My) After (A1), the only PE that can send a-messages to the PE’s which need
them is PEstart(T%).

(M,1) Each PE,,cPEstart(T, o o), where T, e e is the set of next transitions of
T., must receive a y-message from each PE,€PEsubst(T;) after (Az), except
where m = k. This allows PE,, to know that the execution of the substitution
statements of T, had been finished.

(M,2) Each PE,,cPEstart(T, o) must receive at least one y-message from some
PE; (where m # [) in order to know that the execution of T, had been finished
and/or to know some values of registers it needs to evaluate and execute its
condition and event expression, respectively.

(M,3) Each PE; that sends a y-message to PE,, EPEstart(7, e e) :

(a) must be in PEsubst(T%) (see (My1)), or

(b) must receive an a-message from PEstart(7,) to know the timing to send
the y-message to PE,,, or

(c) it is itself PEstart(T%). In this case, PE; sends the y-message to let PE,,
know the timing and/or some values of registers to start evaluating and
executing its condition and event expressions.

(M,4) If PE,, €PEstart(T, @) needs the value of some register (say R,) in order to
evaluate and/or execute its substitution statements, then PE,, must receive
R, through a y-message if R, is not in PE,,.

Fig. 4. Derivation Method in Detail

180

3.2 Integer Linear Programming Model for Protocol Derivation

Based on the above synthesis rules, we determine a behavior of the derived PE’s
that would minimize their communication cost while optimally allocating their
resources, using an Integer Linear Programming (ILP) model. This cost could be
based on the number of messages to be exchanged between different PE’s [25].
Moreover, other cost criteria can also be considered such as the costs of resource
allocation, size of messages exchanged between different PE’s, and frequencies
of transition execution.

The ILP Model (for details see [26,25]) consists of an objective function
that minimizes the communication cost and decides on an optimal allocation of
resources, based on a set of constraints. These constraints are based on the above
synthesis rules, and they consist of 0-1 integer variables indicating (a) whether
a PE should send a message or not, (b) whether a message contains a register
value or not, or (c) whether a register/gate is allocated to a PE or not.

4 Protocol Re-synthesis

In this section, we present our new method for re-synthesizing the protocol
specification from a modified service specification. The method consists of a
set of rules that would be applied to different PE’s after a modification to the
service specification, in order to produce new synthesized (re-synthesized) PE’s.

For each simple modification (henceforth called atomic modification) made on
the service specification Sspec, we define its corresponding atomic re-synthesis
rules. As shown later, these atomic re-synthesis rules can also be sequentially ap-
plied to deal with more than one modification. Note that the atomic re-synthesis
rules are based on the synthesis rules described in Section 3. Consequently, we
show next to the description of each re-synthesis rule its corresponding synthesis
rule.

4.1 Atomic Modifications and Their Corresponding Re-synthesis
Rules

For each of the following possible atomic modifications to Sspec, we present its
corresponding atomic re-synthesis rules. Note that each modification to Sspec
changes the label of a transition T, in Sspec from (£(Ty),C(Ty),S(T%)) to
(E'(Ty),C'(Ty),S'(T)). For convenience, we denote the following sets of regis-
ters:

— Rev®: the set of registers that PEstart(7T,) needs to evaluate C (T,) or execute
E(T,)

— Rrsub?: the set of registers that are used in PE; €PEsubst(T},) to execute
the statements in S(T})

— Resub?: the set of registers that are defined (i.e. referenced) by the left-
hand-sides of the substitution statements in S(T},) in PE; ePEsubst(T},).

181

[Atomic Modifications]

S otk W=

Rev® < Rev® \ {Rp}
Rev® < Rev® U{Ry}
Rrsub} < Rrsub} \ {Rx}
Rrsub} < Rrsubf U{Ry}
Resubf < Resubf, \ {Rn}
Resubf + Resubi U {Rp}

[Atomic Re-synthesis Rules]

1.

