
ISSN 0105-8517

Petri Nets 2000
21st International Conference on

Application and Theory of Petri Nets

Aarhus, Denmark, June 26-30, 2000

Workshop Proceedings

Practical Use of High-level Petri Nets

Organised by

Kurt Jensen

DAIMI PB – 547

June 2000

DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF AARHUS

Ny Munkegade, Bldg. 540
DK-8000 Aarhus C, Denmark

Preface

This booklet contains the proceedings of the Workshop on Practical Use of High-level
Nets, June 27, 2000. The workshop is part of the 21st International Conference on Appli-
cation and Theory of Petri Nets organised by the CPN group at Department of Computer
Science, University of Aarhus, Denmark. The workshop papers are also available in elec-
tronic form via the web pages: http://www.daimi.au.dk/pn2000/proceedings

The aim of the workshop is to bring together researchers and practitioners with interests in
the use of high-level nets and their tools for practical applications. The submitted papers
were evaluated by a programme committee with the following members:

W. van der Aalst The Netherlands w.m.p.v.d.aalst@tm.tue.nl
G. Chiola Italy chiola@disi.unige.it
S. Donatelli Italy susi@di.unito.it
C. Girault France Claude.Girault@lip6.fr
N. Husberg Finland Nisse.Husberg@hut.fi
K. Jensen Denmark (chair) kjensen@daimi.au.dk
S. Kumagai Japan kumagai@pwr.eng.osaka-u.ac.jp
C. Lakos Australia Charles.Lakos@adelaide.edu.au
A. Levis USA alevis@gmu.edu
D. Moldt Germany moldt@informatik.uni-hamburg.de
L. Petrucci France petrucci@lsv.ens-cachan.fr
W. Reisig Germnay reisig@informatik.hu-berlin.de
M. Silva Spain silva@posta.unizar.es
E. Stear USA estear@aol.com
R. Valette France robert@laas.fr
K. Voss Germany klaus.voss@gmd.de
W. Zuberek Canada wlodek@cs.mun.ca

The programme committee was assisted by the following referees:

S. Christensen C. Dutheillet L. M. Kristensen B. Lindstrøm
T. Mailund K. H. Mortensen E. Paviot-Adet D. Poitrenaud
T. Wareham L. M. Wells

The programme committee has accepted 8 papers for presentation. Most of these deal with
different projects in which high-level nets and their tools have been put to practical use –
often in an industrial setting. The remaining papers deal with different extensions of tools
and methodology.

After an additional round of reviewing and revision, some of the best papers from the work-
shop will be published as a special section in the International Journal on Software Tools
for Technology Transfer (STTT). For more information see: http://sttt.cs.uni-dortmund.de/

Kurt Jensen

Table of Contents

H. Genrich, R. Küffner, K. Voss
Executable Petri Net Models for the Analysis of Metabolic Pathways 1

B. Lindstrøm
Web Based Interfaces for Simulation of Coloured Petri Net Models 15

S. Heitsch, M. Köhler, M. Martens, D. Moldt
High-level Petri Nets for a Model of Organizational Decision Making 35

G. Berthelot, L. Petrucci
Specification and Validation of a Concurrent System: An Educational Project . . . 55

L. Ojala, N. Husberg, T. Tynjälä
Modelling and Analysing a Distributed Dynamic Channel Allocation Algorithm for

Mobile Computing Using High-Level Net Methods 73

M. E. Villapol, J. Billington
Modelling and Initial Analysis of the Resource Reservation Protocol using Coloured

Petri Nets . 91

M. Mäkelä
Condensed Storage of Multi-Set Sequences . 111

S. Bernardi, S. Donatelli, A. Horvath
Compositionality in the GreatSPN Tool and Its Application to the Modelling of

Industrial Applications . 127

Executable Petri Net Models for the Analysis

of Metabolic Pathways

Hartmann Genrich, Robert Küffner, Klaus Voss

GMD – German National Research Center for Information Technology
Institute for Algorithms and Scientific Computing (SCAI)
Schloss Birlinghoven, D-53754 Sankt Augustin, Germany

Abstract

Computer simulation of biochemical processes is a means to augment the knowledge
about the control mechanisms of such processes in particular organisms. This knowl-
edge can be helpful for the goal oriented design of drugs. Normally, continuous models
(differential equations) are chosen for modelling such processes. The application of
discrete event systems like Petri nets has been restricted in the past to low-level mod-
elling and qualitative analysis. To demonstrate that Petri nets are indeed suitable for
simulating metabolic pathways, the glycolysis and citric acid cycle are selected as well
understood examples of enzymatic reaction chains (metabolic pathways). The paper
discusses the steps that lead from gaining necessary knowledge about the involved en-
zymes and substances, to establishing and tuning high-level net models, to performing
a series of simulations, and finally to analysing the results. We show that the consis-
tent application of the Petri net view to these tasks has considerable advantages, and
– using advanced net tools – reasonable simulation times can be achieved.

1 Introduction

Finding promising targets for the development of new drugs very much depends on certified
knowledge about the metabolism (metabolic processes in the human organisms). Then,
this knowledge can be exploited to avoid unnecessary, costly and dangerous experiments
and to conduct the remaining unavoidable experiments effectively to the goal of finding
drug targets.

Traditionally, the dynamics of metabolic processes is investigated by simulations on
the basis of differential equations (e.g. [FrCa84, LePa92, ScHo95]). This is usually done by
providing a particular kinetic equation for each reaction of the pathway requiring a consid-
erable number of kinetic constants derived from experimental data. The simulation then
proceeds by executing cyclically these equations (and updating the concentrations of the
involved substances) in very small timesteps. A prominent example is E-CELL ([Tom99]),
a particular software environment for whole-cell simulation. E-CELL offers, among others,
graphical user interfaces to observe the cell’s state and manipulate it interactively.

An alternative is the simulation by discrete event systems. Petri nets have been pro-
posed in [RML93] because of their appropriate semantics (occurrence rule), the inherent
precise concurrency notion, their intuitive graphical representation and their capabilities
for (mathematical) analysis. [RLM96] stresses the straightforward representation of a

1

metabolic reaction (cf. section 2). It demonstrates the significance of net abstraction,
boundedness, S-invariants, T-invariants and liveness to draw important ”preliminary con-
clusions about the metabolic pathway”. However, the approach in [RLM96] aims at a
purely qualitative analysis of biochemical pathways and does not allow to simulate quan-
titative kinetic effects. This is motivated by the fact that ”modelling a complex biochem-
ical system involves data that are incomplete, uncertain or unreliable”. Fortunately, the
availability of reliable data has improved during the last years although it still remains a
serious problem.

To our knowledge, attempts to simulate metabolic pathways by Petri nets, up to
now, are restricted to relatively small reaction chains modelled as low-level nets which
are constructed more or less by hand. In [MDNM00], so-called ”hybrid Petri nets” are
chosen to model and simulate a gene regulatory network. This low-level net class contains
discrete as well as continuous nodes, where continuous places are marked with real numbers
(instead of unit tokens). Section 2 shows, however, that time intervals and real numbers
can be handled easily in timed high-level nets and, hence, there is no obvious need to leave
the standard Petri net classes with their advanced theory and tools.

What we aim at next, is the automatic creation and implementation of high-level Petri
net models which allow the simulation and quantitative discussion of networks of metabolic
processes. This paper describes a promising first step towards this goal and demonstrates
it by use of a well-known example.

Section 2 introduces the basic notions and concepts used for representing a metabolic
reaction as a Petri (sub-)net, and it discusses our choice of the kinetic reaction function.
Section 3 deals with the problem of systematically constructing pathways for metabolic
processes and of assembling the reactions and metabolic constants for the chosen pathways
from the databases. Section 4 then explains the most prominent features of the Petri net
models that have been developed for investigating the well-known processes contributing
to the glycolysis and – in connection with this – the citric acid cycle. Section 5 presents
some typical simulation results and performance figures, followed by a short paragraph
with conclusions and some suggestions for the future work.

The discussed application runs on a Power Macintosh G3, using the software packages
[Design/CPN] (for modelling and simulation), Excel (for plotting) and MacPerl (for data
extraction from databases).

2 A Sample of a Reaction and the Kinetic Function

An enzymatic reaction changes the concentrations of the involved substrates (the sub-
stances participating in the reaction), catalyzed by a reaction-characteristic enzyme. Some
reactions may be slowed down by substances called inhibitors. In principle, every enzy-
matic reaction is reversible; however, most of them have a preferred direction. Therefore,
the substrates whose concentrations are decreased in this preferred mode are called reac-
tants (called educts in this paper), those with increased concentrations are called products.
The speed of the reaction is the amount of the concentration change within a time unit,
∆c /∆t.

An enzymatic reaction can be modelled as a high-level Petri net transition in a straight-
forward manner (figure 1). Every substrate is represented as a place connected through
an outgoing and an ingoing arc to the transition. For each of these places, its colour set
is chosen to be a set of pairs, each consisting of the name and the concentration of a
particular substrate. The code section of the transition calls two functions: α) the kinetic
function R kin that determines the speed of the reaction (see below) and β) the function

2

enzyme

 co_educt

product

state

1

 [r > 0.0, t >= 0.0]

C

 input (z,r,x,p1,y,p2,v,q1,w,q2,u,t,s);
 output (p1',p2',q1',q2',s');
 action
 let val (delta_c,delta_G,s_) =
 R_kin {enzyme= (z,r),
 educts= [(x,p1),(y,p2),(u,t)],
 products= [(v,q1),(w,q2)],
 step= s }
 val (p1_,p2_,q1_,q2_) =
 (p1-delta_c,p2-delta_c,q1+delta_c,q2+delta_c)
 in
 map UpdateConc [(x,p1_), (y,p2_), (v,q1_), (w,q2_),
 (z^"_dv",delta_c/CurrSpeed()/real(s)),
 (z^"_dG",delta_G)];
 (p1_,p2_,q1_,q2_,s_)
 end;

educt

co_product

inhibitor

(z,r) (z,r)

(x,p1)

(x,p1')

(y,p2)

(y,p2')

s s'@+s'

(w,q2)

(w,q2')

(v,q1)

(v,q1')

(u,t) (u,t)

Figure 1: The model of an enzymatic reaction

UpdateConc that writes selected values, in particular the just computed new concentra-
tions, into a plot file. After the end of the simulation, the plot file serves as input to Excel
to produce a plot diagram of these values as a function of time.

For the calculation of the reaction speed we use a general (reaction independent) kinetic
function R kin. It is a reversible Michaelis Menten equation augmented by an additional
term for the free reaction energy, thus combining kinetic and thermodynamic information.
The parameters of the kinetic function R kin are the current concentrations of all involved
substances. It (essentially) computes the reaction speed, i.e., the decrease resp. increase ∆c
(in time unit 1) of the concentrations of the educts resp. products. The concentrations of
the enzyme – being a catalyst – and of the inhibitor(s) remain unchanged. In the present
implementation, R kin only needs a few chemical and enzyme specific constants for its
computation. Before starting any simulation, the constants of all relevant enzymes are
extracted from the database [BRENDA] (see section 3) and collected in a data structure
called enzyme catalog. Given a reaction (without inhibitors) catalyzed by enzyme e, let
S resp. P denote the set of its educts resp. products. The concentration of a substance x
shall be denoted by [x]. Then a slightly simplified version of R kin reads:

∆c = (
→
K −

←
K) ∗ kcat ∗ [e] ∗ (

→
K ∗

→
Q +

←
K ∗

←
Q)

with
∆G = ∆G0 +R ∗ T ∗ ln Πs∈S [s]

Πp∈P [p]

K = e−∆G/R∗T ,
→
K=

1
1 +K

,
←
K=

K

1 +K

→
Q= Mins∈S

[s]
[s] +Kms

,
←
Q= Minp∈P

[p]
[p] +Kmp

3

where R, T are constants of nature and kcat,∆G0,Kmx are enzyme constants contained
in the enzyme catalog.

The feasibility of R kin can be checked by applying it to four particular situations.

1 In the irreversible case it degenerates to the well known Michaelis-Menten
equation ∆c = kcat ∗ [e] ∗ [s] / ([s] +Kms).

2 Always, ∆c ≤ kcat ∗ [e] holds.

3 In case
→
Q=

←
Q= 1, ∆c only depends on

→
K −

←
K.

4 ∆G = 0⇒ ∆c = 0, ∆G < 0⇒ ∆c > 0, ∆G > 0⇒ ∆c < 0. 1

3 Metabolic Pathways

As main sources of information on metabolic pathways the internet-accessible databases
[BRENDA], [ENZYME] and [KEGG] are used. Entries of these databases describe one
enzymatic function each and are indexed via their EC-number.2 The chemical reaction
equations contained in the database entries can be used for two purposes: first to define
transitions of a Petri net, and second, to define a network of enzyme–substrate–enzyme
edges via matching and identifying the educts and products of reactions.

The key problem here is the unification of the substrate names, due to different naming
conventions. By manually augmenting existent alias lists, detection of typos etc. the
contents of the diverse databases can be compared and compiled into a unified Petri net.
In the actual state of the databases the unified Petri net contains about 3 200 EC-entries,
11 300 reactions (transitions) and 12 300 substrates (places) leading to 164 000 enzyme–
substrate–enzyme edges.

For the purpose of simulating metabolic pathways derived from the databases (see
below) kinetic enzyme parameters (Michaelis-Menten constants Kmx of the substrates x,
maximum reaction velocity kcat ∗ [e] of the enzyme e) are needed. Fortunately, BRENDA
covers these parameters for a wide range of enzymes, substrates and organisms. However,
only for a subset of the well known pathways those parameters are complete. So, in this
paper, we restrict our analysis to the best examined pathways like glycolysis and citrate
cycle.

The next step to go comprises developing an appropriate language to access the various
entries of a database from within the CPN model. This language can then be applied to
find the relevant reactions and to compute the necessary metabolic constants. Having
checked these data for completeness, they can be inserted into the enzyme catalog which
in turn will be inspected by the kinetic function R kin during a simulation to compute
the actual reaction speed (cf. section 2).

A (metabolic) path is a coherent set of enzymatic reactions. The reactions are inter-
connected via the substrates (educts and products) they act upon. In contrast to naive
graphs, Petri nets allow for representing and distinguishing different constellations in bio-
chemical networks which is a prerequisite for the systematic construction of pathways in

1Hence, ∆G0, the change of the free enthalpy under standard conditions, determines that constellation
of concentrations at which the (reversible) reaction changes its direction, i.e., the sign of ∆c.

2The EC-numbers reflect the official classification of the enzymes. The first three numerals in the
EC-number hierarchically define the type of the enzymatic function, the fourth numeral increments over
different enzymes which catalyze the same function.

4

such nets. In particular, the difference between branching reactions (one reaction produc-
ing more than one product) and conflicting reactions (several reactions competing for the
same educt) is of substantial importance (see below).

In the following, three rules are defined which shall serve to find sensible and manage-
able (in size and speed) pathways among the millions of possibilities.

D-Glucose

beta-Glucan

D-glucose 1-phosphate

D-Glucose 6-phosphate

Maltose

D-Fructose

SucroseSorbitol

Cellobiose

Laminaribiose

GDPglucose

Paramylon
IsomaltotrioseLaminarioligosaccharides

6-Phospho-D-glucono-1,5-lactone

Lichenin

beta-D-Glucose

Cellotriose

L-Arabitol

Cellohexaose

Laminaritetraose

D-fructose 6-phosphate

Glycogen

beta-glucose 1-phosphate

L-Sorbose
5-Dehydro-D-fructose

Cellulose
Trehalose

Amylose

6-Phospho-D-gluconate

Cellopentaose

Maltotriose

CDPglucose

Cellodextrins
Cellotetraose

Inulin

D-Gluconate

6-Phospho-beta-D-glucosyl-(1,4)-D-glucose

D-Mannose
UDPglucose

ADPglucose

Ribitol

Amylopectin

D-glucose 1,6-bisphosphate

beta-D-Glucose 6-phosphate

Laminaripentaose

TDPglucose

Raffinose
Stachyose

5-Keto-D-fructose

Starch

Carbamoyl phosphate

D-Mannitol

Trehalose 6-phosphate

Isomaltodextrins

Laminaritriose

D-Fructose 1-phosphate

IDPglucose

D-Sorbitol 6-phosphate

1L-myo-Inositol 1-phosphate

D-Galactonolactone

D-Ribulose 5-phosphate

D-Ribulose

D-Glucosamine 6-phosphate

Mannotetraose

Mannitol 1-phosphate

Melibiose

Mannotriose

D-Fructose 2,6-bisphosphate

2-dehydro-3-deoxy-D-gluconate
L-Arabinose 1-phosphate

Sugar 1-phosphate

Mannopentaose

L-Xylulose
L-Ribulose

Maltopentaose

myo-Inositol

Maltotetraose

alpha-D-Glucosyl-protein

D-Erythrose 4-phosphate

D-Galactose

Glycolate

Mannobiose

Mannose 6-phosphate

D-Fructose 1,6-bisphosphate

D-Erythrose

N-Acetyl-D-glucosamine 6-phosphate

Glyoxylate

Pyruvate

D-Ribose 5-phosphate

D-Ribose

D-Glyceraldehyde 3-phosphate

L-Arabinose

Glycerone phosphate

D-Arabinose 5-phosphate

Tartronate semialdehyde

Sedoheptulose 7-phosphate

D-Mannonate

D-Arabitol

D-Ribulose 1,5-bisphosphate

Glycolaldehyde

Xylitol

D-Glucuronate

D-Arabinose

3-Dehydro-L-gulonate

1-alpha-D-Galactosyl-myo-inositol

D-Xylulose 5-phosphateD-ribulose 1-phosphate

L-Ribulose 5-phosphate
Glycerol

Adenosine

D-Xylose

3-Phospho-D-glycerate

Guanosine

Methylglyoxal

3-Phospho-D-glyceroyl phosphate
glycerone

Ribulose 5-phosphate

Acetyl-CoA

glycine

D-Xylulose

L-Glycol

Oxalate

Dihydroxyfumarate

sn-Glycerol 3-phosphate

Hydroxypyruvate

Sedoheptulose 1,7-bisphosphate
D-Ribose 1-phosphate

Oxalyl-CoA

ADP-D-ribose
Phosphoenolpyruvate

Ethanolamine D-Glycerate

L-Gulonate

D-Fructuronate

Formate

L-Serine
Acetaldehyde

Malate

L-Tartrate

meso-Tartrate

erythro-3-Hydroxy-L-aspartate
(3S)-Citramalyl-CoA

(R,R)-Tartrate

Ethanolamine phosphate
Lactaldehyde

L-Alanine

Acyl-CoA

Malonyl-CoA

oxaloacetate

Formaldehyde

3-Acetoacetyl-CoA

D-Glyceraldehyde

Formyl-CoA

3-Oxopropanoate

2-Phospho-D-glycerate

1-Acyl-sn-glycerol 3-phosphate

(S)-2-Methylmalate

L-Aspartate

L-Leucine

Palmitate

trans-2,3-Dehydroacyl-CoA

D-Alanine

Acetoacetate

Malonate

(S)-Lactate

3-Hydroxypropanoate

3-Hydroxy-3-methylglutaryl-CoA

cis-2,3-Dehydroacyl-CoA

(R)-Malate

3-Oxoacyl-CoA

D-Aspartate

3-Hydroxybutanoyl-CoA

D-Alanyl-D-alanine

Citrate

L-Allothreonine

(3S)-Citryl-CoA

Acyldihydroxyacetone phosphate

beta-Alanine

Palmitoyl-CoA

L-Threonine

Fumarate

Ala-Ala

O-Acetyl-L-serine

3-Hydroxy-3-methylglutarate

N-Carbamoyl-L-aspartate

L-Cysteine

4-Methyl-2-oxopentanoate

alpha-Ketobutyrate

AdenylosuccinateAla-Ala-Ala-Ala

D-Lactate

Isocitrate
Succinate

L-Asparagine

(S)-3-Hydroxyacyl-CoA

2-Oxopropionate

2-Oxosuccinate
(R)-3-Hydroxyacyl-CoA

Ala-Ala-AlaN-Acetyl-L-aspartate

3-Cyano-L-alanine

Maleate

Malonic semialdehyde

2.7.1.47

3.1.3.20

1.1.1.118

3.5.4.18

2.7.7.29

2.7.7.35 2.7.7.36

2.7.7.9
2.7.9.1

4.1.1.39

1.1.1.2

1.3.3.6

2.4.1.20

2.7.1.142

2.7.1.15

2.4.1.362.7.1.45

2.4.1.97

2.4.1.97
2.4.2.12.4.2.1

3.1.3.393.1.3.46

2.6.1.12
2.6.1.12

3.1.3.58

3.1.3.58

2.6.1.18

2.7.1.85

3.1.3.58

3.1.3.58

3.1.3.9

2.7.2.3

3.5.1.7

3.2.1.10

2.7.3.9

3.2.1.10

3.5.4.18

3.2.1.10

2.7.7.10

3.2.1.108

2.6.1.35

2.7.7.13

3.2.1.113

2.6.1.44

2.7.7.22

2.7.7.282.7.7.28

2.7.7.29

2.7.7.33
2.7.7.35

4.1.1.31

2.7.7.36
2.7.9.1

4.1.1.40

2.8.3.13
2.8.3.13

2.8.3.3

4.1.1.54

2.8.3.8

4.1.1.734.1.1.73

4.1.2.13
4.1.2.13

4.1.2.22

1.1.1.118
1.1.1.123

1.1.1.124

1.1.1.13 1.1.1.1381.1.1.138

1.1.1.138

1.1.1.14

1.1.1.60

1.1.1.60
1.1.1.60 1.1.1.19

1.1.1.20

1.2.1.9

1.2.3.51.2.3.6
1.2.99.4 1.1.1.28

1.1.1.36

1.3.1.37
1.3.1.371.3.1.38

1.3.1.6

1.3.1.6
2.4.1.13

1.3.1.7 1.3.1.7

1.3.3.6
1.3.99.11.4.1.1

1.4.1.10

2.4.1.24

1.4.1.7

1.4.1.7

2.7.1.121

2.7.1.142

2.4.1.30

1.4.3.15

2.7.1.152.7.1.16

2.4.1.31

2.4.1.311.4.3.2

1.4.3.81.4.3.8

2.7.1.3

1.4.99.1

3.1.2.2

2.7.1.31

3.1.2.5

2.1.2.1

2.4.1.64

2.1.2.1

2.4.1.64

3.1.3.1
3.1.3.1

3.1.3.1

3.1.3.11

2.7.1.41

3.1.3.12

2.7.1.45

2.4.1.7

3.1.3.20
2.7.1.46

2.7.1.5

2.7.1.542.4.2.1

2.4.2.12.6.1.12

2.7.1.61

3.1.3.58

2.7.1.61

2.6.1.12

1.1.1.11

3.1.3.58

2.7.1.64
2.7.1.82

3.1.3.58

3.2.1.58

2.7.1.85

3.1.3.58

2.7.2.10

3.1.3.58

2.7.2.10

3.1.3.9

2.7.2.3

3.5.1.7

2.7.3.9

3.2.1.10

2.7.7.13

3.2.1.113

2.6.1.35

2.7.7.22

2.6.1.44

2.7.7.27
2.7.7.27 2.7.7.28

3.7.1.1

2.7.7.28

2.8.3.9

4.1.1.29

2.7.9.22.8.3.10

3.2.1.75

2.8.3.10
2.8.3.11

3.2.1.22

2.8.3.11

3.2.1.22

2.8.3.3

4.1.1.49

2.8.3.8

4.1.1.54

3.1.1.17

3.1.1.17
3.1.1.31

4.1.1.9

4.1.2.13

3.2.1.91

4.1.2.13

4.1.2.13

4.1.2.22

1.1.1.119

1.1.1.12
1.1.1.120
1.1.1.121
1.1.1.123 1.1.1.123

1.1.1.123

1.1.1.138

1.1.1.138

1.1.1.138

1.1.1.14
1.1.1.141.1.1.14

1.1.1.140

1.1.1.60
1.1.1.177

1.2.1.46

1.2.1.49

1.2.1.51

1.2.1.9

1.2.3.6

1.2.99.4

1.1.1.26

1.1.1.36

1.1.1.37

1.3.1.38

2.4.1.113

1.3.1.6

2.4.1.13

2.4.1.13

1.3.1.71.3.1.7

2.4.1.13

2.4.1.13

1.3.5.1

1.3.99.1
1.3.99.11.3.99.11.3.99.11.3.99.1

2.7.1.10

1.4.1.1

1.4.1.10

2.7.1.11

1.4.1.81.4.1.8
1.4.3.1

2.4.1.31

1.4.3.161.4.3.16

1.4.3.2

2.4.1.31

1.4.3.2

2.7.1.17

1.4.3.2

2.7.1.19

3.1.2.10

2.7.1.19
2.7.1.2

3.1.2.11

2.7.1.28

2.7.1.29

3.1.2.17

1.2.1.10

2.7.1.30

1.4.99.1

3.1.2.23.1.2.5

2.7.1.4

2.7.1.42.7.1.4

2.7.1.40

2.4.1.64

3.1.3.10

2.7.1.41
3.1.3.11

2.4.1.67

3.1.3.19

2.4.1.73.1.3.19

2.7.1.46

3.1.3.22

2.7.1.5

3.1.3.22

3.1.3.24

3.2.1.54

2.7.1.54

3.1.3.25

2.7.1.61

3.1.3.38

2.7.1.61

3.1.3.38

2.7.1.61

2.7.1.61

1.13.99.1

1.1.1.10

3.2.1.58

2.7.1.64

3.2.1.58

3.2.1.58

2.7.1.90

3.7.1.1

4.1.1.12

2.7.7.29
2.7.7.33

4.1.1.22.8.3.9

4.1.1.34

3.2.1.21

4.1.1.34

4.1.1.41

4.1.1.47

3.1.1.31

3.2.1.3

3.2.1.91
3.2.1.933.5.1.26

1.1.1.119

1.1.1.124

1.1.1.14
1.1.1.14

1.1.1.21

1.2.1.49

1.1.1.211
1.1.1.212

1.2.1.51

1.1.3.11

2.4.1.13

1.3.1.6

1.1.1.38

1.1.1.38

1.3.5.1

2.4.1.1391.1.1.47

2.4.1.14

2.7.1.10

2.4.1.15

2.7.1.10

2.7.1.11
2.7.1.12

2.7.1.16

2.4.1.36

1.4.3.2

3.1.2.10

3.1.2.11

2.4.1.49

3.1.2.17

2.4.1.49
2.4.1.49

2.4.1.49

1.2.1.10

2.7.1.32

1.5.99.1

1.2.1.15

2.7.1.40

2.4.1.64

2.4.1.67

1.2.1.3

2.4.1.82
3.2.1.58 3.2.1.583.2.1.583.2.1.58

1.1.1.101.1.1.11

3.2.1.58
3.2.1.58

2.6.1.18
3.2.1.58

3.2.1.583.2.1.58

3.5.5.43.6.1.133.6.1.13
3.2.1.116

3.6.1.213.6.1.21

3.2.1.116

3.2.1.60

3.7.1.3

4.1.1.114.1.1.2

4.1.1.32

4.1.1.34

3.2.1.21

4.1.1.34

3.2.1.78

4.1.1.40

4.1.1.72

4.1.1.8

3.2.1.28

3.2.1.3

3.2.1.3

3.2.1.3

3.2.1.93

3.2.1.3

3.2.1.3

3.2.1.95

3.2.1.39

3.4.16.4

3.5.1.31.1.1.140

1.1.1.59

1.1.1.6

1.1.1.156

1.1.1.17

1.1.1.19

1.1.1.72
1.1.1.21

1.1.1.21

1.2.1.4

1.1.1.83

1.1.1.9

1.1.3.10

1.1.1.215

1.1.3.13

1.1.3.21

1.1.1.26

1.1.1.26

1.1.1.28

1.1.3.4

1.1.1.38

1.1.1.40

2.4.1.13

2.4.1.13

2.4.1.13

1.1.99.14

2.4.1.139

1.1.99.14

1.1.1.47

1.1.1.56

1.1.1.56

1.1.1.57

2.4.1.15

1.1.99.22

2.7.1.121

2.4.1.31

1.1.99.6

1.4.3.2

1.1.99.6

2.4.1.49
2.4.1.491.2.1.12

1.5.99.1

2.4.1.49

1.2.1.13

2.4.1.49

1.2.1.132.4.1.82

3.2.1.39

3.2.1.42

3.2.1.54

3.2.1.58

2.3.1.17

2.6.1.15

3.5.5.4

2.6.1.35

3.2.1.116

3.2.1.60

3.2.1.60

3.2.1.116

3.2.1.7

3.7.1.3

3.2.1.7

2.8.3.9

4.1.1.31

3.2.1.74

4.1.1.38
4.1.1.38

3.2.1.223.2.1.25

3.2.1.25

4.1.1.72

3.2.1.86

3.2.1.25

4.1.1.73

4.1.1.8

3.2.1.26

3.2.1.3

3.2.1.3

4.1.2.14

3.2.1.3

4.1.2.14

3.2.2.2

3.2.1.393.4.14.2

1.1.1.13

1.1.1.141.1.1.14

1.1.1.57

1.1.1.15

1.1.1.15

1.1.1.156

1.1.1.177

1.1.1.67

1.1.1.721.1.1.2

1.1.1.81

1.1.1.83

1.2.1.46

1.1.1.96

1.1.1.2121.1.1.215

1.1.3.11

1.1.3.13

1.1.3.15

1.1.3.4

1.1.1.27

1.1.3.4

1.1.1.38

1.1.1.40 1.1.1.44

2.4.1.13

1.1.99.12

2.4.1.13

1.1.99.14

2.4.1.13

1.1.99.14

1.1.99.14

1.1.1.49

1.1.1.56

2.8.3.9

2.7.1.10

2.4.1.14

2.4.1.24

2.4.1.25

1.1.99.22
2.4.1.25

2.4.1.30
2.4.1.31

1.1.99.7
1.1.99.7

2.1.3.1
1.2.1.17

2.1.3.1
2.1.3.2

1.2.1.18

2.2.1.1

2.2.1.1

2.4.1.82.4.1.8

1.2.1.3

1.2.1.3

3.2.1.422.2.1.3

2.3.1.16

2.3.1.17

1.13.12.4
1.13.12.4

2.3.1.542.3.1.54
2.6.1.18

3.2.1.6

2.3.1.85
3.2.1.6

3.2.1.6

2.6.1.21

3.2.1.6
2.6.1.35

3.2.1.6 3.2.1.60

2.6.1.44
2.6.1.44

2.6.1.45
3.2.1.60

3.2.1.133

2.6.1.51

3.2.1.7

3.2.1.7
3.2.1.7

3.2.1.70

3.2.1.74

3.2.1.74

3.2.1.75

3.2.1.25

3.2.1.80

4.1.1.73

3.2.1.26

3.2.1.26

3.2.1.913.2.1.91
3.2.1.91 3.2.1.91

3.2.1.3
4.1.2.174.1.2.20

3.2.1.39

4.1.2.20

3.2.1.393.2.2.2

3.2.1.39

3.4.13.193.4.14.2

3.5.1.15

3.5.1.253.5.1.261.1.1.591.1.1.6

1.1.1.17

1.1.1.77

1.1.1.8

1.1.1.200

1.2.1.41.1.1.8

1.2.1.41.2.1.4 1.1.1.83

1.2.1.4
1.1.3.10

1.1.1.224

1.1.3.15

1.1.3.15 1.1.1.26

2.3.1.9
2.4.1.112

1.1.3.5

1.1.3.5

1.1.1.38

1.1.99.11

1.1.99.12

1.1.99.14

1.1.99.14 1.1.1.57

2.8.3.9
2.7.1.105

2.4.1.20

1.1.99.21

1.1.99.22

1.1.99.3

1.1.99.41.1.99.6

1.2.1.15

1.2.1.17

1.2.1.21

1.2.1.27
2.2.1.1

2.2.1.1

1.2.1.4

2.2.1.2
2.2.1.3

2.2.1.3
2.3.1.16

1.1.1.101
1.1.1.101

2.3.1.30
2.3.1.42

2.6.1.182.6.1.18

2.6.1.18
2.3.1.85

2.6.1.18
2.6.1.21

2.3.1.86

3.2.1.6

3.6.1.21

3.2.1.60

3.2.1.133

2.6.1.51

2.6.1.51

3.2.1.2

2.6.1.512.6.1.60

3.2.1.20
3.2.1.7

2.6.1.60

3.2.1.20 3.2.1.7

3.2.1.20

3.2.1.73.2.1.703.2.1.74

3.2.1.21
3.2.1.74

3.2.1.21

3.2.1.22

3.2.1.78
3.2.1.22

3.2.1.78

3.2.1.78

3.2.1.25

3.2.1.86

3.2.1.25

3.2.1.91

3.2.1.26

3.2.1.91

4.1.2.13
4.1.2.14

3.2.1.953.2.2.2

4.1.2.22
3.4.13.19

3.4.14.5

3.5.1.13.5.1.15
3.5.1.15

3.5.1.151.1.1.67

1.1.1.77

1.1.1.79

1.1.1.200

1.1.1.21

1.2.1.41.2.1.4 1.1.1.83

1.1.1.2111.1.1.224

1.1.3.21

2.3.1.9

2.4.1.112
2.4.1.113

1.1.3.4
1.1.99.10

1.1.99.10 1.1.1.38

1.1.1.451.1.1.57

1.1.99.14

1.1.99.16

1.1.99.21

1.1.99.22

1.1.99.3

1.1.99.31.1.99.4

1.1.99.6

2.2.1.11.2.1.3

2.2.1.1

1.2.1.3

2.2.1.12.2.1.1
2.2.1.22.2.1.3

2.3.1.152.3.1.4

2.3.1.42

2.6.1.18

2.3.1.86

3.2.1.603.2.1.60

3.6.1.21

3.2.1.2

3.2.1.20

2.8.3.9

3.2.1.203.2.1.20

3.2.1.213.2.1.21

3.2.1.21

3.2.1.22

3.2.1.78

3.2.1.78

3.2.1.80

3.2.1.913.2.1.91

3.2.1.913.2.1.91

3.2.2.2

4.1.2.22

3.4.14.5

3.4.16.4

3.4.17.163.4.17.16
3.5.1.25

1.1.1.67
1.1.1.67
1.1.1.67

1.1.1.20

1.1.1.215

1.1.1.215

1.1.99.11
1.1.99.11

1.1.99.11

1.1.1.45

1.1.99.16

1.1.99.3
1.2.1.3

Figure 2: The complete glycolysis pathway

First rule. Inspired by the occurrence rule of Petri nets, only those paths – then
called pathways – shall be considered which are closed in the sense that they take care of
the availability of all educts and the consumption of all intermediate products. The result
of the first rule is that there are no loose ends in such a pathway. An exception from this
rule are small molecules like H2O,NADH,ADP,CO2 found in sufficiently large amounts
in all organisms, called ubiquitous molecules.

