
The Symmetry Method for Coloured
Petri Nets

- Theory, Tools and Practical Use

Louise Elgaard

PhD Dissertation

Department of Computer Science

University of Aarhus

Denmark

The Symmetry Method for Coloured Petri Nets
- Theory, Tools and Practical Use

A Dissertation

Presented to the Faculty of Science

of the University of Aarhus

in Partial Ful�lment of the Requirements for the

PhD Degree

by

Louise Elgaard

July 31, 2002

Preface

Short Summary in Danish

I dag indg�ar computer systemer i mange kritiske sammenh�nge, f.eks. hospi-

talsudstyr, m�aleinstrumenter, y og bilmotorer, hvor det er vigtigt at computer

systemet virker som forventet. Indenfor datalogien er der i tidens l�b udviklet

ere metoder til at unders�ge om computer systemer virker som de skal, men

ikke alle metoder er lige anvendelige i praksis. Ph.d. afhandlingen \The Sym-

metry Method for Coloured Petri Nets { Theory, Tools, and Practical Use"

besk�ftiger sig med en s�adan metode. Arbejdet tilst�ber at udvikle teori og

v�rkt�jer, der g�r at metoden bliver mere anvendelig i praksis. Ph.d. afhan-

dlingen omfatter derfor to industrielle projekter hvor de udviklede teorier og

v�rkt�jer er anvendt og evalueret i industrielle sammenh�nge.

Summary

A way to increase reliability of systems is to use formal methods, which are

mathematically based methods for specifying and reasoning about systems. An

example of a formal method for reasoning about systems is the state space

method. The full state space of a system is a directed graph with a node for

each reachable state of the system and an arc for each state change. From

the full state space it is possible to verify whether the system satis�es a set of

desired properties.

Several reduction techniques have been suggested for reducing the state

space. With these reduction techniques only a subset of the full state space

is represented or the full state space is represented in a compact form. An

example of such a reduction technique is the symmetry method . The basic

observation is that many distributed and concurrent systems posses a certain

degree of symmetry, e.g., a system composed of identical components whose

identities are interchangeable from a veri�cation point of view. This kind of

structural symmetry in the system is also reected in the full state space of the

system. The idea behind the symmetry method is to factor out this symmetry

and obtain a condensed state space which is typically much smaller than the

full state space, but from which the same kind of properties of the system can

be derived without unfolding the condensed state space to the full state space.

State spaces and the symmetry method are not restricted to a speci�c mod-

elling language. However, in the work presented in this thesis the symmetry

v

method is considered in the context of Coloured Petri Nets.

The thesis consists of two parts. Part I is the mandatory overview paper

witch summarises the work which have been done. Part II is composed of four

individual papers. Three of the papers have been published as conference papers

in international conferences. One paper has been published as a workshop

paper.

The overview paper introduces the symmetry method in the context of

Coloured Petri Nets and summarises the four papers. An important part of

the overview paper is a comparison of the work done with other research work

within the �eld. This is done in form of a discussion of related work.

The �rst paper is based on an industrial cooperation project in which the

symmetry method is put into practical use. The purpose of the project was to

investigate the application of Coloured Petri Nets for validation of the communi-

cation protocols used in the Danish manufacturing company Danfoss. Analysis

by means of state spaces successfully identi�ed problems in the communication

protocols and an alternative design was analysed using state spaces reduced by

taking advantage of the inherent symmetries in the system. Exploiting the sym-

metries made it possible to analyse larger con�gurations of the system. The

project also presents a �rst step towards improving the tool support for the

symmetry method in form of a semi-automated consistency check, i.e., check-

ing that the symmetries used for the reduction are symmetries that are actually

present in the system.

A recurrent problem of the symmetry method is the high time complexity

of the orbit problem, i.e., the problem of determining whether two states are

symmetric. The second paper presents techniques to alleviate the negative im-

pact of the orbit problem in state space generation with the symmetry method.

The paper attacks the problem in two ways. Firstly, by presenting algorithms

which exploit stabilizers of states, i.e., symmetries that map a state to itself,

to potentially reduce the complexity of the orbit problem during state space

generation. Secondly, by presenting a parallel version of the basic generation

algorithm for state spaces reduced by means of symmetries. The techniques are

implemented and evaluated on a number of practical experiments.

The third paper presents an important step towards making the symmetry

method for Coloured Petri Nets applicable in practice. The paper presents the

development of a tool which fully automates state space generation with the

symmetry method. Prior tool support (the Design/CPN OE/OS Tool) required

the user to implement two predicates determining whether two states/actions

are symmetric or not. This requires both programming skills as well as a deep

knowledge of the symmetry method. This is especially the case if the predi-

cates are required to be eÆcient. When constructing condensed state spaces for

CP-nets it can be observed that the predicates can be automatically deduced

provided that the algebraic groups of permutations used for the reduction has

been speci�ed. The above observation motivated the construction of the tool

which given an assignment of algebraic groups of permutations to the atomic

colour sets of the CPN model automatically generates the predicates needed by

the tool. During development of the tool di�erent strategies for the predicates

are investigated to see whether it is possible to develop general techniques which

vi

ensures an automatic but still eÆcient implementation of the predicates. The

presented algorithms are implemented in the Design/CPN OPS tool and their

applicability is evaluated based on practical experiments. The practical experi-

ments show that the chosen strategies for the implementation of the predicates

greatly inuences whether the symmetry method is applicable in practice.

The fourth paper di�er from the three �rst papers in the sense that it

does not deal with the symmetry method. The paper is based on an indus-

trial project. The paper presents results on the use of Coloured Petri Nets for

the modelling and analysis of features and feature interactions in Nokia mobile

phones. The paper presents how Coloured Petri Nets have been used to con-

struct a model of parts of the software system in Nokia mobile phones. The

paper is concerned with the interaction between features (the functionality of

the mobile phone) implemented in individual modules. Feature interactions are

investigated using simulations and state space analysis. The paper presents the

Coloured Petri Nets model constructed in the project, describes how domain-

speci�c graphics and Message Sequence Charts are used as an interface to sim-

ulations, and discusses how the project and in particular the construction of

the model have inuenced the development process of features in Nokia mobile

phones.

vii

Acknowledgements

During my PhD studies I have been associated to the Coloured Petri Nets

Group (CPN Group) at the University of Aarhus. It has been a pleasant time

which I have bene�tted from both professionally and socially. For that I will

express my thanks to both former and current members of the CPN group.

Especially, I would like to thank my adviser S�ren Christensen for encour-

aging me to start my PhD studies and for guidance and support during the

four years. Also thanks to Kurt Jensen for his involvement and guidance which

I have highly appreciated.

Thanks to Lars M. Kristensen who besides co-authoring two of the papers

taught me how to write research papers and from whom I have learned a lot.

Thanks for support, help and encouragement during my PhD studies. Also

thanks to the other three PhD students in the CPN group: Lisa Wells, Bo

Lindstr�m and Thomas Mailund. We have often shared the same problems and

concerns and I have appreciated the help and support from all of you.

During my PhD studies I have spent six months at Nokia Research Centre

in Helsinki, Finland. Thanks to the Software Architecture Group headed by

Juha Kuusela. The entire group has been very friendly and helpful and made

my stay in Helsinki very pleasant. Especially thanks to Jianli Xu and Antti-

Pekka Tuovinen who I worked closely together with and also co-authored one

of the papers in this thesis. Also thanks to Francis Tam for introducing me to

Finnish social life and letting me borrow his wonderful Finnish friends during

my stay in Helsinki.

Finally, I would like to thank Kurt Jensen, S�ren Christensen and Jacob

Elgaard for reading and commenting on the overview paper in the thesis. The

errors that may remain are entirely mine.

The work done for this thesis is supported by a grant from the Faculty of

Science, University of Aarhus, Denmark.

Louise Elgaard,
�Arhus, Juli 31, 2002.

ix

Contents

Preface v

Short Summary in Danish . v

Summary . v

Acknowledgements . ix

I Overview 1

1 Introduction 3

1.1 General Introduction . 3

1.2 Coloured Petri Nets and the Symmetry Method 4

1.2.1 Coloured Petri Nets for the Modelling of a Flowmeter

System . 5

1.2.2 Analysis by means of State Spaces with Symmetries . . . 7

1.3 Motivation and Aims of the Thesis 11

1.4 Outline and Structure of the Thesis 12

1.4.1 Reader's Guide . 13

2 The Symmetry Method in Practice 15

2.1 Background . 15

2.2 Summary of Paper . 16

2.3 Related Work . 21

3 Exploting Stabilizers and Parallelism 25

3.1 Background . 25

3.2 Summary of Paper . 26

3.3 Related Work . 29

4 Algorithms and Tool Support for the Symmetry Method 33

4.1 Background . 33

4.2 Summary of Paper . 34

4.3 Related Work . 37

5 Modelling and Analysis of Feature Interactions 41

5.1 Background . 41

5.2 Summary of Paper . 42

5.3 Related Work . 48

xi

6 Conclusions and Directions for Future Work 53

6.1 Summary of Contributions . 53

6.2 Future Work . 55

II Papers 59

7 Modelling and Analysis of a Danfoss Flowmeter System 61

7.1 Introduction . 63

7.2 Overview of the Project . 64

7.3 The Danfoss Flowmeter System 66

7.3.1 System Architecture and Communication Protocols . . . 66

7.3.2 CANAPP Design Patterns 68

7.4 CPN Model of the Flowmeter System 69

7.4.1 CPN Model Overview . 70

7.4.2 Modelling of the CANAPPs 70

7.5 Analysis of two Initial Design Proposals 72

7.5.1 Analysis Goals . 72

7.5.2 Analysis Results . 73

7.6 Analysis of a third Design Proposal 77

7.6.1 Symmetry Speci�cation 77

7.6.2 Consistency Check . 79

7.6.3 Analysis Results . 79

7.7 Conclusions . 81

8 Exploiting Stabilizers and Parallelism 83

8.1 Introduction . 85

8.2 Background . 87

8.2.1 Coloured Petri Nets . 87

8.2.2 The Symmetry Method 88

8.3 Canonical Representatives . 90

8.4 Exploiting Stabilizers . 91

8.4.1 Fewer Iterations . 92

8.4.2 Fewer Markings Canonicalized 93

8.5 Exploiting Parallelism . 94

8.6 Experimental Results . 96

8.6.1 Stabilizer Algorithms . 97

8.6.2 Parallel Algorithm . 99

8.7 Conclusions and Related Work 100

9 State Space Generation with the Symmetry Method 103

9.1 Introduction . 105

9.2 The Symmetry Method for CP-nets 107

9.2.1 Example: Distributed Database 107

9.2.2 Symmetry Speci�cation 109

9.2.3 Restriction Sets . 109

9.3 Condensed State Space Generation 110

xii

9.4 Basic Algorithm for PM . 112

9.4.1 Presentation of the Algorithm 112

9.4.2 Experimental Results of the PBasic
M Algorithm 113

9.5 Approximation Techniques . 115

9.5.1 Presentation of the Algorithm 115

9.5.2 Experimental Results of the PApprox
M Algorithm 118

9.6 Lazy Listing . 120

9.6.1 Presentation of the Algorithm 120

9.6.2 Experimental Results of the P
Approx+Lazy
M Algorithm . . . 123

9.7 Conclusions . 124

10 Modelling Features and Feature Interactions 127

10.1 Introduction . 129

10.2 The MAFIA Project . 130

10.3 The CPN Model . 132

10.3.1 Overview of the CPN model 132

10.3.2 Modelling of the Features 135

10.4 Simulations and Visualisation . 140

10.4.1 Animation of the display 140

10.4.2 Controlling the simulations 142

10.4.3 Message Sequence Charts 142

10.5 Related and Future Work . 143

10.6 Conclusions . 145

Bibliography 149

xiii

Part I

Overview

1

Chapter 1

Introduction

This chapter gives an introduction to the symmetry method for Coloured Petri

Nets and motivates the work presented in this PhD thesis within this research

�eld. Section 1.1 gives a general introduction to and motivation for the symme-

try method. Section 1.2 gives an informal introduction to Coloured Petri Nets

and the symmetry method in the context of Coloured Petri Nets by means of an

example. Section 1.3 presents motivations for and aims of the thesis. Finally,

Sect. 1.4 gives an overview of the work included in the thesis and presents the

structure of the rest of the thesis.

1.1 General Introduction

Today many computer systems are distributed and concurrent, ranging from

small embedded systems in electronic equipment to large industrial production

systems and geographically distributed systems. What is common for these

systems is that the execution can proceed in many di�erent ways depending

on the individual components, their individual relative behaviour, and their

interplay in the system. Therefore, it is extremely diÆcult to reason about the

total behaviour of such systems and errors can go undetected for a long time.

As we depend more and more on electronic systems in critical situations, e.g.,

in hospital equipment, traÆc lights and car engines, the importance of being

able to establish the correctness, or at least increase reliability of such systems

is of great interest.

One way to increase reliability of systems is to use formal methods, which

are mathematically based methods for specifying and reasoning about systems.

An example of a formal method for reasoning about systems is the state space

method. The full state space of a system is a directed graph with a node for

each reachable state of the system and an arc for each state change. From the

full state space it is possible to verify whether a system satis�es a set of desired

properties, e.g., absence of deadlocks, the possibility to always reenter the sys-

tem's initial state, etc. If a system does not posses the desired properties, then

the full state space can be used to obtain counter examples, i.e., an execution

of the system which leads to an undesired situation. This means that the state

space can also be used to locate errors in the system. The main drawback in

3

4 Chapter 1. Introduction

the practical use of the state space method is the state explosion problem [90]:

the number of reachable states grows exponentially in the number of concurrent

components, thus making it impossible to construct the full state space of the

system.

Several reduction techniques have been suggested to alleviate the state ex-

plosion problem. With these reduction techniques only a subset of the full state

space is represented or the full state space is represented in a compact form.

An example of such a reduction technique is the symmetry method [22, 23, 47].

The basic observation is that many distributed and concurrent systems posses

a certain degree of symmetry, e.g., a system composed of identical components

whose identities are interchangeable from a veri�cation point of view. This kind

of structural symmetry in the system is also reected in the full state space of

the system. The idea behind the symmetry method is to factor out this symme-

try and obtain a condensed state space which is typically much smaller than the

full state space, but from which the same kind of properties of the system can be

derived without unfolding the condensed state space to the full state space. The

use of the symmetry method is highly dependent on the existence of supporting

computer tools. Without suitable computer tools calculation, generation, and

inspection of condensed state spaces is impossible for more than trivial systems.

State spaces and the symmetry method are not restricted to a speci�c mod-

elling language [29]. However, in the work presented in this thesis the sym-

metry method is considered in the context of Coloured Petri Nets (CP-nets

or CPNs) [46, 58]. CP-nets is a graphical modelling language based on Petri

Nets [79] allowing modelling and formal analysis of distributed and concurrent

systems. Design/CPN [19,50] is a computer tool supporting speci�cation, sim-

ulation, and state space analysis of CP-nets. The tool is developed by the CPN

Group at the University of Aarhus. In the area of CP-nets state spaces are also

called occurrence graphs or reachability trees, state spaces with symmetries are

also called occurrence graphs with symmetries and occurrence graphs with per-

mutation symmetries. In this thesis the terms state spaces and state spaces with

symmetries will be used.

1.2 Coloured Petri Nets and the Symmetry Method

In this section the concepts of CP-nets and the symmetry method for CP-

nets [47,48] are informally introduced through a concrete example. The exam-

ple considered is the Danfoss owmeter system investigated in [65]. The work

presented in [65] will be discussed in more detail in Chap. 2. The paper is

included in its full version in Chap. 7. Section 1.2.1 contains an brief introduc-

tion to the Danfoss owmeter system, followed by an informal introduction to

CP-nets using a CPN model of the owmeter system. Section 1.2.2 presents

the ideas of state spaces and state spaces with symmetries.

1.2. Coloured Petri Nets and the Symmetry Method 5

1.2.1 Coloured Petri Nets for the Modelling of a Flowmeter

System

CP-nets have proven powerful for modelling of concurrent systems [49]. An

example of a concurrent system is the Danfoss owmeter system which will

briey be introduced in the following.

Flowmeters are primarily used to make measurements on the ow of liq-

uid through pipes. The owmeter system studied in [65] consisted of several

processes each conducting measurements on the ow of liquid. Examples are

processes measuring the amount of water owing through a pipe, processes mea-

suring the temperature of the water, and processes doing calculations based on

measurements obtained by other processes. Figure 1.1 illustrates the overall

architecture of a owmeter system. A owmeter system consists of one or more

modules connected via a Controller Area Network (CAN) [62]. Each module

consists of a number of processes called CAN Applications (CANAPPs) and a

driver that interfaces the module to the CAN. Figure 1.1 shows an example of

a owmeter system consisting of three modules containing two, three, and four

CANAPPs, respectively. Each CANAPP in the system has a local memory

which holds a number of attributes. The communication in the system consists

of asynchronous message passing between the CANAPPs. This message passing

allows each CANAPP to read and write the attributes of the other CANAPPs.

CANAPP

CANAPP CANAPP

CANAPP

DRIVER DRIVER

MODULE 1 MODULE 2

CAN

CANAPP CANAPP

DRIVER

MODULE 3

CANAPP

CANAPP

CANAPP

Figure 1.1: Overall architecture of a owmeter system.

In the following an informal introduction to CP-nets is given using the CPN

model of the owmeter system created in the project reported on in [65] as an

example. This section will informally introduce CP-nets as they are formally

de�ned in [46] as well as the style in which CP-nets appear in the rest of

this thesis. A more detailed introduction to CP-nets can be found in [58].

The CPN model is created in the Design/CPN tool [26] and the introduction

given here reects the terminology used in the Design/CPN tool. A CP-net

is hierarchically structured into modules (subnets), also referred to as pages

in Design/CPN terminology. Figure 1.2 gives an overview of the CPN model

of the owmeter system by showing how it has been hierarchically structured

into 12 pages. Each node in Fig. 1.2 represents a page of the CPN model.

An arc between two nodes indicates that the source node contains a so-called

substitution transition whose behaviour is described on the page represented by

the destination node.

A CP-net is created as a graphical drawing with textual inscriptions. In

6 Chapter 1. Introduction

debug#21

Hierarchy#10

PrimaryWaitpoint#18 InternalWaitpoint#17

CANAPPOut#13

Internal#20

masterp#100Init#11
M Prime

GlobalDecl#2Control#10

CANAPP#3 Driver#5 Network#4

Flowmeter_System# M Prime

CANAPPIn#14

MIn#8

MOut#9

ReadWrite#7

Generation#6

MarkingToKeyMarkingToKey

CPNOSfig#26CPNOGfig#28CPNOSFigBU#29

CPNOGfig_reorganizedCPNOGfigNEW#32CPNOGfigNEW_reorgCPNOSfigNEW#35

PN2000 figurer

Thesis figurerCPNOSfigNEW_smallnoCPNOSfigNE

Internal
Primary

Figure 1.2: The hierarchy page.

the following it is shown how CANAPPs are modelled as a CP-net. Figure 1.3

depicts the page CANAPPOut, which models the part of a CANAPP generating

requests to the other CANAPPs and awaiting responses.

In contrast to many other modelling languages CP-nets are both state and

action oriented. A state of a CP-net is represented by means of places which

are drawn as ellipses with a name positioned inside. The places contain tokens,

which carry data values. The data values are in CPN terminology referred to

as colours. Each place has a type, in CPN terminology referred to as colour set

that determines the kind of tokens that can reside on the place. The colour set

of a place is written next to the place. A state of a CP-net is a distribution of

tokens on the individual places. A state is in CPN terminology also referred to

as a marking . A CP-net has a distinguished marking called the initial marking ,

corresponding to the initial state of the system.

In Fig. 1.3 the two places RequestOut and ResponseIn both have the colour set

Waiting

CANxCanMsg

Attributes

CANAPPxAttr

FG

Attributes

Services

CANAPPxService

FG

Services

Request
[canapp<>tocanapp,
canmsg=MakeRequest
 (canapp,tocanapp,theservice)]

Config

CANAPP

FG

Config

Confirm

[(#cansource canmsg’)=
(#candest canmsg)]

ResponseIn

CANxCanMsg

P

In

RequestOut

CANxCanMsg

P

Out

Idle

CANAPPP

I/O

PWPStatu
s

CANAPPxPWPStatus

P I/

rem_idle(canapp)

(canapp,canmsg)

(canapp,theservice)

(canapp,canmsg)

tocanapp

(canapp,canmsg)

(canapp,
read_update_attr(attr,canmsg’))

(canapp,attr)

(canapp,canmsg’)

rem_idle(canapp)

(canapp,PWPWait)(canapp,PWPIdle)
(canapp,PWPIdle)

(canapp,PWPWait)

Figure 1.3: The page CANAPPOut.

1.2. Coloured Petri Nets and the Symmetry Method 7

CANxCanMsg, which denotes the cartesian product of CANAPPs and messages.

These two places model the bu�ers used to temporarily store outgoing requests

to other CANAPPs in the system and incoming responses to previously sent

requests. The places Idle and Waiting model the control ow in the part of a

CANAPP generating requests to the other CANAPPs and awaiting responses.

The place Attributes is used to model the attributes of the CANAPP. The places

Con�g and Services are used to model con�guration information (information

about other CANAPPs in the owmeter system) which can be accessed by the

CANAPP.

Actions of a CP-net are represented as transitions which are drawn as rect-

angles with a name positioned inside. The transitions and places of a CP-net

are connected by arcs. Transitions remove tokens from the places connected to

incoming arcs and add tokens to the places connected to outgoing arcs. The

tokens removed and added are determined by arc expressions which are inscrip-

tions positioned next to the arcs. In the Design/CPN tool these inscriptions are

written in the Standard ML programming language [70]. In Fig. 1.3 the sending

of a request is modelled by the transition Request, which causes the CANAPP to

change its state from being Idle to Waiting and passes the message to the driver

by putting it into the bu�er modelled by the place RequestOut. The token put

on place RequestOut is speci�ed by the expression (canapp,canmsg) which is the

cartesian product of a CANAPP and a message.

A transition can remove and add tokens when two conditions are ful�lled.

Firstly, suÆcient tokens must be present on the places connected to incoming

arcs, i.e., it must be possible to assign data values to the free variables of

the transition in such a way that each arc expression evaluate to a multi-set of

tokens which is a subset of the tokens present on the corresponding input place.

Secondly, a boolean expression assigned to the transition called a guard must

evaluate to true. When these two conditions are ful�lled the transition is said

to be enabled and it may occur , thereby removing tokens from the input places

and adding tokens on the output places of the transition. A pair consisting

of a transition and an assignment of data values to the free variables of the

transition is called a binding element .

When a message is put in the bu�er modelled by the place RequestOut, the

driver in the module will remove the message from the place RequestOut and

deliver it to the destination. When the response returns, the corresponding

message is put in the bu�er modelled by the place ResponseIn. The actual re-

ception of a response is modelled by the transition Con�rm. An occurrence of

this transition removes the response from the place ResponseIn, updates the at-

tributes of the CANAPP (modelled by place Attributes) and causes the CANAPP

to change its state from Waiting to Idle.

1.2.2 Analysis by means of State Spaces with Symmetries

As seen above CP-nets have a graphical representation. Furthermore, CP-nets

have a formally de�ned semantics allowing formal analysis [46]. The CPN model

introduced above can therefore be used to analyse whether the CPN model of

the owmeter system possesses a number of desired properties.

8 Chapter 1. Introduction

1

4 5 72 63

14 1512 13 16109 118

Figure 1.4: Initial fragment of the full state space.

A full state space [46] of a CP-net is a directed graph with a node for each

reachable state of the CP-net and an arc for each state change of the CP-net.

Figure 1.4 shows the initial fragment of the full state space for a owmeter

system consisting of two modules containing one and two CANAPPs, respec-

tively. This system con�guration is graphically represented as . The

nodes in the state space coloured black are the nodes which are fully explored,

i.e., the nodes for which all successors have been calculated and included in the

state space. Modules are numbered from left to right, and the CANAPPs in

a module from top to bottom. The notation CANAPP(i;j) is used to denote

CANAPP j in module i. Similarly, a communication in the system will be

graphically represented. A situation where CANAPP(2;1) has initiated request

towards CANAPP(2;2) will be represented as .

Node 1 in Fig. 1.4 corresponds to the initial marking/state and has six

immediate successor nodes corresponding to the possible requests which can

be initiated in the system (each CANAPP can initiate a request to the two

other CANAPPs in the owmeter system). Only the successor nodes of node 4

and 5 are shown in the layer of the state space corresponding to two steps

from the initial state. For each of the nodes it is indicated in the associated

dashed box what communication have been initiated, e.g., node 4 corresponds

to a state of the system in which CANAPP(2;1) has initiated a request towards

CANAPP(1;1).

Even for small CP-nets such a full state space may become very large, thus

encountering the state explosion problem [90], i.e., the state space starts to

grow rapidly when analysing systems of increasing size, e.g., owmeter systems

with an increasing number of CANAPPs. In the owmeter system CANAPPs

located in the same module can be considered interchangeable/symmetric, i.e.,

1.2. Coloured Petri Nets and the Symmetry Method 9

1

4 5 72 63

1415 1213 1610 9 118

Figure 1.5: Reorganised initial fragment of the full state space. The grey boxes

indicate symmetric markings.

CANAPP(2;1) and CANAPP(2;2) are symmetric seen from a veri�cation point of

view. Also modules containing the same number of CANAPPs can be consid-

ered symmetric. There is, however, no such modules in the con�guration used

as example. When considering the state space of the owmeter system it can be

seen that this kind of structural symmetry also is reected in the state space of

the system. Node 4 in Fig. 1.4 corresponds to a marking where CANAPP(2;1)

has initiated a request to CANAPP(1;1), while node 5 corresponds to a mark-

ing where CANAPP(2;2) has initiated a request to CANAPP(1;1). For node n

the corresponding marking is denoted Mn. M4 and M5 can be obtained from

each other by a permutation which swaps the identity of CANAPP(2;1) and

CANAPP(2;2), hence M4 and M5 can be considered symmetric.

Figure 1.5 shows the same fragment of the full state space as Fig. 1.4, but

in Fig. 1.5 the states are reorganised such that symmetric markings are posi-

tioned next to each other in grey boxes. The grey boxes indicate equivalence

classes of symmetric markings. The �rst box represents the equivalence class

containing the initial marking only, the second box represents the equivalence

class containing the markingsM2 and M3, the third box represents the equiva-

lence class containing the markings M4 and M5, and the fourth box represents

the equivalence class containing M6 and M7. The successors of M4 and M5 are

grouped into equivalence classes in a similar way. From Fig. 1.5 it can be seen

that two symmetric markings, such as M4 and M5, have symmetric successor

markings. Hence, for a set of symmetric markings it is suÆcient to explore the

possible behaviours of the system for only one of these markings.

The basic idea behind the symmetry method is to lump together symmetric

sets of markings/binding elements into equivalence classes as shown in Fig. 1.5.

It is suÆcient to store a single representative from each equivalence class, e.g.,

the marking M4 can be chosen as a representative for the equivalence class

10 Chapter 1. Introduction

1

42 6

1210 9 118

Figure 1.6: Initial fragment of the condensed state space containing one repre-

sentative from each equivalence class.

containing the markings M4 and M5. In this way a condensed state space is

obtained which is typically much smaller than the full state space. The ini-

tial fragment of the condensed state space for the owmeter system is shown

in Fig. 1.6. From Fig. 1.6 it can be seen that only one marking from each

equivalence class is included in the condensed state space. The total number

of markings reachable within two steps from the initial marking is 23. The

total number of equivalence classes reachable within two steps from the ini-

tial marking is 13. Hence it is possible to represent the 23 markings which

can be reached in two steps from the initial marking using only 13 nodes in

the condensed state space. These number may not at �rst sight seem impres-

sive. However, in general the highest possible reduction for a con�guration is

�n2N(n! � the number of modules containing n CANAPPs). Hence, the highest

possible reduction for the con�guration is 120. Practical experiments

show that the reduction obtained is very close to the highest theoretically pos-

sible.

The symmetries used for the reduction are obtained from permutations of

the atomic colours in the CP-nets. Hence, in the rest of the thesis such sym-

metries are denoted permutation symmetries and a condensed state space is

also called a state space with permutation symmetries (SSPS). The permuta-

tion symmetries used for the reduction must be chosen in such a way that they

capture the symmetries actually present in the system. When this is the case

the choice of symmetries are said to be consistent [47]. Consistency of the

choice of symmetries ensures that the full state space can be constructed from

the SSPS. When the choice of symmetries used for the reduction is consistent

the SSPS has an arc from one equivalence class to another if and only if there is

an arc from a node in the �rst equivalence class leading to a node in the second

1.3. Motivation and Aims of the Thesis 11

equivalence class. The fact that symmetric markings have symmetric sets of

successor markings and binding elements ensures that either all or none of the

markings in the �rst equivalence class have an enabled binding element leading

to a marking in the second equivalence class.

1.3 Motivation and Aims of the Thesis

The symmetry method is a general state space reduction technique and is as

such not restricted to a certain modelling language. Several variants have been

suggested for reasoning about di�erent classes of properties, e.g., for safety

properties [44], for temporal logics formulae speci�ed in CTL* [23, 24, 28] and

LTL [30, 38], for properties of P/T nets [85], and in the context of CP-nets a

variant for reasoning about standard dynamic properties of CP-nets [47, 48].

One of the common problems for all the variants of the symmetry method

is how to determine whether two states are symmetric. A selection of papers,

e.g., [55, 80, 81] presents results and techniques for this problem for low level

Petri Nets.

In the context of CP-nets the theory of the symmetry method is well devel-

oped [47, 48]. However, no papers document the use of the symmetry method

in practice in the context of Coloured Petri Nets. A �rst step toward making

the symmetry method for Coloured Petri Nets applicable in practice is made

in 1996 where the Design/CPN tool was extended with support for generation

of SSPSs. The tool is called the Design/CPN OE/OS tool [52] and is together

with a case study documented in [53]. However, the tool requires the user to

implement two predicates expressing whether two states/actions are symmetric.

Hence, the tool does not address the problem of determining whether two states

are symmetric, i.e., the orbit problem. [4, 32, 51] all presents ideas for eÆcient

solutions to the orbit problem for CP-nets but the ideas are not integrated into

state space generation and in [4, 32] the ideas are not evaluated in practice.

The above motivated the research work done as a part of this thesis. Early

experimental results [65] show that in practice an eÆcient implementation of

the orbit problem is crucial for whether the symmetry method is applicable in

practice for larger models, i.e., models with a potentially large number of sym-

metries. Furthermore, a basic observation in the symmetry method for CP-nets

is that when the symmetries of the system are known, the problem of deter-

mining whether two states are symmetric can be performed fully automatic.

This motivates development for general algorithms and techniques for the or-

bit problem as well as tool support such that the techniques and ideas can be

integrated into state space generation without manual implementation or other

(model speci�c) user invention.

One of the key issues motivating the work done in this thesis is to develop

techniques and tools which make the symmetry method for CP-nets applicable

in practice. Throughout my PhD studies the work has included three aspects of

the symmetry method of Coloured Petri Nets: Theory, tools, and practical use. I

�nd that all three aspects and the interplay between them are important aspects

towards making the symmetry method for CP-nets applicable in practice. New

12 Chapter 1. Introduction

ideas and techniques are developed during research work, these are applied

and explored in small examples and later in industrial settings. This may

again motivate further development of the techniques. The applicability of the

developed techniques is closely related to the existence of suitable computer

tools. Without proper computer support it is impossible to calculate and use

SSPSs for more than small examples. This should imply that neither of the

three aspects: theory, tools and practical use should be treated in isolation.

Theory. The research work concentrates on the development of general tech-

niques and algorithms for the orbit problem of CP-nets. The algorithms

are integrated into state space generation for CP-nets.

Tools. The developed algorithms are implemented in a tool which automates

the symmetry method for CP-nets thus making it possible to automat-

ically calculate the SSPSs of a CP-net with when the user has speci�ed

the permutation symmetries used for the reduction.

Practical Use. The developed algorithms and tools are evaluated in a number

of practical experiments.

1.4 Outline and Structure of the Thesis

The thesis is divided into two parts. Part I is the mandatory overview paper

which summarises the work which have been done. Part II is composed of four

individual papers. Three of the papers [65{67] have been published as confer-

ence papers in international conferences. One paper [63] has been published

as a workshop paper. Three of the papers [63, 65, 66] document work with the

symmetry method for CP-nets. The fourth paper [67] document work with

application of CP-nets in an industrial setting.

Chapter 2 summarises the paperModelling and Analysis of a Danfoss Flowme-

ter System using Coloured Petri Nets [65]. The paper presents joint work

with Lars M. Kristensen and has been published in M. Nielsen and D.

Simpson, editors, Proceedings of the 21th International Conference on

Application and Theory of Petri Nets, volume 1825 of Lecture Notes in

Computer Science, pages 346{366, Springer-Verlag, 2000. The paper is

contained in full in Chapter 7.

Chapter 3 summarises the paper Exploiting Stabilizers and Parallelism in

State Space Generation with the Symmetry Method [66]. The paper presents

joint work with Lars M. Kristensen and has been published in Proceedings

of the Second International Conference on Application of Concurrency to

System Design, IEEE, 2001. The paper is contained in full in Chapter 8.

Chapter 4 summarises the paper Coloured Petri Nets and State Space Gen-

eration with the Symmetry Method [63]. The paper has been published in

K. Jensen, editor, Proceedings of the Fourth Workshop on Applications of

Coloured Petri Nets and CPN/Tools, Department of Computer Science,

1.4. Outline and Structure of the Thesis 13

University of Aarhus, Denmark, 2002. The paper is contained in full in

Chapter 9.

Chapter 5 summarises the paper Modelling of Features and Feature Interac-

tions in Nokia Mobile Phones using Coloured Petri Nets [67]. The pa-

per presents joint work with Antti-Pekka Tuovinen and Jianli Xu and

has been published in J. Esparza and C. Lakos, editors, Proceedings of

the 23rd International Conference on Application and Theory of Petri

Nets, volume 2360 of Lecture Notes in Computer Science, pages 294{313,

Springer-Verlag, 2002. The paper is contained in full in Chapter 10.

Chapter 2{5 are all divided into three sections; Background gives a brief in-

troduction to and some background for the topic of the paper, Summary of

Paper gives a brief summary of the main conclusions presented in the paper,

and Related Work discusses and compares the paper to related work. Chap-

ter 6 concludes the work presented in this thesis and discusses some directions

and ideas for future work.

1.4.1 Reader's Guide

The reader of this thesis is assumed to be familiar with the concepts of Petri

Nets. CP-nets are informally introduced in Chapter 1 and further knowledge of

CP-nets is not a prerequisite. However, more knowledge may be an advantage

for the reader who wants to study the symmetry method for Coloured Petri

Nets in more detail. For an introduction to CP-nets [58] is recommended as a

starting point, a formal de�nition of CP-nets can be found in [46], and a formal

de�nition of the symmetry method for CP-nets can be found in [47, 48].

The order in which the four papers [63, 65{67] are included in this thesis is

inuenced by part I of the thesis. The presentation of the papers is structured

in the order which feels most natural for the thesis as a whole. For the reader

who is only interested in parts of the thesis the following guidelines are given:

Chapter 1 contains an introduction to the research �eld and can be skipped by

readers who are already familiar with CP-nets and the symmetry method for

CP-nets. Chapter 2-4 presents work on the symmetry method. The reader is

recommended to read Chapter 3 before Chapter 4. Chapter 5 presents work on

the application of Coloured Petri Nets to feature interactions in mobile phone

software and can be read independently of the other chapters.

Chapter 2

The Symmetry Method in Practice:

Analysis of a Flowmeter System

This chapter discusses the paper Modelling and Analysis of a Danfoss Flowme-

ter System using Coloured Petri Nets [65]. Section 2.1 describes the background

of the paper and contains an introduction to the results presented in the paper.

Section 2.2 gives a summary of the paper and discusses the main results of the

paper. Finally, Sect. 2.3 contains a discussion of related work.

2.1 Background

The paperModelling and Analysis of a Danfoss Flowmeter System using Coloured

Petri Nets [65] presents an industrial cooperation project where CP-nets and

state space methods are applied in practice for the modelling and analysis of

a real product: a owmeter system from the Danish manufacturing company

Danfoss. The project was carried out as a joint project between Danfoss In-

strumentation (a subgroup of the Danfoss company) and the CPN group at the

University of Aarhus. In the rest of the chapter the project is referred to as the

Danfoss project.

The aim of the project was to investigate the application of CP-nets for

validation of the communication protocol used in the owmeter system; a topic

of increasing interest within Danfoss due to realised problems, e.g., deadlocks

found via practical tests. Before the project started two di�erent communi-

cation strategies (in [65] denoted design alternatives) were suggested for the

communication protocol used in the owmeter system. The project aims at

investigating both communication strategies using CP-nets and its support-

ing Design/CPN tool. The CPN model created captures both communication

strategies. The strategy used as well as the con�guration of the owmeter

system analysed is determined by the initial marking.

The validation in the project is done using state spaces as a formal analysis

method. A state space of the CPN model created in the project contains a

node for each of the reachable states of the CPN model of the owmeter system

and an arc for each state change. From the state spaces constructed it can be

veri�ed whether the CPN model (with the chosen communication strategy and

con�guration) possesses a number of desired properties. If the properties are

15

16 Chapter 2. The Symmetry Method in Practice

violated the state space can be used to obtain counter examples, i.e., a path of

states/actions leading to a state where a property is violated.

The project extends the analysis results using state spaces with permutation

symmetries (SSPS) to be able to analyse larger con�gurations of the owmeter

system. In the construction of SSPSs CANAPPs located in the same module

are considered symmetric as well as modules containing the same number of

CANAPPs are considered symmetric. By exploiting this symmetry in the con-

struction of the state spaces it is possible to obtain a signi�cant reduction in

the number of states and actions included in the state spaces. Hence, making

it possible to potentially analyse larger con�gurations of the CPN model of the

owmeter system.

The project group consisted of both members from Danfoss and from the

CPN group, i.e., both members with expertise in the domain (the owmeter

system) and members with expertise in the methods and tools to be applied.

The members from Danfoss had beside a basic familiarity of the concepts of

low level Petri Nets no prior knowledge of Coloured Petri Nets, modelling or

formal analysis. Hence, it was decided to visualise the communication between

CANAPPs in the CPN model of the owmeter system using Message Sequence

Charts (MSCs) [45].

2.2 Summary of Paper

The project was structured into three phases: modelling, state space analysis,

and analysis by means of state spaces with permutation symmetries. The main

contribution of the paper is the application of state spaces and state spaces

with permutation symmetries to a large CPN model developed in an industrial

setting. Hence, the discussions in this chapter focus on the two last phases

constituting the formal analysis of the CPN model of the owmeter system.

Modelling of the Flowmeter System. The CPN model of the communi-

cation protocol in the owmeter system created in the project is a hierarchical

CPN model developed in the Design/CPN tool [19, 26].

The owmeter system and parts of the CPN model created in the project

are presented in Chapter 1 where it was used to introduce CP-nets and the

symmetry method for CP-nets. The construction of the CPN model or the

CPN model itself will therefore not be discussed in more detail. More details

can be found in [65] which is contained in full in Chapter 7.

The CPN model is validated using simulations; both interactive (step-by-

step) simulations and later (when reliability of the model is increased) more

automatic simulations. For that purpose the CPN model is extended to au-

tomatically produce MSCs from simulations which allow the communication

between the CANAPPs in the owmeter system to be observed at a more high

level than observing the token game in the CP-net. MSCs are graphical draw-

ings showing vertical lines corresponding to processes in the system (CANAPPs

in the owmeter system). Arrows between the vertical lines correspond to mes-

sages sent in the system. Examples of MSCs are given in [65]. Since the MSCs

2.2. Summary of Paper 17

are constructed automatically from simulations of the CPN model, the simula-

tions can be observed without inspecting the underlying CP-nets. Furthermore,

the MSCs are used to visualise executions of the CPN model leading to error

states found via state space analysis.