Rev® < Rev® \ {Rp}:

The following rules take into account that the value of R} which has been

sent to PEstart(T}) is no longer necessary after the modification. These rules

are applied to the part of the protocol specification where each previous
transition (say T,,) of T} is executed, if applicable.

(a) Each PE (say PE;) which sends a vy-message including the value of Ry,
to PEstart(7}), should exclude the value of Rj from the y-message (c.f.
synthesis rule (M, 4)).

(b) If (a) is done, then the y-message can be deleted only if

— PE; ¢PEsubst(T,,) (c.f. synthesis rule (M,;)),

— there is still at least one y-message sent to PEstart(7}) after deleting
it (c.f. synthesis rule (M,2)) and

— it no longer has values (c.f. synthesis rule (M,4)).

(c) If (b) is done, then an a-message sent to PE; can be deleted only if PE,
no longer sends - and y-messages (c.f. synthesis rule (M,3)(b)).

. Rev® + Rev® U{Rp}:

The following rules take into account that the value of R; must be sent to

PEstart(7;) after the modification. These rules are applied to the part of

the protocol specification where each previous transition (say T,,) of T is

executed, if applicable.

(a) One of the PE’s which have Rj, and send y-messages to PEstart(T;)
should include the value of Ry in its y-message to PEstart(7), if such
a PE exists (c.f. synthesis rule (M,4)).

(b) Otherwise, one of the PE’s which have R}, should send a new y-message
which includes the value of Ry, to PEstart(7,). If the PE does not re-
ceive a-messages and is not PEstart(7,), PEstart(7T,,) should send an
a-message to the PE. (c.f. synthesis rule (M,3)).

. Rrsubj < Rrsub} \ {Rn}:

The following rules take into account that the value of Ry sent to PE is no
longer necessary after the modification. These rules are applied to the part
of the protocol specification where T, is executed.

(a) Each PE (say PE;) which sends a $-message including the value of R}, to
PEj should exclude the value from the 8-message (c.f. synthesis rule
(Mp)).

(b) If (a) is done, then the S-message can be deleted only if

182

— there is still at least one S-message sent to PEy after deleting it (c.f.
synthesis rule (Mg;)) and
— it no longer has values (c.f. synthesis rule (Mpg2)).

(c) If (b) is done, the a-message sent to PE; can be deleted only if PE; no

longer sends - and y-messages. (c.f. synthesis rule (Mpgs)).
4. Rrsub} < Rrsubi U{R}:

The following rules take into account that the value of R, must be sent

to PEy after the modification. These rules are applied to the part of the

protocol specification where T, is executed.

(a) One of the PE’s which have Rj; and send (-messages to PE; should
include the value of Ry, to its S-message to PEy, if such a PE exists. (c.f.
synthesis rule (Mpg.)).

(b) Otherwise, one of PE’s which have Rj should send a new [-message
which includes Ry, to PEy. If the PE does not receive a-messages and is
not PEstart(T}), PEstart(T}) should send an a-message to the PE.

5. Resubj < Resubf \ {Rp}:

Removing a substitution statement. Usually, this may cause an additional

modification Rrsubj < Rrsubi\{Rp,, Rh,, ..., Rn, }, since the deleted state-

ment uses values of registers. In this case, we consider that the atomic mod-
ification (3) was made on Sspec k times and apply its corresponding atomic
re-synthesis rule (3) k times.

6. Rcsubj < Resubj U{Rp}:

Adding a substitution statement. Usually, this may cause an additional mod-

ification Rrsubf < Rrsubj U{Rn,, Rp,, ..., Rn, }, since the added statement

uses values of registers. As the case of the re-synthesis rule (5), we apply the
atomic re-synthesis rule (4) k times.

4.2 Modifications to the Service Specification

In this section, we describe how modifications to Sspec can be represented as the
set of atomic modifications presented in the previous subsection. We consider
modifications to the label of a transition T, of Sspec.