The essential task prior to constructing a metabolic Petri net model is the sensible
selection of the pathways to be modelled. To start with, the initial and final substrates,
i.e., the source and the sink of the envisaged metabolic process have to be determined.

For example, the glycolysis comprises all metabolic processes leading from glucose as
the initial to pyruvate as the final substance. An unrestricted search in the database
[BRENDA] would result in about 500 000 paths (of a length of at most 9; not shown).
Applying the above mentioned first rule leads to figure 2, showing about 80 000 paths.
Clearly, the resulting number of pathways is still much too large to be handled.

Hence, a second rule is applied which mirrors the observation that very long paths
connecting two substances contribute much less to the concentration changes of these

5

asource

g

hd

e sink

b

f

c

area =
9 reactions

ubiquitous substrates
(NADH, ATP, ...)

max. width =
2 reactions

max. length = 5 reactions

Figure 3: Pathway reduction principles

D-Glucose

Isomaltotriose

D-Fructose

Sucrose

Cellobiose

6-Phospho-D-glucono-1,5-lactone

beta-D-Glucose

Sorbitol

D-glucose 1-phosphate

D-Glucose 6-phosphate

MaltoseGDPglucose

L-Arabitol

Ribitol

D-Mannose

Amylose

6-Phospho-D-gluconate

Starch

Isomaltodextrins

D-fructose 6-phosphate

D-Mannitol

D-Sorbitol 6-phosphate

D-Gluconate

2-dehydro-3-deoxy-D-gluconate

L-Arabinose 1-phosphate

L-Ribulose

D-Ribulose 5-phosphate

Mannose 6-phosphate

D-Ribulose

Mannitol 1-phosphate

D-Erythrose 4-phosphate

D-Erythrose

L-Arabinose

Glycerone phosphate

Pyruvate

Tartronate semialdehyde

Glycolaldehyde

D-Ribulose 1,5-bisphosphate

D-Xylulose 5-phosphate

L-Ribulose 5-phosphate

D-Glyceraldehyde 3-phosphate
Glycerol

sn-Glycerol 3-phosphate

Phosphoenolpyruvate

Hydroxypyruvate

3-Phospho-D-glycerate

Ethanolamine

D-Glycerate

Methylglyoxal

3-Phospho-D-glyceroyl phosphate

L-Glycol

glycerone

Dihydroxyfumarate

L-Serine

Acetaldehyde

oxaloacetate

Malate
L-Tartrate

D-Glyceraldehyde

meso-Tartrate

(R,R)-Tartrate

Lactaldehyde

2-Phospho-D-glycerate

(R)-Malate

(S)-Lactate

2.7.1.47

1.1.1.118

3.5.4.18

2.7.7.29

4.1.1.39

1.1.1.2

1.3.3.6

2.4.1.20

2.7.1.142

2.7.1.15

2.4.1.36

2.4.2.1

3.1.3.39

2.6.1.35

3.2.1.113

2.6.1.44

4.1.1.31

4.1.1.54

4.1.1.73

1.1.1.124

1.1.1.138

1.1.1.1381.1.1.14

1.1.1.60
1.1.1.19

1.1.1.28

1.1.1.36

1.3.1.6

2.4.1.30

2.7.1.3

2.7.1.31

3.1.3.20

3.2.1.58

2.7.3.9

2.7.7.22

3.2.1.75

4.1.1.54

3.2.1.91

1.1.1.123

1.1.1.138

1.1.1.14

1.1.1.26
1.1.1.37

2.4.1.132.7.1.10

2.7.1.11

2.4.1.31

3.1.3.10

3.2.1.58

3.2.1.58

4.1.1.34

4.1.1.47

3.5.1.26

1.1.1.14

2.4.1.139

2.4.1.14

2.4.1.15

2.7.1.12

2.4.1.36

2.4.1.49
3.2.1.58

3.6.1.13

3.6.1.21

4.1.1.32

3.2.1.3

3.2.1.3

3.2.1.95
1.1.1.140

1.1.1.17

1.1.1.19

1.1.1.83

1.1.3.4

1.1.1.40

1.1.99.22

2.4.1.49

3.2.1.86 4.1.1.733.2.1.26
3.2.1.3

3.2.1.39

3.4.14.2

1.1.1.14

1.1.1.57

1.1.1.156

1.1.1.72

1.1.1.212

1.1.1.2151.1.3.13

1.1.3.4

1.1.1.40

1.1.1.44

1.1.99.12

1.1.99.14

1.1.99.14

1.1.1.56

2.8.3.9
2.7.1.10

2.4.1.24

2.4.1.25

2.4.1.25

2.4.1.31
2.4.1.8

1.13.12.4

3.2.1.74

3.2.1.75

3.2.1.26

3.2.1.91

3.2.1.39

3.2.1.39

3.5.1.26

1.1.1.77

1.1.1.224
1.1.3.15

1.1.3.15

1.1.1.26

1.1.1.57

2.8.3.9

1.1.1.211

1.1.1.57

Figure 4: Glycolysis pathways reduced to length 9 and width 1

6

substrates than short ones. This second rule is depicted in figure 3. It cuts off all those
paths which exceed a certain length and a certain width (max ST-cut). Delimiting the
length of the glycolysis pathways to 9 and their width to 1, leads to figure 4 which contains
170 pathways. However, to include the simplified glycolysis as presented in most textbooks
(figure 5), the width has to be at least 2, rendering 541 pathways (not shown).

As a third rule, which in practice should not be applied after but before or in conjunc-
tion with the former two rules, we restrict those pathways to contain only enzymes which
exist in the organism under examination. Most of the mentioned metabolic databases
include this information. For the sample organism yeast this finally results in 8 pathways
for the glycolysis.

4 The Petri Net Models

Having chosen a set of closed pathways, we are at first interested in finding constellations
for which its execution reaches a dynamic (i.e. flow) equilibrium: Given steady sources
and steady sinks of a pathway, each substrate concentration must converge. To reach that
goal, we model such pathways as a Petri net and then simulate it with diverse parameters.

Our first attempt to model metabolic pathways consists in simply concatenating the
particular reactions by identifying the products of any reaction with the educts of the
following one(s). In case of the textbook glycolysis pathway this leads to the intuitive
model A of figure 5.

Glyc_3P

E_2'7'2'3

Glyc_2P

E_5'4'2'1

PEP

E_4'2'1'11

Pyruvate

E_2'7'1'40

Glyc_1'3

E_1'2'1'12

E_5'3'1'1

GA3P

GlucoseGl

Gl_

G6P

E_2'7'1'1

F6P

E_5'3'1'9

F16P

E_2'7'1'11

DacP

E_4'1'2'13

ATP

ADPNAD NADH

Citrate

ATP

ATP ATP

ADPADP

ADP

Figure 5: The model A of the textbook glycolysis

The model A is a timed high-level net diagram as expressed by Design/CPN.3 Every
3Observe that, in figure 5, the arcs connecting the transitions with the substrates places are directed

merely to indicate the preferred direction of the reaction (cf. section 2). In the corresponding subpages
they are replaced by a pair of arcs, one pointing to and one from the transition because the substrate
concentrations are changed by a transition occurrence. Undirected arcs (between enzyme places and
reaction transitions) indicate that the enzyme concentrations stay unchanged but are needed for the kinetic
reaction function. – A similar remark holds true for figure 8.

7

reaction in figure 5 is a substitution transition standing for the transition of a subpage
like that shown in figure 1. Of course, the substituting subpages have to fit to the actual
numbers of educts, products and inhibitors. Thus we have one subpage for every possible
combination of these numbers (not shown in the paper).

Initially, we assume that all reactions run at the same step width of 1, increasing the
simulation time after each occurrence by 1. This is achieved by setting the delay expression
s′ of the arc pointing to the place state of figure 1. It can be noticed, however, that the
speed of certain reactions are rather robust whereas others change quite dramatically in
case of slight enzyme or substrate concentration deviations. The latter enzymes – called
key enzymes – constitute the target of control mechanisms in the organism that regulate the
metabolic processes according to the actual situation. This observation is taken advantage
of in our model by adapting the step width (i.e., the time increment s′) to the current speed
of the reaction. If, for example, its actual speed is very low then the next occurrence of this
reaction may be delayed by more than the actually specified time unit (not exceeding a
maximum value of, say, 12), and if the speed is very high then the actual delay expression
may be decreased (with a minimum value of 1). To find out an appropriate function for
the speed dependent adjustment of the step width of the individual reactions is a tricky
task. We checked out several strategies, but we shall not discuss this problem further in
the paper. The effect of applying this step adjustment function leads to an acceleration
of the simulation because, in every time step, only a subset of the reactions have to be
executed.

After it became evident that A constituted a sensible model that could be generalized
to arbitrary metabolic pathways, a software package4 was developed that automatically
generates such a model from the data extracted from the databases. The resulting model
can be executed immediately in the simulation mode. No much attention was paid to the
graphical layout of the model: the reactions are simply arranged in lines until a page is
filled, and then a new page is started. Afterwards, a final manual revision of the diagrams
is advisable. The glycolysis model of figure 5 was constructed this way.

The simulation performance of the model A on a Power Macintosh G3 was not satisfactory
(cf. the figures in section 5). Therefore, we built a new model B (not shown) by folding
all places with the substrate concentrations into a single one, doing the same with the
enzyme places, and connecting these two places to one single reaction transition. With a
new simulator version of Design/CPN developed by the CPN group at Aarhus University,
this would have lead to a better performance. As we did not intend to use this simulator at
the moment, not surprisingly the performance got even worse: The calculation of enabling
leads to a combinatorial explosion if the number of tokens in the places is very high. –
Hence we looked for a more appropriate solution.

In the models A and B, all substrate and enzyme places are always marked. This means
that all reaction transitions are, in principle, always enabled. What changes are the second
elements of the pairs in the substrate places, i.e., the concentrations. Even when an enzyme
is transitorily de-activated – which was necessary for the experiments to be conducted –,
this was achieved by setting its concentration r to zero; the corresponding transition in
this case is disabled due to its guard [r > 0.0, ...] (figure 1).

If we focus on those transitions which are not enabled permanently, we can omit all
reaction transitions or replace them all by just one transition. The current substrate

4Standard ML was used as programming language because of its flexibility, its integration in De-
sign/CPN and its use for the annotations in CPN models.

8

Enzyme_State

TrState

[]

setconc
C

 input (enzlst,reglst,md);
 output (enzlst',dse,reglst',dsr,dt);
 action
 let
 val ((enl,dse),(rgl,dsr),dt) =
 if md=0 then (* execute reactions *)
 (exec_step(ENZYM,enzlst),
 exec_step(ENVIR,reglst),0)
 else if md=(~1) then (* initialize lists *)
 (init_list(!pEnz_List,md),
 init_list(!pReg_List,md),1)
 else (*md>0*) (* update lists *)
 (upd_list(!pEnz_List,enzlst,md),
 upd_list(!pReg_List,reglst,md),1)
 in (enl,dse,rgl,dsr,dt)
 end;

OpMode

GlobalMode

Regulator_State

TrState

[]

enzlst'@+dse

md 0@+dt

reglst'@+dsr

enzlstreglst

Figure 6: The kernel page of the net model C

concentrations can be stored in a particular concentrations record. This leads to the new
model C, in which there exists just one transition setconc comprising all reactions (figure 6).
Model C is behaviourly equivalent to model A. However, the intuitive pathway diagram
(figure 5) is no longer needed, and the automatic construction of model C degenerates
to the generation of the enzyme catalog and figure 6. This figure shall now be discussed
briefly.

The colour set TrState consists of one list in which the necessary variables for the
enzymes and the step width are encoded. To be more specific, this colour set is a list of
pairs (time t, sublist(t)) whose first member, t, determines the simulation time at which
those reactions included in the sublist(t) have to occur next. Thus, at each simulation time
t, only the sublist(t) has to be inspected for the reactions to be executed. The members
of each sublist are quadruples containing the enzyme name (characterizing the reaction),
its concentration (constant), the last step width and the last speed of the reaction.

The place Enzyme State stores all information for the proper execution of the en-
zymatic reactions through the function R kin. As mentioned above, R kin takes the
metabolic constants of the enzyme from the enzyme catalog and the current concentrations
of the substrates from the concentrations record.

The place Regulator State deals with metabolic processes that are attributed to the
environment of the modelled (glycolysis) pathway. Such reactions are necessary, e.g., to
regulate particular ubiquitous molecules or to provide for steady sources and sinks of
the entire pathway (cf. section 3). Normally this kind of reaction is not catalyzed by
an enzyme, rather its speed is controlled by a (properly chosen) factor which – in this
context – can be treated like an enzyme.

The transition setconc serves three purposes, distinguished by the value of md, the
global mode.

1. At the beginning of the simulation (md = −1) the lists in Enzyme State and Regu-
lator State are initialized via the function init list.

2. Later, during the simulation (md = 0), the function exec step is applied, which
invokes R kin for all enzymatic and environment reactions that are due at the current
time, say tc, i.e., are a member of the sublist(tc). These reactions are executed in a
random sequence to take into account their inherent concurrency. After the execution of a
reaction, yielding a new step width dsx, an updated entry for the reaction is inserted into
the appropriate sublist(tc + dsx). In this manner, the new lists enzlst’ resp. reglst’ are
generated which, at the end of this process, replace the old lists in the places Enzyme State

9

resp. Regulator State.
Provision is taken in our metabolic net models that the set of enzymes (and hence

of the enzymatic reactions) can be altered during the simulation, splitting the simulation
into several so-called simulation intervals.5 Prior to running the simulation, these intervals
have to be specified. Each of them is characterized by one specific global mode value md
with md ∈ {−1, 1, 2, 3, ...}. For each interval, the corresponding enzymes and substrates
together with their initial (w.r.t. the interval) concentrations have to be specified in a
particular mode file. Moreover, for every interval, a reaction speed factor sp and the
model time te of its end has to be chosen in advance. A typical interval definition could
read (md = −1, sp = 0.2, te = 600). In this case, every reaction speed dc computed by
R kin is multiplied by the factor sp. This finer granularity of the reactions is mainly
needed to cope with substrate concentrations near zero to avoid meaningless negative
concentrations.6 As a result, if the total model time te equals 600 and sp = 0.2, then the
total simulation time7 would become treal = te/sp = 3000.

3. Whereas the global mode value md = −1 is reserved for the initialization and
md = 0 for the ”normal” processing (see 1. and 2. above), modes with md > 0 are used
to cope with a switch between intervals. To perform such a switch the function upd list is
applied. It updates the concentrations of the involved substances and initializes the lists
in Enzyme State and Regulator State for the new interval to be encountered.

The entire net model C of the textbook glycolysis pathway consists of three pages. The
most prominent one, modelling the metabolic processes, has been shown as figure 6. The
other pages shall only be mentioned here.

One of them deals with the quite simple initialization of different values. The last page
controls the management of the global mode values and the writing into the plot file from
which – after the end of the simulation – a variety of plot diagrams can be constructed
which depict the development of the concentrations (and of other values) as a function of
time.

5 Simulation Results and Performance

The result of each simulation is usually represented as a graph that shows the concen-
tration/time curves for the substrates involved. These diagrams are drawn by use of
Microsoft Excel with some VBA macros. A typical example of such a plot diagram is
figure 7 showing the concentration curves of the substrates participating – during a first
interval of 1000 model time steps – in the (textbook) glycolysis, followed – in a second
interval also of 1000 time steps – by the gluconeogenesis. As can be observed, towards the
end of the entire simulation, each of the substrate concentrations converges, i.e., a flow
equilibrium is reached.

For analysing the metabolic processes, also the temporal development of other values,
e.g. of the reaction speed dc, may be of interest. This allows to identify, most often after
a number of experimental steps, the cause of a deviation from the expected equilibria and
to alter the responsible values. Such a series of experimental simulation runs can lead to
identifying the key enzymes which most efficiently control and influence the entire pathway

5Obviously, it would make no sense to choose totally divergent sets of enzymes (and substrates) for the
intervals. Rather the intervals should, taken together, constitute again a closed metabolic pathway.

6A negative concentration is the result of a too wide extrapolation, an ”over-reaction”. Anyhow, to be
on the safe side, a resulting negative concentration is always cut off to zero.

7The simulation time must not be confused with the real (clock) time that a simulation run takes.

10

-50

0

5 0

100

150

200

250

300

350

400

450

500

550

600

650

0
100

200
300

400
500

600
700

800
900

1000
1100

1200
1300

1400
1500

1600
1700

1800
1900

2000
t

c

G6P

F6P

F16P

DacP

GA3P

13Gl

3PGl

2PGl

PEP

Cit/5

Gl_*20

Pyr_*20

F6P

3PGl

DacP
PEP

13Gl

2PGl

Cit /5

G6P

F16P GA3P

Figure 7: A concentration diagram for the glycolysis followed by gluconeogenesis

Pathway Model simulation time number of steps real time (sec)
Glycolysis A 6 051 45 669 1 127

C 6 050 6 174 70
Glycolysis,
Glyc. & Gluconeogen., A 7 551 59 524 1 579
Glycolysis C 7 551 7 705 78
Glycolysis & A 5 051 42 351 1 070
Citric Acid Cycle C 5 050 5 154 69

Table 1: Performance figures for models A and C

processes.
Before presenting performance figures of a few typical simulation runs, it should be

emphasized that the simulations have been performed on a Power Macintosh G3 under
OS 8 using Design/CPN 3.0.5. Hence, we did neither profit from more powerful computers
nor from the improved versions of Design/CPN developed recently by the CPN group in
Aarhus.

Table 1 originates in the simulation of three different pathways:
– (textbook) glycolysis,
– glycolysis, then combination of glycolysis and gluconeogenesis, then again glycolysis,
– combined glycolysis and citric acid cycle.

Each pathway has been simulated, under identical conditions, with the models A and C.
As mentioned in the previous section 4, before a simulation run is started, among other

parameters, the maximal simulation time has to be set. In principle, at every simulation
time instance, several transition occurrences, i.e. steps, may happen.

11

In the model A, each reaction is represented by one separate transition. Hence, the
total number of steps is always much greater than the maximum simulation time. In
model C, however, one single transition stands for the set of all reactions. Thus the
number of steps should be equal to the simulation time.8

A considerable part of the real time consumed for a simulation run is used for calcu-
lating the enabled transitions. As a consequence, the simulations with model C are much
faster than with model A (factors 16.1, 20.2, 15.5, respectively). As can be seen from the
table above, instead of about 20 minutes, a typical experiment with model C now takes a
bit more than one minute.

6 Conclusions

The use of Petri nets to model and analyse metabolic pathways is promising. It renders
intuitive diagrams and allows the automatic generation of the net models. The simulation
speed – one of the crucial shortcomings as compared to differential equation models – can
be substantially increased by choosing an appropriate modelling approach.

To summarize, applying the rules for equivalence transformations of high-level Petri
nets implies a substantial flexibility in constructing net models that serve different in-
tentions but behave equivalently. The models A, B and C represent the same metabolic
processes, their execution renders identical results, although their graphical appearance
and their performance differs strongly. The merits of model A lies in its graphical struc-
ture which directly reflects the connections among the biochemical reactions. This appeal
of intuition is lost in the model C for the sake of a considerable performance improvement.

Pyruvate

E_4'1'1'32

PEP F16P

E_3'1'3'11

F6P

Regulatory_Protein_CAT8

Figure 8: The model of a regulated pathway (gluconeogenesis)

In this paper we restrict ourselves to metabolic networks and leave out the so-called
regulatory mechanisms9 (enzymes directly activating or inactivating other enzymes by
modifying them). The kinetic mechanism of regulatory enzymatic reactions is much less

8The number of steps is slightly greater because the transitions that are in charge of writing the actual
values into the plot file have to be added.

9Regulatory mechanisms include
(1) Transcription Control: control of biosynthesis of enzyme proteins through regulator proteins,
(2) Interconversion: switching enzyme from active to inactive, and vice versa, through (de–)activating
enzymes by signals of e.g. hormones via Second Messengers,
(3) Modulation by ligands, e.g., by coenzymes or diverse inhibitors.

12

understood compared to metabolic ones. Modelling regulatory enzyme relations as a Petri
net would create no major difficulties. A sample is shown in figure 8 (cf. footnote 3).

Prospective future work in the area of metabolism is mainly determined by the needs
and plans of the project in biochemistry we are collaborating with at GMD–SCAI. One
research direction shall make use of annotated sequence databases and organism-specific
databases to complement the metabolic information to get a more complete coverage of
the functions coded in a genome. This means that we get regulatory proteins which can
activate or de-activate certain enzymes of the pathway, leading to structures like the one
sketched in figure 8.

Acknowledgements

We are indebted to Kurt Jensen for his suggestions concerning the enhancement of the
model performance. We also would like to thank the five anonymous reviewers for their
valuable remarks and hints.

References

[BRENDA] The Comprehensive Enzyme Information System.
http://www.brenda.uni-koeln.de:80/.
Cf. Schomburg, D., Salzmann, D., Stephan, D.: Enzyme Handbook, Classes 1-6,
1990-1995, Springer-Verlag

[Design/CPN] Design/CPN. http://www.daimi.au.dk/designCPN/

[ENZYME] Enzyme nomenclature database. http://www.expasy.ch/enzyme/.
Cf. Bairoch, A.: The ENZYME data bank in 1999. Nucleic Acids Res. 27(1), 1999,
310-311

[FrCa84] Franco, R., Canela, E.: Computer simulation of purine metabolism. Eur. J.
Biochem. 144, 1984, 305-315

[KEGG] Kyoto encyclopedia of genes and genomes. http://www.genome.ad.jp/kegg/.
Cf. Ogata, H. et al.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids
Res. 27, 29-34

[LePa92] Lee, I-D., Palsson, B.O.: A Macintosh software package for simulation of human
red blood cell metabolism. Computer Methods amd Programs in Biomedicine 38,
1992, 195-226

[Hof94] Hofestädt, R.: A Petri Net Application of Metabolic Processes. Journal of System
Analysis, Modelling and Simulation 16, 1994, 113-122

[KZL00] Küffner, R., Zimmer, R., Lengauer, T.: Pathway Analysis in Metabolic
Databases via Differential Metabolic Display (DMD). Submitted to ”Bioinformatics
2000”

[MDNM00] Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri Net Represen-
tation of Gene Regulatory Network. In Proceedings of the Fifth Pacific Symposium
on Biocomputing. World Scientific Press, 2000, 338-349

13

[RLM96] Reddy, V.N., Liebman, M.N., Mavrovouniotis, M.L.: Qualitative Analysis of
Biochemical Reaction Systems. Comput. Biol. Med. 26(1), 1996, 9-24

[RML93] Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri Net Representation
in Metabolic Pathways. In Hunter, L. et al. (eds.): Proc. First Intern. Conf. on
Intelligent Systems for Molecular Biology, AAAI Press, Menlo Park, 1993, 328-336

[ScHo95] Schuster, R., Holzhütter, H-G.: Use of mathematical models for predicting the
metabolic effect of large-scale enzyme activity alterations. Application to enzyme
deficiencies of red blood cells. Eur. J. Biochem. 229, 1995, 403-418

[Tom99] Tomita, M. et al.: E-CELL: software environment for whole-cell simulation.
BIOINFORMATICS 15(1), 1999, 72-84

14

Web Based Interfaces for Simulation
of Coloured Petri Net Models

Bo Lindstrøm
Department of Computer Science, University of Aarhus
IT-Parken, Aabogade 34, DK-8200 Aarhus N, Denmark

E-mail: blind@daimi.au.dk

Abstract

There are many situations in which we can use models of systems to help make deci-
sions about their operation. This paper describes an approach which allows users without
knowledge of Coloured Petri Nets to control the simulation of Coloured Petri Net models
and interpret the results obtained from simulations via web based interfaces. We describe
the architecture design of facilities in a simulation tool for making it possible to simulate a
Coloured Petri Net model via a web based interface. As a representative example we show
how to implement the approach in the Design/CPN tool.

Keywords. Coloured Petri Nets, Web Interfaces, Design/CPN, CGI Scripts, HTML Forms,
Batch Simulations.

1 Introduction

There are many situations in which we can use models of systems to help make decisions about
their operation. In many cases discrete event models are the most appropriate computational
engines for these decision support tools. Petri Nets, in general, and Coloured Petri Nets [4]
(CPNs or CP-nets) in particular, are general modelling languages for creating discrete event
system models of systems. Petri Nets support both analysis of the logical properties of systems
and simulation so that logical properties and behaviour of systems can be examined [5]. Petri
Nets can also be used to investigate the performance of systems [9]. While Petri Net tools, such
as Design/CPN [1], offer powerful capabilities for verification [6] and performance analysis [8]
of models, their complexity and the need for understanding Petri Net theory requires specially
trained personnel.

The motivation behind this paper has been to put Petri Net technology in the hands of appli-
cation users who are not experienced with Petri Nets. The development of CP-nets and their tools
has progressed to an industrial strength modelling language that retains the theoretical founda-
tion of the CP-net theory. Though, not much focus has been on integrating simulation models
into real applications.

15

Until now, the same graphical user interface (GUI) is often used for all activities involved
in creating, simulating and analysing CPN models. Figure 1 illustrates this approach. First, the
GUI is used to create the CPN model. Then the same GUI is used for simulation activities, such
as setting the initial state/conditions of the model, and afterwards, it is used for simulating the
CPN model. Finally, the simulation output produced during simulations is often displayed using
the same GUI.

Create
CPN Model

CPN
Model

Simulate
CPN Model

Simulation
Results

GUI of CPN
Tool

Set Initial
Conditions

Show
Results

Initialised
CPN Model

Start

Figure 1: Original approach for creating
and simulating CPN models.

Create CPN
Model and GUI

CPN
Model

Simulate
CPN Model

Simulation
Results

GUI of CPN
Tool

Set Initial
Conditions

Show
Results

Initialised
CPN Model

Start

GUI of
CPN model

Figure 2: New approach for simulating
CPN models via a web browser.

The architecture envisioned in this paper is to leave the creation of the CPN models to CPN
experts, and let the application users simulate the models using another domain specific interface
(see Fig. 2). First of all the CPN expert creates a CPN model together with a suitable GUI
for the CPN model. Creating the CPN model and the GUI tailored to the CPN model allows
application users without knowledge of the simulation tool to simulate the CPN model over a
range of conditions (initial markings). Application users use the specially tailored GUI to set the
initial state/conditions of the CPN model and then to run the simulation. Finally, the CPN model
dependent GUI may be used to display the results of the simulation.

16

The architecture described above was expanded to provide the application user with remote
access to the simulator of a CPN model using web technology such as so-called Common Gate-
way Interface scripts (CGI scripts) [3]. Thus, the application user has the advantage of having
access to a rigorous discrete event system model of a complex distributed or concurrent system
over a network using any web browser. The application user would control the executable model
through aHyper Text Markup Language (HTML) [12] form that provides inputs to the CPN
model. The output would possibly be returned to the web browser of the application user. In
this manner, the application user could perform analysis of the CPN model of the system without
needing to understand or even see either the Petri Net models and Petri Net formalism nor the
user interface of the Petri Net tool. Thus, the application user simply provides input via a form
in a HTML document which is tailored to the CPN model, while the actual CPN model and
the modelling tool are never seen by the application user. The remaining sections of this paper
provide a detailed description of the design, implementation, and use of the approach outlined
above. The Design/CPN tool will be used as a basis for the implementation of the approach.

The paper is organised as follows. Section 2 presents a realistic example which illustrates the
approach for accessing simulators of discrete event systems via a web browser. This example will
be used as a running example throughout the rest of the paper. Section 3 contains a discussion
of the design considerations related to developing the approach. This includes both a general
discussion not related to a specific tool, and a discussion of how to realise the design in the
Design/CPN tool. Section 5 illustrates the amount of code a CPN expert using Design/CPN
needs to write to apply the approach to a specific CPN model. Finally, Section 6 concludes the
paper and gives suggestions for future work.

2 Example: Backup Company

This section gives an example of a realistic scenario, where a web based interface for simulating
CPN models would be very useful. We will use the example presented in this section for illus-
tration purposes in the rest of the paper. We will not describe the CPN model itself because it is
not necessary to understand the CPN model in order to understand the approach of simulating a
CPN model via a web browser. In later sections we will discuss how to modify the environment
of a CPN model to allow being simulated via a web browser.

A company sells backup devices from a web site. When a customer needs to decide which
backup devices to buy for a complex network environment, it is necessary to take several factors
into account. The customer needs to consider his existing system in order to obtain the most
suitable backup system. In particular he needs to consider the following factors.

• What is the network bandwidth on the local area network?

• How many machines do exist of each type: servers and workstations?

• How much disk capacity is present?

• Which is most important: price or performance?