State Space Analysis. After the modelling phase of the project the desired

properties of a owmeter system were formulated to serve as a basis for the

formal analysis. Both of the communication strategies included in the CPN

model of the owmeter system were analysed to see whether they ful�l the

properties. The analysis was performed by means of state spaces using the

Design/CPN OG tool [17]. State spaces were chosen as the analysis method for

two reasons. Firstly, the tool support for state space generation and analysis

is well developed in the Design/CPN tool. Secondly, one of the aims of the

project was to demonstrate the use of state spaces and the Design/CPN OG

tool in industrial settings.

To make it possible to analyse whether the model satis�es the properties,

the properties are translated into dynamic properties of the CPN model. This

makes it possible to formulate the requirements as queries in the Design/CPN

OG tool. Below an informal description of each of the properties are given

followed by a translation of the properties into properties of the CPN model of

the owmeter system.

Absence of Deadlocks.

This property expresses that it should not be possible to bring the owme-

ter system into a deadlock situation, i.e., a state where all the processes

(CANAPPs) are blocked.

At the level of the CPN model this property can be expressed as absence

of dead markings, i.e., markings without enabled binding elements. This

is a standard dynamic property of a CPN model and the OG tool has a

build in function listdeadmarkings(), which �nd the dead markings (if

any) in a state space.

Absence of Attribute Corruption.

This property expresses that when a CANAPP has initiated a request its

attributes must not be changed before the request has been completed.

At the level of the CPN model the property can be formulated using

temporal logics [22]. The Design/CPN OG tool library ASK-CTL [20]

makes it possible to make queries expressed in a state and action oriented

variant of CTL [12] which exploits both the state (markings) and action

(binding elements) oriented nature of CP-nets. The absence of attribute

corruption for a given CANAPP(i;j) can be expressed as the following

action-based CTL formula. The formula is explained in detail below.

AG((Request,hcanapp=CANAPP(i;j)i))

A((:(Indication,hcanapp=CANAPP(i;j)i)) U (Con�rm,hcanapp=CANAPP(i;j)i)))

The formula states that whenever (denoted AG) the transition Request

occurs in a binding corresponding to CANAPP(i;j), then in all futures (de-

18 Chapter 2. The Symmetry Method in Practice

noted A) the transition Indication cannot occur in a binding corresponding

to CANAPP(i;j) until (denoted U) the transition Con�rm has occurred in

a binding corresponding to CANAPP(i;j). An occurrence of the transition

Request in a binding corresponding to CANAPP(i;j) has been written as

(Request,hcanapp=CANAPP(i;j)i). The binding of Indication and Con�rm

is written in a similar way. An occurrence of the transition Request (see

Fig. 1.3) models the start of a request, an occurrence of transition Indi-

cation (not shown in a �gure) models the start of handling an incoming

request, and an occurrence of transition Con�rm (see Fig. 1.3) models the

reception of a response.

Topology Independence.

The last property states that the two �rst properties must be valid inde-

pendent of the con�guration of the owmeter system.

At the level of the CPN model this property can be investigated by

analysing di�erent con�gurations of the owmeter system. Investigat-

ing di�erent con�gurations can be done by simply changing the initial

marking of the CPN model. Using state spaces topology independence

cannot be completely veri�ed but only veri�ed for the con�gurations for

which the state space has been constructed. Hence, investigating di�erent

con�gurations of the CPN model of the owmeter system will not result in

a complete veri�cation of this property but solely increase the reliability

of the CPN model. This issue will be touch in in the discussion of related

work.

Using the Design/CPN OG tool state spaces were calculated and analysed for

a number of con�gurations of the owmeter system using both communication

strategies. The concrete list of the con�gurations analysed as well as the gen-

eration statistics can be found in [65] which is contained in full in Chapter 7.

In this phase of the project the state explosion problem [90], i.e., the size of

the state spaces start to grow rapidly when system parameters increase, was

encountered. However, even in the small con�gurations analysed errors were

found, i.e., the desired properties of a owmeter system were not ful�lled. In

all con�gurations analysed one of the communication strategies failed to ful�l

the absence of deadlocks, the other communication strategy failed to ful�l the

absence of attribute corruption.

Examples of paths1 leading to states where the properties were not ful�lled

were inspected and discussed within the project group in order to identify and

understand the shortcomings of the communication strategies. For presentation

purposes and to improve the readability of the execution paths leading to error

states found via state space analysis the paths were visualised using the MSCs

like the MSCs used to visualise simulations of the CPN model.

Analysis by means of State Spaces with Permutation Symmetries.

On the basis of the analysis results obtained in the second phase of the project

1The Design/CPN tool has a build-in function which returns one of the shortest paths

leading from a marking to another.

2.2. Summary of Paper 19

it was concluded that another communication strategy than the two communi-

cation strategies included in the CPN model and analysed in the second phase

of the project was needed. Based on the analysis results from the second phase

of the project a new communication strategy was designed. The CPN model

was revised to capture the new communication strategy and for small con�gu-

rations it was veri�ed that the revised CPN model ful�lled the two properties:

absence of deadlocks and absence of attribute corruption. Again the state ex-

plosion problem prevented analysis of larger con�gurations of the owmeter

system. Since the owmeter system is composed of a number of identical com-

ponents, i.e., CANAPPs, whose behaviour are identical it was decided to use

the symmetry method in the analysis of the CPN model of the owmeter sys-

tem. However, for the symmetry method to apply it need to be ensured that

the symmetry method preserves the properties that have to be veri�ed.

Absence of Deadlocks.

A state in a SSPS corresponds to an equivalence class of states in the state

space. The symmetry speci�cation used for the reduction is required to

be consistent, i.e., ful�l the three requirements in Def. 3.16 in [47]. Con-

sistency of the symmetry speci�cation ensures that symmetric states all

have symmetric enabled binding elements as well as symmetric successor

states. Hence, a dead state in the SSPS corresponds to an equivalence

class of symmetric dead states (markings) in the state space and vice

versa. Hence, absence of deadlocks is preserved by the symmetry method.

Absence of Attribute Corruption.

To reect the new communication strategy analysed the CPN model was

changed. Hence, the action-based CTL formula used for the analysis in

the previous phase of the project need to be changed accordingly. The

query is changed to take into account that in the revised communication

strategy the transition Indication can occur in two modes (accept or reject)

depending on whether the request is accepted or rejected by the receiving

CANAPP. The new formula can be expressed as the following action based

CTL formula.

AG((Request,hcanapp=CANAPP(i;j)i))

A((:(Indication,hcanapp=CANAPP(i;j),mode=accepti)) U
(Con�rm,hcanapp=CANAPP(i;j)i))

The action-based CTL formula above expresses absence of attribute cor-

ruption for a speci�c CANAPP(i;j), i.e., the formula refers to an occur-

rence sequence related to a speci�c CANAPP(i;j). Since all permuta-

tions of CANAPPs are allowed this property is not a priory preserved

by the symmetry method. However, in [23, 28] it is shown that the sym-

metry method preserves the truth value of a CTL formula if the truth

value of its atomic state propositions are invariant under the permuta-

tion symmetries. Hence, the property can only be veri�ed for CANAPPs

which are not allowed to be permuted by the symmetry speci�cation.

Such CANAPPs are present in con�gurations of the owmeter system

20 Chapter 2. The Symmetry Method in Practice

containing a module with a single CANAPP. Another possibility is to

strengthen the symmetry speci�cation such that the CANAPP in ques-

tion cannot be permuted. The experimental results presented in [65] is ob-

tained in con�gurations containing a module with a single CANAPP. The

reason for this choice was that strengthening the symmetry speci�cation

required a re-implementation of the predicates expressing whether two

markings/binding elements are symmetric; a quite cumbersome task when

implementing the predicates by hand. In Chapter 4 the construction of a

tool which automates the implementation of the predicates is discussed.

When using this tool experiments with di�erent symmetry speci�cations,

e.g., di�erent kind of strengthened symmetry speci�cations, can easily be

performed without a manual re-implementation of the predicates.

Topology Independence.

This property is also in this case analysed by investigating di�erent con�g-

urations of the owmeter system. The con�guration is determined by the

initial marking and in each case it must be ensured that the initial mark-

ing,M0, ful�ls the requirement for consistency, i.e., 8� 2 � : �(M0) =M0.

The analysis was done using the Design/CPN OE/OS tool [52] which supports

generation and analysis of SSPSs. However, the calculation of SSPSs are not

fully automatic; instead of assigning symmetry groups of permutations to the

atomic colour sets of the CP-net the user of the tool is required to implement

two predicates expressing when two markings/binding elements are symmetric.

Furthermore, since the predicates are user supplied, it is also the responsibility

of the user to ensure that the predicates implements a consistent symmetry

speci�cation, i.e., that the symmetries used for the reduction is actually sym-

metries present in the CPN model.

As a part of the project an extension to the OE/OS tool was developed

which supports a semi automatic check for consistency. Consistency of the

symmetry speci�cation ensures that symmetric markings have symmetric sets

of enabled binding elements and symmetric sets of successor markings. Def. 3.16

in [47] formally de�nes three requirements that must be ful�lled for a symme-

try speci�cation to be consistent. Informally the de�nition states that: 1) each

symmetry given by the symmetry speci�cation must map the initial marking

to itself, 2) all transitions have symmetric guards, i.e., treat symmetry colours

the same way, and 3) all arc expressions and symmetries given by the symme-

try speci�cation commutes. It is worth noticing that the three requirements

are structural and therefore can be checked without calculating the occurrence

sequences of the CP-net. Hence, the check for consistency is invoked indepen-

dently of the state space generation. Since consistency ensures that the dynamic

properties of the CP-net can be derived from the SSPSs the condensed state

space is only calculated and analysed if the symmetry speci�cation is found to

be consistent.

The tool extension checks that the three requirements are ful�lled. 1) can be

checked by an iteration of all symmetries given by the symmetry speci�cation.

In practice this approach may be very time-consuming, or even impossible,

2.3. Related Work 21

when the number of symmetries allowed by the symmetry speci�cation is large.

Using the techniques presented in Chapter 3 the check can be implemented more

eÆciently. 2) and 3) are checked by considering each guard and arc expression

of the CP-net in turn. The check is based on a combination of semantic and

syntactical checks. Some guards/arc expressions have syntactic restrictions that

ensure that the consistency requirement is ful�lled, e.g., simple patterns like

variable names. Experimental results show that it is only the case for very

few guards/arc expressions that consistency cannot be determined using the

structural check. Only in that case a semantic check is performed. The semantic

check is based on evaluating the guard/arc expression in all possible bindings.

As a consequence the semantic check is very time consuming but together with

the syntactic check it is possible to make a fully automatic check for consistency

for the CPN model of the owmeter system.

2.3 Related Work

The main contribution of the paper is the application of state spaces and SSPSs

and the supporting tools in an industrial setting. In the following the results

from the Danfoss project [65] will be discussed and compared to four aspects of

related work: CP-nets and state space methods in industrial settings, temporal

logics and model checking in veri�cation tools, the symmetry method and model

checking, and �nally, topology independence and state space veri�cation.

CP-nets and State Space Methods in Industrial Settings. CP-nets

and state spaces have been applied in a number of projects. In the following

the use of state spaces and the conclusions from the Danfoss project will be

compared to other projects where state spaces have been applied in industrial

settings.

� In [54] CP-nets is used for the modelling and analysis of a protocol for

remote object invocation in the object oriented programming language

BETA [68]. The structure of the modelled BETA system has similarities

to the modelled owmeter system in [65]. In [54] the CPN model models

a number of user threads located in shells which are distributed among

a number of ensembles whereas the owmeter system contains a number

of CANAPPs distributed among a number of modules. State spaces are

used for the analysis of the BETA system. Due to the state explosion

problem it was only possible to verify small con�gurations (up to three

user threads) of the system. Net reductions are suggested to alleviate the

state explosion problem but did no lead to analysis of larger con�gurations

of the BETA system.

� [77] reports on an industrial cooperation project where CP-nets are used

to design the software of a Dalcotech security system. State spaces are

used to investigate dynamic properties of the CPN model. Due to the

state explosion problem a number of simpli�cations are done in order to

be able to analyse the CPN model of the security system. State spaces are

22 Chapter 2. The Symmetry Method in Practice

constructed for reduced scenarios and small con�gurations of the system.

According to [77] the state space analysis lead to detection of approxi-

mately 15 non-trivial errors. No attempts are made to alleviate the state

explosion problem.

� [94] reports on an industrial project where CP-nets are used for the

modelling of a software architecture in Nokia mobile phones. The dynamic

properties of the CPN model are investigated using state spaces. Due to

the state explosion problem the state space cannot be constructed for

the full CPN model. Instead state spaces are constructed and analysed

for important sub-models. No attempts are made to alleviate the state

explosion problem. Instead it is envisioned that it will be possible to

construct the state space of the full CPN model on another architecture

that the CPN model is in the process of being moved to.

� [18] reports on an industrial cooperation project where CP-nets and

state spaces are used for the modelling and analysis of a communication

protocol in the Bang&Olufsen BeoLink system. The CPN model is a

timed model [47] and, thus, has a in�nite state space. Branching options

of the Design/CPN OG tool [17] are exploited to obtain �nite partial

state spaces of the initialisation phase of the communication protocol.

In order to make the CPN model suitable for state space analysis [18]

introduces bounds on the bu�ers and considers only small con�gurations

of the BeoLink system.

What is common to the above four projects is that CP-nets and state spaces

have been applied in industrial settings. In all four projects state spaces are used

to verify the basic properties of the CPN model; not to do a total veri�cation of

the system. All four projects encounter the state explosion problem and work

around the problem by making simpli�cations of the models and considering

small con�gurations of the respective systems. However, all of the projects

states that state spaces successfully either directly detected errors in the systems

or resulted in an increased reliability of the systems. These observations are

consistent with the conclusions of the second phase of the Danfoss project [65].

In the Danfoss project the state space analysis is taken a step further by

the application of SSPSs to alleviate the state explosion problem. Not many

papers report on the use of reduction techniques for state spaces of CP-nets

in industrial settings. [87] report on a project where state spaces and state

spaces with general equivalences (OE graphs) [15, 47] are used for the analysis

of interworking traders. To my knowledge [65] is the �rst paper reporting on the

practical use of the symmetry method for CP-nets in an industrial setting. The

use of symmetries yielded signi�cant reduction in the size of the state space, and

hence allowed analysis of con�gurations of the owmeter system which could

not be handled with full state spaces.

Temporal Logics and Model Checking in Veri�cation Tools. In the

Danfoss project the properties are veri�ed from the state space using both proof

rules for standard dynamic properties of CP-nets [47] and temporal logics [27].

2.3. Related Work 23

The proof rules are available in the Design/CPN OG tool as a set of query

functions [17] whereas veri�cation of formulae speci�ed in temporal logics is

supported by the Design/CPN OG tool library ASK-CTL [20].

Temporal logics is widely used for the speci�cation of properties of systems.

Several variants exists, however, the basic idea is to build temporal logic formu-

lae from atomic propositions (relating to concepts of the modelling language),

proportional operators, e.g., _ and ^, and temporal operators, e.g., 2 (always)

and 3 (exists). Among the two most widely used variants of temporal logics are

Linear Temporal Logics (LTL) [92] and Computational Tree Logics (CTL) [22]

which are used as speci�cation languages in a number of model checking tools:

LTL and CTL in PROD [76], LTL in SPIN [84], CTL in SMV [69,82], CTL in

PEP [74], and LTL and CTL in the Cadence SMV Model Checker [83].

LTL and CTL can also be used for the veri�cation of properties of CP-

nets. The Design/CPN OG tool library ASK-CTL [20], however, supports

the veri�cation of properties speci�ed in the language ASK-CTL [12]. ASK-

CTL is a both state and action oriented variant of CTL, thus ASK-CTL is an

extension of CTL which makes it possible to also express properties about the

actions of the CP-net, i.e., the information labelling the edges. One of the

strengths of CP-nets compared to other modelling languages is that CP-nets

are both state and action oriented. Thus, using a both state and action oriented

speci�cation language is potentially very useful when expressing properties of

CP-nets. The absence of attribute corruption property veri�ed in the Danfoss

project is concerned with the bindings of three transitions in the CPN model

of the owmeter system. Hence, the property was speci�ed as an action-based

CTL formula in ASK-CTL.

The Symmetry Method and Model Checking. A number of papers com-

bine symmetry and model checking of di�erent temporal logics using di�erent

modelling languages and representations of the state space. Below a number of

the most prominent approaches are discussed.

In [23] and [28] temporal model checking in the presence of symmetry is

investigated. The temporal logic considered is CTL� which contains CTL and

LTL as subsets and the underlyingmodel is a �nite state system (Kripke Model).

It is ensured that the condensed state space obtained preserves the truth value

of the CTL� formula veri�ed by using a symmetry group for the reduction which

is contained in the intersection of symmetries present in the model and the sym-

metries present in the formula to be veri�ed. This approach corresponds to the

suggested \strengthening" of the symmetry speci�cation in [65] to ensure that

the symmetry group used for the reduction leaves the truth value of the atomic

state propositions of the absence of attribute corruption formula invariant.

[30] and [38] presents work on the use of the symmetry method when model

checking under fairness assumptions. The basic idea is to restrict the model

checking to fair executions2 of the system being analysed. [30] considers model

checking of CTL� whereas [38] deals with LTL. The work in [30] and [38] is

2Executions can be considered fair if they ful�l some fairness requirement, e.g., strong

fairness or weak fairness.

24 Chapter 2. The Symmetry Method in Practice

motivated by the fact that the approaches presented in [23] and [28] intersect

the symmetries of the system with the symmetries of the formula to be veri�ed

and, hence, when fairness is incorporated in the formula often fail to obtain any

reduction at all.

In [23] the use of the symmetry method in symbolic model checking is con-

sidered. In symbolic model checking Binary Decision Diagrams (BDDs) are

used to calculate and represent the state space. The complications caused by

the use of BDDs are investigated and it is shown that with some symmetry

groups (rotations and the group of all permutations) the size of the BDD used

to represent the orbit relation, i.e., the equivalence relation expressing when

states are symmetric, grows exponentially in the minimum of the number of

components and the number of states in the component. The reason BDDs

does not work well with the symmetry method is caused by the lack of correla-

tion between the size of the state space and the size of the BDD representing

the state space. Hence, a reduction in the size of the state space may result in

increased size of the BDD.

Topology Independence and State Space Veri�cation In [65] the topol-

ogy independence property was not completely veri�ed since it required state

spaces to be constructed for all possible (in�nitely many) con�gurations of the

owmeter system, i.e., initial markings of the CPN model constructed in the

Danfoss project. This recurrent problem of the state space method has been

studied in, e.g., [36, 91].

In [36] a combination of state spaces and induction is used to do a complete

veri�cation of a CPN model of an arbiter cascade. State spaces are used to

prove that a single arbiter possesses some desired properties. This is followed

by the use of mathematical induction to prove that this was also the case for

arbiter cascades of arbitrary depth.

[91] presents results where the correctness of in�nite parameterised fami-

lies of systems are established using process-algebraic compositional �nite state

veri�cation techniques. The basic idea is to construct a labelled transition sys-

tem that represent the behaviour of a single component of the parameterised

system. The global behaviour of the system is investigated starting from a

subsystem such that it contains a minimum number of components and in-

crementally adding more components. In each iteration the behaviour of the

composed system is compared to the behaviour of the previous system. This

procedure is continued until a �x-point is reached, i.e., the behaviour of the

system with n+ 1 components is equivalent to the behaviour of a system with

n component (if such a �x point exists, otherwise the method fails).

Chapter 3

Exploting Stabilizers and Parallelism

This chapter discusses the paper Exploiting Stabilizers and Parallelism in State

Space Generation with the Symmetry Method [66]. Section 3.1 describes the

background of the paper and contains an introduction to the results presented

in the paper. Section 3.2 gives a summary of the paper and discusses the main

results of the paper. Finally, Sect. 3.3 contains a discussion of related work.

3.1 Background

A central issue during generation of the condensed state space is to determine

whether two states s1 and s2 are symmetric, i.e., whether one of the permutation

symmetries given by the symmetry speci�cation maps s1 to s2. This problem is

also referred to as the orbit problem. The orbit problem is known to be at least

as hard as the graph isomorphism problem [23] for which no polynomial time

algorithm is known. This paper deals with a derivation of the orbit problem,

referred to as the constructive orbit problem, which is concerned with computing

a canonical (unique) representative for each equivalence class of states. The

constructive orbit problem is at least as hard as the orbit problem.

The presented results concentrate on the constructive orbit problem for

markings. The reason is that the problem of computing canonical representa-

tives for equivalence classes of binding elements can be reduced to the problem

of computing canonical representatives for equivalence classes of markings by

viewing the variables of the transition as places and the values assigned to the

variable as a singleton multi-set of tokens. Given a transition t with variables

v1; v2; : : : ; vn, a binding element of (t; b) can be viewed as a vector of singleton

multi-sets (1`b(v1); 1`b(v2); : : : ; 1`b(vn)) where b(v) denotes the value assigned

to v in the binding b. Since transitions cannot be permuted by permutation

symmetries in CP-nets [47], �nding a canonical representative for [(t; b)] is the

same as �nding a canonical representative for b which by the above reduction

is the same as �nding a canonical representative of a marking.

The symmetries used for the reduction are obtained from permutations of

the atomic colours in the CPN model. Let �A denote the set of atomic colour

sets of the CPN model. For each atomic colour set in the CPN model, A 2 �A,

we de�ne an algebraic group of of permutations �A, i.e., a subgroup of [A! A].

25

26 Chapter 3. Exploting Stabilizers and Parallelism

A symmetry � of the system is a set of permutations of the atomic colour sets

of the model, i.e., � = f�A 2 �AgA2�A . In the rest of the thesis we will use the

term permutation symmetry to denote a set of permutations of the atomic colour

sets of a CPN model. A symmetry speci�cation of a CP-net is an assignment

of algebraic groups of permutations to each of the atomic colour sets of the

CP-net and hence determines a group of permutation symmetries.

In the following it is assumed that a CP-net with places P = fp1; p2; :::; png

and a consistent symmetry speci�cation SG is given. �SG denotes the group

of permutation symmetries given by SG.

3.2 Summary of Paper

An essential aspect of calculating condensed state spaces is when reaching a new

state/action x during state space generation to check whether a state/action

from the same equivalence class is already included in the condensed state

space. In the rest of the thesis [x] will be used to denote the equivalence

class of states/actions containing the state/action x. In this paper the check

for markings of CP-nets is implemented by computing the canonical (unique)

representative for each equivalence class by invoking some function Canonical

which given a marking M calculates the canonical representative of [M]. The

check then amounts to transforming the marking into Canonical(M) and then

check (using ordinary equality) whether the resulting state is already included

in the condensed state space. Hence, the paper presents a solution to the

constructive orbit problem.

The aim of the paper is to investigate techniques to alleviate the negative

impact of the orbit problem during state space generation with the symmetry

method. The paper attacks the problem in two ways. Firstly, by presenting

algorithms which exploits symmetry groups of stabilizers. Secondly, by present-

ing a parallel version of the basic algorithm for state space generation with the

symmetry method.

The basic idea behind the speci�cation of the canonical representatives of

equivalence classes of states in CP-nets is to de�ne a total ordering on the

markings of CP-nets. The details can be found in [66] which is contained in

full in Chapter 8. Having de�ned such a total order the smallest element in the

equivalence class [M] of a marking M will be denoted by [M]min. The brute-

force approach for calculation of the canonical representative is simply to apply

each permutation symmetry given by the permutation symmetry speci�cation

in turn and return the smallest resulting marking. The brute-force approach is

simple and easy to implement. However, the approach is ineÆcient in practice.

The main problem with this algorithm is that each time a marking is reached

during generation of the condensed state space j�SGj permutation symmetries

are applied to the marking. If all colours in each of the atomic colour sets

can be permuted arbitrarily then �SG determines �S2�A(jSj!) permutation

symmetries. Practical experiments in [65] have also shown that when using this

approach the growth of j�SGj as a function of the system parameters becomes

a serious bottleneck in the analysis of systems in practice.

3.2. Summary of Paper 27

The �rst contribution of the paper is to use stabilizers (denoted self symme-

tries in [47]) to improve the complexity of the brute-force approach. The basic

idea behind the use of stabilizers is to observe that for a marking M some of

the permutation symmetries have similar e�ects when applied to M . The set

of stabilizers of a marking M (denoted �M
SG) is the subset of �SG mapping M

to itself. Formally, �M
SG = f� 2 �SG j �(M) = Mg. It is easy to see that the

set of stabilizers for a marking M forms a subgroup of �SG. A left coset (in

the rest of the thesis just referred to as a coset) of �M
SG is a set of the form

�Æ�M
SG = f�Æ�0 j �0 2 �M

SGg, where � 2 �SG. The set of cosets form a disjoint

partitioning of �M
SG [1]. From this it follows that two permutation symmetries

from the same coset of �M
SG map M to the same marking. Hence, when calcu-

lating the canonical representative of M only one permutation symmetry from

each of the cosets of �M
SG has to be applied to M . It follows from La Grange's

theorem [1] that the number of representatives, i.e., the number of permutation

symmetries that have to be applied is j�SGj=j�
M
SGj.

From the above it follows that the use of stabilizers allows the number of

permutation symmetries applied when canonicalizing a marking M to be re-

duced from j�SGj to j�SGj=j�
M
SGj. This is, however, obtained at the extra cost

of calculating the group of stabilizers each time a marking M is canonicalized.

In [51] it is suggested to use the Backtrack method [7] to compute the stabilizers

of a marking M . The Backtrack method iteratively calculates the stabilizers of

a marking. During calculation, the Backtrack algorithm maintains a subgroup

of �M
SG and exploits that it is only necessary to test one permutation symmetry

from each coset of the subgroup currently found. Due to the so-called faster

tester property [51] of the Backtrack method only few permutation symmetries1

are applied to markings when calculating stabilizers. Hence, it can be argued

that the overhead of using stabilizers in the canonicalization of markings is

potentially much smaller than what is gained by reducing the number of per-

mutation symmetries applied. This statement is supported by the experimental

results presented in [66].

Another observation made in [47] is that stabilizers also can be used to

reduce the number of binding elements which have to be considered. The con-

sistency of the permutation symmetry speci�cation ensures [47] that for any two

reachable markings, M and M 0, all binding elements (t; b) and all permutation

symmetries � 2 �SG: M [(t; b)iM 0
) �(M)[(t; �(b))i�(M 0). This implies that

for all � 2 �M
SG it is the case that M [(t; b)iM 0

) M [(t; �(b))i�(M 0). Hence

two binding elements (t; b1) and (t; b2) enabled in a marking M and satisfy-

ing that (t; b1) = (t; �(b2)) for some stabilizer � of M will lead to symmetric

markings. Hence only one of (t; b1) and (t; b2) needs to be considered for the

construction of the condensed state space. Each binding element considered

during construction of the condensed state space results in a calculation of the

canonical representative for a marking. Hence, the use of stabilizers can be

used to reduce the number of calculations of canonical representatives.

1In general the faster tester property says that when a subgroup with size less than m! of

the group of all permutations of n elements is searched for a property satisfying all elements

in the subgroup, at most m� 1 permutations are tested [51].

28 Chapter 3. Exploting Stabilizers and Parallelism

The second contribution of the paper is to exploit parallelism in the state

space generation with the symmetry method. The paper [66] presents an algo-

rithm which distributes the canonicalization of markings to a number of pro-

cesses and in this way do canonicalization in parallel. The basic idea behind the

parallel algorithm is to use a number of slave processes for the time-expensive

canonicalization of markings and a master process for construction of the con-

densed state space itself based on the canonical markings received from the

slave processes. The algorithm is shown in [66] which is contained in full in

Chapter 8.

A prototype implementing the algorithms exploiting stabilizers and paral-

lelism has been developed. Based on experimental results obtained using the

prototype the algorithms are evaluated. The implementation is based on an

integration of Design/CPN OG tool [17,26] which supports state space genera-

tion and analysis of CP-nets and the GAP tool [34] which implements eÆcient

representations and manipulations of algebraic groups. The reason for choos-

ing to implement the algorithms using an integration of the Design/CPN OG

tool and the GAP tool is that in order to evaluate the algorithms proposed

in [66] eÆcient calculations of stabilizer groups is a central issue. Such an

eÆcient calculated can be obtained using the Backtrack algorithm [51]. An

implementing of the Backtrack algorithm in the Design/CPN OG tool requires

implementation of both eÆcient group representations and manipulations; con-

cepts that would require implementation of comprehensive new libraries and

data structures in the Design/CPN OG tool. On the other hand such algo-

rithms are already present in the GAP tool and in [51] found to be eÆcient for

calculation of stabilizers of markings. The prototype implementation uses the

strengths from each of the two tools: The Design/CPN OG tool implements

the state space generation algorithm itself and the storage of the nodes and

arcs of the state space. The canonicalization function exploiting stabilizers has

been implemented in the GAP tool. The integration of the two tools operates

as follows: Each time a new marking marking is generated during the con-

densed state space construction, it is sent to a GAP process that calculates the

canonical representative. The representative marking computed is returned to

Design/CPN which continues the condensed state space construction with the

canonicalized marking received.

The experimental results obtained show that when exploiting stabilizers in

the canonicalization of markings a signi�cant speed-up is obtained in the gen-

eration time of the state spaces. The speed-up increases when the number of

permutation symmetries allowed by the permutation symmetry speci�cation

increases, i.e., when the potential gain from applying j�SGj=j�
M
SGj instead of

j�SGj permutation symmetries when canonicalizing a marking M increases.

However, even with the use of stabilizers the complexity of the canonicalization

of markings, i.e., the constructive orbit problem, still becomes the bottleneck

when system parameters grow. The reason is that even with the use of sta-

bilizers it follows from La Grange's theorem that many (in worst case j�SGj

permutation symmetries) have to be applied. This is the case for markings

with few stabilizers. Also a new problem arise when using coset representatives

for the calculation of the canonical form. Coset representatives form arbitrary

3.3. Related Work 29

sets (opposed to �SG which form an algebraic group). The GAP tool has data

structures for eÆcient representation and manipulation of algebraic groups.

However, for ordinary sets of permutation symmetries the only possibility is

to list the elements before applying them to a marking. Hence, for large sets

the memory requirements may become a serious bottleneck for the use of coset

representatives for the canonicalization of markings of CP-nets.

When considering the results obtained using the algorithms which exploits

stabilizers to reduce the number of binding elements considered the numbers

are in this case of course highly model dependent. The experimental results

obtained using the examples in [66] show that the use of stabilizers for reduc-

ing the number of binding elements considered results in much fewer binding

elements processed, i.e., fewer markings canonicalized. This again lead to a

reduction in the generation time.

The experimental results obtained using the algorithms exploiting paral-

lelism show that when adding more slaves the generation time decreases. The

speed-up2 obtained is signi�cant in the beginning, becomes gradually smaller

until a point is reached at which additional slaves result in only marginal or

no reduction in generation time. The reason for this is that the generation is

fully parallellised, i.e., adding new slaves will not result in more nodes being

handled simultaneously. It is also worth noticing that the speed-up increases

when system parameters grow, i.e., the number of permutation symmetries al-

lowed by the permutation symmetry speci�cation grows. The reason for this is

twofold. Firstly, the canonicalization becomes more and more expensive since

the number of permutation symmetries allowed by the permutation symmetry

speci�cation grow exponentially with the system parameters. Secondly, as the

system parameters increase each node has more successors nodes, hence, more

and more nodes can be handled in parallel. This pattern is also evident from

Fig. 3.1 which depicts the correspondence between the generation time of the

state space and the number of slaves used for the generation. The three graphs

show the correspondence for three values of system parameters (7, 8, and 10)

in the CPN model, i.e., increasing size of j�SGj.

3.3 Related Work

There are several ways to improve state space generation based on explicit state

enumeration. Among these are state reduction methods, e.g., the symmetry

method, which aims at reducing the number of states and memory reduction

methods which reduce the amount of memory needed to perform the state space

generation. With the use of state and memory reduction methods, run-time

often becomes a limiting factor [86]. Thus, parallel processing may become an

interesting approach towards improving state space generation. In the following

the approach and results presented in [66] will be related and compared to

related work within these areas. Four aspects of related work will be discussed:

parallellisation of state space generation, state space storage with the symmetry

2For n slaves the speed-up is calculated as the generation time with only one slave divided

by the generation time with n slaves.

30 Chapter 3. Exploting Stabilizers and Parallelism

0

2000

4000

6000

8000

10000

0 5 10 15 20

S
ec

on
ds

Slaves

DBM - 7
DBM - 8

DBM - 10

Figure 3.1: Experimental results for system parameters 7,8 and 10.

method, the use of algebraic techniques in state space generation, and �nally,

canonical forms.

Parallellisation of State Space Generation. The aspect of parallellising

the state space generation has also been investigated in the Mur' veri�er [86].

In [86] the enabling calculation as well as the storage of the state space are

distributed among a number of processes. Each process owns a subset of the

states determined by a hash function; when reaching a new state the processes

apply a common hash function and send the state to the process determined

by the hash value. The parallel Mur' veri�er exploits symmetry reduction by

applying a canonicalization function before the state is sent to the owning node,

whose number is calculated by the hash function. The approach in [66] only

parallelise the time expensive canonicalization of states, whereas the enabling

calculation and the storage of the condensed state space is located within the

master process. The Mur' veri�er does not support the checking of temporal

properties and according to [86] the parallellisation of veri�cation of temporal

properties has not had high priority in the development of the parallel Mur'

veri�er. One advantage of the technique in [66] is that all standard model

checking algorithms can still be used because the state space is stored at a

single site.

Recently, the parallellisation of state space storage has been also been in-

vestigated in the Maria tool [71]. Based on experimental results in [71] it is

concluded that in practice more than 90 % of the time used in state space gen-

eration using the Maria tool is used in enabling calculation. The paper presents

a simple parallel version of a state space generation algorithm where the en-

abling calculation is distributed among a number of clients communicating with

a server using remote procedure invocation. Like the approach presented in [66]

3.3. Related Work 31

the storage of the state space is centrally handled by the server. [71] presents a

number of experimental results and concludes consistently to conclusions in [66]

that a small branching factor of the model investigated leads to a decrease in

utilisation factor of the clients when the number of clients increase. Similar

in [66] adding more slaves does not give any signi�cant speed-up. The ap-

proach presented in [71] can without problems be combined with the approach

in [66] and it is envisioned that parallelising both the enabling test as well as

the canonicalization of states will improve the generation time of the condensed

state spaces compared to the results obtained in [66]. The combination of the

two approaches will require multiple instances of the Design/CPN tool to run

in parallel, i.e., a server responsible for the state space storage and a number

of clients responsible for the enabling calculation. This setup can be imple-

mented using the same ideas as in the implementation of the prototype, i.e.,

Design/CPN running as master process with a number of GAP processes as

slaves.

State Space Storage with the Symmetry Method. In the paper sum-

marised in this chapter the condensed state space is generated using canonical

representatives, i.e., when reaching a state s a (unique) representative for [s] is

calculated and it is checked (using ordinary equality) whether the state is al-

ready included in the condensed state space. In the context of CP-nets this idea

is new. Traditionally, the �rst state reached from an equivalence class is the

state chosen to represent the equivalence class [47]. When reaching new states it

is then checked whether a symmetric state is already included in the condensed

state space. However, the idea of using canonical forms is attractive since one

of the consequences is that new forms of state storage, e.g., deterministic �-

nite automata (DFAs) [40], binary decision diagrams (BDDs) [93], and graph

encoded tuple sets (GETSs) [37] can now be used together with the symmetry

method of CP-nets. DFAs, BDDs, or GETSs have not yet been investigated for

storing the state space of CP-nets, and a further study is necessary to determine

whether such storage techniques combined with canonicalization of states can

improve the symmetry method of CP-nets. As already discussed in Chapter 2

the combination of BDDs and the symmetry method may turn out not to be a

bene�t. The reason is the lack of correspondence between the size of the BDD

and the size of the state space that it represents. Thus, reducing the size of the

state space using e.g. the symmetry method may not lead to a smaller BDD.

Another problem that is common to all three techniques is that it is not in

general possible to predict how many bits are needed to store a marking of a

place.

Use of Algebraic Techniques in State Space Generation. The use of

stabilizers to detect symmetries with similar behaviour is introduced in [47].

In [47] stabilizers are denoted self-symmetries. However, no algorithms nor

experimental results are presented. [51] presents an algorithm for computing

the set of stabilizers for a marking and the Backtrack method is suggested

for this purpose. The results in [51] is based on a manual encoding of the

32 Chapter 3. Exploting Stabilizers and Parallelism

states and did not consider computation of condensed state spaces. The work

presented in [66] integrates the use of stabilizers into generation of condensed

state spaces using a canonical form calculated from coset representatives of

the stabilizer groups. Another contribution of the paper [66] is the integration

between the Design/CPN tool and external processes, i.e., instances of the GAP

tool. Recently, a new library, Comms/CPN [33], has been developed which

extends Design/CPN with the necessary infrastructure to allow CPN models

to communicate with external processes, thus allowing this kind of integration

to be implemented more easily.

Canonical Forms. In this paper a canonicalization function is used to rep-

resent equivalence classes of symmetric states. The canonical form used is

quite expensive to calculate but ensures that a unique representative for each

equivalence class is calculated. Another approach is to use less expensive nor-

malisation functions [44], i.e., functions which map a state to one element in a

set of symmetric states. Hence, the consequence of using normalisation func-

tions instead of canonicalization functions is that several symmetric states can

be included in the state space. In [6] a normalisation function is de�ned on

state vectors. The basic idea is to minimise the state vector up to some index i.

The value of i determines the amount of reduction between the two extremes:

no reduction (i = 0) and full reduction (i equal to the size of the state vector).

The marking M of a CP-net with places fp1; p2; :::; png can be represented as a

the state vector (M(p1);M(p2); :::;M(pn)). Hence, the normalisation function

presented in [6] can be applied to CP-nets without major modi�cations. The

use of normalisation is interesting since many of the properties often veri�ed for

CP-nets, e.g., boundedness and liveness, do not depend on a perfect reduction.

In [81] a canonical form is speci�ed for P/T-nets. However, the canonical

form is restricted to symmetry groups based on all permutations or rotations.

For other symmetry groups the canonical form fails and the method does not

obtain full reduction. Hence, for some symmetry groups the canonicalization

function is instead a normalisation function.

Chapter 4

Algorithms and Tool Support for the

Symmetry Method

This chapter discusses the paper Coloured Petri Nets and State Space Gener-

ation with the Symmetry Method [63]. Section 4.1 describes the background of

the paper and contains an introduction to the results presented in the paper.

Section 4.2 gives a summary of the paper and discusses the main results of the

paper. Finally, Sect. 4.3 contains a discussion of related work.

4.1 Background

The practical use of the symmetry method in the Danfoss project [65] identi-

�ed two aspects that may improve the practical applicability of the symmetry

method for CP-nets: 1) development of techniques to alleviate the negative im-

pact of j�SGj in the orbit problem, and 2) better tool support that automates

the symmetry method, and hence does not require the user to possess detailed

knowledge about the symmetry method or do a manual implementation of the

algorithms involved. This is especially important if the algorithms used for the

symmetry reduction are required to be implemented eÆciently.

The work presented in this chapter addresses the two aspects through the

construction of a tool (the Design/CPN OPS tool [64]) which automates the

use of the symmetry method for CP-nets. The Design/CPN OPS tool auto-

matically generates the predicates needed by the Design/CPN OE/OS tool [52],

i.e., the two predicates expressing whether two markings and binding elements

are symmetric. Since symmetry between binding elements can be seen as a spe-

cial case of symmetry between markings (see, e.g., Chapter 3) only symmetry

between markings are discussed in this chapter.

During development of the Design/CPN OPS tool a number of techniques

are developed and re�ned in order to obtain an eÆcient symmetry check in

practice. The techniques and algorithms are presented in the context of CP-

nets. The results are, however, also valid for other modelling formalisms where

the symmetry method is applicable.

Symmetry in a CP-net is speci�ed by means of a symmetry speci�cation

which assigns an algebraic group of permutations �A to each atomic colour set A

in the CP-net. A permutation symmetry � in the CP-net is a set of permutations

33

34 Chapter 4. Algorithms and Tool Support for the Symmetry Method

on the atomic colour sets of the CP-net, i.e., � = f�A 2 �AgA2�A . A

symmetry speci�cation SG determines an algebraic group �SG of permutation

symmetries. A symmetry speci�cation for a CP-net is required to be consistent,

i.e., to determine symmetries which are present in the CP-net. Two markings

M1 and M2 are symmetric if 9� 2 �SG : �(M1) =M2, and similar for binding

elements.

