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Abstract

This thesis examines object-oriented modelling in experimental system develop-
ment. Object-oriented modelling aims at representing concepts and phenomena
of a problem domain in terms of classes and objects. Experimental system de-
velopment seeks active experimentation in a system development project through,
e.g., technical prototyping and active user involvement. We introduce and examine
“experimental object-oriented modelling” as the intersection of these practices.

The contributions of this thesis are expected to be within three perspectives on
models and modelling in experimental system development:

Grounding We develop an empirically based conceptualization of modelling and
use of models in system development projects characterized by a high de-
gree of uncertainty in requirements and point to implications for tools and
techniques for modelling in such a setting.

Techniques We introduce and discuss techniques for handling and representing
uncertainty when modelling in experimental system development. These
techniques are centred on patterns and styles for handling uncertainty in
object-oriented software architectures.

Tools We present the Knight tool designed for collaborative modelling in exper-
imental system development and discuss its design, implementation, and
evaluation. The tool has subsequently been successfully commercialized.

In summary, this thesis presents techniques and tools that advance the effectiveness
and efficiency of experimental modelling.
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Chapter 1

Introduction and Motivation

Object-oriented modelling and experimental system development approaches are
successful in terms of prevalence: object technology, and object-oriented mod-
elling, is the technological paradigm for building large software systems. Its suc-
cess has been achieved in particular through object-oriented languages such as Java
and C++. Experimental system development is winning recognition and becoming
widespread, particularly through the advent of “agile methods” . http://www.

agilealliance.orgHowever, their combination is often considered problematic: traditional object-
oriented modelling is specification-oriented, and experimental system development
is action-oriented through, e.g., prototyping with active user involvement. This the-
sis tries to identify use patterns, techniques, and tools which resolve this apparent
contradiction through a focus on “experimental object-oriented modelling”.

1.1 Experimental Object-Oriented Modelling

Object-oriented modelling is concerned with representing concepts and phenom-
ena of a problem domain as classes and objects in a solution domain for a software
system. Some of the effectiveness of such representations is traditionally claimed
to be caused by the modelling process’s similarities to natural cognitive processes
of learning (Madsen et al., 1993). This thesis does not address extending the the-
oretical discourse of why object-oriented modelling works effectively but, rather,
takes as starting point that object-oriented modelling helps in building robust, scal-
able, and malleable systems and tries to point to how its use can be more effective.
Section 2.2 discusses object-oriented modelling in more detail.

Experimental system development emphasises concrete experiments through-
out a system development project. Thus, the context in which object-oriented
modelling is performed becomes important and warrants a focus on its combi-
nation with experimental system development techniques (Grønbæk et al., 1997).
Experimental system development is typically used in projects that have a high
degree of uncertainty with respect to requirements from a complex problem do-
main. Prototyping and participatory design techniques are ways of uncovering the
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needed functionality of a system by active experimentation. Section 2.3 discusses
experimental system development in more detail.

The problems resulting from the combination of object-oriented modelling and
experimental system development include:

� End user participation involves sessions with users in which current prob-
lems and future ideas are formulated. These need to be constantly reconciled
with an object-oriented model. Also, the understanding of problems and
ideas needs to be formulated in an understandable way: problem domain ex-
perts seldom understand or appreciate formal notations used for modelling
and object-oriented models need to be formal eventually.

� Collaboration using current modelling tools is problematic: most are run
on ordinary desktop computers, giving little physical space for co-located
collaboration. Moreover, their usual implementation of formal modelling
notations only enables developers who understand this notation to use the
tool.

� The tools that best support actual modelling practice are physical tools such
as whiteboards and papers whereas object-oriented models need to be even-
tually represented in virtual tools. Iterative and incremental development
requires that models are reworked and thus warrants shifts between physical
and virtual representations.

� A prototype is often a central part of an experimental system development
project and is constantly changed and extended. If object-oriented models
are to be used in prototyping they need to evolve with prototypes.

A major part of this thesis consists of such identifications of what may make
modelling in experimental system development problematic, and, based on these,
the thesis identifies possible techniques and tools for experimental object-oriented
modelling.

1.2 Structure

This thesis is divided into two parts: part one is a summary and discussion of our
research into object-oriented modelling in experimental system development. Part
two includes, in chronological order, co-authored papers related to this thesis. The
summary part can be read independently of the papers.

1.2.1 Part I: Overview

Introduction and Motivation This chapter.
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Background The empirical background — in the form of research projects —
for this thesis is presented. We discuss object-oriented modelling and ex-
perimental system development in detail and introduce “experimental mod-
elling”.

Experimental Modelling Based on empirical studies of modelling, the chapter
formulates a number of challenges for supporting experimental object-orien-
ted modelling with techniques and tools. The following chapters will present
solutions to some of these challenges.

Some Techniques for Experimental Modelling With focus on support for rep-
resenting and handling uncertainty, the chapter presents techniques for ex-
perimental modelling that meet a number of the challenges presented in the
previous chapter.

A Tool for Experimental Modelling We discuss current tool support for experi-
mental modelling and present the design, implementation, and evaluation of
the Knight tool for experimental modelling which meets most of the chal-
lenges presented in the “Experimental Modelling” chapter.

Conclusions and Future Work Beyond summarizing the contributions of this the-
sis, the chapter points to the ways in which the tools and techniques pre-
sented can be extended with respect to support for modelling as well as other
work situtations.

1.2.2 Part II: Papers

The second part of this thesis consists of the following included papers:

� (Christensen et al., 1998a): Christensen, M., Crabtree, A., Damm, C., Hansen,
K., Madsen, O., Marqvardsen, P., Mogensen, P., Sandvad, E., Sloth, L.,
and Thomsen, M. (1998). The M.A.D. experience: Multiperspective Ap-
plication Development in evolutionary prototyping. In Proceedings of the
ECOOP’1998, pages 13–40.

This paper reports how ethnography, participatory design, and object-orientation
were combined in the “Dragon Project” — a large, experimental system de-
velopment project. Its focus is on how, and why, multiple perspectives or
practices in experimental system development collaborate.

� (Hansen and Thomsen, 1999): Hansen, K. M. and Thomsen, M. (1999).
The “Domain Model Concealer” and “Application Moderator” patterns: Ad-
dressing architectural uncertainty in interactive systems. In Proceedings of
TOOLS Asia’99, pages 177–190.

Based on the experience from the Dragon Project and experience with open
hypermedia system development (Hansen et al., 1999), we present architec-
tures that help identify and encapsulate areas of an interactive system that
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are likely to change due to uncertainties about the requirements. The archi-
tectures are presented as architectural patterns.

� (Christensen et al., 1999): Christensen, M., Damm, C., Hansen, K., Sandvad,
E., and Thomsen, M. (1999). Creation and evolution of software architecture
in practice. In Proceedings of TOOLS Pacific’99, pages 2–15.

Also based on experiences from the Dragon Project, we discuss appropriate
architectures and ways of creating architectures in experimental system de-
velopment. In particular, we introduce a set of architectural practices as an
“architectural strategy” for handling uncertainty.

� (Damm et al., 2000a): Damm, C., Hansen, K., and Thomsen, M. (2000a).
Tool support for object-oriented cooperative design: Gesture-based model-
ing on an electronic whiteboard. In Proceedings of CHI 2000, ACM Confer-
ence on Human Factors in Computing Systems, pages 518–525.

We introduce the Knight tool for collaborative, object-oriented modelling.
This is the first of five included papers related to the Knight tool and even
though they focus on different aspects of the Knight tool, they overlap con-
siderably in their presentation of the tool and the interaction techniques used.
This paper discusses empirical studies for and design and evaluation of the
tool.

� (Damm et al., 2000d): Damm, C., Hansen, K., Thomsen, M., and Tyrsted,
M. (2000d). Tool integration: Experiences and issues in using XMI and
component technology. In Proceedings of TOOLS Europe’2000, pages 94–
107.

This paper on the Knight tool focuses on tool integration and discusses its
implementation. We present a concrete architecture for and an architectural
conceptualization of tool integration.

� (Damm et al., 2000b): Damm, C., Hansen, K., Thomsen, M., and Tyrsted,
M. (2000b). Creative object-oriented modelling: Support for creativity, flex-
ibility, and collaboration in CASE tools. In Proceedings of ECOOP’2000,
pages 27–43.

We discuss the nature of object-oriented modelling and suggest creativity,
flexibility, and collaboration as design goals for tools that support object-
oriented modelling. It is then discussed how the Knight tool fulfills these
goals.

� (Damm et al., 2000c): Damm, C., Hansen, K., Thomsen, M., and Tyrsted, M.
(2000c). Supporting several levels of restriction in the UML. In Proceedings
of UML’2000, pages 396–409.

We argue that a particular area in which the Unified Modeling Language
(UML; (OMG, 2001b)) has shortcomings in supporting modelling practice
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is that it has only one fixed, formal view of what models are and how they
look. We discuss extensions of the UML that varies along those two dimen-
sions, and we discuss how the Knight tool has been amended to support these
extensions.

� (Andersen et al., 2000): Andersen, C., Hansen, K., Sandvad, E., Thomsen,
M., and Tyrsted, M. (2000). Tool support for iterative system development
activities: Issues and experiences. In Proceedings of NWPER’2000, pages
1–21.

With background in a number of projects in the Centre for Object Technoloy
(COT), this paper argues that tools for experimental system development http://www.cit.dk/COT

should focus on supporting concrete activities in contrast to, e.g., “analysis”,
“design”, or “implementation”. A set of cases from the COT projects are
presented and discussed.

� (Hansen and Ratzer, 2002): Hansen, K. and Ratzer, A. (2002). Tool support
for collaborative teaching and learning of object-oriented modelling. To
appear in Proceedings of ACM ITiCSE’2002.

This fifth paper on Knight reports an extensive use evaluation of the com-
mercial version of the Knight tool. In doing so, it discusses how the collab-
orative aspects of the Knight tool may enhance the learning and teaching of
object-oriented modelling.

1.3 Acknowledgements

Thanks in particular to the participants of the Dragon and Knight projects (and to
a lesser degree the participants of the DESARTE and WorkSPACE projects) with
whom I have performed most of the work presented in this thesis. Also thanks
to Ole Lehrmann Madsen and Preben Holst Mogensen for giving the right advice.
And, finally, thanks to Ellen and Liv for showing what is really important.

Klaus Marius Hansen
klaus@mariushansen.dk

Aarhus, Denmark
March 27, 2002
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Chapter 2

Background

This chapter presents the background for this thesis in the form of an introduction
to our empirical background and a brief survey and discussion of the literature on
object-oriented modelling and experimental system development. Related work is
discussed in the relevant chapters.

2.1 Empirical Background

During our PhD study, our research activities have centred around concrete devel-
opment activities through participation in research projects. Figure 2.1 renders our
project participation timewise. http://www.intermedia.

au.dk/dmm

http://www.cc.gatech.
edu/projects/ael/
research.html
http://as15.iguw.
tuwien.ac.at/desarte/

Dragon

DMM

DESARTE

COT Case 2

1999 20001998 Start of
PhD study

Knight

2001

Kimura

2002

Workspace

Figure 2.1: Research Project Participation

The rest of this section presents, in chronological order, the projects related to
this thesis in sufficient detail to understand and motivate the following discussions.
Our results in connetion to the “DMM”, “Kimura”, and “DESARTE” projects will
not be discussed in this thesis. (Hansen et al., 1999) and (MacIntyre et al., 2001)
are our co-authored papers related to these projects.
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2.1.1 The Dragon Project

The Dragon Project was initiated in March 1997 as a joint project between the Uni-http://www.cit.dk/cot/
case5-eng.html versity of Aarhus and a globally distributed shipping company with the purpose of

developing a series of prototypes of a Global Customer Service System (GCSS).
The concept of GCSS had evolved within the company based on a global Busi-
ness Process Improvement (BPI) process aiming at the coordination of globally
distributed sites and supporting an effective and efficient customer service. This
improved customer service was, at the same time, meant to support local needs.
In this context, shipping can be characterized as the transport of cargo in contain-
ers, and customer service in this area involves interacting with customers in, e.g.,
formulating prices, booking containers, and documenting ownership of cargo.
Participants in the Dragon Project from the University included: one project co-
ordinator, one participatory designer, three full-time and three part-time object-
oriented developers (of which the author of this thesis was one), one ethnographer,
and, for part of the project, one usability expert. Participants from the company
included senior management, business representatives from the major continental
regions, administrative staff, customer service personnel, and external consultants.

Our co-authored papers related to the Dragon Project are (Christensen et al., 1998b),
(Hansen, 1998), (Christensen et al., 1998a), (Christensen et al., 1999), and (Hansen
and Thomsen, 1999).

2.1.2 Centre for Object Technology (COT) Case 2

Centre for Object Technology (COT) was a Danish collaboration project with par-http://www.cit.dk/COT/

ticipants from academia, industry, and the Danish Technological Institute. Thehttp://www.uk.
teknologisk.dk/ Dragon Project was part of COT as “Case 5”. Another subproject, in which we

participated, was a technology transfer project: university researchers and devel-http://www.cit.dk/COT/
case2-eng.html opers from a private company designed an object-oriented control system for a flow

meter. The control system was designed through an iterative prototyping process
in which models and prototypes were gradually refined.

Our main reason for participating in this project was to gain empirical insight into
object-oriented system development. This experience was later, together with the
Dragon Project, used as the main empirical input to the Knight Project (Section
2.1.3).

Our co-authored papers related to this project are (Andersen et al., 2000) and the
Knight Project papers referenced in Section 2.1.3.

2.1.3 The Knight Project

The Knight Project started in February 1999 with the purpose of investigating andhttp://www.daimi.au.
dk/~knight
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prototyping innovative interaction techniques for supporting object-oriented sys-
tem development. Our participation in the Dragon Project had pointed to a number
of areas, in particular object-oriented modelling, in which enhanced tool support
was needed.

The participants in the Knight Project were three PhD students (of which the author
is one) and a Master’s student. Initially, the project focussed on interaction tech-
niques, but the scope broadened to include software architecture, modelling nota-
tions, and integration of modelling tools. The main result of the Knight Project,
the “Knight” tool, is presented in Chapter 5.

Our co-authored papers related to the Knight Project are (Damm et al., 2000a),
(Damm et al., 2000d), (Damm et al., 2000b), (Damm et al., 2000c), and (Hansen
and Ratzer, 2002).

2.1.4 The WorkSPACE Project

The objective of the WorkSPACE project is to develop physical and virtual com- http://www.daimi.au.
dk/workspace/ponents and integrate these into augmented reality work places, environments, and

fields. The work situations of design professions are the base for experiments with
computer-supported individual work, local collaboration, and distributed collabo-
ration.

A main virtual component of WorkSPACE is the “Topos” 3D environment for or-
ganizing heterogeneous information (Grønbæk et al., 2001) shown in use in Figure
2.2. Our current efforts in the WorkSPACE project are aimed towards integrat-

Figure 2.2: Topos in Use
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ing Topos and Knight in order to provide modellers with a rich and heterogeneous
environment for creating object-oriented models.

2.2 Object-Oriented Modelling

A simple search on the ACM Digital Library on the word “modelling” shows thehttp://www.acm.org/dl/

diversity of meanings assigned to the term: “mathematical”, “system”, “cognitive-
user”, “interaction”, “object-oriented”, “3D”, “process”, “entity-relationship”, “de-
clarative-geometry”, “performance”, “world”, “business process”, “task-oriented”,
“financial”, “multi-level”, “meta”, “anomaly-detection” modelling and more turn
up.

Even though there is a common core to all these kinds of modelling, this thesis
limits itself to the discussion of types of modelling pertaining to object-oriented
system development and in particular to experimental system development.

2.2.1 Modelling and Programming

In (Madsen, 1995), a distinction between the “Scandinavian” (conceptual) and
the “reuse” (software engineering) perspectives on object-oriented programming
and modelling is made. From a conceptual perspective, the main goal of object-
oriented programming is to represent phenomena and concepts of a problem do-
main using abstractions of the used object-oriented programming language. From a
software engineering perspective, object-oriented programming supports reuse, in-
formation hiding, and more which make it technically superior to, e.g., procedural
or functional language alternatives for the development of large software systems.

2.2.1.1 The Conceptual Perspective

The BETA programming language (Madsen et al., 1993) is representative of the
conceptual perspective. Object-oriented programming is seen as mapping a set of
real-world phenomena and concepts to corresponding objects and classes in object-
oriented programming languages. The set of real-world phenomena and concepts
is called the referent system and the corresponding objects and classes are called
the model system. The process of mapping phenomena to objects is then called
modelling and the reverse process may be called interpreting (Figure 2.3).

In (Kristensen and Østerbye, 1994), modelling is considered in more detail,
and conceptual modelling is defined as

an understanding and construction process with the purpose of
forming a model of some part of the world expressed by concepts and
phenomena (Kristensen and Østerbye, 1994, page 2).
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The view of (Kristensen and Østerbye, 1994) is a programming language view:
programming is seen as a modelling process and conceptual modelling (and con-
ceptual programming) is seen as a potentially successful candidate for common
understanding between developers and others involved in system development.
From this view, a framework for analysing and designing programming languages
is developed. Moreover, a vocabulary for reasoning about programming language
abstractions in relation to conceptual understanding is developed.

Even though sound software engineering is important from this conceptual per-
spective on object-orientation as well, it is seen as a side effect rather than as the
most important goal of object-oriented programming.

2.2.1.2 The Software Engineering Perspective

Meyer (and through him the programming language “Eiffel”) exemplifies the soft-
ware engineering perspective on object-orientation (Meyer, 1997): he acknowl-
edges the use of objects to model the system that we construct, but Meyers’ mod-
els are, primarily, based on software engineering principles. Introducing object
composition (“expanded types” in Eiffel), e.g., he justifies it as “improving effi-
ciency”, “providing better modeling”, and “supporting basic types in a uniform
object-oriented type system” (Meyer, 1997, page 256).

Meyer acknowledges the modelling power of object-oriented programming
language constructs but warns that modelling with reference to a real or imagined
part of the world may lead to a problematic design. Rather, object-oriented de-
signs should be based on “clear, general, manageable, change-ready, and reusable”
abstractions (Meyer, 1997, page 694).

Early object-oriented methods such as (Booch, 1991) also support this software
engineering perspective: object technology’s primary force is its sound, engineer-
ing foundation.

In some aspects there may be a tension between such a perspective and the
conceptual perspective: when modelling a representative object, it is important
that it represents a phenomenon and the properties of that phenomenon whereas
information hiding, e.g., is concerned precisely with hiding the structure of the

Referent System

Modelling

Interpreting

Model System

Figure 2.3: Modelling and Interpretation
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object (Madsen et al., 1993). Nevertheless, both perspectives stresses modelling as
important but disagree on what and how to model.

2.2.2 Modelling in Object-Oriented Methods

In the late 1980s the focus of many “methodologists”, starting with Shlaer and
Mellor (Shlaer and Mellor, 1989), moved from formulating methods for structured
programming to working with object-oriented programming languages. The most
influential of these were probably those of Coad and Yordon, Booch, Rumbaugh,
and Jacobson (Coad and Yordon, 1990; Coad and Yordon, 1991; Booch, 1991;
Rumbaugh et al., 1991; Jacobson et al., 1992). All of these are prescriptive: they
mandate the use of a process (Booch, e.g., has “analysis”, “design”, “evolution”,
and “maintenance” phases) and particular artefacts that should be created during
development. Moreover, they stress the use of modelling: Booch, e.g., explains
that

Object-oriented design is a method of design encompassing the pro-
cess of object-oriented decomposition and a notation for depicting
both logical and physical as well as static and dynamic models of the
system under design (Booch, 1991, page 39)

Rumbaugh et al. state that a model is:

an abstraction of something for the purpose of understanding it before
building it. Because a model omits nonessential details, it is easier
to manipulate than the original entity. Abstraction is a fundamental
human capability that permits us to deal with complexity (Rumbaugh
et al., 1991, page 15)

and they stress the significance of modelling by calling their method the “Ob-
ject Modeling Technique”.

Coad and Yordon go further and present one of the first examples of a “meta-
model” (see section 2.2.2.1) for defining their analysis modelling notation (Coad
and Yordon, 1990).

There has been a number of reactions to these traditional, specification-oriented
object-oriented methods, most recently in the form of so-called “agile methods”
of which Extreme Programming (Beck, 1999) is the most prominent. Agile meth-http://agilealliance.

org ods focus on “adaption instead of prediction” and on “people instead of processes”
(Fowler and Highsmith, 2001): they try to adapt to complex and changing de-
velopment situations by focussing on the interaction between and performance
of people involved in development. Agile methods typically suggest the use of
object-oriented programming languages and in this way implicitly require the use
of object-oriented modelling even though they do not formally mandate its use.
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Common to the traditional and more current methods seems to be the general view
that a “method” consists of two aspects: a “notation” describing how the work
products of the method should be and a “process” describing how and when these
work products should be created (Booch, 1991; Fowler and Scott, 2000). The latest
development in the object-oriented methods community has been to standardize, or
rather create a framework for, these two aspects:

2.2.2.1 The Unified Modeling Language

The Unified Modeling Language (UML; (OMG, 2001b)) is an Object Management
Group (OMG ) standard for representing object-oriented models graphically in the http://www.omg.org

form of diagrams. It has in practice replaced the modelling notations from methods
such as Booch, Rumbaugh, and Jacobson.

Currently, the UML consists of two levels:
� A diagram level that defines the visual appearance of UML diagrams. Figure

2.4 shows a simplistic example of a UML class diagram: The rectangles
represent classes and the lines between elements are relationships such as
inheritance and association. This diagram level is only defined in natural
language in the UML specification.

Simplistic UML model
showing classes and 
comments

Person

name

Professor

paySalaryTo

Student

assignGradeTo
taughtBy

teaches

Figure 2.4: A Simple UML Class Diagram

� A model level that defines the semantics of the elements on UML diagrams.
It is written in the form of a metamodel that contains classes defining UML
elements such as “Class”, “Generalization”, and “Association”. The meta-
model is expressed as a UML model combined with well-formedness rules
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in the form of constraints and general static and dynamic semantics in the
form of natural language.

The fact that the UML is the result of a standardization effort, and the fact that
it should replace notations from several object-oriented methods complicates the
language: it consists of nine diagram types (class, object, use case, sequence, col-
laboration, statechart, activity, deployment, and component diagrams) defined by
well over a hundred metaclasses in the metamodel.

Chapter 4, which is concerned with techniques for modelling, will present the UML
in more detail as needed.

2.2.2.2 The Unified Software Development Process

The original version 0.8 of the UML was actually conceived by its inventors as a
“Unified Method” with the intent of replacing the methods of that time. However,
from version 0.9 and onwards, the focus with respect to the UML, was put on
standardizing the modelling notations, which, through five iterations, has proved
to be a complex task in its own (Kobryn, 1999).

Recently, the efforts regarding a standard modelling language have been ex-
tended to cover a “unified process”. Jacobson et al. (Jacobson et al., 1999) present
a generic framework for defining processes which is sold commercially as the “Ra-
tional Unified Process” (Kruchten, 1999). The Unified Process has an underlying
object-oriented model presented in UML and new development processes are mod-
elled using the basic elements of this model. An example of a process defined using
the Unified Process is shown in Figure 2.5.

The horizontal axis shows “dynamic aspects” of the process such as iterations,
increments, milestones, and phases. The vertical axis shows “static aspects” of the
process such as disciplines, artefacts, and roles. In the “inception” phase, the idea
for a product is formulated, in the “elaboration” phase these ideas are fleshed out,
e.g., in the form of prototypes or requirement documents, in the “construction”
phase, the product is iteratively built and tested, and, finally, in the “transition”
phase, the product is finalized and put into production use. Each of the workflows
on the vertical axis contribute differently in the different phases of development as
indicated by the height of the shaded figures.

As evident from the above description, the Unified Process is a very generic
framework for defining (iterative) processes: even though it was originally intented
to cover traditional methods as mentioned above, it is so generic that it has even
been used to instantiate the process dX, mimicking the Extreme Programming pro-
cess.http://www.

objectmentor.com/
publications/RUPvsXP.
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Figure 2.5: Two Dimensions of the Rational Unified Process (adapted from
(Kruchten, 1999))
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2.3 Experimental System Development

Traditional specification-oriented methods are severely limited since they are based
on a detached, observation-based feed-forward approach to system development
which seldom matches the complex and continually evolving work practices that
many systems have to support (Grudin, 1989; Hughes et al., 1994). Prototyping ap-
proaches try to overcome this by focusing on the construction of a set of prototypes
that can be evaluated (or even co-constructed) by potential users. Participatory de-
sign techniques try to involve potential users in the development process for moral
and practical reasons. However, its research incarnations seldom consider fully
implementing the system under construction.

(Cooperative) Experimental System Development (CESD) (Grønbæk et al., 1997)
tries to combine prototyping and participatory design techniques by focusing on
active user involvement throughout the entire development process. In their analy-
sis of development projects, Grønbæk et al. introduce four conceptual dimensions
of system development:

Concerns capture what a system development project is all about. Project man-
agement focuses on establishing and running projects. Analysis supports a
cooperative learning process through investigation of user practices in rela-
tion to potential organizational changes. Design concerns visions of tech-
nology in use and the creation of a common understanding of possibilities.
Realization is concerned with the technological implementation of design
visions and with organizational change implied by the developed system.
Computer-supported cooperative work focuses on the main concern of the
developed system, i.e., its use.

Activities are the concrete actions and situations in system development. Ex-
amples of activities include project establishment, ethnographical investiga-
tions, design workshops, programming, and evaluation of a developed sys-
tem.

Involved Domains are what the activities are directed towards understanding or
changing. The starting point for cooperative design is most often the user or-
ganization practices. The developers’ or designers’ practice is also involved
and may be changed. The software that is developed, the technology, and
visions of technology in use are other domains that connect the users’ and
developers’ practices.

Project Assignment is the system development task as understood by involved
parties. Grudin discusses three traditional types of project assignments: in-
house development, custom/contract development, and packaged software/product
development (Grudin, 1991).
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The two distinguishing characteristics of CESD as a system development approach
framework are the distinction between concerns and activities and the relation
of activities to the involved domains. Traditional waterfall development (Royse,
1970) equates activities and concerns as do many attempts to bring iteration to the
development process (Boehm, 1988). CESD acknowledges that concrete activi-
ties may contribute to several abstract concerns and that they do so embedded in a
related domain context.

Viewed on the activity level, CESD is in many ways similar to a number of
system development approaches ranging from the original prototyping approach
(Bally et al., 1977) to the more current such as STEPS (Floyd et al., 1989), Budde et
al.’s prototyping approaches (Budde et al., 1992), Rapid Application Development
(RAD) as exemplified by the Dynamic System Development Method (DSDM;
(Stapleton, 1997)), M.A.D. (Christensen et al., 1998a), Adaptive Software Devel-
opment (Highsmith, 2000), Rational Unified Process (Kruchten, 1999), Extreme
Programming (XP; (Beck, 1999)), and the Crystal Family (Cockburn, 2001).

These approaches are all “experimental” in the sense that they try to overcome
traditional specification approaches by experimenting with visions, designs, and
solutions. CESD, with its historical background in particatory design, focuses on
experiments such as dilemma games (Mogensen, 1994), future workshops (Kens-
ing and Madsen, 1991), or prototyping whereas most of the mentioned approaches
focus on experiments in the technical domain primarily through (evolutionary) pro-
totyping.

In this sense, experimental system development is a reaction to characteristics
of a large number of development projects: they, e.g., have a high degree of uncer-
tainty regarding what to build and how to build it, need to involve collaboratively
a large number of domains or perspectives, and need to create a system for and in
a complex, heterogeneous environment. This orientation towards experimentation
also requires a certain kind of activities (or techniques) to handle, e.g., iteration,
incremental development, or parallelism.

This thesis is primarily interested in how these characteristics of experimental sys-
tem development interplay with (object-oriented) modelling techniques:

2.4 “Experimental Modelling”: A Working Definition

An implication of experimental system development for tools and techniques (ab-
stracted activities) is that they should aim at supporting concrete activities instead
of abstract concerns. This thesis tries to do just that for object-oriented modelling
in experimental system development.

In system development, a diverse set of activities are concerned with develop-
ing models of a future system: user interface designers may create user interface
mock-ups, consultants may create workflow specifications for future users of a sys-
tem, and software developers may create UML models of software architectures.
Common to all these activities is the translation process of modelling:
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Modelling is the process of representing the elements of a problem
domain as elements in a solution domain with the intent of informing
the development of a software system.

“Experimental modelling” is modelling in experimental system development.

The work products of modelling are models:

Models are the artefacts constructed by modelling with the intent of
informing the development of a software system.

2.5 Summary

This chapter presented background material needed for understanding this thesis.
In particular object-oriented methods and experimental system development were
presented and discussed.

It was argued that modelling is a central part of traditional and current object-
oriented development methods. Chapter 3 will investigate the use of object-oriented
modelling in the context of experimental system development and point to a num-
ber of challenges to experimental object-oriented modelling.
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Chapter 3

Experimental Modelling

This chapter presents empirical studies of software development in three projects.
We focus on modelling in particular, and based on the studies, we present and
discuss challenges for tool support and techniques for experimental modelling.

The material in this chapter is based in part on (Christensen et al., 1998a) and
(Damm et al., 2000a).

3.1 Empirical Studies

Our experiences from the Dragon Project provoked initial thoughts on what mod-
elling is and how it should be supported. To elaborate on and ground these anecdo-
tal experiences, we conducted two empirical studies of object-oriented modelling.

3.1.1 Work Instances

Below, the studies and distilled observations from the studies are presented. Ex-
perience from the Dragon Project is included as well. The distilled observations
are “work instances” in the sense of (Christensen et al., 1998a): based on ob-
servation of work, they identify practical problems and present a situated method
of resolution. All descriptions are kept in terms of the problem domain, and the
descriptions of the problem and solution take the form of abstract scenarios. In
doing so, they serve two purposes: to present a “problem space” for design against
which to create solutions and a “solution space” for design against which to eval-
uate solutions. The problem and solution spaces are in our context connected to
experimental modelling.

Instances compare to use cases and patterns: use cases describe how an

instance of an actor carries out a number of different operations
on the system. When a user uses the system, she or he will perform
a behaviorally related sequence of transactions in a dialogue with the
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system. We call such a special sequence a use case (Jacobson et al.,
1992, page 127).

A pattern

describes a problem which occurs over and over and over again in
our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times
over, without ever doing it the same way twice (Alexander et al., 1977)

Both concepts relate to problem solving and both are applicable to system develop-
ment. To examine their differences, consider Cockburn’s classification of use case
definition and usage in four dimensions (Cockburn, 1997):

Purpose Use cases have either as purpose to gather user stories or requirements.

Contents The description of a use case can be contradicting or consistent. If it is
consistent, it can be in consistent prose or have formal content.

Plurality Typically, a use case corresponds to either one or multiple scenarios.

Structure Sets of use cases are either required to be unstructured, semi-formal, or
to have formal structure

Table 3.1 shows Cockburn’s own use case concept as well as patterns and instances
in these four dimensions. Seen from the four dimensions, patterns, instances, and
Cockburn’s use cases can all be seen as a variations of the general use case concept
although patterns and instances noticeably have as “purpose” to gather stories: to
function as accounts of events typically including a context to problems and pro-
posed solutions.

In order to distinguish them further, we can look at the domain in which their
description is made. This can be either the “use” (how is the system to be used?),
the “solution” (how do we create the system?), or the “problem” domain (which
work practices will the system be implemented in?). The results of this are shown
in Table 3.1.

Use Cases Patterns Instances
Purpose requirements stories stories
Contents consistent prose consistent prose contradicting
Plurality multiple scenarios multiple scenarios one “scenario”
Structure semi-formal semi-formal unstructured
Domain use domain solution domain problem domain

Table 3.1: Dimensions of Use Cases, Patterns, and Instances
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In Cockburn’s (Cockburn, 1997) classification of use case definitions, “in-
stances” would have as “purpose” to gather user “stories” to be used in re-construction
and for ping-pong between different practices, and its “contents” is “contradicting”
in the sense that it does not need to be logically consistent, its “plurality” is “one
scenario” since it presents an abstract example of the resolution of a problem, and
its “structure” lies somewhere in between “unstructured” and “semi-formal” in that
it prescribes the presence of a problem and a solution but allows free prose in the
descriptions of those. In contrast to use cases and patterns, its domain is the prob-
lem domain of the system under development.

Aarhus Rotterdam

Bremerhaven
train Ocean Carrier 1

local carrier

Ocean Carrier 2

Ocean Carrier 1

Port 1

Port 2

Port 3

Port 1

Port 2

Port 3

Figure 3.1: Pictorial Representation of the Bremerhaven Instance

3.1.1.1 An Instance Example

A prototypical example from the Dragon Project is the “Bremerhaven” instance. In
Figure 3.1, the problem of rerouting containers in the event of carrier problems is
illustrated. 200 containers cannot be shipped by the local carrier from Aarhus to
Rotterdam since it does not call Aarhus this week. 150 of the containers are sup-
posed to go on ocean carrier 1 to Asia and 50 of the containers are supposed to go
on ocean carrier 2 to the Americas. The solution is to put all containers on a train
to Bremerhaven, ship all containers with ocean carrier 1, and in Rotterdam transfer
the containers for the Americas to ocean carrier 2 that is calling Rotterdam.

The instance provided the starting point and context for assessing the proto-
type: it was used as an initial, fuzzy specification of a solution for the rerouting
problem in the developed system and its refinements were used for evaluation pur-
poses. This example also shows the relationship between the prototype and the
instances of work: the instances were used as a foundation for prototyping but they
also evolved during – and as a result of – cooperative prototyping. Moreover, pro-
totyping pointed to areas in which observations and design were needed in such
a way that the prototyping process influenced and coordinated other development
efforts.

The type of instances presented in this chapter differs slightly from the type of
instances employed in the Dragon Project: instead of distilling a large number of
concrete situations into one very abstract problem-solution instance, our instances
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focus on how the problem was actually resolved in the given context without the
support of particular technologies. The intention is to inform the development of a
solution by providing concrete details of a problem’s typical resolution.

3.1.2 Dragon: Prototyping a new System

Settings The Dragon Project was presented in Section 2.1.1.

Participants The primary participants in the Dragon Project were university re-
searchers and business representatives. The roles of the business represen-
tatives ranged from customer service agents to managers. The researchers
acted primarily as designers and developers.

Procedure We participated in the project as modellers and developers. Our par-
ticipation lasted for more than a year.

3.1.2.1 Dragon Instance: Working with a Problem Domain

Problem The researchers are trying to model the booking process of shipping cus-
tomer service in the form of UML diagrams. Their knowledge of shipping
is limited. Also, the customer service agent has no knowledge of object-
oriented modelling.

Solution While the researchers model, a customer service agent tries to explain
booking. Moreover, the customer service agent often interrupts the researchers
in order to understand the semantics of the drawings. After some modelling
sessions and encouragement from the developers, the customer service agent
actually picks up some of the modelling notation and is able to participate
more actively in the modelling sessions.

3.1.2.2 Dragon Instance: Combining Formal Diagrams and Informal Draw-
ings

Problem During modelling of the booking problem domain, the researchers oc-
casionally run into problems with lack of understanding. In such cases, the
problem is often handled by the customer service agent by drawing small, in-
formal drawings in connection to the UML diagrams on a blackboard. Most
of the drawings are transient in nature, but some add essential knowledge to
the UML diagrams.

Solution After the modelling sessions — or when a new area is about to be cov-
ered — the researchers transfer the contents of the blackboard to a com-
puterised UML modelling tool. When they do this, they also make sure to
transfer the most important drawings (Figure 3.2), even though this is not
permitted by the UML.
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3.1.3 COT Case 2: Building a New System

Settings The COT Case 2 project that was studied was presented in Section 2.1.2.

Participants The developers from the private company acted as domain experts
in initial phases of development whereas the university researchers played
the role as mentors, teaching object-oriented development techniques. The
developers from the private company had no previous knowledge of object-
orientation whereas the university researchers were experienced object-oriented
developers.

Procedure We studied design sessions in the project during a two-week period.
The sessions took place in meeting rooms equipped with whiteboards, over-
head projectors, and computers. Typically, 2-4 people from the private com-
pany and 2-4 people from the research group participated in each session.
We observed three sessions in detail and switched between being observers
and active participants. In every session an observer took notes.

3.1.3.1 COT Instance: Alternating Between Tools

Problem A researcher and two developers are about to discuss a new area of the
problem domain of flow meters. To brainstorm an initial design, the re-
searcher and the developers draw initial models on a whiteboard. Just before
lunch they run out of whiteboard space.

Solution The researcher captures the work so far using a digital camera (Figure
3.3). After lunch the researcher and the developers continue on a freshly-

Figure 3.2: Combining UML and non-UML Elements
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wiped whiteboard, while a developer redraws the diagrams from before lunch
in a CASE tool using the photos as a reference.

Next morning, one of the researchers uses the CASE tool to print out dia-
grams that illustrate the details which were discussed the previous day. He
places printouts of the diagrams on the overhead projector (Figure 3.4) and
the developers use whiteboard markers to make changes.

Figure 3.3: A Whiteboard Snapshot

 

Figure 3.4: Projecting a Diagram on a Whiteboard
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3.1.3.2 COT Instance: Modelling and Programming

Problem A researcher and a developer discuss how to include distribution in the
design of their system. While using the whiteboard for discussion, another
developer is coding up their previous design in order to keep their prototype
up-to-date. At certain points he has to make conceptual changes in order to
convert the design to code. Both kinds of changes need to be synchronized.

Solution The researchers and developers manually update the design documents,
making sure that changes made during coding as well as during the design
session are incorporated into the documents. Also, the code is manually
updated so that the documentation and code are synchronized.

3.1.4 Mjølner Informatics: Redesigning an Existing System

Settings Mjølner Informatics is a medium-sized Danish software development http://www.mjolner.com

company specializing in the development of complex, technically advanced
software systems and object technology. One of their products is the Mjøl-
ner System (Knudsen et al., 1994), an object-oriented software development
environment for the BETA programming language (Madsen et al., 1993).
As part of its ongoing development, a restructuring of the environment was
scheduled.

Participants Six developers from Mjølner Informatics attended the meeting. They
had varying experience with object technology and the programming envi-
ronment. Previously, four senior developers had each been responsible for
their own part of the programming environment. Two junior developers were
taking over the maintenance of these parts of the programming environment.

Procedure We observed a design session that involved restructuring of the de-
velopment environment. We videotaped the design session and took notes
especially emphasizing how the design was created and changed.

3.1.4.1 Mjølner Instance: Tweaking the Formal Notation on the Fly

Problem One of the senior developers is modelling the conceptual structure of
part of the existing architecture on a blackboard. He wants to show how
classes representing concepts are included in other concepts but is incapable
of doing so using the UML.

Solution Another senior developer suggests a new notational element that shows
conceptually nested classes and the other developers subsequently use this.
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3.1.4.2 Mjølner Instance: Modelling Collaboratively

Problem A senior developer starts to draw a model of a part of the development
environment on the blackboard. The other developers sit at a table and ask
questions. Many of the questions are about the relations to another part of
the programming environment.

Solution Following this, another senior developer starts to draw the part of the en-
vironment that he originally developed. Soon he discovers relations between
the two parts of the development environment and asks the first developer
to elaborate on his drawing. After the second developer finishes, the first
developer continues on his drawing (Figure 3.5).

3.1.4.3 Mjølner Instance: Sketching Solutions

Problem Two senior developers and a junior developer are discussing the debug-
ger part of the development environment. Soon it turns out that the solution
they are discussing requires drastic changes to the integrated user interface.
They are unable to use the UML to illustrate this and just creating a new
notational element makes no sense.

Solution The junior developer draws the current user interface and connects its
parts with UML classes on the blackboard. They try out various new sug-
gestions for the user interface while discussing it in relation to the design
already sketched out on the blackboard.

Figure 3.5: Collaboration at the Blackboard

40



3.2 Challenges

Based on the instances above, the rest of this chapter abstracts key characteristics
of modelling in experimental system development with the intent of discussing
implications for tools and techniques for such modelling processes.

3.2.1 Multiple Practices

“Practice: 3 a: the continuous exercise of a profession” http://www.m-w.com

Models are created in collaboration between many people with different perspec-
tives coming from different practices: developers have to collaborate with other
developers and users and vice versa. In the COT case, engineers and object-
orientation experts worked together in concert in order to create a prototype. In
the Mjølner case, developers of separate modules of an application collaborated
with each other and other developers, and in the Dragon Project, the perspectives
of ethnography, participatory design, and object-orientation collaborated. This ap-
proach of Multiperspective Application Development provides a typical and repre-
sentative example of collaboration between multiple practices. The next sections
provide an overview of these perspectives and discuss their coordination efforts.

3.2.1.1 The Ethnography Perspective

A major source of system development failures is the unsuitability of the devel-
oped systems to the activities they are meant to support and in particular their un-
suitability to the change of activities that a new system implies. The ethnography
perspective aims at preventing this by creating an understanding of the work prac-
tices in which the system will be used (Blomberg et al., 1994). This understanding
provides a concrete rendering of the working division of labour in contrast to ide-
alized renderings such as workflow models (Rouncefield et al., 1994).

Ethnography achieves this through direct observation and naturalistic descrip-
tions of work practice from the perspective of practitioners (Crabtree et al., 1997).
Such descriptions allow for an understanding of practical problems and their solu-
tions, in addition to an understanding of work practice. Thus, instances of work
outline a problem space as well as a solution space for design. Ethnography’s
strength is understanding the problem space.

3.2.1.2 The Participatory Design Perspective

Participatory design (Greenbaum and Kyng, 1991) seeks to involve stakeholders
in creative design processes for moral as well as practical reasons: stakeholders,
potential end users in particular, will have their work influenced by the future sys-
tem, and stakeholders are competent practitioners within their field, which enables
them to cooperate effectively during design. Such involvement is often achieved
in workshop-like settings through the focus on a common and concrete issue, e.g.,
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descriptions of current work, scenarios for future possibilities, mock-ups, and pro-
totypes (Greenbaum and Kyng, 1991; Grønbæk et al., 1997).

3.2.1.3 The Object-Orientation Perspective

In the Dragon Project, object-oriented modelling using the UML was started right
from the beginning of the project, and it was an intentionally integrated part of
each of the prototyping cycles. For the prototype, it was the starting point for
implementation, and due to implementation it was continually updated.

The model was also used for triggering business discussion. In this context,
the business representatives were able to see referent system concepts instead of
model system concepts; comments on, e.g., multiplicities in associations were put
forward in the context and linguistic terms of the business instead of in object-
oriented terminology. In the context of formal reviews, in which participants from
the company had been involved in a Business Process Improvement (BPI) project,
and thus had an abstract perception of the business, the model triggered business
discussions regarding future practice. The model was, however, not intelligible in
all settings. For example, participants who had not been part of the BPI and did not
have knowledge of formal methodologies for design had a hard time grasping the
whole intent of discussing such a model.

3.2.1.4 Collaboration and Coordination

The abstract form of an instance provided a common representation for a variety of
views on the same phenomena by different practices. When discussing the concept
of “booking”, e.g., the shipping agents would typically discuss it in terms of con-
crete tasks and work, the ethnographer would try to abstract work situations from
concrete data, the participatory designer would design solutions to user interfaces,
and the object-oriented developers would think in terms of classes and objects.

Another example is “rerouting”: When rerouting entered the agenda, company
personnel gave a brief introduction to the problem. The ethnographer collected a
series of examples of reroutings. The participatory designer started to come up
with ideas for supporting rerouting based on existing knowledge and experience.
After three to four successions of discussions between the ethnographer and the
participatory designer, an understanding of the problem as well as a first suggestion
for the design emerged. (See Figure 3.1.)

3.2.2 Uncertainty

“Uncertain: 1: Indefinite, indeterminate”http://www.m-w.com

The fact that requirements are uncertain in a given project is one of the main rea-
sons for using experimental system development. When building a new system,
designers and developers will typically have to learn about a completely unknown
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or little known problem domain. These kinds of uncertainties are exemplified in
the studied projects:

3.2.2.1 Uncertainty as Indeterminateness

One kind of uncertainty in modelling is related to missing knowledge about an
area of the problem domain, i.e., uncertainty about what the solution to a specific
problem is. This leads to the inability to decide on how parts of the problem domain
should be modelled.

In the Dragon Project, e.g., the first phase of development was concerned with
exploring functional requirements for the system while the second phase used this
knowledge to explore the technical foundation for the system in more detail —
something that would not have been possible in the first phase due to uncertainty
about what the system should do.

In the Mjølner study, lack of knowledge about a part of the integrated develop-
ment environment was handled by having the developer, who was responsible for
that part, model and restructure it. Only the sum of knowledge about the develop-
ment environment allowed for a collaborative redesign of it.

3.2.2.2 Uncertainty as Indefiniteness

A second kind of uncertainty in modelling is related to imprecise knowledge about
an area of the problem domain, i.e., uncertainty about which problem to solve.

In the COT Project this uncertainty was reciprocal: the researchers had little
knowledge about engineering of flow meters, and the developers had little knowl-
edge about object-orientation in general and object-oriented modelling and design
in particular. This meant that the researchers were uncertain about how to model
the control system for the flow meter. On the other hand, the developers were un-
certain about how to use modelling for building the control system. The resolution
was thus to combine these two perspectives and areas of uncertainty in modelling.

In the Dragon Project, the same kind of uncertainty led to repeated involvement
of customer service agents by ethnographers, participatory designers, and object-
oriented developers. As discussed below, the uncertainty — or at least uncertainty
about how to build the prototype — was iteratively and incrementally removed
during these interactions.

3.2.3 Iteration, Increments, and Parallelism

“Iterate: 1: the action or a process of iterating or repeating: as a: a pro- http://www.m-w.com

cedure in which repetition of a sequence of operations yields results
successively closer to a desired result”

“Increment: 1 : the action or process of increasing especially in quan-
tity or value”
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“Parallel: 3 a: similar, analogous, or interdependent in tendency or
development”

There is a product and a process perspective to “iteration” in system development:
if development is iterative, the product is reworked from a product perspective and
the process used to create one rework of the product is redone for the next rework.
When working “incrementally”, the product is gradually extended to become more
complete. In this sense, experimental system development is always iterative and
most often incremental. The system of concern is iteratively developed through a
series of activities and a number of increments of a prototype. Models of problem
domains are part of this iterative and incremental process: as activities contribute
to a more satisfactory understanding of the system to be developed and the context
in which it is to be implemented, models need to be iteratively and incrementally
refined in order to fit this understanding. And these processes are often carried out
in parallel.

The Dragon and the COT Project provide examples of this on different scales:

3.2.3.1 Activities and Concerns in the Dragon Project: Iteration, Increments,
and Parallelism in the Large

Figure 3.6 shows some of the activities of the Dragon Project schematically. Time
is shown horizontally and each column on the vertical axis represents development
between two reviews. Each box represents an increment and iteration on the func-
tionality connected to a particular area of concern: The booking component, e.g.,
went through seven increments and iterations from paper sketch to a highly vertical
prototype while being extended in functionality. The overlaps on the vertical axis
show parallel work: the fourth increment and iteration on the booking functional-
ity was, e.g., done in parallel with work on six other functional components in the
same iteration. The first phase (left) was mostly incremental and the second phase
was mostly iterative seen from a product perspective.
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Figure 3.6: Activities in the Dragon Project
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Each of the increments and iterations on a component involved input from
ethnography and participatory design, and later an object-oriented implementation
of a revised design was involved. Furthermore, evaluations in the form of work-
shops, demonstrations, or formal use evaluations were performed in connection to
each review. This means that modelling, as well, had to be done iteratively, in-
crementally, and in parallel. As the knowledge of the part of the problem domain
pertaining to each concern developed, new areas were modelled and old areas were
revised. Reviews were used as synchronization points to keep development on
track.

3.2.3.2 Modelling in COT: Iteration, Increments, and Parallelism in the Small

The development group in the COT Project was small and homogeneous in contrast
to the development group of the Dragon Project. Furthermore, development was
done in short, intensive iterations with longer breaks in-between. Nevertheless,
iteration, increments, and parallelism were prevalent in this project as well.

During an iteration, the work product of each day would be a small report
comprising a model in a Computer-Aided Software Engineering (CASE) tool and
(digital) “whiteboard snapshots” of the results of modelling sessions. Later, this
would be complemented with a running system and a listing of the code of that
system. Incrementally, these products would converge to the final prototype of the
system. Moreover, during the course of a day, subgroups would work on different
parts of the system: one subgroup would, e.g., implement a design from a model
by inputting the contents of a whiteboard into a CASE tool and subsequently write
code, while another subgroup would continue modelling by working on a new part
of the problem domain or discussing refinements of a previously modelled part.
The work of both of these subgroups hadimplications for the complete model and
had to be synchronized.

3.2.4 Heterogeneity

“Heterogeneous: consisting of dissimilar or diverse ingredients or con- http://www.m-w.com

stituents”

Models are represented in heterogeneous ways and sources of models are hetero-
geneous: models may, e.g., be shown graphically in the form of UML diagrams on
whiteboards, they may be embedded in code, or they may be communicated ver-
bally as shared understanding between developers. Models may, e.g., be created
using observations, interviews, work artefacts, or previous systems as sources.

3.2.4.1 Heterogeneous Material as Input to Modelling

In the Dragon Project, a diversity of sources to modelling were available: users
co-located with the development team were available for discussions and for giv-
ing verbal or graphical accounts of customer service work. Horizontal prototypes
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designed with users showed a rich source of concepts and relationships that had
to be covered by object-oriented models. Various types of documents also pro-
vided input: timetables, “bills of lading”, and schedules, e.g., provided a basis
for modelling the routing component of the system, and diagrams created during
the previous BPI effort provided an initial source of concepts and scenarios to be
covered by models. Previous systems were studied particularly in connection to
current use to give input to an understanding of how work should — or should not
— be supported by the future system. Ethnographic analyses provided critical,
systematic input from actual work.

The starting point of the COT project was an earlier system that the partic-
ipating engineers had built. This system, in combination with its specifications,
provided a functional “checklist” for modelling. The engineers and the object-
orientation experts provided different input for validation and verification of the
constructed models: simplistically, the engineers, with problem domain expertise,
could validate whether the models covered problem domain areas in sufficient de-
tail and precision, and the object-orientation experts could verify the semantic cor-
rectness of the models with respect to object-oriented modelling practices in gen-
eral and the UML in particular.

3.2.4.2 Heterogeneous Material as Output from Modelling

In both the COT Project and the Dragon Project, the prototypes were the single
most important output from modelling. In-between this persistent executable em-
bodiment and the informal and transient sketches drawn on whiteboards, a contin-
uum of model representation was used.

Typically, CASE tools were used to draw with and to store models after these
models had been drawn on whiteboards or paper or discussed verbally. Figure 3.2
shows an example from the Dragon Project of a UML model decorated with non-
UML constructs (labels and drawings) that represent the semantic context to the
model.

The model was tightly integrated with the code through the CASE tool used
(Christensen and Sandvad, 1996), but simplified versions of the model were con-
tinuously created for presentations and workshops. Other views created included
abstracted relationships between objects in the system in the form of architectural
diagrams.

The object-oriented model and the user interface had a dual relationship, par-
ticularly in the Dragon Project: the user interface design was, as discussed above,
used as input to modelling but modelling sessions also provided input to user inter-
face design. In fact, a subsequent analysis showed a close correspondence between
objects from the object-oriented solution domain model and graphical user inter-
face widgets from the graphical user interface (Damm et al., 1997).
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3.2.5 Open-endedness

“Open-ended: not rigorously fixed: as a: adaptable to the developing http://www.m-w.com

needs of a situation“

During modelling, situations occur in which any given (formal) modelling notation
is not able to express what its users need it to express. Physical tools, such as
pen and paper or whiteboards, support needed extensions well: the semantics and
extents of the formal language used for modelling are in the mind of the designers.
Computerized tools, however, support this poorly: an implementation of a formal
notation (or formality in general) need to be coupled with the kind of openness
needed for modelling.