— If £(Ty) (or C(Ty)) is modified to £'(T;) (or C'(Ty)), then this modification
can be represented as a set of the atomic modifications of type (1) and/or
(2) which involve adding and/or removing registers from the set of registers
Rev® that PEstart(T,) needs to execute £(T}) (or evaluate C(Ty)).

— If S(T,) is modified to S'(T;), then this modification can be represented by
a sequence of atomic modifications of type (3), (4), (5) or (6), respectively.

4.3 Changing the Resource Allocation for the Protocol Specification

In some application areas, the allocation of resources between different PE’s is
necessary. For example, in distributed databases, adding a copy of an existing
register to some PE’s is necessary to increase the fault tolerance and balance the
load amongst these PE’s. Here we consider the case where a copy of an existing

183

register Ry, in PE; is added to another PE PE,. For each transition T, where
the value of Ry, is changed (defined) in the substitution statement S(T), PEy
must execute this substitution statement to update the value of register Ry,.
Consequently, this modification can be represented by the atomic modification

(6).

5 Example and Experimental Results

5.1 Modeling the ISPW-6 Example

Protocol synthesis methods have been applied to many applications such as
communication protocols, factory manufacturing systems[14], distributed coop-
erative work management[13] and so on.

In this section, we apply our synthesis method [26] to the distributed devel-
opment of software that involves five engineers (project manager, quality assur-
ance, design, and two software engineers). Each engineer has his own machine
connected with the others, and participates in the development through a gate
(interfaces) of this machine, using distributed resources placed on this machine.
This distributed development process includes scheduling and assigning tasks,
design modification, design review, code modification, test plans modification,
modification of unit test packages, unit testing, and progress monitoring tasks.
The engineers cooperate with each other to finish these sub-sequential tasks.
The reader may refer to ISPW-6 [28] for a complete description of this process,
which was provided as an example to help the understanding and comparison of
various approaches to process modeling.

Figure 5 shows a workflow model of the above development process using
PNR, where the engineers and resources needed to accomplish the tasks are
indicated. We note that for convenience, we do not show the progress monitoring
process tasks in Fig. 5.

We regard this workflow as the service specification, and we derive its cor-
responding protocol specification using the method and programs used in our
previous work[26], where we have developed two programs that generate for the
given specification its corresponding ILP problem constraints, and derive the
protocol specifications using the synthesis rules. The tool Ip_solve[29] is used
to solve the ILP problem and obtain the minimal number of messages to be
exchanged between the derived protocol entities. It took 639 seconds on MMX-
Pentium 200MHz PC to synthesize the given specification. The optimal alloca-
tion of the registers is shown in Table 1 and the minimum number of messages
to be exchanged between the different PE’s is 40.

5.2 Experimental Results

In this section, we show the effectiveness of our re-synthesis method by compar-
ing the time it takes to synthesize the given service specification again after an
assumed modification to the time it takes using our re-synthesis method.

We consider the following modifications to the given service specification:

184

7 eb sopy : %\as_i 7 aj o1y : mé_%i
[op][z sop | [oes v | [af uBsop] [woloy |
7 ap sy : Tes sopy : ammlzs_mi T:dé:ﬂi: apooy 7
7mc|w_mw_ : mulmo_ow_: wclzs_mi 7 bouy : ubsapy 7
A V=N
ﬁw_u\m_m,m.fwuwmim: Ee1] .eed =S | pEL]
, ynsansaly -> EJmm_.w: SopLvd .919]dwod, iONIN

i T 1 H
[ap™sfexs + sbspey +_|,|ﬁv_ .obexoed 1sa 1 NUNAIPON,==Sop :

Wnsansany -> qf ﬁmé_ PLVO

<> ynsanserd | [din ->3senuny |

sle¢3a

Sl T

1nsansalydiaa

2Ll = isony

Slevod ::mmzwm_w_;\O

N2 YO oy umy %_%wEm&o ,%53 ue|disany’ cm_m 7o)