17

Today many of the customers call the company and ask what components they should buy for
their particular system. The company has created a CPN model that can provide a specification
of the needed backup system given system requirements like the ones stated above. The CPN
model helps the employees answering the phone calls to answer the questions of the customers.

It takes a lot of time for the company to answer questions from customers who ask what to
buy for their specific system. Therefore, the company wants to provide their potential customers
with a tool that can help decide which components to buy. An obvious solution would be to
simply give the customers access to the CPN model from a web page. In this way both answering
technical questions about what to buy and placing an actual order can be handled via the Internet.
This means that customers do not have to call the company to figure out what to buy, thus
reducing the production costs for the company.

After having applied the approach described in this paper to the CPN model, it is possible to
simulate the CPN model via a web browser. A customer who wants to buy some backup devices
accesses the web page containing an HTML form, like the one in Fig. 3, which is the interface to
a simulator of the CPN model. The customer types the data of the existing system together with
the requirements to the new system into the form.

Figure 3: HTML form as interface to the CPN model.

The system replies after having simulated the CPN model based on the input given in the
form, see Fig. 4. Different kinds of output are produced. A textual description of the neces-
sary backup components is given, and the expected performance of alternative components is
illustrated using graphs.

The CPN model used in this example is a general model which can simulate any backup
device the company sells. The model is fixed to a specific backup device by using different
initial markings.

To determine which backup device is the most suitable for a customer, the CPN model is
simulated several times with different initial markings – once for each backup device that the

18

Figure 4: An HTML document containing the results of simulating the CPN model.

company produces. Based on the results obtained from the simulations, the most suitable ones
are selected and displayed to the customer.

3 Design

The general description of the approach for creating web based interfaces for simulating CPN
models introduced in Sect. 1 will be considered further in this section. The section describes the
general design. Section 4 will focus on how to implement the design in the Design/CPN tool.

Several different options exist for executing and controlling a program via a web browser. In
this paper we describe an approach for controlling simulations using so-calledForms andCom-

19

mon Gateway Interface scripts (CGI scripts) [3], which are both well-known Internet techniques.
Figure 5 illustrates the setup for using CGI scripts, while the message sequence chart in

Fig. 6 illustrates a scenario where a CGI script is activated by submitting a form from a web
browser. The scenario is as follows: a hypertext document (backup_form.html) is located
on Computer B which is a web server (HTTP server B). The document could, e.g. be an HTML
document like the one in Fig. 3. The application user using the web browser at Computer A
downloads the HTML document. The application user then fills out and submits the form. When
the application user submits the form, a link (URL) to a file on Computer C that holds the
CGI script (backup.cgi) will be followed. (The CGI script may also be placed on the same
computer as the HTML form.) This link is a "normal" HTTP link, but the file on the web server
on Computer B is stored in such a way that the web server on Computer C can tell that the
file contains a CGI script that is to be executed, rather than a document that is to be sent to the
client as usual. The web server then executes the CGI script which can read the input that the
user typed into the form. Based on the input the CGI script dynamically generates an HTML
document. The HTML document is sent to the client while it is being generated as a stream. The
web browser on the client computer displays the document while receiving the stream of HTML
code from the web server, as it would display any other HTML document. The HTML document
being received could, e.g. be like the one in Fig. 4.

 Computer A

Internet

 Computer B

 Computer C

 HTTP Server

 HTTP Server

 Web Browser

URL

backup.cgi

 backup_form.html

Figure 5: A web browser and two web servers.

Forms are very useful for specifying textual input via a web browser. Furthermore, they
provide a simple mechanism for submitting the contents of the form to a CGI script. The HTML
code for specifying a form is also very simple. Figure 7 shows most of the HTML code (it
has been shortened where the... are placed) used to display the HTML document in Fig. 3.
The URLwww.daimi.au.dk/cgi-sim/cpn.cgi in line 2 identifies the CGI script to be
activated when the user submits the form. The button for submitting the form is created using
line 9 in Fig. 7. Lines 6 and 8 specify that two fields for input should be created. The input fields
are named uniquely in the form using names (name=disk andname=price). These names
are used by the CGI script to access the values of the fields when the form is submitted.

Note that only a few lines of HTML code are necessary to create a form, thus most people
who have learned to create CPN models and do some basic programming should be able to learn
to write such HTML code without too much difficulty. Though, in the future it will be possible
to generate most of this code automatically.

20

 HTTP Server B Web Browser

Fill form

Submit form

HTTP Server C

Start CGI script

End CGI script

get_URL(doc1.html)

doc1.html

get_URL(CGI script)

HTML result

HTML result

Figure 6: A web browser requests a CGI script to be executed.

<HTML> 1
<FORM method=GET

action="http://www.daimi.au.dk/cgi-sim/cpn.cgi"> 3
...

Disk capacity: 5
<INPUT size=15 type=text name=disk value=10> GB

Is price more important than performance: 7
<INPUT size=15 type=checkbox name=price>

<INPUT type=submit value=" Submit Requirements "> 9
</FORM>

</HTML> 11

Figure 7: HTML code for creating a form.

The program or CGI script that reads the information submitted in the form and processes
it is more complex. Specialised scripts are required to handle the incoming form information.
CGI scripts may be written in scripting languages like Perl [13] or in programming languages
like C and Standard ML (SML) [10]. In general, a CGI script can be considered as an executable
program that can be executed on a web server on request from a web browser.

To be able to simulate CPN models using CGI scripts in a controllable manner there are
some requirements to the Petri Net tool. First of all, the Petri Net tool should be able to start a
simulation of a specific CPN model without requiring a user to interact with the Petri Net tool
via a GUI. For example, it should not be necessary to use dialog boxes to start a simulation –
it should be possible to automate everything in a script. The tool should allow users to write
user-defined functions, e.g. for retrieving input, saving files, and printing to standard output. The
reason for these requirements is that because a CGI script is invoked via a form, the CGI script
must be able to control everything related to reading input from the form, setting the initial state,

21

starting the simulation, and producing results.
To make the CGI script as user-configurable as possible with respect to controlling a simu-

lation, the CGI script must be able to control the simulation tool in the following way. When
the CGI script is executed from a web browser, it should automatically execute a sequence of
commands. In the following we will refer to this sequence of commands as a batch script [7].
A batch script can be considered as a simulation control script with the purpose of specifying
exactly what the CGI script is intended to do – including when to start a simulation. Figure 8
illustrates the architecture of a CGI script using a batch script to control the simulator. In this
context, a CGI script will be defined as an executable CPN simulator together with a batch script
which defines what happens when the CGI script is executed.

Execute
Batch
Script

Simulator

Output

Commands

Input

Simulation
Results

Batch
Script

Figure 8: The architecture of a CGI script for simulating CPN models.

To give the user the largest possible freedom for defining CGI scripts the batch script needs
to be specified by the user. In the context of CGI scripts the batch script typically has a certain
structure which is likely to include the following actions:

1. Retrieve parameters from the form (see Fig. 7 for example of HTML code for a form).

2. Calculate markings to be used to initialise the state of the CPN model.

3. Initialise the state of the simulator.

4. Run simulation – and collect data.

5. Save results and/or send HTML code to the client web browser.

6. Goto 2 if the batch script is not finished.

7. Quit the CGI script.

First of all, the batch script needs to retrieve the parameters that are sent to the CGI script
from the form. After having extracted the data from the input fields in the form, the batch script
needs to specify how to run the simulation(s). The batch script often starts by calculating the

22

markings for the initial state. The calculation is likely to use input parameters from the form
or results from previous simulations. Now the state of the simulator is ready for starting the
simulation.

While the simulation runs, data is often collected and saved in files for later processing.
Therefore, the model often needs to be instrumented to collect the needed data. When a simula-
tion has finished the results collected during simulations may be sent directly to the web browser
(by printing HTML code to standard output). In addition results from the simulation may be
saved to a file for later post processing. Finally, the batch script may decide that yet another
simulation is to be performed. Therefore, the batch script may continue by restarting the script,
otherwise the CGI script terminates.

Simulation tools that support converting a simulator into a CGI script may also include some
auxiliary and high-level facilities. Examples of such high-level facilities are facilities for creating
graphs to be saved in files, and printing HTML code for referring to graphs in the HTML doc-
ument being generated by the CGI script. Then the web browser will download the image con-
taining the graph while displaying the HTML document. Such an imageresult.graph.png
was included in the HTML document in Fig. 4 using HTML code like line 5 in Fig. 9

<HTML> 1
...

<H1>Backup Unlimited Inc.</H1> 3
...

 5
...

</HTML> 7

Figure 9: HTML code for creating a form.

If the simulation tool does not contain the needed post processing facilities itself, it may possibly
use external programs for doing the post processing of the data. There are only two require-
ments of the post processing tool to be used from the CGI script. The first one is that the tool
should support being executed from the command line using a script containing all the needed
commands to create the graph. Secondly, the tool should be able to save the output to files. Gnu-
plot [2] is an example of a tool that can be used for generating plots and graphs, and it supports
command line scripts, too.

Given a Petri Net tool that fulfils the above mentioned requirements by allowing to create
batch scripts and then be remotely controlled, it is be possible to create CGI scripts that fulfil
many needs for simulation of CPN models from web browsers. In total the CPN expert needs
to create two different files: an HTML form (like Fig. 7) to be used for specifying input to the
CGI script, and the batch script for retrieving input from the form, running the simulation, and
for producing results to be displayed at the web browser.

In the approach described in this paper, all input from the application user should be ready
before submitting the form. In this way it is not possible to control the simulation after it is
started – the simulation will be non-interactive but results can be shown gradually. In Sect. 6 we
discuss future work which addresses this issue

23

4 Implementation in Design/CPN

Design/CPN [1] is a widely used tool supporting editing, simulation and verification of CPN
models. In this paper, Design/CPN is used to prove the usefulness of the CGI concept for simu-
lating CPN models via a web browser. In this section we describe some of the design considera-
tions and facilities that are implementation specific for Design/CPN.

According to the description in Sect. 3, a CGI script is nothing more than a program that can
be executed from a web page and then dynamically produces a new web page. A few modifica-
tions are made to Design/CPN in order to make it possible to turn the simulator of Design/CPN
into a CGI script, or rather to drive the Design/CPN simulator from a CGI script. To under-
stand why these changes need to be done, we need to describe some of the architecture of the
Design/CPN tool.

Design/CPN is divided into two parts: one part implementing the GUI, and another part
containing a simulation engine for simulating a CPN model. When a CPN expert has created
a CPN model using the editor (see Fig. 10), simulator code can be generated containing the
simulation engine and some model dependent code. This code contains everything needed to
simulate the CPN model. Figure 10 differs a little from Fig. 1 in the sense that a simulator is
generated from the CPN model before being able to do the actual simulation.

Create
CPN Model

CPN
Model

Simulate
CPN Model

Simulation
Results

Design/CPN
GUI

Set Initial
Conditions

Initialised
Simulator

Generate
Simulator

Design/CPN
Simulator

Show
Results

Start

Figure 10: Design/CPN approach for creating and simulating CPN models.

In the context of CGI scripts only the simulator of Design/CPN is of interest. The reason is
that it contains the entire executable simulator which is generated from the CPN model created

24

in the editor of Design/CPN. Thus, the Design/CPN simulator is the only part of Design/CPN
that need to be used when creating a CGI script.

4.1 Disabling the GUI of Design/CPN

Due to the fact that the simulator and the GUI of Design/CPN communicate with each other,
the SML functions contained in the simulator for updating the graphical user interface (GUI) of
Design/CPN should be modified to not update the GUI while simulating. The reason for this
modification is that the GUI of Design/CPN is not present in a CGI script. Only the code con-
stituting the simulator and user-defined functions is contained in a CGI script. Remember that a
CGI script is invoked from a form in a browser, while the CGI script itself is running on the web
server. Therefore, the web page shown by the web browser can be considered to be the GUI of
the CGI script.

4.2 Creating CGI Scripts

Another modification of Design/CPN makes it possible to save a CGI script in an executable
file. The executable file will contain the entire simulator code for the CPN model and some user-
defined functions. The simulator code is model dependent SML code which is automatically
generated by Design/CPN. This code makes it possible to simulate the CPN model. The user-
defined function will be the batch script, as described in Sect. 3. Batch scripts in Design/CPN
are written in SML.

An example of a batch script can be found in Fig. 11. The functiongetValOfField reads
the value that the user has input in the form in the field named bydisk which is the name
of the field with the title “Disk Capacity” in Fig. 3. The user may want to do some calcu-
lations (calculate_initial_marking) before initialising the state of the simulator by means of
the functioninit_state. The simulation is started using the functionsimulate. The function
save_results is supposed to save results in files and/or send them to the web browser.

When the user has finished creating the batch script to be included in the CGI script, the final
CGI script can be generated. The CGI script is generated and saved in a file by simply invoking
a SML function. The overall approach for creating a CGI script using Design/CPN is illustrated
in Fig. 12. The model is created and the simulator is generated using Design/CPN. Then a batch
script is created by the CPN expert to control the actions of the CGI script. Finally, the CGI
script containing the batch script and the Design/CPN simulator is generated and is then saved in
a file.

4.3 High-level Functions

Due to the fact that SML is the language used for specifying CGI scripts which contain the
Design/CPN simulator; or in particular that the batch script contained in the CGI script is written

25

fun batch script (,) =
let fun parseform input () = getValOfField"disk";

fun cycle script () =
(calculateinitial marking();
init state(); (* Initialise state of the simulator *)
simulate(); (* Run the simulation *)
save results();
if not finished() then cycle script ()
else ());

in
(parseform input ();
cycle script ())

end

Figure 11: A simple batch script.

Generate
Simulator

Create Batch
Script

Design/CPN
simualtor

Save
Executable

CGI script

Design/CPN
GUI

Create
CPN Model

CPN
Model

Batch
Script

Figure 12: Creating a CGI script from Design/CPN.

in SML, the CPN expert can use the full power of the language SML for getting input and
producing output from the CGI script. This section describes some auxiliary and high-level
functions that may be useful when creating batch scripts to be used in CGI scripts. In particular
we will focus on functions for reading input from HTML forms and generating HTML code as
simulation output.

We will now describe how to read the parameters entered in the browser from the CGI script.
When discussing the general structure of a batch script in Fig. 11, we introduced the SML func-
tion getValOfField. This function is very useful when reading a value that an application user
has input in a form. The function can be used to read any input field in a form, thus it is very
general. The only parameter given to the function is the name of the field in the form. The
function retrieves the input sent from the form and returns the value contained in the field.

When we want to produce an HTML document as output from running a CGI script, the CGI
script needs to print some HTML code to standard output. SML provides the functionprint for
printing to standard output. By printing HTML code to standard output it is possible to create
complex web pages. The HTML document may even include embedded graphics, so-called Java

26

scripts [11], and Java applets which allow programs to be executed directly on the client holding
the web browser. Figure 13 illustrates a simple SML function which prints some simple HTML
code.

fun print header n=
(print ("Results of running"^

(Int.toString n)^
" simulations"));

Figure 13: Print HTML code to a web browser.

It may also be useful to save HTML documents as files. This is particularly useful if several
data files and figures are generated by the CGI script. In this way it is possible to divide the
results of running the CGI script over several HTML documents. The page printed directly to
the browser could simply be a kind of index page for the rest of the HTML documents. In this
way the results of executing the CGI script may be shown in a structured manner. SML contains
several functions for creating files and directories. Thus, it is immediately possible to save several
HTML documents, to be referred to from other HTML documents.

Results or raw data obtained during or after a simulation can also be saved in files. Collecting
data can, e.g. be done using the Design/CPN Performance Tool described in [8]. By printing
HTML code which provides a URL link to the data file (see Fig. 14) to the web browser, the user
can download the result files when the CGI script (or simulation) ends. After downloading the
file, the user can analyse the produced results using his favourite analysis tool. As an alternative
to downloading the raw data, the CGI script can post process the data itself.

fun print url (URL, description) =
(print (""^description̂ ""));

print url ("www.daimi.au.dk/res1.txt", "Results from simulation");

Figure 14: Print URL to a web browser.

In Sect. 3 we discussed generating graphics using external programs directly from the CGI
script. We said that Gnuplot [2] is a tool that can be controlled from a CGI script. To make
it as easy as possible to create plots using Gnuplot, and because Gnuplot is a non-commercial
product, we provide a SML function for plotting graphs using Gnuplot. Figure 15 contains the
interface of the Gnuplot SML function. The function is simply called with a list of file names
of the raw data files and some textual information to be included in the graph. Finally, the user
also needs to specify a destination file name where the plot is supposed to be saved. This SML
function implies that users not familiar with Gnuplot are also able to easily create plots using the
tool. The plot in Fig. 4 was generated using this function.

27

fun gen gnuplots
{filenamesxtitles: (string * string) list,
title : string,
xlabel : string,
ylabel : string,
dest filename : string,
gnuplot path : string}

Figure 15: Interface to Gnuplot function.

5 An Example of a CGI Scripts

In this section we give an overview of how simple it is to create CGI scripts from Design/CPN.
In particular we illustrate how a typical batch script to be included in a CGI script will look.

Below we include most of the SML code for creating the CGI script used in Sect. 2. The
purpose of including the code is to give the reader an idea of the complexity and the amount of
code to be written to create CGI scripts. It is not important to understand every detail of the code.
Some of the functions which are not directly associated with CGI scripts and batch scripts are
not defined here. Please note that the code is rather general and can easily be modified to be used
for another CPN model – or even be generated automatically.

Figure 16 contains the SML function which is to be invoked when the CGI script is executed.
First the function retrieves the input that an application user has entered in the form, and then
updates the CPN model with the extracted data. The functionupdate_model is not included
here. Then 20 simulations are executed to investigate the CPN model using the input parameters
just retrieved from the form. Finally, some output is generated and sent to the web browser.

fun batch script (,)=
((* Retrieve parameters from form *) 2

updatemodel(retrieve input ());
4

(* Run one simulation for each of 20 different backup devices *)
run simulations(1, 20); 6

(* Generate output *) 8

gen output ());

Figure 16: Batch script.

The functionretrieve_input for retrieving the data input by an application user in the HTML
form is contained in Fig. 17. The contents of each field is retrieved using the predefined function
getValOfField. The function is very simple, and in the future it may be possible to generate the
code for the function automatically.

When all parameters are retrieved from the form, we define how to run the simulations.
Figure 18 describes how to configure the CPN model, run the simulations, save results, and

28

(* Retrieve data from the form *)
fun retrieve input () = 2

{networkField = getValOfField "network",
serversField = getValOfField"servers", 4

workstationsField= getValOfField "workstations",
diskField = getValOfField "disk", 6

priceField = getValOfField"price"}

Figure 17: Retrieve input.

finally decide if further simulations are to be performed.
The functionload_model_configuration_parameters is not contained here. The purpose

of this function is to load some configuration parameters into the CPN model. These parameters
are supposed to specify initial markings which do not depend on the input from the form. In
the context of the backup CPN model, these parameters would specify the configuration of the
specific backup device to be simulated, e.g. capacity on tape, speed, etc.

After loading configuration parameters, the state of the CPN model can be initialised using
the functioninit_state. To collect the needed results from the simulation, the CPN expert may
have defined some functions for collecting data. We assume that this is done using a function
namedcreateDataCollectors. Now the CPN model is ready to be simulated. The simulation
is executed using the functionsimulate. When the simulation ends we can examine the state,
and observe if the results obtained suits the needs that the application user has initially requested
using the form. We assume that the functiondo_results_suit_user_needs takes care of that.
Finally we call the functionrun_simulations recursively for possibly running yet another simu-
lation.

(* Specification of how to run simulations *)
fun run simulations(i, (n:int)) = 2

if (i <= n) then
(load model configurationparameters i; 4

init state();
createDataCollectors i; 6

simulate(); (* Simulate the CPN model *)
if (do resultssuit user needs()) then 8

remembermodel no i
else (); 10

run simulations(i+1, n))
else (); 12

Figure 18: Run simulations.

Figure 19 contains the functiongen_output which produces the HTML document to be
displayed at the web browser. The output includes both textual information and a graph. The
graph is plotted using the function in Fig. 20. The graph is saved in a file with a unique file

29

name, and appropriate HTML code referring to the graph is printed to standard output. In this
way the web browser receiving the HTML code from the CGI script automatically downloads
and displays the graph.

fun gen output () =
((* Print HTML directly to web browser *) 2

print "Content-type: text/html\n\n"; (* CGI-header *)
print "<HTML><BODY BGCOLOR=#FFFFFF>"; 4

print ("<FORM method=GET action=\"http://www.daimi.au.dk/"^
"cgi-sim/place_order.cgi\">"); 6

print "<CENTER>";
print "<H1>Backup Unlimited Inc.</H1>"; 8

print "</CENTER>";
10

(* Print the results of running the simulations *)
print ("We have now simulated a model of your system using your specified "^ 12

"requirements. We propose that you buy the following backup devices:");
print (model alternatives(!alternatives)); 14

print "You can decide which best suits your needs from the graphs below:
";
print "<CENTER>"; 16

(* Generate graphics using Gnuplot *)
print graphics(data files()); 18

print "</CENTER>";
print "I order the following item: <input size=15 type=text name=item_no>
"; 20

print "<INPUT type=submit value=\" Place Order \">

";
print "</FORM></BODY></HTML>"); 22

Figure 19: Generate output similar to Fig. 4.

(* Create a plot using Gnuplot *) 2

fun print graphics(datafilesxtitles) =
let val unique filename= get unique filename (); 4

in (gen gnuplots {filenamesxtitles= datafilesxtitles,
title= ("Backup Device Model "^ 6

(model alternatives(!alternatives))),
xlabel = "GB Processed", 8

ylabel = "Process time (minutes)",
dest filename= unique filename, 10

gnuplot path = "/usr/local/bin/gnuplot"};
print ("
")) 12

end;

Figure 20: Create a plot using Gnuplot.

30

6 Conclusion

In this paper we have described how a web interface to a simulator of Coloured Petri Net models
can be designed. In particular we have illustrated how it has been done in the Design/CPN tool.
The approach is based on giving CPN experts the ability to easily create a CGI script containing
the entire simulator. The initial conditions of the simulator can be specified via an HTML form
on a web page. The fact that the initial conditions of a simulation can be specified via a domain
specific form, gives users without knowledge of Design/CPN the ability to use pre-constructed
simulators for specific analysis purposes.

The paper has also illustrated that integrating batch scripts into a CGI script has some advan-
tages. Batch scripts give the user the ability to run several simulations after having specified input
for all the simulations. Thus we will be able to first specify input via a web page and then based
on the input run several simulations. The fact that the input to the CGI script can be specified in
a HTML form on a web page means that the interface to the simulator can be domain specific
and configurable. The domain specific and user-relevant graphical interface to simulators makes
simulations of CPN models interesting for non-CPN experts.

Future work may include investigating the ability to explore state spaces via a browser - again
possibly with a user relevant web page as graphical interface. This will also make it possible for
non-experts to use the power of state spaces for answering questions by querying the state space
of a CPN model. This could be obtained using the occurrence graph tool [6] of Design/CPN via
a CGI script. It will be immediately possible to explore state spaces from a web page using the
approach described in this paper. In Design/CPN it is just a matter of saving a CGI script after
generating code for the occurrence graph tool instead of the code for the simulator.

Another interesting area is interactive simulation control via Java applets [11] embedded in
HTML documents. It will also be possible to implement a domain specific GUI giving interactive
control of the simulator of Design/CPN using a Java applet. Java applets are small Java programs
that are automatically downloaded from a web server when a user requests an HTML document
referring to the Java applet. When the Java applet is downloaded it is automatically started within
the browser using a Java interpreter on the client machine. Using Java applets the simulator on
the web server and the Java applet on the client machine can communicate during a simulation.
By using Java applets it is possible to obtain interactive simulations via the web browser. To
be able to use Java applets there are some extra requirements for the simulation tool related to
communication between the Java applet and the simulator. It requires TCP/IP communication
between the applet in the browser and the simulator residing on a server.

Finally, future work may also include developing auxiliary functions for generating templates
of code for HTML forms and template code for batch scripts. In particular template code for
retrieving data from input fields in forms would be easy to generate automatically. The CPN
expert could annotate the relevant variables in the CPN model and then the Coloured Petri Net
tool could automatically generate a HTML form including fields for the annotated variables.
Furthermore, it could also create functions for parsing the fields of the form and for setting the
variables in the CPN model to the values entered in the form by the application user. Experiments
will show whether creating such template code will be useful in practice. However, one thing
that will be gained from generating both the HTML form and the functions for parsing the form

31

is consistency between the HTML form and the CGI script, i.e. it will be possible to avoid some
errors due to inconsistency between the names of the fields in the HTML form and the names
referred to by functions for retrieving data from a form.

In conclusion, this paper has described a technique for making simulation of CPN models
usable for people without interests in the technical details of CPN models. Thus, the paper has
opened for using CPN simulators behind services on the Internet.

7 Acknowledgements

The ideas presented in this paper have been developed during a project conducted in cooperation
with Søren Christensen, University of Aarhus, Lee W. Wagenhals, Insub Shin and Daesik Kim
from George Mason University, Fairfax, VA, USA. We want to thank these people for valuable
discussions during the development of the CGI approach. In particular, we want to thank Lee W.
Wagenhals for his involvement in writing early versions of this paper. Finally, we also thank the
CPN Group at University of Aarhus for valuable comments on this paper.

References

[1] Design/CPN Online
Online: http://www.daimi.au.dk/designCPN/.

[2] Gnuplot
Online: http://www.cs.dartmouth.edu/gnuplot_info.html.

[3] Shishir Gundavaram.CGI Programming on the World Wide Web. O’Reilly & Associates,
Inc., 1996.

[4] Kurt Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Vol. 1, Basic Concepts. Monographs in Theoretical Computer Science. Springer-Verlag,
1997. 2nd corrected printing.

[5] Kurt Jensen.Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Vol. 2, Analysis Methods. Monographs in Theoretical Computer Science. Springer-Verlag,
1997. 2nd corrected printing.

[6] Kurt Jensen, Søren Christensen, and Lars M. Kristensen.Design/CPN Occurrence Graph
Manual. Department of Computer Science, University of Aarhus, Denmark, 1996.
Online: http://www.daimi.au.dk/designCPN/man/.

[7] Bo Lindstrøm and Lisa M. Wells. Batch scripting facilities for Design/CPN. In K. Jensen,
editor,Second Workshop on Practical Use of Coloured Petri Nets and Design/CPN, DAIMI
PB–541, pages 79–97. University of Aarhus, Department of Computer Science, 1999. On-
line: http://www.daimi.au.dk/CPnets/workshop99/.

32

[8] Bo Lindstrøm and Lisa M. Wells. Design/CPN Performance Tool Manual. De-
partment of Computer Science, University of Aarhus, Denmark, 1999. Online:
http://www.daimi.au.dk/designCPN/man/.

[9] Bo Lindstrøm and Lisa M. Wells.Tool Support for Simulation Based Performance Analysis
using Coloured Petri Nets, 1999. Department of Computer Science, University of Aarhus,
Denmark.

[10] Lawrence C. Paulson.ML for the Working Programmer, 2nd edition. Cambridge University
Press, July 1996.

[11] Sun
Online: http://developer.java.sun.com/.

[12] W3C, http://www.w3.org/TR/html/.Hyper Text Markup Language (HTML), W3C Recom-
mendation.

[13] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl, 2nd edition.
O’Reilly & Associates, Inc., September 1996.

33

34

High-level Petri Nets for a Model of

Organizational Decision Making

Sven Heitsch, Michael K�ohler, Marcel Martens, and Daniel Moldt

University of Hamburg, Department for Computer Science

Vogt-K�olln-Str. 30, D-22527 Hamburg

f5heitsch, koehler, 5martens, moldtg@informatik.uni-hamburg.de

Abstract. This paper introduces a new direction in formalizing sociological models. Sociological

theories are a �eld of application for computer science, hence sociologists describe a theory in in-

formal ways. These theories are transformed into computational models which can be studied and

investigated with formal methods. We have chosen to formalize a common model of sociological

theory, the Garbage Can Model of Organizational Choice. This model refers to organizations as

organized anarchies. Bounded rationality leads to ambiguous decision situations.

Colored Petri nets o�er formal semantics, graphical representation, means to model concurrency, and

immediate executability and, thus, seem to be well suited to present complex sociological dependen-

cies. Our approach uses a special formalism of high-level Petri nets, called Reference nets, which is

applicable to present the individual parts of the model.

By the executable Petri net model of the Garbage Can theory, central notions like concurrency,

conict, and confusion { known in the Petri net theory { could be directly expressed and presented

to sociologists and lead to new insights to the sociological theory.

Keywords: Garbage Can Model of Organizational Choice, Net Instances, Object-oriented modeling,

Reference Nets, Synchronous Channels

1 Introduction

\Socionics" as understood in this context stands for an interdisciplinary research �eld be-

tween sociology and computer science. Research aims at the question how models of the

social environment can contribute to the development of intelligent computer technologies.

The modern society delivers a rich reservoir of ideas for the modeling of multi agent sys-

tems. Vice versa sociology may bene�t from computer science by using computer science

techniques for the validation and discussion of their terms, models, and theories. Finally

future applications of \hybrid communities" are a special challenge to both disciplines (see

[Mal99]).

Finding a formal description for sociological theories is a problem. Sociologists formu-

late their theories usually only in a textual form. This does not allow the application of

more formal methods to validate their theories. One of the main ideas presented here is

to formalize the theories by building Petri net models. A model which can be executed

by computers and validated by sociologists is desirable. This paper focuses on the socio-

logical theory of the Garbage Can Model of Organization Choice by Cohen, March, and

Olsen ([CMO72]). Here a Fortran program was used, later Masuch and LaPotin in [ML89]

presented an implementation with a functional language. The main drawback is that these

models can be interpreted by computers, but not by many sociologists. The Garbage Can

Petri net model is a �rst step to develop a special Petri net formalism which allows soci-

ologists to directly identify their concepts.

35

Besides notions of multi agent systems from Distributed Arti�cial Intelligence Petri

net modeling seems to be a promising approach. Object-oriented concepts in the context

of programming languages (e. g. [Lou93]) and the Uni�ed Modeling Language (UML)

([JBR99]) combined with high-level Petri nets are the techniques used in this paper.

Petri nets provide concurrency, conicts, confusions, active and passive views (see

[Pet81], [Rei92]). Sociologists use similar terms to describe their models. Object-orientation

is used for �nding the overall structure because objects represent real-world phenomena.

[Val96] introduced the notion of \nets in nets", [Mol96] presented a general approach us-

ing Object-oriented Colored Petri Nets. Adding net references and integrating concepts of

object-oriented programming resulted in a high-level Petri net formalism called Reference

Nets (see [Kum99]). Theory was put into practice by the implementation of Renew, the

Reference Net Workshop (see [KW99]).

In this paper the application of Reference Nets to the Garbage Can Model of Organiza-

tion Choice ([CMO72]) is featured. [CMO72] is a fundamental paradigm of behaviouristic

organizational theory. The article has been and still is widely received among sociologists.

An illustrative, but semantically precise model of the sociological theory which can easily

be simulated is the socionical contribution of this work. An early version of the work in

progress was presented in [HMM99].

In the scope of the socionics project at the University of Hamburg di�erent formal

approaches to sociology need to be considered. This paper focuses on the application of

one selected formalism to one sociological theory. In section 2 the interconnection between

Petri nets and object-orientation is described. Section 3 gives an insight to the Garbage Can

Model of Organizational Choice of Cohen, March, and Olsen ([CMO72]). A reference net

model for a generalized version of the theory is introduced in section 4. Then this version

is extended to a larger model which captures all aspects of [CMO72] in section 5. Section 6

discusses the Petri net approach, concludes by evaluating the results, and provides ideas

for future work.

2 Basic Notions

The basic concepts of object-orientation that are relevant for this paper are shortly intro-

duced. Then the basics of Petri nets are explained. Both concepts are then integrated in

the object-oriented Petri nets. Further extensions lead to Reference nets which are used as

the modeling technique.