A data structure called a restriction set [4,47] can be used to represent sets

of permutations of an atomic colour set. Below restriction sets are introduced

by means of an example. Let A= fa1,a2,a3g be an atomic colour set. We use

a restriction set R to represent a subset of [A ! A].

R=
a1 a2

a2 a3 a1 a3

Each row in the restriction set represents a requirement that a permutation

must ful�l in order to belong to the set of permutations represented by the

restriction set. The individual rows express that the colours in the left-hand

side must be mapped into the colours of the right-hand side. Hence, the set

of permutations of A represented by R is the set of permutations where a1 is

mapped to a2 and the set fa2,a3g is mapped to the set fa1,a3g. Arbitrary sets

of permutations can be represented as a set of restriction sets [4]. A symmetry

speci�cation for a CP-net can be represented by a set of restriction sets for each

atomic colour set of the CP-net.

In the following it is assumed that a CP-net with places P = fp1; p2; :::; png

and a consistent symmetry speci�cation SG is given. �SG denotes the group

of permutation symmetries given by SG.

4.2 Summary of Paper

The paper presents techniques for determining whether two markings of a CP-

net are symmetric, i.e., given M1,M2 2 M determine whether 9� 2 �SG such

that �(M1) = M2. The techniques are implemented in the Design/CPN OPS

tool and evaluated in practice. Two CPN models are used for the evaluation:

a CPN model of a two-phase commit protocol with w symmetrical workers [53]

and a CPN model of a distributed database with n symmetrical database man-

agers [46]. Common for the two CPN models is that j�SGj grows exponentially

when system parameters increase. Since the aim of the paper is to develop tech-

niques which can handle large symmetry groups the two models are suitable for

the evaluation.

Brute-force Approach. First the paper presents a brute-force approach

which given two markings lists and checks all permutation symmetries in �SG.

An algorithm PBasic
M implementing the brute-force approach is included in the

Design/CPN OPS tool and evaluated using the two CPN models of the two-

phase commit protocol and the distributed database. The brute-force approach

is exactly the approach which fails when calculating canonical representatives

4.2. Summary of Paper 35

of markings in [66]. Hence, the approach is included in this paper for reference

purposes.

Consistently with [66] the experimental results show that when using PBasic
M

to determine symmetry between markings run-time increases signi�cantly when

system parameters grow. Furthermore, the experimental results show that the

memory use becomes a serious bottleneck when using large symmetry groups for

the reduction. The reason is that the entire �SG is listed and kept in memory

during the symmetry check.

The paper presents two improved algorithms; one improving the run-time

compared to the brute-force approach and one improving the memory use in-

curred by the listing of permutation symmetries.

Improving Run-time. The basic idea is to narrow the set of permutation

symmetries that need to be checked. When checking whether two markingsM1

andM2 are symmetric a set 	M1;M2 is calculated such that f� 2 �SG j �(M1) =

M2g � 	M1;M2 � �SG. The applicability of the approach depends on how

close 	M1;M2 is to f� 2 �SG j �(M1) = M2g and how eÆcient 	M1;M2 can be

calculated.

In [4,47] it is shown that if a CP-net only contains places with atomic colour

sets then the set f� 2 �SG j �(M1) =M2g of permutation symmetries mapping

M1 toM2 can be determined eÆciently using operations on restriction sets. The

basic idea is to look at each place p in isolation and construct a restriction set

with restrictions expressing that the set of colours appearing with coeÆcient i

inM1(p) must be mapped into the set of colours appearing with coeÆcient i in

M2(p). The restriction set contains one restriction for each coeÆcient appearing

inM1(p) andM2(p). For each atomic colour set the restriction sets constructed

for places with that colour set are intersected. The resulting restriction sets, i.e.,

one for each atomic colour set of the CP-net, represent (when intersected with

�SG) the set of permutation symmetries between M1 andM2. Since restriction

sets can be eÆciently intersected [4] the cost of the above calculation is very

low compared to brute-force approach.

Unfortunately, the above approach only works for CP-nets without places

with structured colour sets. Nevertheless, we will use the idea to obtain more

eÆcient symmetry checks between markings of arbitrary CP-nets. The idea is

to perform the above calculation for the places of the CP-net with atomic colour

sets to obtain a set 	M1;M2 of permutation symmetries. 	M1;M2 is a super-set of

f� 2 �SG j �(M1) =M2g, i.e., f� 2 �SG j �(M1) =M2g � 	M1;M2 � �SG.

Hence, the original goal of obtaining an approximation of the permutation sym-

metries is ful�lled and the calculation can be done eÆcient since the calculation

only rely on intersections of restriction sets.

	M1;M2 is only an approximation of the actual set of permutation sym-

metries mapping M1 to M2. This means that the permutation symmetries in

	M1;M2 have to be checked like the brute-force approach. However, it can be

noted that it is only necessary to check the permutation symmetries in 	M1;M2

on the markings of the places with structured colour sets; the places with atomic

colour sets are already accounted for in the approximation.

36 Chapter 4. Algorithms and Tool Support for the Symmetry Method

An algorithm P
Approx
M for checking symmetry between two markings based

on the approximation technique is included in the Design/CPN OPS tool and

evaluated using the same two CPN models as for the PBasic
M approach.

How much the approach will improve the run-time of the symmetry check

between two markings compared to the brute-force approach is highly depen-

dent on how close 	M1;M2 is to the actual set of permutation symmetries map-

ping M1 to M2. This measure is speci�c to the CP-net for which the SSPS

is generated and depends on the amount of redundancy encoded in the struc-

tured colour sets. The experimental results obtained using the PApprox
M algo-

rithm show that for the CPN models of the two-phase commit protocol and the

distributed database only a single permutation symmetry is tested after the ap-

proximation. This is in practice often the case if the approximation is close or

equal to the actual set of permutation symmetries. However, the experimental

results also show that even though the approximation dramatically reduces the

number of permutation symmetries that have to be checked, it is not possible

to generate SSPSs for large �SG. The reason is that the approach has the same

bottleneck as the brute-force approach caused by the memory required to list

the set of permutation symmetries which have to be checked. This problem

appear when symmetry is checked between two markingsM1 and M2 for which

f� 2 �SG j �(M1) =M2g (and hence also 	M;M2) is large.

Improving Memory Use. The goal for the algorithm is to alleviate the

problems experienced with PBasic
M and P

Approx
M when checking a large set of

permutation symmetries. The basic idea behind the algorithm is to maintain a

compact representation of the set of permutation symmetries that are checked.

A set of permutation symmetries represented by a set of restriction sets (one

for each of the atomic colour sets in the CP-net) can be viewed as a tree: Each

atomic colour is assigned a layer in the tree. The nodes in that layer correspond

to possible images of the colour. The possible images of a colour c are found

from the right-hand side of the restriction containing c in the left-hand side.

When reaching a leaf in the tree each atomic colour in the CP-net is mapped

into another colour and the corresponding permutation symmetry can be found

following the path from the root to the leaf. Figure 4.1 shows a tree representing

�SG for the distributed database. The CP-nets contain two atomic colour sets

DBM= fd(1),d(2),d(3)g and E= feg. The symmetry speci�cation SG allows all

permutations of the colours in DBM. Hence, �SG contains 6 permutation symme-

tries. Below each leaf the corresponding permutation symmetry is represented

as a restriction set.

The basic idea is to avoid listing the set of permutation symmetries. Instead

the restriction sets are unfolded as shown in Fig. 4.1 using a number of depth

�rst recursive calls. Each node in the tree corresponds to a recursive call.

When reaching a leaf the corresponding permutation symmetry � is checked.

If �(M1) =M2 the algorithm stops. Otherwise, the algorithm backtracks until

an unexplored path is found. In this way only one permutation symmetry is

kept in memory at a time.

An algorithm P
Approx+Lazy
M implementing the symmetry check between mark-

4.3. Related Work 37

e

d(1) d(2) d(3)

d(2)d(3)

d(2) d(3)

d(3)

d(3) d(2)

d(2) d(1)

d(1)

d(1)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e

d(3)

d(1)

d(2)

e

d(1)

d(2)

d(3)

e

d(1)

d(3)

d(2)

e

d(1)

d(2)

d(3)

e

d(2)

d(1)

d(3)

e

d(1)

d(2)

d(3)

e

d(2)

d(3)

d(1)

e

d(1)

d(2)

d(3)

e

d(3)

d(2)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e e

d(1) d(2) d(3) d(1) d(2) d(3)

E:

DBM:

Figure 4.1: All permutation symmetries in �SG represented as a tree.

ings using both the approximation technique and recursive unfoldings of the

restriction sets has been included in the Design/CPN OPS tool. The algo-

rithm is evaluated using the CP-nets modelling the two-phase commit protocol

and the distributed data base. The experimental results show that the bottle-

neck caused by the memory used to list large sets of permutation symmetries is

avoided; using P
Approx+Lazy
M SSPSs are generated without problems for CP-nets

with j�SGj = 1:3 � 1012. It should be noted that the di�erence between PApprox
M

and P
Approx+Lazy
M only is the way sets of permutation symmetries are repre-

sented while being checked. Since PApprox+Lazy
M also rely on approximation the

number of permutation symmetries that are checked is the same.

4.3 Related Work

The main contribution of the work presented in [63] and summarised in this

chapter is the development of the Design/CPN OPS tool which together with

the Design/CPN OE/OS tool automates SSPS generation for CP-nets with

consistent symmetry speci�cations. Hence, the Design/CPN OPS tool relies on

a user speci�ed symmetry speci�cation. A major part of the work concerning

the development of the Design/CPN OPS tool is also development and eval-

uation of techniques to obtain eÆcient generation of SSPSs in the context of

CP-nets; both in run-time and memory use. In the following the work is re-

lated and compared to three aspects of related work: the symmetry method in

other formalisms, symmetry in Place/Transition-nets, and backtrack methods

for exploration of permutation groups.

38 Chapter 4. Algorithms and Tool Support for the Symmetry Method

The Symmetry Method in Other Formalisms. Symmetries in CP-nets

were originally introduced in [41] and further developed in [42, 47, 48]. The

symmetry method as a state space reduction method is however not restricted

to CP-nets.

Well-Formed Nets (WFNs) [14] is a class of high-level nets. Compared

to CP-nets WFNs have more restricted and structured colour domains and

operations. The restrictions are introduced to ensure that symmetries in the

state space can be automatically determined from the colour de�nitions and

inscriptions in the WFN.

In the Mur' veri�er [44] a data type called a scalar set is introduced to

describe symmetries in the system. The operations on scalar sets are restricted

to ensure that states have the same future behaviour up to permutations of the

elements of the scalar sets. The symmetry reduced state space is automatically

generated. A similar approach is taken in Symmetric Spin [6].

[85] introduces the symmetry method in the context of Place/Transition-

nets (P/T-nets). In P/T-nets the symmetries considered are permutations of

places and transitions. The eÆciency of the symmetry method for P/T-nets is

studied in [80,81] which will be discussed later in this section. For P/T-nets the

symmetry method is fully automatic and in contrast to CP-nets the symmetries

are automatically detected.

In theory a CP-net can be unfolded to an equivalent P/T-net [46], i.e., a

P/T-net with the same behaviour, and the techniques developed for the sym-

metry method in the context of P/T-nets can be applied to the unfolded net.

However, in practice this approach is not suitable since the unfolded net usually

is to large (or even in�nite) to be handled in practice.

Symmetry in Place/Transition-nets. In [85] it is shown how symmetry

in a P/T-net describes symmetry in the state space. Hence, symmetry in P/T-

nets can be expressed as permutations of places and transitions. [81] presents

techniques to obtain eÆcient generation of the SSPS for P/T-nets. Consistently

with the conclusions in [63] of the PBasic
M algorithm [81] �nds that an approach

based on listing and checking the entire group of permutations when checking

whether two states are symmetric is not applicable in practice. A compact

representation of the symmetry group is obtained using a data structure called

a generating set.

A solution is presented that narrows the number of symmetries that have

to be checked, i.e., an approach similar to the approximation technique sum-

marised in this chapter. The approximation technique used in [81] is based on

the observation that when testing whether two markings M1 and M2 are sym-

metric only permutations for which M1(p) = M2(�(p)) for places p have to be

tested, i.e., only permutations of places containing the same number of tokens

in the two markings.

Backtrack Methods for Exploration of Permutation Groups. Let Sn
denote the group of all permutations of the n elements in a set S. In [2] an al-

gorithm for generating coset representatives of a subgroup G of Sn is presented.

4.3. Related Work 39

Similar to the approach used in P
Approx+Lazy
M (the LazyList algorithm in [63])

the algorithm assigns images to the elements of G in a number of recursive

calls. The goal of the algorithm is to produce coset representatives of subgroup

G in Sn , hence, only one image from each orbit of G is considered. In each

recursive call G is re-calculated as the subgroup which stabilizes all previous

choices of images to elements in S. The algorithm proceeds in a number of

recursive calls each assigning an image to an element from S until the paths

corresponding to permutations that represents the cosets have been explored.

In that sense the algorithm is very similar to the LazyList algorithm. The

di�erence is that LazyList explore all paths corresponding to all elements of

a subset of Sn whereas the algorithm presented in [2] explore a subset of Sn
corresponding to coset representatives of a subgroup of Sn. When combined

with the ideas from the LazyList algorithm the algorithm presented in [2] can

be used to obtain a solution to the problem experienced in the use of stabilizers

in [66] and summarised in Chapter 3. The solution avoids listing all coset repre-

sentatives of the stabilizer groups used when canonicalizing a markingM : each

time a leaf is reached, i.e., a coset representative � is generated, the coset rep-

resentative is applied to M . During calculation only the smallest marking seen

so far has to be remembered and the permutation symmetries can be thrown

away when they have been checked. Hence, the solution possess the same ad-

vantages as LazyList, i.e., the memory requirements decreases since all coset

representatives do not have to be kept in memory at the same time.

Chapter 5

Modelling and Analysis of Feature

Interactions

This chapter discusses the paperModelling of Features and Feature Interactions

in Nokia Mobile Phones using Coloured Petri Nets [67]. Section 5.1 describes

the background of the paper and contains an introduction to the results pre-

sented in the paper. Section 5.2 gives a summary of the paper and discusses

the main results of the paper. Finally, Sect. 5.3 contains a discussion of related

work.

5.1 Background

The paper Modelling of Features and Feature Interactions in Nokia Mobile

Phones using Coloured Petri Nets [67] presents an industrial cooperation project

where CP-nets and its supporting Design/CPN tool are applied for the mod-

elling and initial analysis of feature interactions in Nokia mobile phones. The

project is a joint project between Nokia Research Centre, Finland and the CPN

group at the University of Aarhus, Denmark. In the rest of this chapter the

project is referred to as the MAFIA1 project.

Nokia mobile phones provides an increasingly diverse set of features. Be-

sides basic communication facilities there is a growing demand for entertain-

ment, personal management, etc. During operation of the mobile phone many

features are potentially active at the same time. In Nokia much research is

devoted to analyse which user tasks are more frequent and support smooth and

exible operation of these tasks, e.g., by providing special keys or short cuts

via the user interface (UI) of the mobile phone. Hence, Nokia mobile phones

supports the coexistence and interplay of many features. Such dependencies

or interplay of features are called feature interactions and range from simple

usage dependencies to more complex combinations of several independent fea-

tures. Features are also called applications and in the rest of this chapter as

well as in [67] the two terms will be used interchangeably.

The fact the many di�erent kinds of feature interactions are allowed, and

1MAFIA is an acronym for Modelling and Analysis of Feature Interactions in mobile phone

Architectures.

41

42 Chapter 5. Modelling and Analysis of Feature Interactions

even supported through the UI of the mobile phone, means that the use of the

mobile phone appears both exible and powerful to the user. On the other

hand the feature interactions have shown to introduce an increased complexity

as well as problems in the design and development of software in Nokia mo-

bile phones. The motivation behind the MAFIA project was to investigate the

feature interactions occurring in the Nokia mobile phones. Before the project

started problems were often realised during implementation and integration of

individually developed features. By the development of a systematic methodol-

ogy to describe and document feature interactions in the software design process

it was envisioned that the problems leading to costly delays in the integration

phase of features could be minimised.

5.2 Summary of Paper

One of the main activities in the project was the construction of a CPN model

modelling the software system in Nokia mobile phones2. This activity was the

main activity for the author of this thesis.

Before the CPN model was constructed the project group collected infor-

mation and internal documentation about the software system, features and

feature interactions in the mobile phones. Furthermore, a group of involved

users3 were established with the purpose of formulating the needs and inten-

tions of the project as well as performing ongoing evaluations of the constructed

CPN model during the project. Hence, the CPN model was constructed in close

cooperation with the future users of the results produced by the MAFIA project.

In the following the three activities of the project related to the construction

and evaluation of the CPN model are summarised: modelling, simulation and

analysis.

Modelling. The CPN model is constructed as a hierarchically CP-net [46]

in the Design/CPN tool [26]. The CPN model does not model the full mobile

phone software system but concentrates on a number of selected features which

the project group (including the users) �nd interesting seen from a feature

interaction perspective, e.g., features which are known to cause problems when

integrating with new features.

The basic components in the mobile phone software system and the com-

munication protocol is modelled to serve as a framework for the features. Since,

the main focus in the MAFIA project is on features and feature interactions it

has been the intention to keep the framework as simple as possible and instead

focus on the modelling of features. The page shown in Fig. 5.1 is the top-most

page of the CPN model, thus, modelling the most abstract view of the mobile

phone software system. UIController, Servers, CommunicationKernel and Appli-

cations correspond to four central concepts of the mobile phone software system

2The software varies between the di�erent product families. The MAFIA project focused

on the software used in the Nokia 6210 product family.
3The users are a combination of customers, i.e., initiators of the project, as well as in-

volved groups realising problems with feature interactions in their daily work, e.g., software

developers, UI designers and testers.

5.2. Summary of Paper 43

UIout

Msg

UIin

Msg

C
o
m
m
u
n
i
c
a
t
i
o
n

K
e
r
n
e
l

HS

UI
Controller

HS Applications

HS

Sout

Msg

Sin

Msg

Ain

Msg

Aout

Msg

Servers

HS

Figure 5.1: The top-most page of the CPN model.

and are all modelled as substitution transitions, which means that their detailed

behaviour are modelled on the subpages with the corresponding names. The

selected features are modelled and included in the framework introduced above.

The page Applications, i.e., the subpage of the Applications substitution tran-

sition in Fig. 5.1, modelling the individual features is shown in Fig. 5.2. Each

feature is modelled separately and communicate with the rest of the mobile

phone software and other features through the message bu�ers AOut and AIn.

Hence, the modularity of features is exploited using modules (in CPN terminol-

ogy referred to as pages) in the CPN model. For a more detailed presentation

of the CPN model see [67] which is contained in full in Chapter 10.

Via the construction of the CPN model the project group gained valuable

insight in the features and their behaviour in the mobile phone software system.

One of the results was the identi�cation of similarities in the communication

patterns in which the di�erent features was engaged. The similarities were ex-

ploited via reuse of subpages modelling the basic communication in the CPN

model. The amount of reuse can be illustrated via some statistics from the

constructed CPN model: the CPN model contains 25 pages but 110 page in-

stances, i.e., the page modelling the general communication pattern is reused

85 times, thus exploiting the similar basic behaviours of features.

Simulations. During construction the CPN model was validated using simu-

lations; both interactive (step-by-step) and more automatic simulations. These

kind of simulations where the token game is observed during and after simula-

tions of the CPN model were extremely useful for the members of the project

group who were experienced in using CP-nets and the Design/CPN tool and

who had a detailed knowledge of the CPN model constructed in the MAFIA

project. However, the close cooperation with the users without any previous

44 Chapter 5. Modelling and Analysis of Feature Interactions

Figure 5.2: The page Applications modelling the individual features included in

the CPN model.

knowledge of modelling techniques or in particular Petri Nets made it at an

early stage in the project clear that some kind of visualisation was necessary to

supplement (or even replace) the observation of the token game during simula-

tions.

A central issue of the CPN model constructed in the MAFIA project is that

it is intended to be used by di�erent groups of users; from UI designers who are

interested in the behaviour of features and their interactions at the level of the

UI of the mobile phone to software developers who are interested in details about

the communication between features involved in a feature interaction. Hence,

one of the main goals in the project was to be able to reect these di�erent

levels of abstraction in the visualisation techniques used for the CPN model.

Two extensions have been made to the CPN model to visualise and control

simulations: domain speci�c graphics and Message Sequence Charts [45]. Each

of them are summarised below.

Domain Speci�c Graphics. The CPN model is extended with domain speci�c

graphics using the Mimic library [78] of Design/CPN. The Mimic library allows

the CPN model to be extended with graphical objects which can be displayed,

hidden or updated during simulations of the CPN model. Furthermore, using

the Mimic library user input, such as mouse clicks on graphical objects, can be

read into the CPN model during simulations. Using the Mimic library the CPN

model is extended with facilities for both controlling simulations and visualising

the state during simulations using domain speci�c graphics.

The CPN model is extended with a picture of a mobile phone animating

the display during simulations. Figure 5.3 shows a snapshot of the animation

taken during a simulation of the CPN model. The snapshot shown corresponds

to a state of the CPN model where the mobile phone indicates an incoming

5.2. Summary of Paper 45

Figure 5.3: Domain speci�c graphics animating the display during simulations.

call. The animation is constructed as a number of layered graphical objects: 1)

a background picture of a Nokia mobile phone as it is known to the users of the

CPN model, and 2) on top of the display of the background picture there are a

number of graphical objects. Updating the contents of those graphical objects

allow dynamic animation of the display of the mobile phone during simulation.

Functions for updating the graphical objects are called from code segments [46]

of the CPN model.

The picture of the mobile phone is also used to control the simulation. By

means of key presses (using mouse clicks), the user can control the simulation,

e.g., answering the incoming call or start a new game. On top of each of the

keys of the background picture there is a graphical object. Using the facilities

provided by the Mimic library key presses on such objects are read into the

CPN model and used to control the simulations. Additional graphical objects

are used in the model for other kinds of visualisations and possibilities to control

the simulations. Details can be found in [67] which is contained in full in

Chapter 10.

Message Sequence Charts. The domain speci�c graphics visualise the behaviour

of the CPN model at the level of the UI of the mobile phone. The animation

of the display dynamically reects the contents of the display as the user of

the mobile phone observes it. However, the individual features and their com-

munication in the system are not reected; aspects that are central to, e.g.,

software developers. Therefore, the visualisation facilities of the CPN model

developed in the MAFIA project was extended with Message Sequence Charts4

(MSCs) [45] which capture the communication between features, servers and

the UI controller in the mobile phone software system. To support the need for

di�erent abstraction levels in di�erent kind of users' use of the CPN model the

4Message Sequence Charts have been presented in the discussion of the Danfoss project in

Chapter 2 and will therefore not be further introduced here.

46 Chapter 5. Modelling and Analysis of Feature Interactions

MSCs can be dynamically turned on and o� during simulations. Also the level

of detail in the MSCs can be changed dynamically, i.e., it is possible to abstract

away di�erent kinds of communication as well as features.

During the MAFIA project the MSCs were heavily used in the produced

documentation about feature interactions in Nokia. The animation of the dis-

play, on the other hand, does not capture information for later use. To over-

come this problem the MSCs are extended by adding information about the

appearance of the display. Each time the display is updated in the animation a

new picture is added in the MSC. In this way the correspondence between the

communication in the system and the contents of the display is captured for

later use or documentation. Figure 5.4 shows an example of an extended MSC.

From the �gure it can be seen that the MSC capture information about both

the communication and the contents of the display as well as the interrelation

between the communication and changes in the appearance of the display.

Analysis. Formal analysis of the CPN model was not a part of the MAFIA

project. However, initial analysis has been made to evaluate the applicability

of the modelling techniques and chosen abstraction level for features to auto-

matically analyse features and detect feature interactions from the CPN model.

The main goal of the initial analysis was to evaluate whether the CPN model

is suited for analysis in preparation for future projects within Nokia.

Nokia_MSC(1)

User UIController

 1

 2

 3

Call Game Call
Server

1
----PairsII----

Level

Top score

Select Back

New game

2

Playing..

3
Soren

calling

Answer Reject

1
2
3
4

5
6
7
8
9

10
11
12

Key leftsoft
Game_Select

Req. display

DisplayACK
Incoming call

Req. display
Interrupt

InterruptACK

DisplayACK

Figure 5.4: An example of the use of MSCs.

5.2. Summary of Paper 47

The CPN model was analysed using full state spaces and the Design/CPN

tool [17]. The state space for the full CPN model, i.e., the framework and the

all of the features included in the CPN model, is expected to be very large. An

e�ort has been made to construct the CPN model in such a way that features

can be removed and added without having to change the rest of the CPN

model, i.e., the framework. This fact was exploited in the analysis of the CPN

model; most of the features were removed and the analysis started with simple

con�gurations of the mobile phone software system to get an idea of the sizes

of the state spaces involved.

One of the aims of the analysis was to automatically detect feature interac-

tions from the state spaces of di�erent con�gurations of the CPN model. Hence,

feature interactions need to be formally speci�ed in terms of state spaces. In

the following Sf1;f2 denotes the full state space of the basic CPN model includ-

ing the features f1 and f2. Sf j= P means that the property P can be veri�ed

from Sf . One possible way of formally expressing that two features f1 and f2
interact is that Sf1 j= P but Sf1;f2 6j= P for a property P .

This way of specifying feature interactions will be illustrated using an ex-

ample: a property P of the Any key answer feature can be used to automatically

detect a feature interaction from the state spaces of the CPN model in di�erent

con�gurations. Informally, P is the property that \if a call comes in and the

any key answer setting is on then pressing any key of the mobile phone will

answer the call". Using the temporal logics ASK-CTL [12, 20] P is formulated

as a query in the Design/CPN OG tool and the answer can be automatically

determined when a state space has been generated. When verifying P in dif-

ferent con�gurations of the CPN model it is found that SAnyKeyAnswer j= P but

SAnyKeyAnswer;KeyGuard 6j= P . Hence, a feature interaction is detected between the

Any key answer feature and the Key guard feature.

Using the approach presented above a number of feature interactions are

detected from the CPN model in smaller con�gurations (up to three features).

After having performed this initial analysis it is concluded that the CPN model

developed in the MAFIA project seems applicable for analysis and detection

of feature interactions; no major changes or adjustments are needed. It is,

however, envisioned that the analysis may bene�t from experimenting with

di�erent speci�cations of feature interactions in terms of state spaces. The ap-

proach used for the initial analysis is well suited for the detection of a certain

kind of feature interactions, i.e., feature interactions where the behaviour of a

feature is modi�ed by the presence of another feature. Other categories of fea-

ture interactions, e.g., simple usage dependencies, may be more easily detected

using other strategies.

As a �nal remark it should be noted that the state space of the full CPN

model is expected to be very large, however, the use of reduction methods has

not been investigated. Since the features of the mobile phone are asynchronous

a possible direction for future analysis would be to use the stubborn set method

[88] to reduce the size of the state space.

48 Chapter 5. Modelling and Analysis of Feature Interactions

5.3 Related Work

The MAFIA project demonstrates the use of CP-nets in an industrial setting.

The project deals with features and feature interactions in Nokia mobile phone

software; concepts which have also been studied in other application areas. An

important aspect of the CPN model developed in the MAFIA project is the

use of domain speci�c graphics for visualisation of the behaviour of the CPN

model. In the following the work in the MAFIA project will be discussed and

related to work within the above mentioned areas, i.e., the feature interaction

problem and domain speci�c graphics in industrial settings.

The Feature Interaction Problem. The feature interaction problem has

been studied in several application areas, e.g., telecommunication services (see

[56] for a survey), process planning [43], and computer-aided design [75]. Espe-

cially in the area of telecommunication services much research on the feature

interaction problem has been done and there is a biannual workshop on the

topic [9, 57].

The area of telecommunication services deals with the services o�ered to

the users of a telecommunication company, e.g., call forwarding and voice mail.

Services are composed of a number of features. In the area of telecommuni-

cation services the term feature interaction refer to situations where two or

more features a�ect the behaviour of each other. The features may belong to

the same or di�erent telecommunication services. The problems related to fea-

ture interactions studied in the MAFIA project are more general, i.e., how to

describe and coordinate concurrent interrelated processes.

In [8] three major trends in the �eld of feature interactions in telecommuni-

cation services are identi�ed: software engineering approaches, formal methods,

and on-line techniques. The MAFIA project can be characterised to belong to

the software engineering approach [67]. However, in the following it is discussed

how the �nal results from the MAFIA project relates to aspects within all three

approaches:

Software engineering. The software engineering approach is characterised as the

use of development models and techniques from software engineering to address

the feature interaction problem in the creation of telecommunication services.

Formal methods may be a part of the development models and techniques,

where they can be used to add rigour to the service creation. However, the use

of formal methods to analyse or detect feature does not fall into the software

engineering approach [8]. In the MAFIA project CP-nets are used to address

the feature interaction problem in Nokia mobile phones. The main goal was to

use modelling techniques to improve the speci�cation and development process

of features; both by resolving inconsistencies in the speci�cations as well as

developing a systematic methodology for the development of features. The use

of an underlying formal method, i.e., CP-nets, ensured that a formal description

of features was obtained. At the same time the constructed formal speci�cations

could be used to investigate the dynamical behaviour of features and their

5.3. Related Work 49

interactions.

Formal methods. The formal methods approach is characterised by the use of

formal methods to either analyse features or detect feature interactions. In the

area of telecommunication services formal methods are often used to analyse

interactions at the level of the service speci�cation, i.e., interactions that are

independent of the actual implementation [8]. In the MAFIA project formal

methods, i.e., state spaces and model checking techniques, were used to perform

initial analysis of the features in the CPN model and evaluate the applicability

of the CPN model for automatic detection of feature interactions. When using

model checking techniques and state spaces the abstraction level of the analysis

results obtained is highly dependent of the abstraction level of the underlying

model. Since the CPN model constructed in the MAFIA project is a model

of the mobile phone software system of a family of Nokia mobile phones, the

analysis results produced using the formal methods in the MAFIA project is (in

contrast to the trend in telecommunication services) implementation dependent.

On-line techniques. The on-line techniques approach is characterised as tech-

niques applied at run-time. The techniques can be based on detection and/or

resolution of feature interactions. An example is the use of a feature manager

to detect and resolve feature interactions [8]. During construction of the CPN

model in the MAFIA project an increased understanding of the features and

feature interactions in the mobile phone software system was obtained and im-

provements were suggested to the design of mobile phone software system. The

suggested improvements include a redesign of the UI controller which handles

the features' requests to access the UI of the mobile phone. In the current

design of the mobile phone software system features are responsible for resolv-

ing potential interactions based on �xed rules for each pair of features. In the

suggested new design feature interactions are detected and resolved in the UI

controller when the features request access to the UI. Hence, the modelled UI

controller detect and resolve feature interactions caused by conicting UI re-

quirements at run-time and thus work as a feature manager as described in [8].

A majority of the work in the area of feature interactions in telecommunication

services, e.g., [10, 73], concentrate on the use of formal methods:

In [10] the SPIN tool [39] is used for the analysis of feature interactions in

telecommunication services. The underlying model is constructed as a Promela

description and consists of a basic call model and six features that can be added

incrementally as in-line Promela functions. This approach with a separation

between the basic call model and the features, thus allowing incremental state

space analysis, is similar to the modelling approach in the MAFIA project. The

CPN model of the mobile phone software system exploits modularity through

the use of subpages and features can be added and removed without changing

the rest of the CPN model. The Promela description of the telecommunication

services is analysed using state spaces and the veri�ed properties are speci�ed

in LTL. The feature interactions are in [10] speci�ed the almost the same way5

5The only di�erence between the speci�cation of feature interactions in [10] and [67] is

due to the fact that features may belong to several users in [10] whereas [67] only considers a

single-user system.

50 Chapter 5. Modelling and Analysis of Feature Interactions

as in the MAFIA project, i.e., a feature interaction occur if a property P that

holds for a feature f1, i.e., Sf1 j= P , no longer holds in the presence of another

feature f2, i.e., Sf1;f2 6j= P .

The state space analysis performed in the MAFIA project is only in an initial

phase and, hence, no attempts have been made to alleviate the state explosion

problem. Since the state explosion problem is a general problem when state

spaces are applied for the analysis of systems, methods for alleviating the state

explosion problem have, not surprisingly, also been studied in the context of

the feature interaction problem.

In [10] partial order methods are used to reduce the sizes of the constructed

state spaces; a method that in [67] is expected to work well with the CPN

model constructed in the MAFIA project. The method is not applied in the

MAFIA project, however, since tool support for partial order methods for CP-

nets [60, 61] was not mature enough in the Design/CPN tool to be used in the

MAFIA project.

In [73] telecommunication services are modelled using �nite state machines.

In order to deal with services with many users the symmetry method is used

to reduce the size of the state spaces. Users of the services are considered

symmetric and in the analysed con�gurations [73] obtains 80% reduction in

generation time and space. The results presented in [73] can not, however,

be transferred to the MAFIA project since the CPN model developed in the

MAFIA project models a single mobile phone and the features do not possess

symmetry.

Domain Speci�c Graphics in Industrial Settings. An important aspect

of the CPN model of the mobile phone software system developed in the MAFIA

project is the use of domain speci�c graphics to visualise and interact with the

CPN model. In the following other industrial projects where CP-nets and

domain speci�c graphics have been used are presented and the contributions of

the MAFIA project are discussed.

� The Design/CPN Mimic library [78] was originally motivated by the

project reported in [77]. In the project CP-nets were used to design a

Dalcotech security system, i.e., an intruder alarm system. The system

consists of a central unit which handles a number of components, e.g.,

detectors and indicators. In the project simulations were used to investi-

gate the dynamic properties of the CPN model. The desire for more \user

friendly" [77] simulations lead to the development of the Design/CPN

Mimic library [78]. Using the library an enhanced user interface was

build visualising a house with the modelled intruder alarm system. The

user interface supports two way communication between the user and the

simulation; during the simulations the current state of the CPN model

is visualised, e.g., indicating horns and ashing lights are visualised, and

the user can also use the mouse to click at objects to produce input to

the simulation, e.g., press a window to start a glass break detector.

� In [11] CP-nets are used to model descriptions of services in an Intelli-

5.3. Related Work 51

gent Network. The formal descriptions of telecommunication services are

visualised using graphical feedback from simulations of the CPN model.

Consistently with the MAFIA project the aim of the choice of graphics

is to visualise the behaviour in a way that is easily understandable and

natural to people from the problem domain (here Intelligent Networks)

who are not familiar with CP-nets. The visualisation used in [11] is a

simple picture of a number of telephones in a network. The CPN model

is also extended to produce MSCs as output from simulations.

The use of domain speci�c graphics in [77] and domain speci�c graphics and

MSCs in [11] di�er from the use in the MAFIA project in several ways: To

reect the di�erent needs of di�erent user groups in the MAFIA project the

level of detail used in the MSCs can be dynamically changed during simulations.

Furthermore, the MSCs are extended to incorporate the use of domain speci�c

graphics, thus, providing a a link between the communication between features

and the appearance of the UI of the mobile phone.

Chapter 6

Conclusions and Directions for Future Work

This chapter concludes on the work done as a part of this thesis and presents

directions for future work. Section 6.1 summarises the contributions of the

four papers constituting part II of the thesis. Section 6.2 discusses possible

directions for future work.

6.1 Summary of Contributions

The research work done as part of this thesis consider the symmetry method

in the context of CP-nets. Symmetry in CP-nets is speci�ed as permutations

of the atomic colour sets. Hence, the term permutation symmetry is used to

denote symmetries of CP-nets. Condensed state spaces are also called state

spaces with permutation symmetries (SSPSs).

The main motivation behind the research work done as a part of this thesis

has been development of theoretical aspects as well as computer tools to improve

the practical applicability of the symmetry method for CP-nets. It has been

a deliberate, and in my opinion important, choice to obtain a well-balanced

mixture of three aspects within the work: theory, tools, and practical use. In

the following the main contributions of the four papers constituting part II of

the thesis are summarised:

The Symmetry Method in Practice: Analysis of a Flowmeter System.

The main contribution of the �rst paper [65] is the applicability of the symmetry

method for the analysis of an industrial system, i.e., a owmeter system from

the Danish manufacturing company Danfoss. The research work done as a

part of the Danfoss project identi�ed the need for better tool support for the

symmetry method in the context of CP-nets. Also the negative impact of the

orbit problem was experienced and motivated research work concerning the

development of techniques to obtain eÆcient algorithms for generating SSPSs

for CP-nets. Another contribution of the research work done in the Danfoss

project was the �rst step towards more automatic tool support for the symmetry

method. As a part of the Danfoss project a semi-automatic consistency check

of symmetry speci�cations was designed and implemented.

53

54 Chapter 6. Conclusions and Directions for Future Work

Exploiting Stabilizers and Parallelism. The main contribution of the sec-

ond paper [66] is the use of algebraic techniques and parallelism to alleviate the

negative impact of the orbit problem in state space generation with the sym-

metry method. Previous work with SSPSs for CP-nets is based on an approach

where the �rst marking reached from an equivalence class is the marking used as

the representative. [66] uses another approach based on calculations of canoni-

cal (unique) representatives for the equivalence classes. A second contribution

of the research work is the speci�cation of a canonical form for markings of

CP-nets.

A third contribution of the work is the development of a tool, i.e., an inte-

gration between the Design/CPN tool and the GAP tool, which fully automates

the suggested techniques. One of the strengths of the paper is that the tech-

niques are evaluated in practice, not as isolated experiments but integrated into

SSPS generation of CP-nets using the developed tool. Except for the speci�ed

canonical form the techniques are not speci�c to CP-nets and can be applied

in other formalisms where the symmetry method apply.

State Space Generation with the Symmetry Method. The main contri-

bution of the third paper [63] is the development of the Design/CPN OPS tool,

which automatically generates the predicates expressing whether two states or

actions are symmetric used in SSPS generation. Together with the Design/CPN

OE/OS tool this presents fully automatic generation of SSPSs for CP-nets with

consistent symmetry speci�cations.

Another contribution of the work is the development and evaluation of tech-

niques to improve the run-time and memory requirements of the two predicates.

The developed algorithms are integrated into the Design/CPN OPS tool.

Modelling and Analysis of Feature Interactions. The main contribu-

tion of the fourth paper [67] is the application of CP-nets for the modelling of

features and feature interactions in Nokia mobile phones. An important aspect

of the work done in the MAFIA project is the use of domain speci�c graphics

for visualisation of the CP-nets. The contribution of the MAFIA project, com-

pared to other projects where domain speci�c graphics is used for visualising

the behaviour of programs, is the use of domain speci�c graphics in the MSCs as

well as the level of detail which can be changed dynamically during simulations

of the CPN model. The use of domain speci�c graphics in the MAFIA project

allows several di�erent user groups to simultaneously work with the CPN model

and obtain the kind of information they are interested in. A second contribu-

tion of the research work done in the MAFIA project is the development of

an alternative design for the mobile phone software system allowing feature

interactions to be handled in a more consistent and reliable way. Finally, a

minor contribution of the work is the use of state spaces methods and model

checking techniques to do initial analysis of the CPN model and evaluate the

applicability of the modelling techniques for such analysis.

The above discussions summarises the four papers constituting part II of this

thesis. The three �rst papers contributes to the improvement of three aspects

6.2. Future Work 55

of the practical applicability of the symmetry method for CP-nets:

Theory. Development of algorithms to alleviate the negative impact of the

orbit problem during calculation of the SSPSs.

Tools. Development of a tool which automates the use of the symmetry method.

Practical use. Application and evaluation of the symmetry method in an in-

dustrial setting.