[eb™MAIY+Z9S™ MAIY+TOS MAIH+8p MAIY

spé3a

ubse@

wé3a ,cm_wwum wuoom_mo

9poD AJIpoN ,
mww‘%‘mmww 'Sopy Tes_sopy'ap_Sopy
“eb” MAIYIZaS MAIY'TES MAIY'ap” MAIYIVD

SOP'MAILTIS uBisapyi
[sop -> ap~sopy
MAI -> 8P

1uN 1591 pue abuey) dopreg

‘uBisapy’ _um:n__mo

[(Powjpalidwoo>pelaoy | : . “““““““““““““
pow-> apody | [Bsp -> ubisapy]

J=0

Jubisepy |

AypoiN

bt

L = TP peepa ;
b
PopusWwWosay s OZS_

sabueyd Ioul,, [eb™MAIY+29S” MAIY+TaS >>>E+m_u MAIY -> JTubisepy

pu sm_oozs_

mvmm T cmmm<

pue B INPAYES

135 #

-> pubisapy |

Fig. 5. Modeling the Core Problem in the ISPW-6 Example

185

PE.ing |PEqe PE;c1 PE;co PEq.
Gate |MNG |DE SE1 SE2 0A
RegiSter Rreq Rryw_ser |Rryw_se2 Rrvw-qa
Rdesign Rdcs_sel Rdcs-seQ Rdcs_qa
Rdesign_fb Runittest Rdcs
Rr'uw_de Rtestresult Robject
Rdcs_de Ralc_qa
Rcode Rals_de
Rtest_fb
Rtestplan

Table 1. Optimal Allocation of Resources for Engineers’ Machines

Synthesis Time (sec.) Number of Messages
Re-synthesis|Complete Synthesis|Re-synthesis|Complete Synthesis
casel 1 958 44 44
case2 1 1021 46 46
case3 1 940 40 40
cased 1 1640 42 42

MMX-Pentium 200 MHz, 128MB Memory
Table 2. Experimental Results

1. An additional source code (register Rcode_new) 1S placed on the machine of
the software engineer 1 (SE1), and the design engineer (DE) modifies and
compiles it as well as Reoge, in “Modify Code” (transitions T19 and Tap).

2. An additional new unit test (register Runittest_new) 1S Placed on the machine
of the software engineer 2 (SE2), and the QA engineer (QA) modifies it as
well as Rynittest, in “Modify Test Unit Package” (Tes and T»4). Moreover,
an additional test is done using the unit test in “Test Unit” (Tb3).

3. DE analyzes the test feedback (register Rics:_g5) and gives his comments to
QA. For this purpose, a new register R, cport is introduced on DE’s machine
and his comments are stored on it in transition T59. Then it is shown to QA
on T25.

4. For fault tolerance, a new copy of the existing code R.oqe (placed on PEg.)
is placed on PE,,,,.

After each modification, we have used the programs developed in [26] to
measure the time (in seconds) it takes to synthesize the given specification.
Moreover, we have also measured the time it took to re-derive the protocol
specifications using the re-synthesis rules and a program that we have developed
for this purpose. Table 2 shows these times. The reader can clearly see that the
re-synthesize time is much less than the time for a complete synthesis. This is
mainly due to the fact that by using the re-synthesis rules, we do not have to
re-derive the whole protocol specifications after each modification. Moreover, we

186

do not have to re-optimize the number of messages sent between different PE’s
because (as shown in Table 2) the re-derived protocol specifications still have
optimal (or near-optimal in general cases) solutions.

6 Conclusion and Further Research

Based on our previous work on protocol synthesis of systems modeled as ex-
tended Petri nets, we have developed a set of rules that avoid complete synthe-
sis after incremental modifications to such a system. These rules are applied to
the affected parts of derived protocol specification. This would make protocol
synthesis and maintenance more practical for realistic applications.