We observed two major types of ongoing changes needed to the modelling
languages used:

3.2.5.1 Situated Extensions

In the Mjølner case, several extensions to the UML were needed. The language
used for the implementation of the tool is the BETA language (Madsen et al., 1993),
which among other supports nested (or inner) classes and virtual classes (Madsen
and Møller-Pedersen, 1989) both of which are not supported by the UML. A nota-
tion for this was developed on the fly by a designer and subsequently used for the
rest of the session. In the Dragon Project, an example of a graphical extension was
how colours were used to show semantic groupings of classes into, e.g., classes
concerning bookings and classes concerning routing.

Common to all our observations was the coupling of different kinds of material.
Freehand drawings illustrating a point graphically and informally was the most
common of such coupling. However, coupling of formal languages also occurred,
e.g., in coupling sketches of user interfaces or of flowcharts for an earlier system
to a UML model.

3.2.5.2 Changing Semantics

Another kind of openness needed in the studied cases was an ability for the formal
notation to adapt to the level of detail and viewpoint needed in a particular situation.

In the Mjølner case, an example was the need for “filters” on a diagram, e.g.,
in the form of shortcutting relationships between classes so that if class A was
associated to class B which was associated to class C, only class A, class C, and
an association between these would be shown. This kind of incompleteness was
also often used to, e.g., avoid giving an element a name or to create “dangling”
relationships only connected to one element in order to show that an element had a
reference to another element, but that this other element was not known.
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3.3 Summary

The preceeding sections have presented characteristic challenges to be dealt with
in experimental modelling. Obviously, this affects the way tools and techniques
for experimental system development need to be designed and constructed. In
summary: To create appropriate tools and techniques for experimental modelling,
we need to try to resolve the following challenges:

� Multiple Practices. The input from different perspectives is essential to un-
derstand and tackle the complexity of an experimental system development
project.

� Uncertainty. Not knowing what to do or how to do it will happen at various
points in time for various areas that are modelled in experimental system
development.

� Iteration, Increments, and Parallelism. Models need to be produced and
revised iteratively and incrementally as the understanding of a problem do-
main evolves. Multiple perspectives collaborating often implies a degree of
parallelism also in modelling.

� Heterogeneity. Material used in modelling takes a variety of forms and in
order to support, e.g., collaboration between multiple perspectives, material
produced during modelling will have to take diverse forms.

� Open-endedness. A fixed notation or a prescribed process for modelling
will often break down in experimental system development in general and in
experimental modelling in particular.

The next two chapters will discuss work that addresses these challenges.
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Chapter 4

Some Techniques for
Experimental Modelling

Instances and prototyping as techniques for experimental modelling were discussed
in chapter 3. Based on the challenges of that chapter, we now focus on two specific
sets of techniques for experimental modelling:

� Techniques for supporting experimental modelling. Which techniques are
appropriate for handling challenges such as uncertainty, iteration, and paral-
lelism in experimental modelling? Here we focus on strategies and patterns
for software architecture.

� Techniques for representing experimental modelling. How should models
be represented while they are evolved through experimental modelling? We
focus on object modelling notations, and in particular the UML, for doing
this.

The material in this chapter is based in part on (Christensen et al., 1999), (Hansen
and Thomsen, 1999), and (Damm et al., 2000c).

4.1 Supporting Experimental Modelling — an Architec-
tural View

Handling the challenge of uncertainty, there are basically two approaches to de-
signing a software architecture: try to predict or anticipate the change and design
the software architecture to cope with that change, or face the change with appro-
priate tools and techniques to restructure the software architecture if needed. The
“architectural strategy”, a set of software architectures, their context, and evolu-
tion, outlined in this section, attempts to balance these approaches: architectural
patterns that attempt to isolate impacts of change are presented along with a gen-
eral approach to architectural restructuring and refactoring.
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4.1.1 What is “Software Architecture”?
http://www.sei.cmu.
edu/architecture/
definitions.html

There are numerous definitions of software architectures that can be categorized
into two basic kinds of software architecture definitions that guide how software
architecture is handled during system development. The first focuses on structures
of the software being developed and is typical of, e.g., (Bass et al., 1998; Garlan
and Shaw, 1993):

The software architecture of a software system is the structure(s) of a
software system in terms of components, their external properties, and
their interrelationships

The second focuses on software architecture as an an overarching understanding
and is typical of, e.g., (Crispen and Stuckey, 1994; Hayes-Roth, 1995):

The software architecture of a software system is an overall under-
standing of the system that guides its construction and use

This second use of the words “software architecture” is exemplified by Extreme
Programming’s use of “metaphor” to convey architecture (Beck, 1999, page 56) or
Cockburn’s conception of the software architect as “storyteller” (Cockburn, 2001,
page 6).

The creation and representation of software architectures are, in both cases, a
modelling process: structures and relations or metaphors are created to represent
the solution of a set of high-level problems that the system needs to face.

We consider software architectures from both perspectives since each perspec-
tive has its strengths and weaknesses: the structural view is good for analysis and
representation whereas the metaphorical view is good for getting an overall under-
standing of the system that is being developed.

4.1.1.1 Software Architecture Notation

To describe software architectures in a somewhat precise manner, we will use the
notation presented in Figure 4.1.

The notation is an extension of the notation of Bass et al. (Bass et al., 1998).
In general, solid lines denote processing and dashed lines denote data: a “compu-
tational component” could, in this context, be a running thread, a “computational
data component” could, e.g., be an active relational database, and a “data compo-
nent” could, e.g., be a file.

As noted by several authors, the UML has problems in representing software
architectures (Egyed and Medvidovic, 1999; Hilliard, 1999) from different views
on a sufficient level of abstraction. Thus, the present notation will be used inter-
changeably with UML diagrams for explaining architectures. It should be noted
that the above notation could just be considered a UML “profile” (OMG, 2001b)
— a lightweight extension to the UML that, in this case, also introduces new icons
for model elements.
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Figure 4.1: Software Architecture Notation

4.1.2 An Architectural Strategy in Experimental System Development

Next, we consider software architecture in the Dragon Project and in particular
how they might generalize to experimental system development in general as an
“architectural strategy”.

In the Dragon Project, two senior developers outlined an initial architecture,
following a short phase of a couple of weeks in which a first set of horizontal user
interfaces and a problem domain model for a very limited part of the business were
made. This lead to an initial architecture:

4.1.2.1 The Prototyping Phase: Initial Dragon Architecture

During the first phase of development a number of constraints on how the soft-
ware architecture should be designed were identified particularly related to the
challenges of iteration, increments, and parallelism. In particular the architecture
should

� provide a stable structure in which the system could evolve horizontally in
terms of functionality covered and vertically in terms of completeness of a
specific functionality,

� be flexible to allow for experimentation within the prototyping cycles, and

� support a proper work organization in which developers could work in par-
allel on different areas of the application.

Figure 4.2 shows how we attempted to achieve this in the prototyping phase. The
presented architecture diagram was not actually produced at that time, but it is a
faithfull rendering of how the architecture was meant to be and how it was evolved
during the prototyping phase.

There are three major parts of the architecture: the User Interface components,
the Problem Domain Objects, and the Business Functions.
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The star around the Business Functions, which implement complex, business-
related functionality, shows that they represented an architectural uncertainty: they,
and their internal structure in particular, were unknown at that point of time and
flexibility in the structure of this part had to be provided for in order to prototype
the business functions.

The Problem Domain Objects implement the concepts and phenomena found
in the customer service problem domain in a “pure” form: they are kept free
from implementation-specific details such as distribution or persistence implemen-
tations.

Each of the User Interface components corresponds to an area of the use do-
main such as booking, quoting, and scheduling. The User Interface Mirror part of
the User Interface components acted as an interface between the Problem Domain
Objects and the actual user interface controls. The details of this part of the ar-
chitecture are presented in pattern format in section 4.1.3.4 including a depiction
of how the architecture tried to resolve another architectural uncertainty resulting
from the constant evolution of the user interface components.

4.1.2.2 The Experimental System Development Phase: New Dragon Archi-
tecture

At the beginning of the second phase, the architecture was inconvenient since it
showed an unclear separation of concerns between components and inconvenient
dependencies between components. Moreover, the focus and scope of the project
had changed so that new requirements for the architecture included that it should

User Interface

User Interface
Mirror

Controller
Functions

Model Functions

Business
Functions

Storage

Domain
Objects

Figure 4.2: Initial Dragon Architecture
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Figure 4.3: New Dragon Architecture

� still support business functionality experiments as new areas of the use do-
main were considered,

� support technical explorations such as the implementation of distributed
multi-user functionality and integration with relational databases, and

� support identification and creation of black-box components and their topol-
ogy.

Figure 4.3 shows the new architecture after an architectural refactoring (see Section
4.1.2.3) that took these constraints into account.

This shift of focus resulted in that the new architectural uncertainty was con-
cerned the definition of the Problem Domain Area components. The previous phase
had shown that dividing the architecture along the lines of the identified function-
ality areas would be sound. In this way, we were able to focus on the component
topology in a flexible way during the experimental system development phase, i.e.,
the actual high-level components had been identified in the previous phase and this
phase could focus on experimenting with how to actually connect components.
Moreover, experiments could continue with the contents of the Problem Domain
Area components without impacting the architecture.
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4.1.2.3 Architectural Refactorings

The two architectures were the result of successful architectural refactorings. Whereas
(code) refactorings (Opdyke, 1992; Fowler et al., 1999) are concerned with semanctic-
preserving transformations of classes, attributes, and methods, architectural refac-
torings are concerned with a functionality-preserving transformation of the soft-
ware architecture of a system. The goal of (code) refactoring is to create a better
low-level design in terms of, e.g., greater flexibility or less duplication of code
whereas the goal of architectural refactoring needs to be seen in a broader perspec-
tive: the reasons for architectural changes are both social and technical.

The success of the architectural refactorings in the Dragon Project had three
prerequisites: it was

� desirable to do the refactorings since the current architectures were deemed
impractical for the current goals,

� practical to do refactorings between phases, and

� possible to define new architectures because of increased knowledge ob-
tained during previous phases.

The sum of the architectural refactorings and the focus on uncertainties created an
architectural strategy that is applicable to projects as the Dragon Project: through
a focus on providing flexibility as needed, and in particular in response to archi-
tectural uncertainties, explicit, scheduled architectural refactorings can help ensure
that the architecture evolves along with the technical and social context of the sys-
tem development project.

4.1.3 Addressing Architectural Uncertainty with Architectural Pat-
terns

We define uncertainty within a software architecture as follows:

An architectural uncertainty represents either indefiniteness in the un-
derstanding of an architectural structure or indeterminateness in the
representation of an architectural structure.

In the Dragon project, the development process employed a high level of partic-
ipation by users, which implied frequent changes to the user interfaces. These
change requests forced us to continually evolve the part of the application that im-
plemented the user interface. Thus, the user interface presented an architectural
uncertainty concerning the components that communicated with it. This was par-
ticularly the case in the first phases of development as outlined in section 4.1.2.

(Hansen et al., 1999) presents an architectural uncertainty regarding the prob-
lem domain model instead of the user interface: while extending the Webvise
hypermedia system (Grønbæk et al., 1999), the Webvise server’s object-oriented
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model of hypermedia was about to be replaced with a standardized version. From
the Webvise clients’ view, the server’s model thus presented an architectural un-
certainty.

As a way of resolving or addressing this uncertainty, the software architectures
in the two projects were designed to anticipate the most likely changes caused by
the uncertainties. We will use architectural patterns (Buschmann et al., 1996; Shaw,
1995) to present the software architectures of the projects: the “Domain Model
Concealer” pattern describes the solution of the Webvise-related project and the
“Application Moderator” pattern describes the solution of the Dragon Project.

The reason for using architectural patterns in our presentation is two-fold. First,
it allows a short and succinct presentation with the focus on commonalities with
other software architectures. Secondly, architectural patterns, like design patterns
(Gamma et al., 1995), present a common solution to a common problem in a com-
mon context which matches the concept of architectural uncertainty well.

In the nature of the pattern concept, the actual presentation of the architectural
patterns is taken almost verbatim from (Hansen and Thomsen, 1999).

4.1.3.1 Pattern Format

The pattern format we use to describe architectural patterns varies somewhat from
the format of (Buschmann et al., 1996), (Shaw, 1995), and (Shaw, 1996). The
first can be too verbose to efficiently communicate the essence of architectural pat-
terns, and the last two can be too short to give sufficient understanding for actually
applying the patterns. Our format is introduced below:

Name and Thumbnail: What should the pattern be commonly known
as? Followed by a short description.

Problem: What is the architectural problem that the pattern faces, and
what are the main forces behind this problem?

Solution: What is an effective solution to the stated problem? This
section includes a deqscription of the pattern’s high-level static
structure in the form of a UML class diagram using packages.

Sample implementation: How could this pattern be applied? This
section includes UML class diagrams.

Consequences: What are the benefits and liabilities of applying this
pattern?

It may be viewed as a condensed version of the format in (Gamma et al., 1995) or
as a slight variation on Brown et al.’s (Brown et al., 1998) “deductive mini-pattern”
template.

To enable better dissemination of the patterns, the traditional “known uses” and
“related patterns” are discussed externally to the presentation of the patterns. Also,
a common, sample implementation is used:
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4.1.3.2 A Sample Implementation

We will use a common and simplistic implementation in the description of our
patterns. It is a common implementation since that allows for a more direct com-
parison between the two patterns. It is a simplistic implementation since it has to
be presented in a short space and should be easy to replicate. The problem do-
main model, in the form of a class diagram, and the user interface of our common
Financial History application are shown in Figure 4.4.

 

FinancialHistory

description

FinancialElement

description
amount
type

1
*

Figure 4.4: Problem Domain Model and User Interface for the Financial History
Application

Given this application, a user is able to maintain a very simple financial his-
tory with financial elements describing what a given expense was for. Financial
elements may be added or deleted via the user interface.

4.1.3.3 Domain Model Concealer

The Domain Model Concealer architectural pattern divides interac-
tive applications into a problem domain-related part (the Problem Do-
main Model), an interface to this model (Domain Model Concealer),
a User Interface part containing the user interface, and a User Inter-
face Logic part that implements user interface related functionality by
communicating with the Problem Domain Model through the Domain
Model Concealer.

Problem. How does one design the architecture of an interactive system so that
the user interface functionality is separated from the problem domain- related func-
tionality? How does one ensure that frequent changes to the Problem Domain
Model do not require frequent changes to the whole application?
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The following forces should be balanced: user interface functionality should be
separated from problem domain related functionality so that each part is easier to
understand and maintain, and changes to the problem domain model should have
no or minimal impact on the rest of the application.

Solution. The Domain Model Concealer pattern divides the application into four
parts: User Interface, User Interface Logic, Domain Model Concealer, and Problem
Domain Model. Optionally, a Testing component can be implemented. The overall
structure is shown in Figure 4.5.

Problem
Domain
Model

User Interface
Logic

Domain Model
Concealer

User
Interface

Testing

Figure 4.5: Overall Structure of the Problem Domain Concealer Pattern

The User Interface component implements the user interface and consists of
declarations and instantiations of the widgets in the user-interface of the applica-
tion. The Problem Domain Model contains the domain-related classes and func-
tions, and possibly other functionality. It can be implemented independently of
the User Interface component. The Domain Model Concealer contains an interface
to the Problem Domain Model component. The Domain Model Concealer is thus
dependent on the Problem Domain Model component but independent of the User
Interface component.

The User Interface Logic implements the functionality offered by the User In-
terface component by collaborating with the Problem Domain Model component
through the Domain Model Concealer interface. This makes the User Interface
Logic component dependent on both the Domain Model Concealer and the User
Interface components. Finally, the Testing component allows testing of the Prob-
lem Domain Model component via the Domain Model Concealer component.

Sample Implementation. An application of the Domain Model Concealer pat-
tern may proceed as follows; the steps should not necessarily be taken sequentially.
Part of the class structure of a resulting implementation is illustrated in Figure 4.6.

Implement the Problem Domain Model. The Problem Domain Model is as de-
scribed above.
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Implement the Domain Model Concealer. The Domain Model Concealer is im-
plemented as the FinancialConcealer class. In the Financial History application,
operations to add financial elements (add), delete financial elements (delete), and
iterate over financial elements (createIterator) are needed. The Concealer should
hold a reference (financialHistory) to the object in the Problem Domain Model of
which it is currently showing the state. Furthermore, methods to set the state of
the Concealer (load) and to set the state of the Problem Domain Model through the
Concealer (save) are needed.

Implement the User Interface and User Interface Logic Components. The User
Interface component (InputUI) can be implemented, e.g., by using a standard user
interface toolkit. The component contains the declarations and instantiations of
the widgets and corresponds to what may be generated by a user interface builder.
The User Interface Logic component (InputUILogic) implements the actual func-
tionality of the User Interface by subscribing to events in the User Interface. To
communicate with the Problem Domain Model it uses the associated Financial-
Concealer.

Optionally implement the Testing Component. A Testing component can be created
to systematically test the Problem Domain Model via the Domain Model Con-
cealer.

Consequences. This architectural pattern has both benefits and liabilities.

Benefits:

� Separation of the parts that require domain knowledge and the parts that
require user interface toolkit knowledge is supported.

onAdd()
onDescChanged()

InputUILogic

financialConcealer

add()
delete()
createIterator()
load()
save()

FinancialConcealeraddButton
descTextField

InputUI

description

FinancialHistory

financialHistory

1

1

1

*

Figure 4.6: Class diagram for the Financial History Application
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� Change in technology is supported, since the User Interface and User Inter-
face Logic components can be substituted by new components when the user
interface toolkit changes.

� Testing of the Problem Domain Model and the Domain Model Concealer is
facilitated.

� The User Interface and User Interface Logic components are shielded from
changes in the Problem Domain Model since they do not interface with it
directly.

Liabilities:

� As the Problem Domain Model changes, either more work is involved in
mapping between the Problem Domain Model and the Domain Model Con-
cealer, or the Domain Model Concealer must be changed, which may require
changes to the User Interface Logic.

� Multiple view consistency is not accommodated. The Observer pattern (Gamma
et al., 1995) can provide this by having the Domain Model Concealer as sub-
ject and several User Interface Logic components as Observers.

� Depending on the nature of the changes, frequent changes to the User Inter-
face also imply frequent changes to the User Interface Logic component.

4.1.3.4 Application Moderator

The Application Moderator architectural pattern divides an interac-
tive application into a problem domain related part (the Problem Do-
main Model), a user interface component (User Interface), an abstract
interface to the user interface (User Interface Mirror), and an Appli-
cation Moderator component that couples the User Interface Mirror
with the Problem Domain Model and other functionality.

Problem. How does one design the architecture of an interactive system so that
the user interface functionality is separated from the problem domain related func-
tionality and so that changes to the user interface require minimal change to the
rest of the system?

The following forces should be balanced: user interface functionality should
be separated from problem domain related functionality, so that each part is easier
to understand and maintain, and changes to the user interface should have as little
impact on the rest of the application as possible.
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Solution. The Application Moderator pattern divides the application into five
components, Problem Domain Model, Application Moderator, User Interface Mir-
ror, and User Interface. Optionally, a Testing component may be implemented.
The overall structure is shown in Figure 4.7.

The Problem Domain Model contains problem domain-related data and func-
tionality. The User Interface Mirror contains an abstract interface to the User In-
terface component. It consists of data members that reflect the state of the widgets
in the user interface and event members that represent events, such as a button
press, that occur in the user interface. Furthermore, it contains two abstract meth-
ods, setState and getState, which should be refined to write the state of the concrete
widgets into the data members (getState) and conversely (setState). The User Inter-
face contains the concrete widgets, implements the getState and setState methods
as described above, and calls appropriate event members.

The Application Moderator connects the Problem Domain Model with the User
Interface by subscribing to the events in the User Interface Mirror and thus moder-
ates their communication. Upon invocation of the events, it can access the current
state of the user interface by calling getState and then read the data members, or
it can set the state of the user interface by setting the data members and then call
setState, or it can do a combination of both.

Finally, the architecture allows for effective testing of most of the application.
This is done by creating a Testing component that systematically sets the state of
the User Interface Mirror, calls one or more event methods, and then tests if the
data members are in a correct state.

Sample Implementation. An application of the Application Moderator pattern
may proceed as follows; the steps should not necessarily be taken sequentially. Part
of the class structure of a resulting implementation is illustrated in Figure 4.8.

Implement the Problem Domain Model. The Problem Domain Model is shown

Problem
Domain
Model

User
Interface

Mirror

Application
Moderator

User
Interface Testing

Figure 4.7: Overall Structure of the Application Moderator Pattern
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description

FinancialHistory

onAdd()
onDescChanged()

UIEventMirror

onAdd()
onDescChanged()

FinancialModerator

setState()
getState()

description
amount
currentExpense
expenses

UIDataMirror

setState()
getState()
open()
close()

addButton
descTextField

InputUI

*

1

1

financialHistory

uiDataMirroruiEventMirror

description
amount
type

FinancialExpense

Figure 4.8: Class Diagram for the Financial History Application and FinancialEx-
pense Data Interface
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in Figure 4.4.
Implement the User Interface. The User Interface component (InputUI) can be im-
plemented using a user interface toolkit and corresponds to what may be generated
by a user interface builder.
Implement the User Interface Mirror. The User Interface Mirror reflects the User
Interface and acts as an interface to it. The User Interface Mirror is in this sample
implementation divided into two classes: UIDataMirror and UIEventMirror. The
UIDataMirror provides a data interface (Figure 4.8) that reflects the data displayed
in the user interface. The description and amount attributes correspond to the two
text fields in the user interface of the Financial History application. The expenses
attribute is a list of FinanancialExpense objects (Figure 9). Each element of this
list corresponds to an element in the list view of the application. CurrentExpense
models the current selection of the list view. Moreover, the getState and setState
operations are defined in the UIDataMirror class. The event members of the User
Interface Mirror are implemented as a number of abstract methods on the UIEvent-
Mirror with one function for each event of interest in the user interface. The onAdd
method, e.g., corresponds to the event that the addButton was pressed.
Refine the User Interface component. The User Interface component is refined to
implement the setState and getState operations and to call the event methods in the
User Interface Mirror. In this case the User Interface component binds the button
press events of the buttons to call the corresponding event members in the UIEvent-
Mirror which is associated through the User Interface component’s uiEventMirror
association.
Implement the Application Moderator. The Application Moderator connects the
User Interface Mirror and the Problem Domain Model. In our example, the Fi-
nancialModerator binds the events in the user interface by implementing the event
members in the UIEventMirror interface and by reading and writing to the data
members in the UIDataMirror. Generally, the implementation of the Application
Moderator should add methods, which map data between the Problem Domain
Model and the data members in the User Interface Mirror, refine the abstract meth-
ods of the User Interface Mirror that represent events of interest, implement the
general application functionality inside the appropriate event methods, and imple-
ment multiple view consistency if needed.
Optionally, implement the Testing component. An optional Testing component can
be implemented by creating another specialisation of the User Interface Mirror that
systematically calls the event members (i.e., in UIEventMirror) and then tests the
state of the data members (i.e., in UIDataMirror).

Consequences. This architectural pattern has both benefits and liabilities.

Benefits:
� The User Interface component and the User Interface Mirror components are

independent of the Problem Domain Model component.
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� The Problem Domain Model component is independent of the User Interface
component.

� The architecture supports effective testing. Regression testing of large parts
of the application, e.g., can be done efficiently via a Testing component.

Liabilities:

� The interface to the User Interface represented by the User Interface Mirror
component takes some time to develop and maintain.

� The architecture results in a minor overhead in terms of function calls, data
conversion, and data replication.

4.1.3.5 Pattern Discussion

Known Uses. Three-tier client-server architectures (Tsichiritzis and Klug, 1978)
divide interactive applications into three tiers: Database, Domain, and Client tier,
often according to “External”, “Conceptual”, and “Internal” database schemas. In
an interactive application with a thin client, the representation of the domain on
the client in many ways resemble a Domain Model Concealer, and the Domain and
Database tiers resemble the Problem Domain Model in the Problem Domain Model
Concealer pattern. Fowler (Fowler, 1997) discusses an “Application Facade” archi-
tectural model in a non-pattern format. In this architecture, the Application Facade
acts as a Domain Model Concealer and is used in the same way as in the Domain
Model Concealer pattern. (Hansen and Thomsen, 1999) discusses another use of
the pattern based on the Webvise-related project mentioned in section 4.1.3.

The Devise Open Hypermedia System (Grønbæk et al., 1994) uses the Appli-
cation Moderator pattern extensively to divide user interface and the hypermedia
data model in the client (runtime layer) of the system. Each dialogue in the sys-
tem communicates with the non-client layers through a mirror of the hypermedia
data model as in the Application Moderator pattern. In Microsoft Visual C++ , http://msdn.microsoft.

com/visualc/the Document/View architecture uses the Application Moderator to separate the
user interface (View) and the domain model (Document). The class wizard of the
development environment generates implementations of the setState and getState
methods in what corresponds to the User Interface Mirror. The Dragon Project
represents a third application of the pattern as discussed in section 4.1.3.

Relations to Other Patterns. A large number of architectures for interactive sys-
tems have been proposed. Examples include Seeheim (Pfaff, 1985), Model-View-
Controller (MVC (Krasner and Pope, 1988)), Presentation-Abstraction-Control
(PAC (Coutaz, 1987)), Arch/Slinky (Bass et al., 1992), and PAC* (Calvary et al.,
1997). However, few of these have been treated in a pattern form. The most
well known patterns are probably the MVC and the PAC patterns described in
(Buschmann et al., 1996).
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The Application Moderator pattern complements the MVC pattern. The MVC
pattern is mostly concerned with obtaining multiple view consistency. Whereas it
decouples the Model from the Views and Controllers via the Observer, it allows
the Views and Controllers direct access to the Model. The Application Moderator
pattern does not allow this.

The PAC pattern differs considerably from the other patterns. PAC has as its
dividing principle a vertical split of the application so that it is divided into separate
agents according to divisions found in the problem domain. Each of the agents
contains their own user interface and functionality.

A main difference between the Domain Model Concealer and Application Mod-
erator lies in what is decoupled: the Application Moderator architecture adds an
interface layer to the user interface, thereby shielding the clients of the user inter-
face from changes to it. The Domain Model Concealer architecture does almost
the opposite: it adds an interface to the Problem Domain Model and in that way
hides changes from its dependants.

4.2 Representing Experimental Modelling — a Notational
View

This section proposes an extension to the UML based on a number of observed
problems with the current specification of the UML compared to actual modelling
practice as presented in Chapter 3. In order to be able to present the extension, we
present the architecture of the UML in more detail than did Section 2.2.2.1:

4.2.1 Architecture of the UML

The current UML 1.4 specification (OMG, 2001b) defines a four-level layered ar-
chitecture for the UML as shown in Table 4.1.

An instance of objects on level 3 (a model) was shown in Section 2.2.2.1. The
language of level 1 (meta-metamodels) is the OMG Meta Object Facility (MOF;
(OMG, 2001a)). Figure 4.9 shows a part of the UML metamodel from level 2
related to the definition of classes and associations.

It specifies, e.g., that an Association has two or more AssociationEnds each
of which are connected to precisely one Classifier. This specifies that in a valid
UML model, an Association must connect two or more Classifiers. The diagram
part of the UML metamodel cannot fully specify all constraints between meta-
model classes, so the diagrams are combined with “Object Constraint Language’s”
(OCL) wellformedness rules (Warmer and Kleppe, 1999). Part of the rules for an
AssociationEnd are, e.g., that:

[1] The AssociationEnds must have a unique name within the Associ-
ation

self.allConnections->forAll( r1, r2 |
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Layer Description Example
1. Meta-
metamodel

The infrastructure for
a metamodeling archi-
tecture. Defines the
language for specifying
metamodels.

MetaClass,
MetaAttribute,
MetaOperation

2. Metamodel An instance of a meta-
metamodel. Defines the
language for specifying a
model.

Class, Attribute,
Operation,
Component

3. Model An instance of a meta-
model. Defines a lan-
guage to describe an in-
formation domain.

StockShare,
askPrice,
sellLimitOrder,
StockQuoteServer

4. User objects
(user data)

An instance of a model.
Defines a specific infor-
mation domain.

Acme_SW_Share,
654.56,
sell_limit_order,
Stock_Quote_Svr

Table 4.1: The Four Layer Metamodelling Architecture of the UML (from (OMG,
2001b, page 2-4))

AssociationEnd

+visibility
+changeability
+multiplicity
+targetScope
+aggregation
+ordering
+isNavigable

Classifier

Attribute

+initialValue

Association

Class

+isActive

AssociationClass

association
type

1 *

*

specification

*

qualifier

*

associationEnd

0..1

1

connection

2..*

Figure 4.9: UML Metamodel Excerpt
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r1.name = r2.name implies r1 = r2 )

[2] At most one AssociationEnd may be an aggregation or composi-
tion.

self.allConnections->select(aggregation <#none)
->size <= 1

(OMG, 2001b, page 2-52).

Finally, a verbal “Detailed Semantics” section completes the definition of the meta-
model elements:

An association may represent an aggregation; that is, a whole/part re-
lationship. In this case, the association-end attached to the whole el-
ement is designated, and the other association-end of the association
represents the parts of the aggregation. Only binary associations may
be aggregations. Composite aggregation is a strong form of aggrega-
tion, which requires that a part instance be included in at most one
composite at a time and that the composite object has sole responsi-
bility for the disposition of its parts (OMG, 2001b, page 2-66).

As noted in Section 2.2.2.1, the UML specification does not formalize the nota-
tional or graphical part of a UML model, but contains a “Notation Guide” which
defines the notational part verbally such as in:

A binary association is drawn as a solid path connecting two classifier
symbols (both ends may be connected to the same classifier, but the
two ends are distinct) (OMG, 2001b, page 3-68).

This verbal definition is complemented by examples in the form of drawings of the
defined graphical elements.

However, as part of UML 2.0, the diagram part of the UML is being formalized
(OMG, 2000a) among others to enable UML-enabled tools to exchange diagram
information. The rest of this section will thus assume the existence of a formal-
ization of the diagram part of the UML in some form related to the formalization
of the model part. For current lack of wording we will call this formalization the
UML meta-diagram while we will call the model part of the metamodel the UML
meta-model.

4.2.2 Representing Uncertainty: Introducing Levels of Restrictions

As described above, the UML specification consists of one metamodel with a con-
nected semantics and a connected set of OCL constraints. This fixes the use of the
UML on one level of “restriction”: it is only possible to create UML models with
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one, specific level of expressiveness in diagrams and models. Classes, e.g., must
be drawn as shown to the right in Figure 4.10. Even though the less formal-looking
representations to the left in the figure look very much like UML classes, they are
not. Moreover, even though the class to the right does look like a UML class, it
might violate the wellformedness rule that states that all model elements within a
namespace must have a unique name in that namespace (OMG, 2001b, page 2-63).

Figure 4.10: Possible UML Class Representations (“Informal”, “Semiformal”,
“Formal”)

When working creatively in general, it is often an advantage to have less pre-
cision and more expressiveness when working with diagrams (Goel, 1995; Gross
and Do, 1996; Hearst et al., 1989). Having more imprecise diagramming notations
may also be a way to involve multiple perspectives in diagramming and to keep
diagramming open-ended. Thus, these two, simpe examples show how it might
be beneficial to work on different, more expressive meta-diagram and meta-model
levels than the current, default level of restriction. The instances of Chapter 3 offer
further empirical examples and arguments for this.

Moreover, as noted by (Bunse and Atkinson, 1999), working with more restric-
tive meta-models (and meta-diagrams) might be necessary. Bunse and Atkinson
introduce the Normal Object Form (NOF). The NOF is a subset of the UML espe-
cially tuned towards reverse engineering and code generation. In doing this, they
distinguish beween refinement and transformation of UML models. Refinement is
used to gradually make a UML model more precise in order for it to be transformed
to and from object-oriented language code. An example of a transformation of a
normal UML model that is needed before code generation can be done in a precise
way is the specification of exactly how associations should be implemented. Bunse
and Atkinson support our claim that there should be multiple versions of the UML
meta-model, but it is not concerned with meta-diagrams and only aims at refining
UML models to conform to a more restrictive meta-model. In addition to this, a
default, or lowest, level of restriction of the UML should be more expressive than
the current UML specification in order for more flexible modelling to be directly
supported. And even more: different parts of a UML models need to be able to
be in different levels of restriction in order to allow for iterative, incremental, and
parallel modelling.

Section 4.2.2.1 will give a precise meaning to this notion of restrictiveness and
expressiveness and present a framework for how it may be represented as part of
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the UML specification. Table 4.2 summarizes how different levels of restriction
may be utilized.

diagram � model expressive restrictive
expressive freehand drawing freehand icons for elements
restrictive structured drawing formal, unified presentation and representation

Table 4.2: Uses of Expressiveness and Restriction in Diagrams and Models

4.2.2.1 Incorporating Levels of Restriction into the UML

Consider the set of metamodels that can be described by the constructs used in
the UML specification: given two metamodels A and B, A is more restrictive than
B if any model conforming to A is also a model conforming to B. This restric-
tion relation imposes a partial ordering on the set of metamodels. To incorporate
restrictions into the UML, we need to:

� define how metamodels of different levels of restriction can and may be con-
structed and

� define a “bottom” least restrictive/most expressive meta-model and meta-
diagram

The previous section argued that this “bottom” metamodel should be more expres-
sive than the current meamodel. For actually defining levels of restriction in the
UML, several options are available:

1. create an expressive meta-diagram and meta-model and leave it up to users
and tool providers to restrict if needed,

2. create several levels of meta-diagrams and meta-models and allow these to
be combined independently, or

3. create a base meta-diagram and meta-model and use wellformedness rules
to define restrictions

The first option is impractical since the very reason for the creation of the UML
was standardization of modelling languages across usage and tools. But given the
current UML specification it is the only practical option in order to demonstrate
the usefulness of multiple levels of restrictions. Chapter 5 will discuss a tool that
incorporates levels of restrictions in this way.

In (Damm et al., 2000c), we argue for the second option in contrast to the
first. However, since levels need to be combined within one model, and since
the last option would provide the least incompatibilities with the current UML
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specification, it is to be prefferred: the default set of of rules could correspond to
the current meta-model, and even though, e.g., multiplicities would be different in
the meta-model, the wellformedness would specify that a valid model on that level
of restriction would look exactly like a current, valid model.

As an example of how this might work, consider Figure 4.11, which shows a more
expressive version of Figure 4.9. It allows associations to be “incomplete”, i.e.,
connected to less than two classifiers.

AssociationAssociationEnd

Classifier

type0..1

connection

2..*
1

Figure 4.11: UML Metamodel Excerpt — Modified Version

We may also make the wellformedness criteria for association ends, presented
above, less restrictive by omitting some of the rules.

4.3 Summary

This chapter has shown how modelling processes, types of modelling (in the form
of patterns), and notations for modelling may help in addressing the challenges
outlined in Chapter 3. In particular, we have tried to address the challenges of
uncertainty, iterative, incremental, and parallel development.
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Chapter 5

A Tool for Experimental
Modelling

In this chapter, we focus on a specific test bed for tool support for experimental
modelling: the Knight tool. In particular, we discuss how it tries to address the
challenges of multiple practices, uncertainty, heterogeneity, and open-endedness
in experimental modelling as formulated in Chapter 3. Since the Knight Tool is a
test bed, all functionality that is discussed has been implemented and evaluated at
some point in time, but not all functionality is necessarily preserved in the current
version.

The material in this chapter is based in part on (Damm et al., 2000a; Damm et al.,
2000b; Damm et al., 2000c; Damm et al., 2000d; Hansen and Ratzer, 2002).

5.1 Rationale for the Knight Tool

The initial design goal for the Knight Tool was to support co-located collaborative
modelling using the UML. Based on experience from the Dragon Project, we noted
that tool support for, among others, collaborative modelling activities were almost
non-existent in traditional CASE tools. The empirical studies that grounded these
observations were discussed in Chapter 3. In particular, the studies presented in
Section 3.1.3.2 about COT and Section 3.1.4 about Mjølner, had as a major goal to
uncover problems with current tool support for modelling.

A second strand of foundation work for the Knight Tool was an investigation
of current technologies. We considered two main categories of tools for modelling:

� Computer-supported diagramming tools. General, structured drawing pro-
grams such as Microsoft Visio or Micrografx Designer support drawing and http://www.microsoft.

com/office/visio/

http://www.micrografx.
com/

editing of UML diagrams either in the form of general box and line dia-
grams, by the use of stencils, or by a similar mechanism. CASE tools such
as Rational Rose and Together ControlCenter support a number of software
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engineering activities such as forward and reverse engineering in addition to
diagramming.http://www.rational.

com/

http://www.
togethersoft.com

� Physical diagramming tools. Whiteboards and paper support freehand dia-
gramming, also of the UML.

Table 5.1 summarizes some advantages and disadvantages of these two categories
of tools:

CASE
Tools

Diagramming
Tools

Whiteboards Paper

Syntax and seman-
tics checking

� � � �

Software engineer-
ing support

� � � �

Integration with
computational
environment

� – � �

Process support � – – –
Structured dia-
gramming support

� � � �

Usability � – � �
Learnability � – � �
Co-located collab-
oration support

� � � –

Extensibility � � � �
Informal and in-
complete diagrams

� � � �

Mobility � – � �

Table 5.1: Aspects of Tools for Modelling ( � : yes/good, –: maybe/neutral, � :
no/bad)

In connection to CASE tools, several researches have reported on the adoption, or
rather lack of adoption, of CASE tools in development organizations (Aaen et al.,
1992; Kemerer, 1992; Iivari, 1996; Lending and Chervany, 1998; Jarzabek and
Huang, 1998; Scott et al., 2000; Sharma and Rai, 2000).

In their recent, national US survey, Sharma and Rai found that approximately
13% of the surveyed companies had adopted CASE tools (Sharma and Rai, 2000).
Adopters used CASE tools for around 60% of the tasks that could be supported
by the CASE tools. Facilities for creating diagrams and models (“representation”
in the study), was, with 95% adoption, by far the task for which CASE tools had
been most highly adopted. Lending and Chervany (Lending and Chervany, 1998)
report the same usage characteristics of CASE tools: only a small amount of the
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functionality of CASE tools was used and the most used functionality was the
functionality for diagramming and modelling. The only functionality that was used
at least “sometimes” was functionality for semantic analyses of diagrams. These
two studies suggest that it is important to support diagramming well in current
CASE tools.

Iivari (Iivari, 1996) confirms this and also concludes that a high degree of
CASE tool usage increases productivity, but if developers are able to choose whether
they want to use CASE tools, they prefer not to use CASE tools. A major reason
for this was that developers perceived CASE tools as having high complexity, and
Iivari thus points to that reducing the perceived complexity of CASE tools may be
profitable. Jarzabek and Huang concur and conclude that current CASE tools are
far too foucsed on hard aspects of software development (Jarzabek and Huang,
1998). To be more successful, “CASE tools must be more user-oriented, and
support creative problem-solving aspects of software development” in addition to
supporting harder, software engineering-related aspects of software development.
Also, current tools are too method-oriented and should allow developers to work
more freely and naturally and preferably “at the level of application end users”.

In contrast to CASE tools, blackboards, whiteboards, and paper are extremely ef-
fective in creative and fluent problem-solving cross-cutting multiple perspective
through their versatile, unconstrained, and ubiquitous character. The use and ef-
fectiveness of whiteboards has been studied in such diverse settings as meeting
room (Moran et al., 1996), class rooms (Abowd et al., 1996), and personal offices
(Mynatt, 1999). Similarly, the use of paper has been studied in such diverse set-
tings as construction drawing (Mackay et al., 1993), flight control (Hughes et al.,
1992), and video prototyping (Mackay and Pagani, 1994).

The obvious idea is then to try to combine the benefits of computerized (CASE)
tools and whiteboards or paper. The user studies, technology comparisons, and this
insight led to the following original design criteria for the Knight tool:

� Provide a direct and fluid interaction. The interaction with the tool should
never be the focus when using it and the tool should have a low threshold of
initial use.

� Support cooperative work. Software developers should be able to work to-
gether collaboratively using the tool. Domain experts should be able to use
the tool in conjunction with developers.

� Integrate formal, informal, and incomplete elements. Beside formal UML
elements, informal drawings and incomplete UML elements should be in-
corporated and integrated in order to support fluid modelling processes.

� Integrate with development environment. Additional software engineering
capabilities such as forward and reverse engineering and documentation is

73



essential in modelling. Thus, integration with existing CASE tool function-
ality is needed.

� Support large models. Users should not be restrained by the size of models.
In addition, filtering capabilities should be available.

The design criteria led to the implementation discussed in the next section.

5.2 Design and Implementation of the Knight Tool

This section presents the implementation of the Knight tool from a use and techni-
cal perspective: the interaction with the tool is presented with particular emphasis
on the support for levels of restriction in the UML (see Section 4.2.2) and the tech-
nical implementation is discussed with emphasis on integration with other tools.

5.2.1 Interaction

The Knight tool implements a “whiteboard” metaphor of interaction: the workspace
on which models are created is a potentially infinite, blank surface (Figure 5.1).
Element creation, deletion, and updating is done primarily using gesture input:

Figure 5.1: Knight User Interface
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5.2.1.1 Gestural Interaction

The Knight tool has two primary modes: a freehand mode in which all input strokes
are uninterpreted, and a gesture mode in which input strokes are interpreted as ges-
tures. The freehand mode works well for all types of users and the gesture mode
works well for users with some knowledge of the UML (see Section 5.3, page 89ff).
In this context, gestures are marks drawn on the workspace and subsequently rec-
ognized by a computer tool (Buxton, 1986). In the Knight tool, the most frequently
used gestures bear a direct resemblance to what would have been drawn on an or-
dinary whiteboard when drawing UML diagrams. Figure 5.2 shows examples of
this: at the top it is shown what the user draws, and at the bottom it is shown
how the Knight tool represents the user input after it has been recognized. By us-
ing gestural interaction, the interaction becomes fast and direct: a command and
its parameter are specified by a gesture that resembles the intended result of the
command. Two potential problems with gesture recognition are that only a limited

Figure 5.2: Gesture Recognition in the Knight Tool

number of different gestures can be recognized and that no feedback is given when
a gesture is drawn. To reduce the number of needed gestures, we use compound
gestures (Landay and Myers, 1995): if a diamond gesture is drawn close to an asso-
ciation, it changes that association to an aggregation (Figure 5.2, right). To provide
incremental feedback, we use eager recognition (Rubine, 1991) for e.g. moving
elements: as the user is drawing, the gesture is incrementally recognized, and if it
can be classified as a move gesture, a move is initiated, and the rest of the user’s
gesture is interpreted as the trajectory of that move.

Gestures are also used for less frequently used commands in combination with
context-dependent, hierarchical pie menus (Figure 5.3) in order to make pie menus
work as marking menus (Kurtenbach, 1994): making a short stroke in the direction
of a desired command on a pie menu invokes that command. For expert users,
this provides a highly efficient way of invoking commands. The gesture recognizer
is an implementation of Rubine’s algorithm (Rubine, 1991). The algorithm uses
simple pattern recognition to recognize single-stroke, two-dimensional gestures
and consists of two phases:

Training. Each type, or class, of gesture is specified by a set of examples. For
each gesture example, a feature vector is calculated. This feature vector
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contains 13 features of the gesture including start angle, length, and total an-
gle traversed for the gesture. Based on the feature vectors for the examples,
an average feature vector is calculated for the entire gesture class.

Recognition. During recognition, the feature vector of the user’s gesture is cal-
culated and compared to the feature vectors of the gesture classes created
during training. The most resembling gesture class is chosen, and a proba-
bility whether the guess was right is returned.

Since the gesture recognition is based on statistical analyses, the gesture class out-
put from the algorithm, in response to a gesture made by the user, may be the wrong
gesture class. However, since the Knight tool supports unlimited undo and redo,
the commands implied by a recognized gesture are always executed since the user
may easily repair a wrong guess made by the algorithm.

The use of Rubine’s algorithm is complicated slightly by the fact that features
of a gesture class are required to be normally distributed. This means that a single
gesture class cannot cater for, e.g., left-handed and right-handed users who are
typically drawing figures in different directions since this would make the feature
space be multi-modally distributed. To do this, we create a basic gesture class,
such as a rectangle drawn in one specific way, and rotate and mirror those to create
new gesture classes. In this way, all our 74 gesture classes on class diagrams alone
can be created from only 14 base gesture classes. Experience and evaluations show
that this approach works well: we made different people create an example set of
more than 9000 strokes, asked these people to manually classify them, and tested
their classification against our recognizer. The current recognition rate is above
96%. Section 5.3 discusses results from qualitative evaluations.

5.2.1.2 Input Devices

The Knight tool is designed to work on a range of input and output devices, but
since a main goal was to design a tool for collaboration, we have focussed on mak-

Figure 5.3: Pie Menus in the Knight Tool
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ing the interaction work well on electronic whiteboards. Electronic whiteboards
(Figure 5.4) provide a large screen on which users draw with pens much like on
ordinary whiteboards. However, the pens are non-marking: a computer receives
the pen strokes as input and a projector provides output. The electronic whiteboard

Figure 5.4: Electronic Whiteboards

to the left in Figure 5.4 is a “SMARTBoard” which has a touch-sensitive screen http://www.smarttech.
comthat is operated with special markers. The “Mimio” to the right can be mounted
http://www.mimio.com

on any ordinary whiteboard and in combination with a projector turn this into an
electronic whiteboard.

Two aspects of electronic whiteboards have to be handled in order to get an
effective interaction, namely that they have limited input capabilities, and a large
physical size.

The main input device is a pen and, generally, the only input the pen can give
is whether or not it is pressed down, and if it is pressed down, where it is. This
means that, conceptually, the only input an electronic whiteboard can give is that
of a single-button mouse with no mouse movement dection capabilities. In the
Knight tool, this means, e.g., that pie menus must be activated by pressing the pen
and holding it down for a small period of time. A related problem is that of text
input as discussed in Section 5.2.1.4.

Electronic whiteboards are much larger than ordinary desktop monitors and
in combination with the absolute input device this raises some issues: it is, e.g.,
physically impossible to stand at the right side of an electronic whiteboard and
reach the left side of the electronic whiteboard with the pen. In the Knight tool
this is handled by using gestural input and marking menus instead of ordinary
toolbars and pull-down menus: gestures can always be drawn at the user’s physical
position. Replicating widgets is another example of handling the large size of the
input device:
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5.2.1.3 Handling a Large Workspace

The workspace of the Knight tool should be potentially infinite. This is handled
by radar windows shown in Figure 5.5. The radar window can be resized to pro-

Figure 5.5: Radar Windows in the Knight Tool

vide a larger workspace, the view port of the radar window can be dragged to pan,
and the handles on the viewport can be dragged in order to zoom. This means
that multiple actions that are typically distributed to a number of widgets in an
ordinary user interface is now collected in one widget, which is important on elec-
tronic whiteboards. Also, any number of radar windows can be opened so that it is
possible, e.g., to have a radar window within reach on both sides of the electronic
whiteboard.

5.2.1.4 Text Input

Apart from the ordinary keyboard that is generally connected to the computer that
drives an electronic whiteboard, there is a need for text input mechanisms that
can be used by those working at the electronic whiteboard. Figure 5.6 shows the
text input possibilities we have experimented with in the Knight tool. In order of
difficulty to in learning and effectiveness in operation, these are:

� A virtual keyboard (a) that is operated much like an ordinary keyboard but
with “sticky keys” for, e.g., the shift key.

� Cirrin (b), a circular single-stroke keyboard on which the user draws a stroke
through the letters of the word that the user is trying to input (Mankoff and
Abowd, 1998).

� Stylus-based gestures (c) as on PDAs providing a predefined symbols for
letters and numbers.
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(a) (b)

(c) (d)

Figure 5.6: Text Input Possibilities in the Knight Tool

� Quikwriting (d) is another single-stroke keyboard (Perlin, 1998). The figure
shows a stroke that results in the word “que”: to write the “q”, which is
at the bottom of a field with five letters, the user makes a stroke to the field
containing the “q”, continues two fields down, and out in the centre. To write
the “u”, which is at the top of a field with three letters, the user draws a stroke
to the field containing the “u”, continues one field up, and out. Finally, to
write the “e” which is at the middle of its field, the users draws a stroke to
the field containing the “e” and continues out.

In general, to write the middle letter in a field of letters, the user simply
draws a stroke into the field and out of the same field. To draw the letter
to the right of the middle of a middle, the user draws a stroke into the field,
continues the stroke to the field to the right, and continues the stroke out of
that field. And in a field with five letters, the user has two continue the stroke
two fields from the field containing the five letters in order to write one of
the letters on the outside of the field.

In the end, we settled for the virtual keyboard as text input for two main reasons:
first, it is the text input method that is the easiest to learn. Secondly, creative
modelling seldom involves extensive text input, and thus speed of text input may
not be critical. In fact, one of our user studies showed that only approximately 25%
of a meeting was spent on actually diagramming and only a minor part of that was
spent on writing text (Damm et al., 2000a).

A longer-term wish is to include handwriting recognition when this technology
matures.

5.2.2 Support for Levels of Restriction

We aim at supporting different levels of restriction in diagrams and models in the
Knight tool in order to obtain open-endedness in diagrams and models. Since
models may be at various levels of restriction, tools should support the mixing of
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different levels of restrictions and transitions between these levels.

This section discusses the current support for this.

5.2.2.1 Different Levels of Restriction

The default level of restriction in the Knight tool is more expressive than the cur-
rent UML specification: in our user studies (see Chapter 3) the default level of
restriction in actual modelling was more expressive than that of the current meta-
model. Section 5.2.2.2 discusses how the Knight tool supports the shift between
levels of restriction.

For models, the increased expressiveness means, e.g., that two model elements
(such as classes) can have the same name, or no name, even if they are in the same
namespace, that relationships (such as associations) can be incomplete, and that
model elements (such as state machines) do not need to be semantically connected
as may be required in the current metamodel.

For diagrams, we found freeform drawings as an addition to UML diagram
elements particularly useful. Also, we have focussed on preserving the look of di-
agrams: in CASE tools, elements are often required to look finished even though
they are not (Figure 5.7) and, as discussed in Section 4.2.2, page 66, there is evi-
dence that such formal representations hinder creativity.

Route

no: integer

Figure 5.7: Unfinished UML Elements May Look Finished

Thus, in the Knight tool, an element can be displayed in three different ways:

� Untransformed: an element may look exactly like it is drawn even though it
has been recognized, e.g., as a class.

� Semi-transformed: an element may be presented using a sketchy look.

� Transformed: an element may look as it is required by the UML specifica-
tion.

Figure 5.8, left, shows the three different transformations in Knight on recognized
classes. Figure 5.8, right, shows how an unfinished class may look indeed un-
finished using semi-transformation. As detailed in Section 5.2.2.2, the different
transformations can be mixed within a single model and even within a single dia-
gram.

80



5.2.2.2 Shifting Between Levels of Restriction

There are three main ways in which shifting between levels of restriction can be
supported by a tool:

� Automated: The tool may automatically, i.e., without intervention by the
user, transform the model to a certain level of restriction.

� Guided: Upon request by the user, the tool may suggest different transfor-
mation that the user may choose among.

� Manual: The tool may offer funtionality for the user to change levels of
restrictions without any special, automated support from the tool.

The Knight tool supports transformations of all three kinds to various degrees.
Initially, strokes are, conceptually, elements in a very expressive meta-model

and -diagram. The default behaviour is to restrict those automatically to UML
model elements with a standard UML presentation, making a restriction in model
as well as diagram. When integrating with CASE tools (see Section 5.2.4, page 84),
the needed level of restriction is the standard UML level, and thus an automatic
transformation is also performed in this case. Freehand elements are, e.g., con-
verted to comments and incomplete associations are connected to a hidden class.

Figure 5.9 shows an example of guided transformations: the user has asked
Knight to do a post-processing on freehand elements and recognize these as UML
elements. This may be useful, e.g., for collaborative sessions in which an ongoing
recognition of elements would interfere. Another way of restricting models is to
ask the Knight tool to mark elements that are illegal in a more restrictive meta-
model. The tool will then highlight illegal elements, such as incomplete relation-
ships, and leave it up to the user to decide what to do with these illegal elements.

In Figure 5.10, three examples of manual transformations are shown. In all ex-
amples, an illustrative freehand drawing, (a), representing the concept of a “route”,

Figure 5.8: Different Class Transformation in Knight
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has been drawn. In (b), the user has chosen to transform the drawing into a class
since the drawing is no longer important. If the drawing is still important, the user
may transform the drawing to a class and a relation to the drawing, in effect using
the drawing as an icon for the class (shown in (c)). In (d), the user has chosen to
use the drawing to document a more elaborate model of a route.