The fourth paper presenting work where CP-nets are applied for the modelling

and analysis of feature interactions in mobile phones. The paper is somewhat

di�erent from the �rst three in the sense that the it does not concern the sym-

metry method. The work reported in [67] as a part of the research done during

my PhD studies is motivated by my interest in research in industrial settings

where applicability of the research results is a central issue. In connection with

the MAFIA project Nokia Research Centre hosted a very inspiring research visit

where central elements from my PhD work were applied and evaluated in an

industrial setting with �nal results, i.e., applicability of the methods, and cus-

tomer satisfaction as a central element. Hence, the MAFIA project contributed

as a link between the three aspects: theory, tool, and practical use.

6.2 Future Work

In the previous section the main contributions of the thesis are summarised and

it is concluded that the research work done as a part of this thesis contributes

to the improvement of the practical applicability of the symmetry method for

CP-nets. However, from the discussions of related work in Chapters 2 - 5

it can bee seen that the symmetry method and other reduction methods for

alleviating the state explosion problem is an on-going research �eld studied in

many modelling formalisms. Hence, there are still many possible directions for

future work. Below a few of them are discussed.

Storage of State Spaces. From the Danfoss project summarised in Chap-

ter 2 it can be seen that the sizes of the state spaces that can be handled by

the current implementation of the Design/CPN OG tool, i.e., the state space

tool in Design/CPN, is low compared to other state-of-the-art veri�cation tools.

One of the reasons is that the concept of a state in CP-nets is very complex and

thus takes up more space than states in other modelling languages. However,

it is fair to say that another reason is due to the current implementation of

the Design/CPN OG tool. Even though attempts are made to obtain eÆcient

storage through the use of data structures exploiting the hierarchical structure

and locality of CP-nets, the current implementation is not very space eÆcient.

Hence, an important topic for future work is to investigate other data structures

for the state space storage in Design/CPN.

With the introduction of new data structures for the storage of state spaces

for CP-nets another important topic for future research is to evaluate the appli-

cability of the di�erent data structures in connection with state space reduction

56 Chapter 6. Conclusions and Directions for Future Work

methods, e.g., the symmetry method. The speci�ed canonical form for CP-nets

in the work presented in this thesis provides a step towards the use of new

data structures like Binary Decision Diagrams (BDDs). The reason this is an

interesting topic for further work is that there is no direct relationship between

the size of the state space and the size of the BDD which represents it. Hence,

it is not clear whether BDDs presents improved data structure for state space

storage when also exploiting symmetry.

Canonical Forms for CP-nets. A canonicalization function for states is a

function that given a state s calculates an unique representative for the equiv-

alence class [s]. A canonicalization function for markings of CP-nets is de�ned

in [66] and summarised in Chapter 3. The calculation of the speci�ed canon-

ical form is quite lengthy and the calculation potentially requires a large set

of permutation symmetries to be applied to the marking; this is also the case

when the suggested algebraic techniques are used for the reduction. Hence, a

topic for future work is de�nition and comparison of other canonical forms for

CP-nets. When using canonicalization functions the calculated representatives

of the equivalence classes are unique. A possibility is to relax this requirement

and as a consequence obtain less reduction. Therefore, an interesting approach

for future work is to experiment with the use of normalisation functions, i.e.,

functions mapping a marking M into one element of a small set of symmetric

markings.

Improved Data Structures for Permutation Symmetries. EÆcient group

representations and manipulations are important aspects of the symmetry method.

The Design/CPN OPS tool uses restriction sets to represent sets of permutation

symmetries. The strength of restriction sets is that arbitrary sets of permuta-

tion symmetries can be represented as a set of restriction sets. However, a

major drawback is that a compact representation is only obtained for some

sets. Hence, to represent an arbitrary set of permutation symmetries of size n

in worst case n restriction sets are needed. In Chapter 3 it is discussed how

the facilities of the GAP tool was used to obtain an eÆcient calculation and

representation of the stabilizer groups. However, with the suggested techniques

problems are experienced when the algebraic groups of symmetries used for the

reduction grows. The reason is that when integrated into state space analy-

sis the stabilizer groups are not used directly. Instead the set of cosets are

calculated. Since, the set of coset representatives form an ordinary set (and

not an algebraic group) the techniques used in GAP fails to obtain a compact

representation of the set of coset representatives and the memory requirements

becomes a serious bottleneck in practice. Since sets of coset representatives do

not have a structure that in general may bene�t from the use of restriction sets,

restriction sets do not seem to be a promising solution for obtaining a compact

representation of sets of coset representatives. Hence, an important topic for fu-

ture work is the development of data structures for compact representation and

eÆcient manipulation of general sets of permutation symmetries. In the discus-

sion of related work in Chapter 4 it is discussed how the lazy listing approach

6.2. Future Work 57

from [63] may be a promising direction for future work in this direction.

Improved Analysis of Feature Interactions. The research work done in

the MAFIA project primarily focused on analysis by means of simulations; only

a �rst attempt to do state space analysis was done. The state space analysis

was based on veri�cation of properties from a set of state spaces of di�erent

con�gurations of the CPN model, i.e., the basic model plus a number of di�erent

features. A topic for future work is development of a more automatic approach

for the construction and analysis of a set of state spaces without manual user

invention.

Future work could also include an automatic categorisation of the feature

interactions based on behavioural properties veri�ed from the state space. In

the MAFIA project the feature interactions are categorised according to some

behavioural properties, e.g., feature interactions caused by conicting UI re-

quirements, feature interactions caused by one feature's use of another feature

etc. Currently, the categorisation is done by hand.

The MAFIA project was originally motivated by the fact that many feature

interactions were not systematically speci�ed and, hence, it was very diÆcult

to develop suitable test programs for the mobile phone software system. A

possible direction for future work is to investigate whether the results from the

MAFIA project can be used to automatically derive test cases covering the

feature interactions present in a CPN model.

Part II

Papers

59

Chapter 7

Modelling and Analysis of a DANFOSS

Flowmeter System using Coloured Petri

Nets

The paper Modelling and Analysis of a Danfoss Flowmeter System using

Coloured Petri Nets constituting this chapter has been published as a con-

ference paper [65].

[65] L. Lorentsen, L. M. Kristensen. Modelling and Analysis of a Danfoss

Flowmeter System using Coloured Petri Nets. In Proceedings of the

21th International Conference on Application and Theory of Petri Nets

(ICATPN'2000), volume 1825 of Lecture Notes in Computer Science,

pages 346{366, Springer-Verlag, 2000.

The contents of this chapter is equal to the conference paper [65] except for

minor typographical changes.

61

7.1. Introduction 63

Modelling and Analysis of a Danfoss Flowmeter
System using Coloured Petri Nets

Louise Lorentsen
�

Lars Michael Kristensen
�

Abstract

Danfoss is a Danish manufacturer of refrigeration, motion, heating,

and water controls. This paper describes the main results of a project on

the modelling and analysis of a Danfoss owmeter system using Coloured

Petri Nets (CP-nets or CPNs). A modern owmeter system consists of a

number of communicating processes, cooperating to make various mea-

surements on, e.g., the ow of water through a pipe. The purpose of the

project was to investigate the application of CP-nets for validation of the

communication protocols used in the owmeter system. Analysis by means

of state spaces successfully identi�ed problems in the proposed communi-

cation protocols. An alternative design was analysed using state spaces

reduced by taking advantage of the inherent symmetries in the system.

Exploiting the symmetries made it possible to analyse con�gurations of

the owmeter system approaching the size of typical owmeter systems.

7.1 Introduction

The Danish company Danfoss is one of the largest industrial groups in Den-

mark, and it is one the world leaders within the area of refrigeration, motion,

heating, and water controls. This paper presents the main results of a project

focusing on modelling and analysis of aDanfoss owmeter system. The project

was carried out as a joint project between Danfoss Instrumentation, which

is a subgroup of Danfoss, and the CPN group at the University of Aarhus.

Flowmeters are primarily used to make measurements on the ow of water

through pipes. The concrete owmeter system studied in the project consisted

of several processes each doing measurements on the ow of water. Examples

are processes measuring the amount of water owing through the pipe, processes

measuring the temperature of the water, and processes doing calculations based

on measurements obtained by other processes.

Danfoss has in recent years changed the architecture in the owmeter sys-

tems from a centralised solution to a more exible and distributed solution. The

main advantage of the distributed architecture is that it allows the owmeter

systems to be adapted to the speci�c needs of customers. However, the dis-

tributed architecture also makes new problems arise. In the distributed solution

�Department of Computer Science, University of Aarhus, Aabogade 34, DK-8200 Aarhus

N. DENMARK, E-mail: flouisel,krisg@daimi.au.dk.

64 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

it is much more diÆcult to reason about the individual processes and their in-

uence on each other. Practical tests at Danfoss have shown that the process

communication in the �rst design of the owmeter system contained at least

one deadlock, and it was therefore realised that a more thorough investigation

of the proposed designs was needed.

The overall aim of the project reported on in this paper was to demonstrate

the use of Coloured Petri Nets (CP-nets or CPNs) [46, 58] and its supporting

Design/CPN tool [26] for investigating whether the di�erent design alternatives

have the desired properties as formulated by the producer. An example of such

a property is the absence of deadlocks in the owmeter system. CP-nets have

previously been used in a number of projects in an industrial setting. Examples

of this include the modelling of software architectures for mobile phones at

Nokia [94], validation of communication protocols used in Bang & Olufsens's

Beolink Audio/Video systems [18], and communication gateways at Australian

Defence Forces [31]. It was therefore envisioned that CP-nets would also be

applicable for raising the quality of the design process for the new owmeter

system at Danfoss.

The paper is organised as follows. Section 7.2 gives an overview of the

project organisation and the di�erent activities. Section 7.3 contains an intro-

duction to the Danfoss owmeter system. Section 7.4 presents selected parts

of the CPN model of the owmeter system. Section 7.5 describes how state

spaces were used to investigate the correctness of the owmeter system. Sec-

tion 7.6 describes a new design proposal and explains how it was veri�ed using

state spaces reduced by means of symmetries. Finally, Sect. 7.7 contains the

conclusions. The reader is assumed to be familiar with the basic ideas of High-

level Petri Nets and state spaces (also called occurrence graphs or reachability

graphs/trees).

7.2 Overview of the Project

The project was organised in three phases and involved engineers fromDanfoss

and people from the CPN group, including the authors of this paper. Hence

the project group consisted of persons with expertise in the application domain,

i.e., the owmeter system, as well as members with expertise in the methods

and tools to be applied, i.e., CP-nets and Design/CPN. The project was divided

into three main phases which altogether ran over a period of 15 months. There

have however been gaps between the di�erent phases which means that the

project ran actively for a period of 7 months.

Modelling. The �rst phase of the project focused on the construction of a

CPN model of the owmeter system. An initial CPN model captured two

di�erent design proposals for the owmeter system. Overview information was

provided at meetings with engineers at Danfoss and complemented by internal

documentation about the owmeter system made available by Danfoss. The

primary purpose of the meetings at this stage was to obtain an overview of the

owmeter system and discuss the main issues related to the design. Through-

7.2. Overview of the Project 65

out the �rst phase, focus gradually shifted from getting information about the

owmeter system and understanding the design issues to discussions of the CPN

models which were constructed by the people from the CPN group. The main

purpose of these discussions was to ensure that the CPN model correctly re-

ected the two di�erent design proposals. Interactive simulations, i.e., single

step simulations with detailed graphical feedback, were used to investigate the

behaviour of the CPN model as well as for debugging purposes.

Using the Message Sequence Charts library [16], extensions were made to the

CPN model allowing Message Sequence Charts (MSCs) [45] to be automatically

constructed as graphical feedback from simulations. During project meetings

these interactive simulations and MSCs were used to discuss and review the

behaviour of the CPN model. Combined with the graphical nature of Petri

Nets this mediated the identi�cation of a number of discrepancies between the

design and the CPN model. Subsequent to the meetings the CPN model was

modi�ed according to the identi�ed discrepancies. Eventually these reviews

lead to a validated CPN model in the sense that it correctly captured what

was considered to be the relevant aspects of the two design proposals. The

reason for choosing MSCs to visualise the behaviour of the CPN model was

that diagrams very close to MSCs were already used in the design process at

Danfoss. This allowed the behaviour of the CPN model to be visualised in a

way that was very familiar to the engineers from Danfoss.

State Space Analysis. In the second phase of the project, focus changed

from modelling to state space analysis [47]. The analysis was done by means of

the Design/CPN Occurrence Graph Tool (OG Tool) [26]. The aim of the second

phase was to investigate whether the design alternatives had the desired prop-

erties speci�ed by Danfoss. In this phase we encountered the state explosion

problem, i.e., the state spaces started to grow rapidly when analysing con�g-

urations of owmeter systems with more than three processes. However, even

the analysis of small con�gurations of the owmeter system identi�ed deadlocks

and problems with the consistency of data in the two design proposals.

Analysis by meas of State Spaces with Permutation Symmetries. In

the third phase of the project, a modi�ed design of the owmeter system was

analysed. The CPN model was revised to capture the modi�ed design and by

means of state space analysis it was veri�ed that the desired properties of the

owmeter system were ful�lled for small con�gurations of the owmeter system.

To be able to verify larger con�gurations, symmetries in the owmeter system

were exploited. The symmetries in the owmeter system made it possible to

apply state spaces reduced by means of permutation symmetries [47, 48] to

alleviate the state explosion problem. The analysis was done by means of

the Design/CPN OE/OS Graph Tool [26]. Exploiting the symmetries made it

possible to analyse con�gurations of the owmeter system approaching the size

of typical owmeter systems.

66 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

7.3 The Danfoss Flowmeter System

This section presents the Danfoss owmeter system modelled in the project.

The overall architecture of the system is described �rst, followed by a description

of the communication protocols. We describe the main issues in the design of

the owmeter system, and �nally we list some of the most crucial properties

which the owmeter system is required to ful�l.

7.3.1 System Architecture and Communication Protocols

Figure 7.1 shows the overall architecture of the owmeter system. A owmeter

system consists of one or more modules connected via a Controller Area Net-

work (CAN) [62]. Each module consists of a number of processes called CAN

Applications (CANAPPs) and a driver that interfaces the module to the CAN.

Figure 7.1 shows an example of a owmeter system consisting of three modules

containing two, three, and four CANAPPs, respectively. Each CANAPP in the

system has a small piece of local memory which holds a number of so-called

attributes. The communication in the system consists of asynchronous message

passing between the CANAPPs. This message passing allows each CANAPP

to read and write the attributes of the other CANAPPs.

CANAPP

CANAPP CANAPP

CANAPP

DRIVER DRIVER

MODULE 1 MODULE 2

CAN

CANAPP CANAPP

DRIVER

MODULE 3

CANAPP

CANAPP

CANAPP

Figure 7.1: Overall architecture of the owmeter system.

The concrete location of the CANAPPs and the number of modules are

exible, e.g., in a system with four CANAPPs it is possible to put each of the

CANAPPs in an individual module or to have two modules with two CANAPPs

each. A typical owmeter system consists of 3-10 CANAPPs and 1-5 modules

depending on the location of the CANAPPs. It is, however, important to

mention that the location of the CANAPPs is �xed during the operation of the

owmeter system, i.e., it is not possible for one CANAPP to migrate from one

module to another module. In the rest of this paper we will use the notation

CANAPP(i;j) to denote CANAPP j on module i. Similarly, we will use Driverj
to denote the driver on module j, and Modulej to denote module j.

The communication between the CANAPPs is based on a protocol architec-

ture with three layers. The layers constitute a collapsed form of the OSI seven

layer architecture, mapping onto the physical, data link, and application layers

of the OSI Reference Model [25].

All communication in the owmeter system consists of asynchronous mes-

sage passing between the CANAPPs. We will illustrate a representative com-

munication pattern shortly. The di�erent message types are listed in Table 7.1.

Basically the messages can be divided into two groups depending on their

7.3. The Danfoss Flowmeter System 67

Table 7.1: The message types and their function.
Message Function

ReadRequest Request to read an attribute of another CANAPP

ReadResponse Response to a ReadRequest containing the value

of an attribute

WriteRequest Request to write an attribute of another CANAPP

WriteResponse Response to a WriteRequest indicating a change

of an attribute

Broadcast Distribute a value to all other CANAPPs in the

system (without acknowledgement from each driver)

Event Distribute a value to all other CANAPPs in the

system (with acknowledgement from each driver)

use. The Read messages (ReadRequest and ReadResponse) and the Write mes-

sages (WriteRequest and WriteResponse) are used in point-to-point communica-

tion between the CANAPPs, whereas the Broadcast and Event messages are

used in broadcast communication. In point-to-point Read (Write) communica-

tion, a ReadRequest (WriteRequest) is sent to read (write) the attribute of another

CANAPP. A ReadResponse (WriteResponse) is then generated by the receiving

CANAPP containing either the value of the attribute (in case of a read mes-

sage) or just a value indicating an accept (in case of a write message). The

delivery of the point-to-point messages is guaranteed by use of an acknowl-

edgement mechanism in the communication between the drivers. The Broadcast

and Event messages are used to distribute information to all CANAPPs in the

owmeter system { either as a Broadcast message without any guaranty of de-

livery, or as an Event message, with guaranteed delivery.

A typical point-to-point communication in a owmeter system consisting of

two CANAPPs located in di�erent modules is shown in the MSC in Fig. 7.2.

The MSC illustrates a write communication between two CANAPPs located in

di�erent modules. The MSC is identical to the kind of MSCs used intensively

in phase one of the project.

The MSC contains a vertical line for each of the two CANAPPs, the drivers

of the modules, and the CAN. The arrows between the vertical lines correspond

to messages sent in the owmeter system. The communication sequence consid-

ered corresponds to a write request/response communication to CANAPP(2;1)

initiated by CANAPP(1;1), and causes the following sequence of events to oc-

cur. The numbers in the list below correspond to the numbers found below the

arrows and next to the mark on the rightmost line of Fig. 7.2.

1. CANAPP(1;1) generates aWriteRequestmessage to be sent to CANAPP(2;1)

to write the value of an attribute, and passes the message to Driver1.

2. Driver1 sends the message on the CAN.

3. Driver2 receives the message from the CAN.

68 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

WriteRequest
CANAPP(2,1)

 (1,1) 1 2 (2,1)

WriteRequest
CANAPP(2,1)

WriteRequest
CANAPP(2,1)

WriteRequest
CANAPP(2,1)

WriteResponse
CANAPP(1,1)

WriteResponse
CANAPP(1,1)

WriteResponse
CANAPP(1,1)

WriteResponse
CANAPP(1,1)

ACK Driver(2)

ACK Driver(1)

ACK Driver(1)

Driver(2)ACK

CANAPP

1

DRIVER

2

11

13

CAN

3

5

10

12

DRIVER

4

6

9

CANAPP

Update
attributes
7

8

Figure 7.2: Write communication based on the request/response mechanism.

4. Driver2 generates an acknowledgement which is sent on the CAN.

5. Driver1 receives the acknowledgement from the CAN.

6. Driver2 delivers the WriteRequest message to CANAPP(2;1), which accepts

to have its attribute written by CANAPP(1;1).

7. CANAPP(2;1) updates the requested attribute.

8. CANAPP(2;1) now generates a WriteResponse message indicating that the

attribute has been updated. The response is handed to Driver2.

9. Driver2 sends the message on the CAN.

10. Driver1 receives the WriteResponse message from the CAN.

11. Driver1 generates an acknowledgement which is sent on the CAN.

12. Driver2 receives the acknowledgement from the CAN.

13. Driver1 delivers theWriteResponsemessage from CANAPP(2;1) to CANAPP(1;1).

7.3.2 CANAPP Design Patterns

When two CANAPPs communicate they do it in an asynchronous way as il-

lustrated above. When receiving a ReadRequest (WriteRequest) a ReadResponse

(WriteResponse) is generated and sent back to the sender of the request. When

designing the owmeter system Danfoss used the Octopus method [5]. This

method describes two di�erent design alternatives/patterns for such asynchronous

communication between objects (processes). The two design alternatives are

called Internal Wait Point and Primary Wait Point. Below we briey describe

each of the two design patterns.

7.4. CPN Model of the Flowmeter System 69

Internal Wait Point (IWP) approach. When a CANAPP sends a request

the execution of the CANAPP is blocked. If the CANAPP is located in

the same module as other CANAPPs, then all CANAPPs in the module

are blocked. The CANAPPs are not released until a response matching

the request has been received.

Primary Wait Point (PWP) approach. In this approach the response mes-

sage is treated as an event. The requesting CANAPP and all other

CANAPPs residing in the same module are not blocked as in the IWP ap-

proach. This means that a CANAPP can receive a request from another

CANAPP even if it is temporarily waiting for a response to a previously

sent request. This is typically implemented by means of two threads.

As identi�ed in practical tests at Danfoss, the CANAPPs need to be carefully

designed, e.g., to avoid deadlocks. This leads to the formulation of three crucial

properties which the �nal design of the owmeter system is required to posses.

The properties are given here in an informal way. We will show in Sect. 7.5 how

they can be translated into dynamic properties of the constructed CPN model.

Absence of Deadlocks. It should not be possible to bring the owmeter sys-

tem into a situation in which all the CANAPPs in the owmeter system

are blocked.

Absence of Attribute Corruption. It is important for the correct opera-

tion of the owmeter system that when a CANAPP has initiated a request

its attributes are not modi�ed before the request has been completed.

Topology Independence. One of main advantages envisioned for the owme-

ter system was that it could easily be adapted to customers' needs by

providing exibility in the choice as to which and how many CANAPPs

should go into the modules. It is therefore important that the two proper-

ties above are valid independently of how the CANAPPs are distributed

in the modules.

7.4 CPN Model of the Flowmeter System

This section presents selected parts of the CPN model of the owmeter system.

The purpose of this section is twofold. Firstly, to provide an overview of the

CPN model, and secondly, to give an idea of the complexity of the CPN model

and the abstraction level chosen. The CPN model has been put together in

such a way that it captures both a design based on the Primary Wait Point

(PWP) approach and a design based on the Internal Wait Point (IWP) ap-

proach. The con�guration, i.e., the distribution of CANAPPs, is captured in

the initial marking. Hence, the two design alternatives and di�erent con�gura-

tions of the owmeter system can be analysed using only one CPN model but

with di�erent initial markings.

70 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

debug#21
Hierarchy#10010

CAN_Network

Flowmeter_System M Prime

CANAPP

PrimaryWaitpoint

InternalWaitpoint

CANAPPOut CANAPPIn

Driver

Internal

MessageIn
ReadWrite

MessageOut

BroadcastOut

BroadcastIn

Event

masterp#10000GlobalDecl#2Init#11

M Prime

Control#10

Figure 7.3: The hierarchy page.

7.4.1 CPN Model Overview

Figure 7.3 gives an overview of the CPN model by showing how it has been

hierarchically structured into 15 modules (subnets). The subnets of the model

are in CPN terminology referred to as pages. Each node in Fig. 7.3 represents

a page of the CPN model. An arc between two nodes indicates that the source

node contains a so-called substitution transition whose behaviour is described

on the page represented by the destination node.

The CPNmodel consists of three main parts. One part modelling the CANAPPs

consisting of the pages CANAPP, PrimaryWaitPoint, InternalWaitPoint, CANAPPIn,

and CANAPPOut. A second part modelling the drivers consisting of the pages

Driver, Internal, MessageIn, MessageOut, ReadWrite, Event, BroadcastOut, and Broad-

castIn. The third part modelling the CAN consists of page CAN Network.

Page Flowmeter System, depicted in Fig. 7.4, is the top-most page of the

CPN model and provides the most abstract view on the CPN model. The page

consists of three substitution transitions corresponding to the three layers of

the protocol architecture of the owmeter system. Between each of the layers

there are a number of places modelling the bu�ers between the layers. The

detailed behaviour of CAN Network, Driver, and CANAPP is modelled on subpages

associated with the substitution transitions. In the following we will explain in

more detail how the CANAPPs are modelled in the design based on the PWP

approach. The modelling of the IWP approach is similar in complexity.

7.4.2 Modelling of the CANAPPs

Figure 7.5 depicts the page PrimaryWaitPoint which is the top-most page in

the part of the model concerned with the CANAPPs in the PWP approach.

The modelling of the CANAPPs has been split in two parts. The part of the

CANAPP responsible for sending requests and receiving responses is modelled

by the substitution transition CANAPPOut. The part of the CANAPP respon-

sible for handling incoming requests and generating responses is modelled by

the substitution transition CANAPPIn. The places in the lower part of the page

model the bu�ers between the CANAPP layer and the driver layer. The two Idle

places are used to model the initial state of the two threads in the CANAPP.

7.4. CPN Model of the Flowmeter System 71

ResponseOut

CANxCanMsg

RequestIn

CANxCanMsg

ResponseIn

CANxCanMsg

Network
to

Driver

MODxModMsg

Driver
to

Network

MODxModMsg

RequestOut

CANxCanMsg

CANAPP
HS

Driver
HS

Network
HS

Figure 7.4: The page Flowmeter System.

ResponseIn

CANxCanMsg
P

In

RequestOut

CANxCanMsg
P

Out

RequestIn

CANxCanMsg
P

In

ResponseOut

CANxCanMsg
P

Out

Idle

CANAPP

Idle

CANAPP

CANAPPOut

HS

CANAPPIn

HS

Figure 7.5: The page PrimaryWaitPoint.

Figure 7.6 depicts the page CANAPPOut which is the subpage of the sub-

stitution transition CANAPPOut shown in Fig. 7.5. This page is an example

of a page at the lowest level of the CPN model. It models the control ow

in the part of the CANAPP generating requests to the other CANAPPs and

awaiting responses. The sending of a request is modelled by the transition Re-

quest, which causes the CANAPP to change its state from being Idle to Waiting,

and pass the message to the driver by putting it into the bu�er modelled by

the place RequestOut. This corresponds to event 1 in Fig. 7.2. The driver in

the module will remove the message from the place RequestOut and deliver it

to the destination. When the response returns, the corresponding message is

put in the bu�er modelled by the place ResponseIn. This corresponds to events

2-12 in Fig. 7.2. The actual reception of a response is modelled by the tran-

sition Con�rm. An occurrence of this transition removes the response from the

place ResponseIn, updates the attributes of the CANAPP, modelled by place At-

tributes, and causes the CANAPP to change its state from Waiting to Idle. This

corresponds to event 13 in Fig. 7.2.

The places Con�g and Services are used to model con�guration information

which can be accessed by the CANAPP. Page CANAPPIn, modelling the han-

dling of an incoming request and the sending of a response, is similar to the

CANAPPOut page. The two parts of the CANAPPs run in parallel reecting

that in the PWP approach the CANAPPs are able to make outgoing requests

72 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

Waiting

CANxCanMsg

Attributes

CANAPPxAttr

Services

CANAPPxService

Request
[canapp<>tocanapp,
canmsg=MakeRequest
(canapp,tocanapp,theservice)]

Config

CANAPP

Confirm [(#cansource canmsg’)
=(#candest canmsg)]

ResponseIn

CANxCanMsg

P

In

RequestOut

CANxCanMsg

P

Out

Idle

CANAPP

P I/O

rem_idle(canapp)

(canapp,canmsg) (canapp,theservice)

(canapp,canmsg)

tocanapp

(canapp,canmsg)

(canapp,
read_update_attr
(attr,canmsg’))

(canapp,attr)

(canapp,canmsg’)

rem_idle(canapp)

Figure 7.6: The page CANAPPOut.

as well as handle incoming requests concurrently.

7.5 Analysis of two Initial Design Proposals

This section describes how the two design proposals based on the PWP and

the IWP approaches have been analysed by means of state spaces and the

Design/CPN Occurrence Graph Tool (OG Tool) [26]. This section also presents

the modi�cations made to the CPN model in order to make it suited for state

space analysis, it states the goals of the analysis, and it presents the obtained

results.

To make the CPN model suited for state space analysis some adjustments

were needed. Essentially two modi�cations of the CPN model were made.

The modelling of the attributes in the CANAPPs was simpli�ed such that the

concrete values of the attributes were no longer modelled. This simpli�cation is

justi�ed since no parts of the CPN model make choices depending on concrete

values of the attributes. When the concrete values of the attributes are not

modelled, then the read and write messages become similar since their e�ect

is no longer modelled. The Broadcast and Event messages were not considered.

Handling these messages in the context of state space analysis would require

more extensive modi�cations to the CPN model in order to obtain a CPN model

with a �nite state space. It was therefore decided to leave these two kinds of

messages out.

7.5.1 Analysis Goals

The primary goal of the state space analysis was to investigate whether the two

design proposals ful�lled the three requirements stated in the end of Sect. 7.3.

The �rst step in order to investigate this was to translate them into dynamic

properties of the CPN model. This makes it possible to formulate the require-

ments as queries in the OG Tool. The answers to the queries can then be

automatically determined by the OG Tool when a state space has been gener-

ated. Below we show how to translate each of the three properties into queries

which can be invoked in the OG Tool.

7.5. Analysis of two Initial Design Proposals 73

Absence of Deadlocks.

This property can be formulated as the absence of reachable dead markings in

the CPN model. A dead marking is a marking without enabled transitions,

and it is an example of a standard dynamic property of a CPN model. The

OG Tool has a built-in standard query function ListDeadMarkings, which lists the

reachable dead markings (if such markings exist).

Absence of Attribute Corruption.

When a CANAPP has initiated a request it is not allowed to start handling an

incoming request before the request has been completed, i.e., a response has

been received. This property cannot easily be formulated as a standard dynamic

property of the CPN model. However, it can be conveniently formulated using

temporal logic [22]. The OG Tool library ASK-CTL [26] makes it possible to

make queries formulated in a state and action oriented variant of CTL [13]. That

the attributes cannot be corrupted for a given CANAPP(i;j) can be expressed

as the following action-based CTL formula. An explanation is given below.

AG((Request; hcanapp =CANAPP(i;j)i))

A((:(Indication; hcanapp =CANAPP(i;j)i)) U (Con�rm; hcanapp =CANAPP(i;j)i))

The formula states that whenever (denoted AG) the transition Request occurs in a

binding corresponding to CANAPP(i;j), then in all futures (denoted A) the tran-

sition Indication cannot occur in a binding corresponding to CANAPP(i;j) until

(denoted U) the transition Con�rm has occurred in a binding corresponding to

CANAPP(i;j). An occurrence of the transition Request in a binding correspond-

ing to CANAPP(i;j) has been written as (Request; hcanapp =CANAPP(i;j)i).

The binding of Indication and Con�rm is written in a similar way. An occurrence

of the transition Request (see Fig. 7.6) models the start of a request, an occur-

rence of transition Indication models the start of handling an incoming request,

and an occurrence of transition Con�rm (see Fig. 7.6) models the reception of a

response.

Topology Independence.

The two properties above should be valid for the system independently of how

the CANAPPs are placed in the modules in the system. This property can

therefore be investigated by analysing di�erent con�gurations of the owmeter

system. Investigating di�erent con�gurations can be done by simply changing

the initial marking of the CPN model. Hence, topology independence can be

investigated by constructing state spaces for di�erent initial markings.

7.5.2 Analysis Results

State spaces have been constructed for a number of con�gurations of the owme-

ter system. Table 7.2 gives some statistical information on the state spaces for

di�erent con�gurations. The Con�guration column depicts the con�guration in

74 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

Table 7.2: Generation statistics for full state spaces.
Con�guration WP Nodes Arcs Time

PWP 37 73 1

IWP 6 5 1

PWP 1,299 4,189 7

IWP 14 13 1

PWP 19,770 74,941 223

IWP 11,451 37,513 109

PWP 37,825 146,721 1,499

* IWP 2,266 4,841 15

PWP 133 281 1

IWP 80 133 1

PWP 5,581 18,707 44

IWP 446 869 1

PWP 62,605 276,721 1,484

IWP 26 25 1

PWP 44,470 190,945 544

* IWP 3,866 8,473 33

question. We have used a graphical notation to indicate the con�guration con-

sidered. For instance, the second row in the right-most part of Table 2 gives

statistics for a con�guration with two modules with one and two CANAPPs,

respectively. The WP column shows which wait point approach was considered.

The Nodes and Arcs columns give the number of nodes and arcs in the state

space, respectively. The Time column gives the time in seconds it took to gener-

ate the state space. All state spaces were generated on a Sun Workstation with

512 MB of memory. It is worth observing that the IWP approach gives smaller

state spaces than the PWP approach. The reason for this is that in the IWP

approach the CANAPPs block after transmission of a message, and hence there

is less concurrency between the CANAPPs compared to the PWP approach.

With the available computing power and due to the state explosion problem,

it was not possible to construct the full state space for large con�gurations

in the PWP approach. Therefore, in some of the con�gurations only external

communication (communication between CANAPPs located in di�erent mod-

ules) is analysed. An asterisk (�) indicates that only external communication

is analysed in the given con�guration. However, even the analysis of small

con�gurations of the owmeter system showed that neither of the two design

alternatives satis�es the required properties.

In all the con�gurations considered, the analysis revealed that the design

based on the IWP approach had several deadlocks. Below we will concentrate

on a speci�c deadlock situation found in the analysis of the IWP approach.

The example given is in a con�guration of the owmeter system consisting of

7.5. Analysis of two Initial Design Proposals 75

CANAPP CANAPP

1

DRIVER

3

7

CAN

4

6

8

10

DRIVER

5

9

CANAPP

2

CANAPP (1,2) 1 2 (2,1)

WriteRequest
CANAPP(2,2)

ACK

 (1,1) (2,2)

Driver(1)

WriteRequest
CANAPP(2,2)

WriteRequest
CANAPP(2,2)

WriteRequest
CANAPP(1,1)

CANAPP(1,1)
WriteRequest

CANAPP(1,1)
WriteRequest

ACK Driver(2)

ACK Driver(2)

Driver(1)ACK

Figure 7.7: Visualisation of a path leading to a deadlock.

two modules each with two CANAPPs. Figure 7.7 visualises a path/execution

leading to a dead marking of the CPN model. This marking was identi�ed

using the query function ListDeadMarkings followed by the use of another query

function which is able to �nd one of the shortest paths (occurrence sequences)

in the state space leading from the initial marking to a speci�ed marking. Once

such an occurrence sequence has been found, it is straightforward to visualise

it using MSCs. The MSC in Fig. 7.7 shows the following sequence of events.

1. CANAPP(1;2) sends aWriteRequest to CANAPP(2;2). As the model is based

on the IWP approach both CANAPP(1;1) and CANAPP(1;2) are blocked

until a WriteResponse is received.

2. CANAPP(2;1) sends a WriteRequest to CANAPP(1;1). Both CANAPP(2;1)

and CANAPP(2;2) are blocked until a WriteResponse is received.

3-10. The messages are sent over the CAN. All of the CANAPPs in the owme-

ter system are blocked. Thus, neither CANAPP(1;1) nor CANAPP(2;2) can

receive the WriteRequests, and a deadlock has occurred.

All deadlocks are of course unwanted, but especially the kind of deadlock vi-

sualised in Fig. 7.7 is problematic in a owmeter system. The reason is that

it should be possible to distribute the CANAPPs freely in the modules in the

system and the concrete location of the CANAPPs should not a�ect the cor-

rectness of the system. If CANAPP(2;2) in the example above instead is placed

in a separate module (if the owmeter system consisted of three modules in-

stead of two) no deadlock would occur for the above communication pattern.

The above also illustrates topology independence as a non-trivial property of

the owmeter system. Analysis of the PWP approach showed that none of the

con�gurations analysed had any nodes corresponding to dead markings of the

CPN model. Therefore, all the con�gurations analysed in the PWP approach

ful�l the absence of deadlocks property.

76 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

CANAPP

1

Update
attributes

12

DRIVER

3

7

11

CAN

4

6

8

10

DRIVER

5

9

CANAPP

2

 (1,1) 1 2 (2,1)

WriteRequest
CANAPP(2,1)

ACK Driver(2)

WriteRequest
CANAPP(2,1)

WriteRequest
CANAPP(2,1)

WriteRequest
CANAPP(1,1)

WriteRequest
CANAPP(1,1)

WriteRequest
CANAPP(1,1)

WriteRequest
CANAPP(1,1)

ACK Driver(2)

ACK Driver(1)

ACK Driver(1)

Figure 7.8: Visualisation of a path leading to corruption of an attribute.

The analysis of the owmeter system regarding the absence of attribute cor-

ruption showed that all con�gurations analysed for the IWP approach ful�l this

property. However, the analysis in the case of the PWP approach showed that

this approach does not ful�l the property. Figure 7.8 visualises a path/execution

to a node in the state space representing a marking in which an attribute has

been corrupted. The con�guration of the owmeter system considered consists

of two modules each with one CANAPP. The MSC shows the following sequence

of events.

1. CANAPP(1;1) sends a WriteRequest to write an attribute of CANAPP(2;1).

CANAPP(1;1) now waits for a response but is not blocked.

2. CANAPP(2;1) sends a WriteRequest to write an attribute of CANAPP(1;1).

3-10. The messages and corresponding acknowledgements are sent over the

CAN.

11. CANAPP(1;1) receives the WriteRequest message from CANAPP(2;1).

12. CANAPP(1;1) changes its attributes according to the value in theWriteRequest

from CANAPP(2;1). A corruption has occurred.

To summarise the results of the analysis: the design based on the IWP

approach violates the �rst property (absence of deadlocks) but ful�ls the second

(absence of attribute corruption). The design based on the PWP approach on

the other hand ful�ls the �rst property but violates the second. Thus, neither of

the two design proposals are suitable for a �nal implementation of the owmeter

system. In the next section we will consider a variant of the PWP approach

which avoids the problem of attribute corruption identi�ed above.

7.6. Analysis of a third Design Proposal 77

7.6 Analysis of a third Design Proposal

The identi�cation of the deadlocks and attribute corruption in the two initial

design proposals naturally leads to the suggestion of a third design proposal

which resolves the identi�ed problems. In this section we present such a design

proposal based on the PWP approach which overcomes the problem with at-

tribute corruption. State space analysis of the �rst two design proposals had

shown that the state space explosion problem prohibited analysis of larger con-

�gurations. It was therefore decided to attempt to use a state space reduction

method in order to alleviate the state explosion problem when analysing the

third design proposal. It was decided to use the symmetry method [47, 48]

since the owmeter system is made up of a number of identical components

(the modules, drivers, and CANAPPs) whose behaviour are identical. More-

over, the symmetry method is supported by the Design/CPN OE/OS Graph

Tool (OE/OS Tool) [26], and as we will see, the method preserves the proper-

ties which we want to verify. In this section we briey present the idea in the

modi�ed design, and we then explain how it was analysed using state spaces

reduced by taking advantage of the symmetries in the owmeter system.

The basic idea in the new design proposal is to introduce a possibility for the

CANAPPs to send a negative response to a request message if the CANAPP

is currently waiting for a response to a previously sent request. Therefore, if

the CANAPP is not in the process of performing a request when the incoming

request arrives, it will access the attribute and send a positive response. If the

CANAPP is in the process of performing a request, then it will not access the

attribute but instead send a negative response. This can be reected in the

CPN model by adding a place modelling a shared variable between the two

threads of the CANAPP (see Fig. 7.5). This variable can then be used by the

thread handling the incoming requests to decide whether it is safe to access the

attributes.

7.6.1 Symmetry Speci�cation

For capturing the symmetries in the owmeter system state spaces with permu-

tation symmetries (OS-graphs in [47]) were applied. The OE/OS Tool supports

state spaces with permutation symmetries based on user supplied symmetry

speci�cations. This means that the user of the tool is required to provide the

permutation symmetries, and the tool then uses these as a basis for the re-

duction. A symmetry speci�cation consists of assigning symmetry groups of

permutations to the atomic colour sets of the CPN model. An atomic colour

set is a colour set de�ned without reference to other colour sets. The symmetry

group determines how the colours of the atomic colour sets are allowed to be

permuted, and in turn induces permutation symmetries on the markings and

the binding elements of the CPN model. The idea of state spaces with per-

mutation symmetries is to construct equivalence classes of markings which are

symmetric in the sense that they can be obtained from each other by one of

the permutation symmetries. Instead of representing all markings it suÆces to

store a representative for each equivalence class containing a reachable marking.

78 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

A similar remark applies to binding elements. In this way a condensed state

space is obtained which is typically orders of magnitude smaller than the full

state space.