2.1 Object-Orientation and Petri Nets

Object-oriented analysis is the here chosen method for transforming sociological texts into

a formal descriptions. Petri nets are used as the formal language. To bridge the gap between

object-oriented methodology and Petri nets as description technique, concepts of the former

are adopted in the latter.

Object-oriented analysis The notions of objects and classes of this paper follow closely

the ideas of Louden in [Lou93]. Diagrams follow UML (see [JBR99]). In sociology it is not

36

common to structure models or even theories in that way. Understanding the main ideas

of the sociological model and capturing the notions in terms of objects and classes is one

aim of this work. The structure of the Petri net models follows the ideas of encapsulation

and partitioning common to object-orientation.

Petri Nets A detailed description of the historical development { given by Jensen {

can be found in [Jen92]. The basic concepts are concurrency and conicts, active and

passive parts, and the movement of tokens. It is important to provide a visual technique to

sociologists since there is a common rejection of formal notions. The few concepts of active

(transitions) and passive (places) parts of a system with the restricted relation between

them is straightforward and easy to understand.

A �rst Petri net version of the Garbage Can Model has been developed by Valk. It has

been used in lectures of a sociology course at the sociology institute of the University of

Hamburg. Sociology students had few problems to understand the model. It even turned

out that the Petri net was faster to understand than a natural text, which was taught in

previous years.

However, due to the very basic constructs of elementary Petri nets larger models become

diÆcult to handle. This general phenomenon is not speci�c to sociology. Many high-level

dialects of Petri nets have been developed in the last years.

Synchronous communication On the one hand objects can communicate asynchronously

by message passing, on the other hand they can communicate synchronously. For example,

in programming languages function calls can be used for synchronization and communica-

tion. Christensen and Hansen combined this mechanism in [CH94] with Petri nets by in-

troducing typed communication through synchronous channels for Petri nets. Synchronous

channels allow di�erent transitions to be synchronized and exchange data.

Object-Oriented Petri Nets (OOPN) Besides the concepts of object-orientation (like

object, class, inheritance, and association) the partitioning of large models into special parts

has been tackled by computer science (see the work of Lakos in [Lak95], Sibertin-Blanc in

[SB94] and Moldt in [Mol96]). Various approaches how to combine object-orientation and

Petri nets have been made. Here the idea that an object is a net is followed. The net as

an object has a speci�c interface which allows access to the methods and has an unique

identity. Similar objects can be folded to classes. Thus, object nets can be seen as instances

of net classes (or templates).

An object-oriented Petri net is a Petri net with a special net structure. For a more

compact notation usually Coloured Petri nets are used (see [Jen92]). The structure ensures

that a certain kind of interface of the object is implemented. Each method is represented

by a transition (with some kind of inscription), each variable can be represented by a place

with a certain color set. By the appropriate marking the state of the variable (and of the

object) is represented. The identity is ensured by the net structure itself. When Colored

Petri nets are used, these ordinary nets can be folded and then the color determines the

right assignment of each net element. The tokens are related by appropriate kinds of tuples.

37

Object Petri Nets (OPN) As objects are instances of a certain net class each object has

an unique identity. This identity can be referenced by other objects an arbitrary number

of times. Thus, the reference to a net is the token of another net. Due to the reference

semantics1 the nets are objects which are located somewhere and the tokens are only

references.

This leads to the question, whether nets could be regarded as tokens and to the topic

of self reexivity in the Petri net theory. The instrument of \nets as tokens in a net" of

[Val98] de�nes system nets which provide the environment for object-nets to move and

communicate. This idea is illustrated in �g. 1, where one can see a system net having an

object net as its token. The object net behaves like a token, so if the transition t1 �res it

removes the object net from place s1 and outputs two nets { one in place s2 and one in

s3. This is quite di�erent from the meaning of reference semantics { illustrated in �g. 2 {

where two references to one single object net would have been placed in s2 and s3.

As discussed in di�erent works (cf. [Val96] and [K�oh99,K�oh00]), we obtain problems, if

we regard these tokens as a whole net with its own marking (as in �g. 1) and also, if we

regard these tokens as references to the original net (as in �g. 2).

a1 a2

<t3> <t2>b1 b2 b3

t1

s3

<a1>

t2

<a2>

s1
t2

s4

s5

s2

Fig. 1. An object net as a marking of the system net

t3

a1 a2

ref t1

t2

<t3> <t2>

s1

s2

s3

s4

s5

b1 b2 b3

<a2>

<a1>

ON

SN

Fig. 2. An object net as a reference token

1 Reference and value semantics for Petri nets should be understood analogous to the concepts in programming

languages.

38

We use a conceptional notation { besides the concrete syntax of the Renew conventions

{ for synchronous channels. A transition t could be labeled with another transition, like

ha; bi. This means, that the transition t must �re synchronously either with transition a or

with transition b. In our example the transition t2 is labeled with ha2i, so t2 and a2 must

�re synchronously.

The bene�t to use references to nets is eÆciency of implementation and the well known

behavior as used in usual programming languages.

From a formal point of view, the reference semantics destroys the Petri net paradigm

of locality. As we have decided to use the reference semantics for our implementation of

the garbage can problem, our design has to take care of the loss of the locality argument.

The solution here is to use only one reference to a net to overcome this design problem.

This is a special case of the approach in [K�oh00].

Have a look at �gure 2, where we have one object-net and one system net. In �gure 3

one can see the a �ring sequence, which is possible under the assumption of reference

semantics.

<a2>

ref

ref

a1 a2

<t3> <t2>b1 b2 b3

t3

t1

t2

s1

s2

s3

s4

s5<a1>

System−net

Object−net

<a2>

ref

reft3

t1

t2

s1

s2

s3

s4

s5<a1>

a1 a2

<t3> <t2>b1 b2 b3

Object−net

System−net
<a2>

ref

ref

t3

t1

t2

s1

s2

s3

s4

s5<a1>

System−net

a1 a2

<t3> <t2>b1 b2 b3

Object−net

Fig. 3. Snapshots, reference semantics

You see, that our intuition to have two independent copies of our object net is defeated.

Instead, �ring of a transition changes the marking of a place somewhere else in the net.

If we try to �re this sequence again with a value-oriented semantics we run into trouble,

as one can see in �gure 4. In the situation of the right net in �gure 4 no transition is

activated, since the two copies of the object net are unrelated in their markings.

On the other hand, one can show, that a value oriented semantics { in such a simple

way, as presented here { also has its disadvantages. To overcome these problems, Valk has

introduced a \process semantics" for markings { an idea, which is not going to be discussed

here.

2.2 Reference Nets

In this paper the formalism of reference nets is used which incorporates the concept of Valk

in [Val98]. Reference nets { as implemented by the Renew tool { are a special high-level

Petri net formalism that provide dynamic creation of net instances, references to other net

39

<a2>

ref1

t3

t1

t2

s1

s2

s3

s4

s5<a1>

a1 a2

<t3> <t2>b1 b2 b3

ref2

a1 a2

<t3> <t2>b1 b2 b3

System−net

Objekt−net

Objekt−net

<a2>

ref2

ref1

t3

t1

t2

s1

s2

s3

s4

s5<a1>

a1 a2

<t3> <t2>b1 b2 b3

a1 a2

<t3> <t2>b1 b2 b3

Object−net

System−net

Object−net

Fig. 4. Snapshots, value semantics

references as tokens, and communication via synchronous channels ([Kum98]). Java is used

as the inscription language.

Basic elements Reference Nets (as Petri nets) consist of three types of elements: places,

transitions, and arcs. Semantic inscriptions can be added to each net element. Places can

have a place type and arbitrary number of initialization expressions. On creation of a net

instance the initialization expression are evaluated and lead to the initial marking of the

net. Arcs can have arc inscriptions. The arc inscriptions are evaluated when a transition

�res and the results determine the consumption and creation of tokens. Transition may

carry diverse inscriptions. There are expression inscriptions which are performed when the

transitions �res. Guard inscriptions are preconditions to the transitions, i.e. the transition

is only activated if all attached guard expressions evaluate to true. Action inscriptions

start with the keyword action and are only evaluated when the transition �res. Creation

inscriptions (consisting of a variable name, a colon, the reserved word new and the name of

a class net) create new instances of nets. Synchronous channels synchronize two transitions

which atomically �re at the same time.

Synchronous Channels Synchronous channels synchronize two transitions which both

�re atomically at the same time. Both transitions must agree on the name of the channel

and on a set of parameters before they can synchronize. This concept is generalized by

allowing transitions in di�erent net instances to synchronize.

The initiating transition must have a special inscription, a so-called downlink, which

makes a request at a designated subordinate net. The syntax for a downlink consists of

the name of the net reference, a colon (:), the name of the channel, and an optional list

of arguments. The requested transition must have an uplink as an inscription which serves

requests from every other net instance. Every time a synchronous channel is invoked, the

channel expressions on both sides are evaluated and uni�ed.

An uplink is speci�ed as a transition inscription :channelname(expr, expr,...). A

downlink is speci�ed as a transition inscription netexpr:channelname(expr, expr,..).

40

This syntax illustrates the semantic di�erence between uplinks and downlinks because

the invoked object net must be known before the actual synchronization can begin. A tran-

sition can have an arbitrary number of downlinks, but at most one uplink and a transition

with an uplink can not �re without being requested explicitly by another transition with

a matching downlink.

Net Instances and Net References When a net is constructed, it is a template with-

out any marking that is used to create an arbitrary number of net instances during the

simulation. These instances have got a marking, which can change over time.

A net instance is created by using the reserved word new, a variable and a net name in

the following syntax var:new netname. This means that a new instance of the template

netname is created and bound to the variable var.

Whenever a simulation is started, new net instances are created by transitions that

carry the above mentioned creation inscriptions. For any further access on those new net

instances now their references, which are tokens, are used.

The powerful formalism allows to model technical applications as well as business ap-

plications, especially workow systems. In this paper the applicability to a sociological

example is challenged. To �nd a reasonable starting point an example from organizational

theory has been chosen.

2.3 Workow concepts

To describe the control ow within net models capturing the organizational structure of

a company the workow nets of van der Aalst [Aal97] can be considered as a kind of

standard. Within this contribution organizational aspects are of central interest, however,

the main emphasis is not the economical point of view, but the sociological one. Even so the

modeling requires to adequately present the control ow. Therefore, the structure of the

nets is designed to ful�ll the de�nition of Wil van der Aalst from a structural point of view.

The extension to colored Petri nets and especially reference nets can briey be described

as providing no dynamic violation of the workow net criteria, even if the structural design

with respect to places, transitions, and arcs violates it. This is due to the net inscriptions.

Looking at the examples in the next chapter will reveal that the control ow could

even be designed in a very rigorous way for the Garbage Can model. Nevertheless, the

aspects of workow are not discussed here any further. A more intensive discussion can be

found in [MV00] and [AMVW99]. There the relations between object-orientation and nets

as tokens and workows are discussed. Furthermore, an architecture for a workow engine

is presented.

3 A Garbage Can Model of Organizational Choice

In sociology decisions are seen as one of the main outcome of organizations (see Luhmann

in [Luh88]). This section introduces the Garbage Can Model of Organizational Choice by

Cohen, March, and Olsen (see [CMO72]). Then a generalized version of the original work

41

is presented. This will be the basis for the executable Reference net model of the following

section.

The article of Cohen, March, and Olsen is a fundamental and often cited contribution

to behaviouristic organization theory ([Imh99]). The model combines empirical character-

istics, theory, and simulation aspects. It also deals with the essential sociological task how

organizations can survive in an ambiguous and complex environment. The Garbage Can

Model represents a criticism to common rational choice theories because decision making

is seen as an ambiguous situation. It is argued that the behavior of at least parts of any

organization can be described with this model.

The Garbage Can Model considers organizations as organized anarchies where decision

situations are characterized by three general properties: problematic preferences, unclear

technology, and uid participation. It is argued that a decision is the outcome or interpre-

tation of several relatively independent streams within an organization:

{ A stream of problems: Problems are determined by inner and outer organizational

circumstances and require attention of participants. Problems are looking for situations

in which they might be raised.

{ A stream of energy from participants: Participants come and go. It is assumed that

they provide energy for organizational decision making.

{ A stream of solutions: Participants of the organization produce solutions. Solutions

move around, actively looking for questions to which they might provide an answer.

{ A stream of choices: Choice opportunities represent the point of time when a decision

is required by the organization. Each choice opportunity can be seen as a garbage can

into which diverse problems and participants are dumped.

Organizations can be viewed as collections of choices, problems and participants. Par-

ticipants and problems migrate between the di�erent garbage cans. If a participant meets

a choice under the right circumstances, a decision can be made. If there is at least one

problem attached to the choice, the making of a decision leads to a rational outcome (de-

cision by resolution), the problem is solved. Or the making of a decision takes too long

and no problems are solved (decision by ight). If the decision is made so quickly that no

problem has the chance to come up, it was made by oversight.

Masuch and LaPotin provide in [ML89] a metaphorical view on the basic Garbage Can

processes of decision making:

\... reconsider the �nale of the James Bond movie 'A view to kill'. Agent 007

balances on the main cable of the Golden Gate Bridge, a woman in distress clinging

to his arm, a blimp approaching for rescue. In terms of the Garbage Can Model, the

blimp is a solution, Agent 007 a choice opportunity, and the woman a problem. In the

picture's happy ending, the hero is �nally picked up, together with the woman, and

a solution by resolution takes place; the problem is solved. Now imagine numerous

blimps, women, and heroes, all arriving out of the blue in random sequence. Heroes

take their positions on the main cable. Women cling to heroes, blimps hover above

the scene. Heroes may or may not be able to hold an unlimited number of women,

but the blimps carrying capacity is limited; heroes with too many women cannot be

42

rescued. Blimps are retrieving rescuable, i.e., not-too-heavy, heroes. Women in dis-

tress are aware of that and switch heroes opportunistically, choosing the hero closest

to retrieval. As women, as well as blimps, make their choices independently of each

other, a light hero, on the verge of rescue, may suddenly �nd himself overburdened.

Heavy heroes, in turn, may become rescuable all of a sudden as their women desert

them."

This coming and going is the mechanism called uid participation. Women may not

be saved at all if they change between heroes disadvantageously and all of their heroes

of choice turn out to be too heavy; then, these problems are not solved. Heroes may be

saved when all women just have left; this is called a decision by ight. Also, heroes can

be rescued before any distressed women was able to hold on to him; then, a decision by

oversight has occurred.

Let's come back to the grounds of organizational theory and sum up the terminology:

the bridge is an organization, heroes are choices, women are problems, and blimps are so-

lutions. Choices attract problems and solutions. A choice is made if there is an appropriate

solution to its problems. Three styles of decision making may appear, but only one of them

solves problems.

One might wonder where the participants have gone. In this rather generalized version

by Masuch and LaPotin in [ML89] participants do not appear. They remain backstage and

have an indirect impact on the organization. They produce solutions and throw them into

the scene. Because the participants are mentioned explicitly in the original Garbage Can

Model by [CMO72], they will appear instead of solutions in the following Petri Net models

for a better understanding of the decision making process.

4 The Executable Reference Net Model

The results of the above mentioned prototyping approach are three di�erent Petri net

versions of the Garbage Can Model.

1. The �rst version by Valk, regarding the metaphorical view of Masuch and LaPotin

([ML89]), is a non-executable Place/Transition net because it uses a special kind of

arc which allows to remove all tokens of place atomically without knowing the exact

number of tokens. This Petri net version is very generalized and reduced. It has been

developed to give an impression how to apply Petri nets to sociological theories. It

visualizes the essentials of the Garbage Can decision making processes and inspired the

following models.

2. The second one is an executable reference Petri net which was created by folding the

Place/Transition net of Valk in order to overcome the constrains of the �rst version.

Colored Petri nets as a higher Petri net level are used. Still, this is a generalized version

which illustrates more of the basic behavior of the Garbage Can model without taking

care of all the details.

3. The third version is an executable reference net model (see [HM99]) consisting of eight

large collaborating nets which captures all aspects of the original Garbage Can Model by

43

[CMO72]. It deals with several modeling problems which occured during the prototyping

process. Presenting the whole model would certainly be far out of scope in this context.

Since the second version of the Garbage Can Model is presented to full extend in

this paper, there will be two nets (Organization and Choice) picked out exemplarily and

compared to the complex third version in order to discuss the prototyping approach and

the modeling experience. In the following chapter it will be described, how structures of

the nets could be reused in more complex models.

In this section the second version of the reference net model is presented. The results of

an object-oriented analysis are transformed into object nets. The structure and interaction

of these nets are described. Characteristics of the presented model are discussed.

An object-oriented analysis of the generalized Garbage Can Model { as described in

the above-cited text by Masuch and LaPotin ([ML89]), but translated into the terms of

the original model { leads to the identi�cation of classes and associations (Fig. 5). In terms

of Valk (in [Val98]), where Petri nets are used as token objects of other nets, a net which

provides the environment and the control for the others is called system net. Tokens of

the system net are simply named object nets. In this context there are one system net

and three object nets. The methods of the objects are already listed in the class diagram,

however, they are explained later in the context of the single classes.

Organization

Choice

detach(Problem)
attach(Problem)
allProblemssolved()
pickupProblem(Problem)
be_made(Int)

Problem

cling_on(Choice)
swap(Choice, Choice)
be_solved()

Participant

makeChoice(Choice)

makesconcerns

solves

has

has has

Fig. 5. Class diagram in UML notation

The Garbage Can Reference Net consists of �ve net classes:

1. the Organization which keeps track of the net instances involved and which controls

the interactions among those instances,

44

2. the Choices which are the crucial elements of the decision making process and which

represent the link between problems and participants,
3. the Storages, which are a special construct of the choices supporting the administration

of the problems
4. the Problems which attach themselves to choices and are solved eventually, and
5. the Participants which bring relief to the distressed situation and lead to decision mak-

ing.

The storage is intentionally not mentioned in the class diagram because it is just an

auxiliary net for the choice and has nothing to do with the Garbage Can model.

There will be one instance of the net class Organization which is the system net (Fig. 6).

The organization is responsible for instantiating and controlling all other objects involved.

choice: new choice

choice

problem: new problem
participant: new participant

problem

free problems

choices
available

cling on participant

participants
problems attached
to choices

problem:cling_on(choice)

problem

problem

problem:swap(old_choice,new_choice)

problem

switch

choice

choice

problem

choice

choice:pickupProblem(problem)

choice:allProblemssolved()

choice

choice

new_choice

decision made

choice

participant

problem: new() choice: new()
participant: new()

participant:makeChoice(choice)

participant finds
choice

old_choice

choice fetches problems

decision made and problems solved

new PR new CH new PA

make decision

Fig. 6. System net Organization

Choices, problems, and participants are instantiated by calling their \new"-methods.

Each transition of the system net calls methods of referenced object nets.

For example, when the transition \cling on" of the system net �res, one instance of

problem (precisely, one reference to an instance of a class is meant) and one instance of

choice are selected, and the problem's method \cling on(choice)" is called.

The problem is put into the place \problems attached to choices" and the choice is

returned to its previous place. Once again in di�erent wording: transition \cling on" of the

system net Organization is synchronized with transition \cling on(choice)" of one instance

45

of object net Problem. At the same time a synchronous channel called \cling on" is agreed

on by Organization and Problem. A reference to a choice is passed through this channel.

The transition \switch" tells the problem to leave its old choice and cling to a new

one. One problem and two choices are referenced. The latter are passed to the problem

net via the synchronous channel \swap". The large gray-shaded box in Fig. 6 can be seen

as one large transition which represents the making of a decision. Due to characteristics

of the Petri net formalism it has to be split into three single transitions (\participant

�nds choice", \choice fetches problem", and \decision made and problems solved"). When

a participant has been generated and a choice is \available", the transition \participant

�nds choice" is enabled. After �ring the choice moves on in order to solve all the problems

attached to it. Eventually, the attached problems are being fetched, i.e. solved. After all

problems of the choice have been removed, the decision making process can be completed

(decision made and all problems solved).

:attach(problem)

:detach(problem)

storage: new storage

storage

storage:put(problem)

storage:get(problem)

storage

:pickupProblem(probem)
storage:solve(problem)

ready for problems
to attach

:be_made(participant,n)

storage storage

:allProblemssolved()

storage:getNumberofEntries(n) storage:allProblemssolved()

storage

storage

storage

:new()

problem:be_solved()

solved

Fig. 7. Object net Choice

Each new instance of the net Choice (Fig. 7) also produces a new instance of the

net Storage (Fig. 8) and the reference to this instance is returned and bounded to the

variable storage. It is put in the place \ready for problems to attach" at �rst. Problems

may cling to an instance of choice or switch between those. The choice is informed about

these changes by the methods \attach" and \detach" and delivers this information to its

storage via synchronous channels (put and get), where the amount of attached problems is

saved. As soon as a decision has been made with the help of a participant (it has received

the \be made(n)" message where \n" represents the number of problems attached to the

choice which is passed to the participant through the synchronous channel :be made) it

can neither be left by any of its problems nor can it be clung to by new problems. It

is now in the state \decision made" and its \attach" and \detach"-methods cannot be

called anymore. The choice's \pickupProblem(problem)"-method is called and returns the

attached problems one by one. After all problems have been reported and \solved" by

the storage, the transition \allProblemspickedup()" is enabled. It �res when the decision

making process is complete.

46

:put(problem)

problem problem

:get(problem)

entries solved

problem

problem

:solve(problem)

n n-1
n

n+1

0

n

:getNumberofEntries(n)

n+1

n

0

:allProblemssolved()
guard(number_solved==number_total)

number_total

number_solved

entries

number of entries

number of
solved entries

Fig. 8. Object net Storage

The object net Storage is a special construct to support the Choice with its admin-

istration of the attached problems. Basically it serves as a memory for each choice and

stores the actual references of the attached problems (\entries") and the number of those

references (\number of entries"). Furthermore the storage can move problems to the state

entries solved and keeps track of this with a counter of saved problems. By calling the

\getNumberofEntries(n)"-Method this number \n" of problems is returned. The Methods

put(problem) and get(problem) add and remove entries and change the number of entries

simultaneously. The \solve"-Method removes solved problems from the place \entries" and

puts them into the place \entries solved" so that is not possible for solved problems to

switch any more. The transition \allProblemssolved()" is enabled, when there are as many

problems solved as there are stored.

free clinging to
choice

:cling_on(new_choice)

new_choice

old_choice

:swap(old_choice,new_choice)
old_choice:detach(this)
new_choice:attach(this)

new_choice

new_choice:attach(this)
:be_solved()

choice

solved

:new()

Fig. 9. Object net Problem

47

After the Problem net (Fig. 9)has been instantiated it will be \free" and looking for a

choice at �rst. Then it can cling to a choice, swap between choices several times and will

�nally be solved.

energy

choice
choice made

choice:be_made(this,n)
guard(n<=energy)

3 participant’s energy

:new()

:makeChoice(choice)

Fig. 10. Object net Participant

An instance of the Participant net (Fig. 10) approaches the scene and will eventually

be relevant to one of the choices. If the choice's number of problems does not exceed the

participant's energy, the choice can be made.

The Petri net model puts this version of the Garbage Can Model into a computer

executable form. Each object of the sociological theory, except for the storage, can be

found and analyzed separately. Also sociologists were satis�ed with the visualization and

readability of the results.

The basic phenomena of the original Garbage Can Model appear in this simulation.

Especially the three decision styles can be observed. They can easily be visualized by �ring

sequences of the net during the simulation. Intentionally additional features do not appear

in this version which should be seen as an illustrative introduction to the basic behavior

of the Garbage Can Model.

5 Extensions of the reference net model

In this section the further development of the Garbage Can reference net model (see sec-

tion 4) will be discussed and illustrated by comparing two nets from the generalized model

with the corresponding two nets of the extended model (namely choice and choice (large),

organization and organization (large)). Similarities and di�erences between the net struc-

tures will be examined.

The above mentioned reference net model has been extended in [HM99]. The result is

a complex reference net model which captures the whole functionality of the Garbage Can

Model of Organizational Choice [CMO72], which is far more complex than the metaphorical

approach of Masuch and LaPotin ([ML89]).

The focus during the modeling process was to �nd basic and reusable structures. This

approach was chosen in order to be able to add all the features of the original model

without having to change the nets that has been developed so far.

48

The most important features, which refer to the problems and participants, are the

strategy of �nding the most attractive choice before clinging on it and the organizational

structures which constrain the access to choices (see [CMO72]).

As mentioned in section 3 there is a stream of energy from the participants that is

necessary to solve organizational problems. This energy is called \energy available". It

characterizes the participants ability of solving problems. The more \energy available" a

participant provides, the more skilled he is.

There is an opposite tendency in an organization, which behaves complementary to-

wards the energy available. This is expressed in the \energy required", which characterizes

the diÆculty of the problems. The more \energy required" a problem has, the harder it is

to solve it.

Choices attract participants and problems. So a choice receives both types of energy,

the \energy available" and the \energy required". A decision can be made if there is as

much \energy available" as \energy required". A decision can be made if there is at least

as much \energy available" as \energy required". Finding the most attractive choice is

done by calculating the di�erence between those energies: Only if the di�erence is zero or

positive, a decision is made.

One can recognize this behavior in the net structure of Fig. 12 looking at the places

which store the energies and the transitions which update and compare them. In [HM99] the

afore mentioned organizational structures are also considered. These extensions, strategy

and organizational structures, have been modeled by using additional reference nets (i.e. a

net called oracle which has information about all object nets involved and which answers

questions, or a net called multiset, which administers IDs, energies and checks the access

to choices). Since not all details can be presented here, the focus is on the choice and the

organization reference nets.

Moving from Fig. 6 to Fig. 11 there is not very much added to the net Organization

(large). One can easily recognize the same structure of the net by looking at it. What has

been changed is the number of participating objects which is limited following [CMO72],

which means that there are ten participants (new PA), ten choices (new CH) and twenty

problems (new PR).

Now every instantiation of new objects is reported to the above mentioned object net

oracle. Before clinging to a choice or before swapping to another choice problems have

to ask the object net oracle for the most attractive choice. Before spending their energy

available, participants follow the same strategy as the problems and also ask the oracle for

the most attractive choice. There are several more details in this model which can not be

explained in the scope of this paper. Participants can spend their energy several times on

di�erent choices before they leave the organization by calling the \leave()"-method. The

solution process of Fig. 11 is very similar to Fig. 6 if one compares the gray-shaded boxes

(\make decision") and the inscriptions of the transitions involved. When all problems are

solved there is a statistic module which analyses the style of decision making.

Comparing Fig. 7 and Fig. 12 again one can point out the same basic structure of the

nets. The behavior is basically similar apart from additional places for the energies, the

counters and some transition inscriptions.

49

choice:new choice

choice

problem:new problem participant: new participant
problem

free problems

choices
available

cling on

participant

participants
problems attached
to choices

problem:cling_on(choice)

problem

problem

problem:swap(new_choice)

problem

participant:spendEnergy(choice)

problem:new(oracle)

choice

participants spent all energy

participant

choice

choice:solve()

choice

problem

choice

choice:solveProblem(problem)
problem:be_solved()

choice:allProblemssolved()

choice

choice

[]
oracle:new oracle

oracle

oracle: new()

guard(x>0)
guard(x>0) guard(x>0)

new_choice

decision made

participant: new(oracle)

[] stat:new statistic
stat

stat:get_choice(choice)statistic
choicestat

20 10 10

x

x-1x-1

xx

x-1

oracle

choice

problem:id(x)

participant:id(x)

choice:new(oracle,x)

new PR new CH new PA

participant

participant

participant:leave()

new

oracle
oracle

oracle

new

switch
participant finds
choice

choice fetches problem

decision made and problems solved

make decision

Fig. 11. Object net Organization

50

:attach(problem)

:detach(problem)

storage: new storage

storage

storage:put(problem)

storage:get(problem)

[storage,wasted]

ready for
problems
to attach

:acceptEnergy(n)

[storage,wasted]

:allProblemssolved()
storage:allProblemssolved()

storage

storage

solved

:new(oracle,cID)

newEA=energy_avail+n

energy
available

energy_avail

:solve()

energy_avail

guard(energy_avail>=energy_req)

0

[storage,energy_avail-energy_req]

energy
required

problem:getEnergyReq(m)

problem:getEnergyReq(m)

newER=energy_req+m

energy_req

energy_req

0

:solveProblem(problem)
storage:solve(problem) waiting for problems

in solution process

[storage,wasted]

oracle

energy_avail

oracle:checkin(this,cID)

energy_req

oracle:updateChoice(this,cID,energy_req-newEA)

energy_req
newER=energy_req-m

energy_avail

oracle:updateChoice(this,cID,newER-energy_avail)

detach

attach

solve

oracle:updateChoice(this,cID,newER-energy_avail)

choice

oracle:checkout(this,cID)

storage

oracle

:get(oracle)

this:get(oracle)

this:get(oracle)

this:get(oracle)

this:get(oracle)

id

cID

:getCid(cID)

this:getCid(cID)

this:getCid(cID)

this:getCid(cID)

this:getCid(cID)

this:buffer()

:buffer()

:check_buffer(x)

#attached

x

0

x+1 x

this:buffer2()

:buffer2()

yy+1

0

y

:check_buffer2(y)

#detached

cID

new

id

Fig. 12. Object net Choice

51

The choice produces a reference to its storage while being instantiated and remains

ready for problems to attach until problems start attaching and detaching. The choice has

two places for energies (\energy required" and \energy available"). It can accept energy

with the :acceptEnergy(n)-Method. It has an ID in order to be identi�ed and a reference

to the oracle. The number of attachments and detachments is stored in the two counters

#detached and #attached which is relevant for the statistics at the end of the simulation.

Finally, if choices have more energy available than energy required a decision can be made

and the storage is emptied gradually (waiting for problems in solution process) until all

problems are solved. The detailed interaction with the other nets involved unfortunately

can not be explained here.

6 Conclusion and Outlook

Starting from the problem of formalizing sociological theories a concrete one has been

chosen and successfully modeled. By applying Petri nets an operational semantics could

be given to the Garbage Can Model of Organizational Choice.

Petri nets and in our case Reference nets have been successfully applied and showed

the advantages of its underlying concepts. These are:

{ The generally well known advantages of Petri nets, especially the explicit expression of

concurrency, conicts, and confusion.
{ The object-orientation to identify objects in the sociological application area, even if

advanced concepts like inheritance or polymorphism have not been used.
{ The concept of nets as active tokens to separate environment, active elements, and their

interaction.
{ The synchronous channels and the net instances of the net templates allowed a clear

separation of the model and a clear dynamic behavior.

It should be noted that the success of the project so far crucially depended on the

tool Renew, without which the modeling and execution of the model would not have been

possible in such a compact way. By treating actors and active parts of the sociological

theory as objects for sociologists an intuitive model could be developed.

As a result of the modeling process and the discussion about it new questions concerning

the sociological theory could be found for and by the sociologists in our group. These are:

{ Many aspects of the sociological model remain implicit and are not well structured.
{ Global Knowledge is assumed.
{ Structural dependencies of the relations between the actors of the model exist.
{ Linkage to other theories, which are faded out by the original Garbage Can model, are

unreected.
{ Confusion can be seen as a basic phenomena.
{ Concurrency and causal dependencies need to be handled.
{ Di�erent context levels in the sense of environment and the restrictions of communica-

tion exist.
{ The main principle of the Garbage Can model as a chaotic system is questioned, since

local rationality is observable.

52

{ It is necessary to formalize action oriented aspects more detailed than in the original

model.

Overall it was interesting to see that the incremental prototyping approach was very

successful and that the extension was relatively easy due to the overall object-orientation

and the internal organization of the objects in a special kind of scenario nets or workow

nets as described in [Mol96] and [MV00].