 
Figure 5.9: Guided Transformation of Freehand Elements in the Knight Tool

(a)

(b) (c) (d)

Figure 5.10: Restrictive Transformations of a Freehand Drawing
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5.2.3 Software Architecture

Figure 5.11 shows a conceptual view of the software architecture of the Knight
Tool. The central component follows the “Repository” architectural pattern (Shaw,
1996): it contains richly structured, centralized data with a number of computa-
tional components working on it. Concretely, it is a collection of diagrams and
models: the models are instances of the UML 1.3 metamodel (OMG, 2000b)
whereas the diagrams are implemented using a self-defined class structure since
diagrams are not covered by the UML standard.

Knight

Workspace
+ diagramObserver
-  renderingCanvas
-  gestureClassifier

Repository
+ model
+ diagrams

XMI Import

- diagramVisitor

Radar

+ diagramObserver
-  renderingCanvas

XMI Export

- diagramVisitor

Tool Integrator
+ diagramObserver
-  diagramVisitor
+ toolObserver
-  toolVisitor
+ eventDispatcher

<<reads/writes>>
<<writes>>

<<reads>><<reads>>

<<reads/writes>>

Figure 5.11: Software Architecture of the Knight Tool

Other components read from and write to the Repository. Reading is done as a
result of creations, deletions, or changes to the model and is triggered by notifica-
tions. Notifications are implemented using the Observer pattern of (Gamma et al.,
1995). The Radars are examples of Observers: when a diagram and model element
is created, the Radars create corresponding visual representations of this model el-
ement. The Tool Integrator component is also an Observer. This component will
be discussed in more detail in Section 5.2.4.

Writing is done using a combination of Command and Composite patterns
(Gamma et al., 1995), providing unlimited undo/redo capabilities on any desired
level of granularity.

The tool is implemented in a mix of [incr Tcl] (McLennan, 1993), an untyped,
class-based, object-oriented extension of Tcl (Ousterhout, 1994), and C and C++
for performance-critical functionality such as gesture recognition.
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5.2.4 Tool Integration

The primary reason for integrating the Knight tool with other tools is connected
to our goal of building an environment that supports concrete activities in system
development (cf. Section 2.4): one tool cannot support all system development
activities equally well, and thus tool integration becomes important. A primary
outcome of this is support for open-endedness in the combination of tools and a
support for iteration through the collective work on material by different tools.

This section focuses on two integration efforts made in order to
� integrate with CASE tools in order to enhance the software engineering ca-

pabilities of the Knight tool (Section 5.2.4.1 and 5.2.4.2), and

� integrate with the Topos tool in order to address more of the challenges of
Chapter 3 than otherwise possible (Section 5.2.4.3).

Tool integration may be viewed on an architectural level as a cooperation between
high-level components interacting via high-level connectors. We can distinguish
between data and processing components (cf. Section 4.1.1.1, page 50) with the
processing components operating on the data components. In order to integrate,
two processing components will need to work on the same logical data, which may,
physically, be either shared or separate. In both cases, the processing components
may either run simultaneously (synchronously) or asynchronously. Table 5.2 (in-
spired by Ellis et al.’s taxononmy of Computer-Supported Cooperative Work (Ellis
et al., 1991)) summarizes our taxonomy of component collaboration on a common,
logical core of data and gives examples: In the Knight case, the common, logical

Time � Data Shared Data Separate Data
Asynchronous File import/export Merging software configuration

management systems
Synchronous Microsoft ActiveX

with linking instead of
embedding

Component technology interac-
tion between applications

Table 5.2: Component Collaboration Taxonomy with Examples

core of data is data described by the UML metamodel. In the space described
by the taxonomy, several possible integration scenarios are possible in the Knight
case, e.g., by integrating

1. separate tools using a common interchange format (asynchronous, shared),

2. separate tools working on different aspects of the separate data (asynchronous,
separate),

3. components collaborating through a well-defined interface to the common
core of data (synchronous, shared), or
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4. interaction between separate tools with separate data via component technol-
ogy (synchronous, separate).

Section 5.2.4.1 considers the first scenario, Section 5.2.4.2 the fourth scenario, and
Section 5.2.4.3 the third scenario. We have not investigated the second scenario.

5.2.4.1 XMI Integration with CASE Tools

We have implemented asynchronous integration with shared data in Knight through
the OMG XML Metadata Interchange (XMI, (OMG, 2002)) standard that describes
how to interchange UML models as XML documents. In fact, XMI is intended for
describing interchange formats for all metamodels written in the OMG MOF meta-
metamodel (see Section 4.2.1, page 64). Take the simple diagram in Figure 5.12 as
an example in the UML case. Figure 5.13 shows part of the XMI that is generated
by Knight to describe the “Car” model and diagram elements. Currently, Knight
uses the XMI 1.0 format (OMG, 2000c).

Car

make
owner

drive()

Wheel

make

attach()
detach()

4

Figure 5.12: Simple Model for a Car

<Foundation.Core.Class xmi.id="idclass0-3C839BFF">
<Foundation.Core.ModelElement.name>

Car
</Foundation.Core.ModelElement.name>

...
<Diagramming.Diagram.element>

<Diagramming.DiagramElement
xmi.id="idclassView0-3C839BFF">

<Diagramming.DiagramElement.geometry>
3420.0,3672.0,421.2,327.6,

</Diagramming.DiagramElement.geometry>

Figure 5.13: Part of XMI generated from the Model in Figure 5.12

The XMI describing the model elements follow the UML metamodel faithfully
as exemplified at the top of Figure 5.13. For diagram elements, the interchange
is more problematic, however, since the current UML specification as discussed

85



above does not define the appearance of model elements. The bottom of Figure
5.13 (with linebreaks added for readability) actually shows a non-XMI extension
that describes diagram information. The diagram format currently used by Knight
is the same non-standard one as used by Rational Rose . Thus, the Knight tool ishttp://www.rational.

com/ able to interchange model information with all CASE tools that implement XMI
1.0 for UML 1.3, but it is able to interchange models and diagrams only with
Rational Rose.

This use of tool-specific extensions raises a deeper problem: how does one en-
sure that the changes one tool makes do not conflict with the extensions another
tool has embedded in an XMI file? Since the semantics of extensions is, by defini-
tion, not covered by XMI, there is no general and simple solution to this problem.
Nevertheless, it would be useful to have a time stamp included on XMI elements
so that tools may at least discover if extensions they have written have become
out-of-date.

A more practical problem is that a large number of CASE tools do support
XMI interchange but that only a few of them can actually interoperate: UML and
XMI are both evolving as standards (and both rely on MOF which is evolving as
well) and tool producers may choose to actully support different versions of each
of these standards.

5.2.4.2 Component Integration with CASE Tools

The XMI integration discussed in the previous section is impractical when different
tools work on different aspects of data and frequent synchronization is needed; in
this case, synchronous integration is useful. Usually, synchronous integration is
component-based using technologies such as COM (Rogerson, 1997) or CORBA
(Henning and Vinoski, 1999). We chose to use COM since this is the component
technology used by most CASE tools.

A logical view of the architecture of Knight pertaining to tool integration is
shown in Figure 5.14. The main component in this figure is the Tool Integrator
component (cf. Section 5.11, page 83) that implements the integration of two or
more tools, in this case the two tools “Tool A” and “Tool B”. Each tool contains
separate but compatible data and is, in principle, required to have a COM interface.

The Tool Integrator enables a simple integration of tools that have compatible
meta-models and a COM interface that enables the creation, manipulation, and
deletion of model and diagram elements. Details can be found in (Damm et al.,
2000d).

The architecture has proven effective for the integration of Knight and CASE
tools: currently, we have experimented with integration with Rational Rose and
Microgold WithClass , but we believe it will be adequate for the integration withhttp://www.microgold.

com other CASE tools as well.
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5.2.4.3 Component Integration with Topos

A major challenge to experimental modelling is “heterogeneity” as presented in
Section 3.2.4, page 45: sources to models are heterogeneous and products of mod-
elling are heterogeneous. The Topos (formerly Manufaktur) tool allows for ma-
nipulation and maintenance of relationships among material in a 3D spatial en-
vironment (Büscher et al., 1999b; Büscher et al., 2000; Grønbæk et al., 2001).
It integrates with standard applications in order to show thumbnails of documents
mapped onto 3D objects that may be freely arranged in space (Figure 2.2, page 23).
Using Topos, it is possible to create a richly structured, hyperlinked collection of
material from a diverse set of applications. Further, one of the current focus areas
for the development of Topos is its integration into an augmented reality working
environment.

Integrating the Knight tool with Topos provides a useful setup for experiment-
ing with heterogeneity. Consider the Dragon project: if such a tool had been
available during the project, UML models could have been connected with, and
documented by, bills of ladings, route plans, video and sound from ethnographical
studies, and much more. The richly structured environment of Topos would allow
for the co-location of models and material used for producing the models without
impeding actual modelling work.

To enable such experimentations, we have built a prototype integration between
Topos and Knight. A Topos workspace featuring integrated UML diagrams is
shown in Figure 5.15. Including a Knight file in Topos results in the displaying
of all diagrams in the file as different objects in Topos. Each object is updated as
the corresponding diagram is updated through Knight, and double-clicking such an
object will result in Knight displaying the corresponding diagram.

Tool A

Tool A Observer Tool B ObserverEvent Dispatcher

Data Map

B-to-A Change Visitor

Tool B

<<reads/writes>>

<<reads/writes>>

<<notifies>><<notifies>>

<<invokes>>

<<invokes>>

<<reads/writes>>

Tool  Integrator

<<reads/writes>>

A-to-B Create Visitor

A-to-B Delete Visitor

A-to-B Change Visitor

B-to-A Create Visitor

B-to-A Delete Visitor

Figure 5.14: Knight Architecture for Component Integration
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Technically, we created two new component interfaces to achieve the integra-
tion:

� IToposClient. Knight implements this interface. When the user includes a
Knight XMI file in Topos, Topos calls this interface to obtain handles to and
images of the objects in the file. The ToposClient is responsible for deciding
what is objects, for giving handles to objects, for creating images for objects,
and for re-opening objects.

� IToposApplication. Topos is the only instance of the IToposApplication in-
terface. ToposClients use this interface to make callbacks when objects are
changed. The ToposApplication is responsible for displaying objects and
maintaining the handles to these.

Given a file, the only requirement from Topos is ordinarily that the application that
handles this file is an ActiveX container. This enables Topos to get a persistent
name for the file and to get an image of the document in the file. Our integration
lies between the ordinary integration and an application-specific integration (which
has been done with Webvise (Grønbæk et al., 1999)) in terms of coupling: the
client application is required to contain an object that implements the IToposClient
interface but is free to decide what the granularity and semantics of its objects are.

Figure 5.15: Example of Topos and Knight Integration
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5.3 Evaluations of the Knight Tool

The Knight tool has been commercialized as “Ideogramic UML” by Ideogramic
ApS. The commercialization and subsequent sale and use of Knight provides an http://www.ideogramic.

comanecdotal evaluation of its usefulness and appropriateness. In order to make grounded
assesments, we have formally evaluated two important aspects of Knight: its use
in ordinary software development and its use in computer science education. The
first evaluation was done prior to the commercialization, and the second evaluation
was done subsequent to the commercialization.

This section briefly reviews these evaluations. Some of the redesign sugges-
tions from the evaluations will be discussed in Section 6.4, page 97.

5.3.1 Software Development

The first thorough evaluations of the Knight tool were done through two design
sessions that involved a mixture of expert and novice modellers. The evaluations
were done to validate the implementation of the original design criteria of Section
5.1, page 71.

5.3.1.1 Experimental Background

The subjects of the first design session were participants in the CPN2000 project
(Beaudouin-Lafon et al., 2000; Beaudouin-Lafon and Lassen, 2000). The CPN2000 http://www.daimi.au.

dk/CPnets/CPN2000project experimented with novel interaction techniques for a Petri Net design tool.
As part of the project, three designers had constructed different object-oriented de-
signs for event handling, and certain interface elements had been constructed. We
observed the designers use the Knight tool to integrate these designs. One of the
designers was knowledgeable of UML and traditional CASE tools, the other two
designers had little knowledge of the UML.

The subjects of the second evaluation session were participants in the DE-
SARTE project (Büscher et al., 1999b; Büscher et al., 1999a). The DESARTE
project was concerned with constructing electronic support environments for (land-
scape) architects. For one of the tools in this environment, Manufaktur, a concep-
tual model had been developed. We observed a meeting in which two participants
used the Knight tool to restructure this model. Both designers had good knowledge
of object-oriented modelling.

5.3.1.2 Evaluation Execution

In both cases, the designers received an initial, brief introduction to the interac-
tion style of the Knight tool by a facilitator. During the evaluation, the facilitator
provided tool-specific help if the designers asked for help. Furthermore, we video-
taped the sessions and took notes.
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5.3.1.3 Results

Both evaluations were encouraging: each session lasted about an hour and a half,
and after the brief introduction, the designers were able to focus on modelling
instead of on the tool or on the evaluation. The only exceptions were situations in
which the tool actually crashed due to its prototype nature.

Figure 5.16 shows the model produced by the participants of the first session.
In particular, we observed the following in relation to four of our five initial design

Figure 5.16: Model Produced in Evaluation Session

criteria (the last, integration with the development environment, was not consid-
ered):

Provision for a direct and fluid interaction. The tool showed to have a low thresh-
old of initial use: after the short introduction, all participants were able to use
the core functionality of the system. Some participants had problems draw-
ing gestures due to lack of training or individual differences in how people
draw (this has since been catered for). The marking menus were particularly
hard to use.

Support for cooperative work. The electronic whiteboard worked well for col-
laboration support. The only major problem was that only one person could
draw at a time. Nevertheless, both groups quickly developed the necessary
coordination mechanisms for not interferring with each others work.

Integration of formal, informal, and incomplete elements. Freehand drawings were
widely used and appreciated. However, the low resolution of the input on
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the electronic whiteboard meant that participants had trouble particularly in
writing freehand text. Incomplete UML elements were considered useful but
not widely used.

Support for large models. As the models grew in size, the radar windows were
used for zooming and panning efficiently. That the radar windows were the
only way to navigate around the workspace was, however, problematic: to
move a class from one corner of the diagram to another, one participant had
to move, pan, and then move again.

This evaluation is discussed in more detail in (Damm et al., 2000a).

5.3.2 Computer Science Education

From the perspective of education, the UML has major problems:
� Extent and Complexity: With nine diagram types, more than 100 metamodel

elements, and even more relationships between these, the UML is unwieldy.
Moreover, a large number of these are necessary to learn and there is no
concept of level of use in the UML. Thus, the UML is primarily suited for
software development experts and problematic to use in teaching and learn-
ing object-oriented modelling (Astrachan, 2001; Raner, 2001).

� Usability: As discussed in this chapter and Chapter 3, the UML has no pro-
vision for many commonly occuring modelling practices: the UML provides
one, formal and fixed, view of what a model is regardless of the modelling
situation.

We wanted to evaluate to what degree the Knight tool could help with these prob-
lems in a teaching and learning situation and in particular when used in a peer
group.

This evaluation is discussed in more detail in (Hansen and Ratzer, 2002).

5.3.2.1 Experimental Background

We studied participants in a second-year computer science course on object-oriented
programming at the University of Aarhus doing a project assignment. Part of this
project assignment was to create a problem domain model for a system for archiv-
ing, browsing, and replaying music files. We studied four project groups doing
this.

The partipants had all attended a one-hour lecture on UML in which the Knight
tool had been presented through a video. The lecture covered the basics of the UML
with a particular focus on its relation to object-oriented programming languages.

Table 5.3 summarizes the experience the participants had with techniques rel-
evant to the evaluation.
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Programming Object-Orientation UML Gestures
Never 0% 0% 58% 42%
A few times 25% 17% 33% 42%
Some 33% 58% 8% N/A%
Frequent 42% 25% 0% 17%

Table 5.3: Background Information on Frequency of Use of Techniques for Test
Subjects

5.3.2.2 Evaluation Execution

Following a summary of the lecture on UML given to the course, the students
started with a brief trial round in which they tried to become familiar with the un-
common interaction techniques used in the Knight tool. Subsequently, the groups
used the tool for creating a domain model without us providing specific tasks to
solve. In this way, with the exception of the Knight tool, we tried to make the eval-
uation situation resemble how the groups would typically model (Figure 5.17. Two

Figure 5.17: Student Use of Knight During Evaluations

experimenters were present during the study: one responsible for the study execu-
tion and observation and one responsible for providing help to the participants. We
focuses on breakdowns and focus shifts (Bødker, 1996) in the use of the tool as
well as in the use of the UML for modelling.

After the study, the subjects were interviewed.
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5.3.2.3 Results

Generally, the Knight tools addressed some of the problems that the UML has in
teaching and learning situations and was effective as a modelling tool even for
novice UML users. In particular, we had the following observations:

Extent and Complexity. Using a gesture-based tool helps limit the amount of
functionality presented to novice users: an instructor can choose to intro-
duce only the gestures that are relevant to the students’ current level and
ignore more advanced UML elements. The directness of the gestures in the
Knight tool is an important aspect of supporting learnability, particularly for
novice users. The subsequent interviews supported this: all groups stated
that the tool was “easy to use” and “easy to get started on”.

Usability. In all studies, the freehand mode of the tool was used extensively for,
e.g., user interface sketching, runtime object layout, and small code excerpts.
All groups found the freehand mode very important in UML modelling. The
expressive UML modelling also enabled users to start modelling with only a
basic understanding of the UML.

Figure 5.18 shows an example of a model created by one of the groups in the study.
It was created in less than one and a half hour by users with no prior experience in
UML modelling and only a very basic introduction to the Knight tool.

5.4 Summary

This chapter has presented the Knight tool for gesture-based, collaborative object-
oriented modelling and discussed how it addresses the challenges of multiple prac-
tices, heterogeneity, and open-endedness to experimental modelling
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Figure 5.18: Model Created by Students during an Evaluation
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Chapter 6

Conclusions and Future Work

This thesis has discussed modelling in the context of experimental system devel-
opment. As evident, the research presented has had a large empirical and experi-
mental component itself: we have modelled, observed modelling, used and created
techniques for experimental modelling, and built and evaluated tools for experi-
mental modelling.

We believe that as experimental techniques become more prominent in main-
stream system development, tools and techniques for modelling will need to adapt
as outlined in this thesis. In the rest of this chapter, we summarize our contribu-
tions towards this goal and point to areas in which the work presented in this thesis
can be extended.

6.1 Grounding of Experimental Modelling

We have investigated object-oriented modelling in experimental system develop-
ment through a number of project involvements and observations. Based on these
investigations, we have extracted a number of challenges in the form of work in-
stances. Particularly, we have identified the following, essential challenges to mod-
elling in experimental system development. Experimental modelling is performed

� by multiple practices,

� in an uncertain environment,

� iteratively, incrementally, and in parallel,

� with heterogeneous input and output, and

� in an open-ended way.

This has implications for tool and techniques for experimental modelling, among
others: Since experimental modelling needs to be performed by multiple practices,
it cannot be supported by one, fixed, formal modelling notation or technique. Since
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requirements are uncertain in experimental system development, models cannot
be regarded as prescriptive specifications for systems. Since experimental mod-
elling is iterative, incremental, and done in parallel, models need to be modular,
extendible, and malleable. Since material for experimental modelling and output
needs to be heterogeneous, tools and techniques should support the inclusion, and
independence, of a mulititude of material. And since experimental modelling is
open-ended, all tools and techniques should be changeable, to some degrees even
within single modelling activities.

6.2 Techniques for Experimental Modelling

This thesis presented two sets of techniques in experimental modelling for

� creating appropriate models and

� representing models appropriately.

As a way of creating models that can be used as a basis for experimentation during
system development, we outlined an architectural strategy with a focus on archi-
tectural uncertainty. Moreover, we pointed to how architectural patterns could be
used to handle this uncertainty. For model representation, we proposed extensions
to the existing UML modelling language based on the idea of levels of restric-
tions in conceptual and visual elements of object-oriented experimental models.
By varying levels of restrictions, the same underlying modelling language can ac-
commodate different users and uses as appropriate.

6.3 Tools for Experimental Modelling

We have discussed what tools for experimental modelling should support and pre-
sented how a tool for experimental modelling could be designed. This tool, Knight,
supports collaborative, gesture-based modelling particularly tuned to electronic
whiteboards. In this way, Knight tries to preserve, support, and enhance current,
effective experimental modelling activities, such as brainstorming on whiteboards
or collaborative discussions of models, as they evolve.

We have presented the design and implementation of Knight and in particular
pointed to how Knight can be extended by other tools via a simple and effective
integration architecture.

Finally, we have validated the effectiveness of Knight as a tool for software de-
velopment and computer science education through a series of formal evaluations
and a subsequent commercialization.
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6.4 Future Work

The results presented in this thesis points to a large number of possible extensions
that would be both useful and necessary. For each of the areas in which we have
examined experimental modelling, there is future work to be done: with respect
to grounding, further investigations, also of other types of modelling activities, are
necessary. With respect to techniques, there are myriads of techniques in object-
orientation and, e.g., participatory design that could be examined and contrasted.
And in the area of software architecture, something like a catalogue of architec-
tural restructurings and refactorings, a few of which were presented in Chapter 4,
would be very useful in experimental modelling. With respect to tools, it would be
possible to take the challenges more directly as input to a tool design and end up
in quite different places than we did with the Knight tool.

The rest of this section extracts and discusses some main pointers to such future
work.

6.4.1 Support for Diverse Experimental Modelling Processes

We have investigated experimental modelling in object-oriented system develop-
ment. Two types of extensions of this work would be interesting: studies of other
types of experimental modelling and more thorough studies of object-oriented ex-
perimental modelling.

Experimental modelling, i.e., the creation of representations of a future sys-
tem through experimental techniques, is not limited to object-oriented modelling:
requirements engineering, user interface design, and behavioural modelling, e.g.,
through Petri Nets are examples of effective modelling with experimental elements.
Part of these explorations have already begun (Hansen, 2001). Moreover, the char-
acteristics of, and challenges to, experimental modelling are applicable to collab-
orative “modelling” activities not connected to system development. In fact work
on collaborative modelling in other settings (general brainstorming and process
innovation) using the same techniques as for Knight has already been completed
commercially by Ideogramic. A systematic investigation of and infrastructure for
supporting such processes would be useful.

As extensions to our studies of experimental object-oriented modelling, it would
be particularly interesting to follow modelling in an experimental system develop-
ment project over time, i.e., conduct longitudinal studies of experimental object-
oriented modelling. Knight will, given its overall stability, provide an excellent
vehicle for longitudinal use and study of such use.

6.4.2 Pervasive Modelling

“Pervasive computing” considers the scaling of computational powers to support
activities and processes distributed in space and time and tries to provide answers to
questions raised by a spatially and temporally distributed computing infrastructure.
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Such an infrastructure would be extremely useful for experimental modelling
tools as well. We are currently working at distributing Knight in space but sup-
porting temporally pervasive modelling, in particular based on results from the
studies described in Section 6.4.1, would also be interesting in order to effectively
create a true “pervasive modelling” technology. If true pervasiveness has to be
achieved, most of the challenges of Chapter 3 and reconciling support for collabo-
rative modelling by multiple competencies distributed in time or space or both will
be particularly challenging.

In this context, it would also be interesting to extend the integration with Topos:
model elements from Knight could be “first class” elements in Topos and the inte-
gration could be furthered to even include virtual as well as physical material.

Technically, new software architectures for modelling tools will have to be cre-
ated to accommodate pervasive modelling. New advances in object-oriented pub-
lish/subscribe technologies (Eugster et al., 2001) and peer-to-peer computing willhttp://openp2p.com/

need to be considered. A peer-to-peer-distributed model representation technology
with model elements shared by peers seems particularly attractive.

6.4.3 Pervasive User Interface Technology

To some extent, the development of the Knight tool has been a study in pervasive
interaction techniques: part of the vision of Knight is for it to be available when
and where needed. Currently, this boils down to supporting an interaction style
based on gestures that works on input devices ranging from electronic whiteboard
over desktop computers to portable Tablet PCs . We have also studied these kindshttp://www.microsoft.

com/windowsxp/
tabletpc/

of interaction techniques in our work on the Kimura augment office environment
(MacIntyre et al., 2001) that tries to support background awareness through a seam-
less integration of a focal desktop computer and peripheral interactive displays.

Equally interesting would be to support these transitions between interaction
devices through various interactive visualizations of the common, conceptual core
of the activities that a tool supports. In the Knight case, the interaction on an
electronic whiteboard would resemble the current interaction, the interaction on an
ordinary desktop PC would perhaps resemble a traditional direct manipulation in-
terface, and the interaction on a handheld computer would be attuned to its limited
physical size. Some technological groundwork for this has actually already been
done in the context of the Knigt tool in (Tyrsted and Wibling, 2000) with respect to
migration of applications. This would, obviously, depend on the pervasive infras-
tructure of Section 6.4.2 and a fully pervasive computational infrastructure would,
ultimately, allow this to continue into the realm of augmented reality.
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Abstract. This paper describes experience obtained through a joint project
between a university research group and a shipping company in developing a
prototype for a global customer service system.  The research group had no
previous knowledge of the complex business of shipping, but succeeded in
developing a prototype that more than fulfilled the expectations of the shipping
company. A major reason for the success of the project is due to an experimen-
tal and multiperspective approach to designing for practice.  Some of the les-
sons to be learned for object-orientation are (1) analysis is more than finding
nouns and verbs, (2) design is more than filling in details in the object-oriented
analysis model, and (3) implementation is more than translating design models
into code. Implications for system development in general and object-
orientation in particular consist in the preliminary respecification of the
classical working order: analysis – design – implementation.

Keywords: Large-scale system development, multiperspective application
development, cooperative design, ethnography, object-orientation, rapid
prototyping, evolutionary prototyping, OO-tools, experience report.

1� Introduction

In late January 1997 a globally distributed shipping company contacted CIT, pro-
posing a joint project for the purpose of developing a prototype of a Global Customer
Service System (GCSS). The initial concept of GCSS emerged from within the
company as a means of supporting the global implementation of business process
improvements (BPI). A month later a team was assembled that had never worked
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together before and had no knowledge of shipping whatsoever. A project description
was made and ten weeks and 5 major iterations later, the prototype was appraised and
approved by the company’s highest executive body. Work is still on-going. This
experience report tries to describe central success criteria and lessons learnt to date.

Partners in the project (known as the Dragon Project) were the company (which
cannot be named for commercial reasons)  and the DEVISE research group.

The project was funded by The Danish National Centre for IT-research (CIT,
http://www.cit.dk). The company is a large world-wide provider of containerised
transport solutions, employing some two and a half thousand people in over 250
offices in some 70 countries on six continents. Having a superior customer service in
an increasingly competitive market as its key value, the company has and is investing
substantially in IT support for proposed business solutions.

The DEVISE group was originally founded with the research goal of increasing
productivity and quality in the development of large, complex systems, and now
incorporates a large number of diverse competencies. Participants in the Dragon
Project include, from the university: one project coordinator, one participatory
designer, three full-time and three half-time object-oriented developers, one
ethnographer and for a part of the project, one usability expert. Participants from the
business include senior management, business representatives from the major
continental regions, administrative staff, customer service personnel and members
from a private consultancy company.

Although the essence of shipping in our context might be described as the actual
transport of cargo in containers, our concern is with the provision and delivery of
customer services, which the transport of containers relies upon. Work here includes
the handling of interactions with customers in formulating prices for transport
(quoting), in booking containers, in arranging inland haulage, in documenting
ownership of cargo, in notifying the consignee of cargo’s arrival, and so on.

From this all too brief description, the job of design might sound like a relatively
straightforward task but for many reasons the challenge that GCSS has to meet is
anything but simple. Currently, no global system or formal practice exists, yet GCSS
should support coordination between globally distributed sites as well as support a
customer service that, while streamlined (i.e. operating with less resources), is both
effective and efficient and at the same time respects local needs in the various regions.
Thus, the main design issue in many respects was to develop a prototype supporting
these needs. Important issues in addressing these needs consisted in:

• Developing an approach for obtaining detailed knowledge of shipping in
a short period of time; this knowledge had to be developed during the
project due to the very short project period.

• Similarly, the initial requirements and formal specifications for the
prototype from the business were vague and had to be developed during
the project.

• The architecture of the prototype / system had to be flexible and allow
for local customisations.



In order to satisfy these issues we thought it necessary to form a development group
consisting of people with diverse but nevertheless complementary qualifications, who
would be able to utilise their own specialities and at the same time be able to work
together in an extremely focused group.  The focus being to develop a prototype to
support customer service. The roles of the different team members may, somewhat
simplistically, be described as follows:

• The ethnographer: focus on current practice within customer service and
related areas.

• The participatory designer: focus on the design of future practice and
technological support with users.

• The OO developers: develop the object model, and implementation.

In what follows we describe the contributions to the project from the perspectives of
ethnography, cooperative design and object-orientation. Having explicated what we
take to be the approach’s main strength, namely its experimental and multiperspective
character in designing for practice, the paper concludes by stating lessons that we take
to be of value with particular regard to object-orientation. In so much as object-
orientation played a major role as a technology for developing a model of shipping
and for implementing the prototype, then a number of lessons for object-orientation
were learned. Perhaps the most important ones are:

1. Analysis is more than finding nouns and verbs. We will argue that it is
often necessary and useful to base analysis on much more powerful
means than currently advocated, such as ethnographic analyses of the
social organisation of work.

2. Design is more than filling in details in the OO analysis model. Here we
will argue that often techniques from participatory or cooperative design
are necessary and useful in formulating concrete design-solutions and
relating them to practice.

3. Implementation is more than translating design models into code. Our
experience shows that it is important to start implementation early in the
design. The initial design model will always be changed during
implementation and the feedback from initial implementation should
appear early in the project so as to facilitate further development.

The above lessons are of course not relevant for all kinds of projects but for a project
as the one described in this paper we think they are relevant. Perhaps most important
are the implications our work has for structured techniques of object-oriented
analysis, design and implementation. Specifically, towards the inadequacies of formal
development methods in accomplishing rapid prototyping.



2� M.A.D – system development using a common frame of
reference

The Dragon development team came from backgrounds ranging from ethnography to
cooperative design to object-oriented development. These competencies should not be
treated in strict separation but rather, in the ways in which they interact and comple-
ment one another and in this way achieve a synergetic effect.

A guiding principle in this multiperspective approach was (indeed is) an
orientation to a common frame of reference: everyday business practice in customer
service. In this paper, we use an example – a real world ‘instance’ of working prac-
tice, namely “rerouting” - that was employed by all the perspectives at work to show
how design was practically achieved. In so much as the instance was oriented to by
each perspective, we use it to illuminate the character of each perspective.
Furthermore, in so much as the instance was employed by each perspective, then we
use it to illuminate the ways in which the perspectives interrelated in practice and,
reciprocally, while preserving individual achievements, to display the organisation of
work from which GCSS emerged as a design product.

The instance of rerouting was only one of many used during development.
Furthermore, the competencies or perspectives did not treat the instances sequentially
but rather, treated them in parallel or at different times thereby mutually informing
one another and the prototype as work progressed.

In order to display the organisation of multiperspective application development in
rapid, evolutionary prototyping, we now turn to a description of how the three main
perspectives, that is the ethnographic perspective, the cooperative design perspective
and the object-oriented perspective, approached development and coordinated their
activities into a coherent ‘process’ from which a concrete product (more than) satis-
fying the requirements of a large geographically distributed organisation emerged.
After this account we will outline some of the major lessons learnt.

3� The ethnographic perspective

Whether operating within the context of rapid prototyping or not, the ethnographic
perspective places an emphasis on securing a real world reference to work and
organisation, informing the design of cooperative systems (Heath et al., 92; COMIC
2.2, 93; Blomberg et al., 94). Working on the presupposition that systems design is
work design (in contrast to model building for example1), it might otherwise be said
that ethnography seeks to base design on an ‘understanding of praxis’ in which the
system is to be put to work. The intention is to predicate design on enacted practice
thus supporting the development of systems that resonate or ‘fit’ with the activities in
which they are to be embedded, thereby circumventing a major cause of systems

                                                          
1 This is not to abnegate modelling but rather, to remind designers of the relevance of

modelling – it is not an end in itself but a means to an end, namely the (re)organisation of
human activities.



failure (Grudin, 89; Shmidt et al., 93; Hughes et al., 94). The notion of understanding
praxis is ‘bracketed’ in that it is selective – ethnography orients to praxis in a certain
or particular way.

From ethnography’s point of view, work is seen to be socially organised with
organisation itself emerging as a local production out of the routine accomplishment
and coordination of tasks experienced by practitioners (and generally understood) as
the working division of labour (Anderson et al., 89). Ethnography’s task is to make
the working division of labour visible and available to designers in the concrete
details of its accomplishment – i.e. in terms of work’s real time organisation in
contrast to idealised form (Rouncefield et al., 94). This is achieved through direct
observation and naturalistic description of working practice portrayed from the point
of view of parties to the work (Crabtree et al., 97). The notion of ‘social organisation’
refers to the conventional ways in which activities are accomplished and coordinated
by any and every competent member engaged in the work. The notion of ‘convention’
refers, conjointly, to members’ reoccurring actions and interactions, the artefacts used
and the practical reasoning employed in doing the work. Work’s social organisation is
discovered through ‘mapping the grammar’ of the domain by empirical instance2.

Simply and briefly put, the notion of ‘mapping grammar’ refers to ordinary
language which is seen to embody ‘language-games’ (Wittgenstein, 68). Language-
games are distinct practices - computer science, sociology, customer service in ship-
ping for example are unique ways of talking and thus of acting in the world – each of
which consists in a unique family of concepts (‘quoting’, ‘export handling’,
‘documentation’, ‘rerouting’ in customer service for example). In so much as
language-game concepts are activities and in so much as they are intersubjectively
employed ~ enacted by a unique collectivity of people (customer service staff for
example), then to describe the actual performative details of their use is to describe
the social organisation of the named activity. The activity of description is called
‘mapping’, the concepts mapped the ‘grammar’ of the language-game, the description
itself the ‘instance’. Empirical examples or ‘real world’ instances of language-game
concepts-in-use not only preserve the social organisation of work in describing that
organisation in its own terms but in so doing make visible what the work is ‘really all
about’3 (Hughes et al., 92).

3.1� The Bremerhaven Instance (1)

Mapping grammar, a practical example: Customer service work in the container
shipping business consists in the activities of ‘quoting’, ‘export handling’, ‘alloca-

                                                          
2 The notion of ‘mapping grammar’ is explicated in Talking Work: language-games,

organisations and computer supported cooperative work (Crabtree, forthcoming).
3 It should be said that in so far as ethnography does preserve the real world character of work

then it does so through an attention to concepts-in-use, to ‘rerouting’ as a contingent but
nevertheless routine human achievement in, of and as work in contrast to ‘rerouting’ as an
abstract information process (Garfinkel et al., 70; Hughes et.al, 96). This is not to rule
abstraction out of play but to ground abstraction in formal properties of enacted (in contrast
to idealised) praxis



tion’, ‘documentation’ and ‘inbound handling’. These concepts or categories delineate
the working division of labour. One important feature of allocation work is to
‘reroute’ freight in response to contingencies. Rerouting occasions collaboration
between equipment management, export and import handling, and documentation4

and is itself occasioned for various reasons: bad weather, customer requirements,
running off schedule etc. Rerouting consists in ‘reallocating’ containers to a substitute
vessel or vessels - there may be several ‘legs’ and different vessels on any particular
container’s journey. The substitute vessel may be located in a different port to either
the load or leg port. More: the destination port of rerouted cargo from a particular
vessel may well be different. Thus, the activity of rerouting is all about arranging
appropriate transport for cargo going to multiple destinations from some contingent
point either to the destinations direct or, failing that, to a point from which cargo can
be delivered to its respective destination ports. Real world instances of rerouting’s
accomplishment – actual responses to a vessel being delayed – revealed that route
alterations occasioned not only changing the first leg of a journey but also the first
half of the second leg for instance, or, indeed several legs on a journey. Furthermore,
these changes were discovered to be subject to criteria of rerouting, specifically of
time and cost: independent local carrier was specified wherever possible if time
allowed, rail failing local carrier, truck failing rail; local carrier is more cost effective
than rail, rail more cost effective than truck although time pressures may necessitate
everything being moved by truck. It also transpired that rerouted cargo must be
grouped: in some locations refrigerated containers, used for perishable products in
particular, cannot be moved to transhipment points by rail for example (due to
concerns of supervision – the temperature of refrigerated containers must be moni-
tored at regular intervals), freight for this or that destination must be identified and the
criteria applied. Furthermore, as a result of 'hard-wiring' working processes into the
existing system, rerouting had to be accomplished individually – groups of freight
could not be selected and assigned to alternate vessels except in the simplest of cases:
‘roll over’, i.e. temporal rescheduling to the next available vessel.

3.2� Analysing the instance

Mapping the socially organised details of activities accomplishment by empirical
instance not only allows us to understand praxis in the context of the working division
of labour5 but in so doing, to identify practical problems of work and their situated
methods of solution. Taken together, the practical problems of work and members’
intersubjective or shared methods of solving those problems, and of solving them
routinely, day-in-day-out in the face of any and all contingencies, show us just ‘what

                                                          
4 Space prevents a detailed description of the work involved here but in practice (i.e. design)

these details were central to the formulation of design-solutions.
5 Which enables us to get ‘hands on’ the actual ways in which activities of work are

coordinated and thus identify what is essential to successful work-oriented design – if
activities cannot be coordinated, work simply cannot be achieved and we can add another
systems failure to the list.



the work is really all about’ and make concrete possibilities for support through
design visible and available to design. Thus, the ‘instance’ circumscribes a problem-
space for design. More: in illuminating the socially organised ways in which staff
routinely go about solving practical problems of work, the instance circumscribes a
solution-space for design.

The outcome of analysing the rerouting instance for example, a collaborative task
performed by members from each of the perspectives at work, was the development
of a flexible ‘tree structure’ supporting local decision-making and the coordination of
a complex task by actively displaying all destinations for cargo on a delayed vessel
and through the application of which one can specify any number of leg changes and
different modes of transport for any group of selected containers, updating all
members of the specified group in one go.

3.3� The limits of ethnography

Clearly there is a great deal more to observing praxis than meets the unaccustomed
eye. In securing a real world reference preserving the context of work the
ethnographic perspective provides concrete topics and resources for design. In so
much as system design is work design, ethnography thus supports the development of
systems that resonate or ‘fit’ with the activities of work in which they are embedded
thereby supporting the local production of organisation in innovative social and
technical ways (Kensing et al., 97). Virtues aside, ethnography is not without its limi-
tations: it is one thing to identify a problem-solution space, another to identify
design-solutions – a very practical problem resolved in practice through prototyping.

4� The cooperative design perspective

Cooperative design (also known as participatory design), as developed in Scandinavia
over the last decades, stresses the importance of creative involvement of potential
users (end-users, managers, affected parties, etc.) in design processes (Bjerknes, Ehn,
& Kyng, 87; Greenbaum & Kyng, 91).  It does so both from a “moral” perspective –
users are the ones who have to live with the consequences of design – and from a
practical perspective – they are competent practitioners understanding the practical
problems of work, a capacity which enables them to assess and / or come up with
alternatives to design.  From this perspective, design is seen to be a cooperative
activity involving not only end users but also other groups with very different but
indispensable competencies. A primary means to the end of designing successful
products is, accordingly, to bring these competencies together. This is often achieved
in workshop like settings through the appliance of the different perspectives and
competencies on a common and concrete issue, e.g. descriptions of current work,
scenarios for future possibilities, mock-ups, and prototypes. The underlying
assumptions and claims as well as a number of tools and techniques for the practical
employment of cooperative design may be found in (Greenbaum & Kyng, 91;



Grønbæk, 91; Grønbæk, Kyng, & Mogensen, 93; Grønbæk, Kyng, & Mogensen, In
Press; Mogensen, 94).

Closely related to the cooperative design activities, a number of usability studies
were conducted. In this context ‘usability’ is attempting to transcend a history of work
“with one user in a lab thinking aloud” and move evaluation into the workplace itself.
In this respect, it is a deliberate attempt to move away from a conception of users as
human factors to a conception of users as human actors, and from the notion of
finding 'problems' to a notion of the user as an active participant in design (Bannon,
91; Bødker, 91; Wiklund, 94). Despite struggling with an in-built cognitive bias
(Grudin, 89; Bannon et al., 93; Twidale et al., 94) particular workplace studies
supplemented with more traditional one-to-one lab type evaluations focusing on
human computer interaction (HCI), provided detailed information relating to specific
usage of the prototype and thus supplemented cooperative design activities.

Cooperative design has, by and large and up until now, been carried out in
situations where the potential users constituted groups of manageable proportions.
One of the major challenges for cooperative design in the Dragon Project is to resolve
problems of scale: the organisation is distributed across more than 250 offices in 70
countries around the world and users may be found on many different levels in the
organisation. How does one work with such dispersed groups? How does one find
representative users? How does one deal with all the different (and frequently
conflicting) perspectives and interests among not only different levels in the
managerial hierarchy, but also culturally and regionally dispersed groups?

The strategy employed so far can be characterised as a mix of two approaches. On
the one hand we have worked in various specific areas, regarding geographical
locations, specific work domains, and corresponding functionality (e.g. rerouting,
initially with the Aarhus site as primary point of reference). Embedding design in
actual practice has helped to ensure in-depth knowledge regarding the issues being
designed for at the given time. On the other hand, and at the same time, we have tried
to maintain and elaborate “the big picture”, both regarding the functionality GCSS
eventually will provide as well as the regional aspects in order to prepare for, or at
least not counteract, later developments. Both strategies have been approached in
parallel and, naturally, both approaches have influenced one another.

To date, most of the concrete design activities involving developers and users have
been carried out in four ways:

• Presentations of the prototype with subsequent comment / discussion
sessions (all in all 100+ users from over 20 countries).

• Workshops (1-3 days) elaborating the details of current problems,
current stage of the prototype, and various alternatives (all in all 25 users
from around 10 different countries).

• Continuous workshops analysing and designing aspects in various
versions of the prototype (6 users from 4 countries).

• A series of usability studies (8) with the business representatives
attached to the project and with customer service staff in the local office
in Aarhus (one to two users at a time).



An example of how the first two types of interaction have worked is a recent visit to
Singapore: Four developers and the two business representatives working with us in
Aarhus arrived in Singapore on Thursday. Friday morning we presented the prototype
and its intended use to some 20 people from various positions in the Singapore office
for around 3 hours. In the afternoon we all joined various people doing their usual
work in the office. Saturday morning, we had a workshop with four people centred on
export handling. Saturday afternoon, we discussed lessons learned so far and decided
on changes to be implemented immediately, issues for redesign when we came home,
issues that were out of scope, and features that would be ‘nice to have’. Monday, we
split up. The ethnographer focused on issues where we needed more information
(allocation and pricing), observing work-in-progress and interviewing people in the
office. The cooperative designer and three users discussed and elaborated details
regarding booking in a ‘hands on’ session with the prototype. The two OO developers
started to implement changes prompted by the presentation and observations of work
which were agreed upon on Saturday. Tuesday morning, we presented the changes in
the prototype for around 10 people and went into detail regarding the next issue on the
agenda, allocation and documentation (including pricing). Tuesday afternoon, we
went to Malaysia. Wednesday morning, we presented the prototype in the Malaysian
office …

4.1�  The Bremerhaven Instance (2)

An example of the continuous work ‘back home’ between developers and users is the
Bremerhaven example. When rerouting came on to the agenda, company personnel
gave us a brief introduction to the problem. The ethnographer went to the office in
Aarhus and collected a series of examples or instances of actual reroutings dealt with
at the office. The cooperative designer started to come up with ideas for supporting
rerouting based on existing knowledge and experience. The next morning was spent
in a continuous ‘ping-pong’ between various suggestions for supporting rerouting and
the instances of actual reroutings coming out of the ethnography. After three to four
iterations, an understanding of the problem as well as a first suggestion for the design
emerged. Both were presented to and discussed with business representatives in the
afternoon. Shown in Figure 1 is an account of the emergent understanding of the
problem as well as the first design-solution (in real time, the example and the design
was constantly produced and reproduced on paper sketches and white-boards).



In considering how this is achieved in practice, it became apparent that affected
cargoes’ destination were different, spreading out globally like the branches on a tree.
The suggested design was to represent all affected bookings in a tree structure with
alternating ports and carriers. When the user, for example, clicks on OC1 (see the
above sketch) in the tree structure, it means that the user is now operating on all
bookings out of Aarhus, transhipped in Rotterdam, and going out on OC1. Having
selected the intercontinental carrier OC1, all further transhipment ports and final
destinations may be seen. From here it is now possible to do rerouting via
Bremerhaven for any particular group of bookings

Naturally, the above instance does not capture all possible problems in rerouting,
neither does the design represent the final solution. The point is that the above
understanding presented, in a very compact and understandable form, a good starting
point and served as a powerful tool in further development where both the design
solutions and the ‘Bremerhaven instance’ were refined and elaborated. As a paradigm
case in point, the Bremerhaven instance was:

• Used and reproduced within the development group as common point of
reference for design. The example states problems and solutions from
current practice in respect to a specific design problem (designing for
the rerouting and rescheduling of multiple bookings). Whenever we

Figure 1. The Bremerhaven instance

You have 200 bookings out of Aarhus, going to Rotterdam via a local carrier.
100 of these bookings are transhipped on the intercontinental, OC1, headed for
the Americas; another 100 are transhipped on to another intercontinental, OC2,
headed for Asia.
Problem: the local carrier does not call Aarhus this week, we have to reroute or
reschedule the 200 bookings.
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Solution: OC1 calls Bremerhaven the day before it calls Rotterdam, so we can
send all the containers to Bremerhaven by train, get them on the OC1 a day
before planned - everything is “back to normal”. OC2 does not serve
Bremerhaven, we have to reschedule both for another local carrier and OC2.



encountered problems in the implementation, the instance worked as a
common resource: whatever the specific design ideas and problems
were, the quality criteria was always whether we could support the
instance, not, for example, whether we fulfilled some predefined
requirements.

• Used and reproduced in a large number of presentations and workshops
between people from the development team and users from various
locations and levels. It is an integral part of the prototype: on the one
hand it explains a problem the prototype is trying to resolve, on the other
hand, discussing ways of solving the problem triggers new
understanding of the problem and possible methods of solution. Roughly
a week after the first formulation of the instance, it was confronted with
staff from a large ‘import’ port. As was pointed out, the design works
very well for rerouting in out-bound, it does not work when you are
sitting in in-bound, because here the focus is on what is coming towards
you. The instance was expanded with that example, and in the design we
catered for the option of having either the receipt or the delivery port as
the ‘root’ in the tree structure.

• Used and reproduced in the usability studies where, embodied in
scenarios, it provided the starting point and context for assessing the
prototype. In testing the prototype, the instance as well as the design was
further elaborated. Up until testing for example, we provided for either
an ‘outbound’ or an ‘inbound’ view of the tree-structure. What came out
of the usability studies in this respect was the idea that we actually
needed both at the same time, facilitating an overview of both what was
‘coming in’ and what was ‘going out’.

5� The object-oriented perspective

The OO perspective applied in this project is based on the Scandinavian tradition
(Madsen et al., 93) where the focus is on modelling as opposed to technical concepts
like encapsulation and inheritance. The first OO language, Simula was originally
designed as a means for writing simulation programs and when writing simulation
programs, it is useful to have a language with good modelling capabilities. The
modelling approach has been very explicit in the design of BETA (which was the
language used in the implementation of the prototype). One of the main advantages of
object-orientation is that it provides an integrating perspective on analysis, design and
implementation, but in order to fully realise this potential, there should be a proper
balance and integration between modelling and implementation capabilities of the
languages (Madsen, 96).

The application being developed (in this case the prototype) is considered as a
physical model of a perspective on the problem domain. Selected phenomena and
concepts in the application domain are synthesised into the model and represented as
classes, objects, properties of objects and relations between objects. This model is a



very explicit part of the application and it can be regarded as a view on the application
expressed in problem domain-specific terms. The latest version of the model is always
the one in the application.

Below we discuss the concept of modelling, how the model was produced, the
evolution of the model, the architecture in which the model is embodied, and the
crucial role of tools in responding to amendment and change.

5.1� The concept of modelling

Working within our OO-perspective, system development is based on an
understanding of the concepts used within the settings that the system will eventually
support. The setting we refer to as the referent system and the process of translating
referent system specific concepts to concepts within the computer system we refer to
as modelling. The result of the modelling process we refer to as the model system or
just the model (Madsen et al., 93, pp.289, Knudsen et al., 94, pp.52). Using the model
within a referent system context we denote interpretation. This can, for example, be
discussion of business concepts with business users while referring to the model
system. Below we discuss how modelling was actually achieved.

Figure 2. Customer service practice (referent system) in relation to the GCSS
prototype (model system)

5.2� The production of the model

The activity of modelling was started right from the beginning of the project.
Modelling has been an intentionally integrated part of each of the rapid prototyping
cycles, in a sense on the same terms as the user interface and the architecture. The
length of these cycles - the actual time spent on each – precludes a sharp distinction
between the activities of analysis, design and implementation6. Working in an
interdisciplinary context, our experiences extend existing notions of analysis, design
and implementation. As such, a number of various resources and artefacts were used
in producing the model. These included sessions with business representatives,
                                                          
6 A distinction which, as (Madsen et al., 93, pp 316) remind us, is highly questionable: ‘In

practice it is very difficult to do analysis without doing some design, and similarly doing
design without doing some implementation.' Our experiences concur.
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descriptions of the database of the current system, Yourdon diagrams of current and
future business processes and, of the utmost importance, our own collaborative
studies of current practice. The Yourdon diagrams, which came about as an output
from the BPI analysis, exemplify the way in which the above resources and artefacts
informed the development of the model, being used, much as use case diagrams may
be used, as ‘sensitising’ devices providing for the initial identification of objects. It
should be stressed that the Yourdons were in no way used as requirements
specifications (as such diagrams do not display actual practice in sufficient detail),
rather it was a matter of using whatever resources were available to get an under-
standing of the problem domain.

Modelling proceeded in iterative phases: focussing on a particular area of business
in collaboration with the business representatives attached to the project, the
participatory designer and ethnographer; identifying important phenomena and
concepts; analysing structure, and synthesising into a new iteration of the model. In
the following example we exemplify and explain how modelling was achieved.

Modelling, a practical example - identifying concepts in the quote process: By a
combination of review constraints, formal business process descriptions stemming
from the BPI and the need to start the modelling process with an accessible instance
of business, the quote process was treated first. A particular discussion about the
quote process with a business representative allowed us to identify important concepts
and phenomena embodied within the quote process, such as ‘corridor’, ‘routing’,
‘container’, ‘rate’ and ‘customer’. This session, as other sessions including other
participants as mentioned above, was recorded in the form of a blackboard snapshot
showing the concepts, some properties of the concepts, examples of values of
properties along with textual and pictorial annotations clarifying or explaining
referent system specific concepts. Figure 3 displays the features of the snapshot from
the discussion with the business representative regarding the quote process.

Figure 3. A blackboard snapshot
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Blackboard snapshots produced through preliminary analysis of descriptions of
working practice and the artefacts used were of considerable value and practical
utility in creating the model. They provided rich detail and a firm basis upon which
we were able to build a first model of the quote process. Furthermore, they worked as
an important means of communication between the respective competencies at work.

Having created an initial model (see Figure 4), the model was then interpreted in
the context of the referent system. The reason for this was to discuss the model with
relevant members of the development team (including business representatives) in
order to assess the state of the model and gain additional information as to the
substance as well as the structure of the quote process. Other parts of the referent
system were then analysed in the same way and synthesised with the parts of the
model already elaborated7.