For the owmeter system the symmetry speci�cation should capture the

symmetry in the CANAPPs as well as in the modules. To illustrate the symme-

try speci�cation applied for the owmeter system consider Fig. 7.9. Figure 7.9

shows the initial part of the state space for a owmeter system consisting of two

modules each containing two CANAPPs. Communication between CANAPPs

in the same module has been disabled for presentation purposes. Node 1 cor-

responds to the initial marking and has eight immediate successor nodes cor-

responding to the possible requests which can be initiated in the system (each

CANAPP can initiate a request to the two CANAPPs on the other module).

For node n we will denote the corresponding marking Mn.

For the nodes 2, 3, 7, and 9 we have indicated in the associated dashed

box what communication has been initiated, e.g., node 9 corresponds to a

state of the system in which CANAPP(1;1) has initiated a request towards

CANAPP(2;1). The symmetry speci�cation is based on the observation thatM9

is symmetric to M7 except for a permutation which swaps the two CANAPPs

in Module2, In a similar way it can be observed that M2 can be obtained from

M9 by a permutation which swaps the two modules, and M3 can be obtained

from M9 by a permutation which swaps the two modules and which swaps the

two CANAPPs in Module2. Furthermore, it is possible to obtain M4, M5, M6,

and M8 from M9 by permutation of the CANAPPs and the modules. If such

symmetric markings are grouped into equivalence classes, it is possible to rep-

resent this initial fragment of the full state space by the condensed state space

shown in Fig. 7.10. Here node 1 represents the equivalence class containing

the initial marking only, and node 2 represents the equivalence class containing

the markings M2 to M9. The marking M9 can be chosen as a representative

for this equivalence class. The successors of M9 are grouped into equivalence

classes in a similar way. Altogether this means that the 65 markings which

can be reached in two steps from the initial marking can be represented using

only 8 nodes in the condensed state space. In summary, the symmetry speci�-

cation used for the owmeter system allows permutation of CANAPPs within

the same module, and it allows permutation of modules containing the same

number of CANAPPs.

1

2 3 4 5 6 7 8

10 11 12 13 14 15

9

73

9

16

2

1 2 21

1 221

1
2

1
2

1
2 2

11
2 2

1

1
2 2

1

Figure 7.9: Initial fragment of the full state space.

7.6. Analysis of a third Design Proposal 79

9

21

1
2

1
2

1

3 4 5 6 7 8

2

Figure 7.10: Initial fragment of the condensed state space.

7.6.2 Consistency Check

Since the OE/OS Tool supports user supplied symmetry speci�cations, a con-

sistency check is needed to ensure that the symmetries supplied are symmetries

which are actually present in the CPN model. This amounts to checking that

the initial marking, the guards, and the arc expressions of the CPN model are

symmetric in a way precisely de�ned in [47]. The currently released version of

the OE/OS Tool does not support an automatic check for consistency, but as

part of the project we have developed an extension of the tool which supports

a semi-automatic check for consistency. It is based on a combination of syn-

tactical and semantical checks. The semantic check is based on evaluating net

inscriptions in all possible bindings. As a consequence the semantic check is

time-consuming, but together with the syntactical check it is possible to make

a fully automatic check for consistency for the CPN model of the owmeter

system.

7.6.3 Analysis Results

The analysis focuses on the same three properties as for the two initial design

proposals. For investigating the absence of dead markings a built-in query func-

tion of the OE/OS Tool was used which lists the equivalence classes containing

the reachable dead markings (if such equivalence classes exist). The query re-

lated to the absence of attribute corruption has to be modi�ed to take into

account that the transition Indication corresponding to the reception of an in-

coming request can now occur in two modes depending on whether the request

is accepted or rejected. The modi�ed query is shown below and is identical to

the original query except that it is only required that the Indication transition

does not occur in a binding where the request is accepted, i.e., the variable mode

is bound to accept.

AG((Request; hcanapp =CANAPP(i;j)i))

A((:(Indication; hcanapp =CANAPP(i;j);mode = accepti)) U

(Con�rm; hcanapp =CANAPP(i;j)i))

Another problem which has to be resolved with the above query is that it refers

to occurrence sequences related to a speci�c CANAPP. Since we allow permu-

tations of CANAPPs this property is not a priori preserved by the symmetry

reduction. However, it was shown in [23, 28] that symmetry reduction pre-

serves the truth value of a CTL formula if the truth value of its atomic state

80 Chapter 7. Modelling and Analysis of a Danfoss Flowmeter System

Table 7.3: Generation statistics for full and condensed state spaces.

Con�guration Full State Space Condensed State Space Ratio Sym
Nodes Arcs Time T/N Nodes Arcs Time T/N

19,970 74,941 223 0.011 3,410 12,478 121 0.035 5.7 6

62,605 276,721 1,484 0.024 2,776 4,767 327 0.118 22.5 24

295,965 1,329,113 { { 37,156 166,316 4,123 0.111 7.9 8

319,337 1,460,785 { { 54,019 245,139 2,523 0.047 5.9 6

* 456,174 2,148,585 { { 114,370 537,857 7,428 0.065 3.9 4

* 44,470 190,995 544 0.012 2,971 11,075 197 0.066 14.9 24

* 578,376 2,746,401 { { 49,848 234,431 15,214 0.305 11.6 12

* 209,629 1,044,361 { { 4,759 18,699 1,438 0.302 44.0 120

propositions are invariant under the permutation symmetries. The absence of

attribute corruption can therefore be checked from the symmetry reduced state

space by checking the property for a CANAPP(i;j) for which permutation is not

allowed. CANAPPs which cannot be permuted are present in con�gurations of

the owmeter system containing a module with a single CANAPP. An alterna-

tive approach to this is to strengthen the symmetry speci�cation such that the

CANAPP in question cannot be permuted.

Table 7.3 gives some statistical information on the generation of the con-

densed state space for some selected representative con�gurations. For compar-

ison it also gives the size of the full state space. The size of the full state space

has been calculated from the condensed state space in the cases where the full

state space could not be generated given the available computing power. The

Time column gives the time in seconds it took to generate the state space. T/N

gives the processing time (in seconds) per node in the state space. The Ratio

gives the reduction obtained in the number of nodes. The column Sym gives the

number of permutation symmetries for the con�gurations, which is an upper

limit on the reduction which can be obtained. The condensed state spaces were

generated on a Sun Workstation with 512 MB of memory.

As can be seen from Table 7.3, the use of symmetries yielded signi�cant re-

ductions in the size of the state spaces and allowed us to consider con�gurations

of the owmeter system which could not be handled with full state spaces. This

is what we would have expected. It is, however, also worth observing that the

generation of condensed state spaces was faster than the generation of the full

state spaces. Even though we only have three observations, they indicate what

seems to be a general fact: the time that is lost on a more expensive test on

equivalence of markings and binding elements, is accounted for by having fewer

nodes and arcs to generate; and also to compare with before a new node or arc

can be inserted in the state space.

We were able to verify the absence of reachable dead markings in all con�g-

urations for which a condensed state space could be generated. Moreover, the

absence of attribute corruption was veri�ed for the con�gurations with a mod-

7.7. Conclusions 81

ule containing a single CANAPP. In addition to these properties we were able

to verify that the initial marking was a home marking . This means that from

any reachable marking it is always possible to return to the initial marking.

This is a very attractive property since it means that the owmeter system can

never be brought in a situation in which the system cannot be made to reen-

ter its initial state. Moreover, it could be veri�ed that the binding elements

corresponding to the initiation of a request, reception of a response, handling

of a request, and transmission of a response were live. This means that all

CANAPPs in the system always have the possibility of completing requests

and handling incoming requests.

7.7 Conclusions

In this paper we have presented the main results of a project in which CP-nets

was put into practical use in an industrial setting at Danfoss for the modelling

and analysis of a owmeter system. The project was divided into three phases.

During the �rst phase the graphical nature of Petri Nets and the capability to

visualise the behaviour of a CPN model were extremely important tools in the

process of validating that the CPN model correctly reected the intended design

of the owmeter system. This observation is consistent with observations made

in other industrial projects such as [18].

The second phase clearly showed the practical limits of using full state

spaces in an industrial setting, since the size of the state space started to grow

rapidly once larger con�gurations were considered. Given the available com-

puting power it was only possible to analyse con�gurations with up to 3-4

CANAPPs. However, even the analysis of small con�gurations identi�ed errors

in the proposed designs. This also demonstrates that errors in systems tend to

manifest themselves in even small con�gurations of the system.

The application of the symmetry method made it possible to verify con-

�gurations of the owmeter system containing up to six CANAPPs. Since

concrete con�gurations may contain more CANAPPs (typically up to 10), it is

relevant to ask whether anything could have been done to handle even larger

con�gurations, i.e., whether other reduction methods could have been applied

in addition to the symmetry method. Since the CANAPPs in the system are

asynchronous it would be obvious to consider the stubborn set method [88].

It was proved in [89] that the stubborn set method can be combined with the

symmetry method. The stubborn set method was however not applied in the

project since the tool support for stubborn sets in Design/CPN is currently not

mature enough to be used on models of the size considered in this project.

In conclusion we believe that this project has demonstrated that CP-nets

and the state space method may indeed be relevant and valuable methods to be

used in the design process of not only the owmeter system but also in future

products at Danfoss which was the main goal of the project.

Acknowledgements. We would like to thank Danfoss Instrumentation,

especially Arne Peters, for their contributions to this project.

Chapter 8

Exploiting Stabilizers and Parallelism in

State Space Generation with the Symmetry

Method

The paper Exploiting Stabilizers and Paralellism in State Space Generation

with the Symmetry Method constituting this chapter has been published as a

conference paper [66].

[66] L. Lorentsen, L. M. Kristensen. Exploiting Stabilizers and Paralellism

in State Space Generation with the Symmetry Method. In Proceedings

of the Second International Conference on Application of Concurrency to

System Design (ICACSD'2001), pages 211{220,IEEE 2001. 2000.

The contents of this chapter is equal to the conference paper [66] except for

minor typographical changes.

83

8.1. Introduction 85

Exploiting Stabilizers and Parallelism in State Space
Generation with the Symmetry Method

Louise Lorentsen
�

Lars Michael Kristensen
y

Abstract

The symmetry method is a main reduction paradigm for alleviating

the state explosion problem. For large symmetry groups deciding whether

two states are symmetric becomes time expensive due to the apparent high

time complexity of the orbit problem. The contribution of this paper is

to alleviate the negative impact of the orbit problem by the speci�cation

of canonical representatives for equivalence classes of states in Coloured

Petri Nets, and by giving algorithms exploiting stabilizers and parallelism

for computing the condensed state space.

8.1 Introduction

State space exploration has proven powerful for investigating the correctness

of concurrent systems. Unfortunately, state spaces of systems tend to grow

rapidly when systems become bigger. This well-known phenomenon known as

the state explosion problem, represents a serious limitation to the use of state

space methods for analysis of real-life systems.

Many techniques and methods for alleviating the state explosion problem

have been suggested, such as the symmetry method [23, 28, 48]. The basic idea

behind the symmetry method is to exploit that many concurrent systems ex-

hibit symmetry. For example, many concurrent systems are composed of sim-

ilar components whose identities are interchangeable from a veri�cation point

of view. This kind of structural symmetry is also present in the state space of

such systems. The basic idea behind the symmetry method is to factor out this

symmetry by grouping symmetric states into equivalence classes, and thereby

obtain a condensed state space which is typically orders of magnitude smaller

than the ordinary full state space, but from which the same behavioral prop-

erties can be veri�ed without unfolding the condensed state space to the full

state space.

Several variants of the symmetry method have been suggested for reason-

ing about di�erent classes of properties. Examples of this are a method [48] for

standard dynamic properties of Coloured Petri Nets (CP-nets or CPNs) [46,58],

�Department of Computer Science, University of Aarhus, Denmark. E-mail:

louisel@daimi.au.dk.
ySchool of Electrical and Information Engineering, University of South Australia, AUS-

TRALIA. E-mail: lars.kristensen@unisa.edu.au.

86 Chapter 8. Exploiting Stabilizers and Parallelism

a method for safety properties [44], and methods for temporal logic properties

expressed in CTL� [24,28] and LTL [30,38]. Two main issues are common to all

of these variants of the symmetry method. One is how to determine the alge-

braic group of allowable permutation symmetries. Another is deciding during

the generation of the condensed state space whether two states s1 and s2 are

symmetric (equivalent), i.e., whether there is one of the allowable permutation

symmetries which maps s1 into s2. In this paper we focus on the problem of

deciding whether two states are symmetric. This is also referred to as the orbit

problem.

The computational complexity of the orbit problem has been investigated

in [24] showing that it is at least as hard as the graph isomorphism problem

for which no polynomial time algorithm is known. The results in [24] were

later extended in [21] showing that the orbit problem is equivalent to impor-

tant problems in computational group theory which are harder than the graph

isomorphism problem. A derivate of the orbit problem is the constructive orbit

problem which is concerned with computing a canonical (unique) representative

for each equivalence class of states. The constructive orbit problem is at least

as hard as the orbit problem. The computational complexity of the orbit prob-

lem and the constructive orbit problem in the context of Place/Transition nets

is further investigated in [55]. It is our experience from practical experiments,

e.g., in [53, 65] that the above identi�ed time complexity is also of practical

relevance as the run-time penalty incurred by the use of symmetries becomes

signi�cant as system parameters grows and the symmetry groups become large.

It is therefore of importance to develop heuristics which can be used to speed-up

the computation of condensed state spaces.

We consider the symmetry method in the context of CP-nets and address

the orbit problem from three di�erent angles. Firstly, we specify a canoni-

cal form for states of symmetrical CP-nets. Having such a canonical form is

attractive, since it can be used to signi�cantly speed-up the computation of

condensed state spaces when the storage of the state space is based on an ex-

plicit enumeration as is the case with many state space tools. Computing a

canonical representative for states of CP-nets is non-trivial because the state

information is highly structured meaning that there are complicated dependen-

cies between the entries in the state vector. This makes it diÆcult to identify

cases of practical interest where the constructive orbit problem is easy. Sec-

ondly, we show how the computation of these canonical representatives can be

done by exploiting stabilizers and cosets known from algebraic and computa-

tional group theory. Thirdly, we suggest a parallel algorithm for computing

the condensed state space. To evaluate the practical applicability of these al-

gorithms we have made an implementation based on an integration between

the CP-net tool Design/CPN [26] and the GAP tool [34]. GAP is a general

programming environment implementing a number of eÆcient algorithms for

manipulation of algebraic groups.

We present our results in the context of CP-nets. However, it is only the

speci�cation of the permutation symmetries and the computation of canonical

representatives which are speci�c to CP-nets. Our results on the use of algebraic

group theory and parallel construction of condensed state spaces are valid also

8.2. Background 87

for other modeling formalisms where the symmetry method is applicable.

The rest of this paper is organized as follows. Section 8.2 recalls the basic

facts of CP-nets and the symmetry method. Section 8.3 presents the canonical

form for states of CP-nets. Section 8.4 gives the algorithms for the use of alge-

braic techniques when computing the condensed state space. Section 8.5 gives

the algorithm for parallelizing the construction of the condensed state space.

Section 8.6 gives some numerical data on the performance of the algorithms on

some representative case studies. Finally, in Sect. 8.7 we sum up the conclusions

and give a further discussion of related work.

8.2 Background

This section summarizes the basic facts of CP-nets and the symmetry method.

The de�nitions and notation for CP-nets are given in Sect. 8.2.1 and follow

closely [46,47]. Section 8.2.2 introduces the necessary background on the sym-

metry method. The reader is assumed to be familiar with the dynamic behavior

of Petri Nets [72].

8.2.1 Coloured Petri Nets

A multi-set ms over a domain X is a function from X into the set of natural

numbers N. A multi-set ms can be written as a formal sum like
P

x2Xms(x)
0x,

where ms(x) is the number of occurrences of the element x in ms. jmsj denotes

the size of the multi-set ms, i.e., the total number of elements with their mul-

tiplicities taken into account. The empty multi-set is denoted ;. SMS denotes

the set of multi-sets over a domain S.

A Coloured Petri Net (CP-net) [46] is a tupleCPN = (�; P; T;A;N;C;G;E; I)

where � is a set of colour sets (data types), P is a set of places, T is a set of

transitions, and A is a set of arcs. N is a node function designating for each

arc a source and destination. C is a colour function mapping each place p to

a colour set C(p) 2 � specifying the type (colours) of tokens which can reside

on the place p. G is a guard function mapping each transition t to a boolean

expression G(t). E is an arc expression function mapping each arc a into an

arc expression E(a). I is an initialization function mapping each place p into

a multi-set I(p) of type C(p)MS specifying the initial marking of the place p.

The colour sets (data types) of a CP-net can be divided into atomic and

structured colour sets. An atomic colour set is a colour set de�ned without

reference to other colour sets. Typical examples of atomic colour sets are inte-

gers, booleans, and enumeration types. A structured colour set is a colour set

de�ned using one of the available type constructors. Typical type constructors

in CP-nets are product for construction of tuple types, record for construction of

record types, union for construction of union types, and list for construction of

list types. For a CP-net CPN, we denote by �A � � the set of atomic colour

sets of CPN. For a structured colour set S 2 �, the base colour sets of S are

the colour sets from which S is constructed.

Amarking (state) of a CP-net is a distribution of tokens carrying data values

(colours) on the places of the CP-net. A marking M is a mapping which for

88 Chapter 8. Exploiting Stabilizers and Parallelism

each place p yields the multi-set of tokens on p in the markingM . The multi-set

of tokens present on a place p in a marking M is denoted M(p). M0 denotes

the initial marking . Hence, for a CP-net CPN with places P = fp1; p2; : : : ; png

the state vector corresponding to a marking M of CPN can be written as

(M(p1);M(p2); : : : ;M(pn)) with M(pi) 2 C(pi)MS for 1 � i � n. The set of

all markings is denoted M .

A binding element (t; b) is a pair consisting of a transition t and a binding b of

data values to the variables of t. The set of all binding elements is denoted BE.

If a binding element (t; b) is enabled in a markingM1 (denoted M1[(t; b)i), then

(t; b) may occur inM1 yielding some markingM2. This is writtenM1[(t; b)iM2.

A reachable marking is a marking which can be obtained (reached) by a sequence

of occurrences of transitions starting from the initial marking. [M0i denotes the

set of reachable markings.

8.2.2 The Symmetry Method

Symmetry in CP-nets is speci�ed by means of a permutation symmetry spec-

i�cation which assigns an algebraic symmetry group of permutations to each

atomic colour set. A symmetry group determines how the colours of an atomic

colour set are allowed to be permuted. For an example, a symmetry group

may specify that all colours can be permuted arbitrarily, or that they must all

be �xed, i.e., cannot be permuted. Many intermediate forms exists, e.g., all

rotations of a �nite, ordered atomic colour set.

A permutation symmetry speci�cation SG determines a group �SG of per-

mutation symmetries. A permutation symmetry for SG is a mapping � which

assigns to each atomic colour set S 2 �A a permutation �S 2 SG(S). A per-

mutation symmetry � determines a permutation on structured colour sets by

permutation of the atomic values of the structured value according to �. For an

example, consider a structured colour set C which is a product of two atomic

colour sets A and B. The permutation �C of a pair (a; b) 2 C is de�ned as

�C(a; b) = (�A(a); �B(b)). This in turn induces a permutation of multi-sets,

i.e., the marking of places, by de�ning for a multi-set ms =
P

s2Sms(s)
0s

over a colour set S, �SMS
(ms) =

P
s2Sms(s)

0�S(s). This in turn induces

a permutation �M of markings: for a marking M written as a state vec-

tor (M(p1); : : : ;M(pn)) we de�ne �M (M) as the marking with state vector

(�C(p1)MS
(M(p1)); : : : ; �C(pn)MS

(M(pn))), i.e., the marking obtaining by per-

muting the markings (multi-sets) of the individual places. In this paper we

will omit the subscript on � and write the permuted marking �M (M) as �(M),

and its state vector as (�(M(p1)); : : : ; �(M(pn))). The subscript can always

be determined from the colour set of the place p in question. Permutation

symmetries determines permutations on binding elements in a similar way.

The construction above induces two equivalence relations { one on the set of

markings (�M) and one on the set of binding elements (�BE). Two markings

M1 andM2 are considered symmetric (equivalent) i� there exists a permutation

symmetry � 2 �SG such that M1 = �(M2), and similarly for binding elements.

That the symmetry groups are algebraic groups ensures that the relations on

markings and binding elements are indeed equivalence relations. The set of all

8.2. Background 89

equivalence classes for �M is denoted M � . Similarly with �BE and BE�. The

equivalence class of a marking/binding element x is denoted [x].

De�nition 8.1

The condensed state space of a CP-net is the directed graph (V;E), where:

V = f C 2 M � j C \ [M0i 6= ; g is the set of nodes.

E = f (C1; B;C2) 2 V �BE� � V j

9 (M1; (t; b);M2) 2 C1 �B � C2 : M1[(t; b)iM2 g

is the set of edges.

2

The condensed state space has a node for each equivalence class containing

a reachable marking. The condensed state space has an edge between two

nodes i� there is a marking in the equivalence class of the source node in

which a transition is enabled, and whose occurrence leads to a marking in the

equivalence class of the destination node.

An essential aspect of calculating condensed state spaces is when reach-

ing a new marking/binding element x during construction to check whether a

marking/binding element from [x] is already contained in the condensed state

space.

To be able to implement the check eÆciently for markings of CP-nets, we

will compute a canonical representative, i.e., a unique representative for each

equivalence class by invoking some function Canonical which given a marking

M calculates the canonical representative of [M]. The check then amounts to

transforming the new marking reached into this unique representative and then

check (using ordinary equality) whether the resulting state has already been

included in the condensed state space. EÆcient generation of condensed state

spaces is therefore highly dependent on the complexity and the number of calls

of the Canonical function.

As for markings, we can compute a canonical representative for the equiv-

alence class [(t; b)] of a binding element (t; b) such that M1[(t; b)iM2 and check

using ordinary equality whether that corresponding arc already exists between

the equivalence classes of M1 and M2. The problem of computing canonical

representatives for equivalence classes of binding elements can be reduced to

the problem of computing canonical representatives of markings by viewing the

variables of the transition as places and the value assigned to a variable as a

singleton multi-set of tokens. Given a transition t with variables v1; v2; : : : ; vn,

a binding element of (t; b) can be viewed as a vector of singleton multi-sets

(1`b(v1); 1`b(v2); : : : ; 1`b(vn)) where b(v) denotes the value assigned to v in the

binding b. Since transitions cannot be permuted by permutation symmetries

in CP-nets, �nding a canonical representative for [(t; b)] is the same as �nd-

ing a canonical representative for b which by the above reduction is the same

as �nding a canonical representative of a marking. Hence, in this paper we

concentrate on computing canonical representatives for markings.

90 Chapter 8. Exploiting Stabilizers and Parallelism

8.3 Canonical Representatives

The basic idea behind the speci�cation of canonical representatives for equiva-

lence classes of states in CP-nets is to de�ne a total ordering on the markings of

the CP-net. This total ordering will be determined by the total ordering on the

atomic colour sets. We therefore assume that each atomic colour set A 2 �A has

an associated total ordering denoted <A. For the atomic colour sets appearing

in practice such as integers, booleans, and enumeration types de�ning this order

is straightforward. For structured types de�ned using type constructors such as

product, union, record, and list, a total order can be inductively de�ned based on

the ordering of their base colour sets using, e.g., lexicographical ordering. In the

rest of this section we assume that a CP-net with places P = fp1; p2; : : : ; png

is given and that each colour set S 2 � has an associated total order denoted

<S.

First we de�ne a total ordering on the multi-sets. We cannot use the usual

ordering (�) on multi-sets over a set S de�ned as ms1 � ms2 , 8s 2 S :

ms1(s) � ms2(s) [46] since this is only a partial order. To obtain a total order on

multi-sets, we de�ne the operation Normalise on a multi-set. This operation

sorts the elements in the multi-setms 2 SMS in, e.g., increasing order according

to the total order <S on S and inserts them into a list of pairs over N �S such

that (k; s) appears in the list i� 0 < ms(s) = k. Formally, Normalise(ms) is

the list [(ms(s1); s1)); (ms(s2); s2); : : : ; (ms(sm); sm)] satisfying si �S si+1 for

1 � i < m. Since <S is a total order on S and < is a total order on N, we can

de�ne a total order <N�S on the elements in the normalised lists in a similar

way as for colour sets constructed using the product type constructor. Based

on this we can de�ne a total ordering on the multi-sets based on lexiographical

ordering.

De�nition 8.2

Let ms1 and ms2 be two multi-sets over a colour set S with a total ordering

<S. Let [ns11; ns12; : : : ; ns1m] = Normalise(ms1) and [ns21; ns22; : : : ; ns1k] =

Normalise(ms2). The total order <SMS
on SMS is de�ned as:

ms1 <SMS
ms2 ,

((m < k) ^ (8i �m : ns1i = ns2i)) _

(9i � m : ns1i <N�S ns2i ^ 8j < i : ns1j = ns2j))

2

Given a set of permutation symmetries �0
� �SG and a multi-set ms over

S, we denote by (�0;ms) the smallest element (according to <S) in the set

f�(ms) j� 2 �0
g, and by � (�0;ms) = f� 2 �0

j�(ms) = (�0;ms)g the subset

of �0 that maps ms into the smallest element of f �(ms) j � 2 �0
g.

Based on the total ordering on multi-sets, we can now de�ne a total order

on state vectors in a similar way.

De�nition 8.3

Let M1 = (M1(p1); : : : ;M1(pn)) and M2 = (M2(p1); : : : ;M2(pn)) be state vec-

tors. The ordering <M on markings is de�ned as:

8.4. Exploiting Stabilizers 91

M1 <M M2 , 9i � n :M1(pi) <C(pi)MS
M2(pi) ^

8j < i :M1(pj) =M2(pj)

2

Since <M is a total order and the equivalence classes of markings are �nite,

it follows that each equivalence class of markings will have a unique minimal

and maximal element which can be used as the canonical representative. In the

following we will denote the smallest element in the equivalence class [M] of a

marking M by [M]min.

The brute-force approach for calculation of the canonical representative of a

marking is simply to apply each permutation symmetry given by the permuta-

tion symmetry speci�cation in turn and return the smallest resulting marking.

Such an algorithm is shown in Fig. 8.1. Given a marking M and the group

of permutation symmetries �SG allowed by a permutation symmetry speci�ca-

tion SG the algorithm uses the mappings and � to compute the canonical

representative [M]min for [M]. The main problem with this algorithm is that

each time a marking is reached during generation of the condensed state space

j�SGj permutation symmetries are applied to the marking. Practical experi-

ments [65], have shown that the growth of j�SGj as a function of the system

parameters becomes a serious bottleneck in the analysis of these systems. If all

colours in each of the atomic colour sets can be permuted arbitrarily there are

�S2�A(jSj!) permutation symmetries.

1: Input M, �SG

2: �0
 �SG

3: for all i 2 f1; 2; : : : ; ng do

4: M 0(pi) (�0;M(pi))

5: �0
 � (�0;M(pi))

6: end for

7: return (M 0(p1);M
0(p2); : : : ;M

0(pn))

Figure 8.1: Calculation of the canonical representative.

8.4 Exploiting Stabilizers

We now show how stabilizers can be used to work around the orbit problem

and avoid iterating through all the permutation symmetries when computing

canonical representatives. When canonicalizing a marking M , the idea is to

determine the set of stabilizers (self-symmetries) of M (denoted �M
SG) which

are the permutation symmetries mapping M to itself. Formally, �M
SG = f � 2

�SG j �(M) = M g. In Sect. 8.4.1 we show how stabilizers can be used to

reduce the number of permutation symmetries that needs to be considered when

computing canonical representatives and show how the backtrack method can

be used to compute the stabilizers in a given marking. The use of the backtrack

algorithm to calculate the stabilizers of a marking is originally suggested in [51].

In Sect. 8.4.2 we show how stabilizers can be used to reduce the number of

markings that needs to be canonicalized.

92 Chapter 8. Exploiting Stabilizers and Parallelism

8.4.1 Fewer Iterations

The basic observation behind reducing the number of permutation symmetries

that needs to be considered is that for a marking M some of the permutation

symmetries in �SG are known to have similar e�ects on M , i.e., when we apply

them to M we obtain the same marking. Hence, we only have to apply one of

these permutation symmetries to M when computing the canonical representa-

tive [47].

It is easy to see that the stabilizers of M is a subgroup of �SG. A left

coset (in the rest of the paper just referred to as a coset) of �M
SG is a set

on the form � Æ �M
SG = f � Æ �0 j �0 2 �M

SGg, where � 2 �SG. The set of

cosets form a disjoint partitioning of �M
SG [1]. From this it follows that two

permutation symmetries, �0 and �00, from the same coset of �M
SG maps M to

the same marking, i.e., �0(M) = �00(M). Hence it suÆces to consider only one

permutation symmetry from each of the cosets of �M
SG when calculating the

canonical representative for M . It follows from La Grange's theorem [1] that

the number of coset representatives is j�SGj=j�
M
SGj. Hence, we now only have to

consider j�SGj=j�
M
SGj permutation symmetries when calculating the canonical

representative for M .

The backtrack method [7] can be used to compute the stabilizers of a mark-

ing M [51] since the stabilizers constitutes a subgroup of �SG. The backtrack

algorithm originates from computational group theory. The backtrack algo-

rithm searches a subgroup 	 from the group of all permutations of the set

f1,...,mg satisfying a certain property � 2 [! ftrue; falseg]. A prerequisite

for using the backtrack algorithm is that the set �� = f � 2 	 j �(�) g con-

stitutes a subgroup of 	. The property that the permutation symmetry � is a

stabilizer of a set S constitutes a subgroup of the group of all permutations.

Hence, we can apply the backtrack algorithm for the calculation of the stabiliz-

ers of sets. During calculation, the backtrack algorithm maintains a subgroup

of 	 and exploits that it is only necessary to test one permutation symmetry

from each coset of the subgroup currently found. In the following we sketch

how the backtrack algorithm can be used for the calculation of stabilizers for a

marking of a CP-net [51]. For a detailed description of the backtrack algorithm

we refer to [7].

Using the backtrack method, we consider the marking of each of the places

of the CP-net in turn. The marking M(p) of a place p is divided into disjoint

sets { one set for each coeÆcient c > 0 in the multi-setM(p). This set contains

the colours appearing with the coeÆcient c in the multi-set M(p). In [4] it

is shown that the set of stabilizers for a marking is the intersection of the

stabilizers of these sets. Hence, we can apply the backtrack algorithm for the

calculation of the stabilizers for each of these sets and intersect the partial

results to obtain the stabilizers of the marking [51]. During calculation the

intersection is done implicitly, i.e., by reducing the initial search domain for the

subsequent applications of the backtrack algorithm. Permutation symmetries

that are not stabilizers for one of the sets treated cannot be stabilizers for

the marking as a whole. Hence, there is no need to include such permutation

symmetries in the calculation for the next set [51]. The algorithms for using

8.4. Exploiting Stabilizers 93

the backtrack method for calculation of stabilizers of a marking for a CP-net is

shown in Fig. 8.2. The algorithm refers to a number of functions.

Coefficients(ms) calculates the coeÆcients appearing in a multi-setms, i.e.,

for ms 2 SMS Coefficients(ms) = fms(s) j s 2 S; m(s) > 0 g

CoefficientSet(c,ms) calculates the set of elements in a multi-set ms ap-

pearing with coeÆcient c, i.e., for ms 2 SMS CoefficientSet(c,ms) =

fs 2 S j ms(s) = c g

StabilizerProperty(S) returns a property � 2 [! ftrue; falseg] for a set

S. The calculated property � takes a permutation symmetry as argument

and returns true if the permutation symmetry is a stabilizer of the set S,

otherwise � returns false.

Backtrack(,�) is the backtrack algorithm. It takes two arguments: a sub-

group 	 of the group of all permutations and a property � and returns

the elements in 	 satisfying �.

When canonicalizing a marking M we only have to consider one permutation

symmetry from each of the cosets of �M
SG. Hence, line 2 of the algorithm in

Fig. 8.1 can be changed from �0
 �SG to �0

 CosetReps(�M
SG), where

CosetReps is a function that given a subgroup of �SG returns a representative

from each of the cosets, and �M
SG is computed using the algorithm given in

Fig. 8.2. A technique for calculation of coset representatives of subgroups of

permutation symmetries (�M
SG) is given in [2], and will not be explained here.

1: Input M, �SG

2: 	 �SG

3: for all i 2 f1; 2; : : : ; ng do

4: for all c in Coefficients(M(pi)) do

5: S CoefficientSet(c,M(pi))

6: � StabilizerProperty(S)

7: 	 Backtrack(,�)

8: end for

9: end for

10: return 	

Figure 8.2: Calculation of stabilizers of a marking.

8.4.2 Fewer Markings Canonicalized

A permutation symmetry speci�cation is required to capture symmetries that

are actually present in the CP-net. A permutation symmetry speci�cation in

accordance with the CP-net is said to be consistent [47]. The consistency of

the permutation symmetry speci�cation ensures [47] that for any two reachable

markings,M andM 0, all binding elements (t; b) and all permutation symmetries

� 2 �SG: M [(t; b)iM 0
) �(M)[(t; �(b))i�(M 0). This implies that for � 2 �M

SG

we have that M [(t; b)iM 0
) M [(t; �(b))i�(M 0). Hence two binding elements

94 Chapter 8. Exploiting Stabilizers and Parallelism

1: Input M, Enabled(M)

2: R Enabled(M)

3: for all (t; b) 2 R do

4: for all � 2 �M
SG \ CosetReps(�

(t;b)

SG) do

5: if (t; �(b)) 2 R ^ (�(b) 6= b) then

6: R R nf(t,b)g

7: end if

8: end for

9: end for

10: return R

Figure 8.3: Reducing binding elements.

(t; b1) and (t; b2) enabled in a markingM and satisfying that (t; b1) = (t; �(b2))

for some stabilizer � of M will lead to symmetric markings. Hence only one of

(t; b1) and (t; b2) needs to be considered for the construction of the condensed

state space. Each binding element considered during construction of the con-

densed state space results in a calculation of the canonical representative for a

marking. Hence, stabilizers can be used to reduce the number of calculations

of canonical representatives.

We propose the algorithm Reduce in Fig. 8.3 for reducing the set of en-

abled binding elements considered in a marking M . Given a marking M and

the set of enabled binding elements Enabled(M) in M Reduce calculates R

� Enabled(M) satisfying (t; b1); (t; b2) 2 R ^ (t; b1) 6= (t; b2)) 8� 2 �M
SG :

�(b1) 6= b2. The algorithm introduces the extra cost of calculating the stabi-

lizers of the marking M . However, this extra cost potentially results in fewer

canonicalization of markings by reducing the number of successor states con-

sidered for M . Moreover, if we exploit the stabilizers when computing the

canonical form as suggested in Sect. 8.4.1, then we have already computed the

stabilizers for the marking as part of the canonicalization. It is worth observing

that the algorithm Reduce in Fig. 8.3 for a given binding element (t; b) iterates

� 2 �M
SG \ CosetReps(�

(t;b)

SG). Hence, Reduce exploits that it is only neces-

sary to consider one representative from each of the cosets of the stabilizers of

(t; b).

8.5 Exploiting Parallelism

We now give an algorithm which distributes the canonicalization of markings

to a number of processes and in this way do canonicalization of markings in

parallel. The basic idea behind this parallel algorithm is to use a number of slave

processes SLAVES = (sl1; sl2; : : : ; slm) for the time expensive canonicalization

of markings, and a master process for construction of the condensed state space

itself based on the canonical markings received from the slaves. The slave

processes will implement the canonicalization of markings as described in the

previous sections.

The algorithm used for state space construction is a modi�ed version of

8.5. Exploiting Parallelism 95

the standard algorithm for condensed state space construction. The algorithm

executed by the master process is shown in Fig. 8.4. The algorithm will be

explained in detail below. The algorithm operates on a number of sets.

Unprocessed. The set of nodes/markings for which successors have not yet

been calculated.

Waiting. The set of nodes/markings which have not yet been canonicalized.

BusySlaves. The set of slave processes which are currently busy, i.e., in the

process of canonicalizing a marking.

Nodes. The set of states currently in the state space.

For the speci�cation of the algorithm we have ignored that arcs are also often

stored as part of the state space. It is however simple to modify the algorithm

such that also the set of arcs in the state space is stored. The algorithm uses

three communication primitives.

Send (sl,M) which sends a marking M to a slave sl for canonicalization.

Finished (sl) which checks whether a slave sl has completed canonicalization

of a marking.

Receive (sl,M) which receives a canonicalized marking M from a slave sl.

Lines 1-4 initializes the four sets introduced above. The algorithm then

consists of a loop which terminates if there are no more Unprocessed and Waiting

markings, and there are no slaves which are in the process of canonicalizing a

marking. The loop consists of three main parts. In the �rst part (lines 8-14)

successor markings for all Unprocessed markings are calculated and added to the

set of Waiting markings. In the second part (lines 16-25) it is checked whether

any of the busy slaves have completed canonicalization (line 17). If so, the

canonicalized marking is received (line 18) and if the marking is not already

in the state space it is added to the set of Nodes and marked as Unprocessed

(lines 19-22). The slave from which the marking was received is removed from

the set of BusySlaves (line 23). Finally, in the third part (lines 27-33) markings

from Waiting are sent to idle slaves for canonicalization. The ordering of the

three main parts is deliberate. Having the calculation of successor markings

�rst in the loop ensures that the state space generation proceeds in a width-�rst

fashion which promotes the canonicalization to be done as much in parallel as

possible. Checking which slaves have �nished their job in the second part before

distributing new markings to be canonicalized have the e�ect of distributing as

many markings as possible in the third part. The algorithm can be modi�ed to

also exploit stabilizers to reduce the number of successor markings which have

to be canonicalized as discussed in Sect. 8.4.2. This can be done by merging

the �rst part of the algorithm with the second part so that the successors of

markings received from the slaves are inserted immediately in the Waiting set

without being added to the Unprocessed set. In this way Unprocessed need not be

part of the algorithm.

96 Chapter 8. Exploiting Stabilizers and Parallelism

1: Nodes fM0g

2: Unprocessed fM0g

3: Waiting ;

4: BusySlaves ;

5: while Unprocessed 6= ; _ Waiting 6= ; _

6: BusySlaves 6= ; do

7: fCalculate successor markingsg

8: while Unprocessed 6= ; do

9: Select M1 2 Unprocessed

10: Unprocessed Unprocessed � fM1g

11: for all ((t; b);M2) such that M1[(t; b)iM2 do

12: Waiting Waiting [fM2g

13: end for

14: end while

15: fRetrieve markings from slaves which have �nishedg

16: for all sli 2 BusySlaves do

17: if Finished(sli) then

18: Receive(sli,M2)

19: if M2 62 Nodes then

20: Nodes Nodes [fM2g

21: Unprocessed Unprocessed [fM2g

22: end if

23: BusySlaves BusySlaves - fslig

24: end if

25: end for

26: fDistribute markings to idle slavesg

27: while SLAVES - BusySlaves 6= ; ^ Waiting 6= ; do

28: Select M1 2 Waiting

29: Select sli 2 SLAVES - BusySlaves

30: Waiting Waiting � fM1g

31: BusySlaves BusySlaves [fslig

32: Send(sli,M1)

33: end while

34: end while

Figure 8.4: Parallel Canonicalization of Markings.

8.6 Experimental Results

A prototype have been developed implementing the algorithms presented in the

previous sections. In this section we apply this prototype on a number of case-

studies to give a �rst evaluation of the practicality of the proposed algorithms.

In Sect. 8.6.1 we report on the experimental results obtained with the algorithms

presented in Sect. 8.4. In Sect. 8.6.2 we report on the experimental results

obtained with the parallel algorithm presented in Sect. 8.5.

The implementation is based on an integration between the Design/CPN

tool [26] which supports state space analysis of CP-nets, and the GAP tool

8.6. Experimental Results 97

[34] which implements eÆcient representations and manipulations of algebraic

groups. The Design/CPN state space tool implements the state space gener-

ation algorithm itself and the storage of the nodes and arcs of the state space.

The algebraic techniques presented in Sect. 8.4 have been implemented in the

GAP tool. The integration of the two tools operates as follows. Each time a

new marking marking is generated during the condensed state space construc-

tion, it is sent to a GAP process that calculates the canonical representative.