The gained improvements and especially the results were inspiring the sociologists in our

group to reformulate some parts of the theory. This shows the weaknesses of the traditional

view and also allows to extend the Garbage Can theory by some other theories, especially

those related to behavioral theories. The structures and processes induced by the additional

aspects will lead to better models of organizational choices and will allow our group to apply

this new theory to organizational units within public institutions. Especially, we plan to

look at decision procedures within universities.

The means to express these new theories shall be done on the basis of the \nets as

active tokens" concept. This should allow for a separate adaptation of the environment

and its objects acting within it, capturing the aspects of local changes and of mobility.

Furthermore the concepts of agents with some sociological properties can be developed

according to [MW97].

With the here presented model a new application area has been tackled the �rst time.

The high-level Petri net formalism could be applied by the computer scientists to a \prac-

tical" problem of sociology. Within our project we will extend this even further to other

theories. Doing so the results shall be used to enhance agent architectures and shall lead

to generalized sociological theories.

7 Acknowledgments

We would like to thank Daniela Hinck and Rolf von L�ude for the excellent sociological input,

R�udiger Valk for the basic model which was the starting point of the Petri net modeling,

and Olaf Kummer and Frank Wienberg for their fruitful comments on and support with

the Renew tool.

References

[Aal97] Wil van der Aalst. Veri�cation of workow nets. In Az�ema and Balbo [AB97], pages 407{426.

[AB97] Pierre Az�ema and Gianfranco Balbo, editors. Application and Theory of Petri Nets 1997, number 1248

in Lecture Notes in Computer Science, Berlin Heidelberg New York, 1997. Springer-Verlag.

[AMVW99] Wil van der Aalst, Daniel Moldt, R�udiger Valk, and Frank Wienberg. Enacting Interorganizational

Workows Using Nets in Nets. In J�org Becker, Michael zur M�uhlen, and Michael Rosemann, editors,

Proceedings of the 1999 Workow Management Conference Workow-based Applications, M�unster,

Nov. 9th 1999, Working Paper Series of the Department of Information Systems, pages 117{136, Uni-

versity of M�unster, Department of Information Systems, Steinfurter Str. 109, 481149 M�unster, 1999.

Working Paper No. 70.

[CH94] S. Christensen and N.D. Hansen. Coloured Petri nets extended with channels for synchronous commu-

nication. In Rober Valette, editor, Application and Theory of Petri Nets 1994, Proc. of 15th Intern.

Conf. Zaragoza, Spain, June 1994, LNCS, pages 159{178, June 1994.

53

[CMO72] M.D. Cohen, J.G. March, and J.P. Olsen. A garbage can model of organizational choice. Administrative

Science Quarterly, 17:1{25, 1972.
[HM99] Sven Heitsch and Marcel Martens. Soziologische Modellbildung mittels Referenznetzen. Studienar-

beit, University of Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527 Hamburg,

Germany, November 1999.
[HMM99] Sven Heitsch, Marcel Martens, and Daniel Moldt. Petri Nets with Synchronous Channels Ap-

plied to a Sociological Example. Work in Progress Presentation at CPN'99 in Aarhus, see URL:

http://www.daimi.au.dk/CPnets/workshop99/, 1999.
[Imh99] P. Imhof. Social studies of social simulation. URL: http://www.tu-harburg.de/tbg/Deutsch/

Mitarbeiterinnen/Peter/Scienti�c.html, October 1999.
[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The uni�ed software development process: UML; The

complete guide to the Uni�ed Process from the original designers. Addison-Wesley object technology

series. Addison-Wesley, Reading, Mass., 1999.
[Jen92] Kurt Jensen. Coloured Petri Nets: Volume 1; Basic Concepts, Analysis Methods and Practical Use.

EATCS Monographs on Theoretical Computer Science. Springer-Verlag, Berlin Heidelberg New York,

1992.
[K�oh99] Michael K�ohler. Algebraische Strukturen von Objektnetzen. Master's thesis, Universit�at Hamburg,

1999.
[K�oh00] Michael K�ohler. Distribution references and undecided markings. Technical report, University of

Hamburg, Dept. for Computer Science. FBI-HH-M-293/00, 2000.
[Kum98] Olaf Kummer. Simulating synchronous channels and net instances. In J. Desel, P. Kemper, E. Kindler,

and A. Oberweis, editors, Forschungsbericht Nr. 694: 5. Workshop Algorithmen und Werkzeuge f�ur

Petrinetze, pages 73{78. Universit�at Dortmund, Fachbereich Informatik, 1998.
[Kum99] Olaf Kummer. A Petri net view on synchronous channels. Petri Net Newsletter, (56):7{11, 1999.
[KW99] Olaf Kummer and Frank Wienberg. Renew homepage. URL: http://www.renew.de, University of

Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527 Hamburg, Germany, 1999.
[Lak95] C.A. Lakos. From Coloured Petri Nets to Object Petri Nets. In 16th International Conference on

the Application and Theory of Petri Nets, number 935 in Lecture Notes in Computer Science, pages

278{297, Torino, Italy, 1995. Springer.
[Lou93] Kenneth C. Louden. Programming languages: principles and practice. PWS-Kent, Boston, 1993.
[Luh88] N. Luhmann. Organisation. In W. K�uppers and G. Ortmann, editors, Mikropolitik. Rationalit�at, Macht

und Spiele in Organisationen, pages 165{186. WDV, Opladen, 1988.
[Mal99] T. Malsch. Erforschung und Modellierung k�unstlicher Sozialit�at. URL: http://www.tu-harburg.de/

tbg/SPP/spp-antrag.html, August 1999.
[ML89] M. Masuch and P. LaPotin. Beyond garbage cans: An ai model of organizational choice. Administrative

Science Quarterly, pages 38{67, 1989.
[Mol96] Daniel Moldt. H�ohere Petrinetze als Grundlage f�ur Systemspezi�kationen. Dissertation, University of

Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527 Hamburg, Germany, August

1996.
[MV00] Daniel Moldt and R�udiger Valk. Object-oriented Petri Nets in Business Process Modelling. In Wil

van der Aalst, J�org Desel, and Andreas Oberweis, editors, Business Process Management: Models,

Techniques, and Empirical Studies, number 1806 in Lecture Notes in Computer Science, pages 254{

273, Berlin, Heidelberg, New York, 2000. Springer-Verlag.
[MW97] Daniel Moldt and Frank Wienberg. Multi-agent-systems based on coloured Petri nets. In Az�ema and

Balbo [AB97], pages 82{101.
[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall Inc., Englewood Cli�s NJ,

1981.
[Rei92] Wolfgang Reisig. A Primer in Petri Net Design. Springer Compass International. Springer-Verlag,

Berlin Heidelberg New York, 1992.
[SB94] C. Sibertin-Blanc. Cooperative nets. In Robert Valette, editor, 15th International Conference on the

Application and Theory of Petri Nets, number 815 in Lecture Notes in Computer Science 815, pages

471{490, Berlin Heidelberg New York, 1994. Springer-Verlag.
[Val96] R�udiger Valk. On Processes of Object Petri Nets. Fachbereichsbericht FBI-HH-B-185/96, University

of Hamburg, Department for Computer Science, Vogt-K�olln Str. 30, 22527 Hamburg, Germany, June

1996.
[Val98] R�udiger Valk. Petri Nets as Token Objects: An Introduction to Elementary Object Nets. In J�org

Desel, editor, 19th International Conference on Application and Theory of Petri nets, number 1420 in

LNCS, Berlin, 1998. Springer-Verlag.

54

Speci�cation and Validation of a Concurrent

System: An Educational Project

G�erard Berthelot1 and Laure Petrucci2

1 CEDRIC-IIE, Institut d'Informatique d'Entreprise,

18 all�ee Jean Rostand, F-91025 EVRY Cedex

berthelot@iie.cnam.fr
2 LSV, CNRS UMR 8643, ENS de Cachan

61 avenue du pr�esident Wilson, F-94235 CACHAN Cedex

petrucci@lsv.ens-cachan.fr

Abstract. Since several years, we are in charge of a course on speci�-

cation and validation of concurrent and reactive systems. At the end of

this course, the students must carry out a project on a model railway.

They have to specify the railway, to validate their model and �nally to

translate it into a program running the model railway with up to �ve

trains.

In this paper, after presenting the problem, we describe how it is speci-

�ed and checked, step by step, by the students. We also explain how the

analysis results lead to a policy for the switches management. Finally,

we give some hints about the implementation.

1 Presentation of the Problem

In this paper, we report about a teaching experience for a group of twenty grad-

uate students, during their second year in engineer school. Their background

consist of two years studies in mathematics and physics, followed by one year in

computer science. During the previous year they learned the basics of computer

programming, operating systems (in particular Unix processes) and concurrent

programming concepts. Our course is optional and is composed of several topics:

communicating automata, coloured Petri nets, temporal logics, tools for spec-

i�cation and veri�cation (Design/CPN, Spin, Esterel), real-time systems.

After 80 hours of lectures and exercise courses, the students have to carry out a

project by themselves. They spend roughly 70 hours of personal work, to com-

plete the project from speci�cation to hardware implementation. The students

choose among the three previous tools. Here, we will focus on the use of De-

sign/CPN only.

1.1 Goals of the Project

Teaching programming of concurrent systems is not so obvious, as the students

are used to programming in a sequential style. In order to alleviate this diÆculty,

we decided to have them manage a system with intrinsic parallelism. A model

55

railway, allowing several trains, is altogether well-known, convenient, inexpensive

and appealing to students. Moreover, such a system can be used to tackle real-

time concepts and tools. Therefore, we decided to create a course including

all aspects of parallel programming, from the speci�cation phase to the real-

time programming and implementation on the physical model. Nevertheless,

this course is still being further developped, we have not yet addressed time

aspects. This can be done in the future using interval timed coloured Petri nets

as in [dAO94].

1.2 What is Asked from the Students

The students' project was not only designed as an approach to parallel program-

ming, but also to emphasize the bene�ts of speci�cation and validation prior to

programming. In particular, the students were asked to produce a graphical

model, having the same aspect as the physical railway. It should be pointed out

that this is not demanded for esthetic reasons but it helps a lot to understand

whether a con�guration of the railway is normal or not. This facilitates a bor-

ing and error-prone e�ort to synthesize a long �ring sequence. It represents an

important bene�t for debugging.

So far, the hierarchical coloured Petri nets ([Jen92]) have been chosen as a

model, due to their support of hierarchies, simulation, occurrence graph require-

ments. Hierarchies allow a structured design, where the top-level net sticks to

the hardware layout. The use of high-level nets allows both to capture several

cases in a single transition and group the parameters of trains and tracks sec-

tions into one place. The use of an ordinary net leads to unreadable intricate

graphics. The tool used to support this model is Design/CPN ([CPN96]).

Two views were considered in order to exploit the physical railway.

The �rst view, which will be named \real railway view", is meant to operate

as a real railways, with the same rules. E�ectively, the students are asked to

design a system where each train is assigned a route. They must prove that

some security requirements are satis�ed (no collision, no more than one train

per section) as well as eÆciency (no deadlock). Once the model has been proved

correct, the students must �gure out how to translate the net into a set of pro-

cesses, synchronized using semaphores, which can be run on the model railway.

The transformation must be systematic, its soundness and the preservation of

properties proved must be justi�ed.

The second view is not intended to mimic a real railway system. Rather, it is

related to an adaptative routing system, and henceforth will be named hereafter

the \adaptative routing system view". The behavior of trains must be adapted

to local conditions. Namely, at each switch, their route can be chosen among

several tracks and a train may even go back when impossible to continue for-

ward. Although surprising at �rst glance, such behavior of trains o�ers several

complex routing possibilities and thus appears as a challenge. The students must

design a routing policy so that the same security and eÆciency requirements as

56

before are ful�lled. Then they have to deduce from the net the program of a

controller, and implement it on the railway system.

2 The Model Railway

The model railway is depicted in �gure 1. It consists of about 15 meters of

tracks, divided in 16 sections (blocks B1 to B16) plus 2 sidetracks (ST1 and

ST2), linked using 4 double or triple switches and one crossing. The way the

trains can circulate on the switches and the crossing is indicated by the arrows

in �gure 1. The traÆc on all tracks can go both ways. Although one can notice

that switch 1 (and also switch 2) is composed of two elementary ones, it is

managed as a single unit, due to the short distance between the two physical

components. The railway is connected to a computer via a serial port which

allows to read information from sensors and send orders to trains through the

tracks or directly to switches. A section is equipped with one sensor at each end,

thus allowing to detect the entrance or exit of a train. The orders sent to trains

can be either stop or go forward/backwards at a given speed.

3 Speci�cation Using Coloured Petri Nets

In this section, we describe the di�erent steps encountered by a typical student1

following the second view, i.e. the adaptative routing system described at the

end of section 1). We will give hints about the di�erences with the real railway

view in section 3.6.

The student is asked to proceed step by step in the construction of the

coloured net representing the model railway. At �rst, the model only describes

the main loop, i.e. the railway without the 2 sidetracks and the crossing. The

analysis of this net is performed for three, four and �ve trains. At �rst there is

an obvious deadlock which is corrected. Then another one arises when adding

an extra train. This is repeated until we obtain a model which is satisfactory

for �ve trains. All the corrections made correspond to a policy for managing the

four switches and moving between contiguous sections. Then the two sidetracks

are added and the analysis is done directly for �ve trains. Finally, the crossing

is added. Due to the large amount of memory (and time spent) to generate the

occurrence graph and check properties, the veri�cation is �rst performed for four

and then for �ve trains.

3.1 Design of a Hierarchical Coloured Petri Net

One of the requirements of such a project is to obtain a model which can easily be

understood. This allows, as we will see later on, to facilitate the understanding of

errors encountered when analyzing the model with the occurrence graph. Their

correction also becomes much more natural.

1 in fact, each project is conducted by a pair of students.

57

sw
itc

h
1

sw
itc

h
4

sw
itc

h
2

sw
itc

h
3

cr
os

si
ng

ST
1

ST
2

B
3

B
4

B
9

B
10

B
1

B
2

B
7

B
8

B
14

B
13

B
15

B
16

B
5

B
6

B
11

B
12

Fig. 1. The tracks of the model railway.

58

To do so, the use of page hierarchies was required: the prime page represents

the whole railway, without any consideration of the policy used to move from one

section to the next. This policy is described in subpages, corresponding to the

di�erent switches and moves between contiguous sections. A single look at this

prime page shows the current state, i.e. where the di�erent trains are located.

The similarity between the physical railway model (�gure 1) and the prime page

(�gure 2 for a partial representation and �gure 7 for the full one) is easily noticed.

The places represent the sections (they have the same names in both �gures),

while the transitions indicate the possible moves.

3.2 Model of the Main Loop

The students were asked to design their model step by step. Therefore, they

started with just the main loop, i.e. the railway without the two sidetracks nor

the crossing in the middle.

The prime page of the �rst net is shown in �gure 2. Each place represents

the railway section with the same name. It always contains one token, with a

value characterizing the state of the section, i.e. either a train is in the section,

or the fact that there is none. This is expressed with the union type:

color section = union t:train + none;

To stick to the real system as much as possible, the student generally chooses to

describe trains with both a name and the way they are running, namely clockwise

(cl) or anti-clockwise (acl).

All the transitions are substitution transitions, i.e. they must be substituted

by a net with the same input and output places. This can be seen for e.g. transi-

tion t1 of �gure 2, which has a box next to it with the name of the subpage to be

substituted to the transition (changesect) and the correspondence between the

names of input and output places of both nets (place B3 of �gure 2 corresponds

to place P2 of �gure 3). The transitions are of two kinds:

{ those allowing to move between two contiguous sections with no choice;

a reasonable hypothesis is that all transitions of this kind have the same

behavior. Therefore, all these substitution transitions will refer to the same

subpage. Initially, we will assume that a train can move to the next section

if this section is empty, as depicted in �gure 3.
{ the switches which can permit either to move from a unique section to two

di�erent ones or vice-versa. This is described in �gure 4, where the net

corresponds to one possible direction of trains (switch 1). Another page

describes the other way round. These nets could have been merged into a

single one, with a place containing the direction used by the switch. That

choice would have lead to a less intuitive interpretation of the prime page,

and to a unique page used by all the switches. Moreover, when enhancing the

model to add the other parts of the railway, the switches become di�erent.

Similarly, some students have used two instances of the net in �gure 3 to

model the simple switch, but then, when changing the policy for moving

59

se
ct

io
n

B
1

no
ne

se
ct

io
n

B
3

no
ne

se
ct

io
n

B
4

no
ne

se
ct

io
n

B
9

t (
1,

cl
)

se
ct

io
n

B
10

t (
2,

cl
)

se
ct

io
n

B
7

no
ne

se
ct

io
n

B
8

no
ne

se
ct

io
n

B
14

no
ne

se
ct

io
n

B
13

no
ne

se
ct

io
n

B
2

no
ne

se
ct

io
n

B
15

t (
3,

ac
l)

se
ct

io
n

B
16

no
ne

t1

H
S

ch
an

ge
se

ct
#6

B
3-

>
P

2
B

9-
>

P
1 t3

H
S

ch
an

ge
se

ct
#6

B
4-

>
P

2
B

10
->

P
1

t1
0

H
S

ch
an

ge
se

ct
#6

B
8-

>
P

1
B

13
->

P
2

t8

H
S

ch
an

ge
se

ct
#6

B
7-

>
P

1
B

14
->

P
2

t6
H

S
ch

an
ge

se
ct

#6
B

15
->

P
2

B
16

->
P

1

t1
1

H
S

ch
an

ge
se

ct
#6

B
1-

>
P

1
B

2-
>

P
2

v
a
l

n
=
3
;

c
o
l
o
r

d
i
r
e
c
t
i
o
n

=

w
i
t
h

c
l

|

a
c
l
;

c
o
l
o
r

n
a
m
e

=

i
n
t

w
i
t
h

1
.
.
n
;

c
o
l
o
r

t
r
a
i
n

=

p
r
o
d
u
c
t

n
a
m
e

*

d
i
r
e
c
t
i
o
n
;

c
o
l
o
r

s
e
c
t
i
o
n

=

u
n
i
o
n

t
:
t
r
a
i
n

+

n
o
n
e
;

v
a
r

t
r
:
n
a
m
e
;

t1
3

H
S

sw
itc

h4
#4

t1
9

H
S

sw
itc

h3
#5

t2
0

H
S

sw
itc

h2
#2

t2
1

H
S

sw
itc

h1
#1

Fig. 2. The prime page of the main loop model.

60

section

P2
P I/O

section
P1P I/O

P2P1 P1P2

none

none

t (tr,cl)

t (tr,cl)

none

none

t (tr,acl)

t (tr,acl)

Fig. 3. Moving between two contiguous sections.

from one section to the next, the management of switches was also modi�ed.

This is often undesirable.

section
B4

P I/O

section
B3

P I/O

sectionB1

P I/O

B3B1

B4B1

B1B3

B1B4

t (tr,acl)

t (tr,acl)

t (tr,acl)

t (tr,acl)

none none

none

none

t (tr,cl)

t (tr,cl)

none

none

t (tr,cl)

t (tr,cl)

none

none

Fig. 4. A simple switch.

Once the net is designed, the students starts examining its behavior. It is

obvious that the initial marking (with 3 trains) given in �gure 2 is a deadlock.

Thus, the student must design a less simple policy for switches, depicted in

�gure 5.

The switches are (for the moment) composed of two tracks arriving from the

61

same direction (such as B3 and B4) and one from the other side (as B1). When

3 trains arrive altogether on the switch in a deadlock situation, the new policy

consists in having the train on the single track side (e.g. the train on B1) go

backwards. Such a possibility takes sense only in the adaptative routing system,

but not in a real railway system. This is modeled by transition retB1 in �gure 5.

section
B4

P I/O

section
B3

P I/O

sectionB1

P I/O

B3B1

B4B1

B1B3

B1B4

retB1

t (tr,acl)

t (tr,acl)

t (tr,acl)

t (tr,acl)

none none

none

none

t (tr,cl)

t (tr,cl)

none

none

t (tr,cl)

t (tr,cl)

none

none

t (tr1,acl)

t (tr,acl)

t (tr,cl)

t (tr2,acl)

Fig. 5. New policy for switches.

It is easily noticed that the initial marking with three trains will enable only

the new transition, and thus only the train going anti-clockwise will change

direction. Thereafter, all the trains will go in the same direction, i.e. clockwise.

To have interesting results, the student adds an extra train, and analyses his

new net.

3.3 Veri�cation with Four Trains

Now, the new policy for switches is used and a fourth train is added, by chang-

ing the initial marking of place B3 into t (4,acl), and the value n=4 in the

declaration node.

The analysis of the model is performed by means of Design/CPN occur-

rence graph tool ([Jen94], [CPN96]). Once the graph is generated, a standard

report and some additional properties are checked. This allows to discover nodes

satisfying undesired properties, as explained later. To facilitate the understand-

ing of the trains situation, the feature provided by Design/CPN which allows

to transform a state of the occurrence graph into the corresponding marking

in the simulator is used. Thus, the prime page is updated with the unwanted

marking, and the user can see in a glimpse the locations of trains.

62

Analysis Results After a single occurrence graph generation, faced with the

huge number of states, the student often guesses that the trains names highly

contribute to the state space explosion, although they are useless, from a veri�-

cation point of view. E�ectively, in the problem considered, it is not necessary

to know where a particular train is, but only that there is a train in a particular

section, and also where it is heading. This could be formalized using symmetries,

but we lack time to teach the theoretical and syntactical aspects. Moreover, the

marking equivalence derived from this symmetry is totally obvious.

Occurrence Graph with Trains Names The occurrence graph obtained with four

named trains contains 21.574 nodes and 72.026 arcs. It is computed in 334 sec-

onds2. The strongly connected components (SCC) graph has 1.243 SCCs and

6.666 arcs. It is calculated in 18 seconds.

Occurrence Graph without Names When removing the trains names, i.e. only the

direction the train goes is kept in the token value, the occurrence graph obtained,

still with four trains, has 2.166 nodes and 7.157 arcs. It takes 5 seconds to obtain

it. The SCC graph has 237 nodes and 1.245 arcs. It is computed in 1 second.

The following step in the project is the veri�cation of the net. The student

must formalize what does a correct behavior of the system mean, and indicate the

properties that should be satis�ed. Having some experience, through exercises,

of the properties provided by the standard report of Design/CPN, the student

tries to �gure out how they can be used in order to prove the correctness of his

model. This function allows to obtain in a �le a textual result for the usual net

properties (e.g. bounds, dead markings, liveness, : : :). It turns out that most

properties are safety properties and can be checked using only the standard

features.

The results and their interpretation are the following :

{ all the lower and upper best integer bounds are 1. Thus there is always

exactly one token in each place;
{ all the best upper multi-set bounds are 1`t(cl)++ 1`t(acl)++ 1`none.

This property, together with the previous one, shows that each section can

contain either exactly one train going one way or the other, or none;
{ there are 6 dead markings. At �rst, the student is surprised. The evaluation

of function ListDeadMarkings(); provides him with the list of all dead

markings. Then, he visualizes each of these markings on the prime page,

using the feature of Design/CPN which puts a given marking of the oc-

currence graph into the simulator. Three of the dead markings have a train

going clockwise in B15 and a train going anti-clockwise in B16. The three

other ones are similar, with sections B2 and B1.

The student comes to the conclusion that the policy to move between two

contiguous sections with no choice has to be improved.

2 all the results in this paper were obtained on the same machine: a Linux PC Pentium

II 450 MHz with 256 Mb of memory. The computation times are those given by

Design/CPN.

63

Policy Adopted In order to avoid the previous situation, the student decides

to have both trains go backwards, as modeled by transition retboth in �gure 6,

giving the following arguments:

{ if both trains return where they come from, they will not travel in the same

direction, thus such a policy should limit or delay the possibilities for all

trains to go in the same direction;
{ both trains are treated in the same manner, there is no priority.

The new model is then analyzed for four and �ve trains. The results with

�ve trains will now be discussed.

section

P2
P I/O

section
P1P I/O

P2P1 P1P2retboth

none

none

t cl

t cl

none

none

t acl

t acl

t acl

t aclt cl

t cl

Fig. 6. New policy to move between two contiguous sections.

3.4 Veri�cation with Five Trains

A �fth train going anti-clockwise is added in place B2.

Analysis Results The occurrence graph obtained for �ve trains has 24.556

nodes and 97.020 arcs. It is computed in 430 seconds. Its SCC graph has 615

nodes, 3.128 arcs and was calculated in 18 seconds. The properties obtained from

the standard report, show that the bounds are the same as previously, there is

no dead marking nor home marking.

This last property is quite intriguing for the student. He decides to have a closer

look to the terminal SCCs. Therefore, he used the following functions (where

the result is given after the arrow):

PredAllSccs SccTerminal; -> [~615,~534]

length(SccToNodes(~615)); -> 792

length(SccToNodes(~534)); -> 792

64

The �rst function gives the list of all terminal SCCs. They are two, numbered

~615, and ~534. Then, the number of nodes in each of these terminal SCCs is 792.

After looking at a marking of each component, the student concludes that this

is a normal situation: in SCC ~615, all trains go clockwise while in SCC ~534,

all trains go anti-clockwise. The two SCCs remain separated as, considering the

routing rules adopted, a train cannot go backwards if it does not meet a train

gong in the opposite direction. So, such situations are acceptable w.r.t. the initial

requirements.

3.5 The Complete Railway

When the main loop works correctly, the student enhances his model by adding

the two sidetracks and the crossing.

Final Model The prime page of the model of the complete railway (see �gure 7)

has 6 additional places corresponding to the 2 sidetracks and the 4 inner sections,

and one extra substitution transition which models the crossing.

A subpage, presented in �gure 8, is added to represent the inner crossing in

the railway. It takes into account all the possible moves on the inner crossing,

as described in section 2. Moreover, the case where four trains want to enter the

crossing { and will then be blocked { is treated by forcing the train on B5 to go

backwards.

The four switches subpages are modi�ed to take into account the new possible

movements, but their general policy remains the same, just taking into account

more possibilities for a train to enter and exit a switch. The nets in �gures 9,

10, and 11 give an idea of the complexity of the complete model.

The fourth switch can easily be deduced from the third one, by changing the

place names and direction of trains.

Analysis Results As a lot of time is needed to build the occurrence graph of

the full model, it was �rst done with four trains and then with �ve.

The occurrence graph with four trains contains 48.957 nodes, 228.790 arcs and

was calculated in 2.991 seconds (50 minutes). Its SCC graph has 1 node, no arc

and is obtained in a bit less than 2 minutes.

The standard report gives us the same integer and multi-set bounds as before.

All the reachable states are home markings. This is interesting, because it shows

that any reachable train distribution can always be reached again. There is no

deadlock. But transition retB2 of subpage switch2 is dead. This means that

with these four trains, the situation were a train going anti-clockwise on section

B2 is blocked can never occur. When looking at the design of the railway, the

student notices that this is normal as there are 4 possibilities for this train to go

forward, and only three can be occupied by the other trains. The question now

is: what happens with a �fth train?

65

se
ct

io
n

B
1

no
ne

se
ct

io
n

B
3

1‘
t a

cl

se
ct

io
n

B
4

no
ne

se
ct

io
n

B
9

1‘
t c

l

se
ct

io
n

B
10

1‘
t c

l

se
ct

io
n

B
7

no
ne

se
ct

io
n

B
8

no
ne

se
ct

io
n

B
14

no
ne

se
ct

io
n

B
13

no
ne

se
ct

io
n

B
2

1‘
t a

cl

se
ct

io
n

B
15

1‘
t a

cl

se
ct

io
n

B
16

no
ne

t1

H
S

ch
an

ge
se

ct
#6

B
3-

>
P

2
B

9-
>

P
1 t3

H
S

ch
an

ge
se

ct
#6

B
4-

>
P

2
B

10
->

P
1

t1
0

H
S

ch
an

ge
se

ct
#6

B
8-

>
P

1
B

13
->

P
2

t8

H
S

ch
an

ge
se

ct
#6

B
7-

>
P

1
B

14
->

P
2

t6
H

S
ch

an
ge

se
ct

#6
B

15
->

P
2

B
16

->
P

1

t1
1

H
S

ch
an

ge
se

ct
#6

B
1-

>
P

1
B

2-
>

P
2

c
o
l
o
r

t
r
a
i
n

=

w
i
t
h

c
l

|

a
c
l
;

c
o
l
o
r

s
e
c
t
i
o
n

=

u
n
i
o
n

t
:
t
r
a
i
n

+

n
o
n
e
;

t1
3

H
S

sw
itc

h4
#4

t1
9

H
S

sw
itc

h3
#5

t2
0

H
S

sw
itc

h2
#2

t2
1

H
S

sw
itc

h1
#1

se
ct

io
n

S
T

1

no
ne

si
d

et
ra

ck
1

se
ct

io
n

S
T

2

no
ne

si
d

et
ra

ck
2

se
ct

io
n

B
5

no
ne

se
ct

io
n

B
6

no
ne

se
ct

io
n

B
11

no
ne

se
ct

io
n

B
12

no
ne

t2

H
S

cr
os

s#
8

t a
cl

t c
l

t a
cl

t c
l

Fig. 7. The prime page of the model railway hierarchical coloured Petri net.

66

section
B12

none

P I/O

section
B6

none

P I/O

section
B11

none

P I/O

section
B5

none

P I/O

retB5

B5B11

B11B5

B5B12

B12B5B6B11 B11B6

B12B6

B6B12

t cl

t cl

t acl

t acl

t cl t cl

t cl

t cl

t acl

t acl

t aclt acl

t acl

t acl

t acl t acl

t clt cl

t cl

t cl

none none

none
none

none

none

none
none

none

none none

none

none none

nonenone

t acl

Fig. 8. The subpage modeling the inner railway crossing.

67

section

ST1
P I/O

section
B4

none

P I/O

section
B3

1‘t acl

P I/O

sectionB1

none

P I/O

B3B1

B4B1

retB1

B1B3

B1B4

B3G1

G1B3

section

B5

none

P I/O

B1B5 B5B1

t acl

t acl

t acl

t acl

none none

none

none

t acl

t acl

t cl

t acl

t cl

t cl

none

none

t cl

t cl

none

none

none

t cl t cl

none

t aclt acl

none none

t acl

t acl

t acl

t cl

t cl
none

none

none

none

Fig. 9. The �rst switch (transition t21 of �gure 7).

section

ST2

none

P I/O
sectionB2

1‘t acl

P I/O

section
B7 none

P I/O

section
B8

none

P I/O

B8B2

B7B2

retB2

B2B8

B2B7

B2G2

G2B2

section B6

none

P I/O

B6B2 B2B6

t cl

t cl

t cl

t cl

none

none

none

none

t cl

t cl

t acl

t cl

t acl

t acl

none

none

t acl

t acl

none

none

t cl

none

none

nonenone

t cl t cl

t acl
t acl

t cl

t acl

t acl

t cl

t cl none

none

none

none

Fig. 10. The second switch (transition t20 of �gure 7).

68

section
B14

P I/O

sectionB16
P I/O

section
B13

P I/O

B13B16

B14B16

retB16

B16B13

B16B14

section
B12 none

P I/O

B16B12

B12B16

t acl

t acl

t acl

t acl

none

none

none
none

t acl

t acl

t cl

t acl

t cl

t cl

none

none

t cl

t cl

none

none

t acl

t cl

t cl

t acl

t acl

none
none

nonenone

Fig. 11. The third switch (transition t19 of �gure 7).

The Occurrence Graph with Five Trains has 274.082 nodes, 1.500.384 arcs and

was computed in 103.221 seconds (1 day, 4 hours and 40 minutes)3, approxi-

mately the same time was necessary for the SCC graph which �nally contains 1

node and no arc. This informs the student that, as for four trains, all the reach-

able states are home markings. There is still no deadlock and all the transitions

are live. Thus the model meets the initial requirements : allow up to 5 trains,

avoid collisions and deadlocks.