Furthermore, the model was used for triggering business discussion. In this context
the business representatives were able to see referent system concepts instead of mo-
del system concepts; comments on, for example, multiplicity’s in associations, were
put forward in the context and linguistic terms of business instead of in object-
oriented terminology. In the context of formal reviews, in which participants from the

                                                          
7 The success of ‘snapshots’ as a modelling technique has resulted in CIT investing in an

electronic blackboard that we intend to use in future initial analysis / design sessions. This is
just a first step in developing some supportive tools to support initial analysis / design.
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business (including the consultants) had been involved in the BPI project and thus had
an abstract perception of the business, the model triggered business discussions
regarding future practice. It should be said that the model was not intelligible in all
settings. In other contexts, participants who had not been part the BPI and who did not
therefore have some knowledge of formal methodologies of design, had a hard time
grasping the whole intent of discussing such a model.

As can be seen in Figure 4, the model exhibits technical simplicity: almost no
implementation-specific attributes or classes have been added and only limited subset
of UML’s class diagram notation (Rational, 98), has been used namely inheritance,
association and aggregation. In keeping the model “clean” it is kept interpretable and
by using a formal notation the model is also executable in the sense that it is a living
thing inside the actual prototype.

5.3� The evolution of the model

The model was by no means finished before coding started. It evolved along two
dimensions: horizontally and vertically. Horizontally the model was gradually
extended to cope with new areas in the referent system in the manner described
above, with the first iteration of the prototype focusing on quoting, then booking and
so on. In proceeding in this manner, both the model and the prototype were mutually
elaborated. This was also the case vertically. The first iterations of a class or
collection of related classes were focused on data and the relationships between the
classes. In the following iterations the focus moved to high level functionality (the
business functions), which introduced methods to the classes. Development of new
business functions occasioned many amendments to the relevant parts of the model.
Amendments primarily consisted in the addition of attributes and methods, modifi-
cation of existing attributes and adjustments in class relationships.

Amendment to the model tended to be at a rather detailed level and our experience
shows both that the model does not have to be complete either horizontally or
vertically before coding can start, and that one does not need to spend too much time
on the details in the design model before coding as they will be changed during
implementation. The problem of when to start coding is not a question of validating
the model but rather, in our experience, one of putting up and satisfying practical
development requirements such as meeting deadlines for formal reviews. It should
also be said that a major development requirement from our point of view is to have a
running prototype even of minimal design to confront practice with and, in reaction,
thereby elaborate modelling issues. Given this, our experience also shows that a
model cannot be effectively created in isolation from implementation. As the model
evolves together with the prototype in an evolutionary process, it becomes more and
more stable with respect to the parts of the referent system so far covered.  The
Bremerhaven instance illustrates this.



5.4� The Bremerhaven Instance (3)

The problem of rerouting as elaborated through the perspectives and interaction of
ethnography and participatory design and as visualised in the notion of a tree
structure, emerged as a design issue relatively late in the process. Rerouting was on
the agenda for the last review of the first phase of the project. At that time the basic
functionality of the prototype had been developed to the point where the model
supported a diverse set of business concepts including the concept of booking and
related concepts such as products, schedules, allocation etc. The problem of rerouting
is all about changing a bulk of bookings, a high-level operation that involves
manipulation of multiple sets of bookings and related concepts. In so much as we
already had the basic building blocks available, the development of the rerouting
functionality was developed with only minor changes to the model. The basic
structure did not need to be reconstructed. Radical reconstruction of the model was
unnecessary because it was constructed on a natural understanding of the business
concepts at work. Having said that, in dealing with the issue of rerouting, a new
concept was introduced. The notion of rerouting being akin to a tree with an elaborate
network of branches was not discovered among existing business concepts, but
emerged out of a joint analysis of the work from the ethnographic and participatory
design perspectives.  Our approach to modelling allows new concepts to be
introduced easily thus allowing the model to develop in an evolutionary manner.

The Bremerhaven instance is also a good example of how instances were used as a
communication media between in this case the cooperative designer and the OO
developers. Discussions between the cooperative designer and the cooperative deve-
lopers regarding rerouting were centered around the Bremerhaven instance. The
rerouting functionality is rather complex and it is difficult to get it right the first time.
When problems arose during implementation the instance was used as a guideance for
what at least should work in order to illustrate the basic idea. I.e. the Bremerhaven
instance was used as a mediator in the design / implementation cycles as well as a
minimal test case.

5.5� Prototype architecture

Working on the assumption that vertical, evolutionary prototyping needs to be
performed within some well-defined architecture of the prototype, architecture was
designed before actual programming on the prototype began, i.e. within two to three
weeks. In this architecture the object model played a central role as being the common
frame of concepts structuring the code in a referent system specific way. As we
mentioned earlier, dealing with the concept of rerouting did not occasion any major
reconstruction of the model, however, it did impact upon the architecture.
Implementing rerouting in the prototype was problematic in that we did not know if
the functionality required was already there, ready to reuse, or if abstractions of
existing functionality were required. Through analysing the Bremerhaven instance we
anticipated that major parts of the existing routing functionality could be reused.  As it
turned out however, the existing architecture did not provide the proper abstractions.



Constraints of time meant that the first design / implementation employed ‘copy-paste
reuse' of existing routing functionality. This was not construed as a problem in itself
because, working in an evolutionary manner, we had the opportunity to design a new
architecture in the next iteration cycle. As such, after the first major iteration of the
prototype, we designed and implemented a component architecture (see Figure 5).
This enabled us to implement rerouting using the cleaner abstractions afforded by the
new architecture. These still, of course, need further iteration and as work continues
more and more aspects of the Bremerhaven and other instances of work are brought
into discussion. Change is now less problematic however, as the current architecture
allows us to deal with the complex issues emerging from prototyping sessions: during
the trip to Asia, for example, the power of component architecture was experienced as
it was actually possible to add major components to the system “on the fly”. The
component architecture is the first step in the direction of an architecture with COM
objects, (Microsoft, 95).

Figure 5. Current architecture of the prototype

5.6� The user interface of the prototype

In the user interface of the prototype we are combining an object-oriented user
interface (in so much as part of the model is visualised in the user interface) with an
activity-oriented user interface. The screen dump in Figure 6 shows this: business
processes are displayed in a sequence of process buttons using a simple colour
scheme for showing work's state of completion but not enforcing the accomplishment
of work in a sequential manner, whereas the tabbed controls visualise the actual
objects - customer, quote, transport - that are being worked on. Most upper tabs
correspond to important domains in the model, whereas the sub-tabs visualise
aggregated or referenced concepts.
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6� Usage of tools

Within the context of any perspective the use of and support by tools is important.
Working with evolutionary prototyping of architecture, functionality, user interface
and model, tools supporting many iterations over a short period of time are a
necessity. In the Dragon Project the main software engineering tools used are a CASE
tool, a GUI builder, a code editor, a persistent store and a concurrent engineering tool.

The first four tools are part of the Mjølner System (Knudsen et al. 94, Ch.
2;http://www.mjolner.com) and the fifth tool used was concurrent versioning
system (CVS, 98). The programming language used is BETA (Madsen et al., 93).

upper tabs

process buttons

sub tabs

Figure 6. An overview of the main principles in the user interface of the
prototype. (Image blurred for confidentiality)



6.1� CASE tool

The CASE tool was used to draw the model using UML notation and to automatically
generate the corresponding BETA code. In the beginning the CASE tool was also
used to create the unstructured blackboard snapshots that later were used as input for
the construction of the model. As diagrams of the model were created or modified,
code was generated incrementally. Although code was thus available at any time, the
early versions of the model were only used in the form of UML diagrams, as the
emphasis was on communication and discussion.

The model can be changed via the diagrams or via the textual code. As emphasis
moved to code and redesign cycles, model changes were mostly made in the code
editor (see below) – only structural changes requiring overview of the model were
made in the CASE tool. When the main emphasis is on coding, it is often more
convenient to do the changes in the textual representation, especially when the
changes are at a detailed level. Using the reengineering capability, the UML diagram
was recreated from time to time and posters of it were made for discussion as
mentioned earlier The reverse engineering capability is not based on having any
additional information besides the BETA code, e.g. comments or other kinds of
annotations, which means that the code editor – or in fact any editor – could be used
to manipulate the model in its code representation.

6.2� GUI builder

The GUI builder is used to create the user interface in a direct manipulation graphical
editor. Like the model the user interface can be changed via the graphical
representation or via the textual code.  The user interface was created from the start
with the graphical editor, but was initially used for discussions only, although code is
generated automatically. Changes regarding the physical appearance of the user
interface, i.e. what type of UI controls used, and their concrete layout, were typically
made in the graphical editor and changes regarding the basic functionality of the user
interface and the interface to the model and functionality layer were typically made in
the code editor. Due to reverse engineering and incrementality it is easy to alternate
between using the two tools.

The user interface was often used as means for organising and/or coordinating
activities between the cooperative designer and the OO developers. The initial user
interface design was, by and large, made by the cooperative designer and it was then
further elaborated by the OO developers in collaboration with the cooperative
designer. Again due to reverse engineering it was possible for the cooperative
designer to make changes to the user interface throughout the process, even very late
in a prototype cycle.

The GUI builder generates code for a platform independent framework. This
framework, which also had great importance to the development of the prototype, had
to be extended during development in order to support platform specific UI controls.
The new UI controls were manually inserted in the code, but they could coexist with



the automatically generated UI controls without affecting the reverse engineering
process.

One problem or annoyance was that a large amount of time was spent on coding a
strict programming interface to the user interface to achieve independence between
the user interface, the model and functionality layer. The separation, however, showed
to provide advantages in stability of interface and those advantages are considered to
outweigh the difficulties. Furthermore, preliminary investigations show that much of
this work can actually be automated (Damm et al., 97).

6.3� Code Editor

All of the tools mentioned above integrate with a structure editor. The editor knows
the grammar for the BETA language allowing it to “catch” syntax errors and provide
facilities for syntactic and semantic browsing of code.

Furthermore, the editor offers an abstract representation of the code, where any
part of the code can be hidden. As became evident when a new developer was
introduced to the system (and its architecture) relatively late in the process, this
presentation of code and the semantic browsing facilities helped in gaining a quick
understanding of the architecture of the relatively large prototype. Also, the abstract
presentation of code and the editing operations at that level were helpful in
restructuring even large pieces of code (Knudsen et al., 94, chapter 23).

6.4� Persistence

Another major player on the stage of tools was the persistent store that supports
orthogonal and transparent persistence. In this way any object can be stored and given
a persistent root all reachable objects will be made persistent transparently. This
meant that only a little time had to be used on persistence issues in the first versions
of the prototype. Persistent stores generated from data from existing databases
simulated interfaces to legacy systems, and data non-existing in legacy systems was
added. A point has been made of identifying those chunks that are within the object
model to prepare for current work on interfacing to actual legacy systems. In the
current version of the prototype the focus has turned to multi-user functionality in a
client / server architecture and a storage component has been developed. The storage
component (see Figure 4) constitutes a transparent interface to three different storage
media: the initial single-user persistent store, a shared persistent store (Brandt, 93,94;
Wiederhold, 97), and a relational database (for a selected part of the data).

6.5� Concurrent engineering tool

Although preliminary implementation was worked out on separate pieces of code the
need for use of the versioning system CVS very quickly emerged. As implementation
progressed it became evident that its presence was absolutely crucial: It facilitated



seven developers concurrently working on over 300 files containing over 100,000
lines of code, merging code with only minor problems. CVS was also used to merge
changes made in regional prototype sessions with changes made at home at the
University.

7� Managing development

Keeping the project “on track” and within the agreed time-frame was a major problem
to be tackled. Project management and control was achieved in a number of ways.
Development activities were managed and coordinated with BPI objectives through
frequent business reviews ranging from the informal to the company’s highest
executive body. Up until now five different types of review, which vary both with
respect to participants and with respect to purpose, have been held. A review of some
kind has, on average, been held every two weeks during the five months of effective
prototype development. In the second part of the project a major review of the
prototype has been held approximately every second month. All reviews have actively
involved relevant members of the development team. The reviews can be categorised
as follows:

• Formal reviews with the project manager from the business, technical
advisors from a consultancy and business representatives.

• Informal reviews with the same group.
• Reviews with the company’s Regional Programme Coordinators

(RPCs).
• Review with the company’s executive body.
• Review with members of the company’s Business Reference Group

(BRG).

The purpose of the formal reviews – which were held more frequently in the
beginning of the project than later on in development – was to assess whether or not
the prototype was on the right track both in terms of scope and competency8. Informal
reviews occurred in between the formal ones. They were informal in the sense that no
single version of the prototype was built, frozen and presented for the occasion, rather
it was a matter of the company’s project manager and consultants visiting the
development site and discussing work-in-progress9. Reviews with regional program-

                                                          
8 It might be noted that the “problem of culture” – academics working in a commercial context

– was considered to be an issue of “high risk” by the company and its consultants; a problem
resolved through frequent reviews.

9 It should be said that for the first phase of development, the development team was located in
company offices at a customer service site. While not actually located with customer service
staff, access to practice was greatly facilitated. Furthermore, the transmission of knowledge
was greatly facilitated through locating all the developers / perspectives in one room. This
co-location supported internal awareness and coordination of development activities. It is an



me coordinators and the ethnographer, who did ‘quick and dirty’ studies of work
(Hughes et al., 94) in Hong Kong and the US, were held to ensure that prototype kept
a "global perspective" and, in their reaction to the current prototype, to get further
input for development.

There has only been one review involving the company’s executive body, the
highest authority within the company regarding business development decisions.
Following the executive review of the first major iteration of the prototype (May ’97),
the company decided to go ahead with developing a production version of GCSS.
This decision was, amongst others, made on the basis of formal presentation of the
prototype. The Business Reference Group, assembled in response to development
phase two, represents the regions and is responsible for accepting features of the
prototype that are to go into the production version and organising further, more
“specialised” input from regional staff. By “specialised” staff is meant representatives
from specific areas of the business. Although changed from time to time, one or two
representatives from business have been located with the development team more or
less constantly throughout design. They have been used intensively as resources on
the problem domain and have also acted as coordinators between system development
and BPI.

8� Concluding remarks

Returning to the question posed in the introduction, how come that the project was,
and still is, successful? Based on the state of the work – still in progress – we will
restrain ourselves from too firm conclusions. However, we still believe we might
extract some lessons from the project so far. In the following, and we are very well
aware that we are talking on the basis of one albeit comprehensive example, we will
try to summarise some of the key findings in explicating some of the underlying
means by which the prototype, the process, and the business results were achieved.
Tentatively, and again rather simplistically, we can state that the main result seems to
be the strength of an approach we might call an experimental and multiperspective
approach to designing for practice.

8.1� Practice

Probably the most fundamental principle within our approach is the focus on the work
practice the application has to support. One could say that practice is the subject of
the analysis, a springboard for design, and the goal of the implementation. The
business objective of the project as such is to design a product that fits the practice in
which it is to be embedded and used, in this case customer service. Thus, the key
feature of our approach is the focus on practice which is seen and treated as the
fundamental resource in that it provides the possibility for grounding design,
                                                                                                                                     

organisation of work we have maintained in phase two although we are now located at the
university.



identifying solutions to substantive problems, as well as providing triggers for new
ideas as to how work (e.g. the delivery of customer service) might be achieved in the
future through technological intervention.

8.2� Experimentation

In so much as design is an intervening activity very much concerned with future
practice, one of the key characteristics of the whole development process is the quite
comprehensive use of experimentation – i.e. the performance of analysis, design and
implementation in active collaboration with users. Various methodological advise
found in textbooks suggest that analysis, design and implementation should be carried
out in sequence, although with iterations. The approach conducted within the Dragon
Project can almost be said to go to the other extreme – there is no ‘sequence’ of work
in the conventional sense of the word10. Schematically, Figure 7 depicts the approach
employed and characterises experimentation.

In the analysis, we made extensive use of artefacts created within design and
implementation. Similarly, the design activities were heavily dependent on both an in
depth understanding of current practice (analysis) and a firm notion of what could
actually be achieved within given constraints (implementation). Needless to say,
implementation was dependent on analysis and design – notions all of which in this
context are continuous, mutually elaborating and on-going: just as one starts
analysing, designing and implementing in conjunction, then so one proceeds until a
concrete product emerges

This ‘radical parallelism’ and experimentation in all phases is important and, in
placing users at the centre of design activities, leads to the implementation of a
prototype suitable for continuation into the product system. Just as we designed using
specific experiences still keeping “the big picture” in focus, we also, and simul-
taneously, tried to cater for a rapid prototyping process as we developed with the
                                                          
10 Of course, in so much as this approach is iterative and in real time demands restructuring of

the product, implementation of architectures supporting integration with databases, existing
systems and so on, then there is a ‘sequence’ at work but here we are talking about the
development of a technological infrastructure in contrast to the development of a functioning
system that the infrastructure serves. It is in the sense of the process of developing of
functionality (i.e. what activities the system should support) that the notion of sequence
becomes redundant as analysis, design and implementation are continuous, mutually
elaborative and on-going in contrast to discrete step-by-step tasks.
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Figure 7.



product system in mind – i.e. we took and take an evolutionary approach to proto-
typing. Central to this process were the model and the architecture, the development
of which naturally requires a collection of suitable tools and techniques.

8.3� Multiperspective

In many respects the defining feature of the process is its interdisciplinary or
multiperspective character. As outlined in the previous sections we have made
extensive use of three very different perspectives. Although different, they share a
common frame of reference – the prototype and the practice it is intended to support.
Generally speaking we can say that:

• Ethnography provides a concrete understanding of work’s real time
accomplishment in contrast to idealisations and formal glosses.

• Cooperative design provides an understanding of the relationship
between current and future practice through the experimental formu-
lation of concrete design visions and solutions

• OO provides a concrete relationship between design visions and the
application in and through formulating a model utilising concepts
derived from practice.

• The instances of work and the prototype provide and maintain important
common reference points between the three perspectives throughout
development.

Naturally, these perspectives do not have fixed boundaries; for all practical
purposes neither seeks to exclude the other. We all need to understand the practice in
question, we all need to share the design visions, as we all need to know what is
realistic in terms of implementation. On the other hand, for practical purposes, we
cannot all comprehend practice to the same extent. Thus, we made extensive use of
overlapping competencies and foci as well as overlapping activities and respon-
sibilities.

8.4� Implications for object-orientation

Besides these rather general lessons, we address more specific object-oriented issues.
Below is a summary of some of the notions and principles applied in the current
project ordered according to where they might best inform object-oriented analysis,
design and implementation.



OO analysis is more than finding nouns and verb.

• Analysis is in significant part directed towards understanding current
practice.

• Ethnography is a powerful approach to understanding the social organi-
sation of activities which is current practice.

• Developers need concrete experiences from within practice, comple-
mentary and in addition to bringing users into the development process.

• Prototypes, mock-ups and scenarios, complement ethnographic tech-
niques in functioning as triggers for discussions on current practice with
users.

OO design is more than filling in details in the OO analysis model.

• Design is seen as an on-going process of formulating “best matches”
between current work and future possibilities.

• Cooperative design bridges between current and future practice by
active user involvement in a creative process of experimentation.

• Concrete representations of design visions (prototypes, mock-ups, and
scenarios) provide the possibility (1) for simulating future work through
hands-on-experience and (2) for (thereby) formulating concrete design-
solutions.

• The central ‘challenge’ in design is not so much to find representative
users, rather it is to find users that can challenge representations.

And to complete the list:
OO implementation is more than translating design models into code.

• Implementation is also seen as the process of realising emergent, in
contrast to predefined, design visions

• Without understanding design visions and their concrete relationship to
practice, it is virtually impossible to implement or find alternatives to
formal specifications.

• Implementation is in significant part constructing primary means for
analysis and design in accomplishing evolutionary prototyping.

• The construction of robust yet readily adaptable models and archi-
tectures are crucial in implementation and depend on flexible tool
support.

Naturally, the above principles do not apply to all problems in all situations.
System development is, afterall, a heterogeneous enterprise not only in terms of staff
but also in terms of problem domains. Up until now each of the individual
perspectives outlined here have been successfully applied to a wide variety of
application developments in a multiplicity of situations. Although respective



disciplinary achievements suggested the strong possibility of developing a highly
effective and unified approach to system development, in so much as this is the first
major attempt at combining them in large-scale development, then success in a
multiplicity of settings cannot be claimed for their particular association. Thus, it is
difficult to assess scope, applicability, cost, etc.

What we can say, based on the experiences so far, is that the approach has been
successfully applied in a situation characterised by the following features: complex
human work practices, high uncertainty regarding the specifics of the potential
application, large and geographically distributed organisation. In respecifying the
classical working order of design from a sequential process of analysis – design –
implementation to an on-going, mutually elaborative process dependent on active user
involvement (experimentation), the multiperspective approach outlined here is
potentially strong, both in terms of projected cost benefit and in actual terms of
practical efficacy from a client’s point of view, in supporting the integration of
emerging information technologies into the world of work and organisation. To
reiterate: we outline here an organised approach to, not a formal method of, work-
oriented design. Finally, it might be said that in so much as we have explicated the
acronym M.A.D. in what we hope is some reasonable detail, then that acronym not
only captures the essence of a unique approach but also the frenetic character of rapid
prototyping at work.

Acknowledgement: This work was made possible by the Danish National Centre for
IT-Research (CIT, http://www.cit.dk), research grant COT 74.4. We would also
like to express our sincere thanks to all the people within the company who made this
project possible.



9� References

(Anderson et al., 89). Anderson, R.J., Hughes, J.A., Sharrock, W.W. (1989)  Working for
Profit: The Social Organisation of Calculation in an Entrepreneurial Firm, Aldershot:
Avebury.

(Bannon, 91) Bannon, L.J. (1991)  From Human Factors to Human Actors: the role of
psychology and human-computer interaction studies in system design, Design at Work:
Cooperative Design of Computer Systems (eds. Greenbaum, J. & Kyng, M.),  pp. 25 – 44,
New Jersey: Lawrence Erlbaum Associates.

(Bannon et al., 93) Bannon, L.J. & Hughes, J.A. (1993) The Context of CSCW, Developing
CSCW Systems: Design Concepts, Report of COST 14, ‘CoTech’ Working Group 4 (1991-
92), pp 9 – 36.

(Bjerknes et al., 96). Bjerknes, G., Ehn, P., & Kyng, M. (1987) Computers and Democracy: A
Scandinavian Challenge, Aldershot: Avebury.

(Blomberg et al., 94). Blomberg, J., Suchman, L., Trigg, R. (1994) Reflections on a Work-
Oriented Design Project, Proceedings of PDC ’94,pp 99 – 109, Chapel Hill, North Carolina:
ACM Press.

(Brandt 93). Brandt, S., Madsen, O.L. (1994) Object-oriented Distributed Programming in
BETA, in Lecture Notes in Computer Science, LNCS 791, Springer-Verlag 1994.

(Brandt 94). Brandt, S. (1994) Implementing Shared and Persistent Objects in BETA, Progress
Report, Tecnical Report, Department of Computer Science, Aarhus University.

(Bødker, 91) Bødker, S. (1991) Through the Interface: a Human Activity Approach to User
Interface Design, Hillsdale, New Jersey: Lawrence Erlbaum Associates.

(COMIC 2.2, 93) COMIC Deliverable 2.2, Esprit Basic Research Project 6225 (1993) )LHOG
6WXGLHV�DQG�&6&:, (eds.) Lancaster University and Manchester University.

(Crabtree et al., 97). Crabtree, A., Twidale, M., O’Brien, J., Nichols, D.M. (1997) Talking in
the Library: Implications for the Design of Digital Libraries, Proceedings of ACM Digital
Libraries ’97, Phildelphia: ACM Press

(CVS, 98). Gnu, Concurrent Version System (1998) ftp://archive.eu.net/gnu/.
(Damm et al., 97) Damm, C.H., Hansen, K.M., Thomsen, M. (1997) Issues from the GCSS

Prototyping Project – Experiences and Thoughts on Practice, Department of Computer
Science, Aarhus University.

(Garfinkel et al., 70) Garfinkel, H. & Sacks, H. (1970) On Formal Structures of Practical
Actions, Theoretical Sociology: Perspectives and Developments (eds. Mckinney, J.C. &
Tiryakian, E.A.), pp 337 – 366, New York: Appleton-Century-Crofts, 1970.

(Greenbaum et al., 91). Greenbaum, J., & Kyng, M. (1991) Design at Work: Cooperative
Design of Computer Systems, Hillsdale New Jersey: Lawrence Erlbaum Associates.

(Grønbæk et al., 93). Grønbæk, K., Kyng, M., & Mogensen, P. CSCW Challenges: Cooperative
Design in Engineering Projects, Communications of the ACM 36 (6), pp 67 - 77.

(Grønbæk et al.,). Grønbæk, K., Kyng, M., & Mogensen, P. Toward a Cooperative
Experimental System Development Approach, In M. Kyng & L. Mathiassen (Eds.), (In
Press).

(Grønbæk, 91). Grønbæk, K. (1991) Prototyping and Active User Involvement in System
Development: Towards a Cooperative Prototyping Approach. Ph.D. Thesis, Computer
Science Dept., University of Aarhus.



(Grudin, 89) Grudin, J. (1989) Why Groupware Applications Fail: Problems in Design and
Evaluation, Office: Technology and People, vol. 4 (3), pp 245 – 264.

(Heath et al., 92). Heath, C. & Luff, P. (1992) Collaboration and Control: Crisis Management
and Multimedia Technology in London Underground Line Control Rooms, JCSCW ’92, vol.
1, the Netherlands: Kluwer Academic Publishers.

(Hughes et al., 92). Hughes, J., Randall, D., Shapiro, D. (1992) Faltering from Ethnography to
Design, Proceedings of CSCW ’92, pp 115 – 122, Toronto: ACM Press.

(Hughes et al., 94). Hughes, J., King, V., Rodden, T., Andersen, H. (1994) Moving Out of the
Control Room: Ethnography in System Design, Proceedings of CSCW ’94, pp 429 – 439,
Chapel Hill: ACM Press.

(Hughes et al., 96). Hughes, J., Kristoffersen, S., O’Brien, J., Rouncefield, M. (1996) :KHQ
0DYLV�PHW�,5,6��(QGLQJ�WKH�ORYH�DIIDLU�ZLWK�2UJDQLVDWLRQDO�0HPRU\, Proceedings of IRIS
19 ‘The Future’, Report 8.

(Jackson, 83). Jackson, M. System Development, Englewood Cliffs NJ: Prentice-Hall, 1983.
(Jacobsen, 92). Jacobsen, I. (1992) Object-Oriented Software Engineering. A Use Case Driven

Approach, Addison Wesley.
(Kensing et al., 97). Kensing, F & Simonsen, J. (1997) Using Ethnography in Contextual

Design, Communications of the ACM, 40 (7), pp 82 - 88.
(Knudsen et al., 94). Knudsen, J.L., Löfgren, M., Madsen, O.L., Magnusson, B. (1994) Object-

Oriented Environments. The Mjølner Approach, Prentice Hall.
(Knudsen et al., 96). Knudsen, J.L., Madsen, O.L. (1996) Using Object-Orientation as a

Common Basis for System Development Education, ECOOP ’96 Teachers Symposium.
(Madsen et al., 93). Madsen, O.L., Møller-Pedersen, B., Nygaard, K. (1993) Object-Oriented

Programming in the BETA Programming Language, ACM Press, Addison Wesley.
(Madsen, 96). O.L Madsen: Open Issues in Object-Oriented Programming (1996) – a

Scandinavian perspective, Software Practice and Experience.
(Microsoft, 95). The Component Object Model Specification, Microsoft Corporation, 1995.
(Mogensen, 94). Mogensen, P. (1994) Challenging Practice: an Approach to Cooperative

Analysis, Ph.D thesis, Computer Science Department, University of Aarhus, Daimi PB-465.
(Rational, 98). Rational Software Cooperation (1998) UML Notation Guide Version 1.1,

http://www.rational.com/uml/html/notation/
(Rouncefield et al., 94). Rouncefield, M, Hughes, J.A., Rodden, T, Viller, S. (1994) Working

with “Constant Interruption”: CSCW and the Small Office, Proceedings of CSCW ’94,
Chapel Hill: ACM Press.

(Schmidt et al., 93) Schmidt, K. & Carstensen, P. (1993) %ULGJLQJ� WKH� *DS�� 5HTXLUHPHQWV
$QDO\VLV�IRU�6\VWHP�'HVLJQ, Working Paper, COMIC-RISØ, Esprit Basic Research Project
6225, (eds.) Lancaster

University and Manchester University.
(Twidale et al., 94) Twidale, M., Randall, D., Bentley, R. (1994) Situated Evaluation for

Cooperative Systems, Proceedings of CSCW ’94, pp 441 – 452, Chapel Hill, North
Carolina: ACM Press.

(Weiderhold, 97) Weiderhold, J.T. (1997) A Multi-User Persistence Framework: Building
Customised Database Solutions uing the BETA Persistent Store, MA. Thesis, Department of
Computer Science, Aarhus University.

(Wiklund, 94). Wiklund, M.  (1994) Usability in Practice, AP Professional.
(Wittgenstein, 68) Wittgenstein, L.  Philosophical Investigations, Oxford: Basil Blackwell,

1968.



7KH�µ'RPDLQ�0RGHO�&RQFHDOHU¶�DQG�µ$SSOLFDWLRQ�0RGHUDWRU¶
3DWWHUQV��$GGUHVVLQJ�$UFKLWHFWXUDO�8QFHUWDLQW\�LQ�,QWHUDFWLYH�6\VWHPV
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'HVLJQLQJ�DUFKLWHFWXUHV�IRU�LQWHUDFWLYH�V\VWHPV�LV�GLIILFXOW��0DQ\�V\VWHP�IDLOXUHV�DUH�GXH
WR� WKH� LQDELOLW\�WR�KDQGOH�VRFLDO�DQG�WHFKQLFDO�FKDQJHV�WKDW�RFFXU�GXULQJ�GHYHORSPHQW��:H
SUHVHQW�WZR�DUFKLWHFWXUDO�SDWWHUQV�IRU�LQWHUDFWLYH�V\VWHPV��:H�DSSOLHG�WKHVH�WR�D�VKRUW�WHUP
DQG�D�ORQJ�WHUP�GHYHORSPHQW�SURMHFW��,Q�WKH�:HEYLVH/7�3URMHFW��WKH�FRQFHSWXDO�PRGHO�ZDV
PRGLILHG� WR� KDQGOH� YDULRXV� H[WHQVLRQV� DQG� WR�PHHW� DQ� HPHUJLQJ� VWDQGDUG�� ,Q� WKH�'UDJRQ
3URMHFW�� WKH� XVHU� LQWHUIDFH� HYROYHG� VLJQLILFDQWO\� RYHU� D� SHULRG� RI� DOPRVW� WZR� \HDUV�� 7KH
DSSOLFDWLRQ� RI� WKHVH� WZR� DUFKLWHFWXUDO� SDWWHUQV� GHPRQVWUDWHV� KRZ� IRFXVLQJ� RQ� FKDQJH�� RU
PRUH�VSHFLILFDOO\�RQ�DUFKLWHFWXUDO�XQFHUWDLQW\��FDQ�EH�FUXFLDO�WR�WKH�VXFFHVV�RI�D�SURMHFW�

���,QWURGXFWLRQ

Brooks‘ [7] vivid description of the great beasts trying to escape the tar pits evokes the
problems faced by development teams entangled in failure. Because design of software
architecture is the highest level of design in software development, architectural uncertainty
causes significant risks. One way of addressing failure is through ‘risk management’ as in
Boehm’s 6SLUDO� 6RIWZDUH� 'HYHORSPHQW� 0RGHO� [5], an iterative and evolutionary software
development model. Through ‘risk management’ one should carefully consider what the
uncertainties are, in which way these could constitute risks and what should be done to handle
them. To avoid failure, special attention should be paid to architectural uncertainties.

For the purpose of our discussion of software architecture, we will use the definition of Bass
et al. [2]:

7KH� VRIWZDUH� DUFKLWHFWXUH� RI� D� SURJUDP� RU� FRPSXWLQJ� V\VWHP� LV� WKH� VWUXFWXUH� RU
VWUXFWXUHV�RI�WKH�V\VWHP��ZKLFK�FRPSULVH�VRIWZDUH�FRPSRQHQWV��WKH�H[WHUQDOO\�YLVLEOH
SURSHUWLHV�RI�WKRVH�FRPSRQHQWV��DQG�WKH�UHODWLRQVKLSV�DPRQJ�WKHP�

In order to overcome the limitations of box-and-line diagrams encountered in some software
architecture discussions, we will use a variation of the notation introduced in Bass et al. [2].
Solid lines denote control and processing, whereas dashed lines denote data (Figure 1). We
introduce the starred symbol to denote an architectural uncertainty.  Furthermore, a shadow on
a component indicates one or more components of that kind.

Computational component
object
Computational component
object. Concerned with data

Passive data component

Process

Uni-directional control flow

Bi-directional control flow

Uni-directional data flow

Bi-directional data flow

Architectural
uncertainty

A shadow indicates a
set of components

Figure 1. Software architecture notation.
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�����$UFKLWHFWXUDO�XQFHUWDLQW\

We define uncertainty within a software architecture as follows:

$Q� DUFKLWHFWXUDO� XQFHUWDLQW\� UHSUHVHQWV� D� ODFN� RI� IXOO� XQGHUVWDQGLQJ� RI� DQ
DUFKLWHFWXUDO�VWUXFWXUH�

Based on our experiences from two development projects, we discuss two important
examples of architectural uncertainty: In the WebviseLT case, the Webvise hypermedia system
was to be extended with typed links. This potentially required a change of the Webvise server’s
object-oriented model of hypermedia, while this model was about to be standardised. From the
Webvise clients’ view, the server’s model thus presented an architectural uncertainty. In the
Dragon case, the development process employed a high level of participation by users, which
implied frequent changes to the user interface. These change requests forced us to continually
evolve the part of the application that implemented the user interface. Thus, the user interface
presented an architectural uncertainty with respect to the components that communicated with
it.

The structure of the paper is as follows: In section 2, we present and discuss the two case
studies of object-oriented system development; each addressing a different architectural
uncertainty. Section 3 presents two architectural patterns, and section 4 discusses how these
patterns were applied in each case to address the architectural uncertainty. Section 5 concludes.

���&DVH�VWXGLHV
Each of the following case studies involves an architectural uncertainty that posed problems

in the software development process.

�����:HEYLVH/7��([WHQGLQJ�WKH�:RUOG�:LGH�:HE�ZLWK�W\SHG�OLQNV

The :HEYLVH/7�3URMHFW is a short-term research project that has currently run half a year. It
extends the Webvise hypermedia system [23] that provides open hypermedia facilities for third
party applications. In open hypermedia systems, structures such as links and anchors are
external to the documents they link. This means that users may link from and anchor in
documents they do not own. Unlike most other open hypermedia systems, Webvise also
integrates with the World Wide Web. The World Wide Web is a single homogenous space of
information, and its sheer size magnifies the classical problem of “being lost in Hyperspace”
[14].

/LQN� W\SHV, or more generally types for objects in hypertexts, provides the user with a
manageable conceptual model in a hypertext [29]. Adding link types, also to the World Wide
Web, is thus useful:

• for adding (user-defined) semantics to a hypertext,
• as a means of increasing support for user orientation by making the semantics of

structures explicit, and
• as focal points for computer based analysis and synthesis of hypertexts.

Based on these considerations, part of the WebviseLT Project aims at extending the Webvise
system with facilities for creation, manipulation, and use of typed links in media supported by
Webvise, including World Wide Web documents [24].



$UFKLWHFWXUDO� XQFHUWDLQW\� LQ� WKH� :HEYLVH/7� 3URMHFW�� Figure 2 shows the Webvise
Architecture. The main parts of the Webvise system are the Webvise Client processes, the
Webvise Server process, and the
external applications. The server,
written in BETA [25], implements an
object-oriented model of a hypertext
consisting of objects such as links
and anchors. The client provides a
generic interface for general hyper-
media functionality such as link
following and browsing. Also, the
client implements communication
with external applications such as
Microsoft Word or Microsoft Internet
Explorer, effectively enhancing these
with hypermedia functionality.

To support typed links, it would
seem ideal to extend the storage layer of Webvise by creating a specialisation of the link class
for each type. This is, however, not a very good idea since the future architecture of the server
is uncertain: The server component will be replaced with the Construct system [35] in order to
comply with a recent standard of the Open Hypermedia Systems Working Group (OHSWG,
http://www.ohswg.org/). This architectural uncertainty represents a major obstacle to the
introduction of typed links, since the server determines the conceptual view of a hypertext that
the clients need to present to the users. Thus, it becomes important to introduce typed links in a
way such that the developed functionality can coexist with both the original Webvise server
and the new Construct server.

�����'UDJRQ��3URWRW\SLQJ�D�JOREDO�FXVWRPHU�VHUYLFH�V\VWHP

The 'UDJRQ� 3URMHFW� was initiated in 1997 as a joint project between a large, globally
distributed container shipping company and University of Aarhus, Denmark. Over a period of
more than 18 months, the goal of the project was to create a series of prototypes of a world-
wide customer service system. The system should thus support handling of interaction with
customers, e.g. in formulating prices for transport of containers (quoting), in booking
containers, in arranging inland transportation of containers, in documenting ownership of
cargo, and in notifying the consignee of cargo’s arrival. The development process was iterative,
exploratory, and multi-perspective [12].

Figure 3 shows how each concern
of the project was treated iteratively.
Booking, for example, was the
subject of more than six reviews,
with iterations in more than six sub-
phases of development. Moreover,
in-between each review, we
explored several ways of treating the
concerns. The development project
involved several perspectives:
object-orientation, participatory
design [21], and ethnography [4].

Figure 3. Evolution of concerns in the Dragon Project
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The ethnographer worked on understanding and describing current practice, the participatory
designer designed technological support for future practice with users, and the OO developers
were responsible for the problem domain model, software architecture, and implementation
[13].

$UFKLWHFWXUDO�XQFHUWDLQW\� LQ�WKH�'UDJRQ�3URMHFW� Figure 4
shows a conceptual view of the initial architecture of the
Dragon prototype. It consisted of four major components:
Problem Domain Objects related to the shipping problem
domain, Business Functions implementing functionality cross-
cutting the Problem Domain Object structure, User Interface,
and Persistent Storage.

The iterative and exploratory character of the development
process meant that the user interface, problem domain model,
and business functions all evolved throughout the project. For
each area of the business that was covered, the problem
domain model evolved horizontally to cover most phenomena of interest within a short period
of time. In this way, the different areas of the problem domain model quickly became
structurally stable; later changes tended to be much more vertical in the sense of elaborating on
existing classes and relationships rather than introducing new ones. The user interface,
however, continued to evolve more radically, as the participatory designer worked with users
on new areas of the business. In this way, the instability of the user interface was an
architectural uncertainty: The relative difference in stability was problematic, and the
development of business functions, problem domain model, and user interface had to take this
difference into account. Most important, the architecture had to be designed so that the
evolution of the user interface would not overly affect the rest of the system.

���$UFKLWHFWXUDO�SDWWHUQV�IRU�LQWHUDFWLYH�V\VWHPV

Each of the case studies highlights an architectural uncertainty. In each situation, the
uncertainty and potential risks were, in part, handled by designing a software architecture that
anticipated the possible change implied by the uncertainty. In this section we describe these
architectures. To give a more detailed understanding of the architectures, and to allow the
architectures to be used in other contexts, we present them as DUFKLWHFWXUDO� SDWWHUQV.
Architectural patterns, like design patterns [20], present a common solution to a common
problem within a given context, which matches well with the notion of architectural
uncertainty. Architectural patterns are not new. Well-known architectural patterns include those
presented by Buschmann et al. [9], and Shaw [32].

�����µ'RPDLQ�0RGHO�&RQFHDOHU¶�DQG�µ$SSOLFDWLRQ�0RGHUDWRU¶

This section presents the ‘Domain Model Concealer’ and the ‘Application Moderator’
patterns. Both pattern descriptions assume that an object-oriented approach to software
development is used. In object-oriented development, the system must not only be technically
sound, but it must also maintain a real-world reference, i.e. it must contain a proper model of
what is referenced [27], [25], [34]. This model is often referred to as the SUREOHP� GRPDLQ
PRGHO. Since we are dealing with interactive systems, another important part of the application
is the user interface. These two parts of the application should be separated into two different
parts or components, making each easier to understand and maintain.

Figure 4. Conceptual view
of the Dragon prototype
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In our pattern descriptions below, when discussing sample implementation, we will refer to
the same )LQDQFLDO�+LVWRU\�application. This facilitates comparison of the two patterns. The,
somewhat artificial, application enables tracking of financial expenses. The simple problem
domain model is shown in Figure 5 and the user interface is shown in Figure 6.

�����3DWWHUQ�IRUPDW

The pattern format used to describe the architectural patterns in this article varies somewhat
from the format of Buschmann et al. [9] and Shaw [32]. The former can be too verbose to
efficiently communicate the essence of the patterns, and the latter can be too short to give
sufficient understanding to actually apply the patterns. Figure 7 presents the pattern format,
which may be viewed as a condensed version of the format in Gamma et al. [20] or as a slight
variation on Brown et al.’s [8] ‘deductive mini-pattern’ template.

1DPH�DQG�WKXPEQDLO� What should the pattern be commonly known as? Followed by
a short description.

3UREOHP� What is the architectural problem that the pattern faces, and what are the
main forces behind this problem?

6ROXWLRQ� What is the effective solution of the stated problem? This section includes a
description of the pattern’s high-level static structure in the form of a Unified
Modeling Language (UML [31]) class diagram using packages.

6DPSOH�LPSOHPHQWDWLRQ� How could this pattern be applied? This section includes
UML class diagrams.

&RQVHTXHQFHV� What are the benefits and liabilities of applying this pattern?

Figure 7. Architectural pattern format

�����'RPDLQ�0RGHO�&RQFHDOHU

7KH�'RPDLQ�0RGHO�&RQFHDOHU�DUFKLWHFWXUDO�SDWWHUQ�GLYLGHV�LQWHUDFWLYH�DSSOLFDWLRQV
LQWR�D�SUREOHP�GRPDLQ�UHODWHG�SDUW� �WKH�3UREOHP�'RPDLQ�0RGHO��� DQ� LQWHUIDFH� WR
WKLV�PRGHO� �'RPDLQ�0RGHO�&RQFHDOHU��� D�8VHU� ,QWHUIDFH� SDUW� FRQWDLQLQJ� WKH� XVHU
LQWHUIDFH�� DQG� D�8VHU� ,QWHUIDFH� /RJLF� SDUW� WKDW� LPSOHPHQWV� XVHU� LQWHUIDFH� UHODWHG
IXQFWLRQDOLW\� E\� FRPPXQLFDWLQJ� ZLWK� WKH� 3UREOHP� 'RPDLQ� 0RGHO� WKURXJK� WKH
'RPDLQ�0RGHO�&RQFHDOHU�

3UREOHP� How does one design the architecture of an interactive system so that the user
interface functionality is separated from the problem-domain related functionality? How does

Figure 6. User interface of the Financial
History application
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one ensure that frequent changes to the Problem Domain Model do not require frequent
changes to the whole application?

 The following forces should be balanced:
• User interface functionality should be separated from problem domain related

functionality, so that each part is easier to understand and maintain.
• Changes to the problem domain model should have no or minimal impact on the rest of

the application.

6ROXWLRQ� The Domain Model Concealer pattern divides the application into four parts: User
Interface, User Interface Logic, Domain Model Concealer, and Problem Domain Model.
Optionally, a Testing component can be implemented. The overall structure is shown in
Figure 8.

Figure 8. Overall structure of the Domain Model Concealer pattern

The User Interface component implements the user interface and consists of declarations and
instantiations of the widgets in the user-interface of the application. The Problem Domain
Model contains the domain-related classes and functions, and possibly other functionality. It
can be implemented independently of the User Interface component. The Domain Model
Concealer contains an interface to the Problem Domain Model component. The Domain Model
Concealer is thus dependent on the Problem Domain Model component but independent of the
User Interface component.

The User Interface Logic implements the functionality offered by the User Interface
component by collaborating with the Problem Domain Model component through the Domain
Model Concealer interface. This makes the User Interface Logic component dependent on both
the Domain Model Concealer and the User Interface components. Finally, the Testing
component allows testing of the Problem Domain Model component via the Domain Model
Concealer component.

6DPSOH�LPSOHPHQWDWLRQ� An application of the Domain Model Concealer pattern may proceed
as follows; the steps should not necessarily be taken sequentially. Part of the class structure of a
resulting implementation is illustrated in Figure 9.
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���,PSOHPHQW�WKH�3UREOHP�'RPDLQ�0RGHO
The Problem Domain Model is as described above.

���,PSOHPHQW�WKH�'RPDLQ�0RGHO�&RQFHDOHU

The Domain Model Concealer is implemented as the FinancialConcealer class. In the
Financial History application, operations to add financial elements (add), delete financial
elements (delete), and iterate over financial elements (createIterator) are needed. The
Concealer should hold a reference (financialHistory) to the object in the Problem
Domain Model of which it is currently showing the state. Furthermore, methods to set the state
of the Concealer (load) and to set the state of the Problem Domain Model through the
Concealer (save) are needed.

���,PSOHPHQW�WKH�8VHU�,QWHUIDFH�DQG�8VHU�,QWHUIDFH�/RJLF�&RPSRQHQWV

The User Interface component (InputUI) can be implemented using a user interface toolkit
in the normal way. It contains the declarations and instantiations of the widgets and
corresponds to what may be generated by a user interface builder. The User Interface Logic
component (InputUILogic) implements the actual functionality of the User Interface by
subscribing to events in the User Interface. To communicate with the Problem Domain Model
it uses the associated FinancialConcealer.

���2SWLRQDOO\�LPSOHPHQW�WKH�7HVWLQJ�&RPSRQHQW
A Testing component can be created to systematically test the Problem Domain Model via

the Domain Model Concealer.

&RQVHTXHQFHV� This architectural pattern has both benefits and liabilities.

%HQHILWV:
• Separation of the parts that require domain knowledge and the parts that require user

interface toolkit knowledge is supported.
• Change in technology is supported, since the User Interface and User Interface Logic

components can be substituted by new components when the user interface toolkit
changes.

• Testing of the Problem Domain Model and the Domain Model Concealer is facilitated.
• The User Interface and User Interface Logic components are shielded from changes in

the Problem Domain Model, since they do not interface with it directly.

/LDELOLWLHV:
• As the Problem Domain Model changes, either more work is involved in mapping

between the Problem Domain Model and the Domain Model Concealer, or the Domain
Model Concealer must be changed, which may require changes to the User Interface
Logic.

• Multiple view consistency is not accommodated. The Observer pattern [20] can
provide this by having the Domain Model Concealer as subject and several User
Interface Logic components as Observers.

• Frequent changes to the User Interface also imply frequent changes to the User
Interface Logic component.

�����$SSOLFDWLRQ�0RGHUDWRU

7KH�$SSOLFDWLRQ�0RGHUDWRU�DUFKLWHFWXUDO�SDWWHUQ�GLYLGHV�DQ�LQWHUDFWLYH�DSSOLFDWLRQ
LQWR�D�SUREOHP�GRPDLQ�UHODWHG�SDUW��WKH�3UREOHP�'RPDLQ�0RGHO���D�XVHU�LQWHUIDFH



FRPSRQHQW� �8VHU� ,QWHUIDFH��� DQ� DEVWUDFW� LQWHUIDFH� WR� WKH� XVHU� LQWHUIDFH� �8VHU
,QWHUIDFH�0LUURU���DQG�DQ�$SSOLFDWLRQ�0RGHUDWRU�FRPSRQHQW�WKDW�FRXSOHV� WKH�8VHU
,QWHUIDFH�0LUURU�ZLWK�WKH�3UREOHP�'RPDLQ�0RGHO�DQG�RWKHU�IXQFWLRQDOLW\�

3UREOHP� How does one design the architecture of an interactive system such that the user
interface functionality is separated from the problem domain related functionality and such that
changes to the user interface require minimal change to the rest of the system?

The following forces should be balanced:
• User interface functionality should be separated from problem domain related

functionality, so that each part is easier to understand and maintain.
• Changes to the user interface should have as little impact on the rest of the application

as possible.

6ROXWLRQ� The Application Moderator pattern divides the application into five components,
Problem Domain Model, Application Moderator, User Interface Mirror, and User Interface.
Optionally a Testing component may be implemented. The overall structure is shown in Figure
10.

Figure 10. Overall structure of the Application Moderator pattern

The Problem Domain Model contains problem domain related data and functionality. The
User Interface Mirror contains an abstract interface to the User Interface component. It consists
of data members that reflect the state of the widgets in the user interface and event members
that represent events that occur in the user interface, such as a button press. Furthermore, it
contains two abstract methods, setState and getState, which should be refined to write the
state of the concrete widgets into the data members (getState) and conversely (setState).
The User Interface contains the concrete widgets, implements the getState and setState
methods as described above, and calls event members as appropriate.

The Application Moderator connects the Problem Domain Model with the User Interface by
subscribing to the events in the User Interface Mirror and thus moderates their communication.
Upon invocation of the events, it can access the current state of the user interface by calling
getState and then read the data members or it can set the state of the user interface by setting
the data members and then call setState or it can do a combination of both.

Finally, the architecture allows for effective testing of most of the application. This is done
be creating a Testing component that systematically sets the state of the User Interface Mirror,
calls one or more event methods and then tests if the data members are in a correct state.

6DPSOH�LPSOHPHQWDWLRQ� An application of the Application Moderator pattern may proceed as
follows; the steps should not necessarily be taken sequentially. Part of the class structure of a
resulting implementation is illustrated in Figure 11 and Figure 12.
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���,PSOHPHQW�WKH�3UREOHP�'RPDLQ�0RGHO
The Problem Domain Model is as described above.

���,PSOHPHQW�WKH�8VHU�,QWHUIDFH

The User Interface component (InputUI) can be implemented using a user interface toolkit
and corresponds to what may be generated by a user interface builder.

���,PSOHPHQW�WKH�8VHU�,QWHUIDFH�0LUURU
The User Interface Mirror reflects the User Interface and acts as an interface to it. The User

Interface Mirror is in this sample implementation divided into two classes: UIDataMirror and
UIEventMirror. The UIDataMirror provides a data interface (Figure 11) that reflects the
data displayed in the user interface. The description and amount attributes correspond to
the two text fields in the user interface of the Financial History application. The expenses
attribute is a list of FinanancialExpense objects (Figure 12). Each element of this list
corresponds to an element in the list view of the application. CurrentExpense models the
current selection of the list view. Moreover, the getState and setState operations are
defined in the UIDataMirror class. The event members of the User Interface Mirror are
implemented as a number of abstract methods on the UIEventMirror, with one function for
each event of interest in the user interface. The onAdd method, e.g., corresponds to the event
that the addButton was pressed.

���5HILQH�WKH�8VHU�,QWHUIDFH�FRPSRQHQW
The User Interface component, implemented in step 2, is refined to implement the

setState and getState operations and to call the event methods in the User Interface
Mirror. In this case the User Interface component binds the button-press events of the buttons
to call the corresponding event members in the UIEventMirror associated through its
uiEventMirror association.

���,PSOHPHQW�WKH�$SSOLFDWLRQ�0RGHUDWRU
The Application Moderator connects the User Interface Mirror and the Problem Domain

Model. In our example, the FinancialModerator binds the events in the user interface by
implementing the event members in the UIEventMirror interface and reading and writing to

Figure 12.
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the data members in the UIDataMirror. Generally, the implementation of the Application
Moderator should:

• Add methods, which map data between the Problem Domain Model and the data
members in the User Interface Mirror,

• Refine the abstract methods of the User Interface Mirror that represent events of
interest,

• Implement the general application functionality inside the appropriate event methods,
and

• Implement multiple view consistency if needed.

���2SWLRQDOO\�LPSOHPHQW�WKH�7HVWLQJ�FRPSRQHQW
An optional Testing component can be implemented by creating another specialisation of the

User Interface Mirror that systematically calls the event members (e.g. in UIEventMirror)
and then tests the state of the data members (e.g. in UIDataMirror).

&RQVHTXHQFHV� This architectural pattern has both benefits and liabilities.

%HQHILWV�
• The User Interface component and the User Interface Mirror components are

independent of the Problem Domain Model component.
• The Problem Domain Model component is independent of the User Interface

component.
• The architecture supports effective testing. Regression testing of large parts of the

application, e.g., can be done efficiently via a Testing component.

/LDELOLWLHV�
• The interface to the User Interface represented by the User Interface Mirror component

takes some time to develop and maintain.
• The architecture results in a minor overhead in terms of function calls and data

conversion.