Currently, we are developing a re-synthesis method to specifications modeled
as finite state machines. Moreover, we are investigating the extension of our
re-synthesis method to specifications modeled as timed Petri nets.

References

1. T. Murata, “Petri Nets: Properties, Analysis and Applications,” Proc. of the IEEE,
Vol. 77, No. 4, pp. 541-580, 1989.

2. R. Milner, “Communication and Concurrency,” Prentice-Hall, 1989.

3. V. Carchiolo, A. Faro and D. Giordano, “Formal Description Techniques and Auto-
mated Protocol Synthesis,” Journal of Information and Software Technology, Vol.
34, No. 8, pp. 513-421, 1992.

4. H. Erdogmus and R. Johnston, “On the Specification and Synthesis of Commu-
nicating Processes,” IEEE Trans. on Software Engineering, Vol. SE-16, No. 12,
1990.

5. R. Probert and K. Saleh, “Synthesis of Communication Protocols: Survey and
Assessment,” IEEE Trans. on Computers, Vol. 40, No. 4, pp. 468-476, 1991.

6. K. Saleh, “Synthesis of Communication Protocols: an Annotated Bibliography,”
ACM SIGCOMM Computer Communication Review, Vol. 26, No. 5, pp. 40-59,
1996.

7. R. Gotzhein and G. v. Bochmann, “Deriving Protocol Specifications from Service
Specifications Including Parameters,” ACM Trans. on Computer Systems, Vol. 8,
No. 4, pp. 255-283, 1990.

8. R. Langerak, “Decomposition of Functionality; a Correctness-Preserving LOTOS
Transformation,” Proc. of 10th IFIP WG6.1 Symp. on Protocol Specification, Test-
ing and Verification (PSTV-10), pp. 229-242, 1990.

9. C. Kant, T. Higashino and G. v. Bochmann, “Deriving Protocol Specifications
from Service Specifications Written in LOTOS,” Distributed Computing, Vol. 10,
No. 1, pp. 29-47, 1996.

10. P. -Y. M. Chu and M. T. Liu, “Protocol Synthesis in a State-transition Model,”
Proc. of COMPSAC ’88, pp- 505-512, 1988.

11. T. Higashino, K. Okano, H. Imajo and K. Taniguchi, “Deriving Protocol Specifi-
cations from Service Specifications in Extended FSM Models,” Proc. of 13th Int.
Conf. on Distributed Computing Systems (ICDCS-18), pp. 141-148, 1993.

12. M. Nakamura, Y. Kakuda and T. Kikuno, “Component-based Protocol Synthesis
from Service Specifications,” Computer Communications Journal, Vol. 19, No. 14,
pp.1200-1215, Dec. 1996.

187

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

K. Yasumoto, T. Higashino and K. Taniguchi, “Software Process Description Using
LOTOS and its Enaction,” Proc. of the 16th Int. Conf. on Software Engineering
(ICSE-16), pp. 169-179, 1994.

D. Y. Chao and D. T. Wang, “A Synthesis Technique of General Petri Nets,”
Journal of System Integration, Vol. 4, pp. 67-102, 1994.

H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, “Synthesis of Protocol
Entities’ Specifications from Service Specifications in a Perti Net Model with Reg-
isters,” Proc. of 15th Int. Conf. on Distributed Computing Systems (ICDCS-15),
pp. 510-517, 1995.

H. Kahlouche and J. J. Girardot, “A Stepwise Requirement Based Approach for
Synthesizing Protocol Specifications in an Interpreted Petri Net Model,” Proc. of
INFOCOM ’96, pp. 1165-1173, 1996.

A. Al-Dallal and K. Saleh, “Protocol Synthesis Using the Petri Net Model,” Prof.
of 9th Int. Conf. on Parallel and Distributed Computing and Systems (PDCS’97),
1997.