3.6 Modeling the \Real Railway System"

When the �rst view (i.e. mimicking a real railway system) is considered, a route

must be assigned to each train. This has three consequences: First, when a train

enters a switch, it must exit it as speci�ed in its own route, and not by a ran-

domly chosen exit. As a second consequence, trains must keep their identity and

cannot become anonymous. Finally, a train may have to book several sections

in advance in order to avoid deadlocks: e.g. if a train in B7 wants to enter B2,

it should also make the reservation for B1, otherwise it can be blocked by a

train coming the other way round. As concerns modeling, a transition must not

only be connected by the arcs to places representing the next and/or previous

resource, but also to the places representing the resources necessary one or more

steps later. Hence, the net is graphically less close to the physical railway, and

also it is more diÆcult to create a hierarchical net as there are special transitions

3 with intensive use of the 1Gb swap space

69

associated with each train.

The number of states in the occurrence graph strongly depends on the length

and the complexity of the routes designed by the students. Another big di�er-

ence with the second approach is that veri�cation mainly consists in deadlock

detection between trains. It is obvious that complex routes and the simultaneous

reservation of four sections can lead to deadlocks very diÆcult to foretell. To con-

clude, the complexity of the model and the possibility to fully check it depends

a lot on the options chosen by the student. This is the reason for explaining the

other view.

4 From the Speci�cation to the Implementation

When the model of the net has been analyzed, and its desired properties proved,

the student has to translate it into a C program, having a behavior as close as

possible to the net's one. To do so, he has roughly two solutions: the �rst one

consists in writing a controller (a Petri net simulator), the second is to split the

net into a set of synchronized processes. The student naturally tends towards the

�rst solution, which is closer to sequential programming and automata theory,

but, after a deeper insight, some of the students accept to try the second solution.

We shall now describe both in more detail.

In the simulator approach, the color sets and associated operators are trans-

lated into C data structures and functions. Then, each transition is splited into a

boolean precondition function and a post function. The former allows to check if

the transition is �rable, while the latter is called when �ring to change the mark-

ing and transmit orders to the hardware. The core of the simulator is an endless

loop which, at each step, scans the transitions list to see which ones are �rable,

then �res some of them. It should be noticed that, contrary to what happens

in a general simulator, the binding of variables of transitions is quite easy since

each place contains exactly one token. Nevertheless, when several transitions are

enabled, a fair choice must be provided, using for instance a random number

generator. A companion process is in charge of reading the information from the

hardware, and update accordingly the state variables.

In the second solution, which is more natural when using the \real railway

view" because the trains are seen as independent entities which travel along a

route, the set of transitions of the net must be partitioned in order to build up

processes which have to synchronize using semaphores. The most intuitive and

logical way to do so is to associate each train with a proper process. With this

approach, each part of the railway must be considered as a critical resource.

The student can directly apply the classical Dijkstra method([Dij65]) to access

resources. Each resource is described by a set of state variables. Processes must

request resources using a general mutual exclusion semaphore. If a process is

blocked, it leaves the critical section and hangs up on a private semaphore until

it is awaken by another process. With this approach, no fairness problem appears

at �rst, provided that semaphores have FIFO queues. However such a problem

arises when a train arrives at a fork with several possible exits, and several

70

are compatible with the route. The student must add a mechanism to choose

randomly which transition to try. As in the previous approach a companion

process handles the hardware inputs.

The program obtained is then downloaded on the PC which monitors the

train model and the student may conduct some experiments. The program is

often rapidly e�ective, after some tuning (speed of trains), addition of hardware

commands (switches, crossing), and detail improvements (traÆc lights). The stu-

dent can see that no real problem arises, except from bad hardware management

(if a sensor does not \see" a train, this one becomes a \crazy train" which must

be physically removed as soon as possible). However, most of times a long run

results in a periodic behavior, even if the theoretical analysis predicted a less

rigid scheme. This is due to the fact that even with a fair program, �rst come

trains are also �rst served ones at critical points, and the delay to run through a

block depends mainly on its length. So, the model train can adopt only a subset

of behaviors of its theoretical model. The exact analysis would require to take

into account time aspects, but it was not tried yet.

5 Conclusion

In this paper, we have reported a teaching experience using a train model and

high-level nets. A similar experience for modeling a train system is described in

[HURK98], but the students could not achieve veri�cation.

In spite of its childish aspect, the train model forces students to touch, master

and manage all the notions rendering parallel programs error prone: critical sec-

tion, deadlock, fairness, time and combinatorial explosion. Moreover, it is a very

strong evidence that such programs cannot be developed from scratch (bottom-

up style) as students tend to do, but must be rigorously modeled and analyzed

before implementation. An additional bene�t from this project consists in tack-

ling a process control problem.

From students' opinion, it appears that handling a real system helps and moti-

vates both to model the system and to formalize the properties that it should

satisfy. However, they are disappointed by the state space explosion problem

which arises quite early in the veri�cation. Thus only restricted or more ab-

stracted problems can be validated.

A further step would be to manage time aspects. An automatic code gen-

eration feature would have helped a lot for the last step of the project, i.e. the

implementation part.

References

[CPN96] META Software and Aarhus University. Design/CPN 3.0, 1996. Also avail-

able as: http://www.daimi.au.dk/designCPN.

[dAO94] W. M. P. Van der Aalst and M. A. Odijk. Analysis of railway stations by

means of interval coloured Petri nets. Real-time systems, 9:1{23, 1994.

71

[Dij65] E. W. Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569, september 1965.

[HURK98] W. Hielscher, L. Urbszat, C. Reinke, and W. Kluge. On modelling train

traÆc control in a model train system. In Proc. 1st CPN Workshop, DAIMI

PB 532, pages 83{101. Aarhus University, 1998.

[Jen92] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and prat-

ical use. Volume 1: basic concepts. Monographs in Theoretical Computer

Science. Springer, 1992.

[Jen94] K. Jensen. Coloured Petri Nets: Basic concepts, analysis methods and prat-

ical use. Volume 2: analysis methods. Monographs in Theoretical Computer

Science. Springer, 1994.

72

Modelling and Analysing a Distributed

Dynamic Channel Allocation Algorithm for

Mobile Computing Using High-Level Net

Methods

Leo Ojala, Nisse Husberg, and Teemu Tynj�al�a

Helsinki University of Technology,

Laboratory for Theoretical Computer Science,

P.O. Box 9700, FIN-02015 Espoo, Finland

Email: Leo.Ojala@hut.�, Nisse.Husberg@hut.�, Teemu.Tynjala@hut.�

http://tcs.hut.�

Abstract

A Distributed Dynamic Channel Allocation algorithm has been proposed in [PSS95].

In this paper the algorithm is modelled using Predicate/Transition nets. The same

model can be used for any number of cell and channel con�gurations. The Maria

reachability analyser has been used to analyse the protocol for some con�gurations

and these have been deadlock-free and are shown to satisfy the requirement that the

same channel never is allocated to two neighbouring cells. The suitability of high

level nets for the modelling and analysis of distributed algorithms is discussed.

1 Introduction

The development of mobile computing over the last decade has raised many requirements

on wireless communication networks. The radio spectrum is limited so frequencies and

channels must be reused to accommodate for the ever growing user population and their

increasing demands on service. In the scope of mobile computing hand-held terminals,

laptops, and mobile phones connect to a telecommunications network (and possibly to the

Internet) via a radio frequency interface.

Mobile computing faces challenges in the form of coping with low bandwidth, high

bandwidth variability, heterogeneous networks and security risks [FZ94]. The future net-

works must provide the user with fast access, information on-demand and foolproof security

and do all this cost e�ectively. Excellent channel management and reuse are a prerequisite

for the success of mobile computing.

73

The development in this area is fast and new systems appear all the time. For some

time it will be the case that new and better systems must be created to cope with the

tremendous increase. This requires tools which rapidly can verify the correctness of new

protocols and algorithms. Traditional testing is too slow and costly and does not guarantee

the correctness in all cases.

The Maria reachability analyser [Mar] is designed to verify industrial size systems in

an easy way. This work is also a test of the applicability of the design concepts, mainly the

adequacy of the input language of the analyser. A �rst version of the model was presented

earlier [OHB99], but it was not complete (lacking timestamps and threshold) and was not

analysed in Maria (which was not implemented at that time). The concrete analysis also

brought some changes to the model.

In this paper, however, we present the DDCA (Distributed Dynamic Channel Alloca-

tion) algorithm [PSS95] using high level Petri Nets, speci�cally Pr/T (Predicate/Transition)

nets [Gen87]. Inhibitor arcs are used as a shorthand notation in the model which is general,

non tool-speci�c, allowing for analysis using any high level Petri net tool. The net model

used in the analysis, however, contains no inhibitor arcs.

Section 2 presents the DDCA algorithm in general and Section 3 the complete high

level Petri Net model of the algorithm. Section 4 presents the analysis results produced by

the Maria analyser. Section 5 shows the direction of work to be undertaken in the future.

2 The Distributed Dynamic Channel Allocation Al-

gorithm

The mobile computing world is normally seen as a collection of base stations (BS) connected

together via a �xed network. The area covered by each BS is referred to as a cell. Each

cell has a set of neighbouring cells. The users carry mobile hosts (MH) which connect to

the �xed network via the cells.

There are two ways of handling the reuse of channels. The �rst way is called �xed

channel allocation and the second one is called dynamic channel allocation [Lee93]. In

�xed channel allocation the reuse patterns of radio channels are determined a priori based

on the geographical layout of the cells. This approach is fast (it can be hard coded) but it

is not very maintainable or scalable.

In dynamic channel allocation, channels are assigned according to an algorithm run by

a central control or by the base stations. The algorithms are based on determining the

channel occupancies of neighbouring cells or on measuring co-channel interference directly.

In performance measurements the algorithm measuring co-channel interference is found to

be more spectrally eÆcient [CC96]. In this work we concentrate on traÆc measuring based

dynamic channel allocation presented in [PSS95].

The algorithm handles a set of Nk channels which are ordered. The channel with the

lowest frequency is the �rst channel, and the channel with highest frequency is the nth

channel where n is the number of channels. The set of all channels is denoted by Spectrum.

74

The cells in the network have a �xed set of neighbours Nbr. Normally these cells are

hexagonal | that is, each has six neighbours (Figure 1). Our model does not assume any-

thing about the number of neighbours. The channels allocated to a cell Ci are represented

by the set Allocatedi. Each allocated channel is in one of three subsets: Busyi, Transferi,

or Availablei. The set Busyi contains all the channels that are currently used in active

communication. The set Transferi contains those channels that will be transferred to a

neighbouring cell to support a communication session. If a channel is allocated to a certain

cell but not busy or being transferred, it is in Availablei. Note that all these sets change

dynamically. In the terminology used in this paper free channels are not allocated to any

cell.

Nbr = 1, 3, 5, 0, 0, 0
1, 2, 4, 0, 0, 0
1, 3, 7, 0, 0, 0
2, 3, 4, 5, 6, 7

1, 4, 6, 0, 0, 0
1, 5, 7, 0, 0, 0
1, 6, 2, 0, 0, 0

2 3

4

56

7 1

Figure 1: Hexagonal cell con�guration.

The brief description of the original algorithm, as written in [PSS95] is as follows:

"When a new communication request originates in Ci, one of the non-busy channels in

Allocatei is assigned to support the communication session. If there is no such channel,

then after a round of message exchange with the neighbours, a channel that is in the

Spectrum, but not in Allocate set of the cell or any of its neighbours is added to Allocatei
as well as Busyi. This channel is used to support the session. If such an attempt fails, Ci

tries to transfer a non-busy channel from the Allocate set of its neighbours to Allocatei.

If such a transfer is not possible, the communication request is dropped. Otherwise, the

communication is successfully completed."

3 Petri Net Model of the DDCA Algorithm

We present a complete Pr/T net model of the DDCA algorithm in this section. The

presentation is divided into four phases corresponding closely to the steps of the algorithm

as given in [PSS95]. A �rst version of the Pr/T net model of DDCA algorithm was given

in [OHB99], but this version contains so many changes and additions that it is necessary

to present the whole net model.

In the model there are Nc cells connected to neighbouring cells as described by the

neighbourhood relation Nbr: i ! 2Nc, where 1�i�Nc. An example of a hexagonal con�g-

uration using a matrix can be found in Figure 1. This relation assigns a set of neighbour

75

cells Cij to each cell Ci. Here 1�j�6 (if the cell layout is hexagonal), and i6=ij for all

j. The number of channels which may be in each cell is represented by the constant Nk.

Changing the con�guration of the net is simply changing the neighbourhood relation.

There are two very important places in the Pr/T net model. The �rst of these, Pch

(referred to in all parts of the net), contains always Nc�Nk tokens. The tokens are triples

of the form < k; i; s >. Here k is a channel number (1�k�Nk) and i is a cell number

(1�i�Nc). The third element, s, represents the status of the channel k in the cell Ci. The

status s can have four distinct values, s2fa,b,f,tg; a denotes that a channel is available,

b that it is busy, f that it is free and t that it is in transfer status.

The other important place in the Pr/T net model is Pcl in Figure 2 which keeps track of

the connection attempts. This place contains a token i for each cell Ci. When a connection

attempt originates from the cell Ci, the token i is removed from the place Pcl. When the

attempt either succeeds or fails the token i is replaced in the place Pcl.

In the initial state of the net, all the channels are free, i.e. all tokens in place Pch have

the status �eld f, and the place Pcl contains exactly one token i for each cell Ci.

In the original algorithm, the sets Allocatei, Busyi, and Transferi are extensively used in

set operations. For example, the Freei set is calculated from the above sets (when Spectrum

is known). In our Pr/T net model we have avoided the necessity of set calculations by

having a token for each channel in each cell in the place Pch. Pch can be seen as a global

database for channel information but note that the cells can not read the status of the

channels in other cells in this model because it would destroy the distributed nature of the

algorithm.

The spontaneous o�-hook, on-hook behaviour is modelled by transitions Tin and Tout

in Figures 2 and 6 respectively. In the analysis we had to limit the number of o�-hook

transitions in order to get a �nite reachability graph.

To make it more readable the net model has been divided into �ve �gures. Places with

the same name may appear in several di�erent �gures, but these multiple \instances" of the

same place represent only one place in the whole net. Places which can be found in several

�gures are drawn with thicker border lines. In Figures 4 and 6 arcs extend from the word

Prqt and to the word Pcl. These represent connections from/to the places named Prqt

and Pcl and are denoted in this way only to save space.

3.1 Phase 1 - Available Channel in the Same Cell

When a connection attempt originates from cell Ci, we �rst check whether there are any

available channels in that cell (Figure 2). This is modelled by the o�-hook transition

Tin which places a token i in place Pin when it �res. If an available channel is found

in the same cell, the k0 channel will be put into busy status. This is modelled by the

transition Tha with the condition condh which selects the highest available channel and

may be expressed as \the channel k' satisfying 8kn9k
0 k0 � kn". The transition Tha

takes all tokens with cell index �eld i and status �eld a, i.e. all channels which are

available in cell Ci, from the place Pcl and returns them unchanged except for the token

with k' which will have a status �eld with the constant b. This is handled by the token

76

Pin

<i>

<i>

Prq Prqt

Ptime

<x,i,a>

Tin

<i>

S<i>
REQ

Tsrq

Pcl

condh Tha

Pch

<i> <i>
<i,ci>

<i,ci+1>

<i,ci+1>

SUMia

SUMib

Figure 2: The internal phase.

sums SUMia = �n2Nk
< kn; i; a >, where a is the status constant a (for available) and

SUMib = (�n2Nk
< kn; i; a >) � < k0; i; a > + < k0; i;b >, i.e. only the status of the

highest order channel is changed into busy. This ends the connection request cycle.

If there are no available channels in cell Ci, i.e. no tokens < kn; i; a > for any n, the

transition Tsrq will �re. Here, the inhibitor arc with the arc expression <x,i,a> will be

active only if there is no such token in place Pch. Thus the transitions Tha and Tsrq are

complementary.

The �ring of transition Tsrq is synonymous with sending a request for a new channel

to all neighbours of the cell Ci. This is modelled in the Pr/T net by sending a set of tokens

REQ = �j2Nbri< i; j; ci+ 1 > to place Prq. The term 'ci' is actually a timestamp. The

DDCA algorithm uses Lamport's logical clocks [Lam78] for timestamps which here are

modelled by tokens in place Ptime. Also, the transition Tsrq inserts a tuple < i; ci+ 1 >

into place Prqt and takes a token < i > away from place Pcl. The place Prqt is used as

a bookkeeping place for pending requests from a cell Ci. This information is necessary in

the next step of the algorithm, when the request with the lowest timestamp is served �rst.

The placesPrq andPrqt represent the \communication medium" between the di�erent

cells. The neighbouring cells may read requests for a new channel from these places. The

marking S < i > of the place Pcl is equivalent to the sum of tokens < i > for 1�i�Nc.

77

3.2 Phase 2 - Requesting a New Channel

Figure 3 shows the second phase of the algorithm | namely, how the requests for a new

channel are received by neighbours and how the replies are returned. The transition Trc

represents the reception of request-messages by the neighbours Cj of cell Ci. It simply

forwards the tokens < i; j; ci > to the place Prcrq and updates the timestamps according

to Rule 2 in [PSS95]. Because high-level nets are used this place represents the folding of

all individual cells. In the high-level model the tokens are tagged with the number of the

individual cells (j in the token < i; j; ci >).

The replies are returned through two transitions, Trep and Trep2. The transition

Trep ensures that the request containing the lowest timestamp gets served �rst, i.e. if

Cj and Ci both have pending requests, Cj sends its local information �rst to Ci if its

timestamp is higher than Ci's. If there are no pending requests from any of the neighbours

Cj, the transition Trep2 �res. This represents the sending of Cj's local information to the

cell Ci. This occurs through the place Prep and transition Trcrep. The local channel

information is contained in the sum SUMj = �n2Nk
< kn; j; sn >.

The reply tokens sent by transitions Trep and Trep2 all go to the place Prep because

all the cell models are folded. Thus a method to distinguish the destination of the reply

tokens is needed. The solution is to tag each reply token with the index number i of the

cell which sent the requests. Thus the sum SUMji is constructed from SUMj as follows:

SUMji = �n2Nk
< kn; j; sn; i >. Informally this means: \Send the channel information

from cell Cj to cell Ci".

The transition Tint collects all the reply tokens from the neighbours, and once all are

received, combines them with the tokens modelling the channel information of cell Ci. This

corresponds to the algorithm step A.4 in [PSS95], where unions of the Allocatei set and

the Allocate sets received in the replies are stored in the Interferei sets.

The token sums are forwarded to place Pint, which is an \interference place" used to

avoid interference between channels in neighbouring cells, i.e. the same channels may not

be busy in adjacent cells. The token sum representing the replies from the neighbours Cj of

cell Ci is SUMjiCh = �j2Nbri�n2Nk
< kn; j; sn; i > whereas the local channel information

is SUMi = �n2Nk
< kn; i; sn >. Simultaneously the token < i > is placed into Pfree.

3.3 Phase 3 - Choosing a Channel in the Neighbourhood

Once the replies from Phase 2 have been received, the algorithm chooses a channel which

will be used to support the communication session. Figure 4 shows the Pr/T net model of

this phase of the algorithm.

When there is a token < i > in place Pfree one of two transitions may �re. Transition

Thf �res if there is a token sum SUMf in Pint, i.e. when there is a channel that is free in

cell Ci as well as in all its neighbours as in step A.5 in the algorithm. This channel must

not be allocated to any cell in the neighbourhood. The tokens in place Pint model both

the sets Interferei and Freei in the algorithm, because it is more eÆcient to store also the

tokens corresponding to the sets Freei in place Pint.

78

Prqt

<j,cj>

Prq

Prcrq

Prep

SUMj

Trc

<i,j,ci><i,j,ci>

Trep Trep2ci<cj

SUMj

Pch

SUMji SUMji

Trcrep

SUMji

SUMji

Prcrep

SUMjiCh

SUMi

Tint

SUMjiCh + SUMi

Pint

<i>

Pfree

<j,t>

<j,cj>

<j,max{ci,t}+1>

Ptime<i,j,ci>

<i,j,ci>

Figure 3: Sending channel requests and replies.

79

Pfree

<i> <i>

Thf Trqtrf

<i>
Pb

Pch

Prqt

<i,ci>

<i>

Pcl

SUMf SUMf

Tb

SUMn

SUMaf
SUMaf

Pint

SUMn

SUMn

Pcl

Prqt

<i,ci>

<i>

Tla
Tno

Pt

Ttrf
Pav

Ptrf

SUMt

<k’’,i>

<k’’,i>

<i>

<i>
<i>

<i>

condl

condh

SUM’’if

SUM’’ib

<k’,i,f>

<k’,i,b>

Figure 4: Checking for free channels.

80

Note that the tokens in place Pint are constructed in one transition (Tint) only in

the model, while the sets Interferei and Freei are calculated twice in the algorithm (also

in step A.6). This is not necessary in the net model because all necessary information is

available in place Pint and can be obtained by using suitable arc expressions.

Thus it is possible to use the token sum SUMf together with the transition condi-

tion condh denoting 8kn9k
0 k0 � kn to select k0 as in Phase 1. The testing if there

is a channel which is free in the whole neighbourhood is handled by the arc expressions

SUMf = �j2Nbri�n2Nk
(< kn; j; f ; i >+< kn; i; f >) from place Pint. If the transition can

�re the token < k0; i; f > is read from place Pch.

A successfully chosen channel token < k0; i;b > is returned to place Pch (note that

the status changes from free to busy). The token sum SUMf is returned to place Pint to

allow for an easier clean-up operation. Also, as a result of the �ring of Thf a token < i >

is inserted into place Pb.

The transition Tb ends the (successful) cycle for channel request by cleaning up place

Pint (removing all tokens connected to the request), removing a pending request from place

Prqt (token < i; ci >) and allowing a new request to be handled in cell Ci by returning

the token < i > into place Pcl. The sum involved in the clean-up of place Pint is

SUMn = �j2Nbri�n2Nk
(< kn; j; sn; i >+< kn; i; sn >).

The complement of the transition Thf is the transition Trqtrf, which �res when there

is no token sum SUMf in place Pint, i.e. no channel that is free in cell Ci and all its

neighbours. In that case the algorithm tries to transfer an allocated channel from the

neighbourhood to the cell Ci and the net model forwards the token < i > to place Pav.

When the control (token < i >) is in place Pav, one of two complementary transitions

will �re. If there is no channel that is either available or free in cell Ci and all its neighbours,

the transition Tno will �re. Tno cleans up the places Pint and Prqt as described above

and returns the token < i > to place Pcl. In this case the connection attempt fails. The

token sum modelling the checking of available or free channels in the neighbourhood is

SUMaf = (x = a) _ (x = f)�j2Nbri�n2Nk
< kn; j;x; i >+< kn; i;x >.

If a channel is found that is either free or available in cell Ci and all its neighbours, i.e.

SUMaf exists in place Pint, the transition Tla will �re. The condition condl will select

the lowest order of these channels (denoted by k") by requiring that 8kn9k
00 k00 � kn. The

channel is subsequently assigned the busy status (by sending token < k00
; j;b > to place

Pch), and the control token < k00; i > is forwarded to place Pt.

Finally, the algorithm will send transfer messages to all the neighbours of cell Ci

that have channel k00 allocated (ie. any status but free). In the model, however, trans-

fer messages are sent to all the neighbours, because it is more eÆcient (a sum can be

used over Nbri). The transition Ttrf takes tokens < k00
; j; s; i > from SUMn which

have channel �eld k00 and cell �eld j (j 2 Nbri) and constructs transfer messages from

these. The transfer messages are represented by the sum SUMt = �j2Nbri if not(s =

f) then < k00; j; t; i > else < k00; j; f ; i >. This token sum is forwarded to place Ptrf which

is a folding of the places modelling the communication links between a cell and its neigh-

bours. The constant t in the summeans that this is a transfer message. The transitionTtrf

also cleans up the place Pint as described earlier. The tagging of tokens in SUMt with i

81

is necessary to avoid confusion with other transfer attempts from the same neighbourhood.

3.4 Phase 4 - Double Checking with the Neighbours

Once a channel for transfer is found, we must double check the choice with the neighbours.

It may happen that after a channel is chosen as a candidate for transfer, this channel

switches to the busy status in some cell (before the transfer messages are received in the

cell). In that case the transfer is no longer possible.

Figure 5 represents this double-checking with the neighbours. The transition Trctrf

represents the reception of transfer messages by the neighbours of Ci. The sum in the

input arc of the transition is denoted by SUMtr = �j2Nbri< k; j; sj; i >. This token sum

is forwarded to place Prctrf which is a folded place representing all the neighbour cells

but the tag j determines which cell gets the transfer request.

The two transitions Tref and Tagr take individual tokens (transfer messages destined

to the cell Cj). Tref �res if there is a token < k; j;p; i > in place Prctrf and a token

< k; j; s > in place Pch such that s = b _ s = t (denoted by s=b,t in Figure 5). The

value of the variable p in the arc expression < k; j;p; i > is not important. This models

the case that the channel k in a cell Cj (j 2 Nbri) has status busy or transfer. In that case

the transfer of the channel k from cell Cj is unsuccessful and the channel status in cell Cj

will be unchanged (the token is returned unchanged to place Pch).

Tagrmodels the case when the channel k in a cell Cj is available or free. The annotation

s=a,f in transition Tagr denotes the condition s = a _ s = f . In that case, the transfer

of the channel k from cell Cj is successful (the token < k; j; s > is returned to place Pch

with status �eld t).

The unsuccessful transfer of a channel k from cell Cj is coded into a token < k; j;b; i >

that is forwarded to place Pstr. Similarly, the successful transfer of a channel is coded

into a token < k; j; f ; i > that is placed into Pstr. Thus the b in token < k; j;b; i > does

not mean the status busy but is just a convenient way of coding that the transfer request

was unsuccessful in cell Cj (\refuse message"). Likewise the token < k; j; f ; i > means that

the transfer request for cell Cj was successful (\agree message").

Once all the neighbouring cells have either agreed or refused a channel transfer, the

transition Tstr can �re. This transition models the sending of answers from the all the

neighbours (SUMtr) to the cell Ci (place Ptrep). The sum makes certain that all the cells

have replied before the cell Ci will start evaluating the answers. Note that the interpretation

of SUMtr is di�erent from the token sums with the same name annotating arcs around

transition Trctrf although the token structures are the same.

3.5 Phase 5 - Cleaning up

Once the \agree" or \refuse" messages have arrived from the neighbours of the cell Ci,

i.e. the token sum SUMtr has arrived at the place Ptrep, one of two complementary

transitions can �re (Figure 6). If there is even a single \refuse" message in the replies to

cell Ci, i.e. the condition 9sj sj = b (annotated by exist b) is satis�ed meaning that

82

Ptrf

Trctrf

<k,j,s>

<k,j,s>

<k,j,t>

Tref Tagr

<k,j,f,i><k,j,b,i> Pch

Pstr

SUMtr

SUMtr

Tstr

Ptrep

Prctrf

s=b,t s=a,f

SUMtr

SUMtr

<k,j,p,i> <k,j,p,i>

Figure 5: Double checking the chosen channel.

83

Pch

SUMjf

<k,i,b> <k,i,a>

<i,0> SUM2

SUMjt

<k,i,b>
<k,i>

<i>

<i,ci>
Pcl

Trel

SUMjt

SUMja

<i>

<i>

Pav

<i,1>

Tquit

<i>

Pcl

SUM3

Pthr

<i>

Pint

SUM2

SUM1

SUMn

SUMn

Ptrep

SUMtr

exist b Tiref no b Tiagr

<k,i>
<k,i,f>

<k,i>

Pkeep Prqt

SUMtr

Prel

<k,i>

<i>

Tout

Prqt

<i,ci>

Tkeep

Ptry

Tagain

Figure 6: Cleaning up.

84

there is at least one token < k; j;b; i > in place Ptrep, the transition Tiref will �re. This

transition sends a token < k; i > to the place Pkeep. Also, the channel k in cell Ci that

was set to busy status will be assigned the free status (token < k; i;b > in place Pch is

replaced by < k; i; f >).

The place Pkeep models the fact that the cell Ci is sending \keep" messages to the

neighbourhood. Tkeep sets those channels that are in the transfer status back into avail-

able status in the cells Cj. This is handled by the two sums SUMjt = �j2Nbri< k; j; sj >

and SUMja = �j2Nbri if (sj = t) then < k; j; a > else < k; j; sj >.

If no \refuse" messages are returned, i.e. the condition :9sj sj = b (annotated in

transition Tiagr by no b) is satis�ed meaning that no token < k; j;b; i > is found in

place Ptrep the transition Tiagr will �re denoting a successful transfer of a channel. This

transition sends a token < k; i > into place Prel, which models the sending of \release"

messages from the cell Ci to the neighbourhood. The transition Trel cleans up the place

Prqt and returns the token <i> to place Pcl. It will also set those channels that are in the

transfer status in the neigbour cells Cj into the free status by replacing token sum SUMjt

with SUMjf = �j2Nbri if (sj = t) then < k; j; f > else < k; j; sj >.

The original algorithm has a THRESHOLD parameter that tells how many times the

algorithm will try to transfer a channel before giving up. This behaviour is modelled by

places Ptry and Pthr and transitions Tagain and Tquit in Figure 6. The place Pthr

initially contains nthr tokens of the form < i; 1 > where nthr = THRESHOLD. Each

time an unsuccessful transfer takes place (and transition Tagain �res), a tuple < i; 1 > in

place Pthr is replaced with < i; 0 > and control is given to place Pav in Figure 4 (a new

transfer attempt is started).

If there are only < i; 0 > tuples left in place Pthr, the transition Tquit will �re ending

the transfer attempt cycle. In this case we replace all the tuples of the form < i; 0 >

(SUM3) with < i; 1 > (SUM2).

If the transfer attempt was successful (Tiagr �res) then Trel replaces all the tokens

of the form < i; r > (SUM1) with tokens < i; 1 > (SUM2). The sums involved in this

THRESHOLD part of the algorithm are:

SUM1 = �j2f1:::nthrg < i; r >,

SUM2 = �j2f1:::nthrg < i; 1 >, and

SUM3 = �j2f1:::nthrg < i; 0 >.

The transition Tout models the spontaneous on-hook behaviour. It may �re at any

time.

4 Reachability Analysis

The general Petri net model shown here was analysed with the Maria analyser [Mar] and

in that process a few changes had to be made to the model because the input language

of Maria does not support inhibitor arcs and some expressions. The inhibitor arcs were

used in the general model only to avoid that the �gures would be too cluttered - inhibitor

arcs can always be replaced by other constructs. In the Maria net model the complexity of

85

the net is much larger than in this abstract version. This is mainly due to dividing some

transitions. It does not add to the size of the reachability graph but makes the net model

less readable. This is not so important because the net description language of Maria is

designed as an intermediate language although it has very powerful high-level features and

a complete type system. Also for Petri net modelling front-ends are planned which handle

the interface to the user, for example using the well-known Design/CPN.

The main e�ort in this work is without doubt in the modelling (comprising many man-

months and going through many versions), but of course it is also important to analyse some

properties of the model (and the algorithm). This model was also used in the development

work of the Maria analyser. The results given here are from the �rst experimental version

of the analyser and are only representative for the modelling power of this �rst version.

Creating a Maria model was also useful to detect errors in the more general net model.

Even before the analysis was performed we detected a few mistakes by just using the

simulation facility of marde, the Maria debugging tool. Especially using high level nets

which are heavily folded the inscriptions in the net may be so complex that it is diÆcult

to see errors just by inspecting. In many respects the modelling process is analogous to

program design and this is certainly the case for Maria which has a very developed data

type system and a very powerful expression syntax.