�����3DWWHUQ�GLVFXVVLRQ

.QRZQ�XVHV� Three-tier client-server architectures [33] divide (interactive) applications into
three tiers: Database, Domain, and Client tier, according to External, Conceptual, and Internal
schemas. In an interactive application with a thin client the representation of the domain on the
client in many ways resemble a Domain Model Concealer, and the Domain and Database tiers
resemble the Problem Domain Model in the Problem Domain Model Concealer Pattern. Fowler
[19] discusses an ‘Application Facade’ architectural model in a non-pattern format. In this
architecture, the Application Facade acts as a Domain Model Concealer and is used in the same
way as in the Domain Model Concealer pattern. In section 4.1, we discuss another use of the
Domain Model Concealer pattern.

The Devise Open Hypermedia System [22] uses the Application Moderator pattern
extensively to divide user interface and the hypermedia data model in the client (runtime layer)
of the system. Each dialogue in the system communicates with the non-client layers through a
mirror of the hypermedia data model as in the Application Moderator pattern. In Microsoft
Visual C++ [28], the Document/View architecture uses the Application Moderator to separate
the user interface (View) and the domain model (Document). The class wizard in the
environment generates implementations of the setState and getState methods of what
corresponds to the User Interface Mirror. In section 4.2, we show another use of the
Application Moderator pattern.



5HODWLRQ� WR� RWKHU� DUFKLWHFWXUDO� SDWWHUQV� IRU� LQWHUDFWLYH� V\VWHPV� A large number of
architectures have been proposed for interactive systems. Examples include Seeheim [30],
Model-View-Controller (MVC [26]), Presentation-Abstraction-Control (PAC [15]),
Arch/Slinky [3] and PAC* [11]. However, few of these have been treated in a pattern form.
The most well known patterns are probably the MVC and the PAC patterns described by
Buschmann et al [9].

Both the Application Moderator and Domain Model Concealer patterns complement the
Model-View-Controller (MVC) pattern. The MVC pattern is mostly concerned with obtaining
multiple view consistency. Whereas it decouples the Model from the Views and Controllers via
the Observer, it allows the Views and Controllers direct access to the Model. Neither the
Domain Model Concealer nor the Application Moderator allows this. In the Domain Model
Concealer pattern, the Concealer shields the Problem Domain Model. In the Application
Moderator pattern, only the Moderator, and not the User Interface Mirror, has access to the
Problem Domain Model.

The Presentation-Abstraction-Control (PAC) pattern is different from the other three
patterns. PAC has as its dividing principle a vertical split of the application such that it is
divided into separate agents according to divisions found in the problem domain. Each of the
agents contains their own user interface and functionality.

A main difference between the Domain Model Concealer and Application Moderator lies in
what is decoupled. The Application Moderator architecture adds an interface layer to the user
interface, thereby shielding the clients of the user interface from changes in it. The Domain
Model Concealer architecture does almost the opposite: It adds an interface to the Problem
Domain Model and in that way hides changes from its dependants.

���0DQDJLQJ�DUFKLWHFWXUDO�XQFHUWDLQW\

This section discusses the architectural uncertainties introduced in section 2 and explains
how these were handled in the two concrete cases with the help of the patterns presented in the
previous section.

�����'HIHUULQJ��FRQFHSWXDO�FKRLFH�LQ�:HEYLVH/7��$SSO\LQJ�WKH�'RPDLQ�0RGHO�&RQFHDOHU
SDWWHUQ

A common problem encountered in system development is changes in technology imposed
by external driving forces. In the WebviseLT case, this was experienced: The emerging
OHSWG standard meant that the server component of the Webvise system was to be replaced.
Since the server implements an object-oriented model of hypermedia, the introduction of typed
links became problematic. Two choices were possible:

• Wait for the standard, then design the extensions, and subsequently implement the
design, or

• proceed, temporarily ignoring the potential changes caused by the standard.

Both choices are problematic. Waiting would cause the project to fall behind schedule and
ignoring the upcoming changes would lead to a potential re-implementation. We followed a
third path. We decided to develop new functionality while the hypermedia model was evolving,
and applied the Domain Model Concealer architectural pattern. Figure 13 shows the
introduction of a Link Type Concealer as part of the Webvise architecture. The only way
components in the Webvise client application can use link types is through the Link Type
Concealer. This concealer thus provides both link type browsers and editors with a stable view



of link types. Also, external applications, such as Microsoft Internet Explorer, are enhanced
with link type functionality via the Application Wrappers’ use of the Link Type Concealer.

Figure 13. Introducing link types in Webvise

Currently, the link type hierarchy itself and link types are encoded in general attribute/value
pairs stored in the hypertext objects. This has two consequences: First, the standardised model
also specifies general attribute/value pairs on hypermedia objects. This means that after
replacing the server, the only parts of the link type that has to be changed are the actual
requests to the server. Second, this scheme should allow for a graceful introduction of first
class types that will eventually extend the storage layer of the new standardised server.

�����3DUDOOHOLVP�LQ�WKH�'UDJRQ�3URMHFW��$SSO\LQJ�WKH�$SSOLFDWLRQ�0RGHUDWRU�SDWWHUQ

User involvement in system development generally takes one of two forms. Either
• user involvement is primarily concentrated on requirements gathering at the beginning

of a project, and acceptance testing at the end of a project, or
• user involvement and user testing is on-going and involves iterative development of the

system.

Both approaches are problematic: User testing only in the end of a development project often
causes missed deadlines due to users’ rejection of the developed system. On-going user
involvement, on the other hand, often causes missed deadlines due to evolving user
requirements.

In the Dragon Project, user involvement was on-going, with  change caused by evolving or
emerging requirements that came from three major sources:

• Usability studies,
• participatory design workshops with users, and
• presentations to and discussions with managers and end users.

The frequent changes to the user interface throughout system development constituted a
major architectural uncertainty. Figure 14 shows how the Application Moderator pattern
addresses this by isolating user interface changes. The Business Function, Problem Domain
Objects, and User Interface components are now no longer communicating directly. Instead, all
communication with the user interface now goes through the User Interface Mirror component.
This means that if changes to the user interface do not require changes to User Interface Mirror,
the rest of the application will not be affected by the changes.
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Figure 14. Isolating user interface changes in Dragon

In our case, changes to the user interface often required none or only small changes to the
rest of the application. For example, several versions of a set of allocation user interfaces
resulting from regional differences existed over time using the same User Interface Mirror. The
choice of architecture was helpful: Although the extra interfaces were somewhat problematic to
introduce in the context of rapid development, it more than paid for the extra work in terms of
increased stability. The result was that the series of prototypes all were developed on schedule.

���&RQFOXVLRQ

Software systems must evolve and change because of changing user requirements and
external factors, such as emerging standards. This often leads to architectural uncertainties,
which must be identified and addressed. This paper reports our experience from two system
development projects that addressed architectural uncertainty, by constructing architectures
anticipating change.

The two presented architectural patterns were used to isolate and thus handle the
architectural uncertainties and both helped in the two projects being finished successfully and
on time. Generally, the two patterns are concerned with the coupling of user interfaces and
problem domain models of object-oriented applications. While no pattern can remedy the
impact of every change, they can provide some independence: The ‘Domain Model Concealer’
pattern can help in shielding from changes to the problem domain model, and the ‘Application
Moderator’ can decrease the implications of changes to the user interface. Thus, the
architectures documented in the patterns can increase the flexibility of the application and help
in handling certain kinds of architectural uncertainty.

���$FNQRZOHGJHPHQWV
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Abstract

With special focus on software architectural issues, we report from the first two major phases

of a software development project. Our experience suggests that explicit focus on software

architecture in these phases was an important key to success. More specifically: Demands for

stability, flexibility and proper work organisation in an initial prototyping phase of a project

are facilitated by having an explicit architecture. However, the architecture should also allow

for certain degrees of freedom for experimentation. Furthermore, in a following evolutionary

development phase, architectural redesign is necessary and should be firmly based on

experience gained from working within the prototype architecture. Finally, to get it right, the

architecture needs to be prototyped, or iterated upon, throughout evolutionary development

cycles. In this architectural prototyping process, we address the difficult issue of identifying

and evolving functional components in the architecture and point to an architectural strategy -

a set of architectures, their context and evolution - that was helpful in this respect.

1. Introduction
Iterative development processes that take an evolutionary and incremental approach to ap-

plication development are becoming standard in most object-oriented development processes.

However, the development of applications that use these iterative approaches, lead to many

new problems. Where the traditional waterfall processes provides an (assumed) precise and

definite description of what is to be built, there is no equivalent firm foundation on which to

base the initial development when using iterative processes. Furthermore, in doing iterative

development, as the development continues, new and/or changing requirements must be

addressed.

In the last couple of years the authors of this experience paper have been involved in a large

project, that used an iterative and evolutionary approach to development. The project involved

a group of university researchers and a global container shipping company and spanned a 14-

month development period. During this period, the university team initially went through a

number of iterations on a prototype of a global customer service system. When the prototype

was approved, the development continued in a number of development cycles in which the

prototype was extended both horizontally, to include all the important areas of business, and

vertically, to contain a more substantial functionality. The research group consisted of one

ethnographer, one cooperative designer, and six OO-developers. The roles of the different team

members may, somewhat simplistically, be described as follows: the ethnographer focused on

current practice within customer service and related areas, the cooperative designer focused on

the design of future practice and technological support together with users. The OO developers

marius
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developed the problem domain model and implemented the prototype.  For a more thorough

discussion of the process and its multi-perspective application development character see [7].

This paper focuses on the software engineering process, more specifically on software

architecture. In our experience an explicit focus on the software architecture of the system that

was being built, can be seen as one of the key explanations as to how we, technically, were

able to accomplish the task set out in this project. We will try to reflect on our concrete experi-

ence and present two central lessons:

An explicit architecture is essential; even in initial prototyping cycles. It is also important in

order to provide a well-defined structure in which, e.g., functionality, user-interface, and a

problem domain model can be created and recreated when evolving a prototype in response to

new requirements. It is important as it provides the necessary flexibility to experiment with

alternative solutions in areas that are not well understood and it can also facilitate parallel work

thereby allowing faster development.

It is rarely possible to design the final architecture of the system during the initial phase of

the development. We will, instead, argue that architectural evolution is necessary. This can be

due to changing requirements over time, due to increasing understanding of the problem

domain, and due to further understanding of the technical ways of realising the system. In this

way, not only the system itself but also the software architecture can be said to be prototyped.

2. Software Architecture
No definition of software architecture is commonly agreed upon [1], [5], [11], [21]. How-

ever, it is commonly agreed that software architecture is concerned with components of the

system and their interrelationships. We will, therefore, in our discussion of architecture, focus

on the significant software structures, and their components and relationships. As several

authors remind us, e.g. [15], [5], [1], a software architecture can be observed from several spe-

cific views or viewpoints, each revealing different aspects. Examples include the module view,

the process view, and the conceptual view. The module view describes what the important

modules and sub-modules are, and it is useful for e.g. assigning work and defining encapsula-

tion. The process view describes the running processes and their relation, and it is useful for

e.g. performance analysis, and analysis of multi-user aspects. The conceptual view describes

the major components in the architecture as perceived by the developers. This view is useful

for e.g. understanding the problem domain and the current system in relation to that.

Then, to describe the software

architecture of the system discussed

in this article a slight variation of the

notation described in [1] will be

used. Generally, solid lines denote

control and processing, whereas

dashed lines denote data. For our

purposes, we have added the symbol

“Emerging structure” to be able to

describe the process of architectural

creation and evolution.

2.1. Evolution and Architectural Refactoring

We make a clear distinction between the terms ‘refactoring’ and ‘architectural refactoring’.

Whereas refactoring is considered with semantic-preserving transformations of objects and

classes [19], architectural refactoring is considered with function-preserving transformations of

architectural structures. This means that a software system, after an architectural refactoring,

will compute the same functions with respect to some problem domain. Pushing it a little, the

Figure 1. Architecture notation
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reasons for using refactoring are concerned with code-technical transformations, whereas

architectural refactoring needs to be seen in a broader software engineering perspective: tech-

nical as well as social considerations must be taken into account in order to understand the rea-

sons for doing this.

Evolution, as opposed to architectural refactoring, is concerned with change in functions.

Evolution of functions presupposes both flexibility and stable structures. The flexibility pro-

vides the ability to change within the stable structure, while the stable structure at the same

time helps in achieving important non-functional requirements.

By using specific examples of the evolution and architectural refactorings that the deve-

loped system has undergone so far, this experience paper aims at explaining how a focus on

architectural issues may support an experimental and evolutionary development process, that,

although experimental and evolutionary, still aims at producing a sound system as seen from

the software engineering perspective. Moreover, a concrete architectural strategy to support

this process is pointed to.

3. The Development Process
The development of the initial prototypes and later the concrete evolutionary development

was done for a large, global shipping company. Our work on this development cannot be re-

garded as an isolated piece of work though: it was part of a larger project within the company

that concerned the development of a uniform and globally shared way of providing container

transportation. The entire project can be described in a number of streams as illustrated in Fi-

gure 2 below.
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Our work – referred to as the Dragon Project – is here seen as one stream (boldfaced), that

consists of two major development phases. The shipping company, in cooperation with

external consultants, carried out other streams of work. Examples of these include a global

Business Process Improvement (BPI) project and various types of foundation work regarding

network issues, migration issues, and overview of existing databases. These different streams

interacted and, of course, influenced each other. That is, the overall process of the Dragon

Project is something that should be seen as being related to and influenced by the other streams

of work, with the common goal of developing a global customer service system for the com-

pany.

3.1. The Dragon Project Process

The process within our project can be divided into two separate phases: An experimental

prototyping phase and an evolutionary development phase.

Experimental Prototyping. The first phase was primarily concerned with obtaining an

understanding of the problem domain that the system should support. To this end, a number of

software prototypes were constructed and evaluated in collaboration with the actual end-users.

Figure 2. The streams of work within the overall project

Experimental prototyping Evolutionary development



The rationale, that ought to be well known, is that building computer system from paper de-

scriptions alone, without any intermediate embodiments, is a problematic endeavour [13].

Concretely, and initially, in this project, a number of prototype versions were developed.

These should illustrate and support the implementation of the global improvements suggested

by the BPI stream. The concrete requirements resulting from the BPI stream were, however,

quite vague. The whole first phase of the project was therefore very much occupied by nar-

rowing down what a final system could be and by helping to determine the feasibility of the

actual development.

To clarify and following [9], we characterise our approach as experimental prototyping, as

our prototype versions were used to determine whether our ideas were adequate. This is only

one characteristic of the initial phase, though. Other characteristics include: An exploratory

style of prototyping (ibid.) to increase our limited understanding of the complex business of

shipping; an iterative approach with short development cycles (14 days on average between

reviews) to facilitate rapid development; a combination of horizontal and vertical prototyping

(ibid.) to achieve both depth and width; and, finally, in general, usage of a wide variety of

techniques from cooperative design [2], [12].

Evolutionary Development. The result after the first phase was that the company decided

to embark on the implementation of the final system, their decision being based on the

prototype. This lead to the initiation of the second phase of the Dragon Project. Compared to

the experimental prototyping phase, the character of the work in this phase naturally changed

focus towards the development of the production version of the final system. Apart from the

Dragon Project, the company, as mentioned previously, initiated different types of foundation

work.

In this setting, the role of the Dragon Project was twofold. On one hand, the prototype

served as specification
 

(in a broad sense, encompassing e.g. division into components, client-

side architecture and problem domain model, i.e., not a requirement specification) for the pro-

duction version, and on the other, it served as "the big picture" for demonstra-

tion/teaching/design purposes. This meant that, in the second phase, emphasis had switched

more towards elaborating the components/concerns previously identified, with particular focus

on the client-side of the coming system. We characterise this part of the process as the evolu-

tionary development phase. Naturally, the functional requirements were not all fully elaborated

after the experimental prototyping phase, so many of the same techniques and approaches were

applied in this phase. Nevertheless, a much clearer understanding of what the constituent parts

of the system should be and how they should interact had been obtained. This made way for a

more steady, evolutionary character of the work, with longer development cycles (reviews

about every two months) and room for necessary software architectural considerations.

Work within the Phases. Within each of the phases, our work was organised in a number

of development cycles that had a duration of approximately 14 days in the first phase and ap-

proximately two months in the second phase. Figure 3 below gives a schematic overview.

As the figure illustrates, a number of concerns were addressed within each cycle (i.e., be-

tween two reviews). The left side of the dashed vertical line shows the first phase, in which

focus was on producing functional, but not very elaborate, implementations of major concerns.

In the second phase, shown to the right, our focus shifted towards evolving and elaborating

these.

In each cycle and with each of these concerns, a mixture of analysis, design, and imple-

mentation was made depending on the current understanding and possible experiences from an

earlier cycle. This always involved continuous workshops with business representatives.

Furthermore, each concern would be addressed by several members of the development team

in parallel and seen from different perspectives, and several concerns were often treated con-

currently.



To “control” the development,

each cycle ended with a review,

during which the current work

was presented to some of the fu-

ture end-users and management

from the company. At these re-

views, possible problems with

the current solutions would be

brought forward and a plan for

what was to be done in the next

cycle would be made.

A much more in-depth discus-

sion of the development process,

and the lessons learnt from it,

can be found in [7].

3.2. Tools and Code

The concrete results achieved is a number of prototype versions that has evolved into a

rather large application consisting of over 300 files containing over 100,000 lines of code, and

having well over 50 screens. The development platform was Windows NT, and the main soft-

ware engineering tools used were: a CASE tool, a graphical user-interface builder, a code edi-

tor, a persistent store, a relational database (IBM DB2), and concurrent versioning system [8].

The first four tools are part of the Mjølner System [14], [6], [18] and the programming lan-

guage used was BETA [16].

3.3. Related processes

In many ways, Barry Boehm’s Spiral Software Development Model [3] resembles our pro-

cess. The spiral model is both iterative and evolutionary. It is also based on the notion of de-

velopment cycles, and these cycles also end with a review, in which plans for the next cycle

are made. Furthermore, Boehm thoroughly describes how “risk management” controls the pro-

cess. There is no explicit focus on software architecture in Boehm’s article, but through his

description of risk management, an indirect advice can be found: If the current architecture is

considered a risk or an uncertainty as each cycle is planned, it should be given priority on the

following cycle.

The Unified Software Development Process [10] describes a development process divided

into a number of overall phases of which the first two, Inception and Elaboration, to some ex-

tent, are similar to our Experimental Prototyping and Evolutionary Development phases. The

Inception phase is concerned with the definition of scope and should include a description of a

candidate architecture and demonstrate the proposed system via prototypes. The Elaboration

phase more thoroughly analyses the problem at hand and should result in an executable archi-

tecture baseline, a software architecture description, and an 80% complete domain analysis

model. The Unified Software Development Process is furthermore described as an architec-

ture-centric process, We agree with this focus on architecture. Among others, we believe that

our project provides empirical evidence on the importance of architectural focus and that a

combination of rapid prototyping and architectural focus is feasible.

Rapid, iterative prototyping is in the industry often manifested in the form of RAD (Rapid

Application Development). In RAD the development consists of a number of iterative deve-

lopment cycles, and there is also much focus on the use of prototypes. It seems though that

RAD assigns no special role to architecture. In the standardised RAD described by DSDM [22]

eight principles underlying RAD are described; none of these relate to software architecture.

Figure 3. The evolution of central concerns

Customers

Booking

Products

Schedules

Documentation

Inbound

Rerouting

Stuffing

Route Map

Quote

RDB integration

Multi-user

Allocation

Customization

4
th
 prototype

1
st
 prototype

user interface

3
rd

 prototype

2
nd

 prototype
functionality

Paper sketch

Time

Concerns

Review

Review

Review

Review

Review

Review

Review



4. Phase One: Experimental Prototyping
In section 3, it was described how the development was partitioned into two major phases.

In this section, the role played by our software architecture in the first phase is described. More

specifically, we look into the way, in which the concrete architecture provided a stable founda-

tion for the experimental prototyping, while, at the same time, it allowed for the necessary

room for experimentation. Furthermore, we describe the important criteria of having an effi-

cient work organisation.

4.1. Initiating Development

The development was scheduled to begin with a two-week cycle. There was no concrete,

specific goal of this first cycle, and we quickly became aware that our understanding of the

business of shipping was quite limited, so two strands of work were initiated within the first

cycle. One group worked on creating graphical user- interface screens, and another group

worked on creating an initial problem domain model. The two groups worked in parallel, and

there was little coordination between the groups. This was mainly a practical choice due to the

strict time constraints, but it also proved to be a sensible one: In this way, many and diverse

pieces of knowledge about the business domain were quickly gained.

4.2. Elements of an Architecture

At the end of the first cycle, two artefacts were delivered: A first design of the graphical

user-interface, comprising of a few screens, and a problem domain model covering a subset of

the problem domain (called ‘quoting’). The user-interface design was illustrated by means of a

horizontal prototype, i.e. a running application with virtually no functionality, except for func-

tioning user-interface controls. The problem domain model was presented as a UML class dia-

gram, and was, at this point in time, not a part of the running prototype. Nevertheless, it was

already more than just a diagram: by using a CASE tool, code had been generated and updated

incrementally, as elements were added to the model.

From an architectural/software-engineering point of view, we could, at this early point in

time, – only two weeks into the development – identify the first two architectural elements:

one component, consisting of the initial user-interface screens, and one component, consisting

of the problem domain model (see figure 4).

Retrospectively, we can ask ourselves

why these two components were chosen.

Much of the reason for this can be found in

the developers’ background. First of all,

the development team had a common

background in the Scandinavian approach

to object-oriented development. In this

approach, object-orientation is not seen as

just providing a pleasing technical envi-

ronment. It more importantly also pro-

vides a conceptual framework [16], [17] that underlies development. The creation of a problem

domain model therefore becomes an essential part of development, since the problem domain

model illustrates our understanding of the most important concepts in the problem domain.

Furthermore, part of the development team has a background in cooperative design [2],

[12]. As the essence of cooperative design is the creative involvement of the user in the design

of the computer system, the user-interface naturally becomes important. That lies in the simple

fact that most users are not concerned with the code and other technicalities; they are simply

Problem domain
model

UI 1 UI 2 UI 3

Figure 4. Elements of initial architecture



concerned with the way in which the system is operated, and how the system performs the

tasks they expect.

4.3. Designing an Architecture

The review after the two weeks concluded that the development was on the right track. To-

gether with suggestions for changes and next steps, it was decided that we should add function-

ality to what was covered so far and extend both the user-interface and the problem domain

model to cover another business domain – booking.

As an implication of the decision to start adding functionality, it was considered how the

existing parts (user-interface and problem domain model) could be combined. That is, the task

was to design a software architecture that could contain both the existing elements and the

functionality to be added. This architecture was outlined by two senior developers under con-

sideration of several factors:

• the architecture had to offer a fairly stable structure, in which the prototype could

evolve during the first phase,

• the structure had to be flexible enough to allow for a high degree of experimentation

within rapid development cycles, and

• it should support an efficient work organisation, allowing all developers to work inten-

sively on the prototype in parallel.

Figure 5 illustrates the initial architecture. The figure uses the notation introduced in the

architecture section and is drawn based on a “conceptual view”: The figure illustrates the con-

ceptual components – the major components as perceived by the developers – in the architec-

ture, and the data and control flow

between them.

The user-interface components

(UI) hold the basic user-interface

functionality. They are divided into

several components according to di-

visions found in the problem domain.

Between the Problem domain objects

(or just Domain objects) and the user-

interface components, the “Info

objects” are found. These act as an

interface between the Domain objects

and the user-interface components.

The Info objects are data structures

that “mirror” the data in the user in-

terface. Introducing this layer be-

tween the UI and the Domain objects

de-couples the direct dependence

between them. The Controller func-

tions and Model functions components shown in the middle also act as interfaces; the Con-

troller functions mediate between the user-interface components, the Info objects and the Busi-

ness functions, and the Model functions mediate between the Domain objects and the Info

objects. The business functions are the functions that are directly visible to the user; they im-

plement functionality in the problem domain.

Ideally the Info objects layer is used as follows: when a Business function is activated via

the UI (onEvent), the relevant content of the UI is mapped into the Info objects (getView). The

corresponding Domain objects may need to be updated (updateModel) and the relevant parts of

Figure 5. Initial architecture
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the Info objects are used in the Business function. After execution of the Business function the

Info objects are updated (presentModel) followed by an update of the UI (setView). An elabo-

rated discussion of this architecture can be found in [23].

The left and middle part of the architecture diagram shows the well-defined parts of the

architecture. Please recall that the user-interface and problem domain model units were con-

structed in the first cycle, and note that they remain elements in the new architecture (the user-

interface component is transferred directly, and the classes of the problem domain model are

instances in the ‘problem domain objects’ component).

The right part of the diagram, containing the business functions, is represented by the

“emerging structure” type. The intention is to express architectural uncertainty. Since the busi-

ness functions were unknown from the start, they could not be put in a well-defined box with

well-defined interfaces to the other components. We needed a space in the architecture where

we could experiment with the business functions in an unrestricted and flexible way. This

architectural uncertainty will be further discussed in the following section on flexibility.

A Stable Structure for Evolution. The desire for a stable structure, in which the prototype

can evolve, can be seen as a way of reducing the complexity of the system. By defining a de-

tailed structure within which the coding must be done, this complexity is reduced: E.g., defin-

ing the “communication protocol” between the user interface and the problem domain objects

via info objects gives a clear and simple way of doing this communication.

In this way, the architecture provides an overview of the quickly growing prototype and

constitutes a consensus about “how to do things”. Furthermore, it ensures a “uniformness” as

to how the functionality is implemented, and e.g. prevents developers pressured of time from

“quick-and-dirty” solutions, like implementing the functionality directly in the code for the

user interface.

Furthermore, the architecture serves as a vehicle for communication and explanation. This

was for example experienced when a new developer was introduced to the prototype late in the

experimental prototyping phase: as a result of the well-defined architecture, he obtained an

understanding of the relatively large prototype quite easily.

It should, however, be noted that the well-defined architecture illustrated in the diagram was

not achieved in full detail instantly after its definition. Although principal decisions about the

overall structure were made immediately, some smaller decisions were not made, that allowed

each developer room enough to find what he considered the best solution. As further under-

standing was achieved, these variations would be discussed and the developers would agree on

a shared solution. In this way as the prototype evolved, even some overall structural decisions

evolved.

Flexibility for Experimentation. Another criterion in the design of the architecture was

flexibility, as it should allow evolutionary development of and experimentation with all parts

of the prototype. This requirement is reflected in the large number of interfaces between the

components in the architecture. These interfaces provided independence between e.g. the user-

interface and the problem domain objects, that made it possible to experiment with each of

these components without affecting the other components.

When it comes to the business functions, it was impossible to define an independent com-

ponent that contained these, since the business functions were not well known. Furthermore,

since the business functions are bridging between the user interface and the problem domain

objects, they need to be able to access the user-interface (via the info objects) as well as the

domain objects. And from the starting point and until very late in the prototyping process, it is

not known exactly which part of the user-interface and which domain objects are involved.

Consequently, in order to allow for flexible experimentation with business functions, busi-

ness functions need to have easy access to all components: user-interface, controller functions,

info objects, model functions, and domain objects. The solution is an open architecture with



white-box components. Black-box components can not be introduced before the business func-

tions have been found and developed. To indicate that the architecture has room for flexible

experimentation with functionality, the business functions component is shown as an emerging

structure in the diagram. As explained above, the business functions were intentionally not

very structurally elaborated in the architecture in the prototyping phase. Instead the functions

emerged in the boundary of the controller functions in the event handlers of the user interface.

This structure was indeed very flexible but as will be described later, its use should be limited

to the prototyping phase.

Another issue that enabled experimentation was the fact that we did not have to spend much

time on handling storage in the prototyping phase. Making data persistent was an important

aspect to be dealt with even in early design and implementation of the prototype. The per-

sistence in the Mjølner system is orthogonal and transparent. This means that any object can be

stored and that given a persistent root all reachable objects will be made persistent trans-

parently. In this way, achieving persistence in the first versions of the prototype was straight-

forward. However, despite that, we did spend some time on storage: it was an explicit require-

ment in the first phase that the Dragon Project at some point should experiment with multi-user

functionality, and abstractions preparing for this were made at the beginning of phase one.

These abstrations, however, were not unproblematic. They were made prematurely, and in this

way, constrained the initial architecture unnecessarily.

Efficient work organisation. As mentioned previously, another important criteria for

designing the architecture was that is should facilitate an efficient work organisation. In our

context, it should support roughly the following work activities in phase one:

• creation of the user-interfaces by the cooperative designer,

• creation of programming interfaces (info objects and controller functions) to the user-

interface modules,

• programming of advanced graphical user-interface elements that could not be created

directly using the graphical user-interface builder,

• programming of functionality (business functions and model functions),

• programming of the problem domain model,

• programming of components simulating legacy systems.

These activities had to be performed concurrently in order not to slow down the develop-

ment. The architecture facilitated this. By making a strict and well-defined division of the user-

interface, the business functions, and the problem domain model, with interfaces, the depen-

dencies were reduced in a way such that problems were seldomly experienced. As an example,

the info objects interface prevented most changes in the user-interface from having an effect on

the domain objects and vice versa.

People had areas of responsibility according to major functional areas of the problem

domain. One developer was, for instance, responsible for the customer-related functionality,

another for the booking-related functionality and yet another for creating programming inter-

faces.

The user-interface was often used as a means of organising and/or coordinating activities

between the cooperative designer and the OO developers. The cooperative designer mostly

made the initial user-interface design in the graphical user-interface builder, and then in col-

laboration with the OO developers further elaborated it. Due to reverse engineering capabilities

of the graphical user-interface builder, it was possible for the cooperative designer to make

changes to the user-interface throughout the process, even after the generated code had been

changed by the other developers.

Finally, the problem domain model served as a constant common frame of reference be-

tween members of the development group and to some extent also between developers and



members of the business. It forms a separate entity of its own right in the prototype and it was

kept purely as a model of the problem domain isolated from implementation-specific classes.

Also, the model evolved and since diagrams were used for discussion purposes, the reverse

engineering capabilities of the CASE tool became important in the development process.

5. Phase Two: Evolutionary Development
We go beyond the discussion of architecture as a means of providing flexibility, stability,

and proper work assignments in the prototyping phase and discuss why and how the prototype

was used in the second phase of the project. In doing so, we will discuss the concrete archi-

tectural refactorings made, and the reasons for undertaking such restructurings.

5.1. The Transition to Evolutionary Development

After the first phase it was decided to extend the project for a year. This naturally changed

the scope and focus of development. Although the prototype should, preferably, be used for

continued experiments with business functionality, other areas of the system were to be ex-

plored and developed. These areas included multi-user functionality, database issues, and the

general identification and creation of “black-box” components and their topology. Thus, the

requirements of the architecture changed.

During the transition we evaluated whether the prototype, resulting from phase one, should

be transferred into the evolutionary development phase. We had several options, including: To

continue development of the prototype from the first phase; throw away the existing code, only

transferring functional requirements; or totally discard the results from the first phase. Given

that we were to use the same programming language and tools, that were used in the

prototyping phase; that the code and architecture produced generally was of reasonable quality;

and that the prototype had been well-received by the business, we decided to continue from the

results of the first phase. This was not without problems though.

The Problems. The initial architectures enabled us to focus on experimentation with

business functions. However, the prototype grew in size and complexity: From containing

some over 150 files with around 50,000 lines of code after the experimental prototyping phase,

the prototype evolved to contain over 300 files and around 100,000 lines of code at the end of

the Dragon Project. This growth introduced a number of problems that forced us to refactor the

prototype architecture. Two major classes of problems were:

The prototyping sessions and the reviews produced new requirements to the prototype that

“demanded” changes to the architecture, e.g. in order to be able to reuse code better,

Work within the existing architecture had shown annoyances, e.g., unclear separation of re-

sponsibilities and inconvenient dependencies between different parts of the prototype that

could be rectified with a new architecture.

An example of the first type of problem is that, in the initial architecture, it was difficult to

reuse business functionality. Until late in the first phase of the project, the required function-

ality was usually local to the corresponding part of the prototype: e.g., only the booking part

used the booking functionality. The problems became apparent, as a “compound” function was

needed that could perform a number of existing functions on a bulk of business objects. This

compound function did not bring about any changes to the problem domain model, but only

required reuse of a large part of the existing functionality located in different units. However,

the existing architecture did not provide the proper abstractions for the reuse (this actually

meant that the compound function initially, due to constraints of time, was implemented using

copy-n-paste reuse of the existing code).

An example of the second type of problem was that the turn-around time (edit/compile/run

cycles) in the initial architecture increased as the prototype grew bigger due to unpractical de-

pendencies between parts of the prototype: certain changes to the model, the controllers or the



business functions caused recompilation of large parts of the prototype. The main program

with the controllers and the business functions became a bottleneck, and as the prototype grew,

the recompilation time became a limiting factor in the rapid development process.

The most flexible part of the prototype – the emerging business function components – had

thus become problematic at this point. However, the identification of business functions en-

abled us to make clearer abstractions on the problem domain. In this way, the flexibility, in-

herent in the initial architectures, actually became a forcing as well as an enabling factor in the

change. In other words, the “white-box” components of the initial architecture allowed for a

high flexibility in the development process, but caused problems as the system grew. More-

over, the identification of business functions enabled the construction of “black-box” compo-

nents [20].

The exact timing of this architectural refactoring depended on a number of (social) factors:

in our specific set-

ting, the new scope

made it desirable to

have a new architec-

ture, and the “spare

time”, in between the

two phases, made it

practical to do the

restructuring at that

point in time. An-

other very important

fact was that it was

now possible to make

the actual changes

based on a greater

understanding of both

the problem domain

and the “solution

domain”. Of course, the economics played an important role too; it was expected that the re-

structuring would pay off in the long run.

The Problems Resolved. The experienced problems were solved with a new architecture,

depicted in figure 6.The major change was made in the role of the business functions. From fo-

cussing almost entirely on the business functions, the architectural focus changed so that is

now included the role of problem domain area components. More specifically, the goal was to

develop black-box components, corresponding to the major problem domain areas, and to look

into the division of work and responsibility between those components. In this way, it can be

said that initial architectural work in the evolutionary development phase focused on the com-

ponent topology.

Thus, the flexibility in the architecture at this point had to be mostly at the level of compo-

nent boundaries. This is illustrated in figure 6 by now using the Emerging structure at the

component level instead of at the Business functions level, because the architectural uncer-

tainty now is on the component level.

The flexibility allowed for concrete experiments with component topologies during the first

part of phase two, and led to a reasonable structuring of the software architecture.

As it turned out, this architectural refactoring did pay off in terms of faster turn-around time,

higher levels of abstraction, and the ability to identify “black-box” components. During a trip

to Asia, e.g., the power of this new architecture was experienced, as it was actually possible to

add major components to the system “on the fly”. In Singapore the system was modified ac-

Figure 6. New architecture
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cording to the discussions in prototyping sessions. To give an impression of the time frame: the

visit to Singapore took three days. On the first day the system was presented and discussed in a

number of sessions, with different representatives of the business and at different detail levels.

Based on these sessions a number of changes to the prototype were decided. The next day, two

developers made the changes in the prototype while the ethnographer and cooperative designer

continued their work with the business representatives. On the third day the new version of the

prototype was presented. This process was repeated in Malaysia. In this way two major com-

ponent objects were added: A “query overview” component object providing overview of data

related to major objects in the application domain and a “pending tray” component object sup-

porting many collaborative work processes within customer service in the company.

However, this architectural refactoring was not entirely unproblematic. The trade-offs to be

considered in such situations will be discussed in the next section.

5.2. Architectural Refactorings in Evolutionary Development

The success of the first architectural refactoring meant that explicit refactoring phases were

incorporated in the project plan after the first three hectic months of the project. In this way

each major review would also contain a review of architecture. Since the focus before a review

was mostly on getting the system to work according to the planned changes, and the length of

cycles was short (especially in the first phase of the project), we had to relax rules and conven-

tions in order to meet the deadlines, e.g., by employing copy-n-paste reuse of code. This could

then be rectified after a review; either by refactoring the architecture or refactoring code.

Please recall from section 2.1 that we distinguish between ‘refactoring’ and ‘architectural

refactoring’. In the Dragon Project refactorings could be done as a part of the ongoing develop-

ment: One person, typically the person who made some shortcuts in the code during the hectic

days before a review, did local refactorings. Architectural refactorings, that could be done

independently in isolated parts of the prototype, were delegated to all the developers and they

could do them when convenient.

The major architectural refactorings concerned the whole prototype, and hence development

could not go on as usual. This meant that the role of deciding if, when, and how an architec-

tural refactoring should be made had to be separated from ordinary development. Also, the

holder(s) of the architectural role had some time set aside for doing the restructuring without

doing ordinary development at the same time. In this way the major restructurings in reality

meant temporary interruptions of development. The restructuring usually took between a

couple of days and a week.

Not all changes were equally problematic. As the persistent store used provided for trans-

parent, orthogonal persistence it was a relatively straightforward process to retarget the data-

base component of the system.  This meant that after that transition a transparent, heteroge-

neous storage mechanism was available. In this way programming to relational databases and

persistent stores was possible at the same time. Also, initial identification of problem domain

components and their boundaries were relatively easy after the first phase because of the in-

creasing understanding of the major areas of business functionality during the first phase. Con-

ceptually the candidates for problem domain area components had gradually been formed

during the first phase. This architectural refactoring was, due to the use of a syntax directed

code editor with semantic browsing and abstract presentation possible within short time. The

abstract presentation provided overview and the fact that the editor was syntax directed made

syntactically valid transformations of implementation code possible. Semantic “adjustments”,

however, had to be done using the semantic browsing facilities of the editor. Furthermore the

transformation introduced a number of errors that called for renewed testing of the prototype.

The architectural refactorings were thus somewhat problematic seen in the context of rapid



system development: A tool for reverse and

forward engineering of the architecture or a

more direct incorporation of architectural

support in the tools used would be very

useful.

Several refactorings took place during

the evolutionary development phase mean-

ing that the architecture of the system as

delivered June 1998 can be depicted as in

figure 7. Components and their boundaries

have now stabilised in the sense that they

represent useful abstractions of the problem

and use domain. Notice that the Emergent

structure symbols have been substituted by

the well-defined architectural  component

symbols, because the architectural uncer-

tainty has been resolved.

6. Conclusions
Aspects of the changes in architecture that have occurred during the first two major phases

of the Dragon Project have been discussed. Figure 8 should convey two messages: Firstly,

architectural focus in an experimental prototyping phase should very much be placed on the

procurement of flexibility, stability and well-defined foundations for discovering functionality,

adding new user-interface screens, etc. Secondly, evolutionary development may either discard

or retain a successfully developed prototype. In either case, focus is much more placed on

architectural prototyping: discovering and experimenting with a proper component topology,

experimenting with legacy systems, distribution issues, etc. Still, both architectural and

functional insights, gained in an experimental prototyping phase, provide rich and important

input to the evolutionary development phase. Moreover, still being able to experiment with

user functionality is important for several reasons: Although a proof of concept, a first

prototype may not cover the whole scope of the final system in width; politically, organisations

may need a continually evolving prototype to ensure user buy-in, etc. Continued experiments

may also provide important

insights, that also have

architectural consequences.

Our project was characterised

by dealing with complex human

work practice, an unknown

problem domain, and the need for

rapid work, a context that we do

not believe to be unique for our

experience. Thus, we have

suggested an architectural

strategy - a set of architectures,

their context and evolution - that

supports experimental prototyping and evolutionary development in a context as ours. This

strategy focuses on stability and flexibility in design of a computer system. Stability must e.g.

provide for efficient parallel work in experimental prototyping and provide for efficient

prototyping of a final architecture during evolutionary development. Flexibility must e.g. pro-

vide for the experiments with business functions in experimental prototyping and for experi-

Figure 7. Architecture of June 1998
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ments with component topology during evolutionary development. The Emergent structure

symbol indicates where the experiments take place.

An inherent dilemma of experimental prototyping and evolutionary development lies in the

mixing of user involvement and software engineering. User involvement – and cooperative

design in particular – provides for efficient analysis and design of functions pertaining to a

problem domain. Object-orientation is then concerned with the implementation of emerging

ideas of future work practices. The dilemma lies in allowing for flexibility and experiments

with future work practice, while at the same time preserving the benefits of object-orientation

and traditional software engineering. We address just that: The reconciliation of experimental

development practice and software engineering practice goes through a strong focus on soft-

ware architecture throughout the entire development process.
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ABSTRACT
Modeling is important in object-oriented software develop-
ment. Although a number of Computer Aided Software
Engineering (CASE) tools are available, and even though
some are technically advanced, few developers use them.
This paper describes our attempt to examine the
requirements needed to provide tool support for the
development process, and describes and evaluates a tool,
Knight, which has been developed based on these
requirements. The tool is based on a direct, whiteboard-like
interaction achieved using gesture input on a large
electronic whiteboard. So far the evaluations have been
successful and the tool shows the potential of greatly
enhancing current support for object-oriented modeling.

KEYWORDS
Gesture input, electronic whiteboards, cooperative design,
object-oriented modeling, user study, CASE tools.

INTRODUCTION
Software developers use models to develop object-oriented
software. In the early stages of a software development
project, developers focus on understanding the part of the
world that the computer system should support. Throug-
hout the project, they represent their understanding in the
form of models. The models are not only used in order to
understand and discuss the world, but are also implemented
in code and thus form an important part of the final
software system.

A variety of Computer Aided Software Engineering
(CASE) tools have been created to support the developers’
work throughout the development process [12]. However,
in practice these tools are supplemented with whiteboards,
especially in creative phases of development.

The most appealing aspects of whiteboards are their ease of
use and their flexibility. Whiteboards require no special
skills, they do not hamper the creativity of the user, and
they can be used for a variety of tasks. Their many

advantages aside, for most development projects white-
boards are not enough. Capturing diagrams electronically
with CASE tools facilitates code generation, documen-
tation, and allows developers much more flexibility in
editing and changing the diagrams. The conflicting advan-
tages and disadvantages of whiteboards and CASE tools
can lead to frustrating and time consuming switches
between the two technologies. Our goal is to design a tool
that offers the best of both worlds.

Paper Structure
The next section presents the motivation for our design. We
then discuss two user studies from which we derive a set of
design implications. We describe the Knight tool we
developed based on these observations, and present an
evaluation of the tool. Finally, we discuss directions for
future research and draw our conclusions.

BACKGROUND
Use of whiteboards has been studied in various contexts
including meeting rooms [9][15], classrooms [1], and
personal offices [17]. Whiteboards are very simple to use
and many activities are ideally suited for this simple inter-
action. Computational augmentation [24] can potentially
solve problems with whiteboards such as lack of space and
efficient editing facilities. We are concerned with the use of
whiteboards in a specific work practice, cooperative object-
oriented modeling, and the potential use of augmentation
in that setting.

CASE tools seek to support software development
techniques such as diagramming, code generation, and
documentation. Nevertheless, adoption of CASE tools in
organizations is slow and partial [5][8]. A main reason is
that current CASE tools are targeted at technically-oriented
methods rather than user-oriented processes. In particular,
CASE tools are weak in supporting creativity, idea
generation, and problem solving [7].

The 7LYROL system [20][16] inspired us and was a starting
point for our work. It is designed to support small, informal
meetings on an electronic whiteboard. The similarity of
user interaction to that on ordinary whiteboards is stressed.
In order to be able to support specific meeting practices,
Tivoli introduced domain objects that allow customizations
of the tool to support, e.g., brainstorming sessions and
decision-making meetings. We focus on the creation and

marius
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manipulation of a certain kind of domain objects and the
integration of these into a computational environment.

OBSERVING DESIGN IN PRACTICE
We conducted two field studies of software developers
using CASE tools and whiteboards in order to understand
the current practice of object-oriented modeling. In both
studies, we observed a group of developers with mixed
competencies and then interviewed them. The developers
used the Unified Modeling Language (UML [22]), which is
a formal graphical notation containing several different
diagram types. We concentrate on UML class diagrams,
which are used to model central concepts and relationships
found in the real world (or an imagined world).

Each study focused on three aspects of the design activity:
FRRSHUDWLRQ�� DFWLRQ�� and� XVH�� � &RRSHUDWLRQ includes the
communicative, coordinative, and collaborative aspects of
design. $FWLRQ�and XVH are akin to the categories Bly et al.
used in their observations of shared drawings [3]. $FWLRQ
involves the physical interaction of the designers with
tools. 8VH involves the semantics of the result of actions.

User Study 1: Building a New System
5HVHDUFK�VHWWLQJ� COT [29] is a technology transfer project
between Danish universities and private companies. As
part of COT, a university research group and developers
from a private company cooperatively designed an object-
oriented control system for a flow meter.

3DUWLFLSDQWV� The developers from the private company had
no previous knowledge of object-oriented development,
whereas the university research group consisted of
experienced object-oriented developers. The developers
from the private company acted as domain experts in initial
phases of development, while the university researchers
were object-oriented software designers and, to some
extent, mentors for the developers from the private
company. During the two-week period in which the project
was studied, the number of people attending design
meetings varied. Typical sessions involved 2-4 developers
from the private company and 2-4 university people.

3URFHGXUH� The sessions took place in meeting rooms
equipped with multiple ordinary whiteboards, an overhead
projector, and a computer. We observed three sessions in
detail. In each of these an observer took notes.

Observation 1: Alternating Between Tools
7RP��0LNH�DQG�3HWHU��DUH�DERXW� WR�GLVFXVV�D�QHZ�DUHD�RI
WKH�SUREOHP�GRPDLQ��7R�EUDLQVWRUP�DQ�LQLWLDO�GHVLJQ��7RP
DQG�0LNH�GUDZ�LQLWLDO�PRGHOV�RQ�D�ZKLWHERDUG��-XVW�EHIRUH
OXQFK�WKH\�UXQ�RXW�RI�ZKLWHERDUG�VSDFH�DQG�3HWHU�FDSWXUHV
WKH�ZRUN� VR� IDU� XVLQJ� D� GLJLWDO� FDPHUD�� $IWHU� OXQFK� 7RP
DQG� 0LNH� FRQWLQXH� RQ� D� IUHVKO\�ZLSHG� ZKLWHERDUG�� ZKLOH

                                                       
1 The names of participating designers have been changed

throughout this paper.

3HWHU�UHGUDZV�WKH�GLDJUDPV�IURP�EHIRUH� OXQFK� LQ�D�&$6(
WRRO�XVLQJ�WKH�SKRWRV�DV�D�UHIHUHQFH�

Developers alternated between whiteboards and CASE
tools. A typical work sequence involved sketching a model
and then transferring it to a CASE tool, which could then
use the formal model to generate code.

7KH� QH[W� PRUQLQJ��0LNH� XVHV� WKH� &$6(� WRRO� WR� JHQHUDWH
GLDJUDPV� IURP� H[LVWLQJ� FRGH�� 7KHVH� LOOXVWUDWH� GHWDLOV� KH
DQG�7RP�GLVFXVVHG�WKH�SUHYLRXV�GD\��0LNH�SODFHV�SULQWRXWV
RI� WKH�GLDJUDPV�RQ�WKH�RYHUKHDG�SURMHFWRU��)LJXUH����DQG
7RP�XVHV�ZKLWHERDUG�PDUNHUV�WR�PDNH�DPHQGPHQWV�

Work on an area of the problem domain involved several
cycles of drawing and redrawing both on whiteboards and
in CASE tools.

Figure 1. Using transparencies on a whiteboard

Observation 2: Working with a Formal Notation
7RP�H[SODLQV�KRZ�D�IORZ�PHWHU�ZRUNV�FRQFHSWXDOO\��$V�KH
H[SODLQV�� KH� WULHV� WR� PRGHO� WKLV� XVLQJ� D� 80/� GLDJUDP
FRQWDLQLQJ� FODVVHV� DQG� UHODWLRQVKLSV�� +H� VWRSV� VHYHUDO
WLPHV� LQ� RUGHU� WR� DVN�0LNH� DQG� 3HWHU� KRZ� WR� GUDZ�80/
HOHPHQWV�FRUUHFWO\��0RUHRYHU��WR�XQGHUVWDQG�WKH�VHPDQWLFV
RI�WKH�GUDZLQJV��0LNH�DQG�3HWHU�RIWHQ�LQWHUUXSW�7RP�

The formal UML notation was hard to learn for the in-
experienced developers. These syntactic problems caused a
number of interruptions and breakdowns during modeling.

3HWHU� DQG� 7RP� DUH� PRGHOLQJ� KRZ� D� QXPEHU� RI� REMHFWV
LQWHUDFW�ZLWK�HDFK�RWKHU� LQ� WKH�V\VWHP��7KH\�ZDQW� WR� VKRZ
KRZ� WKHVH� DUH� V\QFKURQL]HG�� +RZHYHU�� WKH� 80/� LV� LQ�
FDSDEOH�RI�GHVFULELQJ� WKHVH�DVSHFWV��0LNH� VXJJHVWV�D� QHZ
QRWDWLRQDO�HOHPHQW�IRU�WKLV��3HWHU�DQG�7RP�SLFN�WKLV�XS�DQG
XVH�LW�LQ�VXEVHTXHQW�GHVLJQ�SUREOHPV�

The semantics of the notation was extended in order to
make it support the work process and to add expressive



power. In this way, the developers effectively extended the
UML notation on the fly.

Observation 3: Combining Informal and Formal Drawings
7RP�VNHWFKHV� WKH�SK\VLFDO�DSSHDUDQFH�RI�D� IORZ�PHWHU�RQ
WKH� ZKLWHERDUG�� +H� XVHV� WKLV� GUDZLQJ� ZKLOH� H[SODLQLQJ� D
GLDJUDP�RI� WKH� IORZ�PHWHU¶V� HOHFWULFDO� FLUFXLWV�� )ROORZLQJ
WKLV��0DUN�PRGHOV�WKH�LQWHUIDFH�WR�WKH�FLUFXLWV��+H�FRQQHFWV
WKH�HOHPHQWV�WR�7RP¶V�VNHWFKHV�

The domain experts used illustrations, in connection with
diagram elements, to explain important problem domain
concepts. New ideas were often sketched informally, just
before the introduction of UML notation.

3HWHU� SKRWRJUDSKV� WKH� VNHWFKHV� RI� WKH� FLUFXLWV� DQG� IORZ
PHWHU�EHIRUH�KH�FRQWLQXHV�WR�HODERUDWH�RQ�0DUN¶V�GLDJUDP�
/DWHU��KH�UHDOL]HV�WKDW�KH�QHHGV�WKH�VNHWFKHV�DV�D�UHPLQGHU�
+H� FRQVXOWV� WKH� GLJLWDO� SKRWR� DQG� UHGUDZV� D� SDUW� RI� WKH
FLUFXLWV�EHIRUH�KH�FRQWLQXHV�PRGHOLQJ�

The informal drawings were temporary and were usually
erased after the corresponding formal diagram was drawn.
Central drawings were, however, redrawn on paper or
photographed to make them persistent.

User Study 2: Restructuring an Existing System
5HVHDUFK� VHWWLQJV� Mjølner Informatics [30] is a small
company that makes compilers and other software
development tools for the object-oriented language BETA

[13]. A design meeting was held to design a new tool that
integrated several separately-developed tools.

3DUWLFLSDQWV� Six developers attended the meeting. They
had varying experience in object-orientation and varying
knowledge of the separate tools. Four of the developers had
been previously responsible for a separate tool each. The
last two developers had limited knowledge of the tools.

3URFHGXUH� We videotaped the ongoing discussion. In
addition, we took notes with special emphasis on what was
drawn on the blackboard.

Observation 1: Filtering of UML Drawings
-RKQ� DQG�0LFKDHO� KDYH� HDFK� GUDZQ� D� PRGHO� RI� WKH� WRRO
WKH\�KDYH�GHYHORSHG��7KH\�QRZ� IRFXV�RQ�KRZ� WR� LQWHJUDWH
WKH�WZR�WRROV��0LFKDHO�HUDVHV�WKH�SDUWV�RI�WKH�WRROV�WKDW�DUH
LUUHOHYDQW� IRU� WKH� LQWHJUDWLRQ�� +H� JURXSV� VHYHUDO
DVVRFLDWLRQV�LQWR�RQH�LQ�RUGHU�WR�VKRZ�D�UHODWLRQVKLS�HYHQ
WKRXJK�KH�KDV�HUDVHG�WKH�LQWHUPHGLDWH�FODVVHV�

Often, the developers filtered information to handle large
models (Figure 2). The developers idealized the model
when it improved the understandability, reduced the
interfaces of classes whenever full classes were too detailed,
and kept transitive relations between classes to a minimum.