A. Khoumsi and K. Saleh, ”Two Formal Methods for the Synthesis of Discrete
Event Systems,” Computer Networks and ISDN Systems, Vol. 29, No. 7, pp. 759—
780, 1997.

M. Kapus-Koler, “Deriving Protocol Specifications from Service Specifications with
Heterogeneous Timing Requirements,” Proc. of 1991 Int. Conf. on Software Engi-
neering for Real Time Systems, pp. 266—270, 1991.

A. Khoumsi, G. v. Bochmann and R. Dssouli, “On Specifying Services and Syn-
thesizing Protocols for Real-time Applications,” Proc. of 14th IFIP WG6.1 Symp.
on Protocol Specification, Testing and Verification (PSTV-14), pp. 185-200, 1994.
A. Khoumsi and G. v. Bochmann, “Protocol Synthesis Using Basic LOTOS and
Global Variables,” Proc. of 1995 Int. Conf. on Network Protocols (ICNP’95), 1995.
A. Nakata, T. Higashino and K. Taniguchi, “Protocol Synthesis from Timed
and Structured Specifications,” Proc. of 1995 Int. Conf. on Network Protocols
(ICNP’95), pp. 74-81, 1995.

H. Yamaguchi, K. Okano, T. Higashino and K. Taniguchi, “Protocol Synthesis
from Time Petri Net Based Service Specifications,” Proc. of 1997 Int. Conf. on
Parallel and Distributed Systems (ICPADS’97), pp. 236-243, 1997.

J. -C. Park and R. E. Miller, “Synthesizing Protocol Specifications from Service
Specifications in Timed Extended Finite State Machines,” Proc. of 17th Int. Conf.
on Distributed Computing Systems (ICDCS-17), 1997.

K. El-Fakih, H. Yamaguchi and G.v. Bochmann, “A Method and a Genetic Algo-
rithm for Deriving Protocols for Distributed Applications with Minimum Commu-
nication Cost,” Proc. of the 11th IASTED Int. Conf. on Parallel and Distributed
Computing and Systems (PDCS’99), 1999.

H. Yamaguchi, K. El-Fakih, G.v. Bochmann and T. Higashino, “A Petri Net Based
Method for Deriving Distributed Specification with Optimal Allocation of Re-
sources,” Proc. of the ASIC Int. Conf. on Software Engineering Applied to Net-
working and Parallel/ Distributed Computing (SNPD’00), pp. 19-26, 2000.

S.S. Skiena, “The ALGORITHM Design Manual,” TELOS - The Electronic Library
of Science (A Springer-Verlag Imprint), 1998.

Kellner, M. et al. : “ISPW-6 Software Process Example,” Proc. of the 1st Int. Conf.
on the Software Process, pp. 176-186, 1991.

“Ipsolve,” ftp://ftp.ics.ele.tue.nl/pub/lp_solve/

G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection Tech-
niques,” IEEE Trans. on Software Engineering, Vol. 22, No. 8, pp. 529-551, 1996.

188

	Workshop on Software Engineering and Petri Nets
	Preface
	Table of Contents
	Performance Evaluation for the Design of Agent-based Systems: A Petri Net Approach
	Testing Petri Nets for Mobile Robots Using Grobner Bases
	Generating and Exploiting State Spaces of Object-Oriented Petri Nets
	The OCoN Approach for Object-Oriented Distributed Software Systems Modeling
	Seamless Object-Oriented Software Development on a Formal Base
	An Architecture for Adaptive Planning and Scheduling of Software Processes Using Timed Colored Petri Nets
	Towards Modelling and Verification of Concurrent Ada Programs Using Petri Nets
	COALA: A Design Language for Reliable Distributed Systems Engineering
	Supervisory Plug-ins for Distributed Software
	Protocol Re-synthesis Based on Extended Petri Nets