As an example of the Maria input language (version 0.1) the transitionTrep in Figure 3

is shown:

// Define a new place for the replies of type reqreply.

typedef struct{channel k; cell j; state s; cell i} reqreply;

place Prep reqreply;

trans Trep

{ channelstate s; }

in {

Prcrq: {i,j,ci};

Prqt: {j,cj};

Pch: channel k (k>=1): {k,j,s[k]}; // SUMj

}

out {

Prqt: {j,cj};

Pch: channel k (k>=1): {k,j,s[k]}; // SUMj

Prep: channel k (k>=1): {k,j,s[k],i}; // SUMji

}

gate ci<cj;

Note the coding of the sums. For SUMj the last line in the in arc de�nition means

that from place Pch all tokens fk,j,s[k]g are taken for all channels k if k >= 1. The value

86

of j is determined from the places Prcrq and Prcrq. The SUMji is constructed from the

available values of k, j and s[k] with the addition of the value of i determined from place

Prcrq.

Although Maria has many powerful constructs which make the modelling of distributed

algorithms easy there are a few additional features which would be most useful like quan-

ti�ers. It is often necessary to express that a transition should �re (or not �re) if there

exists a token of a certain kind or if all tokens have a certain property. Thus existential

and universal quanti�ers would be quite useful, especially in modelling protocols like this

one.

In the Maria model of the DDCA algorithm we could not yet make the net completely

parameterised, i.e. make its structure insensitive to changes in the cell con�guration. Thus

some transitions had to be split into several transitions - one for each cell. We hope to add

features to Maria to make a completely parameterised model possible in the future.

An exhaustive reachability analysis for a complex con�guration with a large number of

channels and many concurrent channel requests (call attempts) is very diÆcult because the

size of the reachability graph explodes. It is therefore necessary to check the function of the

DDCA algorithm for relatively small examples. We analysed two special con�gurations,

one with seven cells and one with three cells. In both cases the number of channels was

only two, but the number of concurrent channel requests varied.

Channels 1&2

Cell 1 -

Channels 1&2

Cell 2 -

Channels 1&2

Cell 3 -

Figure 7: The three cell con�guration.

Whereas the general model (presented in Figures 2{6) has 25 transitions the Maria

model for three cells and two channels (Figure 7) has 66 transitions and 41 places. The

model with seven cells in Figure 1 has 63 transitions and 46 places.

We considered a set of three cells each having two channels as in Figure 7. Initially,

all the channels in every cell were free. The size of the reachability graph was limited by

constraining the number of concurrent connection attempts to one, two and three respec-

tively. Note that there could be a maximum of one connection attempt in any given time

at a given cell (ie. no concurrent connection attempts from the same cell).

The results of the reachability analysis are given in Table 1. The analysis uncovered

no deadlocks in the execution of the algorithm. Moreover, a Linear-Time Temporal Logic

formula was veri�ed ensuring that no neighbouring cells can use the same channel at the

same time. In e�ect, the property was veri�ed by considering the marking at place Pch in

87

three cells seven cells

no. of con-

current re-

quests

number of

markings

number of

arrows

number of

markings

numbers of

arrows

1 105 163 4551 19387

2 4557 11490 - -

3 18528 48603 - -

Table 1: Statistics for the reachability analysis.

each reachability marking. This was the key property that the protocol had to satisfy to

be correct.

The corresponding analysis for seven cells generated a much larger number of states

already with one request and was very slow. For two requests the analysis was stopped

after a few hours. The Maria analyser is actively developed and new versions with better

eÆciency and new features appear at a steady pace. The most important improvement in

the analysis will, however, be in using reduction methods and other techniques for handling

large reachability graphs.

Making relatively small changes in the net model inuenced the reachability analysis

substantially and the �gures in Table 1 should be seen as indicative only and bound to

change.

5 Further Work

The basic algorithm given in [PSS95] has been since augmented to contain mobile base

stations [PN99]. The natural continuation of this work is to extend the model to the case

where the base stations are mobile. Work on this extension is already going on and a �rst

version will be reported in [OHT].

The basic DDCA algorithm has been modelled and analysed in this work using the

Maria reachability analyser, but it still seems to be possible to gain from small changes in

the model in order to get a more eÆcient analysis.

Much also remains to be done in developing the power of the expressions in Maria and

also in the analysis methods. The expressiveness is not only needed in order to keep models

small and readable but also to make them parameterised, i.e. easy to alter for di�erent

con�gurations. The inclusion of quanti�ers would be very useful in this kind of models

and for the DDCA algorithm we would also need the possibility to choose \maximal" and

\minimal" token from a place. This should be easy in Maria because the data types are

totally ordered [Mar].

It is very diÆcult to analyse this model for big con�gurations, but already in these

simple cases some mistakes in the model have been found and the use of an analyser, even

in debugging (or simulation) mode, is considered very useful for the modelling process.

88

The further development of marde, the debugging tool therefore would be important.

Especially the inspection of paths in the reachability graph is useful in checking if the

model works as intended.

The reachability analysis results must also be investigated in order to check how the

analysis can be made more eÆcient. The Maria analyser will soon have also reduction

methods implemented (the same as in PROD) and the inuence of these could be inter-

esting.

6 Conclusions

An algorithm for distributed dynamic channel allocation for mobile computing has been

successfully modelled using Predicate/Transition nets. The general high-level Petri net

model is quite compact with only 22 places and 25 transitions and it can be used for

any number of cells and channels with any con�guration. It would be diÆcult to achieve

without a very expressive high-level net language. It was a nontrivial undertaking to model

the DDCA algorithm and this is the �rst complete model of the algorithm.

The algorithm has been analysed by the Maria analysis tool and has been found

deadlock-free for some simple con�gurations. Moreover, the algorithm ensures that the

same channel is never allocated in contiguous cells for the veri�ed cases. Further analysis

should be carried out, but the algorithm seems to be correct and implementable in real

systems.

References

[CC96] M. Cheng and J. Chuang. Performance evaluation of distributed measurement-

based dynamic channel assignment in local wireless communications. IEEE

Journal on Selected Areas in Communications, 14(4):698{710, May 1996.

[FZ94] George H. Forman and John Zahorjan. The challenges of mobile computing.

UW CSE Tech Report #93-11-03, University of Washington, Computer Science

& Engineering, March 1994.

[Gen87] Hartmann J Genrich. Predicate/Transition nets. In Wilfried Brauer, Wolfgang

Reisig, and Grzegorz Rozenberg, editors, Petri Nets: Applications and Relation-

ships to Other Models of Concurrency, Part I, volume 254 of Lecture Notes in

Computer Science, pages 207{247. Springer-Verlag, Berlin, 1987.

[Lam78] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed

System. Communications of the ACM, 21(7):558{565, July 1978.

[Lee93] W.C.Y. Lee. Mobile Communication Design Fundamentals. Wiley, 1993.

[Mar] Maria - a Modular Reachability Analyser, Web Home Page.

http://www.tcs.hut.�/.

89

[OHB99] Leo Ojala, Nisse Husberg, and Simo Blom. Modelling a Distributed Dynamic

Channel Allocation Algorithm for Mobile Computing Using Predicate/Transition

Nets. In Proc. of 1999 IEEE Int. Conf. on Systems, Man, and Cybernetics,

October 12-15, 1999, Tokyo, Japan. IEEE, 1999.

[OHT] Leo Ojala, Nisse Husberg, and Teemu Tynj�al�a. Modelling a Distributed Wireless

Channel Allocation Algorithm for Cellular Systems with Mobile Base Stations

using Predicate/Transition Nets. Accepted for presentation at SCI2000, Orlando,

Florida, 23-26 July 2000.

[PN99] Ravi Prakash and Sanket Nesargi. Distributed wireless channel allocation in

networks with mobile base stations. In Proceedings of INFOCOM'99, pages 592{

600, March 1999.

[PSS95] Ravi Prakash, Niranjan G. Shivaratri, and Mukesh Singhal. Distributed dynamic

channel allocation for mobile computing. In Proceedings of the Fourteenth Annual

ACM Symposium on Principles of Distributed Computing, pages 47{56, 1995.

90

Modelling and Initial Analysis of the Resource Reservation Protocol using
Coloured Petri Nets

María E. Villapol and Jonathan Billington

Cooperative Research Centre for Satellite Systems
University of South Australia

SPRI Building, Mawson Lakes, Adelaide SA 5095
Tel: 08 8302 3371 Fax: 08 8302 3873

 email: maria@spri.levels.unisa.edu.au and email: jb@spri.levels.unisa.edu.au

Abstract

The Resource Reservation Protocol (RSVP) conveys Quality of Service information along the
path of a data flow. It is intended to support the new emerging Internet applications which
require a guaranteed level of service to achieve their functionality. The aim of this paper is to use
Coloured Petri Nets to model some features of the protocol over a simple unicast network. Initial
analysis of the model shows that it is working correctly, in other words, as described in RSVP
specification document. However, further analyses are required to validate the CPN model.

1. Introduction

Traditionally, Internet applications, such as File Transfer (FTP) and Telnet, use a best-effort
service with no service guarantees [6]. In the last decade, however, new applications have
emerged. These applications, such as multimedia and real-time applications, generate not only
data but also images, video and voice. They require different levels of quality of service (QoS)
regarding, for example, delay and throughput. Thus, the Internet Engineering Task Force
(IETF)1, a volunteer organisation that discusses operational and technical problems of the
Internet, has worked on extending the Internet architecture to support such new applications.

Although the original plan of the IETF was to create an unified model for the Internet, today
several service models have been developed [2] [3]. One of the proposals is the Internet
Integrated Service Model (IntServ) [3]. IntServ supports not only best-effort applications but also
real-time applications. In addition, the Resource Reservation Protocol (RSVP) [4][7][18]
conveys QoS parameters and sets up QoS information along the path of a data flow.

Formal methods provide techniques to support the design and maintenance of communication
protocols [1]. They have already been applied to protocol engineering activities [15][16].
Coloured Petri Nets (CPN) [10][11] are a formal technique with a solid mathematical foundation
which has been used for modelling many systems such as communication protocols [12].

The authors have found that formal techniques have been seldom applied to the Internet protocol
engineering activities. In this paper, CPNs, with the aid of a software tool called Design/CPN
[14], are used to model the operation of RSVP and to analyse it based on the RSVP specification
[4]. This initial model includes some basic features of RSVP working on a simple network
topology supporting unicast traffic (ie a sequence of packets travelling from a sender to a single
receiver).

1 See IETF home page at http://www.ietf.org.

91

The paper has been organised as follows. Section two presents an overview of RSVP which
includes its characteristics, operation and relationship with other protocols. Section three
includes a description of the CPN model of RSVP. In addition, the assumptions and requirements
taken into account for this model are presented. The model is analysed in section four. It includes
some simulation results and an initial state space analysis. In addition, previous CPN models of
the protocol are compared in terms of the size of the occurrence graphs. Finally, section five
concludes this paper.

2. Resource Reservation Protocol (RSVP) Overview

2.1 Characteristics

RSVP is a signalling protocol developed to create and maintain resource reservations on each
link along the transport path. It is also used by a host to request a particular QoS for each
application.

The design principles of RSVP are outlined in [18]. A detailed description of those principles is
beyond the scope of this paper. However, the main characteristics of RSVP, which are closely
related to those principles, are summarised as follows:

� Receiver-based: receivers initiate the resource reservation along the path between the source
and destination of a data flow, since receivers know the resource availability and limitations
[4][18].

� Soft-state reservations: the reservations along a path are considered non permanent, so they
must be refreshed periodically. If a reservation is not refreshed before a timeout occurs, the
reservation is cancelled, so, the reservations may adapt to dynamic routing changes and the
QoS reserved for a flow may be changed at any time.

� Flow oriented: RSVP reserves resources on a flow basis. A data flow is a distinguishable
packet stream which results from a single user/application activity and requires the same
QoS.

� Unidirectional: RSVP reserves resources in one direction.
� Heterogeneous receivers: each receiver requests resources to support its own QoS

requirements.
� Support of multicast sessions: RSVP makes resource reservations for both unicast and

multicast applications.

2.2 Architectural Overview

Figure 1 shows the TCP/IP protocol stack extended to support QoS provision. It includes several
protocols which support the transfer of data from the applications. RSVP is located on top of IP1

at the level of a transport protocol. It does carry control information (ie RSVP signalling
messages) intended to create, manage, and remove reservations associated with user data. A
description of these protocols, apart from RSVP, is beyond the scope of this paper; however
there is a wide range of literature related to the Internet protocols (eg see [6][8]).

1 RSVP may also run on top of UDP as explained in RFC 2205 [4]. However, for simplicity, it is not shown in figure
1.

92

Figure 2 shows the software architecture of a host and a router which supports RSVP. The host
and router systems are the same except that the application block in the host is replaced by a
routing block in the router.

An application must be able to interact with RSVP in order to communicate traffic characteristics
of the data flow and their QoS requirements. RSVP signalling messages will be encapsulated
into IP packets and travel hop-by-hop from the sender to the receiver(s). At each node, if the
node supports RSVP, the message must be processed. Some nodes in the network may not be
able to process RSVP messages, thus they will be forwarded without further processing [4]. At
each router, RSVP interacts with a routing protocol to obtain the IP address of the next hop on
the route of the data flow.

Traffic control, which includes the classifier, packet scheduler and admission control [3], is
responsible for allocating network resources according to QoS information carried into RSVP
messages. Thus, the classifier classifies IP packets according to a set of service classes and
assigns them to different queues. The packet scheduler determines which of the set of IP packets
will be served next. Finally, admission control decides whether there are sufficient resources
available to grant the requested QoS for a data flow.

RSVP may also communicate with a policy control component which decides if the user
requesting a reservation is permitted to do so. Policy control mechanisms may involve, for
example, the identity of the user and application, traffic and data rate requirements, and security
considerations [7].

Applications

Data Link + Physical Layer

 IPv4/IPv6

TCP/UDP
RSVP

Application Control

Figure 1: RSVP in the TCP/IP architecture.

Classifier

RSVP
process

Policy
Control

Admission
Control

Routing
Process

Application

Packet Scheduler

Classifier

Policy
Control

Data
flow

RouterHost

Admission
Control

RSVP
process

Packet Scheduler

RSVP
signaling

RSVP
signaling

Figure 2: QoS software architecture.

93

2.3 RSVP specification

Sessions and dataflows

A session is a data flow with a particular destination and transport-layer protocol and is
identified by an IP destination address (unicast or multicast) of the data flow, IP protocol ID, and
destination port (optional) (eg UDP/TCP destination port field) [4].

Traffic and QoS parameters

The RSVP specification defines a reservation request in terms of a filter specification (filter
spec) and a flow specification (flow spec) [4]. The former defines the sequence of packets or data
flow to receive the QoS specified in a flow specification. A filter specification together with a
session ID is used to identify a flow which will receive the QoS. The latter defines a desired QoS
for the flow and defines its traffic characteristics. It includes a service class, a Reservation
specification (Rspec), and a Traffic specification (Tspec). A traffic specification (Tspec) defines
the traffic characteristics of the flow, for example, the peak rate. A reserve specification (Rspec)
defines the reservation (ie. desired QoS) characteristics of the flow, for example, the service rate.
The formats of a Tspec and Rspec are not defined by the RSVP specification.

A filter specification is used by the classifier to assign the data flow to a queue and a flow
specification is used by the packet scheduler to allocate the corresponding QoS and to schedule
packets based on their traffic characteristics.

Soft state

RSVP soft state reservations deal with occasional loss of RSVP messages and route changes at
any point on the path of a data flow. Thus, reservation and path states set up by RSVP along the
route of a data flow must be refreshed periodically, otherwise they will be removed. The refresh
timeout determines when a refresh message must be generated, while the cleanup timeout
determines the maximum period of time that a node waits to receive a refresh message, before it
removes the associated state information.

RSVP operation

RSVP uses several messages in order to create, maintain, and release state information for a
session between one or more senders and one or more receivers (see fig. 3). Sequences of
packets travelling in opposite directions may follow different routes. In RSVP, reservation
requests travel from receivers to the sender(s), in the opposite direction to the user data flow for
which such reservation is being requested. Path Messages are used to set up a route for the
reservation requests along the same path of the corresponding data flow. They set up and
maintain path information (eg the IP address of the previous host and traffic characteristics of a
data flow).

A path refresh is the result of either a state refresh timeout or the modification of a path state (as
mentioned before). Once a path is established, a node periodically (ie every refresh timeout
period) sends path refresh messages (ie Path messages).

94

Resv messages travel upstream from the receiver(s) to the sender. They carry reservation requests
(e.g. for bandwidth and buffers) used to set up reservation state information along the route of a
data flow. At any intermediate node, a reservation request may be rejected by Admission Control
because there are not sufficient resources to guarantee the requested QoS. Also, reservation
requests which arrive at a router are merged. The aim of merging is to control the overhead of
reservation messages by making them carry more than one flow and filter specification [4][18].
Thus, the effective filter and flow specifications, which are carried in a reservation message, are
the result of merging reservations from several requests.

A reservation refresh is the result of either a state refresh timeout or the modification of a
reservation state (as mentioned before). Like path states, reservation states need to be refreshed.
Thus, a receiver periodically sends reservation refresh messages (ie Resv messages) to the
sender.

RSVP tear down messages are intended to speed up the removal of path and reservation state
information from the nodes. They may be triggered because a state timeout occurs (as explained
before) or an application wishes to finish a session (ie service preemption). A PathTear message
travels downstream from a sender to the receiver(s) and deletes any path state information and
dependent reservation associated with the session and sender. A ResvTear message travels from
a receiver to a sender and removes any reservation information state associated with one or more
data flows.

In addition, there are two error messages, Path Error and Resv Error, which are used to report
problems associated with processing or installing Path/Resv information or to report
administratively defined constraints imposed on the setup of a reservation state [7]. They travel
hop-by-hop from the point where the error was found.

Optionally, a receiver may ask for a confirmation for its reservation by including a RESV
conformation object1 in the Resv message (ie reservation request). A ResvConf message is used
to notify the receiver that the reservation request was successful. In the simplest case, a
ResvConf message is generated by the sender (see fig. 3)2.

1 A RSVP message comprises a message header and a set of objects. Objects contain information necessary to
process the message at each RSVP node it arrives [4][7].
2 For more information about ResvConf message see [4]

Router

Path message
PathTear message
ResvErr message
ResvConf message

Resv message
ResvTear message
PathErr message

Data flow

dowstream

upstream

Previous hop Next hop

Sender
Host

Receiver
Host

Figure 3: Flow of RSVP messages.

95

2.4 Application/RSVP interface

An application which requires QoS guarantees from the network must communicate with RSVP
and provide the QoS and traffic characteristics of the data flow. Braden et al [4] describes a
generic interface between an application and RSVP which includes the following calls (see fig.
4):

1. Session: creates a RSVP session.
2. Sender: is used to define or to modify the characteristics of a data flow (eg peak data rate).

The first call triggers RSVP to send Path Messages. Future calls will make RSVP send
modified Path Messages (eg including a different TSpec).

3. Reserve: is used to create or to modify a resource reservation (eg the size of a buffer). The
first call will initiate the transmission of Resv Messages. Future calls will change the existing
reservations.

4. Release: is used by the sender application leaving a session. It removes any existing path and
corresponding reservation state information. A receiver application uses this call to remove
one or more reservations for the session.

Also, some upcalls have been defined. They indicate an error or event:

5. Path_Event: indicates that the first Path message for the session has been received or the
path has been changed.

6. Resv_Event: indicates that the first Resv message for the session has been received or the
reservation has been changed.

7. Path_Error: indicates a Path Error message has arrived or a local error has occurred.
8. Resv_Error: indicates a Resv Error message has arrived or a local error has occurred.
9. Resv_Confirm: indicates that a ResvConf message has been received.

3. CPN Model of RSVP

RSVP is a complex protocol whose features have been outlined in this paper. In order to
facilitate the design and debugging of the CPN model, an incremental approach was adopted.
Several versions of the model were created, gradually including more features. The last version
of the model comprises the features of the protocol which have been modelled in this paper. It is
described as follows. Then, section 3.4 describes briefly previous versions of the model.

RESERVE

UpCall (PATH-EVENT)

RELEASE

HOST (RECEIVER)

UpCall (RESV-ERR)

UpCall (RESV-CONFIRM)

R
S
V
P

A
p
p
l
i
c
a
t
i
o
n

R
S
V
P

SESSION

SENDER

HOST (SENDER)

UpCall (RESV-EVENT)

A
p
p
l
i
c
a
t
i
o
n

UpCall (PATH-ERROR)

RELEASE

Figure 4: Application/RSVP interface.

96

3.1 Requirements and assumptions

The CPN model of RSVP has been developed based on the operation of the protocol given in
section two and in the protocol specification [4]. The network topology comprises two hosts
(sender and receiver) and a single router between them (figure 3). Also, the following
assumptions have been made:

1. Just one session is necessary to study the functional behaviour of RSVP, since RSVP treats
each session independently [4].

2. In order to simplify the modelling of RSVP, only one data flow may flow between the sender
and receiver. Future models of RSVP will consider more than one application and/or sender,
so more than one flow.

3. Traffic and QoS parameters of a data flow are carried in Path and/or Resv messages as RSVP
message objects [4][7]. Any change in the value of those parameters must be propagated to
all nodes along the way of the data flow. Each node makes the appropriate adjustment in the
path and/or reservation states. However, for simplicity, the model presented in this paper is
focused on RSVP messages which do not change installed states at the nodes but keep them
on place. After checking that the current model is working as specified, it will be extended to
considered traffic and QoS changes.

4. Since RSVP is running on top of IP, which is not a reliable protocol, messages may be lost.
As mentioned before, RSVP Path and Resv refresh messages deal with occasional loss of
RSVP messages. Although, message losses have not been considered in the model presented
here, the mechanisms for dealing with that are modelled. In future, the model will be
extended to include message losses.

5. An RSVP network may include several nodes (eg sender and receiver hosts and routers).
The model presented in this paper is based on a simple topology in order to facilitate analysis
of the model. Thus, route changes are not possible. However, RSVP Path refresh messages
deal with route changes. Future models of RSVP will consider more complex topologies
which may support route changes.

6. The RSVP specification [4] only suggests the basic functions which may be performed for an
Application/RSVP interface. Protocol implementors may not only create real detailed
interfaces but also define the sequence of Application/RSVP calls. Thus, it is necessary to
make some assumptions about sequences of Application/RSVP calls (see section 2.4). In
particular, it has been assumed that the receiver application will send a Reserve call (so the
RSVP entity will start sending Resv messages) after it receives a PathEvent call indicating
that the first path message has arrived.

7. Since there are few reasons why a Path must be rejected [4], it has been assumed that a path
can not be rejected. Therefore, Path Error messages will not be required. This simplifies the
initial analysis of the model. Future models will include Path Error messages.

8. This initial model of RSVP is intended to include only the compulsory features of the
protocol. Thus, optional features, such as reservation confirmation, are not considered.

97

3.2 Top-level structure

Figure 5 shows the top level architecture of RSVP, where there is only one router in the network.
An application may request a particular QoS by interacting with the RSVP entity (see section
2.4) which attempts to reserve the necessary resources in the router, by signalling to the router’s
RSVP entity and then to the sender’s RSVP entity.

3.3 Detailed model

3.3.1 General structure

The detailed model of RSVP consists of ten pages (figure 6). The hierarchical view has been
designed based on the network topology and the functionality of RSVP entities at each node. The
subpages (eg Resv Setup) represent the more complex functions.

The top level model of RSVP shows the interaction between the RSVP nodes (figure 7). The
three transitions of the top level of the model (ie Sender, Router, and Receiver) represent the
RSVP entities at each node and are shown as hierarchical transitions.

RSVP
entity

Application

Network supporting the Internet Protocol

RSVP
entity

Application

RSVP
entity

Host Router Host

RSVP service

Figure 5: Top-level structure.

GlobalDec#11Hierarchy#10

Receiver#4

RSVPNetwork#1 M Prime

SenderResvSetup#5 RouterResvSetup#7

Router#3Sender#2

RouterResvErrorEvent#6 RcvResvErrorEvent#10RouterPathSetup#8 ReceiverPathSetup#9

Receiver

ResvSetup

Router

ResvSetup

Sender

ResvErrorEvent ResvErrorEventPathSetup PathSetup

Figure 6: CPN hierarchy page.

98

3.3.2 Global declaration

Figure 8 shows the colour sets, variables, and functions from the global declaration node. The
colour RSVPState indicates the possible states of the RSVP entity. Those states have been chosen
based on the description of RSVP state blocks given in [5]:

• CLOSED: when the sender is in this state, it has closed the session. If the receiver is in this
state, the receiver application has torn down the existing reservation for the session.

• NOSTATEINFO: there is no state information in the node.
• WAITINGRESV: means that a path has been established but as yet no reservation request

has been received.
• RESVREADY: means that a path and reservation have been established.

It may be noted that the CLOSED and NOSTATEINFO states are similar, however the former
state is used to limit the model simulation to one Sender session and one receiver application’s
release call (see section 2.4) .

The subset RouterState indicates the possible states of the Router, which does not require the
CLOSED state.

Sender
HS HS

Receiver

DownstreamMessages

SOutgoingMsgs
FG

UpstreamMessages

SIncomingMsgs

Router
HS

DownstreamMessages

RIncomingMsgs
FG

UpstreamMessages

ROutgoingMsgs

Figure 7: Top-level of the CPN model.

(* States of RSVP entities*)
color RSVPState = with CLOSED|NOSTATEINFO|WAITINGRESV|RESVREADY;
color RouterState =subset RSVPState with
[NOSTATEINFO,WAITINGRESV,RESVREADY];

(* RSVP Messages *)
color UpstreamMessages = with RESVMSG|RESVTEAR;
color DownstreamMessages = with PATHMSG|RESVERR|PATHTEAR;

(* Variables *)
var sta: RSVPState;

(* Functions *)
fun pathexists (s:RSVPState) = s= WAITINGRESV orelse s=RESVREADY;
fun resvexists (s:RSVPState) = s = RESVREADY;

Figure 8: Detailed model declaration.

99

There are five basic RSVP messages represented by the colour sets UpstreamMessages and
DowstreamMessages. The former represents the messages that travel from the receiver to the
sender, while the second represents the messages travelling from sender to receiver (see fig. 3).
The colour set UpstreamMessages contains the following set of enumerated values:

• RESVMSG: represents a Resv message.
• RESVTEAR: represents a Resv Tear message.

The colour set DowstreamMessages represents the following set of enumerated values:

• PATHMSG: represents a Path message.
• PATHTEAR: represents a Path Tear message.
• RESVERR: represents a Resv Error message.

The variable sta is typed by any RSVP State. The functions are used to simplify guard
inscriptions. A pathexists function means the path state has been established in the correspondent
node (ie the RSVP entity – sender, router or receiver places - is in WAITING or RESVREADY
state). A resvexists function means that a reservation has been established (ie the correspondent
RSVP entity is in RESVREADY state).

3.3.3 Structure of CPN subpages

In this section, the three main component pages (ie Sender, Router, and Receiver pages) of the
model and some subpages are described (figures 9 to 13).

Sender

In this section, the model of the Sender RSVP entity (see fig. 9) is explained. The Sender’s
RSVP entity begins in the “NOSTATEINFO” state – the Sender place has an initial marking of

UpstreamMessages
SIncomingMsgs P

DownstreamMessages

SOutgoingMsgs

P

Sender

RSVPState

Sender

1‘NOSTATEINFO

ResvSetupHS

ResvCleanup

PRefreshTimeOut

[pathexists (sta)]

ResvTear

RelSender

[sta <> CLOSED]

 WAITINGRESV

PATHMSG

NOSTATEINFO

WAITINGRESV

sta
PATHMSG

RESVREADY

sta

if sta= RESVREADY then
 WAITINGRESV
else
 sta

RESVTEAR

sta

CLOSED

if pathexists (sta) then
 1‘PATHTEAR
else
 empty

Figure 9: Sender CPN page.

100

1‘NOSTATEINFO. When the RSVP sender process receives a Sender Call from its application
(modelled by the Sender transition), it will build and send a PATHMSG downstream to the
router, and wait for a reservation request.

After a path has been established in a node (ie the RSVP entity is in the WAITINGRESV or
RESVREADY state), it must be refreshed every path refresh period (see section 2.3). The
transition PRefreshTimeOut models the action taken when a path refresh timeout occurs. It may
be noted that this transition does not change the Sender state, it only sends a path refresh
message (ie a Path Message) to the router.

A RESVMSG, generated by a router, may eventually get to the Sender. The ResvSetup subpage
models the reservation establishment actions, such as reservation rejection, successful
reservation setup or reservation refresh (if a reservation is rejected a RESVERR will be sent back
to the router).

If the RSVP entity does not receive a RESVMSG before a reservation cleanup timeout occurs,
the transition ResvCleanup will remove any reservation state information stored in the node.

The RSVP entity may receive a RESVTEAR from the router because of one of the two reasons
explained in section 2.3 (ie state cleanup or service preemption). The transition ResvTear models
the action taken when a node receives such a message.

Finally, a sender application, which wishes to finish a session, sends a Release Call to the RSVP
entity. It is modelled by the RelSender transition. It will remove any path state and dependent
reservation information and send a PATHTEAR to the receiver. It may be noted that the end of a
session is modelled by the CLOSED state.

Router

Figure 10 shows the model of the Router’s RSVP entity. Like the Sender’s RSVP entity, the
Router’s RSVP entity begins in the “NOSTATEINFO” state. The PathSetup subpage (figure 11)
models the action taken when a RSVP entity receives a PATHMSG. The transition NewPath sets
up new path information, and the transition PathRefresh refreshes any existing path state
information.

In the Router page, the transition PRefreshTimeOut models the action taken when a path refresh
timeout occurs.

When the RSVP entity does not receive a PATHMSG before a path cleanup timeout occurs, the
transition PathCleanup will remove any state information stored in the router and send a
PATHTEAR to the receiver. The entity may also receive a PATHTEAR from the sender, thus
the transition PathTear will remove any existing path information and dependent reservation.

The router may receive a reservation request (ie RESVMSG) from the receiver. The ResvSetup
subpage models the action taken by the RSVP entity to setup a reservation state (figure 12). The
transition AcceptNewResv models the action taken when a new reservation request (ie RSVP
entity is in WAITINGRESV state) is accepted by admission control (ie there is sufficient
resources available to grant the requested QoS). Otherwise, the transition RejectResv rejects the
request and sends a RESVERR to the receiver. The transition ResvRefresh refreshes reservation

101

state information upon receiving a refresh message (a RESVMSG) from the receiver. The
transition NoPath models the action taken when a reservation request arrives but there is no path
information stored in the router. It sends a RESVERR to the receiver.

UpstreamMessages

ROutgoingMsgs
P

DownstreamMessages

RIncomingMsgs
P

RouterState
Router

1‘NOSTATEINFO

DownstreamMessages

SOutgoingMsgs

P

UpstreamMessages

SIncomingMsgs

P

PathSetup
HS

ResvSetup
HS

PathCleanup

[pathexists (sta)]

DownstreamMessages

RIncomingMsgs1
FG

ResvErrorEvent
HS

DownstreamMessages

SOutgoingMsgs1FG

PRefreshTimeOut

[pathexists (sta)]

RRefreshTimeOut

ResvCleanup

PathTear

ResvTear

sta

PATHTEAR

sta

PATHMSG

RESVREADY RESVMSG

NOSTATEINFO

RESVREADY

if sta = RESVREADY then
 WAITINGRESV
else
 NOSTATEINFO

RESVTEAR

sta

if pathexists (sta) then
 NOSTATEINFO
else
 sta

PATHTEAR

if sta=WAITINGRESV
orelse sta = RESVREADY then
 1‘PATHTEAR
else
 empty

if sta = RESVREADY then
 WAITINGRESV
else
 sta

sta

if sta=RESVREADY then
 1‘RESVTEAR
else
 empty

RESVTEAR

Figure 10: Router CPN page.