Observation 2: Editing Diagrams
(ULF� GUDZV� D� PRGHO� RI� D� WRRO�� 7R� H[SODLQ� WKLV�� KH� DGGV
GHWDLOV�WR�WKH�FODVVHV�-RKQ�DQG�0LFKDHO�KDYH�GUDZQ��$IWHU
D�ZKLOH� WKLV�FOXWWHUV� WKH�GLDJUDP��(ULF� HUDVHV� VRPH�RI� WKH

H[WHQGHG�FODVVHV�DQG�UHGUDZV�WKHP�IXUWKHU�DSDUW��)RU�PRVW
RI�WKH�³PRYHG´�FODVVHV�KH�RQO\�UHGUDZV�WKH�ER[�DQG�QDPH�

Participants frequently changed the diagrams. Such
changes were time-consuming and annoyed the developers.

Figure 2. Blackboard snapshot

Observation 3: Drawing Informal and Incomplete elements
-RKQ�DQG�(ULF� DUH�PRGHOLQJ� D� SDUW� RI� WKH� LQWHJUDWLRQ�� ,Q
RUGHU�WR�VKRZ�WKH�ODFN�RI�NQRZOHGJH�RI�WKLV�DUHD��WKH\�RQO\
GUDZ� D� SDUWLDO� GLDJUDP�� 6HYHUDO� WLPHV� WKH\� GUDZ
UHODWLRQVKLSV�WKDW�DUH�RQO\�FRQQHFWHG�WR�RQH�FODVV�

Approximately 25% of the meeting was spent on actual
drawing on the blackboard. Of this, about 80% was spent
drawing formal UML diagrams, and the remaining 20% on
informal and incomplete drawings (or about 5% of the total
meeting time). UML elements were drawn in incomplete
variants, such as classes without names, incomplete inheri-
tance trees, or associations connected to only one class.

Observation 4: Cooperation Between Developers
-RKQ� VWDUWV� WR�GUDZ�D�PRGHO�RI�D� WRRO�RQ� WKH� EODFNERDUG�
7KH� RWKHU� GHYHORSHUV� VLW� DW� D� WDEOH� DQG� DVN� TXHVWLRQV�
)ROORZLQJ� WKLV�� (ULF� VWDUWV� WR� GUDZ� WKH� WRRO� WKDW� KH� KDV
GHYHORSHG�� 6RRQ� KH� GLVFRYHUV� UHODWLRQV� EHWZHHQ� WKH� WZR
WRROV� DQG� DVNV� -RKQ� WR� HODERUDWH� RQ� KLV� GUDZLQJ�� $IWHU
-RKQ�ILQLVKHV��(ULF�FRQWLQXHV�RQ�KLV�GUDZLQJ�

Figure 3. Turn-taking at the blackboard



The developers frequently cooperated by taking turns at the
blackboard. Figure 3 shows two developers standing at the
blackboard, taking turns adding, deleting or changing the
model. Abrupt interruptions were rare and only one
developer drew on the model at any time. However, other
discussion often took place while another person was
drawing.

Design Implications
The two user studies highlighted the effectiveness of
ordinary whiteboards as tools for cooperative design. They
support a direct interaction that is easy to understand, and
they never force the developer to focus on the interaction
itself. Whiteboards allow several developers to work simul-
taneously and thus facilitate cooperation. They do not
require a special notation and thus support both formal and
informal drawings. Notational conventions can easily be
changed and extended.

Whiteboards, however, miss several desirable features of
CASE tools. Without the computational power of CASE
tools, making changes to the drawings is laborious, the
fixed space provided by the board is too limited, and there
is no distinction between formal and informal elements.
There is also no support for saving and loading drawings.

These observations led to the following design criteria for a
tool to support object-oriented modeling:

• 3URYLGH�D�GLUHFW�DQG�IOXLG�LQWHUDFWLRQ� A low threshold
of initial use is needed and the tool should never force
the developer to focus on the interaction itself. The
whiteboard style of interaction is ideally suited for this.

• 6XSSRUW�FRRSHUDWLYH�ZRUN. Several developers must be
able to work with the tool cooperatively. Informal
cooperative work with domain experts as well as
software developers must be supported.

• ,QWHJUDWH� IRUPDO�� LQIRUPDO�� DQG� LQFRPSOHWH� HOHPHQWV�
Besides support for formal UML elements, there must
be support for incomplete UML elements and informal
freehand elements. Also, the support for formal UML
elements must be extensible, to allow for the
introduction of new formal elements.

• ,QWHJUDWH� ZLWK� GHYHORSPHQW� HQYLURQPHQW. Integration
with traditional CASE and other tools is needed.
Diagrams must be saved and restored, and code must
be generated and reverse engineered.

• 6XSSRUW�ODUJH�PRGHOV� A large workspace is needed. In
addition, there must be support for filtering out
information that is not needed at a given time.

DESIGN OF THE KNIGHT TOOL
Based on the user studies, we have designed and imple-
mented the�.QLJKW�tool. The Knight tool uses an electronic
whiteboard, currently a SMART Board [26], as its input
medium. The SMART Board is a 72-inch touch-sensitive
computer screen mounted in a cabinet to resemble a

traditional whiteboard. Users can draw on the surface using
a number of pens (or just using their fingers). In contrast to
other electronic whiteboards, such as, e.g., the Xerox
Liveboard [20], the SMART Board unfortunately only
allows input from one pen at a time.

The prototype is implemented in Tcl/Tk [19] with the [incr
Tcl] extension [14], runs on the Windows and Unix
platforms and is available for download from the Knight
homepage [25]. We kept the interface very simple (Figure
4). A large workspace, resembling an ordinary whiteboard,
is the central part of the user interface. The interaction is
based on pen-strokes made directly on the workspace.

Figure 4. Knight user interface

Formality, Informality, and Directness
We wanted the tool to support a continuum of drawing
formality, ranging from informal sketching elements over
incomplete UML elements to formal UML elements. To
allow this, the tool currently operates in one of two modes:
Freehand mode or UML mode. We recognize that the use
of modes is potentially problematic. However, our studies
indicate that users already naturally operate in these two
different modes, in different phases of the design. Freehand
mode supports idea generation and UML mode supports
design formulation. Two different background colors
indicate the different modes.

In freehand mode, the pen strokes are not interpreted.
Instead, they are simply transferred directly to the drawing
surface. This allows the users to make arbitrary sketches
and annotations just as on an ordinary whiteboard. Unlike
on whiteboards, these can be moved around or hidden.
Each freehand session creates a connected drawing element
that can be manipulated as a single whole.

In UML mode, pen strokes are interpreted as gestural
commands that create UML elements. If, e.g., a user draws
a box, the tool will immediately interpret this as the gesture
for a UML class and replace the pen stroke by a UML class
symbol (Figure 5).

Figure 5. Recognition of the gesture for a UML class

Before
recognition

After
recognition



The diagrams need not adhere to the UML semantics
completely, in that incomplete diagram elements are
allowed. Figure 6 shows how the user can input a
relationship between two classes with only one of the two
classes specified. The relationship can later be fully
specified.

Figure 6. A relationship with only one class specified

The gestures for creating UML elements have been chosen
so as to resemble what developers draw on ordinary
whiteboards. This makes the gestures direct and easy to
learn.

Another set of short directional gesture strokes chooses
operations from a number of marking menus [10]
illustrated in Figure 7.

                
Figure 7. Context-dependent pie menus

For example, in order to undo or redo, the user may either
make a short left or right stroke, or press and hold the pen
and choose the corresponding field in a popup pie menu.
The marking menus are also used to switch between UML
and freehand mode. Marking menus support the interaction
on a large surface well, because they are always ready at
hand, unlike usual buttons and menus [20]. Apart from
supporting a transition from initial to expert use, the
marking menus also conveniently provide an alternative
way of creating certain diagram elements (Figure 7 right).
The marking menus are context-dependent. Depending on
the immediate context in which a stroke or press was made,
it will be determined whether it should be interpreted as a
gesture command or as a marking menu shortcut. In the
latter case a context-specific menu will be shown.

Use of Gestures
We use Rubine’s algorithm [21] to recognize the gestures.
This algorithm has the advantage of being relatively easy to
train: To add a new gesture command, one simply draws a
number of gesture examples. Potential problems with the
algorithm, and gesture recognition in general, include that
only a limited number of gestures can be recognized and
that no feedback is given while gestures are drawn. To
address these problems, we use FRPSRXQG� JHVWXUHV [11]
and HDJHU�UHFRJQLWLRQ�[21], respectively.

Compound gestures combine gestures that are either close
in time or space to a diagram element. For example, a user
can change an association relationship (represented by an
undecorated line) to a unidirectional association
(represented by a line with an arrowhead) by drawing an
arrowhead at the appropriate end. In this way, users can
gradually build up a diagram, refining it step-by-step.

With eager recognition, the tool continuously tries to
classify gestures as they are being drawn. Whenever the
gesture can be classified with a high confidence, feedback
is given to show that the gesture was recognized, and the
rest of the gesture is used as parameters to the recognized
gesture’s command. For example, when a move gesture is
recognized, the elements located at the starting point of the
gesture will follow the pen while it is pressed down.

Support for Large Models
The workspace is potentially infinite, allowing users to
draw very large models. It also supports zooming, as in
zoomable interfaces [2]. In order to provide overview and
context awareness, one or more floating “radar” windows
can be opened (Figure 8; see also Figure 4 upper right).

Figure 8. Radar windows provide context awareness

These radar windows show the whole drawing workspace,
with a small rectangle indicating the part currently visible.
Clicking and dragging the rectangle pans while dragging
the handles of the rectangle zooms. By opening more radar
windows, multiple users can have convenient access to pan
and zoom, even though the physical drawing space is large.

Filtering is in a preliminary stage. Currently, it is possible
to suppress details of the formal UML model and toggle the
visibility of informal elements.

Tool Integration
The Knight tool must be integrated with existing CASE
tools, to facilitate code generation from the models.
Although the Knight tool is currently only able to exchange
data with the WithClass CASE tool [27], we are currently
working on making it a plug-in front-end to a variety of
tools. In this way it is possible to use the CASE tool
capabilities to create or edit models outside a cooperative
modeling situation.

EVALUATION OF THE KNIGHT TOOL
We evaluated the current design of the Knight tool in two
sessions. Both sessions were actual design sessions in
which Knight was the primary tool. The purpose was to
evaluate the usability of the tool in a realistic work setting.

Before
recognition

After
recognition



First, a facilitator introduced the Knight tool to the
participating designers and taught them the basic use of the
tool. During the evaluation, he also helped if the designers
had problems and asked for help.

We videotaped the sessions and took notes. As in our user
studies, we focused on three aspects of design: cooperation,
action, and use. Following the design sessions, we
conducted qualitative interviews.

Both sessions were encouraging. Each lasted approximately
one and a half hours, and the participants were able to
maintain focus on their job, rather than on the tool or the
evaluation.

Next we discuss the results of the evaluations with respect
to the design criteria identified and summarized in “Design
Implications” above.

Evaluation 1: Designing a New System Using Knight
5HVHDUFK� VHWWLQJ� The CPN2000 project [6][31] is
concerned with developing and experimenting with new
interaction techniques for a Petri Net editor with a complex
graphical user interface. The original user interface is a
traditional window-icon-menu-pointer interface, whereas
the new interface will use interaction styles such as tool-
glasses, marking menus, and gestures. As part of the
design, three object-oriented models for the handling of
events and for the implementation of certain interface
elements had been constructed. We observed the meeting in
which these three models were integrated into one model
using the Knight tool.

3DUWLFLSDQWV� Three designers participated in the meeting.
One of these had modeled the event handling and was
knowledgeable of UML and traditional CASE tools. The
other two modeled the interaction styles and had little
knowledge of UML.

Results
The resulting diagram is shown in Figure 9. This rather
large model was constructed with few problems and
mishaps.

3URYLVLRQ�IRU�D�GLUHFW�DQG�IOXLG�LQWHUDFWLRQ. After the short
introduction, the participants were able to use the tool for
long periods without help: the tool had a low threshold for
initial use.

The use of gestures was mostly unproblematic. However,
some participants had trouble drawing certain gestures.
This may be due in part to too little training, but the
gesture set can also be improved. For example, people draw
differently with respect to size, orientation, and speed, and
the gesture examples used to train the recognizer must
encompass such variations.

6XSSRUW� IRU� FRRSHUDWLYH� ZRUN. The electronic whiteboard
worked well as a center of cooperation. The only problem
participants  reported  was  that  only  one  person  could  draw

Figure 9. Diagram produced in the first session
(with a blow-up of the upper right part)

at a time. Nevertheless, each developer was able to hold his
or her own pen, and they all coordinated their actions when
necessary.

,QWHJUDWLRQ� RI� IRUPDO�� LQIRUPDO� DQG� LQFRPSOHWH� HOHPHQWV.
Freehand drawings were widely used and appreciated. The
low resolution of the actual electronic whiteboard meant
that the freehand drawings were relatively coarse-grained.
In addition, response from the electronic whiteboards was
delayed when a user drew quickly. This meant that
freehand text was hard to do both legibly and quickly.

6XSSRUW� IRU� ODUJH�PRGHOV. As the size of the model grew,
the radar window was used to pan and zoom efficiently.
However, the fact that the radar window was the only way
to move around the workspace was problematic. In order to
move a class from one corner of the large diagram to
another, one participant had to move, pan, and then move
again. This suggests the need for some other means of
scrolling.

Evaluation 2: Restructuring a System Using Knight
5HVHDUFK�VHWWLQJ� The DESARTE project [32] is concerned
with designing an electronic support environment for
architects. As part of this environment, a 3D replacement
of the workstation desktop is implemented. A conceptual
model had previously been designed and was to be
restructured during this meeting using the Knight tool.

3DUWLFLSDQWV� Two designers attended the meeting: The
designer responsible for implementing the 3D desktop and
a user involvement expert with an understanding of
architectural work practice. Both had a good knowledge of
object-oriented modeling.



Results
The second session showed a few more breakdowns and
problems than evaluation 1. The developers were never-
theless able to complete the session and their work.

3URYLVLRQ� IRU�D�GLUHFW�DQG� IOXLG� LQWHUDFWLRQ. After a short
time, the participants were able to use the tool without
many problems. When an error did occur, such as the
system interpreting a gesture differently than expected, the
participants sometimes got confused about what was
happening: The feedback of the tool was not sufficient in
the event of misinterpretations.

One of the participants initially had many problems
operating the marking menu: Often he invoked commands
by accident when drawing.  This was partly due the fact
that he had no previous knowledge of gestural input and
marking menus.

6XSSRUW�IRU�FRRSHUDWLYH�ZRUN. The two participants had no
trouble cooperating around the tool.

,QWHJUDWLRQ�RI� IRUPDO�� LQIRUPDO�� DQG� LQFRPSOHWH� HOHPHQWV.
The participants often made freehand drawings to illustrate
the user interface of the designed environment. A minor
problem in this case, was that that informal and formal
elements could only be rudimentary connected, and there
was little support for advanced grouping. Incomplete UML
elements were considered useful, but were not widely used.

6XSSRUW�IRU�ODUJH�PRGHOV. In this evaluation, the focus was
on restructuring an existing diagram of moderate size, and
the radar window was mostly used for zooming.

DESIGN IMPLICATIONS & FUTURE WORK
The observations and subsequent interviews showed that
the Knight tool is a valuable tool for modeling in practice.
However, as the above results point out, improvements are
needed.

A number of physical problems with the actual electronic
whiteboard hindered cooperation. Only one person at a
time could draw on the whiteboard and informal drawing
was only slowly rendered. The latter problem may be
handled in part by the Knight tool, whereas the former is
intrinsic to the specific electronic whiteboard. However, the
lack of support for synchronous drawings was not
construed as a major problem in the two evaluations. Since
design processes are becoming increasingly distributed, we
are currently investigating distributed cooperative design
using the Knight tool. Integration with a mediaspace [4]
may provide a non-intrusive way of supporting distributed
communication in relation to this.

Problems with gestures caused a number of breakdowns.
Several possibilities exist for alleviating this. First, more
appropriate feedback can be given when a gesture has been
drawn. Second, personalized gestures may be necessary,
e.g., in the form of a SHUVRQDO�SHQ, as in Tivoli [20]��For

each personal pen there could be a separate gesture set, a
separate mode, separate colors, or other personal settings.

The integration of formal, informal, and incomplete
elements is not complete. It is not, e.g., possible to connect
formal and informal elements. A dynamic extension of the
formal notation is a step towards this integration. The
environment, with gesture recognition based on examples
and an interpreted programming environment, makes such
extensions technically feasible. )ODWODQG [18] defines non-
overlapping VHJPHQWV with different behaviors. Such
segments may be used to group formal and informal
elements separately. A notion of overlapping groups may
be used to link these different segments.

Many of our observations of object-oriented modeling seem
to be true for other types of formal modeling such as task
modeling. A natural step would be to implement support
for these as well, especially if combined with the idea of
overlapping groups. This would facilitate combination of
informal elements with formal elements, as well as
handling types of formal elements together.

Filtering should also be considered in depth. Especially in
evaluation 1, after the diagram had reached a certain size,
navigation in the workspace became time-consuming. It
should be possible to selectively hide parts of a model and
give drawing elements temporality so elements may exist
only for a certain period of time.

An important future area of research is the use of the
Knight tool as a plug-in interface for different tools, which
we are currently working on. This will involve longitudinal
studies of the use of the Knight tool in development
projects.

CONCLUSION
We have developed a tool for object-oriented development:
Knight. The design of the tool is based on user studies of
software developers creating object-oriented models. These
show that important design criteria for a usable tool are (1)
a direct and fluid interaction, (2) support for collaborative
work, (3) an integration of both formal and informal
drawing elements, (4) support for modeling in the large
and (5) integration with existing development tools.

The Knight tool was designed to meet these criteria by
using a large electronic whiteboard as input medium and by
using an interaction style similar to that of traditional
whiteboards. Input is done using gestures that resemble
what is drawn on whiteboards. Both formal and more
informal elements are supported and several developers can
easily cooperate at the electronic whiteboard. Knight thus
maintains the advantages of whiteboards and additionally
adds features only possible in a computer based tool:
Models can be easily modified, diagrams can be exported
and imported to and from CASE tools, elements can be
hidden and later restored, and a much larger workspace is
provided.
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A skilled craftsman at work uses a variety of tools, each one tailored to the concrete work
situation, and he effortlessly changes between these with quick alternations. Software
developers, on the other hand, often find themselves constrained to few tools, as tools in
general do not integrate well. These tools are often closed with respect to extension, and they
often use idiosyncratic file formats and interfaces making the shifting between tools hard.

4�� tool will never be appropriate for ����� activity in software development. Thus,
integration of tools is important. In this paper we report our experience with the integration of
two commercially available CASE tools with a tool, 1�����, that supports collaborative object-
oriented modelling. The integration highlights concrete experiences with two current
integration strategies: using a standardised interchange format in the form of XML Metadata
Interchange (XMI, [24]) and using component technology in the form of Microsoft COM [19].
Our experiences with integrating CASE tools with different, although overlapping, data
models also apply to other kinds of tools, and the discussions in this paper will thus cover
general aspects of tool integration.

The rest of this paper is structured as follows: section 2 discusses tool integration in general
and related work. Section 3 gives a brief overview of the Knight tool, i.e., its use,
implementation, and software architecture. Section 4 describes and discusses our two
experiments with tool integration and proposes an architecture for integration. Finally, section
5 concludes.

������������	
�����

Integration may be viewed on an architectural level, i.e., as cooperation between high-level
components interacting via high-level connectors. A distinction can be made between ����	and

marius
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��
�������	components, with processing components operating on the data components. The
data in the data components may either be shared by several processing components or be
separate. In either case, the processing components need to communicate in order to cooperate.
If they are running simultaneously, they may do this by changing the shared data concurrently
or by communicating changes to the replicated data. If they are running asynchronously they
typically cooperate by changing the shared data, or communicating their changes to a shared
third party. Table 1 illustrates this taxonomy for tools working on a common, logical core of
data, and shows some typical applications. The taxonomy is inspired by Ellis et al.’s taxonomy
of Computer Supported Cooperative Work [7].

Table 1. Component collaboration taxonomy and typical applications

Our case study (described in section 3) focuses on the situation in which the processing
components operate on data based on the UML metamodel. The cooperation may be
performed in a number of ways, e.g.:

• as separate tools using a common interchange format (�������
�
��	������),

• as separate tools working on different aspects of the separate data (�������
�
��
��������),

• as components collaborating through a well-defined interface to the common, logical
core of data (������
�
��	������), or

• as interaction between separate tools via component technology (������
�
��
��������).

Our case study concentrates on asynchronous integration with shared data and synchronous
integration with separate data.

������������� �
!

Viewed as a development process, integration of components or applications has three
important aspects: ���������	 �����������, ��������	 �
��
�����, and ����	 �
��
�����.
Designing architecture is concerned with choosing an appropriate architectural style, creating
components is concerned with assigning functionality to components and relating this
functionality to the environment of the components, and using components is concerned with
finding, adapting, and assembling components.

In choosing an appropriate architectural style, several possibilities exist [17], including

• 5�#�	 0���#. In this case the file is the common data abstraction. Using a common
interchange format for CASE tools, as we do for asynchronous integration with shared
data, builds on this architectural style. This is also a common way of integrating UNIX
tools, typically using the Pipes and Filters [1] architectural pattern.

• ����#�	 ������. Many programming environments build on a common interface and
common data representation in a monolithic way. This integration is synchronous, uses
shared data, and is in general hard to maintain and extend.

Time \ Data "��
�� "���
���
#�����
����� Import/export Merging configuration management

systems
"����
����� Components in same

process
Component technology interaction
between applications



• 6�
����	��������. Using the Blackboard/Repository [1] architectural pattern, a loose
coupling between integrated tools may be obtained. Given a common application
programming interface to UML data, a synchronous integration with shared data could
be implemented using this architectural style.

• /������	5���#���. Several integration efforts, such as the Field environment [17], builds
on a Data Abstraction [21] architectural style with an emphasis on message passing. Our
integration of separate tools via component technology essentially falls into this
category.

• 7����������#. One of the most ambitious efforts to create a reference architecture for
tool integration [2] was built on hierarchical Layers [1] with layers for repository
services, data-integration services, adding tools, process-management services, and
user-interface services all built on a layer of message services. One of the major
problems with this architecture was that it was complex and constraining: it fixed the
integration of tools instead of allowing for open-ended lightweight integration. Rather
than developing a fixed reference architecture for integration, we concur with Tichelaar
et. al [22] in that emphasis should rather be put on how to coordinate independent
components in flexible ways.

Components need to be designed with adaptation and integration in mind. This process is
not well understood. However, guidelines for creating coordination components [22] and
tailorable, reusable frameworks [6] may be useful in this.

Using components consists of four phases: �
��
����	8�#�������
��	�
��
����	��������
��
�
��
����	������#��	and ������	��
#��
� [10]. �
��
����	8�#�������
� tries do determine
fitness for use of components using discovery and evaluation techniques. �
��
����
��������
�	 is concerned with modifying components for new contexts. The actual adaptation
technique is determined by the nature of components (white box, grey box, or black box
components), and wrapping, bridging, and mediating are well-known techniques for this [9].
�
��
����	������#�	presupposes a well-defined software architecture in which components
can be integrated. ������	 ��
#��
�	 has the component as unit of evolution meaning that
replacement of components may be problematic. Our integration efforts use a mixture of such
techniques for adaptation and discuss experiences with the process of integration. Furthermore,
we propose an architecture for synchronous integration based on separate data.

$������%��	�������

As an example of tool integration we use the Knight tool. The Knight tool extends existing
CASE tools by providing an alternative user interface, which has support for creative, flexible,
and collaborative modelling. The tool is implemented in Itcl [14], which is an object-oriented
extension of Tcl/Tk [16], and it uses Microsoft COM [19] for tool integration. More
information can be found at http://www.daimi.au.dk/~knight.

$���������&�%��	��

Knight uses a touch-sensitive electronic whiteboard (currently a SMART Board –
http://www.smarttech.com) as input medium (Figure 1a),. Since a major design goal of
the Knight tool is to make the interaction with the tool similar to that of an ordinary
whiteboard, the user interface is very simple: it is a white surface (Figure 1b), on which users
can draw UML diagrams with dry pens.



     
Figure 1. a) Use of Knight on an electronic whiteboard,

b) Knight user interface with radar window

The Knight tool operates in two modes: an informal freehand mode and a formal UML
mode. In freehand mode, the user may add arbitrary annotations to the diagram. In UML
mode, the strokes of the user are interpreted as UML elements. As an example, to create a new
class, a user can draw a rectangle with a pen on the workspace drawing surface, which the tool
will then interpret as a class (Figure 2). This results in an interaction that is direct and intuitive
[3].

Before
recognition

After
recognition

Figure 2. Recognition of the gesture for a class

The same type of interaction is used when the user wants to create other types of UML
model elements. If the user wants an association between two classes, the user just draws a line
between the classes; if the user wants to change the association to an aggregation, the user
draws a diamond at one end of the association. Moreover, there are gestures for common
operations such as deletion and movement of elements. To enable easy access to less common
operations, a context-dependent pie menu [13] is provided (Figure 3a). The user may either
press the pen against the drawing surface for a short while in order for the menu to pop up, or
make a short stroke in the direction of the desired command.

                                      
Figure 3. a) Context-dependent pie menus, b) Radar window

A small radar window (Figure 1b, Figure 3b) is used to provide context awareness and a
potentially infinite workspace. To pan, the user drags the rectangle in the window. To zoom,
the user uses the black handles to resize the rectangle.
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The software architecture of Knight follows the Repository architectural pattern [21], the
Repository in Knight being a set of UML diagrams. The architecture is shown in Figure 4.
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Figure 4. Logical view of the software architecture of Knight

A class diagram in Knight is basically a subset of the UML metamodel for class diagrams,
extended with layout information (position, size etc.). The model is shown in Figure 5.

Figure 5. Simplified object model

It is possible to attach an Observer [9] to a diagram, which will be notified when elements
have been created, changed, or deleted. Observers are used for many purposes in Knight. For
example, the workspace uses an Observer in its implementation: when a diagram element is
created, the workspace creates a corresponding visual representation of the new diagram
element, etc. The small radar window is also observing a diagram. Observers are used for
various other things, such as debugging and integrating with CASE tools.



In addition to observing, the workspace also writes to the Repository, namely when the user
interacts with the workspace. Writing in the Repository is implemented by using a combination
of the Composite and the Command patterns [9], providing fine-grained multi-level undo/redo
functionality.

(�����������	
�����

Having introduced the subject of our case study, we now discuss the details of the integration.
As mentioned, the discussion will focus on asynchronous integration with shared data and
synchronous integration with separate data. In order to motivate our choice of these two
strategies, we introduce three typical use scenarios that will be referred to in the discussions. In
all three scenarios, Mike and Sarah are part of a development team that develops an
administrative system for a university. Mike is a domain expert, and Sarah is an object-
oriented developer. They use the Knight tool for collaborative modelling activities, and Sarah
uses a traditional CASE tool for refinement and detailed design.

���������
������
�����	�����'����	
������%��	��� Mike and Sarah are about to model the
payroll of the administrative system. To do this they gather other relevant domain experts for a
modelling session. At the beginning of the session, Mike creates a blank diagram in Knight.
During the session, the topics of the discussion are recorded using a combination of UML class
diagram elements and informal sketches on the electronic whiteboard. After the meeting, Sarah
transfers the diagram to the CASE tool, in which she elaborates the diagram while making use
of the possibilities the CASE tool provides.

���������
��������������������������
���������%��	��� Mike and Sarah have had several
modelling sessions during the preceding weeks, but they have a tricky problem they cannot
solve. Sarah consults a colleague, Peter, in the company she works for. Peter discusses the
model at the company site with a number of modelling experts, and they analyse the model and
make a number of changes to it before sending it back to Sarah.

���������
���$�'�
!��	���������������&������	
������%��	��� The administrative system
has now reached a state in which it is running as a prototype communicating with a central,
relational university database. Sarah has used the CASE tool to generate code for accessing the
database. A conceptual problem discovered during prototyping leads to a remodelling session.
Sarah creates a live link to the Knight tool, and Mike and she then discuss the conceptual
problem and try to fix it using Knight. As they make changes, Sarah now and then checks the
effects of the changes on the database access code in the CASE tool.
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Use scenario 1 describes a situation in which there is a need for transferring a model from one
tool to another. An interchange format supported by both tools is an effective and simple way
of achieving this. The interchange data file represents a shared artifact that the two tools can
read asynchronously, or sequentially, in order to collaborate.

Use scenario 2 also describes a situation in which an interchange format is useful, but in
contrast to use scenario 1, it also illustrates a situation in which synchronous integration is
problematic. Sarah needs to send the model to her colleague Peter, and as Peter does not have
the Knight tool, in which the model was created, at the company site, the only option is to
exchange the model asynchronously.



���� To implement asynchronous integration using shared data, we have implemented
support for XML Metadata Interchange (XMI, [24]) in Knight. XMI is an accepted Object
Management Group (OMG, http://www.omg.org) specification that provides the basis for
an interchange format for UML models. The specification is in fact more general, as it
specifies a way of creating an interchange format for any data that can be described by a
metamodel.

 

Figure 6. Description of a part of a bank

 Consider the simple diagram in Figure 6, which describes a part of a bank using a UML
Class diagram. The diagram is a set of data. Since it describes the structure of a set of concrete
account and customer objects, it is also metadata. If a set of metadata conforms to a specific
semantics and syntax, it is called a ‘model’. Since the diagram actually uses the UML class
diagram notation, the diagram is a model. These two levels of abstraction comprise the two
lowest levels in the OMG’s Meta Object Facility (MOF, [15]). Two higher levels are also
present (see Table 2): first, the UML notation itself can be described. This leads to a so-called
metamodel: a set of data that describes a set of models, one of which is our model of a bank.
Second, as there are many other metamodels than the UML metamodel, the MOF introduces a
meta-metamodel level that can be used to describe all metamodels.

 
 ����*��+��  �,-���
�.�/ �������� "�����������
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 M3  meta-metamodel  The "MOF Model"  MOF DTD
 M2  metamodel, or

 meta-metadata
 The UML Metamodel  UML DTD, MOF XML file

 M1  model, or metadata  A UML model of a bank  UML XML file
 M0  data  Concrete bank account

objects and customer objects
 

 Table 2. OMG MOF metadata architecture1

 Based on a MOF-compliant metamodel such as the UML metamodel, the XMI standard
describes a way to produce a grammar corresponding to that metamodel. This grammar can
then be used to save and load models (e.g., a model of a bank), resulting in an interchange
format for all models conforming to the metamodel. Figure 7 shows an extract of the XMI
code exported by Knight for the Bank model. For each element in the model, an XMI element
with the same name is present, and inside these elements follow further elements
corresponding to the attributes of the element.

<Model_Management.Model xmi.id="_1">
   <Foundation.Core.ModelElement.name>New diagram</Foundation.Core.ModelElement.name>
   <Foundation.Core.Namespace.ownedElement>
     <Foundation.Core.Class xmi.id="::53umlClass0">
       <Foundation.Core.ModelElement.name>BankAccount</Foundation.Core.ModelElement.name>
       <Foundation.Core.Classifier.feature>
         <Foundation.Core.Operation xmi.id="::63umlOperation1">
           <Foundation.Core.ModelElement.name>Withdraw()</Foundation.Core.ModelElement.name>
 ...

Figure 7. Part of the bank model encoded in XML conforming to the UML DTD

                                                          
1 It should be noted that described four-level architecture is only the typical architecture. The number of
levels is not fixed by the specification.



 To specify a grammar, the XMI standard uses XML (eXtensible Markup Language, [8])
DTD’s (Document Type Definitions) and the actual exchange files are then XML files
conforming to this DTD. In other words, XMI specifies a set of rules for mapping a MOF
compliant metamodel to a DTD, and a way of mapping a model to an XML file conforming to
this DTD. The rules are not described here, as they are quite elaborate in their full detail. In
this context it suffices to say that for each class in the metamodel, the rules create a grammar
rule that can describe both the attributes of the class and references to elements associated to
the class.

 ���� ��������������� Based on the UML metamodel standardised by the OMG, several
companies have produced a UML DTD using the rules in the specification. We use the UML
DTD provided as part of the IBM XMI Toolkit (http://www.alphaworks.ibm.com/
tech/xmitoolkit), as this DTD is based on the ��#�-��	������
�����
�	�#�� allowing for the
exchange of models having elements that are not fully specified.

The basic import and export is quite simple. During the import the XML file is parsed using
the Expat open source XML parser (http://www.jclark.com/xml/expat.html). Using the
callbacks from the parser, an XML parse tree is built with the XML elements as nodes and
their contents as subnodes. A traversal of this tree then creates the diagram. Saving is
performed analogously: the diagram is traversed and from this an XML tree is built. This tree
is then streamed to a text file.

 ���� ����
������� Even though the above implementation description sounds simple, we
encountered a number of problems pertaining to the XMI standard. First of all, since the UML
DTD is based directly on the UML metamodel it can only express what is in the UML
metamodel. This is a problem since the UML metamodel is only concerned with UML �
��#�
and not UML �������� that have appearance. While this issue will most likely be solved in a
future version of the UML in which the metamodel will describe diagrams [12], there is
currently no standardised way of encoding presentational information in a UML XMI file.

XMI allows for extension elements to be added to each element, which can be used to
encode information that is not part of the metamodel. These extensions are thus well suited as
a place to store the presentational information, and this was the approach that we chose.
However, since the concrete structure of the extensions is not described in the standard,
different tools in practise encode this information in different ways. The consequence of this is
that different tools can only exchange models and not diagrams. This is a problem, not only for
the simple reason that it can be very annoying to have to re-layout a diagram, but also because
positional information in a diagram often has semantics: two classes positioned close to each
other will, e.g., most likely be closer related than two classes far away from each other.

 The extension elements are also problematic for other reasons, especially in combination
with round-trip engineering in which a number of tools import, change and then re-export the
XMI file. While a tool may add any number of extensions to any element at export, another
tool may also ignore their contents at import. However, the standard does not allow tools to
discard extensions made by other tools when re-exporting a file. A tool must thus make sure
that it stores all extensions during import even though it has no interest in their contents. We
solved this in a simple way: at the import, the XML parse tree built during the parsing is
scanned, and each node is then either used to create a diagram element, or it is stored in a list
of ignored nodes. During the export, new nodes are then created from the current diagram
contents and these are then merged with the nodes that were “ignored”. Once this merged tree
has been built it can be streamed to a file. This technique is also used for UML elements that
our tool has no interest in such as elements from diagram types not supported by the tool.



 The following scenario illustrates another complication with extensions in combination with
round-trip engineering: a tool creates a UML element and an extension containing further
information about the element. Another tool then imports this file, changes the state of the
UML element and re-exports the file. This might result in the extension exported by the first
tool being inconsistent with the new state of the UML element. While this is a general problem
in integration, there is no general and simple solution to it. One possibility would be to add a
timestamp attribute to each element. This would allow a tool to detect that an element, for
which it has made an extension, has been changed since the extension was created.

 As a more practical complication, it was difficult to find tools that could validate our
exported XMI files. We are only aware of three tools that support the XMI specification and
work on UML diagrams: the IBM XMI Toolkit, which can convert XMI files to and from
Rational Rose files (http://www.rational.com), Rational Rose itself with an extra XMI
plug-in (http://www.rational.com/products/rose/support/patches), and the
open source CASE tool Argo UML ([18], http://www.argouml.org). The IBM Toolkit
and the Rose plug-in produce XMI files that are compatible, but neither of them is compatible
with ArgoUML which uses an earlier version of the XMI specification. The new XMI 1.1
specification [25] will add another format, and so will future versions of the UML metamodel.
If the XMI standard is to be used extensively as an interchange format, both the XMI standard
and the UML metamodel must become more stable. Otherwise, what was supposed to be a
unifying format will turn into a plethora of formats that tools must struggle to support.
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Use scenario 1 and 2 could be well supported by the XMI integration. Use scenario 3 above
justifies the need for a synchronous form of integration: different tools may work on different
aspects of the same data, and quick alternation between the tools may be needed.

Synchronous integration is typically component based. The most widespread component
technologies are CORBA [�

�
0���&�
����� ���
������� &�����] and Microsoft COM [19].
The choice of component technology is not essential for our purpose, but since most CASE
tools today only support COM, we chose COM as well. Our implementation of synchronous
integration with separate data is thus based on runtime COM connections between the Knight
tool and the CASE tools. In this set-up, there are two phases to be considered: the initial
synchronisation, i.e., a batch-transfer of data, and, subsequently, a continuous incremental
synchronisation between the tools.

�������������
���������� If a user wants to work on an existing diagram made in a CASE tool,
the initial synchronisation includes transferring the diagram to the Knight tool. It may also be
the case that both tools contain diagrams that should be used in a modelling session. In this
case the synchronisation is a merge of the two diagrams.

One Visitor for each direction implements the initial synchronisation. The Visitor that
traverses the Knight diagram is a trivial application of the design pattern, whereas the Visitor
that traverses the object graph of the CASE tool needs to be constructed externally to the
CASE tool.

First, the ‘Knight-to-CASE Create Visitor’ traverses the Knight diagram. During the
traversal, it builds a similar diagram in the CASE tool: when it visits a class in Knight, it
creates a copy of the class in the CASE tool, etc. Second, the ‘CASE-to-Knight Create Visitor’
traverses the CASE tool diagram and copies it to Knight (this time ignoring the elements just



copied ��
� Knight). A logical view of the architecture for the initial synchronisation is shown
in Figure 8.
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Figure 8. Initial synchronisation

While synchronising the two tools, the Create Visitors build a mapping between the data in
the tools. The mapping is used in the incremental synchronisation, allowing, e.g., a change to a
class in the Knight tool to be propagated to the corresponding class in the CASE tool. The
Create Visitors of the initial synchronisation may also be used to support scenario 1 above: if
the following continuous, incremental synchronisation is not invoked they in effect implement
a traditional import and export of diagrams.
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Figure 9. Architecture for synchronous integration with separate data

����������� ���
�������� �����
���������� In order to keep the diagrams in the two tools
synchronised after the initial synchronisation, changes in one diagram should propagate to the
other diagram. In our implementation, two integration-specific Observers observe the
diagrams. The Observer of the CASE tool relies on COM events. The overall architecture for
the continuous incremental synchronisation is depicted in Figure 9. Note that the architecture
has been generalised and shows the integration of two generic tools A and B. The architecture
can be used for integrating tools that have “compatible” data models, such as the UML
metamodel in our case.

If, e.g., a new class is created in tool A, the A Observer will get notified, and it will then
make the ‘A-to-B Create Visitor’ visit the new class. The ‘A-to-B Create Visitor’ will, as
always, create a copy of the class in tool B. In a similar way, changes to, or deletion of,
existing elements in tool A will be propagated to tool B, implemented by two other Visitors.



Updates in tool B are propagated to tool A in a similar way. The Event Dispatcher mediates the
notifications between the tools based on subscriptions.

In Figure 9, the ‘Tool Integrator’ is shown as a separate component, which is not ����	
� any
of the tools (in contrast to Figure 8). The integrator component is symmetrical and thus
requires the same handles on both tools. The reason that it is a part of the Knight tool in our
implementation is that Knight currently has no COM interface.

���������� ��������	�� ����
������� The architecture for integrating Knight with CASE
tools is simple and effective. It has proved to be adequate for the two CASE tools we have
experimented with, namely Rational Rose and WithClass (http://www.microgold.com),
and we believe it will work for other tools as well. When integrating existing tools, there will,
however, often be specific issues to consider as well as problems to overcome. This was also
the case for Rational Rose and WithClass, and next we will present our experiences with these
problems.

In Knight, a diagram may contain freehand drawings, which are not supported in Rational
Rose and WithClass. To ensure that these drawings are not lost, we store them in the CASE
tool in a special note element, which we hide from the user. In general, the solution to this
problem is to find �
��*���� to store arbitrary information – and it may vary for different
tools.

There are also examples of Rational Rose and WithClass diagrams containing more
information than Knight diagrams, but because the Knight tool operates directly on the
Rational Rose and WithClass diagrams, we chose not to store the extra information in the
Knight diagrams.

There are situations, however, in which extra information in the Rational Rose or WithClass
diagrams should be handled in a special way. When performing, e.g., a ‘delete’ followed by an
‘undo’, the state of the diagrams in both Knight and the CASE tool should be exactly the same
as before the deletion. If the diagram in the CASE tool contains extra information, then this
information must also be restored in some way. If the CASE tool supports multi-level undo, as
does Knight, this is trivial. If not, a reasonable alternative is to serialise objects in CASE tools
when a delete operation is performed, using their COM interface, and to de-serialise objects
when an undo operation is performed. Failing this, other actions may be taken, such as hiding
and showing diagram elements, and removing these elements completely when disconnecting.
In Knight we solve the problem by a combination of serialising and hiding: presentational data
is serialised and logical data is hidden. Notice that the same problems may occur in other
situations, e.g., if elements are copied.
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� is realised through rules, delegation, sign-offs etc. �
##��
����
� realises
cooperative creation of artifacts. �
��������
�	 is the organisational distribution of
information. These three aspects of cooperative work are also relevant in tool cooperation.

#�����
������ ����	
������ In connection to asynchronous integration with shared data,
�

�������
� is partly on the discretion of the developers using the integrated tools. The XMI
file ��	 the common artifact worked on by both CASE tools and Knight that is being
�
##��
����� on. The UML DTD defines the �
��������
� syntax and the semantics is partly



decided by the semantics of the UML metamodel. The communication is open-ended, and
tools may add arbitrary extensions using the XMI extension tag.

A standard interchange format is important in enabling different tools to collaborate on the
same data. With XMI, a UML model can be stored in a standard way. On the other hand, many
tools have needs that are not covered by the standard. These tools will have to add extensions
to the standard format, thereby making full integration with similar tools hard. The evolution
of HTML and browsers nicely illustrates the problem: different Web browsers and editors have
created idiosyncratic mark-up, some of which has later become standard (such as frames) and
some of which have remained implemented for one tool only (such as positioning mark-up).
Similarly, the UML metamodel cannot describe all types of relationships between entities in
class diagrams. Descriptions of method call and attribute access, e.g., are not supported.
Several tools, including some program visualisation and refactoring tools, need this kind of
information. Thus, it is problematic to use UML as basis for tool integration in general [5]. Just
as the UML metamodel currently is being extended to cover diagram specification, the
inclusion of code information may be considered. It is obvious, though, that the agreement on a
standard will always lag behind the needs for cooperation between tools.

"����
������ ����	
������ In connection to our implementation of synchronous integration
with separate data, �

�������
� is mainly handled by the Event Dispatcher component, which,
among other things, ensures that an update in one tool will not lead to an infinite number of
update signals between the integrated tools. The CASE tool and Knight �
##��
���� on a
common artifact, namely the model that the developers are designing. The used component
technology and the interfaces of the tools decide the �
��������
� protocol; the Observers
influence the communication pattern of the integration.

There is currently no standard programming interface that has been adopted by CASE tools.
Rational Rose and WithClass have completely different COM interfaces. We argued above,
through the use scenarios, that there is a need for both asynchronous and synchronous
cooperation between tools. Hence, there is also a need for a standardised programming
interface for operating on the data that has already been standardised in the UML. Just as a
standardised data interchange format has been created from the UML metamodel, we believe
that a standardised programming interface for operating on data conforming to this metamodel
should be created. In the case of the UML Metamodel, there should be methods for, e.g.,
creating and deleting classes, and adding and deleting attributes. Of course, there should also
be methods for attaching arbitrary information these elements, just like it is possible to add
arbitrary data in the extension elements of the XMI format. A proposal for a standard interface
is provided as part of the UML 1.3 specification [23], in the form of a CORBA IDL
description. However, we are aware of no tools that implement this specification and thus have
no experiences as to whether it is actually usable. While having a standard programming
interface for operating on the data itself is important, it is not sufficient. There is still a need for
tool-specific functionality, e.g., opening and closing another tool or scrolling a diagram. The
situation is thus the same as for common interchange formats: only part of the interaction will
be standardised.

,���
� ����	
������ �����. In this paper, we have mainly considered the two categories
"asynchronous integration with shared data" and "synchronous integration with separate data"
of Table 1. One of the other categories, “synchronous integration with shared data”, covers
components working together synchronously on the same data. This model is also very
common in existing tools, e.g., in integrated development environments with editors,
compilers, debuggers etc. working on the same data. It would be easy to modify the Knight



tool to work on, e.g., a Rational Rose data structure, instead of having its own data, which,
conceptually, is just a copy of the Rational Rose data. However, by having its own data,
Knight can run as a stand-alone tool without Rational Rose. This situation is analogous to
exchanging data between Knight and Rational Rose (section 4.1): having to run both tools
synchronously is impractical (sometimes even impossible) compared to exchanging the data in
a file. Also, if Knight uses Rational Rose’s data format, it cannot run with WithClass or any
other tool. Of course, having standard programming interfaces would remedy the problem.

The final category in  Table 1 is "asynchronous integration with separate data". We have not
considered this category in detail in our integration work, but just to complete the table we
give an example: a diagram versioning system with a central repository. Each client makes
changes to its own copy of the shared diagram. Once in a while, a client commits the changes
to the central repository, and the changes are merged into the shared diagram.

1������������

As an example of tool integration, we described the integration between the Knight tool and
existing CASE tools. Two different types of integration were investigated and implemented:
asynchronous integration with shared data implemented using a standard interchange format,
and synchronous integration with separate data implemented using component technology. The
two integration approaches complement each other: asynchronous integration with shared data
via a standard interchange format is simple, robust, and lightweight. Synchronous integration
with separate data via component technology supports a tight integration between tools.

Several problems and issues to be considered were highlighted: even though the
asynchronous integration with shared data was realised using a standard interchange format,
only part of the necessary information to be interchanged was standardised. For the
synchronous integration with separate data, the situation was even worse. No standard way of
defining interfaces for components dealing with UML has been implemented. Thus, even
though both integration efforts have been successful, the way to flexible, interoperable, and
integratable tools goes through even further standardisation efforts. Irrespective of
standardisation, however, tools will need to store arbitrary information that must be handled in
specific ways. This caused problems for both types of integration considered.

Nevertheless, we were successful in integrating the tools. We believe that our integration
can be used not only as a source of inspiration, but also that the concrete design and the
software architectures described are of general applicability, and that they can help developers
in integrating other tools.
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Abstract. A major strength in object-oriented development is the direct
support for domain modelling offered by the conceptual framework underlying
object-orientation. In this framework, domains and systems can be analysed and
understood using models at a high level of abstraction. To support the
construction of such models, a large number of Computer-Aided Software
Engineering tools are available. These tools excel in supporting design and
implementation, but have little support for elements such as creativity,
flexibility, and collaboration. We believe that this lack of support partly
explains the low adoption of CASE tools. Based on this, we have developed a
tool, Knight, which supports intuition, flexibility, and collaboration by
implementing gesture based UML modelling on a large electronic whiteboard.
Such support improves CASE tools, and can thus potentially lead to increased
adoption of CASE tools and thus ultimately help improving the overall quality
of development projects.

1. Introduction

Object-oriented programming languages provide many technical qualities but more
importantly object-oriented languages and object-oriented development in general
also provide a conceptual framework for understanding and modelling [19] [21]. This
conceptual framework provides abstraction mechanisms for modelling such as
concepts (classes), phenomena (objects), and relations between these (inheritance,
association, composition) that allow developers to describe what their system is all
about and to formulate solutions on a higher level of abstraction than program code.

In practice, developers build models at several abstraction levels. The program
code can be seen as an executable model, but for purposes such as analysis,
specification, documentation, and communication, models visualised graphically in
the form of diagrams are often used. The Unified Modeling Language (UML [31]) is
a prominent example of a graphical notation that is used for such purposes.
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The so-called Computer-Aided Software Engineering tools (CASE tools) provide
tool support for modelling. These can among other things help users to:

• create, edit, and layout diagrams,
• perform syntactic and semantic checks of diagrams and simulate and test

models,
• share diagrams between and combine diagrams from several users,
• generate code or code skeletons from diagrams (forward engineering) and

generate diagram or diagram sketches from code (reverse and round-trip
engineering), and

• produce documentation based on diagrams and models.

But even though CASE tools offer these many attractive features, they are in
practise not widely and frequently used [1][15][18]. CASE tools clearly support
design and implementation phases, but have less support for the initial phases, when
the focus is on understanding the problem domain and on modelling the system
supporting the problem domain. To rectify this problem, we propose inclusion of
support for intuition, flexibility, and collaboration, and that CASE tools should have
more direct, less complex user-interfaces, while they should still preserve the current
support for more technical aspects such as implementation, testing, and general
software engineering issues.

We have implemented a tool, Knight, which acts as an addition to existing CASE
tools. It uses a large electronic whiteboard (Figure 1) to facilitate co-operation and a
mixture of formal and informal elements to enable creative problem solving. This
paper discusses the support of the Knight tool for modelling through gesture based
creation of UML diagrams.

Figure 1. Use of Knight on an electronic whiteboard



Section 2 gives a theoretical overview of modelling, and section 3 discusses related
work on current tool support for object-oriented modelling and the adoption of CASE
tools. Section 4 presents studies of modelling in practice and section 5 discusses the
Knight tool. Finally, section 6 discusses future work and section 7 concludes.

2. Modelling and Interpretation

Simplistically, object-oriented software development can be viewed as mapping a set
of real-world phenomena and concepts to corresponding objects and classes [19][5].
The set of real-world phenomena and concepts is called the referent system and the
corresponding computerised system is called the model system [19] (Figure 2).

Modelling

Interpretation

Referent System Model System

Figure 2. Modelling and interpretation

Mapping a referent system to a model system is called modelling. Modelling is
often iterative and it is thus important to be able to discuss a model system in terms of
the referent system. We call this reverse process interpretation [5]. Modelling is
concerned with expressing an understanding of a referent system in a fluent, formal,
and complete way, for which usable and formal notations (such as diagramming
techniques and programming languages) are crucial. Interpretation is concerned with
understanding a model system in terms of the referent system. For doing this, it is
important that central concepts in a model system are understandable in the referent
system.

Neither understanding the referent system nor building a model system is
unproblematic. Understanding the referent system is within the domain of user-
oriented disciplines such as ethnography [12] and participatory design [2][11]. The
ethnographic perspective on system development is concerned with basing system
design on actual work performed within the referent system. The rationale is to avoid
a major cause of system failure, namely that the developed system does not fit the
work practice within which it is to be used [12]. The participatory design perspective
on system design is concerned with designing systems in active collaboration with
potential users. This is done for both a moral and a practical reason: Users have to
work with the future system, and users are competent practitioners who are
knowledgeable of the referent system. Building the model system is within the
domain of object-oriented software engineering. Software engineering is concerned
with building robust, reliable, and correct systems. In iterative development, then, co-
ordination, communication, and collaboration between different perspectives and



individual developers is crucial [5]. Thus, when considering tool support for a system
development process, tool support for the modelling and the interpretation processes
is important.

In iterative development, modelling and interpretation are interleaved. When
different competencies work together, it is crucial that both processes are, to a certain
extent, understood by all involved parties. For example, when doing user involvement
it is both important that the developers understand the work of the users (i.e., the
referent system) and that the users are able to react on and help design the application
(i.e., the model system.)

3. Related Work on Tool Support

A large variety of tools that support software development, and modelling in
particular, exist. In [28], Reiss presents an overview of 12 categories of software
tools. CASE tools, or Design Editors as they are also referred to, are tools that let a
user design a system using a graphical design notation, and that usually generate at
least code skeletons or a code framework.

A large body of literature discusses the lack of adoption of CASE tool. In their
study of CASE tool adoption [1], Aaen et al. showed that less than one fourth of the
analysts in the companies studied used CASE tools and that about half of the
respondents had used the tools for two projects or less. In [15], Kemerer reported that
one year after the introduction of a CASE tool, 70 % of them were never used again.