The representative marking computed is returned to Design/CPN which con-

tinues the condensed state space construction with the canonicalized marking

received.

8.6.1 Stabilizer Algorithms

This section presents some experimental results obtained using the implemen-

tation of the techniques from Sect. 8.4. The results reported on in this section

were obtained on a 333 MHz Pentium II Linux PC with 128 Mb of memory.

The condensed state space has been constructed for a number of CPN models

briey described below. For a detailed description of the examples we refer

to [47, 59].

Distributed Database [47]. A CPN model of the communication between

d symmetrical database managers.

Commit [59]. A CPN model of a two-phase commit protocol with a coordi-

nator and w symmetrical workers.

Dining Philosophers [47]. A CPN model of the classical dining philosophers

example with p philosophers. Only symmetries corresponding to rotations

of the philosophers are considered.

The condensed state space has been generated for di�erent con�gurations of

the CPN models listed above. We study the generation time of the condensed

state space using three di�erent techniques.

All. Condensed state space generation with canonicalization of markings based

on the algorithm in Fig. 8.1 which iterates through all the permutation

symmetries allowed by the permutation symmetry speci�cation. This

technique is used for reference purposes.

Stabilizer. Condensed state space generation with canonicalization of markings

based on considering one permutation symmetry from each of the cosets

of the stabilizer groups (as described in Sect. 8.4.1).

Reduce. Condensed state space generation based on processing only one binding

element from each equivalence class of the stabilizer group (as described in

Sect. 8.4.2) combined with the canonicalization of markings as in Stabilizer.

Table 8.1 gives the generation time of the condensed state spaces using the

three techniques presented above. The �rst four columns give information about

98 Chapter 8. Exploiting Stabilizers and Parallelism

Table 8.1: Experimental Results { Stabilizer Algorithms.
CPN Model All Stabilizer Reduce

Name Conf j�SGj Nodes Canon Time Canon Time Canon Time

Database d=5 120 16 46 0:00:09 46 0:00:12 22 0:00:06
Database d=6 720 22 77 0:00:43 77 0:00:28 32 0:00:14
Database d=7 5,040 27 120 0:06:08 120 0:01:11 44 0:00:30
Database d=8 40,320 37 { { 177 0:03:00 58 0:01:08
Database d=9 362,880 46 { { 250 0:07:37 74 0:02:51

Commit w=5 120 43 118 0:00:13 118 0:00:17 58 0:00:11
Commit w=6 720 517 183 0:00:58 183 0:00:36 78 0:00:22
Commit w=7 5,040 73 269 0:07:27 269 0:01:19 101 0:00:39
Commit w=8 40,320 91 { { 379 0:02:32 127 0:01:17
Commit w=9 362,880 111 { { 516 0:05:34 156 0:03:00

Dining phil. p=16 16 143 1,270 0:01:24 1,270 0:01:41 1220 0:01:24
Dining phil. p=17 17 211 1,990 0:02:27 1,990 0:02:50 1274 0:02:24

the CPN model. The Name column gives the name of the CPN model. The

Conf column gives the con�guration of the model, e.g., the number of database

managers in the database example. The j�SGj column gives the number of

permutation symmetries allowed by the permutation symmetry speci�cation.

Finally, the Nodes column gives the number of nodes in the condensed state

space. For each of the three techniques described above, the Canon column

gives the number of markings canonicalized and the Time column gives the time

it took to generate the condensed state space. The generation time is written

on the form hh : mm : ss where hh is hours, mm is minutes and ss is seconds.

A { in an entry means that the condensed state space could not be generated

with the available computing power. It should be noted that generation of

condensed state spaces using the prototype implementation involves a certain

amount of overhead resulting from the encoding and decoding of markings as

well as the extra communication overhead introduced by the communication

between Design/CPN and GAP. The encoding/decoding of markings has not

been optimized. Hence, the generation time should merely be seen as relative

times which serve as a basis for comparing the three algorithms.

The generation algorithm used in Stabilizer is the same as the generation

algorithm used in All. Hence, the number of markings canonicalized is the same

using the two techniques. For the examples with only few permutation symme-

tries, e.g., the dining philosopher example where only rotations are considered,

generation with All is faster than generation with Stabilizer. Simply to apply

each of the permutations in turn is faster. From Table 8.1 it can, however,

be seen that a signi�cant speedup is obtained when the number of permuta-

tion symmetries allowed by the permutation symmetry speci�cation increases,

i.e., when the potential gain from only applying j�SGj=j�
M
SGj instead of j�SGj

permutation symmetries when canonicalizing a marking M increases.

The three columns Canon (one for each of the three techniques) show the

number of markings canonicalized, i.e., the number of binding elements pro-

cessed using All, Stabilizer and Reduce, respectively. When using All and Stabilizer

all enabled binding elements are processed in each marking reached during

generation. When using Reduce only binding elements belonging to di�erent

equivalence classes of the stabilizer group are considered. From Table 8.1 it can

be seen that the number of binding elements processed using Reduce is much

smaller than the number of binding elements processed using All and Stabilizer

8.6. Experimental Results 99

Table 8.2: Experimental Results { Parallel Algorithm.
DBM 4 5 6 7 8 9 10

Nodes Full 109 406 1459 5104 17,497 59,049 196,831

Nodes Condensed 11 16 22 27 37 46 56

Slaves

1 0:00:21 0:00:53 0:02:24 0:06:31 0:18:28 0:57:14 3:01:54

2 0:00:13 0:00:31 0:01:23 0:03:43 0:10:15 0:30:48 1:50:56

3 0:00:11 0:00:24 0:01:07 0:02:42 0:07:27 0:21:52 1:15:05

4 0:00:11 0:00:19 0:00:55 0:02:13 0:05:58 0:16:58 1:06:58

5 0:00:12 0:00:19 0:00:52 0:02:02 0:05:06 0:14:52 0:45:59

6 - 0:00:18 0:00:48 0:01:44 0:04:41 0:12:58 0:41:36

7 - - 0:00:52 0:01:40 0:04:58 0:11:32 0:36:16

8 - - 0:00:51 0:01:40 0:04:20 0:11:05 0:33:05

9 - - 0:00:45 0:01:35 0:04:20 0:09:52 0:29:22

10 - - - - 0:04:15 0:09:09 0:28:55

15 - - - - 0:04:18 0:08:46 0:22:32

20 - - - - - - 0:16:31

Speedup 1.75 2.94 3.20 4.12 4.29 6.52 11.01

(for 9 database managers 74 markings are canonicalized using Reduce compared

to 250 markings when using Stabilizer). The reduction in the number of markings

canonicalized is of course dependent of the CPN model in question. Further-

more, it can be seen that the time for generation of the condensed state space

decreases when fewer markings are canonicalized. The prototype recalculates

the stabilizers for the marking when reducing the binding elements. Hence, the

numbers in Table 8.1 can potentially be further optimized if we exploit that

these stabilizers have already been calculated as part of the canonicalization.

8.6.2 Parallel Algorithm

We now present some experimental results obtained with an implementation

of the parallel algorithm from Sect. 8.5. We study the performance of the

algorithm on the database example, and investigate the time for generation

of the condensed state space for di�erent numbers of database managers and

slaves. The master process has been implemented in the Design/CPN tool

whereas the slaves have been implemented as a number of instances of theGAP

tool running in parallel. The results reported on in this section were obtained

with each of the slaves executing on a Sun Sparc4 Workstation each equipped

with 64 Mb of memory. The master was running on a Sun ULTRA Enterprise

3000 with 512 Mb of memory. The slaves and the master were connected via a

local area network.

Table 8.2 lists the generation time for the condensed state space for the

number of database managers ranging from 4 to 10 and the number of slave

processes ranging from 1 to 20. The DBM row lists the number of database

managers. The Nodes Full row lists the number of states in the full state space

for the given number of database managers. Similarly, the Nodes Condensed row

lists the number of nodes in the condensed state space. The Slaves column lists

the number of slaves, i.e., the number of GAP instances used for the generation

of the condensed state space. A � in an entry means that the condensed

100 Chapter 8. Exploiting Stabilizers and Parallelism

state space was not generated with that number of slaves. The reason for not

considering that number of slaves was that using additional did not yield any

signi�cant speedup. The Speedup row gives the speedup in generation time

obtained for a given number of database managers. The speedup has been

calculated as the generation time with one slave divided by the generation

time for the maximum number of slaves considered for that given number of

database managers. It can be seen that the speedup obtained is signi�cant

in the beginning, becomes gradually smaller until a point is reached at which

additional slaves results in only marginal or no reduction in generation time. It

is also worth observing that the speedup increases with the number of database

managers. The reason for this is that the canonicalization becomes more and

more expensive since the number of permutation symmetries grows with the

number of database managers, and because as the state space becomes large

more nodes can be simultaneously in the waiting set.

8.7 Conclusions and Related Work

For large symmetry groups deciding whether two states are symmetric becomes

time expensive due to the apparent high time complexity of the orbit problem.

In this paper we have presented techniques to alleviate the negative impact of

the orbit problem by the speci�cation of canonical representatives for equiva-

lence classes of states in CP-nets, and by giving algorithms exploiting stabilizers

and parallelism for computing the condensed state space. Only the computa-

tion of the canonical representatives are speci�c to CP-nets. The results on the

use of stabilizers and parallelism are valid also for other modelling formalisms

where the symmetry method is applicable.

The speci�cation, implementation, and experiments with the canonical form

for CP-nets suggested in this paper is new. Previous work with condensed state

spaces for symmetrical CP-nets, e.g., [53, 65], is based on a symmetry check

between states, i.e., given two states s1 and s2 it is checked whether there is a

permutation symmetry in �SG mapping s1 to s2. The use of canonical forms

is, however, attractive since one of the consequences is that, e.g., deterministic

�nite automata (DFAs) [40], binary decision diagrams (BDDs) [93], and graph

encoded tuple sets (GETSs) [37] now can be used together with the symmetry

method of CP-nets. Hence, the canonical forms can be used to speed up the

the computation of condensed state spaces when the storage of the state space

is based on explicit enumeration.

In [81] a method for canonicalizing states of Place/Transition nets is pre-

sented. The problem of iterating all symmetries is overcome by representing the

symmetries as so called generating set. The method presented in [81], however,

does not give perfect reduction for symmetry groups other than the groups of

rotations and all permutations.

The use of cosets was originally suggested in [47], but no experimental results

have been given before as to how e�ective they are in reducing the negative

impact of the orbit problem. In [47] it was recognised that the use of stabilizers

also can be used to reduce the number of binding elements that need to be

8.7. Conclusions and Related Work 101

considered for a given marking during calculation of the condensed state space,

but no experimental results were given.

The suggestion to use the backtrack method for computing the set of sta-

bilizers for markings was �rst presented in [51]. However, only its applicability

on the database example was investigated in [51]. Moreover, is was based on

a manual encoding of the states and did not consider the computation of the

condensed state space. The results were only concerned with computing the

stabilizers for provided markings { it was not done integrated with the state

space generation. One reason for this was that there were no integration be-

tween the Design/CPN tool and the GAP tool. The development of this

integration is another contribution of the work presented in this paper.

The aspect of parallelization of state space generation has also been studied

in [86] which describes parallelization of the Mur� veri�er. In our work we par-

allelize the time expensive canonicalization of markings, whereas the enabling

calculation and the storage of the condensed state space is located within the

master process. In [86] the enabling calculation as well as the storage of the

state space are distributed among a number of processes. Our experimental re-

sults presented in Sect. 8.6.2 are promising with respect to the generation time

of the condensed state spaces. Furthermore, with our technique we can still use

all standard model checking algorithms because the state space is stored at a

single site.

Chapter 9

Coloured Petri Nets and State Space

Generation with the Symmetry Method

The paper Coloured Petri Nets and State Space Generation with the Symmetry

Method constituting this chapter has been published as a workshop paper [63].

[63] L. Lorentsen. Coloured Petri Nets and State Space Generation with the

Symmetry Method. To appear in Proceedings of the 4th Workshop on

Practical use of Coloured Perti Nets and CPN/Tools, Department of Com-

puter Science, University of Aarhus, Denmark, august 2002.

The contents of this chapter is equal to the workshop paper [63] except for

minor typographical changes.

103

9.1. Introduction 105

Coloured Petri Nets and State Space Generation
with the Symmetry Method

Louise Lorentsen
�

Abstract

This paper discusses state space generation with the symmetry method

in the context of Coloured Petri Nets (CP-nets). The paper presents the

development of the Design/CPN OPS tool which, together with the De-

sign/CPN OE/OS tool, provides fully automatic generation of symmetry

reduced state spaces for CP-nets with consistent symmetry speci�cations.

Practical experiments show that the practical applicability of the sym-

metry method is highly depended on eÆcient algorithms for determining

whether two states are symmetric. We present two techniques to obtain

an eÆcient symmetry check between markings of CP-nets: a technique

that improves the generation time and a technique that reduces the mem-

ory required to handle the symmetries during calculation. The presented

algorithms are implemented in the Design/CPN OPS tool and their ap-

plicability is evaluated based on practical experiments.

9.1 Introduction

The state space of a system is a directed graph with a node for each reachable

state of the system and an arc for each state change. From the state space it is

possible to verify whether the system possesses a set of desired properties, e.g.,

the absence of deadlocks, the possibility to always reenter the system's initial

state, etc. However, the practical use of state spaces for formal analysis and

veri�cation of systems is often limited by the state explosion problem [90]: even

small systems may have a large (or in�nite) number of states, thus making it

impossible to construct the full state space of the system. Several reduction

techniques have been suggested to alleviate the state explosion problem. An

example of such a reduction technique is the symmetry method [24, 28, 44, 48].

The symmetry method is not restricted to a speci�c modelling language. In this

paper we work with the symmetry method for Coloured Petri Nets (CP-nets

or CPN) [47, 48]. The basic observation behind the symmetry method is that

many concurrent and distributed systems posses a degree of symmetry which

is also reected in the state space. The idea behind the symmetry method is

to factor out this symmetry and obtain a condensed state space which typically

�Department of Computer Science, University of Aarhus, Aabogade 34, DK-8200 Aarhus

N. DENMARK, E-mail: louisel@daimi.au.dk.

106 Chapter 9. State Space Generation with the Symmetry Method

is much smaller than the full state space, but from which the same properties

can be veri�ed without unfolding to the full state space. The symmetries in

such systems can be described by algebraic groups of permutations. For CP-

nets the symmetries used for the reduction are induced by algebraic groups

of permutations on the atomic colour sets of the CP-net. Hence, we will also

use the term state spaces with permutation symmetries (SSPSs) to denote the

condensed state spaces obtained by using the symmetry method.

In the context of CP-nets the theory of the symmetry method is well de-

veloped [47, 48] and a computer tool (the Design/CPN OE/OS tool [52, 53])

that supports state space generation with the symmetry method has been de-

veloped. However, the symmetry method in the context of CP-nets has only

few applications in practice, e.g. [31, 65]. One of the drawbacks of the De-

sign/CPN OE/OS tool is that it requires the user to implement two predicates

determining whether two states/actions are symmetric or not. This requires

both programming skills and a deep knowledge of the symmetry method. This

is especially the case if the predicates are required to be eÆcient. However,

when constructing SSPSs for CP-nets, it can be observed that the predicates

can be automatically deduced [47] provided the algebraic groups of permuta-

tions used for the reduction have been speci�ed1. The above observation has

motivated the construction of a tool (the Design/CPN OPS tool [64]) which,

given an assignment of algebraic groups of permutations to the atomic colour

sets of the CPN model, generates the predicates for the Design/CPN OE/OS

tool expressing whether two states/actions are symmetric.

The problem of determining whether two states/actions are symmetric is

in literature also referred to as the orbit problem and an eÆcient solution to

this problem is a central issue for the applicability of the symmetry method.

The computational complexity of the orbit problem has been investigated in

[24] showing that in general it is at least as hard as the graph isomorphism

problem for which no polynomial time algorithm is known. However, in the

context of CP-nets symmetry can be determined eÆciently in a number of

special cases, e.g., when the CP-net only contains atomic colour sets [4, 47].

This is, however, not true in general; the problem of determining symmetry

between states/actions is complicated by the fact that colour sets can contain

arbitrary structural dependencies.

During development of the Design/CPN OPS tool a number of practical ex-

periments have been performed with di�erent strategies for the implementation

of the predicates. The practical experiments show that the chosen strategy for

the implementation of the predicates greatly inuences whether the symmetry

method for CP-nets is applicable in practice. The algebraic groups of permu-

tations used for the reduction potentially becomes very large as the system

parameters grow. The number of symmetries used for the reduction is poten-

tially �
A2�A

jAj! where �A denotes the atomic colour sets of the CPN model.

1There are two main approaches in the literature: either the permutations can be auto-

matically deduced from the model, e.g., [14,80], or explicitly speci�ed by the modeller [47,48].

The latter approach is based on the belief that the modeller, who constructs the model is

familiar with the system modelled and has an intuitive idea of the symmetries present in the

model [47].

9.2. The Symmetry Method for CP-nets 107

Hence, eÆcient handling of the symmetries used for the reduction becomes an

important aspect when developing algorithms for the predicates used in the

symmetry method.

In this paper we present techniques and algorithms which implements an

eÆcient solution to the orbit problem in SSPS generation for CP-nets. The

algorithms presented in this paper are based on general techniques which can

be applied independently of model speci�c details. Hence, the predicates can

be automatically constructed by the tool.

The paper is structured as follows. Section 9.2 presents the symmetry

method for CP-nets by means of an example. Section 9.3 presents the ba-

sic generation algorithm for SSPSs. Section 9.4 introduces a basic solution to

the orbit problem for CP-nets that will be used for reference purposes. Sec-

tion 9.5 presents algorithms that improve the run-time of the basic algorithm.

Section 9.6 presents algorithms that ensure an compact representation of the

symmetries throughout calculation of the SSPSs. Finally, Sect. 10.6 contains

the conclusions.

9.2 The Symmetry Method for CP-nets

In this section we introduce the symmetry method for CP-nets by means of

an example. We will use the example of a distributed database from Sect. 1.3

in [46]. Section 9.2.1 presents the CPN model of the distributed database

and show how the symmetry method can be used to reduce the size of the state

space. Section 9.2.2 explains how the symmetries used in the symmetry method

are speci�ed as permutations of atomic colours. Finally, Sect. 9.2.3 presents a

data structure which can be used to represent sets of symmetries in a CP-net.

9.2.1 Example: Distributed Database

The CP-net for the distributed database is shown in Fig. 9.1. The CP-net

models a simple distributed database with n di�erent sites. Each site contains

a copy of all data and this copy is handled by a database manager. Each

Receive all
Acknowledg-

ments

RecAck

Update
and

Send Messages

SendMes

Send an
Acknowledg-

ment

SendAck

Receive
a

Message

RecMes

Performing

DBM

Inactive
DBM

DBM
Waiting

DBM

Unused

MES

MES

Sent

MES

Received

MES

Acknowledged

MES

Active

E

Passiv

E

e

val n = 3;
color DBM =
index d with 1..n declare ms;
color PR =
product DBM * DBM declare mult;
fun diff(x,y) = (x<>y);
color MES =
subset PR by diff declare ms;
color E =
with e declare ms;
fun Mes(s) = mult’PR(1‘s,DBM--1‘s);
var s, r : DBM;

Mes(s) (s,r)

(s,r)

(s,r)

(s,r)Mes(s)

Mes(s)

Mes(s)

ss

s s

r r

rr

e

e e

e

Figure 9.1: CP-net for the Distributed Database example.

108 Chapter 9. State Space Generation with the Symmetry Method

1
3:3

2
1:2 3

1:2
4
1:2

9
1:2

10
1:2

7
1:2

8
1:2

5
1:2

6
1:2

19
1:1

18
2:2

17
1:1

16
1:1

15
2:2

14
1:1

13
1:1

12
2:2

11
1:1

25
2:1

24
2:1

23
2:1

22
2:1

21
2:1

20
2:1

28
2:1

27
2:1

26
2:1

1
1:1

2
1:1

3
1:2

4
1:1

5
1:1

6
2:1

7
1:1

Figure 9.2: The full state space (the left-hand side) and SSPS (the right-hand

side) of the CP-net for the distributed database example with 3 symmetric

database managers(n = 3).

database manager can change its own copy of the database and send a message

to all other database managers requesting them to update their copy of the

database. The distributed database system uses the indexed colour set DBM to

model the database managers, the enumeration colour set E to model whether

the protocol is active, and the product colour set MES to model the messages.

The content of the database and the messages are not modelled. Only header

information (the sender and the receiver) is contained in a message.

The distributed database system possesses a degree of symmetry. The

database managers are treated similarly, only their identities di�er. This sym-

metry is also reected in the state space of the distributed database system.

The state space for the CPN model with three database managers is shown

in the left-hand side of Fig. 9.2. The idea behind SSPSs is to factor out this

symmetry and obtain a smaller state space from which the properties of the

distributed database system can be veri�ed without unfolding to the full state

space. When constructing the SSPS for the database system we consider two

markings/binding elements to be symmetric if they are equal except for a bijec-

tive renaming of the database managers. This kind of symmetry (based on bi-

jective renamings) induces two equivalence relations; one on the set of markings

and one on the set of binding elements [47]. The basic idea when constructing

the SSPS is to lump together symmetric markings/binding elements into one

node/arc, i.e., only store one representative from each equivalence class. The

right-hand side of Fig. 9.2 shows the SSPS for the distributed database. The

nodes in the full state space (in the left-hand side of the �gure) are coloured such

that nodes corresponding to symmetric markings have the same colour. The

same colours are used in the SSPS (in the right hand side of the �gure). From

the �gure it can be seen that the SSPS only contains one node per equivalence

class of symmetric markings.

9.2. The Symmetry Method for CP-nets 109

9.2.2 Symmetry Speci�cation

The symmetries used for the reduction are obtained from permutations of the

atomic colours in the CPN model. Let �A denote the set of atomic colour sets

of the CPN model. For each atomic colour set in the CPN model, A 2 �A, we

de�ne an algebraic group of permutations �A, i.e., a subgroup of [A ! A]. A

symmetry � of the system is a set of permutations of the atomic colour sets

of the model, i.e., � = f�A 2 �AgA2�A . In the rest of the paper we will use

the term permutation symmetry to denote a set of permutations of the atomic

colour sets of a CPN model.

The symmetry considered in the distributed database system is a bijective

renaming of the database managers. This is obtained by allowing all permu-

tations of the atomic colour set DBM. Hence a permutation symmetry in the

distributed database system is a set � = f�E 2 �E; �DBM 2 �DBMg, where

�DBM = [DBM ! DBM] and �E = f�idg (where �id is the identity permu-

tation, i.e., �id(e)=e). From the permutation symmetries of the CPN model

we derive permutations of the structured colour sets, multi-sets, markings and

binding elements as described in [47].

A symmetry speci�cation of a CP-net is an assignment of algebraic groups

of permutations to each of the atomic colour sets of the CP-net and hence de-

termines a group of permutation symmetries. The symmetry speci�cation is

required to be consistent [47] which means that it is required to only express

symmetries that are actually present in the system. We will use �SG to denote

the group of permutation symmetries given by a consistent symmetry speci-

�cation SG. In the rest of the paper we assume that a CP-net with places

P = fp1; p2; :::; png is given together with a consistent symmetry speci�cation

SG which determines a group �SG of permutation symmetries.

9.2.3 Restriction Sets

A consistent symmetry speci�cation SG determines a group of permutation

symmetries �SG. During generation of the SSPS we need some kind of repre-

sentation of �SG. One possibility is to list the permutation symmetries. Since

the symmetry groups used for the reduction can be very large, this is not a

feasible solution.

A set of permutations of an atomic colour set can instead be represented as a

restriction set. Restriction sets are introduced in [47] and formally de�ned in [4].

Here we will introduce restriction sets by means of an example. Below we use

a restriction set to represent a subset of [DBM ! DBM]. The set of permutations

mapping d(1) to d(2) and the set fd(2),d(3)g to the set fd(1),d(3)g can

be represented by the following restriction set:

d(1) d(2)

d(2) d(3) d(1) d(3)

Each row in the restriction set introduces a requirement for the set of permu-

tations represented by the restriction set. The individual restrictions (rows)

express that the colours on the left-hand side must be mapped into the colours

110 Chapter 9. State Space Generation with the Symmetry Method

of the right-hand side. In [4] it is proven that restriction sets can be eÆciently

intersected (while maintaining the compact representation) and that an arbi-

trary set of permutations can be represented by a set of restriction sets. Hence,

restriction sets provide a potentially compact representation of sets of permu-

tations. In the rest of the paper we will use restriction sets to represent sets

of permutations of atomic colour sets. Hence, a symmetry speci�cation can be

represented by a set of restriction sets for each atomic colour set in the CP-net.

9.3 Condensed State Space Generation

In this section we give an introduction to the standard algorithm Generate-

SSPS for construction of the SSPS of a CP-net [47]. Nodes and Arcs are sets of

states (markings) and actions (binding elements), respectively, and it contains

the states and actions that are included in the SSPS. Unprocessed is a set of

states, and contains the states for which we have not yet calculated the successor

states. M0 denotes the initial state. Next(M) is a function calculating the set

of possible next moves (an action and the resulting state) from the state M .

Node(M) is a function that checks whether a node symmetric to M is already

included in the SSPS. If not, M is added to Nodes and Unprocessed. Similarly,

Arc(M1,b,M2) is a function that checks whether a symmetric arc is already

included in the SSPS, i.e., an arc consisting of a binding element symmetric

to b from a marking symmetric to M1 to a marking symmetric to M2. If not,

(M1,b,M2) is added to Arcs.

Algorithm: GenerateSSPS () =

1: Nodes fM0g

2: Arcs ;

3: Unprocessed fM0g

4: repeat

5: select M1 2 Unprocessed

6: for all (b,M2) 2 Next(M1) do

7: Node(M2)

8: Arc(M1,b,M2)

9: end for

10: Unprocessed := Unprocessed n fM1g

11: until Unprocessed = ;

The algorithm proceeds in a number of iterations. In each iteration a state

(M1) is selected from Unprocessed and the successor states (and actions) are

calculated using the Next function. For each of the successor states, M2, it is

checked whether Nodes already contains a state symmetric to M2. If not M2 is

added to both Nodes and Unprocessed. Similar checks are made for the actions.

The check for symmetric states and symmetric actions are instances of the

orbit problem. From the basic generation algorithm it can be seen that eÆcient

generation of the SSPS is highly dependent on the eÆciency of the algorithms

for determining the following two problems: 1) When reaching a new marking

9.3. Condensed State Space Generation 111

M during generation of the SSPS, is there a marking symmetric to M already

included in the SSPS? And 2) When reaching a new arc (M1; b;M2) during

generation of the SSPS, is there a symmetric arc already included in the SSPS?

GenerateSSPS is implemented in the Design/CPN OE/OS tool and used

when calculating SSPSs for CP-nets. In Design/CPN a hash function is used

when storing the markings during generation of the SSPS. When reaching a

new marking during generation of the SSPS each marking stored with the same

hash value is checked to see if it is symmetric to the newly reached marking, i.e.,

symmetry checks are performed locally between markings in the collision lists.

The user of the tool is free to use his own hash function. The only requirement

is that the hash function used is symmetry respecting, i.e., symmetric states are

mapped to the same hash value. This is the case for the default hash function

used in Design/CPN. Hence, when using the Design/CPN OE/OS tool for the

generation of SSPSs eÆcient generation is dependent on the eÆciency of the

two predicates, PM and PBE , determining symmetry between markings and

binding elements, respectively.

PM : Given M1;M2 2 M determine whether 9� 2 � s.t. �(M1) =M2.

PBE : Given (t1; b1); (t2; b2) 2 BE determine whether 9� 2 � s.t. �(t1; b1) =

(t2; b2).

The Design/CPN OE/OS tool requires PM and PBE to be implemented by the

user. Implementing such predicates is error-prone for large CPN models and

requires both programming skills and a detailed knowledge of the symmetry

method. This is especially the case if the predicates are required to be eÆcient.

The required user implementation of PM and PBE in the Design/CPN OE/OS

tool has motivated the development of the Design/CPN OPS tool which given a

CP-net and a consistent symmetry speci�cation automatically generates the two

predicates, PM and PBE , needed by the Design/CPN OE/OS tool. In the rest of

the paper we will present techniques and algorithms to obtain implementations

of PM and PBE in the Design/CPN OPS tool which are eÆcient in practice.

The algorithms are independent of the speci�c CP-net. Hence, the predicates

can be automatically generated.

In the following discussions we will concentrate on the markings since the

symmetry check between binding elements can be viewed as a special case

of symmetry checks between markings: Given a transition t with variables

v1; v2; : : : ; vm, a binding b of t can be viewed as a vector of singleton multi-sets

(1`b(v1); 1`b(v2); : : : ; 1`b(vm)), where b(v) denotes the value assigned to v in the

binding b. Since transitions cannot be permuted by permutation symmetries

in CP-nets determining symmetry between binding elements is the same as

determining symmetry between markings. Hence, in the rest of the paper we

will present techniques and algorithms to obtain an eÆcient implementation of

PM , i.e., givenM1;M2 2 M determine whether 9� 2 � such that �M (M2) =M1.

112 Chapter 9. State Space Generation with the Symmetry Method

9.4 Basic Algorithm for PM

In this section we will present a basic algorithm which implements the predicate

PM . Section 9.4.1 presents the algorithm. Section 9.4.2 presents experimental

results obtained using the Design/CPN OPS tool where the basic algorithm

presented in this section is used to determine symmetry between markings.

9.4.1 Presentation of the Algorithm

The algorithm is based on a simple approach where �SG, i.e., the group of

permutation symmetries allowed by the symmetry speci�cation SG, is iterated

to determine whether 9� 2 �SG s.t. �(M1) = M2. The algorithm PBasic
M is

given below.

Algorithm: PBasic
M (M1;M2)

1: for all � 2 �SG do

2: if �(M1) =M2 then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from �SG (line 1)

and tests whether � is a symmetry between the two markings, M1 and M2

given as input (lines 2-4). The iteration stops when a permutation symmetry

� for which �(M1) = M2 is found (line 3) or the entire �SG has been iterated

(line 6).

The algorithm PBasic
M potentially tests fewer permutation symmetries than

j�SGj. This is however not the case if M1 and M2 are not symmetric. In

that case the algorithm checks the whole �SG. Hence, PBasic
M is only useful

for CP-nets with few permutation symmetries. This is also supported by the

experimental results presented below.

However, before we present the experimental results of the PBasic
M algorithm

we will briey introduce how it is tested whether a permutation symmetry �

maps a marking M1 to another marking M2 (line 2 in PBasic
M). In [4] it is

shown how the set of permutation symmetries between two markings can be

determined as the intersection of the sets of permutation symmetries between

the markings of the individual places. Hence, to determine whether a permu-

tation symmetry � 2 �SG is a symmetry between two markings M1 and M2,

we in turn test the multi-sets constituting the markings of pi 2 P . Note that if

a permutation symmetry is not a symmetry for the marking of a place pi 2 P ,

i.e., �(M1(pi)) 6= M2(pi) the permutation symmetry � cannot be a symmetry

between M1 andM2 and therefore there is no need to test the remaining places

in P . Using the ideas presented in [4] we obtain an algorithm TestPermu-

tationSymmetry which given a permutation symmetry � and two markings,

9.4. Basic Algorithm for PM 113

M1 and M2, tests whether �(M1) =M2.

Algorithm: TestPermutationSymmetry(�,M1,M2) =

1: for all pi 2 P do

2: if �(M1(pi)) 6=M2(pi) then

3: return false

4: end if

5: end for

6: return true

The algorithm repeatedly selects a place pi 2 P of the CP-net (line 1) and tests

whether � is a symmetry between the markings of pi inM1 andM2 (line 2-4). If

not, � is not a symmetry between M1 and M2, otherwise a new place is tested.

The iteration proceeds until a place pi 2 P for which � is not a symmetry is

found (line 3) or all places have been tested (line 6).

9.4.2 Experimental Results of the PBasic
M Algorithm

This section presents experimental results obtained using the Design/CPN OPS

tool. The following results are obtained using an implementation of PBasic
M to

determine whether two markings are symmetric. A similar approach is used for

the implementation of PBE .

The Design/CPN OPS tool represents �SG as a restriction set. When check-

ing symmetry between two markings using PBasic
M �SG is listed and the per-

mutation symmetries from the list are removed and tested until a permutation

symmetry � is found for which �(M1) =M2 or the list is empty.

SSPSs have been generated for two di�erent CP-nets in a number of con-

�gurations. The CP-nets used in the experiments are briey described below.

For a detailed description of the CP-nets we refer to [47, 59].

Commit [59]. A CP-net modelling a two-phase commit protocol with a co-

ordinator and w symmetrical workers.

Distributed database [47]. The CP-net presented in Sect. 9.2 modelling the

communication between n symmetrical database managers.

Table 9.1 shows the generation statistics for of the SSPS for di�erent con�gura-

tions of the two CP-nets using the PBasic
M algorithm. The CP-net column gives

the name (C stands for commit and D stands for distributed database) and con-

�guration of the CP-net for which the SSPS is generated as well as the number

of permutation symmetries given by the symmetry speci�cation SG used for

the reduction. The Count column gives two numbers: the total number of times

the PM predicate is called during calculation of the SSPS and the number of

calls which evaluate to true, i.e., the number of those calls which determine

that the two markings are symmetric. The Tests column presents statistics on

the number of permutation symmetries applied to markings during generation

of the SSPS: Total gives the total number of permutation symmetries applied

114 Chapter 9. State Space Generation with the Symmetry Method

PBasic
M

CP-net Count Tests Time

Con. j�SGj PM PM=true Total PBasic
M PBasic

M =true % j�SGj Secs

C2 2 11 7 19 1.73 1.57 78.5 0

C3 6 26 19 90 3.46 2.53 42.0 0

C4 24 53 41 488 9.21 4.88 20.3 0

C5 120 95 76 3,242 34.1 12.7 10.5 0

C6 720 157 127 27,297 174 44.86 6.2 23

C7 5,040 { { { { { { {

D2 2 4 2 7 1.75 1.50 75.0 0

D3 6 14 6 61 4.36 2.17 36.0 0

D4 24 35 15 533 15.2 3.53 14.7 0

D5 120 71 31 5,037 70.9 7.64 6.37 0

D6 720 126 56 51,693 410 23.1 3.20 16

D7 5,040 { { { { { { {

Table 9.1: Generation statistics for SSPS generation using the PBasic
M algorithm.

to markings during generation of the SSPS, PBasic
M gives the average number

of permutation symmetries applied in each call of PBasic
M , PBasic

M =true gives

the average number of permutation symmetries applied in each call of PBasic
M

which evaluates to true (the case where iteration of the entire �SG is potentially

avoided), and �nally, % j�SGj gives the average percentage of the permutation

symmetries which are tested in a call of PBasic
M . Finally, the Time column gives

the number of seconds it took to generate the SSPS for the given CP-net. A '{'

in an entry means that the SSPS could not be generated within 600 seconds.

All experimental results presented in this paper are obtained on a 333MHz

PentiumII PC running Linux. The machine is equipped with 128 Mb RAM.

From Table 9.1 it can be seen that when system parameters increase the

number of permutation symmetries tested increase signi�cantly. This is caused

by the increasing size of �SG. From the % j�SGj column it can be seen that the

average percentage of �SG which are tested in PBasic
M decreases when the system

parameters increase. However, the increasing size of �SG makes it impossible

to generate the SSPS for the two CP-nets when system parameters, i.e., the

number of concurrent readers or database managers, becomes greater than 6.

This is also caused by the approach where �SG is listed before the permutation

symmetries are tested. For systems of increasing size j�SGj imply that the entire

�SG cannot be represented in memory and, thus, generation of the SSPS is not

possible. It should be noted that the results presented in Table 9.1 depends on

the order in which the permutation symmetries are applied. The order used for

the experiments is the same order in each call of PBasic
M based on a recursive

unfolding of the restriction set.

We conclude that the experiments performed using PBasic
M in generation of

SSPSs show that the run-time incurred by the iteration of �SG becomes signif-

icant when system parameters grow. Hence, in order to make the calculation

of SSPSs for CP-nets applicable in practice we need to carefully consider the

number of permutation symmetries tested in the generation of the SSPSs. The

next section presents techniques which improve PBasic
M in this direction.

9.5. Approximation Techniques 115

9.5 Approximation Techniques

In this section we will present an algorithm which presents an improved imple-

mentation of the predicate PBasic
M . Section 9.5.1 presents the algorithm. Sec-

tion 9.5.2 presents experimental results obtained using the Design/CPN OPS

tool where the improved algorithm presented in this section is used to determine

symmetry between markings.

9.5.1 Presentation of the Algorithm

The problem when using PBasic
M for the symmetry check between markings is

that in the worst case j�SGj permutation symmetries will be checked. When

determining symmetry between markings a selection of simple checks can in

many cases determine that two markings are not symmetric or determine a

smaller set of permutation symmetries that have to be checked.

In this section we will present a new algorithm for PM which given two

markings, M1 and M2, calculates a set 	M1;M2 such that f� 2 �SG j �(M1) =

M2g � 	M1;M2 � �SG. Hence, 	M1;M2 is a super-set of the set of permutation

symmetries mapping M1 to M2. If 	M1;M2 = ; we can conclude that M1

and M2 are not symmetric. However, if 	M1;M2 is non-empty we have to test

the individual permutation symmetries in 	M1;M2 . In worst case j	M1;M2 j

permutation symmetries have to be checked. This is the case ifM1 and M2 are

not symmetric. IfM1 andM2 are symmetric then in worst case j	M1;M2 j�jf� 2

�SG j �(M1) = M2gj + 1 permutation symmetries have to be checked. Hence,

the goal of the approximation technique is to construct 	M1;M2 as close to

f� 2 �SG j �(M1) =M2g as possible.

In [4] it was shown that if a CP-net only contains atomic colour sets then the

set f� 2 �SG j �(M1) = M2g can be determined eÆciently. This is, however,

not the case if the CP-net contains structured colour sets. Nevertheless, we

will use the technique to eÆciently obtain an approximation 	M1;M2 of f� 2

�SG j �(M1) = M2g, thus reducing the number of permutation symmetries

which have to be checked compared to the approach used in PBasic
M . This is

obtained at the cost of doing the approximation. In the following we will show

how such an approximation can be obtained eÆciently when �SG is represented

as a restriction set. The approximation technique is based on ideas from [4,47].

The set of permutation symmetries mapping a markingM1 to another mark-

ingM2 can be found as the intersection of sets of permutation symmetries map-

ping M1(pi) to M2(pi) for all pi 2 P . Similarly, it is shown in [47] and proved

in [4] how the set of permutation symmetries between such markings of places,

i.e., multi-sets, can be determined as the intersection over sets of symmetries

between sets with equal coeÆcient in the multi-sets, i.e., for a permutation

symmetry to be a symmetry between ms1 and ms2 it must ensure that a colour

appearing with coeÆcient c in ms1 must be mapped into a colour appearing

with the same coeÆcient in ms2. We will illustrate using the CP-net of the

Distributed Database (Fig. 9.1) as an example.

Let ms1=1`d(2)+1`d(3) and ms2=1`d(1)+1`d(2) be two markings of a

the place Inactive with colour set DBM. In ms1 two colours (d(2) and d(3)) ap-

116 Chapter 9. State Space Generation with the Symmetry Method

pear with coeÆcient 1 and one colour (d(1)) appear with coeÆcient 0. We can

express the multi-set of coeÆcients as 2`1+1`0. In ms2 it is also the case that

two colours (d(1) and d(2)) appear with coeÆcient 1 and one colour (d(3))

appear with coeÆcient 0. Hence, ms2 has the same multi-set of coeÆcients as

ms1 namely 2`1+1`0. A permutation �DBM of the colour set DBM is a per-

mutation mapping ms1 to ms2 if �DBM ensures that a colour appearing with

coeÆcient 1 in ms1 is mapped to a colour appearing with coeÆcient 1 in ms2,

and similar for the rest of the coeÆcients (here just 0). Hence, we can construct

a restriction set representing the set of permutations between ms1 and ms2 by

constructing a restriction for each of the coeÆcients appearing in ms1 and ms2.