In [13], Iivari confirms, and explains, the low adoption and use of CASE tools.
Two of the main conclusions of the study are that high CASE tool usage does indeed
increase productivity, but that a high degree of voluntariness in using the CASE tool
tends to decrease the use of the tool. Important for our concern, the study also
disclosed that many developers found it hard to appreciate CASE tools as they often
were perceived as having a high complexity. From this, Iivari concludes that any
intelligent means of reducing the perceived complexity might be a very profitable
investment. Thus, the study to some extent supports our claim that the user-interface
of CASE tools needs to be less complex and more direct.

A recent study by Lending and Chervany [18] examines a number of aspects of use
of CASE tools. It examines whether CASE tools are perceived as being useful, and if
developers using CASE tools use the same methodologies and perform the same
activities as developers who do not. Finally, the study points to the features of CASE
tools that are being used. Surprisingly, the participants who did use CASE tools, were
quite neutral when it came to the perceived usability of CASE tools. Also, the study
showed that users of CASE tools on average spent more than twice as much of their
time doing analysis, and considerable less time on programming, test, and
maintenance, than non-users did. Unfortunately, the study did not show whether this
increased time spent on analysis actually resulted in a better analysis model, or
whether it was due to overhead caused by the CASE tool.

 The respondents indicated that only a small amount of the functionality offered by
the CASE tool was actually used. They all used the facilities for creating and editing
models and diagrams but used little else. The only other functionality that was used at



least “sometimes” was functionality to detect inconsistencies in diagrams, and to
create documentation. The study in this way highlights that a focus on increasing the
support for creating and editing diagrams in CASE tools is appropriate, and perhaps
even the most important support.

In [14], Jarzabek and Huang present the view that current CASE tools are far too
focused on hard aspects of software development such as software engineering. In
their opinion, softer aspects such as support for creativity and idea generation are
needed if CASE tools are to gain a wide acceptance. Concretely, they believe that
CASE tools should allow the developer more freedom in expressing ideas and that
their environment should be more tolerant, and allow the developers to think and
work “at the level of application end users”. Also the authors argue that current CASE
tools are too method-oriented, and that they should provide a more natural process-
oriented framework. We concur with Jarzabek and Huang, and try to support
creativity, through enhanced and more flexible support for modelling.

Usage of whiteboards as a support in creative, problem-solving meetings has been
studied in several contexts [3][23]. Electronic whiteboards have consequently been
used as a computational extension of traditional whiteboards. A goal in systems
running on electronic whiteboards has often been to preserve desirable characteristics
of whiteboards such as light-weight interaction and informality of drawings [26]. To
our knowledge no one has investigated this use in the setting of Computer-Aided
Software Engineering. We try to extend the box of tools for electronic whiteboards
with a tool supporting object-oriented modelling.

4. Modelling and Interpretation in Practice

We have empirically studied the practice of modelling – and thus interpretation – in
three distinct situations with three different user groups. The main results of each of
the studies are given below. In each situation, the groups contained a mixture of
competencies such as ethnographers, participatory designers, experienced and
inexperienced developers, and end users. For a more detailed account, refer to [6].

4.1 The Dragon Project: Designing a New System

This study was carried out informally during the Dragon Project [5]. The project
involved participants from a university research group and a major shipping company.
Development in the Dragon project took place in active collaboration with users in the
sense that at least one user was co-located with the development group at any given
time. Whenever modelling of major conceptual areas of the shipping domain took
place the users participated actively in this. Actual modelling in these sessions almost
always took place on a whiteboard. Although most information from the users was in
the form of domain knowledge as verbal or written accounts, drawings were often
made by the end user on, or in connection to, the diagrams on the whiteboard. User
drawings were informal, in contrast to formal UML models, which described key
concepts or relationships from the shipping domain. Eventually, the users



nevertheless picked up parts of the UML notation and commented on, e.g.,
multiplicities on an association.

4.2 COT: Reengineering an Existing Application

We have studied a technology transfer project (COT, http://www.cit.dk/COT)
involving a university research group and an industrial partner. The project
reengineered an existing industrial application for control of a flow meter, while the
inexperienced developers from the industrial partner learned object-oriented analysis
and design. For the modelling, this project used a mixture of CASE tools, projectors,
and whiteboards.

Simplistically, the inexperienced developers explained the existing imple-
mentation, whereas the experienced developers modelled a reengineered version.
Eventually, this balance shifted as the inexperienced developers picked up larger parts
of the UML and participated in the modelling. This introduced a certain number of
syntactical errors in the use of the UML. These errors were either repaired, if they
disturbed the shared understanding of what was modelled, or ignored, if the meaning
was clear from the context. After each modelling session, photographs of the
diagrams were taken for future record or for manual entry into a CASE tool.
Programming was then done in an ordinary editor and the CASE tool was used to
reengineer code into diagrams.

4.3 Mjølner: Restructuring an Existing Application

This study investigated the redesign of the Mjølner integrated development
environment (http://www.mjolner.com). The group performing the redesign
consisted of six developers with different experience in the domain of the integrated
development environment. All developers had experience in object-orientation and a
fair understanding of UML. Two of the developers had an in-depth knowledge of the
development environment, other two developers had a knowledge of the part of the
tool that they developed, and the last two developers were introduced to the software
architecture of the environment while participating in the redesign.

During the redesign session, the most used artefacts were a whiteboard and a
laptop. The whiteboard was used to draw the software architecture of the existing
environment and to edit these drawings. The laptop was used whenever a developer
needed to look at code in order to remember the actual architecture. This use took
place whenever another person was at the whiteboard.

Although almost everything they drew was in actual UML notation, the notation
was tweaked in three ways. First, UML did not suffice to explain certain aspects of
the architecture leading to informal drawings of this. Second, the language used to
implement the environment is BETA [19], which has a number of language and
modelling constructs not supported by the UML. Two of these constructs, inner and
virtual classes, were used heavily in the implementation, and thus the developers
invented new notational elements on the fly. Third, the information drawn was



filtered in the sense that often only important attributes, operations, and classes were
shown.

4.4 Key Insights

From our analysis of the user studies a number of lessons on the co-ordinative,
communicative, and collaborative aspects of object-oriented modelling can be
learned. We group the insights into the three categories 'tool usage', 'use of drawings',
and 'collaboration'.

Tool Usage. Typically, a diagram existed persistently in a CASE tool as well as
transiently on a whiteboard. CASE tools were primarily used for code generation,
reverse engineering, and documentation whereas whiteboards were used for
collaborative modelling and idea generation. This mix caused a number of problems:
Whereas whiteboards are ideal for quickly expressing ideas collaboratively and
individually, they are far from ideal for editing diagrams etc. This means that in all
user studies, drawings have been transferred from whiteboards to CASE tools and
from CASE tools back to whiteboards.

Use of Drawings. Most of the drawing elements were in the form of elements from
UML diagrams such as class, sequence, and use case diagrams. However, these
elements were combined with non-UML elements in two forms. Either as rich
“freehand” elements that explained part of the problem domain or as formal additions
to the UML such as notations for inner classes or grouping. Timings from one of the
user studies show that approximately 25% of the meeting was spent on actual drawing
on the whiteboard. The drawing time was divided into 80% for formal UML diagrams
and 20% for incomplete or informal drawings.

Another key observation is the use of filtering. Filtering was used for several
reasons. First, even whiteboard real estate is limited. Second, not all parts of a
diagram are interesting at all times. Third, users may employ a specific semantic
filtering to decide the important elements of a diagram. Such a filtering could, e.g., be
that only the name of a class is shown, or that modelling is restricted to the part of an
application related to the user interface.

Collaboration. It has been a striking fact in our user studies that all collaborative
construction of models has been co-ordinated as turn-taking. This is somewhat in
contrast to other observations on shared drawing [3], but we believe it to be general
for the kind of work that object-oriented modelling is about.

What was, however, not co-ordinated via turn-taking, was verbal communication
and the use of other artefacts. The people engaged in the meetings, e.g., discussed
among themselves while another person was drawing at the whiteboard, or they used
other artefacts concurrently.



4.5 Implications for Tool Support for Modelling

The user studies show that computerised support for collaboration and
communication in modelling is beneficial. This includes support for turn-taking and
not hindering communication. Moreover, context switches in turn-taking need to be
fast and transparent to users. Also, possible tool support needs to integrate with a
computational environment, i.e., provide functionality such as editing of diagrams,
code generation, and reverse engineering. Integration of this functionality should not
hinder collaboration.

Aspects of the UML notation were too restraining for initial modelling. A tool may
try to help in several ways, including supporting semi-formal, incomplete drawings
and integrated informal “freehand” annotations. Moreover, a formal notation is often
not completely adequate for the problem at hand. Thus, it should be possible to tweak
the notation on the fly, in such a way that the notation becomes more appropriate for
the problem, while still preserving the original properties of the notation.

Filtering is needed in a wide sense. A CASE tool provides a potentially unlimited
workspace, whiteboards do not. CASE tools often provide filtering mechanisms such
as zooming, panning, and showing/hiding attributes on diagrams. On a whiteboard, on
the other hand, it is possible to, e.g., contract several relationships into a single
relationship. Both kinds of filtering, visual and semantic, are useful and should be
integrated.

5. The KNIGHT Tool

The user studies and the study of other CASE tools have been used as a basis for
implementing a tool supporting collaborative modelling and implementation. This
tool, the Knight tool, uses a large touch-sensitive electronic whiteboard (currently a
SMART Board, http://www.smarttech.com, see Figure 1) as input and output
device. This naturally enables collaboration via turn-taking among developers and
users. The interaction with and functionality of the tool is discussed in the next
sections.

5.1 Functionality and User-Interface

A major design goal of the Knight tool was to make the interaction with the tool
similar to that on an ordinary whiteboard. Therefore, the user interface (Figure 3) is
very simple: it is a plain white surface, where users draw UML diagrams using non-
marking pens.



Figure 3. Knight user interface

The interface is based on gesture input. For example, in order to create a new class,
the user simply sketches a rectangle, which the tool then interprets as a class (Figure
4). Gestures have several advantages over existing toolbars: They allow input directly
on the workspace, are fast to draw, and have a low cognitive overhead.

Figure 4. Recognition of the gesture for a class

Also using gestures, a user may associate two classes by drawing a straight line
between them. In general, the gestures for creating UML elements have been chosen
so as to resemble what developers draw on ordinary whiteboards. This directness
makes the gestures easier to learn and use.

Another way of achieving an intuitive interaction is by using compound gestures
[17] and eager recognition [30]. Compound gestures combine gestures that are either
close in time or space to one drawing element. So for example, when users draw an
inheritance relationship on an ordinary whiteboard, they normally draw a line and
then an overlaying triangle. Analogously, in the Knight tool, a user first draws a line
between two classes and then a triangle at the appropriate line end.

With eager recognition, the tool continuously tries to classify gestures while they
are being drawn. This is used for moving: To move an element, the user draws a
squiggle gesture on the item to be moved. When the squiggle gesture can be classified
with a high confidence, feedback is given in order to show that the gesture was
recognised: the item follows the pen.

The technical aspects of the gesture recognition are discussed in the “Design &
Implementation” section.

Informality vs. formality. A continuum from informality to formality is supported in
two ways. First, users may draw incomplete diagrams, such as relationships only

Before recognition After recognition



belonging to one class (Figure 5). The incomplete elements can later be “completed”,
e.g., by attaching another class to the relationship.

Figure 5. A relationship with only one class specified

Second, a separate freehand mode is provided. In freehand mode, the pen strokes
are not interpreted. Instead, they are simply transferred directly to the drawing
surface. This allows users to make arbitrary sketches and annotations as on an
ordinary whiteboard (see Figure 3 upper-left). Unlike on whiteboards, these can easily
be moved around, hidden, or deleted. Each freehand session creates a connected
drawing element that can be manipulated as a single whole.

Navigation. The tool provides a potentially infinite workspace. This allows users to
draw very large models, but is potentially problematic in terms of navigating.
Generally there is a need for an easy way of navigating from one point in the diagram
to another point in the diagram, and it is desirable to be able to focus on a smaller part
of the diagram while preserving the awareness of the whole context. To achieve this
in the Knight tool, any number of floating radar windows may be opened (Figure 6).
These radar windows, which may be placed anywhere, show the whole drawing
workspace, with a small rectangle indicating the part currently visible. Clicking and
dragging the rectangle pans while dragging the handles of the rectangle zooms.

Ordinary pull-down menus are not appropriate for activating the functionality of
the tool given the large size of the whiteboard screen. Instead we use gestures as
explained above and pop-up menus that can be opened anywhere on the workspace.
The pop-up menus are implemented as pie menus that are opened when the pen is
pressed down for a short while (see Figure 7). For faster operation, the commands can
also be invoked by drawing a short line in the direction of the pie-slice holding the
desired command  [16]. Furthermore, the menus are context-dependent. The left side
of Figure 7 shows the default menu, whereas the right side shows a more specialised
menu that is opened when close to the end of a relationship.

Figure 6. Radar windows
provide context awareness

     

Figure 7. Context-
dependent pie menus
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Inputting text. The tool offers five different ways of inputting text (Figure 8). Apart
from normal keyboard input these are: Virtual keyboard (a), Stylus-based Gestures (as
on PDA's) (b), Cirrin (c) [20], and Quikwrite (d) [27]. They are shown in increasing
order with respect to speed of text-entry and difficulty to learn. There is thus support
for both casual users without any knowledge of the more specialised ways of
inputting text, and advanced users who wish to enter text quickly.

Figure 8. Text input possibilities in Knight

5.2 Design & Implementation

The Knight tool is implemented in the Itcl [22] object-oriented extension of Tcl/Tk
[25]. Since the implementation uses Microsoft COM [29] for tool integration, it
currently only runs on the Microsoft Windows platform.

Software Architecture. The software architecture of the Knight tool is shown in
Figure 9 using a UML package diagram. The Knight tool and CASE tools that Knight
is integrated with are separate processes. The connectors between these processes are,
as discussed further below, currently implemented using Microsoft COM.

Internally in Knight, connectors are either event broadcasts or direct method calls.
The structure of Knight follows the Repository architectural pattern [32]. The
packages surrounding the Repository are readers and readers/writers. They work
independently on the repository.

The Repository is a repository of UML diagrams. Basically, the class structure is a
subset of the UML metamodel. When changes occur in the diagram, Observers [10]
on the diagram are notified.

The Radar is observing the Repository and it gives an overview by reading and
representing the state found in the diagrams.

b)

c) d)

a)



Figure 9. Software architecture of the Knight tool

The Workspace both reads and writes from and to the diagrams to display and edit
these. Writing in the Repository is implemented using a combination of the
Composite and the Command patterns [10], providing undo/redo functionality.

The CASE Tool Integrator is a Mediator [10] between the Knight tool and multiple
CASE tools (see below).

Gesture Recognition. Rubine’s algorithm [30] is used for gesture recognition. The
main advantage of this algorithm is that it is relatively easy to train: For each gesture
to be recognised, it must simply be provided with a number of prototypical examples
of the gesture. Based on these examples, the algorithm then computes a representative
vector of features. Examples of features are the total length of a gesture and the total
angle traversed by a gesture. Subsequently, these representative vectors can be
compared to a vector computed from a user's input, and the most resembling gesture
can be chosen based on a statistical analysis.

A few circumstances complicate the gesture recognition a little. First, different
types of input devices have different physical characteristics. Thus, the recogniser
should ideally be trained once per type of input device. Second, Rubine’s algorithm
requires that different types of gestures are distinguishable with respect to the feature
vector. We handle this by using compound gestures, e.g., when drawing different
types of relationships, thus reducing the number of gestures to be recognised. Third,
all users do not draw, e.g., a rectangle starting in the same corner and in the same
direction. In order to preserve the intuitiveness of and the resemblance to ordinary
whiteboards, the gesture recogniser must thus be able to recognise a rectangle starting
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in all four corners going both clockwise and counter-clockwise. To lessen the burden
of training the recogniser with all these variations, we have implemented a script that
takes, e.g., a set of rectangle examples all drawn starting in one corner and going in
one direction and then permutes these by rotating and mirroring to obtain eight
combinations. In this way the full gesture set of 49 different gestures can be achieved
from only 9 sets of examples.

Integration with other CASE tools. There is a need to provide common CASE tool
functionality such as code generation and reverse engineering. Different tools support
different tasks well and users choose to use different kinds of tools based on the work
at hand. Thus, we have chosen an integration strategy instead of building a full-
featured CASE tool.

We are implementing both batch and incremental integration with CASE tools.
Batch integration is currently achieved in two ways: using XML Metadata
Interchange format (XMI [24]) and using component technology. To implement the
XMI exchange, we used a DTD based on the UML metamodel. Given this DTD, we
implemented support for importing models from and exporting models to XML files
following its grammar. Since the DTD is generated as specified in the XMI standard,
it enables us to share models with other CASE tools that support UML and XMI.

Incremental integration is done for two reasons. First, batch integration may lose
information and rely on other tools' interpretation of information. Second, we wish to
integrate with CASE tools that support incremental round-trip engineering [4]. For
this to be useful, incremental updates are needed so that code is always available and
changes in code are immediately reflected in diagrams. The incremental integration is
currently done via Microsoft COM [29].

The details of the integration are described in a companion paper [7].

6. Evaluation and Future Work

6.1 Evaluation

We have performed qualitative evaluations of the Knight tool in use. The primary
objective of the evaluations has been to evaluate Knight in real work settings.
Typically, a facilitator introduced the tool briefly. Following this, each subject was
given a chance to try the interaction of Knight and learn the gestures for manipulating
diagrams. The facilitator also helped if the subjects had problems using the tool in
their work.

After the introduction, the subjects used Knight to work on their current project.
While the subjects worked on their project, the use was videotaped and notes were
taken. After the sessions, the subjects were interviewed.

The evaluations were all positive and showed that the tool was useful in the design
situation. Also, the subjects considered the tool to be a better enabler for both
collaboration and creativity than traditional CASE tools. They especially liked the
large electronic whiteboard’s collaboration support and the tool’s interaction style,
with its combination of informal and formal elements.



Figure 10. Diagram produced during an evaluation session (with part of the
diagram emphasised)

A number of minor problems surfaced. A few of the gestures were hard to learn by
some of the participants, although they seemed to learn them as they used the tool
further. Also the integration of freehand, formal, and informal elements was generally
construed as useful (see Figure 10), but further functionality was desired, e.g., to
associate a freehand element and a formal element to each other.

In summary, the evaluations validate our general approach to supporting collaborative
modelling. The issues raised as results of the evaluations were mostly smaller
interaction problems, and these were outweighed by the tool's advantages. The users
especially found that the tool’s lighter, more intuitive interaction allowed for more
creativity and that the tool less frequently than ordinary CASE tools caused
breakdowns in the modelling.

6.2 Future Work

Longitudinal Studies of Actual Use. The tool should be evaluated in real settings
over a longer period of time, preferably for the duration of a whole project. Further
evaluation could also include a comparative, quantitative study of the Knight tool’s
impact on the quality of the resulting design and the amount of time spent using the
tool.
Distributed Use. Considering distributed use of the Knight tool suggests some
interesting possibilities. The obvious possibility is to connect two electronic
whiteboards in different locations and to have designers work on the same model



synchronously. But other combinations may also be possible. For example, one might
choose to have a different view on a model via an ordinary PC located in the same
meeting room as the electronic whiteboard.

End User Customisation. An area of research that we so far have left more or less
untouched is the ability for the user to customise the tool in a number of ways.
Currently, we are working with the idea of a personal pen that holds several settings
for the user. In this way, a user who chooses a specific pen will use the settings of the
pen, such as gesture set, freehand/UML mode, or current colour, when interacting
with the electronic whiteboard. A bit further along the way is the possibility for the
user to customise the notation, ultimately “on the fly”. Simple customisations of this
type include changing the appearance of drawings or adding user-defined stereotypes
to diagrams. A more elaborate tailoring scheme in which the user actively models on
the metamodel of the tool may be possible. Such a tool could be considered a light-
weight meta-CASE tool [8][9].

Generalisation. Obviously, full support for all the diagram types of the UML is
desirable. Moreover, many of the observations that we have made of object-oriented
modelling seem to be true of other kinds of formal modelling as well. This suggests
that the Knight tool could support other kinds of diagramming with the same basic
interaction.

Other generalisations are also possible: Even though the gesture based interaction
has been designed for use on an electronic whiteboard, the interaction seems direct
and natural and it would be worthwhile investigating its use on an ordinary PC with
other input devices, e.g., tablets, mice, or trackballs. We would also like to explore
other more exotic input/output devices such as tablets with built in LCD displays,
connected PDAs communicating with a large screen, or electronic extensions of
traditional whiteboards such as Mimio [33].

7. Conclusion

Support for modelling is one of the major advantages of object-oriented development.
Through the conceptual framework underlying object-orientation, both the problem
domain of the system and the system to be built can be understood and formulated.

It is often advantageous to have tool support for modelling. Tool support can, e.g.,
aid in creating and editing models, in checking the syntax and semantics of models
and in generating code from the models. Studies have shown, however, that existing
CASE tools are rarely used. We believe that part of the explanation for this lies in the
poor support for intuition, flexibility, and collaboration in CASE tools. To experiment
with and to prove the advantages of such support, we have designed and implemented
a tool, Knight, which complements existing CASE tools. The Knight tool provides a
direct and fluid interaction that in many ways resemble the interaction with regular
whiteboards, it provides support for collaboration in its large shared workspace, and it
allows for more flexibility by supporting models with both informal and incomplete
elements.



The tool has so far been successfully evaluated in qualitative experiments that
validated the basic design. Further evaluation and studies of use are to be performed,
but we believe that an extension of current CASE tools with support for creativity,
flexibility and collaboration as found in Knight can ultimately help in improving the
overall quality of development projects.
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Abstract.  The emergence of the Unified Modeling Language (UML) 
has provided software developers with an effective and efficient shared 
language. However, UML is often too restrictive in initial, informal, 
and creative modelling, and it is in some cases not restrictive enough, 
e.g., for code generation. Based on user studies, we propose that tool 
and meta-level support for several levels of restriction in diagrams and 
models is needed. We furthermore present a tool, Knight, which 
supports several levels of restriction as well as ways of transferring 
models from one level of restriction to another. This approach 
potentially increases the usability of the UML, and thus ultimately leads 
to greater quality and adoption of UML models. 

1. Introduction 

Modelling is an important activity in object-oriented development [18]. For visual 
modelling, the Unified Modelling Language (UML; [21]) has been widely accepted. 
Much research has focussed on extending, formalising, or refining the UML [8][9][3].  
Another important research question is, however, to what extent the UML supports 
visual modelling as it is being carried out in actual practice? This paper seeks to 
answer this question, although not in a general sense, as we will mostly discuss the 
existing practice of initial, creative, and collaborative problem domain modelling. The 
question will be addressed from two perspectives: One focussing on the UML itself as 
a modelling language, and one focussing on the support by current tools and 
technologies for UML modelling. 

The UML is widely used by practitioners, but our previous studies suggest that 
certain parts of the UML are too restrictive with respect to what can be described [5]. 
For example, while modelling, practitioners often draw incomplete relationships or 
represent concepts (classes) by illustrative freehand drawings.  

Likewise, tools and technologies for UML-based modelling are in wide use. It is a 
striking fact, however, that Computer Aided Software Engineering (CASE) tools are 
not widely used and adopted [1][13][15][17]. Some of the explanations are that 
current CASE tools focus too much on hard aspects of software engineering, while 
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support for soft aspects such as collaboration, creativity, and idea generation is 
lacking [14]. 

This paper takes a closer look at the practice of initial, creative, and collaborative 
problem domain modelling through a number of concrete projects. Based on these, we 
argue for the usefulness of several levels of restriction of the UML metamodel for the 
usefulness of transferring a model element from one level of restriction to another. 
Furthermore, we present and discuss a tool, Knight, which illustrates the main ideas. 
The main characteristics of the Knight tool are: Support for a direct and fluid use, 
support for collaboration, and support for different levels of restriction in both model 
and presentation, ranging from incomplete, freehand UML diagrams to UML models 
close to code. 
 
The rest of this paper is structured as follows. First, we analyse current modelling 
practice and its application of the UML and tools. Second, we present the Knight tool, 
which tries to overcome some of the problems uncovered in the analysis. Then, 
related and future work is discussed, followed by conclusions. 

2. Current Modelling Practice 

We will focus our examination of the UML’s support for modelling practice on 
studies of two large development projects and on our own personal experience as 
system developers. The first project, Dragon [4], involved a research group and a 
large, globally distributed shipping company. The goal of the project was to 
implement a prototype of a global customer service system for the company. This was 
realised over a one and a half year period by the development of a series of successful 
prototypes. In this project, three of the authors participated actively and observed 
ongoing work. 

The second project, Danfoss (http://www.cit.dk/COT/case2-eng.html), 
was concerned with implementing an embedded control system for flow meters. The 
project lasted a year and involved experienced developers from a research group and 
engineers from a private company. One of the authors participated in this project. This 
involved formal observations of work and active participation. Thus our approach was 
a mix of (ethnographic) observations and active involvement in the project studied 
[11]. 

Both projects used an iterative object-oriented approach to system development. 
Throughout development, UML was used on whiteboards and in CASE tools to 
visualise an emerging understanding of the problem and solution domains.  

In order to focus the discussion, the next section presents three representative 
scenarios distilled from the studies. These scenarios will then subsequently be used as 
a basis for analysis of current modelling practice. 



 

 

2.1 Scenarios 

Christina and Tom are two developers working on an administrative system for a 
university. Lisa is a problem domain expert knowledgeable in the domain of 
university administration. 

 
Scenario One: Using Incomplete and Freehand Elements. Christina and Tom have 
invited Lisa to a session in which they will start to model the student administration 
part of the administrative system. Since Christina and Tom have little knowledge of 
this part of the problem domain, Lisa explains her understanding of student 
administration. While doing this, she makes heavy use of a whiteboard, and she draws 
freehand diagrams of the study structure at the university. Christina and Tom, in 
collaboration with Lisa, then try to transform the verbal and graphical account to a 
class model, which contains the relevant aspects of the problem domain. Sometimes, 
Christina or Tom draws an incomplete association or generalisation, since it is not yet 
clear which classes are involved. 

 
Scenario Two: Shifting Between Levels of Completion. Christina and Tom 
continue working on the diagram after the initial session with Lisa. Because they 
work in an iterative manner, they already have a running version of the overall 
administrative system, and they now want to incorporate the newly discovered student 
details into the system. Since the previous session was done in a flexible and creative 
manner, the diagram contains a lot of non-UML elements such as incomplete 
relationships and freehand drawings. They implement the model in code. In the 
process they transform the problematic parts in simple ways, e.g., by converting 
freehand drawings to verbal descriptions in the form of comments, and by either 
deleting the incomplete relationships or creating stub classes for the dangling ends. 
During implementation, they discover conceptual errors, which they fix in the code. 
For later sessions with Lisa, these changes will have to be consistent with the original 
diagram. 
 
Scenario Three: Using a UML Tool. The development team uses a traditional CASE 
tool for various software engineering tasks such as code generation, configuration 
management, and documentation. Christina and Tom thus need to add the student 
administration model and diagram that they modelled with Lisa to their UML 
repository. In order to do that, they have taken photos of the whiteboard with the 
diagram in various stages of completion. Next, they create image files for the 
important freehand drawings. They then redraw the diagram in their CASE tool by 
hand, making sure that all parts of the model conform to the UML. References to the 
photos are then connected to relevant parts of the diagram. 

2.2 Analysis 

The three scenarios give examples of some of the obvious characteristics of practical 
UML modelling. This includes the use of different types of information as well as the 
shifts between these. 



 

 

Scenario one shows that freehand drawings are used in the early phases of 
modelling and that sometimes open-ended modelling using, e.g., freehand drawings 
and incomplete relations are appropriate. At other times, a close connection to code is 
essential, and this puts some restrictions on the structure of the models. 

During the lifetime of a model, it inevitably becomes gradually more stable and 
complete. Initially, the developers’ knowledge of a domain is limited, and the focus is 
therefore on understanding the overall structures of the domain. Many issues are 
unclear at this point, even some of the overall structures, and it is of less importance 
to understand the details of the constituent parts, e.g., attributes and methods and their 
types and parameters. It is thus necessary to do more expressive, but less restrictive, 
modelling.  

At some point, the model is sufficiently mature to be turned into code. It is, 
however, not satisfactory to have to wait until the model is complete, before turning it 
into code, and hence the question arises: how to turn a model with incomplete 
elements into code? The solution adopted in the scenarios was to fill the holes 
manually with default values, e.g., setting potential attributes’ types to “void”. By 
doing this, we lose information about the model, and at a following analysis/design 
session, the model looks different from the previous session. In the later phase, it is 
thus necessary to have a more restricted model, and therefore also less expressive 
modelling abilities. 

As a project progresses, the models get more elaborated in some areas, but new 
areas are also investigated, like the student administration in the scenarios. This 
means that the same model can be stable and detailed in some areas, while being 
initial and containing incomplete elements in other areas.  

As is evident in the scenarios, modelling is often done in collaboration, with 
several developers working together and often also involving domain experts. When 
people with different competencies work together, these people use different means to 
express their ideas. In scenario one, Lisa was not a computer expert, so she used the 
whiteboard to draw sketches. Christina and Tom, on the other hand, focused on 
creating a class diagram and thus used the UML notation on the whiteboard. 

Also, scenario three highlighted the large gap between whiteboards and traditional 
UML tools. The whiteboard contained many elements that had to be modified to fit in 
the UML tool, and the transfer itself was manual and cumbersome. Moreover, since 
development was iterative, such shifts will often occur. 

3. UML Tool Support for Modelling Practice 

The fact that the UML metamodel disallows practices used in modelling suggests that 
the UML metamodel should be modified. As the analysis in section 2.2 shows, the 
way of expressing knowledge in a model varies. Sometimes, the flexibility to create 
freehand drawings and incomplete elements is needed. At other times, the model 
should be sufficiently restricted to allow for direct code generation. 

One solution would be to make the UML metamodel more expressive so as to 
allow models to contain all kinds of elements needed as well as all kinds of 
relationships between those elements. However, in order for a model to be useful for, 



 

 

e.g., code generation, it is necessary that the model is restricted only to contain 
elements that have a straightforward translation to programming language constructs. 
As an example, Bunse and Atkinson propose the Normal Object Form (NOF) [3], 
which is a version of the UML metamodel that is closer to object-oriented 
programming languages and therefore better supports code generation from models. 
Thus, there should be support at the metamodel level for different levels of restriction. 

Instead of having several more or less incidental metamodel, the UML metamodel 
itself could contain different levels. The levels of the UML metamodel should cover 
the range from very expressive models to models close to code. There should, at least, 
be the following levels: 

 
• A flexible level that supports freehand drawings, incomplete elements, etc. 
• A level that allows the models to be analysed (this could be the current UML 

metamodel) 
• A level, in which models are close to object-oriented programming languages, 

so that code generation is possible (this could be the NOF)  
 

Ideally, the UML should support a continuum of metamodels at different levels of 
restriction, but, realistically, a fixed number of standardised levels should be 
incorporated in the UML 

For each different metamodel, there will be constructs that relate to models (“meta-
model”) and constructs that relate to diagram or presentation (“meta-presentation”). 
An unrestricted meta-model will, e.g., allow attributes with no type information, and 
an unrestricted meta-presentation will, e.g., allow expressive freehand drawings to be 
used. It is interesting to consider how these varying meta-models and meta-
presentations may be coupled. At times, a very restrictive meta-model and a very 
restrictive meta-presentation will be useful, such as when exchanging models and 
diagrams between organisations. At other times, there will be a need for a very 
expressive meta-model coupled to a very expressive meta-presentation, such as when 
brainstorming. Also, a coupling between a restrictive meta-model and an expressive 
meta-presentation is beneficial: If domain experts are involved in modelling, a 
presentation much like that on a whiteboard is useful. 

Such a modification of the UML that supports different levels of restriction will 
help modelling practice. However, there is also a need for tools to support those 
levels. The next section describes a prototype of a tool, the Knight tool, which is 
designed to support flexible and creative modelling. We have used the Knight tool to 
experiment with different levels and the transition between those levels. 

3.1 The Knight Tool 

The Knight tool is a tool for the initial analysis and design in object-oriented software 
development. With a lightweight interface, it combines freehand drawings with UML 
diagrams. We have found that this is very important for the modelling in early phases 
of object-oriented software development [5]. Problems of today’s Windows, Icons, 
Menus, and Pointers (WIMP) interfaces are many and well known [2]. The Knight 



 

 

tool tries to overcome such problems by basing the interaction on gestures, marking 
menus, and a whiteboard metaphor.  

The Knight Tool is implemented in Itcl [19], an object-oriented extension of 
Tcl/Tk [21]. For further information on the Knight tool, refer to http://www-
.daimi.au.dk/~knight or [5][6][7]. 

 
Interaction with Few Breakdowns. The whiteboard metaphor is the cornerstone of 
the Knight tool (Figure 1): The user interface is initially a blank, white surface on 
which the user draws strokes. These strokes are then recognised as gestures using 
Rubine’s algorithm [24] and interpreted as commands. 

 

 
Figure 1. User interface of the Knight tool 

The gestures resemble what is typically drawn on an ordinary whiteboard. For 
example, the gesture for drawing a class is a box, as shown in Figure 2. 

Figure 2. Gesture recognition in the Knight tool.              

In addition to the gestures for creating UML elements, there are also gestures for 
moving, editing, and deleting elements. Less common commands may be accessed 
through a context-sensitive pie menu, which is activated by pressing on the drawing 
surface for a moment. 

The rationale for using gestures is to make the interaction fast and fluid: few 
breakdowns and focus shifts should be caused by the interaction with the tool. So far, 
evaluations with users have supported this claim [5]. 

 

Before recognition After recognition 



 

 

Collaboration Support. The Knight tool may be used on an ordinary workstation 
with a mouse or a tablet. If used on an electronic whiteboard, collaboration between a 
number of developers and domain experts is supported (Figure 3).  

 

 
Figure 3. Collaborating using the Knight tool on an electronic whiteboard  

We have used the Knight tool on several types of electronic whiteboards, including 
the SMART Board (http://www.smarttech.com) and the Mimio (http://-
www.mimio.com).. The SMART Board (Figure 3) is a large, touch-sensitive surface, 
whereas the Mimio is a small device, which can be attached to ordinary whiteboards. 
Given the Knight tool and a projector, both technologies gives a total interaction 
much like that on a whiteboard. 

3.2 Knight’s Support for Varying Levels of Restriction 

From the analysis in the previous section, we derive that a UML tool should support 
metamodels with differing levels of restriction, since modelling is not done on one 
level of abstraction at all times. Also shifts between levels should be supported. This 
section discusses the current support for varying levels of restriction in the Knight 
tool. 
 
Shifting Between Levels of Restriction. As identified above, there is a need for 
shifting between the levels of expressiveness and restriction. A user may use a tool in 
three ways to transform a model, so that it conforms to a certain restriction level. 

 
• Automated. The tool may automatically transform the model. 
• Guided. The tool may identify the elements that do not conform to the new 

level of restriction, and it may provide the user with advice on how each 
element may be transformed. The user can then decide which transformation is 
appropriate. 

• Manual. The user has to transform the model in the usual way, i.e., without 
any special assistance from the tool. 

 



 

 

Figure 4. Guided transformation of freehand elements 

 
The Knight tool implements all three kinds of support to varying degrees. Initially, 

strokes are conceptually elements in an unrestricted meta-model and -presentation. 
The default behaviour of Knight is to automatically transform these into UML 
elements. In this way, a restriction is made in the presentation as well as in the model. 
During integration with other CASE tools, an automated restriction is also necessary. 
As an example, freehand drawings are converted into comments, and incomplete 
elements are omitted from the restricted model. These are all examples of automated 
transformations. 

Guided transformations are also supported in several ways. The user can ask 
Knight to identify the elements that are illegal in the more restricted meta-model. 
These will be marked graphically, and the user may then request guidance on how to 
transform the elements. For example, an incomplete association turns red, and in 
order to make it complete, the user can either delete the association or move the 
dangling end to a class. When the illegal elements are all removed, the model has 
been restricted. Furthermore, the user can ask the tool to guide a transformation where 
freehand elements are restricted into UML elements. The tool will then iterate through 
the individual marks in the drawing and present the user with a possible restriction 
(see Figure 4). 

Figure 5 shows examples of manual transformations. In the example, a freehand 
drawing showing important details of the concept of a “Route” has been drawn. 
Depending on the context, the user may use different transformations. If the drawing 
is no longer significant, the user may choose to transform the drawing into a class and 
give it the name “Route”. If it is still important to be able to refer to the drawing, the 
user may transform the drawing to a class and a relation to the drawing, thus using the 
drawing as an icon for the class. Likewise, the user may use the drawing to document 
a more elaborate model of a route. 

 



 

 

Figure 5. Restrictive transformations of a freehand drawing 

 
Preserving the Look of Diagrams. Knight supports the creative phases of object-
oriented modelling, because it allows users to create expressive models. For example, 
a UML class may not have a name yet, and only some of the attributes may be known 
and specified. However, in Knight and other UML tools, the elements often look 
finished, even when they are not (Figure 6). 

 
Figure 6. Unfinished elements may look finished 

There is evidence that the appearance of, e.g., a diagram or a user interface influences 
how people perceive it [16]. A sketchy look of a diagram makes people 
subconsciously believe that the diagram is not finished, and hence they are more 
willing to suggest changes to it.b 

Knight supports preservation of the look of elements. An element can be displayed 
in three different ways: 



 

 

• it may look exactly the way it was drawn, i.e., it is not transformed, 
• it may have a semi-transformed look, which is the same for all elements of the 

same category, or 
• it may have a transformed look, e.g., the usual UML notation. 

 
These three looks are exemplified for a UML class in Figure 7a. In Figure 7b, the 
Route class from Figure 6 is displayed with an untransformed look, which suggests 
that it is unfinished. 

 

           
Figure 7. a) A class may be displayed in three ways in Knight,  

b) the Route class is not finished 

It is possible for different elements in the same model to be displayed differently. In 
fact, as discussed in section 2.2, it is often the case that certain parts of a diagram are 
detailed and finished, while other parts have not yet been elaborated on. Displaying 
the elements corresponding to whether they are finished or not can show the situation 
to the users. 

3.3 The Knight Tool at Work 

The Knight tool was designed to support the modelling practice found in actual 
software development projects. In order to demonstrate how the use of Knight on an 
electronic whiteboard accomplishes this, this section will describe what the three 
scenarios from section 2.1 could look like, if the Knight tool was used. 

 
Scenario One. Instead of using a traditional whiteboard, Lisa, Christina, and Tom use 
Knight. Because Knight supports freehand drawing, Lisa is able to illustrate the study 
structure directly in Knight. Christina and Tom gradually transform Lisa’s freehand 
drawings to corresponding classes, while retaining the original drawings in the 
diagram. 
 
Scenario Two. Christina and Tom have to transfer the model created together with 
Lisa to the overall administrative system. The model contains non-UML elements, but 
Christina and Tom use Knight’s guidance to remedy some of the problematic 



 

 

elements. The rest of the non-UML elements are handled automatically by Knight, 
which deletes some incomplete associations and adds default types to some attributes. 
 
Scenario Three. Because the model was created directly in Knight, there is no need 
to capture the contents using a camera. Freehand elements may, moreover, be 
connected to UML elements directly. Also, the shifts to and from ordinary 
whiteboards are eliminated through the use of Knight on an electronic whiteboard. 
 
Even though the scenarios highlight the positive features of Knight, there is room for 
a lot of improvement. Problems and plans are discussed in the next session. 

4. Related & Future Work 

As mentioned in the introduction, Jarzabek and Huang [14], among others, explain the 
low adoption of CASE tools with that they are too concerned with software 
engineering aspects of development. Instead, aspects such as creativity, flexibility, 
and idea generation should be focussed on and more widely supported. We concur 
that focussing on softer aspects of system development in CASE tool development 
may be a way for CASE tools to gain wider acceptance. This is the very basis for our 
work on Knight and is what we will continue working on also in the context of other 
formal notations than the UML. A very important means of ensuring that Knight 
supports this kind of work will be to set up longitudinal studies of Knight in use. We 
are currently trying to do this at several Danish companies. Although many of the 
basic mechanisms for creative modelling are present in Knight, we suspect that 
further refinements are needed. For example, it should be possible to incorporate 
other types of media than drawing such as photographs, videos, and sound in a 
seamless manner. Also, the use of and transition between different levels of 
restrictions will have to be refined. 

In [12], Haake et al. present a taxonomy for categorising information-structuring 
systems based on the perspectives of the user and the system. The taxonomy has two 
dimensions. The first dimension describes how explicitly the user specifies the types 
of objects. Does the user, e.g., state that a specified object is of a certain type or not? 
The second dimension describes how the system represents the data. Does the system, 
e.g., retain or discard the type information? In our default transformation when users 
draw UML elements by gesturing, the user does not specify that it is, e.g., a class that 
is drawn. However, the system infers and represents the class via type information. In 
this sense there is no difference between selecting a class icon from a palette and 
drawing a gesture for a class. In the case in which the user draws a freehand drawing 
and then later transforms it manually, the situation changes from one in which the 
user has a typed representation of an element, whereas the system does not, to a 
situation in which both user and system has a typed representation. We concur with 
Haake et al. that this provides the users with a flexibility to support the creation of 
objects without the overhead of deciding types immediately. The focus of this paper 
has been on how presentation and model in UML has been represented. This is in 



 

 

many ways system-centric, and one may envision a conceptualisation of levels of 
restriction in which cognitive aspects of users are taken into account. 

In [3], Bunse and Atkinson propose the Normal Object Form (NOF), which is 
closer than UML to object-oriented programming languages. The NOF is basically a 
subset of UML with certain predefined extensions, and with some additional 
constraints on the structure of models. The authors make a distinction between 
refinement and translation of a UML model. The former involves adding details to 
the model, while remaining within the UML, and the latter is a transformation of the 
UML model to an object-oriented programming language. Thus, a model should be 
gradually refined until it satisfies the NOF criteria, and then it should be translated to 
code. The NOF is an example of a useful version of the UML with a specific purpose, 
and thus it supports our claim that there should be multiple versions of the UML. 
Also, models should be gradually transformed from one form (current UML, 
expressive) to another (NOF, restrictive), and this process could benefit from 
guidance or automation of a tool. The refinement patterns mentioned in the paper 
could play a role in the process, be it guidance or automation. Whereas NOF is a very 
restrictive version of the UML metamodel, what we propose is that the default, or 
lowest, level of restriction of the UML metamodel should be such that the flexible 
modelling described in this paper can be directly supported.  

Another strand of future work is to experiment with the transportable Mimio 
technology, which is more lightweight than the SMART Board. A starting 
configuration for Knight using Mimio may be a mode, in which Mimio is used with 
marking pens but without projector. Strokes drawn may then either be interpreted 
during a session, yielding a possibility to give feedback, or be transformed to UML 
elements after the session using the techniques described in this paper. In-between 
this scenario and the one in which Mimio acts as an ordinary electronic whiteboard, a 
number of possibilities can be imagined. For example, UML elements may be drawn 
with a non-marking pen while freehand elements may be drawn with marking pens. 
One of our current goals is to offer a smooth transition between such scenarios. 

Finally, the tool is being commercialised by Ideogramic 
(http://www.ideogramic.com). Part of this is, naturally, to support all diagram 
types in the UML. 

5. Conclusion 

The UML enables the construction of object-oriented models in a usable, visual way. 
However, in an object-oriented software development project – and in the process of 
creating a UML model – the UML is not sufficiently flexible, and hence it does not 
support all phases of object-oriented modelling. Likewise, existing tools do not 
support initial modelling phases in a satisfactory way. 

Bunse and Atkinson [3] argue that, when coding starts, a restricted version of the 
UML metamodel is needed. We, on the other hand, argue that UML should support 
the initial phases of modelling, where incomplete diagram elements and freehand 
drawing are heavily used. The answer to both requests is to introduce different levels 
of restriction in the UML metamodel and to split it into meta-model and meta-



 

 

presentation. In this way, it is possible to combine expressive or restrictive meta-
presentations with expressive or restrictive meta-models. 

A change in the UML metamodel should be accompanied by appropriate tool 
support. Modelling involves going from more or less expressive diagrams to more 
restricted models, and tools should support this process. This implies that tools should 
be aware of the different levels of restriction and be able to assist the user in going 
from one level to another, either automatically or semi-automatically. 

In this paper, we have presented the Knight tool, which was designed to support 
modelling practice. The Knight tool supports collaboration in modelling, fluid 
modelling, and shifts between levels of restriction in modelling. Using Knight, we 
have demonstrated that it is in fact possible to make tool support for actual modelling 
practice. 

 
Acknowledgements. This project has been partly sponsored by the Centre for Object 
Technology (COT, http://www.cit.dk/COT), which is a joint research project 
between Danish industry and universities. COT is sponsored by The Danish National 
Centre for IT Research (CIT, http://www.cit.dk), the Danish Ministry of Industry 
and University of Aarhus. Thanks to Ole Lehrmann Madsen for comments that 
improved this paper. 

References 
1. Aaen, I., Siltanen, A., Sørensen, C., & Tahvanainen, V.-P. (1992). A Tale of two 

Countries: CASE Experiences and Expectations. In Kendall, K.E., Lyytinen, K., & 
DeGross, J. (Eds.), The impact of Computer Supported Technologies on Information 
Systems Development (pp 61-93). IFIP Transactions A (Computer Science and 
Technology), A-8. 

2. Beaduoin-Lafon, M. (2000). Instrumental Interaction: An Interaction Model for Designing 
Post-WIMP User Interfaces. In Proceedings of Computer Human Interaction (CHI’2000). 
The Hague, The Netherlands. 

3. Bunse, C., Atkinson, C. (1999). The Normal Object Form: Bridging the Gap from Models 
to Code. In Proceedings of <<UML>>’99 – The Unified Modeling Language, pp. 675-
690, Fort Collins, CO, USA, October. 

4. Christensen, M., Crabtree, A., Damm, C.H., Hansen, K.M., Madsen, O.L., Marqvardsen, 
P., Mogensen, P., Sandvad, E., Sloth, L., & Thomsen, M. (1998). The M.A.D. Experience: 
Multiperspective Application Development in Evolutionary Prototyping. In Proceedings 
of ECOOP'98, Bruxelles, Belgium, July, Springer-Verlag, LNCS series, volume 1445. 

5. Damm, C.H., Hansen, K.M., & Thomsen, M. (2000). Tool Support for Cooperative 
Object-Oriented Design: Gesture Based Modeling on an Electronic Whiteboard. In 
Proceedings of Computer Human Interaction (CHI’2000). The Hague, The Netherlands. 

6. Damm, C.H., Hansen, K.M., Thomsen, M., & Tyrsted, M. (2000). Creative Object-
Oriented Modelling: Support for Intuition, Flexibility, and Collaboration in CASE Tools. 
To appear in Proceedings of ECOOP’2000. Cannes, France. 

7. Damm, C.H., Hansen, K.M., Thomsen, M., & Tyrsted, M. (2000). Tool Integration: 
Experiences and Issues in Using XMI and Component Technology. To appear in 
Proceedings of TOOLS Europe’2000. Brittany, France. 

8. Egyed, A. & Medvidovic, N. (1999). Extending Architectural Representation in UML 
with View Integration. In France, R. & Rumpe, B. (Eds.) <<UML>>’99 – The Unified 



 

 

Modelling Language. Beyond the Standard. Second International Conference. LNCS 
1723, Springer Verlag. 

9. Evans, A. & Kent, S. (1999). Core Meta-Modelling Semantics of UML: The pUML 
Approach. In France, R. & Rumpe, B. (Eds.) <<UML>>’99 – The Unified Modelling 
Language. Beyond the Standard. Second International Conference. LNCS 1723, Springer 
Verlag. 

10. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design Patterns. Elements of 
Reusable Object/Oriented Software. Addison-Wesley. 

11. Greenbaum, J. & Kyng, M. (1991). Design at Work: Cooperative Design of Computer 
Systems. Hillsdale New Jersey: Lawrence Erlbaum Associates. 

12. Haake, J.M., Neuwirth, C.M., Streitz, N.A. (1994). Coexistence and Transformation of 
Informal and Formal Structures: Requirements for More Flexible Hypermedia Systems. In 
Proceedings of the 1994 ACM European conference on Hypermedia technology, pp. 1-12. 
Edinburgh, Scotland. 

13. Iivari, J. (1996). Why Are CASE Tools Not Used? In Communications of the ACM, 
39(10). 

14. Jarzabek, S. & Huang, R. (1998) The Case for User-Centered CASE Tools. In 
Communications of the ACM, 41(8). 

15. Kemerer, C.F. (1992). How the Learning Curve Affects CASE Tool Adoption. In IEEE 
Software, 9(3). 

16. Landay, J.A. & Myers, B.A. (1995) Interactive Sketching for the Early Stages of User 
Interface Design. In Proceedings of Computer Human Interaction (CHI’95). 

17. Lending, D. & Chervany, N.L. (1998). The Use of CASE Tools. In Agarwal, R. (Eds.), 
Proceedings of the 1998 ACM SIGCPR Conference, ACM. 

18. Madsen, O.L., Møller-Pedersen, B., & Nygaard, K. (1993). Object-Oriented Programming 
in the BETA Programming Language, ACM Press, Addison Wesley. 

19. McLennan, M.J. (1993). [incr Tcl]: Object-Oriented Programming. In Proceedings of the 
Tcl/Tk Workshop, University of California at Berkeley, June 10-11. 

20. Object Managment Group (1998). XML Metadata Interchange (XMI), document ad/98-
07-01, July. 

21. Object Managment Group (2000). OMG Unified Modeling Language Specification, 
document formal/00-03-01, March. 

22. Ousterhout, J. (1994). Tcl and the Tk Toolkit. Addison-Wesley. 
23. Rogerson, D. (1997). Inside COM. Microsoft's Component Object Model. Microsoft Press. 
24. Rubine, D. (1991). Specifying Gestures by Example. In Proceedings of SIGGRAPH'91, 

329-337. 



Tool Support for
Iterative System Development Activities:

Issues and Experiences

Carsten Juel Andersen*, Klaus Marius Hansen**,
Elmer S. Sandvad***, Michael Thomsen**, Michael Tyrsted

*: Technological Institute, Information Technology
Teknologiparken, 8000 Aarhus C, Denmark

carsten.juel.andersen@teknologisk.dk

**: Department of Computer Science, University of Aarhus,
Aabogade 34, 8200 Aarhus N, Denmark

{marius, miksen, tyrsted}@daimi.au.dk

***: Presently at Mjølner Informatics, Science Park Aarhus
Gustav Wieds Vej 10, 8000 Aarhus C, Denmark

ess@mjolner.com

Abstract. In the past three years, seven system development projects involving
industrial and academic partners have been carried out within Centre for Object
Technology. Central to all projects has been an intensive use of a diversity of
object-oriented tools and techniques. Based on the experiences from the
projects, we discuss tool support for central activities in iterative development
and point to directions for future research in development of usable object-
oriented tools. Even though a variety of different (CASE) tools can collectively
support an iterative, object-oriented system development process, we argue that
there is a need for a deeper understanding of, and a better support for, concrete
activities in system development practice. Furthermore, there is and cannot be a
perfect tool for iterative object-oriented system development: tool developers
also need to focus on the art- and skilful interplay and integration of separate
tools.

1. Introduction

Centre for Object Technology (COT) is a large, joint research project between
universities, approved technological service institutes, and industry in Denmark that
carries out research, development, and technology transfer in the area of object-
oriented development [COT, 1999]. One of the main research areas of COT is tool
support for (cooperative) object-oriented development.

This paper is concerned with evaluating tools used in two cases encompassing
seven projects of varying size and scale. See Table 1 for an overview. The largest is
the Dragon Project (case 5) [Christensen et al., 1998] that involved more than 20
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people in over a year and the smallest is DIPP1 that involved three persons during a
couple of weeks. Case 2 and case 5 have very different problem areas. Case 2 consists
of a number of pilot projects that are concerned with development of (technically)
embedded systems with special requirements for time and space efficiency, including
real-time constraints. An incremental approach to introduction of object-oriented
technology has been used, typically in projects in which a central part of an existing
non-object-oriented application has been substituted by an object-oriented model and
legacy wrappers. Case 5, on the other hand, was concerned with the development of a
global customer service system, which can be characterized as a socially embedded
system with focus on business data and case handling, involving a large number of

Projects Result Dura–
tion

Partners Artifacts Tools

Dragon: Object-Oriented Architecture of a Global Customer Service System (Case 5)
References: [Christensen et al., 998], [Dragon, 2000]
Dragon Prototype of a

global customer
service system

Feb
1997 –
Jun
1998

University of
Aarhus,
Mærsk Line

Whiteboard snapshots,
class diagrams

Mjølner System,
DESCRIBEs

Architecture of Embedded Systems (Case 2)
Reference: [Embedded, 1999]
Danfoss
Instruments
Pilot
Project I
(DIPP1)

Evaluation of an
existing
framework and a
domain model for
a flow measurer

Dec
1997 –
Jan
1998

University of
Aarhus,
Danfoss
Instruments,
Technological
Institute

Whiteboard snapshots,
post-it notes,
use cases,
class diagrams,
sequence diagrams,
state charts

Rational Rose

Bang &
Olufsen Pilot
Project I
(BOPP1)

Model and
prototype of
software for a CD
player

Jan
1998 –
Mar
1998

University of
Aarhus,
B&O,
Technological
Institute

Whiteboard snapshots,
CRC cards,
use cases,
class diagrams,
sequence diagrams,
state charts,
collaboration diagrams

Digital camera,
Rational Rose (20%),
Visio (80 %),
GNU Emacs, SMART
Board

Danfoss
Drives
Pilot
Project I
(DDPP1)

Model and
prototype of
software for a
VLT frequency
transformer

May
1998 –
Nov
1998

University of
Aarhus,
Danfoss
Drives,
Technological
Institute

Whiteboard snapshots,
use cases,
class diagrams,
sequence diagrams,
state charts

Rational Rose,
Qualiware,
Sequence Diagram
Generator v0.1,
ClearCase

Bang &
Olufsen Pilot
Project II
(BOPP2)

Model and
prototype of
software for a
B&O  Audio /
Video system
equipped with
Master Link

Nov
1998 –
Feb
1999

University of
Aarhus,
B&O,
Technological
Institute

Whiteboard snapshots,
use cases,
class diagrams,
sequence diagrams,
state charts

Digital camera,
Snapshot Composer,
WithClass,
Sequence Diagram
Generator v0.2,
Rhapsody, ClearCase

Danfoss
Instruments
Pilot
Project II
(DIPP2)

Model and
prototype of
software for a
SONO flow
measurer

Mar
1999 –
Aug
1999

University of
Aarhus,
Danfoss
Instruments,
Technological
Institute

Whiteboard snapshots,
use cases,
class diagrams,
sequence diagrams,
state charts

Digital camera,
WithClass,
Sequence Diagram
Generator v0.3

Danfoss
Drives
Pilot
Project II
(DDPP2)

Common object
model and
corresponding
prototype for
several types of
frequency
transformers

Apr
1999 –
Aug
1999

University of
Aarhus,
Danfoss
Drives,
Technological
Institute

Whiteboard snapshots,
use cases,
class diagrams,
sequence diagrams,
state charts,
package diagrams

GDPro,
A0 plotter

Table 1. Overview of selected COT projects



people.  The development approach was experimental and evolutionary prototyping
with participation of a variety of users.

Table 1 also shows for each project the development artifacts that have been
produced and the tools used. We strongly emphasise that this paper should not be
considered an evaluation of the qualities of specific tools, but rather an experience
report on how different tools supported our development processes. Some specific
tool facilities are discussed in this paper, but this should not be seen as an evaluation
of the tool's overall qualities. For pointers to the tools used refer to the “Tools and
Technology” section of the references on the last page.

Common to all the projects is an intensive use of object-oriented techniques.
Through the use of these techniques, object-orientation is viewed as a conceptual
framework for modelling parts of the real world in terms of classes, objects, and
relations rather than a set of technologies [Madsen et al., 1993]. The view of object-
oriented system construction as a modelling process is reflected in the nature of the
development processes employed in the various projects: all projects have gone
through a series of experiments in order to model an increasing understanding of the
part of the real world that is of concern.

Iteration was another key characteristic of all projects. The concrete process used
in each of the projects varied, but all projects were highly iterative and all used
prototypes that were incrementally extended and refined in a number of development
cycles. The processes of the projects were thus in accordance with other current
iterative system development processes such as Extreme Programming [Beck, 1999]
and Dynamic Systems Development Method [Stapleton, 1995].

Development Phases. Traditionally, a development process is seen as involving a set
of phases such as requirements gathering, analysis, design and implementation.
Analysis, e.g., is concerned with understanding the domain that the potential system is
to be embedded in, whereas design is concerned with shaping and envisioning the
technological future in this domain. Current CASE tools often support one or more of
these phases. However, in a concrete system development project they are not
concrete activities. Rather, requirement gathering, analysis, design, and
implementation are abstract concerns and not what is actually carried out but rather
something that matters in a project [Grønbæk et. al, 1997].

Activities, on the other hand, are concrete. They are what actually constitute the
system development process. A concrete activity, such as a prototyping session with a
potential end-user, may contribute to several abstract concerns. The actual purpose of
such a meeting may be to design the graphical user interface of the future system, but,
on the other hand, the meeting may also help the system developers understand the
problem domain. The prototyping activity will have design as its major concern but
will also contribute to the analysis concern. In accordance with this, this paper focuses
on the experiences in tool support for central, concrete activities in the seven system
development projects.

Structure of the Paper. The next section discusses a set of six system development
activities that were important in our seven projects. For each activity we present our
experiences and discuss both implications for the design of future tools and advice on
using current tools. Finally, we conclude.



2. Tool Support for Central System Development Activities

This section presents our experiences with tool support from the projects introduced
in the previous section. In presenting the experiences we will not use a taxonomy
approach, such as describing tool features using e.g. [ISO, 1995], as our earlier work
on using such an approach was unsuccessful. We tried to create a method-independent
framework that could be instantiated for different methods, so that tools could be
chosen according to the instantiation with a focus on support for concerns. However,
this effort was not successful: the taxonomy was too abstract to be useable in
selecting tools whereas the projects needed to work concretely from their start.

Our experiences on tool support obtained in the seven projects will instead be
presented and discussed under the heading of six development activities: Problem
Domain Modelling, Solution Domain Modelling, Software Architecting, Coding,
Documenting, and Testing. As mentioned earlier all projects used an iterative
approach to development, so it should be recognised that the activities thus were not
always carried out in this order and not only once. More, we believe that most of
these activities, and most likely others, will be present in other development contexts.

2.1 Problem Domain Modelling

Several forms of domain modelling are central to object-oriented modelling.
Examples are problem domain modelling, often contributing to the analysis concern,
and solution domain modelling, often contributing to the design concern. This section
discusses problem domain modelling – solution domain modelling will be discussed
in the next section.

In problem domain modelling, the focus is on understanding the problem domain.
Without a proper understanding of the domain that the software system is to support,
the system will most likely not match the users' needs. Common to early domain
modelling activities is that they tend to be rather informal. In order to understand a
domain, or to have a first attempt at modelling it, it is necessary to be able to discuss,
sketch, and experiment in an open-ended, flexible, collaborative, and creative way.
Often, however, the desired output of such activities is formal, e.g., in the form of
code or UML diagrams [Booch et al., 1999] since the output is later used to produce
other formal artifacts such as code. Thus, in domain modelling, a mixture of formal
and informal techniques is used.

Experience. All seven projects have experience with this activity. The perception of
the problem domain developed iteratively over time and was captured and expressed
in a number of ways ranging from informal paper sketches to structured designs in
CASE tools. All projects experienced a need for sketching models in informal and
unstructured ways, although the sketches often also contained elements of a more
precise character. As the projects progressed and the understanding of the problem
domain evolved and was detailed, there was a move towards the use of more
structured, formal models such as UML class and sequence diagrams. Thus, both
formal and informal diagramming was important.



Use of Whiteboards. To support informal work, all projects used whiteboards
intensively in the early stages of the projects. In the Dragon Project, a team of
developers used the UML class diagram notation to create the initial versions of the
problem domain model on a whiteboard. For the parts of the domain that were not
well understood, small freehand notes or annotations were made (Figure 1, below).
The other six projects used similar approaches although the exact use and concrete
notation varied.

Figure 1. A whiteboard snapshot from the Dragon Project

While the use of whiteboards was open-ended, and thus was well suited for
informal work, it also gave a number of problems, especially with respect to the
iterative nature of the development. First of all a whiteboard has no support for saving
a diagram other than instructing others not to erase it, which meant that some more
permanent way of capturing the work was needed. In the Dragon Project, we initially
manually captured the work by redrawing it on a piece of paper. As work progressed,
we also redrew the diagrams in a CASE tool to obtain a more readable diagram.

Several projects experimented with the use of digital cameras for capturing the
contents of whiteboards. Especially the BOPP2 project used a digital camera
systematically. These photographs could then be printed and distributed to all
developers. The diagrams still had to be manually restored on the whiteboard though.
This was not a major problem, as typically only some parts of the diagram was
needed for further discussion, and also often not all details were needed. In the cases
were the full diagram was needed, we experimented with printing old diagrams on a
transparency sheet, which could then be projected onto the whiteboard (Figure 2,
below). This was useful when a diagram was needed on the whiteboard for reference,
but not in the cases in which changes to the diagram were made, although we
experimented with another technique: part of transparency sheets with class diagrams
were cut out and the changes were drawn on the whiteboard in connection to the
projection of remaining model.
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Figure 2. Projection of a previous diagram on a whiteboard

To facilitate easy capture of work, and to assist in preserving the context of the
large number of photos taken, the BOPP2 project created a Web page containing a
custom-made Java Servlet that facilitated upload of images. Small descriptions of the
contents of the pictures could be added, and the Web application could thus help in
tracing the evolution of the various artifacts of the project.

Use of CASE tools. As mentioned a large problem with whiteboards is their lack of
computational power: whiteboards cannot store and restore diagrams, and they have
weak support for diagram editing, which makes restructuring a diagram very
laborious. To remedy this, several projects experimented with using both traditional
drawing programs and CASE tools for problem domain modelling. These, however,
were not well suited for this early, rather informal work. Firstly, working
cooperatively at a standard PC is not practical for much more than two developers and
in our experience cooperation between several developers is crucial in problem
domain modelling. Secondly, interaction problems with the tools often slow down the
creative process. Thirdly, the support for informal and incomplete elements is non-
existing in most CASE tools.

To combine the natural support for group work at a large whiteboard and the
editing power of a computerised tool, the BOPP1 project tried to use the Visio
drawing program on a large electronic whiteboard (a SMART Board). While this did
provide some of the desired benefits, it was in practice not a solution. The user-
interface of Visio was not usable on a large screen since, e.g., the menu bars and
palettes were very hard to reach from various positions around the electronic
whiteboard. Furthermore, the general interaction with the tool was too impeding on



the work since even simple drawing operations took so long time that the developers
felt it continuously disrupted their work. Finally, the electronic whiteboard also
suffered from a low resolution, and impractical text input via an ordinary keyboard.

Use of posters. Many projects created large posters of various models. These posters
where hung on office walls, and were used as reference points, and more importantly
as centres for discussion. Often a couple of developers would gather at a poster
hanging on the wall and use the poster as a common reference point in the discussion.
Often they would also draw changes on it. In the Dragon Project, the posters were not
created that often because they had to be constructed from normal printouts that were
glued together. In a couple of the pilot projects, e.g., the DDPP2 project, a large
format plotter capable of printing in A0 format was available. This made it very easy
to produce new posters, which resulted in a large number of posters illustrating
different aspects of the problem domain being available.

Discussion. In iterative development, tool support for modelling is especially
important. Surprisingly, though, one of the activities that is not well-supported by
CASE tools is diagram drawing. To layout is often difficult, time-consuming, and
frustrating, and most tools support only one undo/redo operation at most.

Although diagramming is important, one of our recent studies [Damm et al.,
2000a] of a development project shows that only about 25% of a design meeting with
focus on diagramming was spent on drawing while the rest was used for discussion.
Also, of the time spent diagramming, about 80% was spent on drawing formal UML
diagrams while the remaining 20% was used to draw incomplete UML elements and
freehand elements. Thus, if diagramming is important, incomplete and freehand
drawing is as well. Actually, almost all projects experienced a need for informal
modelling not supported by current CASE tools. This was clearly demonstrated by the
fact that the projects supplemented CASE tools with an extensive use of whiteboards.
From this we conclude that current CASE tools should try to provide better support
for informal modelling and idea generation and thus concur with [Jarzabek & Huang,
1998].

One possibility for such a tool is the Knight tool as presented in [Damm et al.,
2000a, 2000b, 2000c]. The Knight tool is designed to combine the interaction of the
whiteboard with the functionality of a computerised tool. It is developed for use on an
electronic whiteboard, and dry pens are used to draw directly on the surface of the
electronic whiteboard. The tool recognises gestures resembling the drawings made on
an ordinary whiteboard. This means, e.g., that whenever a user draws a rectangle, a
class is created, and whenever a user draws a line, an association is created. In
addition, Knight gives the developer the possibility of saving, loading, and editing the
diagram in an easy manner. Figure 3 illustrates the interface of the tool, which
intentionally is kept very simple. Because the interaction is based on gestures, the tool
is suitable for use on a big screen. Moreover, the Knight tool integrates with existing
CASE tools, adding sophisticated CASE tool capabilities to the tool.



Figure 3. The user interface of the Knight tool

Nevertheless, while support for informal work is not present in CASE tools,
several work-arounds exist. The projects were all successful in using whiteboards for
the initial modelling, and we recommend the use of whiteboards as a complement to
current CASE tools. To achieve support for, e.g., storing the diagrams, we had
positive experiences using digital cameras. Another possibility is to use the Mimio
technology. Attached to an ordinary whiteboard, this technology acts as a digital
recorder of what is drawn on a whiteboard.

It must be recognised, though, that the lack of computational power of whiteboards
can result in laborious work in order to transfer models manually, but we believe that
this will not harm a project to any significant degree.

2.2 Solution Domain Modelling

As time elapses, the frequency of activities concerned with design and
implementation grows increasingly. Whereas the activities in problem domain
modelling have a strong informal component, later activities will be more focused on
formal models expressed in diagrams, code, and other forms.

In such phases, then, iterative system development involves continual shifts in
focus on analysis, design, implementation, and validation concerns. This means that
tools, and techniques, for iterative development must support evolution on a number
of levels and the ability to move seamlessly and losslessly between levels of
abstraction, such as between diagrams and code, becomes crucial.

Experiences. In the Dragon project, functionality of the developed system was
presented to users through a graphical user interface. This meant that the actual design
of functionality was done by the developers and users by means of sketches and
mock-ups of user interfaces. In this way, user interfaces were used to model the
dynamics of the Dragon prototype. Also, solution domain models were created in
code, but these were not discussed with users.

In the case 2 projects, UML sequence diagrams were often used for modelling
dynamic aspects of the developed systems. When a new scenario was considered, the



scenario would be modelled as a sequence, and new classes would be introduced if
needed. Following that, the scenario contributed to the class diagram or was
implemented directly in code.

This technique illustrates some of the different strategies for handling iterations on
models and code employed in the case 2 projects. In BOPP1, the model and code
were kept consistent through a repeated time-consuming manual process, whereas
DIPP2 handled the consistency problem through periodic reverse engineering of the
developed code. In DDPP2, changes had to be done in the diagrams as well as the
code, because of inconveniences in the reverse engineering (the class responsibility
comments did not survive the reverse engineering).

In BOPP2, the model consisted of a class diagram and a number of sequence
diagrams that modeled a number of representative use cases. The object-oriented
model was going to substitute the central part of an existing application and wrapper
classes to the surrounding, already existing, non-object-oriented code had been
designed.

When the model had been developed to a certain stage in a common group, two
different groups, BOPP2-A and BOPP2-B, with different strategies were formed. In
the BOPP2-A group, legacy wrappers were implemented and integrated with the
model that had been translated manually to C++. From time to time a new class
diagram was reverse engineered (with WithClass) and the dynamic behaviour was
tested using an automatic sequence diagram generator (see "Testing"). BOPP2-A thus
primarily had a focus on code. Changes to the model were synchronised with the other
group, the BOPP2-B group, in which the work continued with focus on diagrams. The
model was elaborated and tested using the simulation capabilities of Rhapsody (see
"Testing"). When the model had matured, the code was moved to the target platform
with the legacy wrappers, and the application was practically running immediately.
With the model as the common reference point, the two groups succeeded using a
combination of two techniques: reverse and forward engineering.

The major benefits of the focus on code approach were that detailed changes to the
code were easy and that developers had full influence on the quality of the code. The
major liabilities were that structural code changes were cumbersome and that the
reverse engineering process was inconvenient in some respects: time was spent on,
e.g., improving the layout of the generated diagrams. Conversely, the major benefits
of the focus on diagram approach were that the simulation capabilities were strong
and that major structural changes were easy. The major liabilities were that the code
generation was not completely flawless and that all structural changes, e.g., all
declarations of classes, attributes, methods etc. had to be done in the CASE tool.

Discussion. From the projects we can conclude that there is a need for focusing both
on diagrams and on code. Each strategy has benefits and liabilities. Diagrams and
diagram editors are often an effective way of understanding and changing high-level
structures, whereas code and editors often are more suitable for working on detailed
implementation.

The fact that both foci are needed combined with the iterative nature of
development creates a need for some way of reconciling the changes made in one
artefact with the other. Tools should support this alternation between code and
diagram, as manual transformation is both laborious and error prone. Not all tools



support effective round-trip engineering well, and those that do often have flaws or
produce code of low quality. An important criteria in choosing a CASE tool is thus to
evaluate to which extent the tool supports the concrete needs the project has in
alternating between these two artifacts. Optimally, a CASE tool should support easy
and incremental transitions between the model and implementation levels. During
this, the tool should ensure consistency between diagrams and code. Only a few
commercially available tools, such as Mjølner, support this.

2.3 Software Architecting

Software architecting is concerned with creating, maintaining, and changing
structures of the software system under development in the form of components and
connectors [Bass et al., 1998]. A structure may be seen from a number of views such
as a logical, a process, or a module view [Kruchten, 1995]. In iterative system
development, software architectures are continually created and elaborated. This then
involves maintaining and creating large and complex structures with multiple views,
which in turn poses challenges for tool support.

Experiences. In the Dragon Project, focus was on creating a well-established
software architecture very early. Within two weeks an initial architecture had been
designed on paper and implemented. This initial architecture enabled fast iterations,
experiments with functionality, parallel development, and general “mud”, i.e., areas in
which the software structure was underspecified and allowed to evolve as the
developers pleased [Foote & Yoder, 1997] [Christensen et al., 1998].

After several iterations, the mud had grown and an architectural restructuring was
needed. Ad hoc tools for reverse engineering software architecture such as a UML
CASE tool, a module structure viewer, and Grep helped us to understand the evolved
software structure as opposed to the planned software structure. Subsequently, the
structure editor in Mjølner was useful in syntactically performing the structure
transformations necessary to realise the architectural refactorings. The editor was,
however, unable to aid semantically, e.g., in resolving renaming problems, when
restructuring.

In the pilot projects, the main tools used in architecting were CASE tools. In
DIPP2, e.g., the project used a procedural and an object-oriented legacy system as its
basis. The procedural system was documented in the form of informal drawings,
prose, and data-flow diagrams, while the object-oriented system was documented
mainly in the form of prose, sequence diagrams, and class diagrams. Common to
these descriptions were their detachment from the systems they described. Thus, the
descriptions could neither be reused nor merged into an understanding of a software
architectural description of the new system.

In DDPP1, a  two-part architectural model was identified for the large class of
embedded systems that performs a continuous handling of signals in addition to
reacting on asynchronous external events that influence and reconfigure the signal
handling [Jepsen et al., 1999]. The motor control unit at Danfoss Drives is an example
of such a system. A number of design patterns [Gamma et al., 1995] helped in
building the architecture. In DDPP2 the application was generalised into a framework



with specialisations in two dimensions: motor control principle and application area.
The ultimate goal is a product line architecture.

In BOPP1, a C++ framework supporting active objects (concurrent processes) and
monitors has been developed [Caspersen, 1999]. The framework has been
implemented in the operating system used by Bang & Olufsen and resulted in a
reduction of the code size of more than 50 % compared to earlier versions of the
system.

DDPP1, DDPP2, and BOPP1 all used CASE tools to draw package diagrams of the
software architecture.

Discussion. Architectural tool support in iterative system development should not be
detached from other tools used in the development. This poses special problems for
architectural tools since, on the one hand, software architecture is concerned with the
highest – most abstract – level of design of the software artifact and thus the hardest
to change and, on the other hand, change is a hallmark of iterative software
development. The nature of this problem is indicated by the number of very different
architecture description languages that exist [Allen, 1997]. This suggests a lack of
understanding of and consensus on what software architecture really is as opposed to,
e.g., software design. Thus, establishing such connections must be the first step
towards proper tool support for software architecting in iterative system development.

Some support is present though. A diagram editor may be used to design or to help
reverse engineer an architecture, and a UML editor may be used to draw an
architecture structure from a (limited) number of views. Also during restructuring
phases, tools such as structure editors [Minör, 1994] were helpful.

2.4 Coding

Coding is the bread-and-butter of system development: no system will ever be built
without code being written in one form or another. In iterative system development,
coding may run in parallel with other activities so that what coding adds to one
concern may be in conflict with what other activities add. In most projects, coding
and prototyping have been central: tool support for this activity has thus been
emphasised.

Experiences. Coding is a modelling as well as a construction activity: in the Dragon
Project, e.g., coding contributed to analysis as well as design when implementing
visions from problem and solution domain modelling. Conversely, concepts and
phenomena created during modelling are only thoroughly understood when re-
represented as classes and objects. That conceptual modelling is closely connected to
code and diagrams once again stresses the need for a close connection between source
code and CASE tools.



Figure 4. Pair programming in the BOPP2 project

Coding is also a collaborative activity. In many projects the team has been co-
located and, especially in DIPP2, pair programming has been a widely used technique
because a domain expert and an object-oriented expert could work closely together
(see Figure 4). This means that tools for managing configurations and creating
awareness have been important. For configuration management, e.g., Dragon used
CVS, whereas DDPP-1 and DDPP-2 used ClearCase. In the Dragon Project,
configuration management was used for frequent updates and commits, while e-mails
with manually written log messages were used to generate awareness of the coding
activity of other team members. This was, however, not sufficient: the awareness
information was often too late or too detailed. Often, responsibilities of team
members were overlapping, leading to conflicts that could not be resolved by the
configuration management system. The awareness notifications were on an entity
level of detail (see “Documenting”). What was needed was often to know if, or how,
module structure, components, responsibilities, and other architecture-related entities
had changed.

In BOPP2, subgroups worked in parallel on different packages of the system.
When finished, packages could then be merged into a common model using reverse
engineering using Rhapsody. Earlier in BOPP2, Qualiware had been used to support
cooperative work on the model: a hierarchical, client-server locking mechanism
meant that several developers could work concurrently on the same model. However,
at least in our set-up, speed of operation was a bottleneck.

Collaboration was also distributed in the Dragon Project: part of the development
team went on a prototyping trip to Asia while the rest of the team continued
development in Denmark. Even though the merging-based scheme of CVS was used,
synchronisation during the trip was problematic: the developers in Asia had to merge
their developments manually on-site in order to build the next iteration of the
prototype, and since they were not able to connect to the central repository, a manual
merge had also to be performed when they returned.

Coding is also a maintenance activity. This was two-fold: developers have to
understand as well as restructure existing code. In the Dragon Project, the Mjølner
structure editor was used. The editor includes semantic hyperlinks so that, e.g., a



double-click on a name application makes the editor jump to the corresponding
declaration. Moreover, the syntactic editing facilities made it possible to work on a
high level of abstraction. These two facilities were very useful, perhaps even crucial,
in the context of large amounts of prototypical code.

Discussion. Integration of configuration management tools and collaborative
awareness was a need not met by current tools. To notify other developers of changes,
developers in the Dragon Project manually created emails describing changes, but the
fact that they had to be created manually meant that they often were delayed or
forgotten.

Sometimes there is a need for synchronous collaboration and immediate updates,
and at other times asynchronous collaboration via merging is enough as the
experience from the Dragon Project shows. Moreover, configuration and awareness
entities should also be architecture-level entities. To create and maintain such entities,
tool support is needed [Christensen, 1999]. If distributed, asynchronous coding is
performed, a configuration management tool that support distributed workspaces may
be needed.

Evolution of code and models was rapid and drastic in the Dragon Project.
However, evolution is not well supported by current tools: only experimental tools,
e.g., support refactoring [Roberts et al., 1997] and only for specific languages and
environments. Even so, semantic analyses made by a good compiler may, perhaps in
combination with structure-oriented tools, give many of the same possibilities for
changing code in experimental ways without changing the semantics of the system.

2.5 Documenting

A COT documentation activity divides documentation into three types: tutorial
documentation, i.e. introductory material for novices, rationale documentation, i.e.
discussions of design decisions, and reference documentation, i.e. a complete
description of the software for experienced users [Bjerring et al., 2000]. The reference
documentation is divided into entity-based reference documentation and architecture
documentation. In the iterative development process this should be interpreted as a
complete description of the current system regardless of its degree of completeness,
ranging from an early analysis model to a fully completed implementation. The
entity-based reference documentation is documentation associated with concrete
entities in the system. An entity can be a package, class, attribute, method etc. The
architecture documentation describes how groups of logically related entities work
together, whereas the entity documentation describes the entities one by one.
Examples of the elements in architecture documentation are patterns and a diversity
of diagrams, e.g., the UML diagrams drawn as a logical view, process view,
implementation view, or deployment view.

Experiences. From the pilot projects, our experience regarding documentation has
mostly been with the entity-based reference documentation and the architecture
documentation.



As opposed to in more traditional waterfall processes, documentation was
continuously written in the iterative and incremental development. There were many
iterations on the development artifacts as well as of the documentation. Initially, the
iterations concerned the analysis and design models but later the iterations included
implementation. The documentation needed to be updated after each iteration often at
the end of each day. Also, as code changed, artifacts such as sequence diagrams
produced from this code (see “Testing”) needed to be updated, and the large number
of whiteboard photos taken (see “Problem Domain Modelling”) needed to be sorted
and inserted into the existing documentation.

It was time-consuming to keep all development artifacts together, i.e. to collect
them into one coherent document together with explaining text. In the first pilot
projects, we had many pieces of paper in no systematic order. In BOPP2, we started
collecting the artifacts in working documents with a running number, but there was
still not much structure in the documentation. The report generator of Qualiware was
a substantial step forward in this respect, as it provided good help in collecting the
pieces, i.e. diagrams, model information, and textual descriptions, into one coherent
document.  The documentation could be updated just by pressing a button at the end
of the day. In Qualiware it is possible to define a fairly elaborate report structure with
automatic inclusion of diagrams and the descriptions of the entities in the models such
as use cases, actor descriptions, and class responsibility descriptions. The automatic
inclusion of development artifacts is important because it reduces inconsistency.

Another experience with a report generator was the generator of Rhapsody that (at
least at that time) did not support inclusion of diagrams. The diagrams had to be
copy/pasted into the documentation and since many diagrams were produced, this
manual work was cumbersome and error prone with a risk of inconsistency.

In the Dragon Project the architecture documentation consisted mainly of text-
documents presenting the overall architecture and the domain model in the form of a
class diagram. The domain model was initially captured using whiteboard snapshots;
later it was periodically recreated using reverse engineering. With respect to rationale
documentation, observations made by an ethnographer were stored in the form of a
multimedia database (DESCRIBEs), which was used as input in the design process.
Also, late in the project when a usability expert observed use of the prototype, she
used the database as a means of understanding the work conducted in the problem
domain.

An overall experience from the projects is that the entity-based reference
documentation is the documentation type that can get the highest degree of tool
support since it can be generated automatically either from the source code or from
the model information created using CASE tools. Structured reports can be generated
presenting the packages, classes, attributes, methods etc. together with descriptive text
originating from, e.g., comments in the source code. The architecture documentation
cannot in the same way be produced just by pressing a button in a tool. Documenting
architecture is a creative process. Although reverse engineering can be used to
generate diagrams from code, the different diagrams must be carefully selected and,
typically, different views of the system must be produced. In addition, the diagrams
need to be accompanied by explanatory text. However, once created the diagrams can
be automatically inserted in a document together with the explanatory text.



Discussion. Automatic generation of entity-based documentation was largely
successful, although inclusion of diagrams was not widely supported. Examples of
commercial tools that generate entity-based reference documentation are JavaDoc,
BumbleBee, George, and Doc++. These tools furthermore output HTML allowing for
easy accessible online documentation.

The optimal tool support for documentation in the context of iterative development
is automatic insertion of selected development artifacts into documents produced in
standard text processing tools. Rational SoDA (Software Documentation Automation)
that adds document generation to Microsoft Word and Adobe FrameMaker and
enables extraction of information sources such as Rational Rose, seems to be a
candidate.

There are other ways of integrating text documentation with information from a
CASE tool or development environment. Modern document architecture technologies
make it possible to embed documents or parts of documents from other applications
into a document. If the word processor and the CASE tool support Microsoft ActiveX
linking/embedding, the diagrams or the part of the source code can, e.g., be linked
into a document through a live link that will be updated whenever the source changes.
If the document is written in HTML, different scripting technologies like CGI scripts
or server-side JavaScripts can be used to insert diagrams or parts of the source code in
a Web page. Another solution in a heterogeneous environment is to use open
hypermedia [Grønbæk & Trigg, 1999] as an integration technology. Using open
hypermedia, very different applications such as word processors, CAD programs, and
spreadsheets have been integrated without changing the integrated applications. The
Webvise open hypermedia system, e.g., features an embedded scripting engine
[Hansen et al., 1999] that may be used to create so-called transclusion links such as
the links made in ActiveX linking/embedding. In all cases, additional tool support is
desirable.

The development artifacts that are used in the documentation must be mutually
consistent. This can be assured by the CASE tools by means of code generation,
reverse engineering, roundtrip engineering etc. as described earlier. When the
development artifacts are modified in the CASE tool or in the source code, the
descriptive text in the corresponding documentation may also need to be updated and
vice versa.  Therefore, the documentation should not be updated automatically.
Instead, the user should be notified that a change has occurred. Hyperlinks between
the documentation and the development artifacts can be a means for providing
awareness.

2.6 Testing

Throughout an iterative project, there is a need for testing the current results. Testing
can be divided into two subactivities: validation and verification. Validation confirms
that the right problem is solved whereas verification confirms that the problem is
solved in the right way.  In domain modelling activities, user or domain expert
involvement is used to assure that use domain activities will be adequately supported.
In this case, the primary focus is validation. Later, in solution modelling, all artifacts
of the development process have to be validated as well as verified – not only the



implementation, but also the documentation, the models and other artifacts created in
the project. In an iterative approach, testing is an ongoing process. At the end of each
iteration, testing assures that the iteration goal has been accomplished.

Experiences. Several different approaches were used to test the results of the pilot
projects. Because traditional testing activities were not the main focus here, the
software developed in the projects was not formally tested, but a black-box
acceptance test was conducted in all projects. The test coverage, however, was not
complete; it covered only normal scenarios. Later research in the COT project has
resulted in a technical report on systematic testing approaches [Caspersen et al.,
2000].

Though testing was not the main focus, testing activities was done at three levels:
user level, model level and code level.

User level. In the pilot projects, the developed object-oriented code was integrated
with existing, non-object-oriented legacy code. In four projects (BOPP1+2,
DDPP1+2) it ran on the target platform and in the fifth (DIPP2) it ran in a simulated
environment. Black-box testing was in all four projects possible by stimulating the
system using the existing (or simulated) user interfaces and then monitoring the
reactions of the system on the user interface and target hardware. This was used to
test whether the software performed correctly in normal situations.

Model level. Rather than a direct verification of the object-oriented models, there was
mostly an indirect verification: the code was verified and then afterwards reverse
engineered into the object-oriented models.

In BOPP2, however, Rhapsody was used for direct verification of the object-
oriented models by simulation or execution of the models. The verification
capabilities of the tool consist of “real-time” animated statechart diagrams and
sequence diagrams. In UML, a class may have statechart attached, which is used to
describe the behaviour of instances of the class. In order to use the simulation
capabilities, method calls must be added to the statecharts, and the bodies of these
methods must be implemented.

When running in debugging mode, statecharts are animated in separate windows,
one for each class instance, and the statecharts are updated with the current states and
last invoked transitions. Stepping through common scenarios to inspect the behaviour
in the statecharts is a verifying as well as a modelling activity. Animation of
behaviour via sequence diagrams is also a feature in Rhapsody. It is possible to place
objects in the top row of a sequence diagram. When the simulation then executes,
messages with origin or destination in one of the shown objects are added to the
sequence diagram. These activities can thus help to better understand the problem and
make further progress by refining the statecharts.

The behaviour of the animated state charts and the resulting sequence diagrams
were driven by a simple graphical user interface created in Visual C++. This worked
well and resulted in a quickly growing understanding of the model and the related
code. It also resulted in fast turn-around cycles. The generated code uses a Rhapsody-
specific framework that makes it fairly easy to adapt the program to different
platforms. This allows for development and test on one platform and deployment on



another. After the verification described above, the system was ported to the target
platform and it was working successfully almost instantaneously on top of the
framework. Further experiences using the Rhapsody tool and especially adapting it to
a specific target platform is described in another COT technical report [Andersen,
2000a].

Code level. The traditional method of testing and verifying from a code perspective,
i.e. debugging, tracing, and single stepping, was performed by means of the
debugging environments used by the different companies. Prior to using Rhapsody, a
tool that generated sequence diagrams based on program executions instead of models
was developed and used in some of the pilot projects [Andersen, 2000b]. As described
earlier we used informal drawings, UML class diagrams and UML sequence diagrams
in the problem domain and early solution domain modelling activities. Sequence
diagrams were at this time our main tool for illustrating behaviour, but there was no
easy way to verify that the original sequence diagrams drawn on whiteboards
corresponded to the behaviour of the implemented system (and vice-versa). This
“missing link” led to the development of a tool that could profile running Java
programs, and from this was capable of displaying messages between objects in the
programs (Figure 5). A later extension made it possible to record scenarios from
running C++ programs, which could then be shown subsequently.

Figure 5. A tool for generating sequence diagrams from program executions

After development, the tool was successfully used in the last three pilot projects to
document the behaviour of the system. This documentation was used to make a
manual verification of the system. When testing a reactive system the tool worked
well, whereas it was not useful for continuos systems in which periodical activation
resulted in a very large number of messages. This made it clear that further work was
needed to provide overview, that is to find ways of grouping objects, avoiding certain
messages in the diagrams and other elimination of unimportant information at a given
abstraction level. The left pane in the screen dump in Figure 5 illustrates one solution



to get an overview of a large number of messages. We believe that animated sequence
diagrams are very helpful in testing and debugging. Future work will try to create
more effective sequence diagramming tools for this purpose both as stand-alone tools
and as integrated parts of debuggers.

Discussion. If statechart diagrams are used to model the intra-object behaviour in
object-oriented modelling they can play a large role in the verification activities, e.g.,
to find test cases for unit testing. Preferably, a CASE tool should be used, but also
paper diagrams containing statecharts can be manually debugged through different
scenarios, in which transitions are marked when they occur until all transitions have
been covered.

State machines play a central role in OO development of systems with concurrent
processes controlled by external events. To support a smooth transition between
statechart diagrams and programs, a proposal for language support for state machines
within an object-oriented language has been developed. The proposal has been
implemented in an experimental version of the BETA language [Madsen, 1999]

Sequence diagrams can be used as documentation and verification of correct inter-
object behaviour. In iterative development, a tool that is capable of comparing
sequence diagrams, e.g., a previous sequence diagram with newly recorded diagram,
is useful. This enables automatic verification against the originally modeled sequence
diagrams. Finally, reverse engineering of the verified code into object-oriented
models can be used as a tool to ensure verified models as well (see “Solution Domain
Modelling”).

3. Concluding Discussion

An activity is a purposeful human endeavour: it has a goal, a context, and a set of
constraints that guide its execution. A concern, on the other hand, is abstract. It is
something we care about during system development, not what we do. Realising that
activities are what have to be supported is consequential: no tool can support all
activities equally well. Consequently, different, heterogeneous tools are needed in
system development projects. We have emphasised the ways in which separate,
currently available tools can be used in a concerted fashion. In general, however,
there is a need to focus on the integration aspects of system development tools. Tools
should be able to exchange data, be used overlappingly, and complementary all in a
concerted fashion in order to support and influence concrete system development
activities.

It is thus the actual activities performed that are important when choosing tools to
support development. The focus on concrete activities is also reflected in our
approach to tool evaluation: we propose using a set of potential tools in a (pilot)
project in order to evaluate the effectiveness of the tools in a specific context.

We have reported a number of experiences with tool support for six central
iterative system development activities:

•  Problem domain modelling. Whiteboards are currently the best tools for
collaborative modelling with formal and informal elements. To support the



iterations on the problem domain model, a digital camera in combination
with transparencies and posters is currently the most effective solution. The
Knight tool, that integrates a whiteboard with a CASE tool, however, seems
to be a promising alternative.

•  Solution domain modelling. During solution domain modelling, the focus
shifts constantly between model and code. Therefore it is important to keep
the model and code consistent. The optimal CASE tool should do this, but
most tools have annoying limitations. The focus on code approach with
periodic reverse engineering of  models was, however, a  successful work-
around.

•  Software architecting. UML diagrams were used to design and capture the
architecture. Tools for restructuring are needed.

•  Coding.  It is well-known that a configuration management tool is important.
In iterative development it becomes crucial. In addition, awareness of
changes should be further supported.

•  Documentation. It should be easy to capture documentation and development
artefacts. Preferably all, but at least entity documentation, should be
automatically generated from models and code.

•  Testing. Automatic generation of sequence diagrams from program
executions is very valuable both for validation against the initially modelled
sequence diagrams and for verification and debugging purposes. Verification
of the model through animation is a powerful technique.

A concrete CASE tool may be rejected because of some detailed or minor
technicalities even though the tool might be able to support more important activities.
In other words: the requirements to CASE tools should be prioritised according to the
activities that are most important in the concrete development process. One crucial
requirement might be support for round-trip engineering by CASE tools if they are to
support an iterative, incremental object-oriented development process. Our main
lesson is that tools cannot support all activities equally well and in any realistic
development project, one has to work with a plethora of tools that work less than
optimally together.
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ABSTRACT 
Modelling is central to doing and learning object-oriented 
development. We present a new tool, Ideogramic UML, for 
gesture-based collaborative modelling in the Unified 
Modelling Language (UML) which can be used to 
collaboratively teach and learn modelling. Furthermore, we 
discuss how we have effectively used Ideogramic UML to 
teach object-oriented modelling and the UML to groups of 
students using the UML for project assignments. 

INTRODUCTION 
Simplistically, object-oriented software development is a 
mapping of real-world phenomena and concepts of a 
problem domain to objects, classes, and their relationships 
in a solution domain [12]. The process of doing so is called 
modelling.  Even though the reality of object-oriented 
development is much more complex, modelling enjoys a 
central position in object-orientation and is thus also 
important from a teaching perspective [12][13]. 

The Unified Modeling Language (UML; [15]) is the 
predominant industry standard for modelling and it is thus 
relevant to introduce it to students when teaching object-
oriented software development. The UML has, however, a 
number of characteristics that inhibit learning: 

• Extent. The UML has nine diagram types, more  
than 100 distinct meta-classes, and even more 
relationships between these. Many of these are 
necessary to know in order to use the UML fully. 

• Complexity. The many elements of the UML have 
complex semantics and there is no concept of 
levels of use. In this way, the UML has a steep 
learning curve and is primarily suitable for 
modelling experts. 

• Usability. Even though the UML is large and 
complex, it has no support for many commonly 
occurring modelling practices [8]. The UML 
provides one formal view of what a model is and 
this view cannot be changed to accommodate a 
modelling situation.  

In an experiment to find ways of dealing with these 
characteristics, we used a new tool, Ideogramic UML, to 
introduce the UML to a group of second year computer 
science undergraduates taking a course in object-oriented 
programming. Ideogramic UML is a gesture-based tool for 
collaborative modelling which is particularly effective on 
large-scale input and output devices such as electronic 
whiteboards. 

The rest of this paper reports from the observations from 
this experiment and discusses Ideogramic UML as a vehicle 
for teaching and learning object-oriented modelling.  

BACKGROUND 
Object-oriented techniques have been criticized as being too 
complex for teaching in certain situations [2][16]. [16] states 
that a notation such as the UML is excellent for experts, but 
bad for novices, since it contains a large number of new 
concepts, and novices need to learn both a new way of 
thinking, and a "highly non-intuitive graphic notation". 
Several possibilities exist for avoiding the complexity such 
as hand waving about difficult details, providing a 
framework to cover difficult details, or avoid difficult details 
[11].  With the “OVAL” notation, [16] provides an example 
of the second possibility in the context of graphical 
modelling notations.  

In some cases, such as ours, object-orientation is introduced 
through object-oriented programming so that the basic 
concepts and principles of object-orientation are learned 
before the graphical notations [13]. This makes it possible to 
introduce the UML directly in connection to a known 
object-oriented language by relating concepts of the 
language to concepts of the UML. As we investigate in this 
paper, a tool such as Ideogramic UML that does not in itself 
have a steep learning curve can further help to introduce 
students effectively to the UML.  

Teaching situations provide a rich setting in which 
collaboration and communication co-exists in a number of 
forms. Different environments have tried to support these 
activities through "electronic classrooms" [1][2]. The 
"DEBBIE" groupware system [2], allows students to make 
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personal annotations on a graphics tablet to an instructor's 
notes written on an electronic whiteboard. Our goal with 
using Ideogramic UML in a learning environment 
complements the goals of such systems: we envision the tool 
as a part of an electronic learning environment in which the 
tool can be used in many, different situations. Particularly, 
Ideogramic UML may be an effective way to engage 
students in active learning [14]. 

IDEOGRAMIC UML: TOOL SUPPORT FOR 
COLLABORATIVE LEARNING 
We have based Ideogramic UML on a series of user studies 
and subsequent evaluations of UML modelling situations. 
The tool is designed and implemented to support direct and 
fluid interaction, cooperative work, and an integration of 
formal and informal model elements [6][7]. 

User Interface 
Ideogramic UML runs on a variety of input devices ranging 
from graphics tablets over ordinary desktop PCs to 
electronic whiteboards. The electronic whiteboard version 
provides a natural support for collaborative work (Figure 1) 

 

Figure 1. Collaborative modelling in Ideogramic UML 

The user interface (Figure 2) is simple: it is a plain white 
surface, much like a traditional whiteboard, on which users 
draw gestures using dry pens.  

   

Figure 2. The Ideogramic UML user interface 

The use of traditional interface elements such as dialog 
boxes, buttons, and toolbars is kept to a minimum. When the 
user draws a gesture, Ideogramic UML recognizes the 
gesture on-the-fly and translates it into formal UML objects. 
Figure 3 shows how a box gesture (left) drawn in 
Ideogramic UML is transformed into a UML class (right). 

 

Before recognition After recognition
 

Figure 3.  Incremental recognition and transformation 
of gestures 

The gestures largely resemble simple drawings on a 
whiteboard so that gestures are easier to learn and use. Apart 
from learnability, gestures allow input directly on the 
workspace, are fast to draw, and have a low cognitive 
overhead. 

Context-sensitive, hierarchical pie menus (Figure 4; [9]) can 
be opened by pressing and holding the pen. They provide a 
ready-at-hand way of invoking less frequently used 
commands. 

 

Figure 4.  Context-sensitive, hierarchical pie menus 

Moreover, drawing a short gesture in the direction of a 
command on a pie menu invokes that command [10]. 

Scenarios of Use 
Ideogramic UML can be used in several ways for education. 
In this paper, the following four scenarios are of particular 
interest: 

1. Lecture use. A lecturer can explain UML and 
object-oriented modelling techniques using 
Ideogramic UML in the classroom. As on an 
ordinary whiteboard there is a close connection 
between the lecturer’s actions and the results of 
these actions. 

2. Peer instruction use. Teaching assistants and 
students may use Ideogramic UML to present and 
develop solutions interactively. Teaching assistants 
may, e.g., present and review concepts from 
lectures and students may present and develop 
solutions to exercises. 

3. Peer group use. Students may use Ideogramic 
UML when working in project groups, solving an 
exercise collaboratively. The use of Ideogramic 
UML can complement the use of ordinary 
whiteboards and blackboards and provide a more 
direct integration of modelling practices and 
computerized models. 

4. Individual use. Ideogramic UML can be used on an 
ordinary PC as a modelling tool combined with all 
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the scenarios above. Models may be transferred 
and used in the scenarios above. 

In all scenarios the strength of Ideogramic UML is its 
directness of use: the ability to express UML models in a 
familiar and powerful interactive way. The next section 
explores these aspects in the context of concrete use in 
learning situations akin to scenario 2. and 3. 

STUDIES OF USE 
Experiment background 
The context of our usability studies was a project 
assignment in a course on object-oriented programming for 
second-year computer science students at the University of 
Aarhus. During this four-week project, students in groups of 
two or three created an object-oriented application for 
archiving, browsing and replaying music files and CDs. Part 
of the assignment was to construct object-oriented models of 
the problem domain.  

All participants in our study had attended a one-hour lecture 
in connection with the course, in which we presented a 
subset of the UML notation, and showed a short 
demonstration video of Ideogramic UML. This lecture 
covered the basic UML concepts needed for the project 
assignment requirements. 

The table below shows how often the participants had used 
the UML and other techniques relevant to the usability test: 

    Programming     OO    UML      Gestures 
Never  0%     0%      58%  42% 

A few times 25%     17%      33%  42% 

Some  33%     58%       8%  N/A 

Frequent 42%     25%       0%  17% 

Table 1. Background information for test subjects 

The most commonly tried type of gesture input device was a 
PDA such as the Palm™ handheld computer. 

Execution 
The study started with a summary of the lecture given in the 
course. We then had a brief trial round, where the 
participants became familiar with the more uncommon 
interaction techniques: gestures and pie menus. 

The groups then used Ideogramic UML to construct and 
discuss the models they needed for the project assignment. 
We did not specify any explicit tasks, but left it to the 
students to decide what to model and how. In a normal study 
group meeting, the groups would solve the assignment by 
constructing and discussing models around a whiteboard in 
groups, followed by implementation of the suggestions 
either in groups or individually. The setup of our usability 
study thus came close to a typical situation at the beginning 
of an assignment.  

During the study, two experimenters were present, one 
responsible for the execution of the study and observation, 

and one responsible for providing help to the participants. 
All experimenters took notes, and we videotaped one of the 
groups. In our observations, we focused primarily on aspects 
such as breakdowns and focus shifts [4], both in use of the 
tool and in use of the UML.  

 

 

Figure 5. Student use of Ideogramic UML 

Help 
During the test, the participants had access to two types of 
help. 

• Passive. Two print-outs showing the gestures 
available in the tool, and the basic elements of the 
UML syntax. The help menu in Ideogramic UML 
was also available. 

• Active. The active experimenter provided learning 
scaffolding [5][17] in the form of tool-specific help 
and modelling-specific help. The first category, 
e.g., included help for drawing a gesture or using 
the hardware. The second category, e.g., included 
help when they specifically asked for help on the 
UML, or when they used UML syntax 
inconsistently with their voiced intentions. 

To get an impression of how novice users would react to the 
tool if they used it with no help, e.g. after downloading an 
evaluation copy from our website, we gave very limited 
tool-specific help to one of the groups, only explaining to 
them how to use the pens on the whiteboard. They received 
the same amount of UML-specific help as the other groups. 

The participants used the tool for approximately two hours. 
We then did an open-ended interview focusing on their 
qualitative impression of the tool.  

The next section summarizes observations from the 
experiment and comments from the interviews. 

Results 
Based in observations and analysis of our use studies, we 
will now discuss how Ideogramic UML addresses some of 
the problems with teaching and learning object-oriented 
modelling using the UML. 

Extent 
Using a gesture-based tool for teaching UML helps the 
teacher limit the amount of functionality presented to novice 
users. Through an instructor or a manual, the users can learn 
a small set of gestures necessary for their tasks and become 
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familiar with these before moving on. Unlike a tool based on 
toolbars and pull-down menus, the users do not constantly 
have to face and ignore other, less relevant options for 
interaction. To ensure that the novice users can remember 
the gestures for their subset of commands, the gestures 
should resemble as closely as possible the objects they 
create. This is generally the case in Ideogramic UML, as 
shown for the class-gesture in Figure 3.  

In the user study, we observed that the participants had no 
problems remembering the most basic gestures, and when 
one member of a group had problems with a gesture, the 
others could in most cases remind him how it should be 
drawn. In the interviews, the groups supported this 
observation, saying that they found the tool easy to use and 
easy to get started on. 

Complexity 
Ideogramic UML reduces some of the complexity of UML, 
as described above, by presenting fewer possibilities to 
novice users at a given time. The context-sensitive pie 
menus, showing the commands possible for a specific UML 
object, helps novice users understand the structure of UML. 
The same is true for UML specific feedback such as 
automatic layout of object hierarchies, which shows the user 
how UML objects are related and linked to each other. 

Some tools similar to Ideogramic UML have additional 
software engineering capabilities such as the ability to keep 
models and code synchronized. This can help users transfer 
their models to code, but several of our test users 
commented on this, saying that they preferred Ideogramic 
UML because it did not have this functionality. The reason 
was that they felt safer using a tool that did not change their 
code automatically, and feeling safer, they also felt more 
encouraged to explore different variations of models.  

Usability 
The freehand mode supports drawings that are not in the 
UML syntax, but that in some way supplements the UML 
model. In the usability study we saw examples such as 
drawings of the user interface, sketches of a runtime object 
structure, and small code drafts. 

This is a benefit for both expert and novice users. All users 
can at any point switch to freehand mode if the UML syntax 
is too restricted for a specific purpose. Novice users can 
switch to freehand mode if they are unsure of the exact 
UML syntax, and discuss their model just as they would on 
a standard white board. All groups in our study said that 
they found the freehand mode very important for UML 
modelling. 

Another way Ideogramic UML increases usability of UML 
modelling, especially for novice users, is by using being less 
restrictive than the formal UML specification. Ideogramic 
UML allows various types of incomplete objects such as 
classes without names, elements with the same name, and 
disconnected associations. This enables learning by allowing 

users to start modelling while they still have a very basic 
understanding of UML syntax.  

The figure below shows the model made by one of the 
groups in our study. The group created it in roughly 1 ½ 
hour, having no prior experience with UML modelling, and 
only a very basic introduction to the Ideogramic UML tool. 
During this time, the group sketched and discussed aspects 
of the user interface, examples of runtime object models, as 
well as several suggestions for code architecture. (Figure 5) 

 

 

Figure 6. Model made by students in Ideogramic UML 

 
SUMMARY AND FURTHER WORK 
As the discussions above show, we have successfully 
applied Ideogramic UML to teaching and learning UML and 
object-oriented modelling 

• based on an object-oriented language 

• through collaborative peer work 

• through vertical and sequential active scaffolding 

Ideogramic UML helps in this through a direct and fluid 
interaction that supports initial use and a gradual revelation 
of more advanced UML use through gestures. The user  
interface supports a collaborative style of use effective for 
teaching and learning. 

Some of the major future directions for Ideogramic UML 
that our studies pointed to with respect to teaching and 
learning are 

• Support for understanding object-oriented design 
processes. Active, adaptive templates of, e.g., 
design patterns will provide a first means of doing 
this. 

• Support for iterative learning of the UML. The 
initial means for this will be various form of 
context-sensitive help on UML design preferably 
coupled to the support suggested above. 
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Obviously, further studies of the practical, situated use of 
Ideogramic UML is also on the top of the agenda. 
Hopefully, a new flexible working environment for the 
students at our department will provide means for students 
to flexibly use Ideogramic UML personally or in group 
settings as discussed above. These further studies should 
also include the study of use of Ideogramic UML for lecture 
use and for personal use with a particular focus on learning. 

Finally, an evaluation version of Ideogramic UML can be 
downloaded from http://www.ideogramic.com where a 
video demonstrating it in action is also available. 
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