CoeÆcient 0:

CoeÆcient 1:

d(1) d(3)

d(2) d(3) d(1) d(2)

In the above example the two multi-sets had the same multi-sets of coeÆcients.

This is a necessary requirement for the two multi-sets to be symmetric [4]. If

not, the left and right-hand sides of the constructed restrictions do not con-

tain the same number of elements, and thus does not represent a valid set of

permutations. Multi-sets of coeÆcients are formally de�ned in [4]. We de�ne

multi-sets of coeÆcients using the notation used in this paper below and present

an algorithm which calculates the set of permutation symmetries between two

multi-sets over an atomic colour set.

De�nition 9.1

For a multi-set ms over a colour set C we de�ne CoefficientsC(ms) as the

set of coeÆcients appearing in ms:

CoefficientsC(ms) = fi 2 Nj9c 2 C such that ms(c) = ig

Let ms be a multi-set over a colour C. For i 2 CoefficientsC(ms) we de�ne

the i-coeÆcient-class for ms as the set of colours in C appearing with coeÆcient

i:

Ci(ms) = fc 2 Cjms(c) = ig

We de�ne the multi-set of coeÆcients for ms by

Cfms(ms) = fms(i)`igi2CoeÆcientsC(ms)

Based on the above de�nitions we formulate an algorithm FindPermutations

which given two multi-sets ms1 and ms2 over an atomic colour set A 2 �A

calculate the set f�A 2 �A j �A(ms1) =ms2g.

Algorithm: FindPermutationsms(ms1,ms2)

1: if Cfms(ms1) = Cfms(ms2) then

2: return f(Ci(ms1),Ci(ms2)gi2CoeÆcients(ms1)

3: else

9.5. Approximation Techniques 117

4: return ;

5: end if

The algorithm tests whether Cfms(ms1) = Cfms(ms2) (line 1), i.e., the multi-

set of coeÆcients are equal. If not ms1 and ms2 are not symmetric [4], i.e.,

the empty set is returned (line 4), otherwise a restriction set is constructed

containing a restriction (Ci(ms1),Ci(ms2)) for each of the coeÆcients i in

Coefficients(ms1) (line 2).

Given two markings,M1 andM2, the algorithm FindPermutationSymme-

triesM calculates the a set of permutation symmetries 	M1;M2 as the intersec-

tion of �SG and the sets of permutations between the markings of the individual

places with atomic colour sets (calculated using FindPermutationsms).

Algorithm: FindPermutationSymmetriesM(M1,M2) =

1: �0
 �SG

2: for all p 2 fp0 2 P j p0 has an atomic colour setg do

3: �0
 �0

\ FindPermutationsms(M1(p),M2(p))

4: end for

5: return �0

If the CP-net only contains places with atomic colour sets the set 	M1;M2 of

permutation symmetries calculated using FindPermutationSymmetriesM
is equal to the set f� 2 �SG j �(M1) = M2g. If the CP-net also con-

tains places with structured colour sets then 	M1;M2 is a super-set of f� 2

�SG j �(M1) = M2g, i.e, f� 2 �SG j �(M1) = M2g � 	M1;M2 . We will use

FindPermutationSymmetriesM to improve the PBasic
M algorithm presented

in Sect. 9.4, i.e., to reduce the number of permutation symmetries which have

to be checked. The new algorithm P
Approx
M is presented below.

Algorithm: P
Approx
M (M1;M2)

1: for all � 2 FindPermutationSymmetriesM (M1,M2) do

2: if TestPermutationSymmetry' (�,M1,M2) then

3: return true

4: end if

5: end for

6: return false

The algorithm repeatedly selects a permutation symmetry � from the set of per-

mutation symmetries approximated using FindPermutationSymmetriesM
(line 1) and tests whether � is a symmetry between the two markings (lines 2-

4). The iteration stops when a permutation symmetry � for which �(M1) =M2

is found (line 3) or the entire set has been iterated (line 6). P
Approx
M (M1;M2)

uses TestPermutationSymmetry' (�,M1,M2), a modi�ed version of the al-

gorithm TestPermutationSymmetry presented in Sect. 9.4, to determine

whether �(M1) =M2. The di�erence is that given a permutation symmetry �

118 Chapter 9. State Space Generation with the Symmetry Method

and two markings, M1 andM2, TestPermutationSymmetry' only test � on

the places which have a structured colour set. The markings of the places with

atomic colour sets are already accounted for in the approximation and do not

have to be tested again.

The complexity of the calculation of FindPermutationSymmetriesM is

independent of j�SGj. This is a very attractive property, since the experimental

results presented in Sect. 9.4 showed that iterating the group of permutation

symmetries is not applicable in practice when the symmetry speci�cation de-

termines a large set of permutation symmetries.

If the CP-net contains places with atomic colour sets P
Approx
M potentially

tests fewer permutation symmetries than PBasic
M . In PBasic

M at most j�SGj �

jf� 2 �SG j �(M1) =M2gj+1 permutation symmetries are checked when deter-

mining whether two markings are symmetric, whereas at most jFindPermuta-

tionSymmetriesM(M1;M2)j � jf� 2 �SG j �(M1) = M2gj + 1 permutation

symmetries are tested using PApprox
M . The experimental results presented later

in this section show that for the two CP-nets used in the experiments the ap-

proximation is very close (or even equal) to the exact set of permutation sym-

metries mapping M1 to M2. Hence, the number of permutation symmetries

which have to be tested is very low in practice. Furthermore, if the multi-sets

of coeÆcients are di�erent for markings no permutation symmetries have to be

tested to determine that the markings are not symmetric. It should be noted

that a necessary requirement for two markings M1 and M2 to be symmetric is

that Cfms(M1(pi)) =Cfms(M2(pi)) for all places pi 2 P (also for places with

structured colour sets). Hence, an obvious way to improve PApprox
M is to test

the equality of multi-sets of coeÆcients for places with structured colour sets

before checking any permutation symmetries. Places with atomic colour sets

are already accounted for in the approximation.

9.5.2 Experimental Results of the P
Approx

M Algorithm

In this section we will present experimental results obtained using an imple-

mentation of PM based on the PApprox
M algorithm. The approximation operated

directly on the restriction sets and the approximate set 	M1;M2 is also rep-

resented as a restriction set. Before checking the permutation symmetries in

	M1;M2 the approximated set is represented as a list. The permutation sym-

metries from the list are removed and checked until a permutation symmetry �

is found for which �(M1) = M2 or the list is empty. The experimental results

are obtained using the two CP-nets presented in Sect. 9.4.

Table 9.2 presents generation statistics for SSPSs for di�erent con�gurations

of the two CP-nets using the PApprox
M algorithm. The �rst four columns are the

same as the �rst four columns in Table 9.1 presenting the generation statistics

using the PBasic
M algorithm. The CP-net column gives the name and con�gura-

tion of the CP-net for which the SSPS is generated as well as the number of per-

mutation symmetries given by the symmetry speci�cation. The Count column

gives two numbers: the total number of times the PM predicate is called during

calculation of the SSPS and the number of calls of PM which evaluate to true,

i.e., the number of calls which determines that the two markings are symmetric.

9.5. Approximation Techniques 119

The last six columns are speci�c to the P
approx
M algorithm. The Cfms column

gives the number of calls of P
Approx
M for which the multi-sets of coeÆcients are

di�erent for the two markings, i.e., the number of calls of P
Approx
M where no

permutation symmetries are tested. The Tests column presents statistics on

the number of permutation symmetries applied to markings during generation

of the SSPS: Total gives the total number of permutation symmetries applied

to markings during generation of the SSPS, P
Approx
M gives the average number

of permutation symmetries applied in each call of P
Approx
M , P

Approx
M =true gives

the average number of permutation symmetries applied in each call of P
Approx
M

which evaluates to true (the case where iteration of the entire �SG potentially

is avoided), and �nally, %j�SGj gives the average percentage of the permutation

symmetries which are tested in a call of P
Approx
M during generation of the entire

SSPS. Finally, the Time column gives the number of seconds it took to generate

the SSPS for the CP-net in the given con�guration.

From Table 9.2 it can be seen that checking the multi-sets of coeÆcients

before testing any permutation symmetries in P
Approx
M reduces the number of

permutation symmetries tested compared to PBasic
M . It is worth noticing that

in all calls of P
Approx
M which evaluated to false no permutation symmetries are

tested, i.e., in all cases the multi-sets of coeÆcients di�er. This is of course

highly dependent on the CPN model and is a question of the amount of redun-

dancy encoded in markings of places with structured colour sets. Furthermore,

all calls of PApprox
M which evaluated to true only in average requires one per-

mutation symmetry to be tested. This is not a general fact of the technique.

However, it is our experience from other experiments that in practice many

CP-nets contains a degree of redundancy such that the approximation based

on the atomic colour sets of the CP-net often is very close (or equal) to the

exact set of permutation symmetries mapping one marking to another.

Even though the number of permutation symmetries tested after approx-

P
Approx
M

CP-net Count cfms Tests Time

Con. j�SGj PM PM=true Total P
Approx
M

P
Approx
M

=true %j�SGj Secs

C2 2 11 7 4 7 1 1 50.0 0

C3 6 26 19 7 19 1 1 16.7 0

C4 24 53 41 12 41 1 1 4.17 0

C5 120 95 76 19 76 1 1 0.83 0

C6 720 157 127 30 127 1 1 0.14 1

C7 5,040 242 197 45 197 1 1 0.02 60

C8 40,320 { { { { { { { {

D2 2 4 2 2 2 1 1 50 0

D3 6 14 6 8 6 1 1 16.67 0

D4 24 35 15 20 15 1 1 4.17 0

D5 120 71 31 40 31 1 1 0.83 0

D6 720 126 56 70 56 1 1 0.14 0

D7 5,040 204 92 112 92 1 1 0.02 7

D8 40,320 { { { { { { { {

Table 9.2: Generation statistics for SSPS generation using the PApprox
M algo-

rithm.

120 Chapter 9. State Space Generation with the Symmetry Method

imating the set of permutation symmetries is 1 for both CP-nets in all con-

�gurations it can be seen that SSPSs could not be generated for more than 7

database managers or workers. The reason is the memory required by P
Approx
M :

in the implementation of P
Approx
M used for the practical experiments the approx-

imated set of permutation symmetries is listed before testing the permutation

symmetries. Hence, even though the approximation determines the exact set of

permutation symmetries in worst case j�SGj permutation symmetries are listed.

Thus, in order to make the method applicable in practice we need to carefully

consider the representation of the sets of permutation symmetries during gen-

eration of the SSPSs. This is the topic of the next section.

9.6 Lazy Listing

In the previous sections we have used sets of restriction sets to represent sets of

permutation symmetries. The approximation technique presented in Sect. 9.5

operates directly on the restriction sets. However, in the implementations of

both PBasic
M and P

Approx
M the permutation symmetries are listed before they

are checked. The major drawback of the approach presented in the previous

section is that even though the approximation is exact or very close to f� 2

�SG j �(M1) =M2g, i.e., only few permutation symmetries have to be checked,

the entire approximated set is listed. The experimental results presented in

Sect. 9.5 also showed that this approach is not applicable in practice since the

memory use becomes a serious bottleneck as system parameters grow. The main

goal of this section is therefore to improve the PApprox
M algorithm such that a

compact representation of the approximated set of permutation symmetries is

maintained during calculation of P
Approx
M .

In this section we will present an algorithm which is an improved imple-

mentation of the predicate P
Approx
M . Section 9.6.1 presents the algorithm. Sec-

tion 9.6.2 presents experimental results obtained using the Design/CPN OPS

tool where the improved algorithm presented in this section is used to determine

symmetry between markings.

9.6.1 Presentation of the Algorithm

One way of viewing a set of permutation symmetries (represented as a set of

restriction sets) is as a tree. Each level in the tree corresponds to possible images

of a given colour. Hence, leafs in the tree represent the permutation symmetries

given by the permutation of the individual elements found by following the path

from the root to the leaf. Figure 9.3 shows a tree representing �SG for the CPN

model of the distributed database with 3 database managers and a consistent

symmetry speci�cation SG which allow all possible permutations of the atomic

colour set DBM. The leafs of the tree represent the 6 di�erent permutations

symmetries in �SG. Below each leaf the permutation symmetry is represented

by a restriction set.

When testing a set of permutation symmetries on a marking in the PBasic
M

and P
Approx
M algorithms we �rst unfolded the restriction sets to a list of per-

9.6. Lazy Listing 121

e

d(1) d(2) d(3)

d(2)d(3)

d(2) d(3)

d(3)

d(3) d(2)

d(2) d(1)

d(1)

d(1)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e

d(3)

d(1)

d(2)

e

d(1)

d(2)

d(3)

e

d(1)

d(3)

d(2)

e

d(1)

d(2)

d(3)

e

d(2)

d(1)

d(3)

e

d(1)

d(2)

d(3)

e

d(2)

d(3)

d(1)

e

d(1)

d(2)

d(3)

e

d(3)

d(2)

d(1)

e

d(1)

d(2)

d(3)

e

d(1)

d(2)

d(3)

e e

d(1) d(2) d(3) d(1) d(2) d(3)

E:

DBM:

Figure 9.3: All permutation symmetries in �SG represented as a tree.

mutation symmetries and then applied the permutation symmetries from an

end (until one was found or the entire set was checked). With the approach

presented in this section we instead make recursive unfoldings of restriction

sets based on a depth �rst generation of the 'tree view'; each node in the tree

corresponds to a recursive call. Each time a leaf is reached the corresponding

permutation symmetry is checked. If the permutation symmetry is a symmetry

between the two markings checked we conclude that the markings are symmet-

ric (and the iteration stops) otherwise the permutation symmetry is thrown

away and the algorithm backtracks to generate the next permutation symme-

try. In this way at most one permutation symmetry is contained in memory at

a time. In a recursive call corresponding to the ith layer of the tree the algo-

rithm only needs to keep track of the restriction set in the root as well as the

images of the colours corresponding to the layers 1; ::; (i � 1). Hence, instead

of listing potentially �
A2�A

jAj! permutation symmetries the algorithm needs

to represent in the worst case images of at most �A2�A jAj colours plus the

restriction set in the root. An algorithm for such lazy listing of permutations

symmetries represented by sets of restriction sets is shown below.

Algorithm: LazyList (i,�0,M1,M2)

1: if SinglePermutationSymmetry(�0) then

2: � GetPermutationSymmetry(�0)

3: return TestPermutationSymmetry(�;M1;M2)

122 Chapter 9. State Space Generation with the Symmetry Method

4: else

5: col GetColour(i)

6: images GetImages(�0,col)

7: found false

8: repeat

9: select col0 2 images

10: images imagesnfcol'g

11: found LazyList(i+ 1,Split(�0,col,col',M1,M2))

12: until images = ; _ found = true

13: end if

14: return found

The algorithm takes four arguments: i is the depth of the call (corresponds to

the level in the tree), �0 is a set of restriction sets representing a set of permu-

tation symmetries, and M1 and M2 are the two markings which are checked.

First LazyList (i,�0,M1,M2) tests whether the set of restriction sets �0 given

as input represents a single permutation symmetry (line 1). If this is the case a

leaf in the tree is reached and the result of applying the permutation symmetry

is returned (lines 2-3). If the set of restriction sets represents more than one

permutation symmetry (line 4) we have reached an internal node in the tree

and a number of depth-�rst recursive calls are made (lines 8-12). The algorithm

uses a number of functions which we will briey describe below.

SinglePermutationSymmetry(�0) returns true if �0 represents a set of a

single permutation symmetry and false otherwise.

GetPermutationSymmetry(�0) returns one of the permutation symmetries

in the set represented by the set of restriction sets �0.

TestPermutationSymmetry(�;M1;M2) tests whether �(M1) =M2.

GetColour(i) returns the colour associated to the i'th level in the tree.

GetImages(�0,col) returns the possible images of col, i.e., the right-hand side

of the restriction in � in which col is contained in the left-hand side.

Split(�0,col,col') returns a new set of restriction sets which is similar to �0

except that the restriction containing col has been split into two: one

containing col in the left-hand side and col' in the right-hand side and one

containing the remaining colours.

An algorithm combining approximation and lazy listing in the symmetry check

between markings is given below.

Algorithm: P
Approx+Lazy
M (M1,M2)

1: �0
 FindPermutationSymmetriesM (M1,M2)

2: return LazyList (1,�0,M1,M2)

9.6. Lazy Listing 123

CP-net j�SGj Time (secs)

PBasic
M

P
Approx
M

P
Approx+Lazy
M

C2 2 0 0 0

C3 6 0 0 0

C4 24 0 0 0

C5 20 0 0 0

C6 720 23 1 0

C7 5,040 { 60 1

C8 40,320 { { 1

C9 362,880 { { 2

C10 3,628,800 { { 3

C15 1.3 � 1012 { { 77

D2 2 0 0 0

D3 6 0 0 0

D4 24 0 0 0

D5 120 0 0 0

D6 720 16 0 0

D7 5,040 { 7 1

D8 40,320 { { 2

D9 362,880 { { 4

D10 3,628,800 { { 8

D12 4.7 � 108 { { 30

D15 1.3 � 1012 { { 151

Table 9.3: Generation statistics for SSPS generation using the PApprox+Lazy
M

algorithm.

The algorithm approximates the set of permutation symmetries using the tech-

nique presented in Sect. 9.5 (line 1). To avoid the lengthy listing the permu-

tation symmetries in the approximated set are checked using the LazyList

algorithm (line 2).

9.6.2 Experimental Results of the P
Approx+Lazy

M Algorithm

In this section we present experimental results obtained using an implementa-

tion of PM based on the PApprox+Lazy
M algorithm. The implementation repre-

sents the approximated set of permutation symmetries as a set of restriction

sets. During calculation a compact representation is maintained using depth-

�rst recursive unfoldings.

Table 9.3 presents the generation statistics for the generation of the SSPS for

di�erent con�gurations of the two CP-nets using the PApprox+Lazy
M algorithm.

The CP-net column gives the name and con�guration of the CP-net for which

the SSPS is generated as well as the number of permutation symmetries given

by the symmetry speci�cation. The next three columns give the time it took to

generate the corresponding SSPS using the three algorithms PBasic
M , P

Approx
M ,

and PApprox+Lazy
M , respectively.

From Table 9.3 it can be seen that using the P
Approx+Lazy
M algorithm it

is possible to generate SSPSs for CP-nets with very large symmetry groups.

When applying PApprox+Lazy
M for testing the permutation symmetries the same

number of permutation symmetries is of course tested as if the permutation

124 Chapter 9. State Space Generation with the Symmetry Method

symmetries are listed beforehand using the P
Approx
M approach. However, the

compact representation maintained during calculation saves space since the

permutation symmetries are represented by sets of restriction sets. Hence,

when combining the idea of lazy listing with the idea of approximations as

presented in Sect. 9.5 signi�cant speed up is gained. The reason is that in

practice the approximations are often very close to or even equal to the exact

set of symmetries between two markings. Thus, the number of permutation

symmetries which have to be tested from large permutation groups is usually

very small. Furthermore, the memory use of P
Approx+Lazy
M caused by the size

�SG is no longer a bottleneck of the practical applicability of the method.

9.7 Conclusions

We have presented techniques and algorithms to determine whether two mark-

ings of CP-nets are symmetric. The algorithms presented are based on general

and model independent techniques. Hence, the algorithms can be automati-

cally generated for arbitrary CP-nets. The techniques are implemented in the

Design/CPN OPS tool [64] which automatically generates the predicates PM
and PBE needed for the Design/CPN OE/OS Tool [52, 53]. The Design/CPN

OPS tool has been used to conduct the experimental results presented in this

paper.

The approximation technique that PApprox
M is based on is introduced in

[4, 47]. The contribution of this paper is to automate and implement the tech-

nique as well as integrate the technique into SSPS generation. The technique

is speci�c to markings of CP-nets and is as such not general for the symmetry

method.

The need for compact representations and avoidance of testing the entire

group of permutation symmetries is, however, not speci�c to CP-nets. The

algorithms and experimental results presented in this paper are therefore also

relevant in other formalisms than CP-nets.

During SSPS generation we store an arbitrary marking from each equiva-

lence class (the �rst state from the equivalence class encountered during gener-

ation of the SSPS). Another strategy is to calculate a canonical representative

for each equivalence class. The symmetry check can then be reduced to a sim-

ple equivalence check. In [66] we have presented an algorithm for calculation of

canonical markings of CP-nets. The algorithm requires the calculation of the

minimal marking obtained as a result of applying a set of permutation sym-

metries. The algorithm for calculation of canonical markings of CP-nets pre-

sented in [66] encounters the same problem as the PBasic
M algorithm presented in

Sect. 9.4: applying the entire group of permutation symmetries is unfeasible in

practice. In [66] we use algebraic techniques to reduce the number of iterations.

Even with the use of algebraic techniques the canonicalization of markings ex-

periences problems in practice due to the memory use required when working

with large sets of permutation symmetries. The lazy listing approach presented

in this paper can directly be used in the problem studied in [66] and it is en-

visioned that the lazy listing approach can alleviate the bottleneck caused by

9.7. Conclusions 125

the memory use in [66].

It is possible to combine the use of algebraic techniques and the techniques

presented in this paper to obtain a solution for PM . However, since the ap-

proximation techniques only applies when two markings are compared the ap-

proximation techniques presented in this paper cannot be used directly in the

algorithm for calculation of canonical markings of CP-nets.

Chapter 10

Modelling Features and Feature

Interactions of Nokia Mobile Phones using

Coloured Petri Nets

The paperModelling Features and Feature Interactions of Nokia Mobile Phones

using Coloured Petri Nets presented in this chapter has been published as a

conference paper [67].

[67] L. Lorentsen, A-P. Tuovinen and J. Xu. Modelling Features and Feature

Interactions of Nokia Mobile Phones using Coloured Petri Nets. In Pro-

ceedings of the 23th International Conference on Application and Theory

of Petri Nets (ICATPN'2002), volume 2360 of Lecture Notes in Computer

Science, pages 294{313, Springer-Verlag, 2002.

The contents of this chapter is equal to the conference paper [67] except for

minor typographical changes.

127

10.1. Introduction 129

Modelling of Features and Feature Interactions in
Nokia Mobile Phones using Coloured Petri Nets

Louise Lorentsen
�

Antti-Pekka Tuovinen
y

Jianli Xu
y

Abstract

This paper reports on the main results from an industrial cooperation

project1. The project is a joint project between Nokia Research Centre

and the CPN group at the University of Aarhus. The purpose of the

project was to investigate features and feature interactions in development

of Nokia mobile phones through construction of a Coloured Petri Nets

(CPN) model. The model is extended with domain-speci�c graphics and

Message Sequence Charts to enable mobile phone user interface designers

and software developers who are not familiar with Petri Nets to work with

the model. The paper presents the CPN model constructed in the project,

describes how domain-speci�c graphics and Message Sequence Charts are

used in simulations of the CPN model, and discusses how the project

and in particular the construction of the CPN model has inuenced the

development process of features in Nokia mobile phones.

10.1 Introduction

Modern mobile phones provide an increasingly complex and diverse set of fea-

tures. Besides basic communication facilities there is a growing demand for

facilities for personal information management, data transmission, entertain-

ment, etc. To support exibility and smooth operation the user interface (UI)

of the mobile phone is designed to support the most frequent and important

user tasks, hence enabling many features to interplay and be active at the same

time. The dependencies or interplay of features are called feature interactions

and range from simple usage dependencies to more complex combinations of

several independent behaviours.

When the project started, feature interactions were not systematically docu-

mented at Nokia and often the most complex feature interactions were not fully

understood before the features were implemented. In the design and develop-

ment of features, focus was often on the behaviour and appearance of individual

�Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-

8200 Aarhus N. DENMARK, E-mail: louisel@daimi.au.dk.
ySoftware Technology Laboratory, Nokia Research Centre

P.O. Box 407, FIN-00045 Nokia Group, FINLAND, E-mail:

fantti-pekka.tuovinen@nokia.com,jianli.xu@nokia.comg@daimi.au.dk.
1The project is funded by Nokia Mobile Phones.

130 Chapter 10. Modelling Features and Feature Interactions

features. The description of feature interactions was integrated in the descrip-

tion of the individual features involved and did not fully cover or treat feature

interactions in a systematic way. This could, in the worst case, lead to costly

delays in the integration phase of a set of independently developed features.

Therefore, a need for more focus on the feature interactions in the development

of features was identi�ed.

The above mentioned problems have motivated the MAFIA2 project. The

main goals of the project were:

1. To increase the level of understanding of the role that feature interac-

tions play in the UI software and its development by identi�cation and

documentation of typical patterns of feature interactions.

2. To develop a systematic methodology for describing feature interactions.

3. To provide an environment for interactive exploration and simulation of

the feature interactions for demonstrational or analytical purposes.

One of the main activities in the MAFIA project was to construct a model using

Coloured Petri Nets (CP-nets or CPNs) [46,58]. The use of CP-nets allowed us

to have both a static graphical description of features and furthermore allowed

simulation of the models and hence provided an environment for interactive

exploration and simulation of feature interactions. CP-nets have been used

in previous projects within Nokia, e.g., [94], and were therefore known to the

project members in Nokia Research Centre.

The paper is structured as follows. Section 10.2 presents the MAFIA project

and its organisation. Section 10.3 describes the CPN model constructed in the

project. Section 10.4 discusses how the CPN model has been extended with

domain-speci�c graphics and Message Sequence Charts. Section 10.5 contains

a discussion of related and future work. Finally, Sect. 10.6 contains the conclu-

sions and a discussion of how the construction of the CPN model has inuenced

the development of features in Nokia mobile phones. The reader is assumed to

be familiar with the basic ideas of High-level Petri Nets [35].

10.2 The MAFIA Project

The MAFIA project was a joint project between Nokia Research Centre and the

CPN group at the University of Aarhus. The project ran from November 2000

to November 2001 with a total amount of 15 man months of work resources. The

project group consisted of two people from Nokia Research Centre and three

people from the CPN group. Hence, the project group consisted of both experts

from the application domain, i.e., development of mobile phones, and experts

in the tools and techniques to be applied, i.e., CP-nets and its supporting tool

Design/CPN [26].

2MAFIA is an acronym for Modelling and Analysis of Feature Interaction patterns in

mobile phone software Architectures.

10.2. The MAFIA Project 131

Before the joint project started, initial work was done at Nokia Research

Centre to experiment with the use of CP-nets for the modelling of feature

interactions. The researchers at Nokia Research Centre had practical experience

with CP-nets and the Design/CPN tool from other Nokia research projects,

e.g., [94]. Hence, the modelling work started immediately in the beginning

of the project. When the joint project started, one researcher from the CPN

group worked full time at Nokia Research Centre for six months. Other project

members from the CPN group provided guidance and technical support on the

modelling work.

In the �rst phase of the project overview information and internal documen-

tation about the features and the mobile phone UI architecture were provided

by Nokia and the project group experimented with di�erent levels of abstrac-

tion in the CPN model. During the construction of the CPN model, the model

was presented and discussed with both UI designers and software developers

who were not familiar with Petri Nets. Therefore, already in the �rst phase of

the project the project group decided to experiment with ideas for extending

the CPN model with a layer of domain-speci�c graphics and Message Sequence

Charts (MSCs) [45]. This was envisioned to enable the UI designers and soft-

ware developers to work with the CPN model without interacting with the

underlying CP-nets. Interactive simulations were used to validate the models.

After the �rst phase of the project, the CPN modelling proceeded in three

iterative steps each containing the following activities.

Re�nement and extension. The CPN model was re�ned and more features

were added.

Validation. The CPN model was validated by means of both interactive and

more automatic simulations.

Improvement of visualisation facilities. Both the domain-speci�c graph-

ics and the use of Message Sequence Charts were improved and extended.

Presentation. During meetings with UI designers and software developers the

CPN model was presented and its intended use was discussed.

Correction. Based on the evaluation in the meetings with the UI designers

and software developers, the CPN model was corrected.

Hence, the CPN modelling proceeded with developing more and more elabo-

rated models, each presented to the UI designers and software developers, i.e.,

the intended users of the CPN model. At the end of the project the CPN model

and documentation were handed over to the users as a part of the results from

the project. In Sect. 10.6 we will discuss how the CPN model relates to the

other results from the MAFIA project and how the construction of the CPN

model has inuenced the development of features in Nokia.

132 Chapter 10. Modelling Features and Feature Interactions

10.3 The CPN Model

This section presents parts of the CPN model. The CPNmodel does not capture

the full mobile phone UI software system but concentrates on a number of

selected features that are interesting seen from a feature interaction perspective.

The purpose of this section is twofold. Firstly, to give an overview of the CPN

model and secondly, to give an idea of the complexity and the abstraction

level chosen. Section 10.3.1 presents an overview of the CPN model of the

mobile phone UI software system. Section 10.3.2 describes how the individual

features are modelled and how the similarities in communication patterns can

be exploited through reuse of subpages of the CPN model.

10.3.1 Overview of the CPN model

The CPN model has been hierarchically structured into 25 modules (subnets).

The subnets are in CPN terminology also referred to as pages, and we will use

this terminology throughout the paper.

The page Nokia, depicted in Fig. 10.1, is the top-most page of the CPN

model and hence provides the most abstract view of the mobile phone UI soft-

ware system. UIController, Servers, CommunicationKernel and Applications are

all substitution transitions which means that the detailed behaviours are shown

on the subpages with the corresponding names.

The four substitution transitions correspond to four concepts of the mobile

phone UI software system: applications, servers, UI controller, and communi-

cation kernel.

Applications. The applications implement the features of the mobile phone,

e.g., calls, games and calendar. The terms feature and application will be

used interchangeably in the rest of the paper.

Servers. Servers manage the resources of the mobile phone, e.g., the battery,

and implement the basic capabilities of the phone.

UIout

Msg

UIin

Msg

C
o
m
m
u
n
i
c
a
t
i
o
n

K
e
r
n
e
l

HS

UI
Controller

HS Applications

HS

Sout

Msg

Sin

Msg

Ain

Msg

Aout

Msg

Servers

HS

Figure 10.1: Page Nokia.

10.3. The CPN Model 133

UI controller. Applications make the feature available to the user via a user

interface. The user interfaces are handled by the UI controller. Servers

do not have user interfaces. We will sketch the role of the UI controller

by means of an example later in this section.

Communication kernel. Servers and applications communicate by means of

asynchronous message passing. The messages are sent through the com-

munication kernel which implements the control mechanism and protocol

used in the communication between the applications, servers and UI con-

troller.

The focus in the MAFIA project is on features and feature interactions.

Hence, we will not go into detail on the modelling of the UI controller, servers

and communication kernel. However, we will informally sketch the role of the

UI controller as it is necessary for the presentation of the CPN modelling of the

applications (features).

The main role of the UI controller is to handle the user interfaces of the

applications, i.e., to put the user interfaces of the applications on the display of

the mobile phone and to forward key presses from the user to the right applica-

tions. Often several applications are active at the same time, for example, when

the user is playing a game and a call comes in. We therefore need a priority

scheme to determine which application will get access to the display and keys of

the mobile phone. This is also the role of the UI controller. In Fig. 10.2 we give

a small example to illustrate the operation of the UI controller. The example

shows a scenario where the user of the mobile phone starts playing a game.

While playing the game a call comes in. The scenario is shown using a Message

Sequence Chart (MSC), which is automatically generated during simulation of

the CPN model.

Nokia_MSC(1)

User UIController

 1

 2

 3

Call Game Call
Server

1
----PairsII----

Level

Top score

Select Back

New game

2

Playing..

3
Soren

calling

Answer Reject

1
2
3
4

5
6
7
8
9

10
11
12

Key leftsoft
Game_Select

Req. display

DisplayACK
Incoming call

Req. display
Interrupt

InterruptACK

DisplayACK

Figure 10.2: Operation of the UI controller.

134 Chapter 10. Modelling Features and Feature Interactions

The MSC contains a vertical line for the user, the UI controller and each

of the applications and servers involved in the scenario (here the Game appli-

cation, the Call application and the Call server). The marks on the vertical

line corresponding to the UI controller indicate that the display is updated. A

snapshot of the resulting display is shown below the MSC. The number next to

the marks and displays indicates the correspondence. Arcs between the vertical

lines correspond to messages sent in the mobile phone UI software system. The

line numbers in the description below refer to the line numbers in the right-hand

side of the MSC.

� The display of the mobile phone when the scenario starts is shown (line 1).

� The user presses the left soft key (the key just below the left-hand side

of the display) to start a new game (line 2), and the Game application is

noti�ed (line 3).

� The Game application requests the display (line 4), the display is updated

(line 5), and the Game application is acknowledged (line 6).

� An incoming call arrives (line 7), and the Call application requests the

display (line 8).

� The Call application has higher priority than the Game application, hence

the game is interrupted (line 9), the Game application acknowledges the

interruption (line 10), and the display is granted to the Call application

(line 11).

� Finally, the Call application is acknowledged (line 12).

The basic idea behind the model of the UI controller is that the UI controller

maintains a structure of the displays (the display structure) that the applications

in the system have requested to be put on the display of the mobile phone.

Due to the limited UI resources of the mobile phone, not all of the display

requests can be ful�lled. The displays are assigned a priority to assure that

more important features, e.g., an incoming call, will interrupt less important

features, e.g., a game. For a given priority the display structure contains a stack

of display requests, i.e., if two applications request the display with the same

priority the latest request will get the display. Hence, when applications request

the UI controller to use the display of the mobile phone, the UI controller

will put the display request in the display structure (on top of the stack in

the corresponding priority). The UI controller will grant the display to the

top of the �rst, i.e., highest priority, non-empty stack in the display structure.

Figure 10.3 shows an example of the display structure where three priorities are

shown: foreground, desktop and background with three, four and two display

requests in the corresponding stacks, respectively. The display of the mobile

phone will indicate that there is an incoming call (the top element of the stack

with foreground priority).

10.3. The CPN Model 135

Figure 10.3: Stack like structure of application displays.

10.3.2 Modelling of the Features

We will now go into more detail about the modelling of the features of the

mobile phone. In the following we will use the Call feature as an example.

Figure 10.4 shows the detailed behaviour of the page Call modelling the Call

feature. The Call feature is an essential feature of the mobile phone and is also

the most complex feature included in the CPN model. To enhance readability

the Call feature has been divided into a number of subpages. First we will give

a brief overview of the Call feature, then we will concentrate on the part of the

Call feature handling an incoming call.

The two places, Ain and Aout in the upper left corner in Fig. 10.4, model

the message bu�ers to/from the Call application. It should be noted that there

is an arc from Ain to each of the transitions in the page and an arc to Aout

from each of the transitions in the page. However, to increase readability these

arcs have been hidden in the �gure.

The three places Idle, InCall (one active call) and In2Call (two active calls)

Aout

Msg

P Out

Ain

Msg

P In

Idle

ApplicationCol
Call([])

InCall

ApplicationCol

Incoming
Call HS

HangUp
HS

Outgoing
Call HS

InCall
operationHS

Incoming
Call HS

Outgoing
Call HS

In2Call

ApplicationCol

HangUp
HS

Terminate
All HS

Incoming
3rd HS

InCall
operationHS

Figure 10.4: Page Call.

136 Chapter 10. Modelling Features and Feature Interactions

model possible states of the Call application. Initially, the Call application is

Idle. A new call can be established as either an Incoming Call or an Outgoing

Call making the Call application change its state from Idle to InCall. When the

Call feature is InCall, a second call can be established as either an Incoming Call

or an Outgoing Call making the Call application change its state from InCall

to In2Call. In InCall and In2Call a single call can be terminated (modelled by

the substitution transitions Hangup) making the Call applications change its

state to Idle or InCall, respectively. When the Call application is In2Call, both

calls can be terminated (modelled by transition Terminate All) causing the Call

application to change its state to Idle. When the Call feature has two active

calls, i.e., is in state In2Call a third incoming call can be received (modelled

by transition Incoming3rd). The third call cannot be established before one of

the two active calls are terminated. Hence, the Call application will remain in

In2Call.

Figure 10.5 shows the page IncomingCall which models the part of the Call

application handling the reception of an incoming call. This is an example of

the most detailed level of the CPN model of the features. As before, there is

an arc from Ain to each of the transitions in the page and an arc to Aout from

each of the transitions in the page. The arcs from/to the two places Ain and

Aout have again been hidden to increase readability of the �gure.

The places Idle, Indicating and InCall all have colour set ApplicationCol, which

denotes an application and some internal data of the application (here the call

and the internal data of the call, i.e., the number of the caller and the status

of the call). These three places model the possible states of the Call feature

related to the reception of an incoming call. We will explain the rest of the

places (the three Init places) later.

In Fig. 10.5 the arrival of an incoming call is modelled by the substitution

Call_In Reject
HS

Indicating

ApplicationCol

Init

TransxEntityName
init_Call_Incoming()

Answer
HS

Init
TransxEntityName

init_Call_Answer()

Init
TransxEntityName
init_Call_Reject()

Aout

Msg

P Out

Ain

Msg

P In

InCall

ApplicationCol

P Out

Idle

ApplicationCol

Call([])

P I/O

Figure 10.5: Page IncomingCall.

10.3. The CPN Model 137

transition Call In, which causes the Call application to change its state from

being Idle to Indicating. Now the call can be either answered or rejected by the

user. The substitution transition Reject models the rejection of the incoming

call and causes the Call application to change its state back to Idle. The substi-

tution transition Answer models the answering of the call and causes the Call

application to change its state from being Indicating to InCall. All the transi-

tions in Fig. 10.5 are substitution transitions, hence the detailed behaviour is

modelled on separate pages.

In the following we will give a detailed explanation of the substitution tran-

sition Call In modelling an incoming call to the mobile phone. Figure 10.6 shows

in detail what happens when an incoming call arrives in the mobile phone UI

software system. The �gure is a MSC generated from a simulation of the CPN

model. Below we give an textual description. The line numbers refer to the

line numbers in the right-hand side of the MSC.

The MSC contains a vertical line for the user, the UI controller and each of

the applications and servers involved in the scenario (here the Call application,

the Phonebook application, the Any key answer application, the Keyguard

application and the Call server). When the simulation starts the phone is idle

(line 1).

� The Call application is triggered by an incoming call (via the Call server)

(line 2).

� The Call application requests the UI controller, servers, and other ap-

plications in the mobile phone UI software system and uses the results

to carry out its own task, i.e., to receive and notify the user about the

incoming call.

{ The Phonebook application is requested to check whether the calling

Nokia_MSC (1)
User UIController

 1

 2

Call PhoneBook AnyKey
Answer

KeyGuard
Setting

Call
Server

1

I
I
I

12:54 I
I
I
I
I

SONERA

Menu Names

2
Soren

calling

Answer Reject

1
2

3
4
5
6
7
8
9

10
11
12

Incoming call

Use: Lookup 2222

Use result: Soren

Use: IsSetting

Use result: false

Use: IsSetting

Use result: false

Request display

DisplayACK

Ready for input

Figure 10.6: An incoming call arrives in the mobile phone.

138 Chapter 10. Modelling Features and Feature Interactions

number is listed in the phonebook (in that case the name of the caller

will be written in the display instead of the calling number) (lines 3-

4).

{ The Any key answer application is requested to check whether the

Any key answer setting is on (in that case the call application will

allow the call to be answered using any key of the mobile phone,

otherwise the call can only be answered using the o�hook key, i.e.,

the key with the red phone) (lines 5-6).

{ The Keyguard application is requested to check whether it is active

(in that case the call can only be answered using the o�hook key

independent of the state of the Any key answer application) (lines 7-

8).

{ The UI controller is requested to put the user interface of the Call

application on the display of the phone and to send information

about user key presses to the Call application (line 9). The UI con-

troller updates the display (line 10). Finally, the Call application

is acknowledged (line 11). Note that the number was listed in the

phonebook (the display indicates that Soren is calling), any key an-

swer was not set, i.e., only information about the o�hook key should

be sent to the Call application (this cannot be seen from the �gure).

� The call application changes its state and noti�es the UI controller (line 12).

In the above description of the Call application's handling of the incoming call,

the events and messages sent in the mobile phone UI software system have been

divided into three parts: trigger, request/result loop, and proceed. In fact all

state changes of the Call application (as well as the rest of the applications in

the mobile phone UI software system) can be characterised by the same three

steps. Hence, all of the state changes of the applications are modelled using

instances of the same subpage modelling the general communication pattern

sketched above. The page modelling the three steps is shown in Fig. 10.7.

Ain

Msg

P In

Aout

Msg

P Out

Start

ApplicationCol

P In

Trigger

[is_enabled(trans,trigger,app_in),
requestlist=
get_request(trans,app_in,trigger,[],1)]

C
Loop

WaitCol

Request

Wait

WaitCol

Result

[(#source msg’)=(#dest msg),
(#dest msg’)=(#source msg),
(#kind msg’)=resultkind,
(#data msg’)=mirage,
newresultlist=mirage::resultlist]

Proceed

[msglist=get_proceedmsg
(trans,trigger,feature,app_in,thesource),
app_out=get_statechange(trans,app_in)]

End

ApplicationCol

P Out

Init

TransxEntityName

P I/O

app_in

(trans,trigger,thesource,app_in,
(msg,resultkind)::requestlist,resultlist,i)

(trans,trigger,thesource,app_in,
(msg,resultkind)::requestlist,resultlist,i)

(trans,trigger,thesource,
app_in,requestlist,[],1)

(trans,trigger,thesource,
app_in,(msg,resultkind)::
requestlist,resultlist,i)

{source=thesource,
dest=feature,
kind=trigger,
data=mirage}

msg

msg’

app_out

list_to_ms(msglist)

(trans,feature)

(trans,trigger,thesource,app_in,
get_request(trans,app_in,trigger,
newresultlist,i+1),newresultlist,i+1)

(trans,feature)

(trans,trigger,thesource,
app_in,[],resultlist,i)

Figure 10.7: Page GenerelSendReceive.

10.3. The CPN Model 139

The page GenerelSendReceive contains �ve port places: Start, End, Ain, Aout

and Init. The two places Start and End (in the left and right of Fig. 10.7) are

bound to the input place and the output place of the substitution transition

(when the page is used for the Call In substitution transition in Fig. 10.5, Start

and End are bound to Idle and Indicating). Places Ain and Aout are bound to

the message bu�ers to/from the application. Place Init is bound to the place

connected to the substitution transition with a thin line (a line corresponds to

an arc with arrowheads in both directions).

� The �rst step (trigger) is modelled by the Trigger transition modelling

that the state change of the application is triggered by some event sent

to the application via the Ain place causing the application to change its

state from Start to Loop.

� The second step (request/result loop) is modelled by the two transitions

Request and Result (the loop in Fig. 10.7 with the dashed arcs). Request

models the sending of a request to another entity in the system (an ap-

plication, server or the UI controller) via the Aout bu�er and causes the

application to change its state from Loop to Wait. When a result appears

on place Ain transition Result can occur, causing the application to change

its state back to Loop. The loop can be executed several times until the

application has no more requests.

� The third step (proceed) is modelled by the transition Proceed modelling

that a message is sent to the Aout bu�er. The application changes its

state to End, thus modelling a complete state change of the application.

The concrete information about which messages trigger the event, which re-

quests are sent, how the results are used by the application, and what change

in data are performed, etc. is determined from the (initial) marking of the

Init place. The same page (shown in Fig. 10.7) is used as a subpage for all

of the substitution transitions modelling state changes of the applications with

individual installations of the corresponding Init places. The reuse of the page

shown in Fig. 10.7 means that even though the CPN model of the mobile phone

UI software system only consists of 25 di�erent pages it actually contains 98

page instances.

We have now presented the CPN model of the Call application to give

an idea about the complexity of the CPN model and the e�orts required to

include a feature in the model. All features in the CPN model follow the

same idea as the Call feature. Hence, when adding a new feature to the CPN

model, a page modelling the overall state changes is provided together with

a description of triggers, requests/results and proceed messages. This way of

modelling the features reects the way the features are currently documented in

the written speci�cations of features in Nokia mobile phones. Here the features

are described using a textual description of the possible states and state changes

of the feature together with a description of the user interfaces and the use of

other features and the reactions of the feature to user key presses. Hence,

the CPN model closely follows both the UI designers' and software developers'

140 Chapter 10. Modelling Features and Feature Interactions

current understanding of features as well as the current available documentation

of the features.

10.4 Simulations and Visualisation

We model the individual features of the mobile phone using the same ideas as

described for the Call feature. The feature interactions are captured in the CPN

model as the communication and interaction between the individual features in

the CPN model. The UI designers and software developers who are developing

new features will use the CPN model to identify and analyse the interaction

patterns of their new features as well as existing features. One way of using the

CPN model is by means of simulations; both interactively (step-by-step) and

more automatically for investigations of larger scenarios. In this section we will

present techniques which allow UI designers and software developers who are

not familiar with Petri Nets to control and gain information from simulations

without directly interacting with the underlying CP-net and its token game.

Two extensions have been made to the CPN model allowing the current

state and behaviour of the CPN model to be visualised during simulations.

Firstly, the state of the phone as the user observes it on the handset is visu-

alised via an animation of the display. Secondly, the CPN model is extended

with Message Sequence Charts (MSCs) which are automatically constructed as

graphical feedback from simulations. MSCs were chosen to visualise the be-

haviour of the CPN model because diagrams similar to MSCs are already in

use in the design process at Nokia. Therefore, MSCs allow the behaviour of

the CPN model to be visualised in a way that is familiar to the UI designers

and software developers. The use of domain-speci�c graphics and MSCs allow

the state of the model to be visualised. However, the users of the CPN model

are also interested in controlling the simulations without interacting directly

with the underlying CP-nets, i.e., without explicitly selecting the transitions

and bindings to occur. The CPN model has therefore also been extended with

facilities for controlling the simulations without interacting with the underlying

CP-nets.

In the following we will present techniques for visualising information about

the simulation and for controlling the simulation using domain-speci�c graphics.

Figure 10.8 shows how the domain-speci�c graphics appears as a single page in

the CPN model of the mobile phone UI software system. In the following we

will present the elements of the page shown in Fig. 10.8 in detail.

10.4.1 Animation of the display

The CPN model is extended with a picture of a mobile phone. The picture is

used both to present information about the simulation to the user and to get

information from the user to control and guide simulations of the CPN model.

The state of the phone as the user observes it via the handset is visualised via an

animation of the display. The left-hand side of Fig. 10.8 shows a snapshot of the

animation taken during a simulation of the CPN model. The snapshot shown

corresponds to a state of the CPN model where the Call feature is Indicating.

10.4. Simulations and Visualisation 141

Figure 10.8: The domain-speci�c graphics for the mobile phone UI software

system.

The user now has the possibility to either answer (transition Answer in Fig. 10.5)

or reject (transition Reject in Fig. 10.5) the incoming call. The picture of the

mobile phone is also used to control the simulation. By means of key presses

(using mouse clicks) on the picture of the mobile phone, the user can control

the simulation, i.e., start a game or answering an incoming call. In the following

we will sketch how the use of domain-speci�c graphics has been integrated in

the CPN model of the mobile phone UI software system.

The use of domain-speci�c graphics is implemented using the Mimic library

[78] of Design/CPN, which allows graphical objects to be displayed, updated

and selected during simulations. The animation in the left-hand side of Fig. 10.8

is constructed as number of layered objects:

� A background picture of a Nokia mobile phone is used to make the use of

graphics look like a real Nokia mobile phone as it is known to the users

of the CPN model.

� On top of the display of the background picture there are a number of

regions (one for each area of the mobile phone display). Updating the con-

tents of those regions allow us to animate the display of the mobile phone

during simulation. We have implemented a function update display()

that scans through the display structure and �nds the top element (display

request) in the �rst non-empty stack, i.e., the one to be put on the display

of the mobile phone. The regions on top of the display of the background

picture are updated with the contents of this \top most" display.

� On top of each of the keys of the background picture there is a region.

142 Chapter 10. Modelling Features and Feature Interactions

We have implemented a function get input() which enables the user to

select one of the regions corresponding to the keys of the mobile phone

and return information about which region, i.e., which key, is pressed.

The two functions update display() and get input() are called from code

segments in the CPN model. Hence, the graphics is updated during simulations;

user key presses are also read into the CPN model and can be used to control

the simulations.

The animation of the display shows the state of the CPN model as the user of

the handset observes it. Often the user is also interested in getting information

about the internal state of the CPN model, e.g., the current personal settings

of the mobile phone. Hence, the CPN model is also extended with graphics

visualising the internal state of the phone. The lower part in the right-hand

side of Fig. 10.8 shows how the internal state of the CPN model of the mobile

phone UI software system is visualised using the Mimic library. The graphics

visualise the state of Any key answer and Keyguard applications (whether they

are on or o�) and the amount of power in the battery. The graphics is updated

dynamically during simulations to reect the current state of the CPN model.

10.4.2 Controlling the simulations

We have already described how the user can control the simulations by means

of mouse clicks on the picture of the mobile phone. However, this often turns

out to be insuÆcient. There are a number of events which are not generated

as a result of user key presses, e.g., an incoming call to the mobile phone. The

top-most part in the right-hand side of Fig. 10.8 shows how the CPN model

has been extended with the possibility of generating such events by pressing

buttons during simulations. The events are divided into three categories:

External events i.e., events that are caused by the environment of the mobile

phone (here incoming calls from the network).

Internal events i.e., events that are generated by the mobile phone software

without the inuence of the user (here termination of a game, expiration

of the alarm clock, battery level low warning, and battery charging).

Short cuts allow the user of the CPN model to perform an operation without

pressing a series of keys (here set or unset the Any key answer with a

single key press instead of through the menu and change which phone

numbers to alert for).

10.4.3 Message Sequence Charts

The animation of the display and the visualisation of the internal state of the

mobile phone will provide information about the state of the CPN model as the

user of the mobile phone will observe it. However, the software developers are

also often interested in gaining information about the UI software system at a

more detailed level. This is obtained through the use of MSCs which capture

10.5. Related and Future Work 143

the communication between applications, servers and the UI controller in the

mobile phone UI software architecture. Figure 10.2 shows an example of a

MSC automatically generated from a simulation of the CPN model. The MSC

is described in detail in Sect. 10.3.

The MSC shown in Fig. 10.2 has a vertical line for both the user, the UI

controller and each of the applications and servers involved in the scenario.

During meetings with both UI designers and software developers we identi�ed

that the desired level of detail in the MSCs depends highly on the background

of the user. Hence, we found it necessary to be able to customise the MSCs to

the individual users of the CPN model. Hence, we now provide four possible

levels of detail (see the lowest part in the right-hand side of Fig. 10.8). It

should be noted that the MSCs can dynamically be turned on and o� during

simulations. Also the level of detail in the MSC can be changed dynamically.

A small triangle below the buttons indicate which level is currently in use.

1. MSC On will generate detailed MSCs with vertical lines corresponding to

the user, the UI controller as well as for all applications and servers in the

system and arcs for all messages sent in the system.

2. The two buttons in the middle (between MSC On and MSC O�) generate

MSCs in two intermediate levels of detail

� The leftmost button generates MSCs like 1. but omits arcs corre-

sponding to acknowledgement messages. The MSC in Fig. 10.2 is

generated using this level of detail.

� The rightmost button generates MSCs where only the communica-

tion between the user and the user interface is captured. This kind

of MSC is mostly aimed at the UI designers who design the layout

and the use of the display.

3. MSC O� turns o� the use of MSCs.

In this section we have presented separate techniques for visualising informa-

tion about the simulation and for controlling the simulation without interacting

directly with the underlying CP-nets. It should be noted that during simulation

of the CPN model, the page in Fig. 10.8 is the only page of the CPN model that

needs to be visible to the user. Hence, the CPN model can be demonstrated

and used without showing the underlying CPN model.

10.5 Related and Future Work

A number of published papers, e.g., [18, 65, 94], report on projects where CP-

nets successfully have been used in industrial settings. Feature interactions

have been studied in several application areas, e.g., telecommunications systems

(see [56] for a survey), process planning [43], and computer-aided design [75].

To our knowledge there are no applications of CP-nets to feature interactions.

144 Chapter 10. Modelling Features and Feature Interactions

Especially in the area of telecommunication services much research work

have been done on feature interactions and there is a biannual workshop on the

topic [9, 57]. Our work in the MAFIA project does not relate to what is tra-

ditionally known as telecom feature interactions; our problem is more general:

how to coordinate concurrent interrelated services. However, we can draw some

parallels. Much of the work in the area of feature interactions in telecommunica-

tions, e.g., [3,10,73], concentrate on the use of formal methods to automatically

detect feature interactions. This is, however, not the aim of work the MAFIA

project. In our work we focus on the development process of features, i.e, how

the use of CP-nets to model the basic call model and the additional features

can increase the level of understanding of the feature interactions and aid the

future development of new features. Thus, we will categorise our approach to

belong to the software engineering trend identi�ed in [8] as one of the three

major trends in the �eld of telecommunications services. However, the use of

an underlying formal method, i.e., CP-nets, enables us to both obtain a formal

description of the features and feature interactions and an environment for in-

teractive exploration and simulation of the feature interactions. Furthermore,

the construction of the CPN model as well as simulations were used to resolve

inconsistencies in the speci�cations and to gain knowledge about features and

feature interactions.

Based on the above, an interesting question is therefore whether the mod-

elling approach of features developed in the MAFIA project can be used to

automatically analyse and detect feature interactions. Using the Design/CPN

Occurrence Graph Tool (OG Tool) [17] initial attempts have been done to evalu-

ate the applicability of the CPN model for analysis purposes. State spaces have

been generated for di�erent combinations of features (including the features in

isolation, i.e., the basic CPN model with only the analysed feature included).

Not all combinations of features have been analysed and no attempts have been

done to generate the state space for the full CPN model of the mobile phone

UI software system presented in Sect. 10.3; only state spaces for selected com-

binations were generated with the goal of evaluating if (and how) state space

analysis can be used to detect feature interactions in the CPN model developed

in the MAFIA project.

In the following Sf1;f2 denotes the full state space of the basic CPN model

including the features f1 and f2. Sf j= P means that the property P can be

veri�ed from Sf . One possible way of formally expressing that two features f1
and f2 interact is that for a property P we have that Sf1 j= P but Sf1;f2 6j= P .

We will use two properties P1 and P2 as examples:

P1= There are no deadlocks and the initial state is a home state.

P2= If a Call comes in and the Any Key Answer is set, then pressing any

key on the mobile phone will answer the Call.

P1 and P2 can be formulated as queries in the OG tool. The answers to the

queries can then be automatically determined by the OG tool when a state

space has been generated. P1 is general property of the CPN model and can be

10.6. Conclusions 145

expressed as a standard query of a CPN model. P2 relates to speci�c features

of the CPN model and can be formulated using temporal logic [22]. Properties

expressed in temporal logic can be veri�ed using the OG tool library ASK-

CTL [20] which makes it possible to make queries formulated in a state and

action oriented variant of CTL [12]. We will not go into detail with how the

properties are expressed as queries. Instead we will show how P1 and P2 can

be used to detect feature interactions in the CPN model of the mobile phone

UI software system. Analysing di�erent combinations of features we �nd that

1. SCall j= :P1 but SCall;AnyKeyAnswer;PhoneBook;KeyGuard 6j= :P1

2. SAnyKeyAnswer j= P2 but SAnyKeyAnswer;KeyGuard 6j= P2

The �rst feature interaction found is an interaction between the Call, Any

key answer, Phonebook and Keyguard features. The interaction is a result

of the Call application's use of other features in the mobile phone software

system. Figure 10.6 shows how the Call applications requests the Phonebook

application, the Any key answer application and the Keyguard application when

an incoming call arrives at the mobile phone. Hence, a deadlock appears when

the modelled Call application exists in isolation, i.e., without the Phonebook

application, the Any key answer application and the Keyguard application.

The second feature interaction found is an interaction between the Any

key answer and Keyguard features. The interaction appears as a result of the

features' capability of modifying the behaviour of other features. Here the

Keyguard application disables the Any key answer application to prevent the

user from answering an incoming call by accident.

After having performed the basic analysis presented in this section we con-

clude that the CPN model developed in the MAFIA project seems applicable for

analysis and detection of feature interactions; no major changes or adjustments

are needed. However, we expect the state space of the full CPN model to be

very large. Since the features of the mobile phone are asynchronous a possible

direction for future analysis would be to use the stubborn set method [88] to

reduce the size of the state space.

10.6 Conclusions

This paper describes the MAFIA project and one of its main activities: the

construction of a CPN model of the mobile phone UI software system. Previous

sections have reported on the CPN model and its construction. In this section

we will conclude the paper by discussing how the CPN model was used within

the MAFIA project and how the construction of the CPN model has inuenced

the development process of features in Nokia mobile phones.

The CPN model has been constructed in a period of six months and has been

constructed in several iterative steps with more and more elaborated models

each presented to the intended users of the CPN model, i.e., the UI designers

and software developers. The fact that the CPN model was presented to users

not familiar with Petri Nets meant that the CPN model was extended with

146 Chapter 10. Modelling Features and Feature Interactions

domain-speci�c graphics at a very early stage. The graphics was developed and

extended in parallel with the underlying CP-net.

An important aspect of the CPN model developed in the MAFIA project is

that the model is intended to be used in very di�erent settings:

High level (UI oriented). UI designers design the features and their inter-

actions at the level of the user interface of the mobile phone. The CPN

model provides possibilities for simulations with feedback by means of the

animation of the display and MSCs with detailed information about the

ow of user interaction and snapshots of the contents of the mobile phone

display. The UI designers can simulate the CPN model using only the

page with Mimic graphics.

Conceptual level. The architecture and protocol for the mobile phone UI

software system is designed particularly to be well suited for development

of features. The CPN model provides possibilities for simulations with

more detailed feedback about the individual features and their interac-

tions (messages sent between the individual applications, servers and the

UI controller).

Low level. Software developers specify and implement the new features of mo-

bile phones. The CPN model is developed to make it possible to easily add

new features in the model without changing the existing model. Hence,

new features can be included in the CPN model and simulated with the

features already included in the CPN model.

The construction of the CPN model of the mobile phone UI software system

is only one of the activities in the MAFIA project. Other activities include

development of a categorisation of feature interactions. During development

of such a categorisation, the CPN model was used to experiment with the

categories found. The CPN model have also been used to produce static �gures

(like the MSC in Fig. 10.2) to a document explaining feature interaction to UI

designers and UI testers in Nokia. We have already described how the CPN

model was constructed in close cooperation with UI designers and software

developers of Nokia mobile phones. The UI designers and software developers

also suggested features to be included in the CPN model to ensure that the

categorisation of feature interactions developed in the MAFIA project is covered

by features included in the CPN model. Simulations were used to understand

the feature interactions and as a starting point for discussion.

The CPN model is intended to be used in future feature development in

Nokia; both as a means for presenting and experimenting with the di�erent

features and feature interactions captured in the CPN model, but also as a

framework for development of new features. New features can be designed and

included in the CPN model and the behaviour and interactions with other fea-

tures can be observed using simulations of the CPN model. However, even if

the CPN model was not to be used in feature development, we �nd that the

project group and the users involved in the development process have bene�t-

ted from the construction of the CPN model. During construction of the CPN

model, a number of inconsistencies in the descriptions of the features have been

Bibliography 147

identi�ed. The modelling process has identi�ed what kind of information about

a feature's interaction with other features need to be provided by the designer

of the feature and what kind of problems need to be resolved when a feature is

designed. In parallel with the MAFIA project the UI designers involved in the

construction of the CPN model were designing a new feature for a Nokia prod-

uct. During development of the feature, focus was pointed at interactions with

other features based on experiences gained from the MAFIA project, and this

resulted in a suggestion for new design templates and development practises.

The construction of the CPN model has also generated new ideas for the

mobile phone UI architecture. The �rst version of the CPN model was con-

structed by the project group based on written documentation. A number of

inconsistencies were found, and some of these could not be resolved before the

�rst meeting with the users. Hence, a solution was chosen and presented to the

users as a starting point for discussion. In fact, the chosen solution was not

the correct solution with respect to the current implementation of the mobile

phone UI software system. However, the solution modelled was found to be

interesting and in fact a possible suggestion for a change in the mobile phone

UI architecture to make it more oriented towards feature interactions.

In conclusion we can say that the MAFIA project has improved knowledge

about features and feature interactions and has inuenced an ongoing change of

design practises of features in new products of Nokia mobile phones. The CPN

model developed in the MAFIA project is intended to be used in future design

of features of Nokia mobile phones. Furthermore, the modelling activities have

raised interesting questions and ideas that can lead to design changes of the

mobile phone UI architecture.

Bibliography

[1] R. B. Allenby. Rings, Fields, and Groups: An Introduction to Abstract

Algebra. Oxford, England: Oxford University Press, 1991.

[2] L. Allison. Generating coset representatives for permutation groups. Jour-

nal of Algorithms, 1981.

[3] D. Amyot, L. Char�, N. Gorse, T. Gray, L. Logrippo, J. Sincennes,

B. Stepien, and T. Ware. Feature Description and Feature Interaction

Analysis with Use Case Maps and LOTOS. In M. Calder and E. Magill,

editors, Feature Interactions in Telecommunications and Software Systems,

volume VI, Amsterdam, May 2000. IOS Press.

[4] R. Andersen, J. J�rgensen, and M. Pedersen. Occurrence Graphs with

Equivalent Markings and Self-Symmetries. Master's thesis, Department of

Computer Science, University of Aarhus, Denmark, 1991. Only available in

Danish: Tilstandsgrafer med �kvivalente m�rkninger og selvsymmetrier.

[5] M. Awad, J. Kuusela, and J. Ziegler. Object-Oriented Technology for Real-

Time Systems: A Practical Approach using OMT and Fusion. Prentice-

Hall, 1996.

[6] D. Bosnacki, D. Dams, and L. Holenderski. Symmetric Spin. In Proceedings

of the 7th SPIN Workshop, volume 1885 of Lecture Notes in Computer

Science, pages 1{19. Springer-Verlag, 2000.

[7] G. Butler. Fundamental Algorithms for Permutation Groups, volume 559

of Lecure Notes in Computer Science. Springer-Verlag, 1991.

[8] M. Calder, M. Kolberg, E. H. Magill, and S. Rei�-

Marganiec. Feature Interaction: A Critical Review and Con-

sidered Forecast. Submitted for publication. On-line version:

http://www.dcs.gla.ac.uk/�muffy/papers/calder-kolberg-magill-

reiff.pdf.

[9] M. Calder and E. Magill. Feature Interactions in Telecommunications and

Software Systems VI. IOS Press, 2000.

[10] M. Calder and A. Miller. Using SPIN for Feature Interaction Analysis - a

Case Study. In Proceedings of SPIN 2001, volume 2057 of Lecture Notes

in Computer Science, pages 143{162. Springer-Verlag, 2001.

149

150 Bibliography

[11] C. Capellmann, S. Christensen, and U. Herzog. Visualising the behaviour

of intelligent networks. In T. Margaria, B. Ste�en, R. R�uckert, and

J. Posegga, editors, Services and Visualization, Towards User-Friendly De-

sign, volume 1385 of Lecture Notes in Computer Science, pages 174{189.

Springer-Verlag, 1998.

[12] A. Cheng, S. Christensen, and K. Mortensen. Model Checking Coloured

Petri Nets Exploiting Strongly Connected Components. In M. Spathopou-

los, R. Smedinga, and P. Koz�ak, editors, Proceedings of WODES'96. In-

stitution of Electrical Engineers, Computing and Control Division, Edin-

burgh, UK, 1996.

[13] A. Cheng, S. Christensen, and K. Mortensen. Model Checking Coloured

Petri Nets Exploiting Strongly Connected Components. In M. Spathopou-

los, R. Smedinga, and P. Koz�ak, editors, Proceedings WODES '96. Institu-

tion of Electrical Engineers, Computing and Control Division, Edinburgh,

UK, 1996.

[14] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-

Formed Coloured Nets and Their Symbolic Reachability Graph. In

K. Jensen and G. Rozenberg, editors, High-level Petri Nets, pages 373{

396. Springer-Verlag, 1991.

[15] J. B. Christensen and L. Kristensen. Veri�cation of Coloured Petri Nets

Using State Spaces with Equivalence classes. In W. Aalst, J. Colom, F. Ko-

rdon, G. Kotsis, and D. Moldt, editors, Petri Net Approaches for Modelling

and Validation, chapter 2, pages 17{34. Lincoln Europa, 1999.

[16] S. Christensen. Message Sequence Charts. User's Manual, January 1997.

Available from http://www.daimi.au.dk/designCPN/.

[17] S. Christensen, K. Jensen, and L. Kristensen. Design/CPN Occurrence

Graph Manual. Department of Computer Science, University of Aarhus,

Denmark.

On-line version: http://www.daimi.au.dk/designCPN/.

[18] S. Christensen and J. J�rgensen. Analysis of Bang and Olufsen's Be-

oLink Audio/Video System Using Coloured Petri Nets. In P. Az�ema

and G. Balbo, editors, Proceedings of ICATPN'97, volume 1248 of Lec-

ture Notes in Computer Science, pages 387{406. Springer-Verlag, 1997.

[19] S. Christensen, J. B. J�rgensen, and L. M. Kristensen. Design/CPN - A

Computer Tool for Coloured Petri Nets. In E. Brinksma, editor, Proceed-

ings of TACAS'97, volume 1217 of Lecture Notes in Computer Science,

pages 209{223. Springer-Verlag, 1997.

[20] S. Christensen and K.H.Mortensen. Design/CPN ASK-CTL Manual. De-

partment of Computer Science, University of Aarhus, Denmark, 1996.

Online: http://www.daimi.au.dk/designCPN/.

Bibliography 151

[21] E. Clake, E. Emerson, S. Jha, and A. Sistla. Symmetry Reductions

in Model Checking. In A. Hu and M. Vardi, editors, Proceedings of

CAV'98, volume 1427 of Lecture Notes in Computer Science, pages 147{

159. Springer-Verlag, 1998.

[22] E. Clarke, E. Emerson, and A. Sistla. Automatic Veri�cation of Finite

State Concurrent Systems using Temporal Logic. ACM Transactions on

Programming Languages and Systems, 8(2):244{263, 1986.

[23] E. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetries in

Temporal Logic Model Checking. Formal Methods in System Design, 9,

1996.

[24] E. Clarke, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal

Model Logic Model Checking. In Springer-Verlag, editor, Proceedings of

CAV'93, volume 697 of Lecture Notes in Computer Science (LNCS), pages

450{462. Springer-Verlag, 1993.

[25] J. Day and H. Zimmermann. The OSI Reference Model. Proceedings of

the IEEE, 71, December 1983.

[26] Design/CPN Online. http://www.daimi.au.dk/designCPN/.

[27] E. Emerson. Temporal and Modal Logic, volume B of Handbook of Theo-

retical Computer Science, chapter 16, pages 995{1072. Elsevier, 1990.

[28] E. Emerson and A. P. Sistla. Symmetry and Model Checking. Formal

Methods in System Design, 9, 1996.

[29] E. A. Emerson, editor. Formal Methods in System Design, volume 9.

Kluwer Academic Publishers, 1996.

[30] E. A. Emerson and A. P. Sistla. Utilizing Symmetry when Model Check-

ing under Fairness Assumptions: An Automata-theoretic Approach. In

Proceedings of CAV'95, volume 939 of Lecture Notes in Computer Science,

pages 309{324. Springer-Verlag, 1995.

[31] D. Floreani, J. Billington, and A. Dadej. Designing and Verifying a

Communications Gateway Using Coloured Petri Nets and Design/CPN.

In J. Billington and W. Reisig, editors, Proceedings of ICATPN'96, vol-

ume 1091 of Lecture Notes in Computer Science, pages 153{171. Springer-

Verlag, 1996.

[32] A. Foroughipour. Construction of the OS-graph with Permutation Symme-

tries of a Coloured Petri Net using Algebraic Algorithms. Master's thesis,

Master Thesis, Department of Computer Science, Aarhus University, 1994.

[33] G. Gallasch and L. Kristensen. Comms/cpn: A communitation infrastruc-

ture for external communication with design/cpn. In K. Jensen, editor,

Proceedings of the Third Workshop on Practical Use of Coloured Petri

Nets and the CPN Tools, DAIMI-PB { 554, pages 75{90, 2001.

152 Bibliography

[34] The GAP Group, Aachen, St Andrews. GAP {

Groups, Algorithms, and Programming, Version 4.2, 1999.

(http://www-gap.dcs.st-and.ac.uk/~gap).

[35] H. Genrich. Predicate/Transition Nets. In K. Jensen and G. Rozenberg,

editors, High-level Petri Nets, pages 3{43. Springer-Verlag, 1991.

[36] H. Genrich and R. Shapiro. Formal veri�cation of an arbeiter cascade.

In Proceedings of the 13th International Conference on Application and

Theory of Petri Nets, volume 616 of Lecture Notes in Computer Science

(LNCS), pages 205{223. Springer-Verlag, 1992.

[37] J. C. Gr�egoire. State Space Compression in SPIN with GETSs. In Pro-

ceedings of SPIN'96 Workshop, pages 90{109, 1996.

[38] V. Gyuris and A. P. Sistla. On-the-Fly Model Checking Under Fairness

That Exploits Symmetry. In Proceeding of CAV'97, volume 1254 of Lecture

Notes in Computer Science, pages 232{243. Springer-Verlag, 1997.

[39] G. Holzmann. The Model Checker SPIN. IEEE Transactions on Software

Engineering, 23(5):279{295, May 1997.

[40] G. J. Holzmann and A. Puri. A minimized automaton representation of

reachable states. Software Tools for Technology Transfer, 2:270{278, 1999.

[41] P. Huber, A. Jensen, L. Jepsen, and K. Jensen. Towards reachability trees

for high-level petri nets. In G. Rozenberg, editor, Advances in Petri Nets,

volume 188 of Lecture Notes in Computer Science (LNCS), pages 215{233.

Springer-Verlag, 1984.

[42] P. Huber, A. Jensen, L. Jepsen, and K. Jensen. Reachability trees for

high-level petri nets. In K. Jensen and G. Rozenberg, editors, High-Level

Petri Nets; Theory and Application, pages 319{350. Springer-Verlag, 1991.

[43] J.-S. Hwang and W. A. Miller. Hybrid Blackboard Model for Feature

Interactions in Process Planning. Computers and Industrial Engineering,

29(1{4):613{617, 1995.

[44] C. Ip and D. Dill. Better Veri�cation Through Symmetry. Formal Methods

in System Design, 9, 1996.

[45] ITU (CCITT). Recommendation Z.120: MSC. Technical report, Interna-

tional Telecommunication Union, 1992.

[46] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use. Volume 1, Basic Concepts. Monographs in Theoretical Com-

puter Science. Springer-Verlag, 1992.

[47] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use. Volume 2, Analysis Methods. Monographs in Theoretical

Computer Science. Springer-Verlag, 1994.

Bibliography 153

[48] K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets.

Formal Methods in System Design, 9, 1996.

[49] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and

Practical Use. Volume 3, Practical Use. Monographs in Theoretical Com-

puter Science. Springer-Verlag, 1997. ISBN: 3-540-62867-3.

[50] K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN Ref-

erence Manual. Department of Computer Science, University of Aarhus,

Denmark, 1995.

Online: http://www.daimi.au.dk/designCPN/.

[51] J. J�rgensen. Construction of Occurrence Graphs with Permutation Sym-

metries Aided by the Backtrack Method. Technical report, Department of

Computer Science, University of Aarhus, Denmark, 1997. DAIMI PB-516,

ISSN 0105-8517, February 1997.

[52] J. J�rgensen and L. Kristensen. Design/CPN OE/OS Graph Manual. De-

partment of Computer Science, University of Aarhus, Denmark, 1996.

Online: http://www.daimi.au.dk/designCPN/.

[53] J. J�rgensen and L. Kristensen. Computer Aided Veri�cation of Lam-

port's Fast Mutual Exclusion Algorithm Using Coloured Petri Nets and

Occurrence Graphs with Symmetries. IEEE Transactions on Parallel and

Distributed Systems, 10(7):714{732, July 1999.

[54] J. J�rgensen and K. Mortensen. Modelling and Analysis of Distributed

Program Execution in BETA Using Coloured Petri Nets. In J. Billington

and W. Reisig, editors, Proceedings of ICATPN'96, volume 1091 of Lecture

Notes in Computer Science. Springer-Verlag, 1996.

[55] T. Junttila. Computational Complexity of the Place/Transition-Net Sym-

metry Reduction Method. Research report, Helsinki University of Tech-

nology, Laboratory for Theoretical Computer Science, apr. 2000.

[56] D. O. Keck and P. J. Kuehn. The Feature and Service Interaction Problem

in Telecommunication Systems: A survey. IEEE Transactions on Software

Engineering, 24(10):779{796, October 1998.

[57] K. Kimbler and L. G. Bouma. Feature Interactions in Telecommunications

and Software Systems V. IOS Press, 1998.

[58] L. Kristensen, S. Christensen, and K. Jensen. The Practitioner's Guide to

Coloured Petri Nets. International Journal on Software Tools for Technol-

ogy Transfer, 2(2):98{132, December 1998.

[59] L. M. Kristensen. State Space Methods. PhD thesis, Department of Com-

puter Science, University of Aarhus, Denmark, 2000.

[60] L. M. Kristensen and A. Valmari. Finding stubborn sets of coloured petri

nets without unfolding. In J. Desel and M. Silva, editors, Proceedings of

154 Bibliography

the 19th International Conference on Application and Theory of Petri Nets

(ICATPN'98), volume 1420 of Lecture Notes in Computer Science, pages

104{123. Springer-Verlag, 1998.

[61] L. M. Kristensen and A. Valmari. Improved question-guided stubborn set

methods for state properties. In M. Nielsen and D. Simpson, editors, Pro-

ceedings of the 21th International Conference on Application and Theory

of Petri Nets (ICATPN'00), volume 1825 of Lecture Notes in Computer

Science, pages 282{302. Springer-Verlag, 2000.

[62] W. Lawrenz. CAN Contoller Area Network, Grundlagen und Praxis.

H�uttig Buch Verlag, Heidelberg, 1994.

[63] L. Lorentsen. Coloured petri nets and state space generation with the

symmetry method. In K. Jensen, editor, To appear in Proeedings of the

4th Workshop on Applications og Coloured Petri Nets and the CPN Tools,

2002.

[64] L. Lorentsen. Design/CPN OPS Graph Manual. Department of Computer

Science, University of Aarhus, Denmark, 2002.

Online: http://www.daimi.au.dk/�louisel/.

[65] L. Lorentsen and L. Kristensen. Modelling and Analysis of a Danfoss

Flowmeter System. In M.Nielsen and D.Simpson, editors, Proceedings of

the 21th International Conference on Application and Theory of Petri Nets

(ICATPN'2000), volume 1825 of Lecture Notes in Computer Science, pages

346{366. Springer-Verlag, 2000.

[66] L. Lorentsen and L. Kristensen. Exploiting stabilizers and paralellism in

state space generation with the symmetry method. In Proceedings of the

Second International Conference on Application of Concurrency to System

Design (ICACSD'01), pages 211{220. IEEE, 2001.

[67] L. Lorentsen, A.-P. Tuovinen, and J. Xu. Modelling of Features and Feature

Interaction Patterns in Nokia Mobile Phones using Coloured Petri Nets.

In J. Esparza and C. Lakos, editors, Proceedings of the 23rd International

Conferece on Theory and Application of Petri Nets 2002 (ICATPN'02),

volume 2360 of Lecture Notes in Computer Science (LNCS), pages 294{

313. Springer-Verlag, 2002.

[68] O. Madsen, B. M�ller-Pedersen, and K. Nygaard. Object-Oriented Pro-

gramming in the BETA Programming Language. ACM Press, 1993.

[69] K. McMillan. The SMV System. Technical report, School of Computer

Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA, 1992.

[70] R. Milner, R. Harper, and M. Tofte. The De�nition of Standard ML. MIT

Press, 1990.

Bibliography 155

[71] M. M�akel�a. EÆciently verifying safety properties with idle oÆce computers.

In C. Lakos, R. Esser, L. Kristensen, and J. Billington, editors, Proceed-

ings of the Workshops on Software Engineering and Formal Methods and

Formal Methods Applied to Defence Systems, volume 12 of Conferences in

Research and Practice in Information Technology, pages 11{16. Australian

Computer Society, 2002.

[72] T. Murata. Petri Nets: Properties, Analysis and Application. In Proceed-

ings of the IEEE, Vol. 77, No. 4. IEEE Computer Society, 1989.

[73] M. Nakamura, Y. Kakuda, and T. Kikuno. Feature Interaction Detection

using Permutation Symmety. In K. Kimbler and L. G. Bouma, editors, Fea-

ture Interactions in Telecommunications and Software Systems, volume V,

pages 187{201, Amsterdam, September 1998. IOS Press.

[74] The PEP Tool. http://teoretica.informatik.uni-oldenburg.de/�pep/.

[75] D.-B. Perng and C.-F. Chang. Resolving Feature Interactions in 3rd Part

Editing. Computer-Aided Design, 29(10):687{699, 1997.

[76] The PROD Tool. http://www.tcs.hut.fi/prod/.

[77] J. Rasmussen and M. Singh. Designing a security system by means of

coloured petri nets. In J. Billington and W. Reisig, editors, Proceed-

ings of the 17th International Conference on Application and Theory of

Petri Nets, volume 1091 of Lecture Notes in Computer Science (LNCS).

Springer-Verlag, 1996.

[78] J. L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Sim-

ulation Utility for Design/CPN. User's Manual. On-line version:

http://www.daimi.au.dk/designCPN/.

[79] W. Reisig. Petri Nets, volume 4 of EACTS Monographs on Theoretical

Computer Science. Springer-Verlag, 1985.

[80] K. Schmidt. How to Calculate Symmetries of Petri nets. Actae Informat-

icae, 36(7):545{590, 2000.

[81] K. Schmidt. Integrating Low Level Symmetries into Reachability Analysis.

In Proceesings of TACAS'2000, volume 1785 of Lecture Notes in Computer

Science, pages 315{330. Springer-Verlag, 2000.

[82] The SMV System. http://www.cs.cmu.edu/�modelcheck/smv.html.

[83] The Cadence SMV Model Checker.

http://www-cad.eecs.berkeley.edu/�kenmcmil/smv.

[84] The SPIN Tool.

http://netlib.bell-labs.com/netlib/spin/whatisspin.html.

[85] P. Starke. Reachability analysis of petri nets using symmetries. Journal

on Syst., Anal., Model., Simul., 8:294{303, 1991.

156 Bibliography

[86] U. Stern and D. Dill. Parallelizing the Mur� Veri�er. In Prooceedings of

CAV'97, volume 1254 of Lecture Notes in Computer Science, pages 256{

278. Springer-Verlag, 1997.

[87] A. Tokmako� and J. Billington. An Approach to the Analysis of Inter-

working Traders. In Proceedings of ICATPN'99, volume 1639 of Lecture

Notes in Computer Science, pages 127{146. Springer-Verlag, 1999.

[88] A. Valmari. Error Detection by Reduced Reachability Graph Generation.

In Proceedings of the 9th European Workshop on Application and Theory

of Petri Nets, pages 95{112, 1988.

[89] A. Valmari. Stubborn Sets of Coloured Petri Nets. In G. Rozenberg, editor,

Proceedings of ICATPN'91, pages 102{121, 1991.

[90] A. Valmari. The State Explosion Problem. In W. Reisig and G. Rozenberg,

editors, Lectures on Petri Nets I: Basic Models, volume 1491 of Lecture

Notes in Computer Science, pages 429{528. Springer-Verlag, 1998.

[91] A. Valmari and I. Kokkarinen. Unbounded veri�cation results by �nite-

state compositional techniques: 10any states and beyond. In Proceedings

of the 1998 Conference on Application of Concurrency to System Design.

IEEE Computer Society, 1998.

[92] M. Vardi and P. Wolper. An automata-theoretic approach to automatic

program veri�cation. Proceedings of the IEEE Symposium on Logic in

Computer Science, pages 322{331, 1986.

[93] W. Visser. Memory EÆcient State Storage in SPIN. In Proceedings of

SPIN'96 Workshop, pages 21{36, 1996.

[94] J. Xu and J. Kuusela. Analyzing the Execution Architecture of Mobile

Phone Software with Colored Petri Nets. Software Tools for Technology

Transfer, 2(2):133{143, December 1998.