RouterState
RouterP

DownstreamMessages

SOutgoingMsgs

P

NewPath

[pathexists (sta)=false]

PathRefresh

[pathexists (sta)]

DownstreamMessages

RIncomingMsgs
P

sta

sta

PATHMSG

WAITINGRESV

PATHMSG

PATHMSG

Figure 11: Router Path Setup subpage.

102

The router may also receive an error indication (ie RESVERR) from the sender. The
ResvErrorEvent subpage (in the Router page) models the actions taken in this case.

Once a reservation has been established in the router (ie the RSVP entity is in the RESVREADY
state), the reservation state information (see section 2.3) must be refreshed, otherwise it will be
removed. The transition RRefreshTimeOut models the action taken when a reservation refresh
timeout occurs. It does not change the Router state, but sends a reservation message to the
sender.

As pointed out before, if a reservation has been established in a router and the RSVP entity does
not receive a RESVMSG before a reservation cleanup timeout occurs, the transition
ResvCleanup will remove any reservation state information stored in the node. In addition, it
generates and sends a RESVTEAR to the sender. The RSVP entity may also receive a
reservation tear down request (ie RESVTEAR) from the receiver. The transition ResvTear will
remove any reservation state and send a RESVTEAR to the sender.

Receiver

The Receiver page is shown in figure 13. The RSVP entity (ie Receiver place) begins in the
NOSTATEINFO state, as the other two RSVP entities described before. Similarly to the Router
page, there is a PathSetup subpage which models the path establishment actions, such as new
path state setup or path refresh, taken when a PATHMSG arrives to the receiver.

Similarly to the Router’s RSVP entity, when the RSVP entity does not receive a PATHMSG
before a path cleanup timeout occurs, the transition PathCleanup will remove any state
information stored in the receiver. The entity may also receive a path teardown request (ie
PATHTEAR) from the router, thus the transition PathTear will remove any path state and
dependent reservation state information.

After a path state has been established in a receiver, the application may send a Reserve call to
RSVP, which is modelled by the transition Reserve. Thus, RSVP will start sending RESVMSGs

UpstreamMessages

P

ROutgoingMsgs

RouterState

Router
P

AcceptNewResv

RejectResv

UpstreamMessages

SIncomingMsgs P

DownstreamMessages

RIncomingMsgs
P

NoPath

[pathexists (sta)=false]

ResvRefresh

WAITINGRESV

 RESVREADY

WAITINGRESV
RESVMSG

RESVMSG

RESVMSG

sta

RESVERR

RESVERR

RESVMSG

 RESVREADY
RESVMSG

Figure 12: Router Resv Setup subpage.

103

to the sender. The transition RrefreshTimeOut generates and sends RESVMSG every reservation
refresh timeout period.

The subpage ResvErrorEvent will model the actions taken when the RSVP entity receives an
error indication (ie RESVERR) because a reservation setup has failed in either a Sender or
Router.

Finally, a receiver application, which wishes to tear down its current reservation, sends a
Release Call to the RSVP process. It is modelled by the RelReceiver transition. It will remove
any reservation state information and send a RESVTEAR to the receiver, if it is necessary (ie
there is a current reservation).

3.4 Overview of the previous versions of the model

As mentioned previously, the model design was based on an incremental approach where the
features of RSVP were included gradually, creating several versions of the CPN model. In this
section, previous versions of the CPN model of RSVP are described in terms of the features of
RSVP, already introduced before. They are presented incrementally from the simplest model,
which includes very basic features of RSVP, to the most complex model which comprises all the
features presented in section 3.3.

1. ResvSetup model: models path and reservation setup procedures. Neither path nor
reservation refresh procedures are considered. Path and reservation requests may be rejected;
however, that situation is not reported to either the sender or the receiver because error
notification procedures are not modelled in this version.

2. ResvSetupWithErrors model: models the same features of RSVP as the ResvSetup model
but it also models path and reservation error procedures by using Path and Resv Error
messages, respectively.

DownstreamMessages

P

RIncomingMsgs

RSVPState

Receiver

1‘NOSTATEINFO

Reserve

UpstreamMessages

ROutgoingMsgs

P

PathSetup
HS

ResvErrorEventHS

RRefreshTimeOut

PathCleanup

[pathexists (sta)]

PathTear

RelReceiver

[sta <> CLOSED]

WAITINGRESV

RESVREADY

 RESVMSG

RESVREADY

 RESVMSG

sta

NOSTATEINFO

sta

if pathexists(sta) then
 NOSTATEINFO
else
 sta

 PATHTEAR

sta

CLOSED

if sta = RESVREADY then
 1‘RESVTEAR
else
 empty

Figure 13: Receiver CPN page.

104

3. PathTear model: models the same features as the previous versions. In addition, it models
Path Tear Down procedures initiated by the sender application using a RelSender call.

4. ResvTear model: models the same features of RSVP as the previous versions. In addition, it
models the Resv Tear Down procedures initiated by the receiver application using a
RelReceiver call.

5. Refresh model: models the same features of RSVP as the previous versions except that
neither path nor resv tear down procedures are considered. It also models path and
reservation refresh procedures.

6. RSVP model: was described in section 3.3. It models the same features as the Refresh model
but it also models path and reservation tear down procedures. In addition, the model is
limited to one session. Thus, once a sender application closes a session it is not opened again.
Once the receiver application releases its current reservation it is not established again either.

7. RSVP with multiple sessions model: is the same as the RSVP model except that a sender
application may initiate a session which has been closed previously.

4. Simulation and analysis

Design/CPN was used to simulate and analyse the model. Interactive graphical and automatic
simulations were used during its development. In this section, the results of the simulations are
presented. Firstly, some results are shown using the message sequence chart (MSC) tool
provided by Design/CPN. Then, the results of the state space (occurrence graph), calculated for
the CPN model, are analysed briefly.

4.1 Message sequence charts

Message sequence charts (MSC) provide a mechanism to visualise the execution of selected
traces of communication scenarios [9]. The MSC tool provided by Design/CPN has been useful
to check and to visualise the sequence of RSVP events, which may occur during a single
simulation run. A MSC for RSVP is given in figure 14. It shows the message interchange
between the communicating entities (ie Sender, Router, and Receiver) intended to establish,
refresh, tear down, and release a reservation. Vertical lines on the picture represent
communicating entities. Small squares on vertical lines describe RSVP events (eg application
calls and time outs). Finally, horizontal lines are used to represent message flow. Time increases
from the top of the chart, to the bottom of the chart.

Figure 14 shows a simple RSVP message interchange. For simplicity, message overtaking has
not been considered for this simulation. The first eight communicating events (represented by
arrows and small squares) are concerned with reservation establishment (see fig. 14, event no 1-
8), which was explained in section 2. After that, a possible refresh sequence is presented by the
following eight events (event no 9-16). Next, a resv cleanup time out occurs as indicated by the
small square (event no 17). Thus a reservation is torn down in both the router and the sender
(event no 18). Following that, the receiver sends a resv refresh, which propagates to the sender
and reestablishes the reservation state on both the router and sender host (event no 19-22).
Finally, the sender application finishes a session using a RelSender call, and the sender sends a
PathTear message which will propagate to the receiver (event no 23-25).

105

Since, the RSVP specification does not include any MSCs [4], the MSC tool is useful for
providing the sequences of protocol events between the different network entities.

4.2 Occurrence graph analysis

The state space (occurrence graph) tool of Design/CPN was used to investigate some dynamic
properties of the CPN model such as boundedness, liveness, and home properties as well as to
check the behaviour of the protocol. It was produced by Design/CPN on a Linux PC with 128
MB RAM.

4.2.1 Comparison of several versions of RSVP model

In section 3.4 , several versions of the RSVP model were introduced. Table 1 compares these
models in terms of the size of the (full) occurrence graphs (number of nodes and arcs), the time it
took to generate them, and the size of the strongly connected component (SCC) graphs. Each
node of the SCC graph includes all markings, which are mutually reachable from each other
[10][13].

It may be seen from table 1 that, in the first four versions of the model, the sizes of the OCC and
SCC graphs are the same. Thus there are no loops in the state space graph as expected. The next
three versions model RSVP’s soft state feature, based on refresh messages and state timeout.
Two things may be seen from table 1. Firstly, the sizes of the OCC and SCC graphs are not the
same, so there are loops in the state space graph. Those loops are the result of the periodic state
refresh and state cleanup. Secondly, the size of the state space has been increased. Those results
are expected.

RSVP Communication (1)

Sender

Sender 11

22

ResvEvent 88
Path Refresh Time Out 99

1010

ResvEvent 2222
RelSender 2323

2424

Router

33

77

Path Refresh Time Out 1111

1212

Resv Refresh Time Out 1515

1616
Resv Cleanup Time Out 1717

1818

2121

2525

Receiver

Path Event 44
Reserve 55

66

Resv Refresh Time Out 1313

1414

Resv Refresh Time Out 1919

2020

Event NoEvent No

PATH

PATH

RESV

RESV

PATH (REFRESH)

PATH (REFRESH)

RESV (REFRESH)

RESV (REFRESH)

RESVTEAR

RESV (REFRESH)

RESV

PATHTEAR

PATHTEAR

Figure 14: A representative MSC for RSVP.

106

In the following sections, the occurrence graph for the RSVP model (the shadowed row in table
1) is analysed. This model includes all the features presented in section 3.3.

4.2.2 Behavioural properties of the model

A full state report for the RSVP model was generated. The statistical information about the size
of the full state space and SCC graph is shown in table 1 (the shadowed row). Since there are less
SCC nodes (2601) than OCC nodes (13570), it may be concluded that there are some loops. As
mentioned before, those loops are due to two reasons. Firstly, the RSVP entities at each node
have to send path and refresh messages to avoid the removal of the existing state information.
Secondly, any path and reservation state information (represented by the WAITINGRESV and
RESVREADY states) may be removed after the correspondent state cleanup occurs and
established again by refresh messages.

The state report also shows the home and liveness properties (see table 2). Marking 6 is the only
dead marking. This marking corresponds to the state where the sender has finished a session, the
receiver has torn down any existing reservation and all messages have been removed from the
communication places (see figure 15). Thus, for the initial marking, the protocol behaves as
expected (ie no deadlocks). Since this marking is also a home marking the protocol always
terminates correctly [10].

Table 3 shows some information about integer bounds. The minimal number of messages in the
communication places is zero, which corresponds of the terminal state to the system. The
maximal number of messages is 3 for the Dowstream communication places (SOutgoingMsgs
and RIncomingMsgs) and 2 for the upstream communication places (SIncomingMsgs and
ROutgoingMsgs). Those results are in alignment with figure 3 except that ResvConf and PathErr

OCC graph SCC graph
Model Nodes Arcs Secs Nodes Arcs Secs

ResvSetup 11 10 0 11 10 0
ResvSetup
WithErrors

17 16 0 17 16 0

PathTear 67 105 0 67 105 0
ResvTear 182 400 0 182 400 1
Refresh 613 3584 6 10 379 0
RSVP 13570 96837 536 2601 43493 69
RSVP
(with
multiple
sessions)

24576 199360 18105 1 0 988

Table 1: A comparison of several versions of RSVP model.

Home Markings [6]
Dead Markings [6]
Dead Transitions Instances None
Live Transitions Instances None

Table 2: Home and liveness properties.

107

messages have not been considered. The number of tokens located in the state places (Sender,
Router, and Receiver) is always one, corresponding to each RSVP entity in a particular state.

Table 4 shows some information about multi-set bounds. It shows the messages which can be
exchanged between the nodes, both downstream and upstream. The table also shows that all the
RSVP entities can be in all the expected states (eg WAITINGRESV state). It means, for
example, that a path state can be established in any node. Those results are expected.

4.2.3 Overtaking of Messages

Given the size of the model, visual inspection was just used for some part of the OCC graph. It
was used to debug the model (eg finding errors in the arc inscriptions) and to check the
behaviour of the protocol. For example, RSVP does not provide any mechanism to deal with
message overtaking. Instead it uses refresh messages and periodic cleanups to solve that
problem. RSVP nodes can reach an undesirable state when some messages arrive out of order.
Checking the OCC graph may easily identify those states. In figure 16, the sender sends a Path
message (transition Sender’Sender occurs). After that, it closes the session and sends a Path Tear
message downstream (transition Sender’RelSender occurs). The Path Tear message arrives at the
router before the Path message (transition Router’PathTear occurs). Once the Path message

Places Upper multi-set bounds
RIncomingMsgs 1‘PATHMSG+ 1‘RESVERR+ 1‘PATHTEAR
ROutgoingMsgs 1‘RESVMSG+ 1‘RESVTEAR
SIncomingMsgs 1‘RESVMSG+ 1‘RESVTEAR
SOutgoingMsgs 1‘PATHMSG+ 1‘RESVERR+ 1‘PATHTEAR
Sender 1‘CLOSED+ 1‘NOSTATEINFO+

1‘WAITINGRESV+ 1‘RESVREADY
Router 1‘NOSTATEINFO+ 1‘WAITINGRESV+

1‘RESVREADY
Receiver 1‘CLOSED+ 1‘NOSTATEINFO+

1‘WAITINGRESV+ 1‘RESVREADY
Table 4: Upper multi-set bounds.

6
RSVPNetwork’SOutgoingMsgs 1: empty
RSVPNetwork’RIncomingMsgs 1: empty
RSVPNetwork’SIncomingMsgs 1: empty
RSVPNetwork’ROutgoingMsgs 1: empty
Sender’Sender 1: 1‘CLOSED
Router’Router 1: 1‘NOSTATEINFO
Receiver’Receiver 1: 1‘CLOSED
Figure 15: Terminal marking state (node 6).

Places Upper Lower
RIncomingMsgs
RoutgoingMsgs
SIncomingMsgs
SOutgoingMsgs
Sender
Router
Receiver

3
2
2
3
1
1
1

0
0
0
0
1
1
1

Table 3: Upper and lower integer bounds.

108

arrives at the router, a new path is established (transition Router’PathSetupNewPath occurs).
Marking 32 shows an undesirable state, since there is a path established in the router (Router is
in WAITINGRESV state). Instead, it is expected that, after a sender has closed a session, all
existing path and dependent reservations are removed by the Path Tear message and no further
path requests are generated by the sender. Fortunately, later on, the transition
Router’PathCleanup removes any state information in the router and the protocol is able to finish
in an expected terminal state (marking 6, see figure 15).

5. Conclusions

In this paper, Coloured Petri Nets have been used to provide an initial model of RSVP based on a
number of simplifying assumptions. The simplest network topology (one sender, communicating
with a receiver via a single router) and unicast operation was assumed, and only the basic
features of the protocol were modelled. The model was developed incrementally and checked at
each stage to reduce the possibility of modelling errors.

The main problem found during modelling was the lack of a well-defined specification of RSVP
[4], where only a narrative description is provided.

Interactive graphical and automatic simulations were used to examine behaviour and to debug
the model. Firstly, the MSC tool was useful for providing a graphical overview of the sequence
of RSVP events between different network entities. Secondly, the initial analysis of the model
based on the state space shows that RSVP terminates correctly. However, the sequence of events
described in figure 16 shows the existence of states which are undesirable, though temporary.
Further analyses are required to validate the current model. Given the size of the state space and
the limited computing resources, it may be necessary to explore some other existing techniques
to make the model tractable for state space analysis, such as reduction techniques [11] [17].

1
0:3

3
12:3

8
10:3

15
9:2

32
10:3

32
Sender’Sender 1: 1‘CLOSED
Receiver’Receiver 1: 1‘NOSTATEINFO
Router’Router 1: 1‘WAITINGRESV

31
9:3

66
7:2

77
7:1

6
10:

2:1->3
Sender’Sender

8:3->8
Sender’RelSender

17:8->15
Router’PathTear

48:15->32
RouterPathSetup’NewPath

123:32->31
Router’PathCleanup

120:31->66
Receiver’PathTear

287:66->77
Receiver’RelReceiver

313:77->6
ReceiverPathSetup’NoSession

Figure 16: Occurrence sequence showing message overtaking.

109

This work extends the application of CPNs to a new protocol, proposed for providing QoS
guarantees over the Internet. Further work may include: modelling the RSVP service,
performance analysis of RSVP using time facilities provided by Design/CPN, employing state
space reduction techniques, and extending the RSVP model to a multicast network topology.

Acknowledgment

This work was carried out with financial support from the Commonwealth of Australia through
the Cooperative Research Centres Program.

References

[1] Billington J. Formal Specification of Protocols: Protocol Engineering. Encyclopedia of
Microcomputers, Marcel Dekker, New York, 1991, Vol. 7, pp 299-314.

[2] Blake S., et al. An Architecture for Differentiated Services. RFC 2475, IETF, December,
1998.

[3] Braden R., Clark D., and Shenker S. Integrated Services in the Internet Architecture: an
Overview. RFC 1633, IETF, June, 1994.

[4] Braden R., et al. Resource Reservation Protocol (RSVP) -- Version 1: Functional
Specification. RFC 2205, IETF, September, 1997.

[5] Braden R. and Zhang L. Resource Reservation Protocol (RSVP) -- Version 1 Message
Processing Rules. RFC 2209, IETF, September, 1997.

[6] Comer D. Internetworking with TCP/IP. Vol 1, Prentice Hall, 1995.
[7] Durham D. and Yavatkar R. Inside the Internet’s Resource Reservation Protocol. Wiley,

USA, 1999.
[8] Feit S. TCP/IP. McGraw-Hill, 1998.
[9] ITU (CCITT). Recommendation Z.120: MSC. Technical report, International

Telecommunication Union, 1992.
[10] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol.

1, Springer-Verlag, 2nd edition, April, 1997.
[11] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use. Vol.

2, Springer-Verlag, 2nd edition, April, 1997.
[12] Jensen K. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use, Vol.

3, Springer-Verlag, April, 1997.
[13] Kristensen L.M., Christensen S., and Jensen K. The practitioner’s guide to coloured Petri

nets. International Journal on Software Tools for Technology Transfer, Springer, 1998, Vol.
2, Number 2, pp 98-132.

[14] Meta Software Corporation. Design/CPN Reference Manual for X-Windows, Version 2,
Meta Software Corporation, Cambridge, 1993.

[15] Proceedings of the IFIP TC 6/WG6.1 International Workshop on Protocol Specification,
Testing, and Verification, North Holland, Amsterdam, 1982-1999.

[16] Proceedings of the International Conference on Network Protocols, 1994 to 1996.
[17] Valmari A. The State Explosion Problem. Lectures on Petri Nets I: Basic Models, Vol.

1491, 1998, pp 429-528.
[18] Zhang L., Estrin D., and Zappala D. RSVP: A New Resource Reservation Protocol, IEEE

Network Magazine, Sept./Oct., 1993, Vol. 7, pp 8-18.

110

CondensedStorageof Multi-SetSequences

Marko Mäkelä
�

HelsinkiUniversityof Technology,
Laboratoryfor TheoreticalComputerScience,

P.O.Box9700,02015HUT, Finland

June27,2000

Abstract

Toolsfor statespaceexploration,or reachabilityanalysers,work by incrementallycon-
structingasetof reachablestates.Theapplicabilityof thesetoolsis limited by thevaststate
spaceof real systems.Oneway to attackthis problemaredifferentreductionmethods—
anotherapproachis to comeup with techniquesfor representingthesetof reachablestates
in acompactway.

Thestate—ormarking—ofa high-level Petrinetcanbeviewedasa sequenceof finite
multi-sets.A methodfor encodingmarkingscontainingstructuredvaluesis described,and
a comparisonto anearlierimplementationis presented.

Keywords. Petrinets,reachabilityanalysis,encodingmulti-sets,ordereddatatypes

1 Introduction

The limited amountof systemmemoryis a major bottleneckin reachabilityanalysis. Algo-
rithms for reachabilityanalysisandmodelcheckingneedto keeptrackof thestatesthathave
beenexplored. In thatway, they candetectcyclic behaviour andlimit theinvestigationof suc-
cessorsto truly new states.

Therearesometechniquesthat only managethe setof reachablestatesandutilise simi-
larities betweenthe states.Oneof them,Binary DecisionDiagrams[1, Chapter5], hasbeen
successfullyappliedmainly in the verificationof digital circuits. Techniquesappliedon the
analysisof softwaresystemsincludeastatecompactionmethodfor productautomata[5] anda
methodknown asGraphEncodedTupleSets[6].

Oneproblemwith thesesocalledsymbolictechniquesis that insertinga statemayinvolve
globalchanges,slowing down disk-basedimplementations.Anotherproblemis thatstateshave
noidentities:thereis nowayto retrieveastatefromthestructurebyspecifyinganindex number.
Using sucha structurefor anything elsethansearchingfor statesfulfilling a predicateor for
determiningwhetheraparticularstatehasbeenexploredis tricky.�

This researchwasfinancedby theNationalTechnologyAgency of Finland(TEKES),theNokia Corporation,
theHelsinkiTelephoneCorporationandtheFinnishRail Administration.

111

Explicit techniques,which storeeachstateseparately, make it possibleto navigatein the
generatedreachabilitygraphand to performall sortsof querieson it afterwards. When the
statesarestoredseparately, they canbeassignedindex numbers,andit is easyto encodeevents,
theedgesof the reachabilitygraph,astriplesof two statenumbersanda label identifying the
action.

Thiswork describesanexplicit technique,a methodof encodingsequencesof multi-setsin
a string of binary digits. Symbolic techniquesappearpromising,but we believe that explicit
techniqueshave anadvantagein someapplications,suchasin theanalysisof generalsoftware
systems,whichcannotbecharacterisedby simplelawsandwhichmakeheavy useof structured
datatypes.Our method,implementedin MARIA [11], hasturnedout to yield up to anorderof
magnitudesmallerencodingsthanthemethodusedin PROD [15], althoughMARIA allows the
userto definedatatypesjust like in programminglanguages.

Sinceour techniquesarenot specificto any particularclassof high-level Petrinets,we try
to write in generalterms. Even if all datatypesin MARIA have a finite domain,we shall see
thatour approachcanalsohandleinfinite-domaindatatypes,suchaslists.

2 The Reachability Graph

Thereachablestatespaceof amodelcanberepresentedasareachabilitygraph,adirectedgraph
whoseverticescorrespondto reachablestatesandedgescorrespondto actionsleadingfrom one
stateto another.

In high-level Petri nets,thestatesarecalledmarkingsandtheactionsarecalledtransition
instances. A transitioninstanceconsistsof a high-level transitionandan assignmentfor the
variablesthatappearin thearcsandguardsconnectedto thetransition.

2.1 Managing the State Space in the File System

Applying explicit analysistechniquesto modelscomprisingtensor hundredsof millions of
reachablestatesusuallycallsfor theuseof diskstorage.Typicalreachabilityanalysisalgorithms
requirerandomaccessto thesetof statesexploredsofar. A similarstructureis not requiredfor
actions;for mostpurposes,they canbestoredsequentially.

To optimiseaccessto thestoredstates,onecancalculatehashvaluesof thestates.Whenan
analysisalgorithmwantsto determinewhetheraparticularstatehasbeenexplored,it computes
a hashvalueof the stateandsearchesfor it in a memory-baseddatastructurethatmapshash
valuesto statenumbers.Only if a hashvaluematchis found, thedisk addressof theencoded
stateis fetchedfrom adirectoryfile andthestateis retrievedfrom astatefile for comparison.

If theencodedstatesareverysmall,thememory-basedmapfrom hashvaluesto statenum-
bersmay exceedthe memorylimit beforethe statefile exceedsthe sizelimit imposedby the
file system.This problemcanbeaddressedby maintainingthemapin a disk-basedB-tree[13,
Ch.18]. In thatcase,thesystemmemoryconsumptionremainsboundedthroughouttheanaly-
sis,unlesssomedatastructuresfor on-the-flymodelcheckingarekeptin themainmemory.

Theedgesof thereachabilitygraph,consistingof sourceandtargetstatenumbersandof an
encodedtransitioninstance,arebeststoredin aseparatefile. Becausethelengthof theencoded
transitioninstancemayvary, alsothelengthis encodedin thefile.

112

2.2 Encoding the Edges and Vertices

2.2.1 Mapping Items to Bit Strings

In order to representthe verticesandedgesof the reachabilitygraphassequencesof binary
digits,wehave to definehow theentitiesthey consistof aremappedto suchsequences.

Places and Transitions If we denotethe setof the placesof a Petri net modelwith
�

and
assumethatthereis abijectivemapping

o� :
�����

0 �
	
	
	��� � ��� 1 �
we canuniquelyrepresenteachplacewith a string of � log2 � � � � binary digits. If � � ��� 1, no
bitsarerequired.Thesameappliesfor transitions,characterisedby theset � andtheordero� .

Data Items A valueof a finite-domaindatatype � canberepresentedasa � log2 ����� � -digit
binarynumber, possiblyspanningseveralmachinewords.This requiresa total order����� ��� �
for eachdatatype � . For simpletypes,suchasintegersandenumerations,definingtheorderis
straightforward.For structuredtypes,suchastuples,taggedunionsandfixed-lengthor variable-
lengthvectors,the ordercanbe definedlexicographically, e.g.so that variable-lengthvectors
with lesselementscomefirst, andthatthelastcomponentof a structureis themostsignificant
one.Thishasbeenimplementedin MARIA alsofor nestedstructuredtypes.

Oncethereis a total orderamongdataitems,we candefinea mappingfrom thedataitems
to integers:

o� : � �!�
0 �
	
	"	�������"� 1 � : d #� � � k $��&% k � � d �'�(

It is easyto seethatthemappingis bijectiveandthatit preservestheorderof themappeditems.
Because� � is a total order, � canbewrittenas�*) � d0 �
	
	"	�� dn + 1 �
suchthatdi + 1

� � di for all 0 � i � n. Now o� mapseachdi, 0 � i � n, to auniquevalue:

o�-, di .) � � k $��&% k ��� di �'�) � � d0 �
	"	
	"� di + 1 �/�) i 	
Sinceo� , di .) i, it holdsthato� , di . � o� , d j . if andonly if i � j, or di

� � d j . Thus,o� is an
order-preservingmapping.

MARIA allows the domainsof datatypesto be restrictedwith type constraints,internally
representedasanorderedlist of closedranges.Our implementationof o� , d . for constrained
typescomparesthevalued to theendpointsof eachrangein theconstraintandperformssub-
tractionsandadditions.

Mappingsfor unconstrainedstructuredvaluesareconstructedthroughmultiplication and
additionfrom mappedcomponentvalues.This is similar to thetechniquerepresentedin [2], but
wemanagealsodeeplystructuredvaluesandconstraintsconsistingof severaldisjoint ranges.

113

Structuredtypescaneasilyhave a biggernumberof distinctvaluesthanonemachineword
canrepresent.Our implementationdoesnot convert valuesof suchtypesto a singlebinary
number, but it handlesthemcomponentby component.For example,let therebe a variable-
lengthvectortype

� :) k0
i 1 0

� i
e� i

e :) � e �32
2
24� � e5 67 8
i times

with �9��� sobig that it doesnot fit in a machineword. To convert a vectorvalue : d1 �"	
	
	;� di < $� to a sequenceof binary digits, our implementationencodesi asa � log2k� -bit numberand
convertseachelementd1 �
	
	"	�� di separatelyto a bit string. If alsotheelementtype � e is a large
structuredtype,theelementsarehandledin a similar way; otherwise,themappingo� e canbe
applied.

Taggedunionsarehandledin an analogousway: First, the active componentis identified
with a binary number. Thenthe encodedrepresentationof the active componentis appended
to the bit string. Tuplesand fixed-lengtharraysare simpler, sincethe numberand type of
componentsremainconstant.

All datatypesthatcanbedefinedin MARIA havea finite domain.Also thevariable-length
buffer datatype is assigneda capacity, the maximumnumberof elementsa buffer valuecan
contain. If therewereany infinite-domaindatatypes,1 they couldbehandledin a similar way
with largestructuredtypes.For instance,anunboundedstringor linkedlist of an item type �
canberepresentedby encodingeachitemseparatelyandby usingaspecialvaluefor signalling
the endof the sequence.If ���=� canbe representedin a machineword, it canbe usedasthe
specialvalue.Otherwise,it is easiestto useoneextrabit perdataitemastheendmarker.

2.2.2 Encoding Edges

An edgeof the reachabilitygraphconsistsof two numbersidentifying the sourceand target
statesandof a transitioninstanceconsistingof a transitionidentifierandanassignmentfor the
variablesrequiredfor firing thetransition.

If thereis nostatisticalinformationavailableon thetransitionenablings,thetransitionscan
beassumedto occurwith equalprobabilities.In thatcase,our representationof thetransitions
t $>� with � log2 �9�?� � -digit binarynumberso� , t . is closeto theoptimumdefinedby theentropy
of thesystem[14, Ch.6–7].

Whenthevariablesof thetransitioninstanceareprocessedin a systematicorder, it suffices
to encodeonly thevaluesof thevariablesandto appendthemto thebit stringrepresentingthe
label of the edge. Similarly, if the analysergeneratesall successorsof a statein onestep,it
sufficesto storethe sourcestatenumberonly oncefor a bunchof edgesoriginatingfrom the
state.Keepingtrackof thenumberof statesgeneratedsofar allows theencoderto uselessbits
for representingthestatenumbers.

1Werestrictedourselvesto finite typesto avoid difficultieswith verificationalgorithmsthatoperateonunfolded
nets.

114

If the formalismallows someof the variablesof an enabledtransitionto be undefined—
that is, if all arcexpressionsandgatescanbeevaluatedwithout dereferencinga variable—the
encodermustuseonebit for signallingwhetherthevariablehasbeenassignedavalue.

All thisdatacanbeencodedinto onesequenceof binarydigits. Whenthebinarydigit string
is written to a file, it is goodto align it at abyteor machineword boundary.

In someapplications,it is not necessaryto storethe labelsof theedges,sincethey canbe
reconstructedby analysingall enabledtransitioninstancesin thesourcestate,andby findingthe
instancesthatleadto thespecifiedtargetstate.This is computationallyexpensive,but if it only
hasto bedonewhendisplayingto theusera counterexamplepathof at mosta few hundredor
thousandsteps,thecostof saving tensof megabytesof diskspacemight beonly a few seconds
of wastedprocessortime.

2.2.3 Encoding Vertices

In the caseof high-level Petri nets, the verticesof the reachabilitygraphare markings. A
markingis a family of multi-sets,indexedby places.A multi-setover a setis a mappingfrom
theitemsof thesetto thesetof naturalnumbers,µ : A

�A@
. Unlikenormalsets,amulti-setmay

containmorethanoneinstanceof anitem. Thenumberof timesanitem a $ A is containedin
amulti-setµ is calledthemultiplicity µ , a. . Theunionoperationof normalsetscanbeextended
to multi-setsasanoperationthataddsmultiplicities.

When the placesp $ � are mappedto numberso� , p. , the marking canbe viewed asa
sequenceof multi-sets.Themulti-setat thepositiono� , p. of thesequencecorrespondsto the
localmarkingof theplacep.

A straightforward implementationencodeseachmulti-set in the sequenceseparatelyand
appendsit to a bit string representingthe marking. The detailsare shown in the following
section.

3 Storing Markings

Storingsequencesof multi-setsin finite spaceinvolvesa fundamentalproblem: the rangeof
a multi-set µ is the infinite set of naturalnumbers. An implementationin a finite-memory
computermustrestrictthechoiceof themultiplicitiesµ , a. to afinite set,typically 0 � µ , a. � 2n

with n) 16 or n) 32.
Sincethemulti-setsin thereachablemarkingsof practicalmodelsusuallymapmostitems

to zeromultiplicity, it makessenseto representeachmulti-setasa sequenceof pairs : µ , a. � a<
having µ , a.CB 0.

An implementationthatenforcesalimit 0 � µ , a. � 2n couldencodethemultiplicity of each: µ , a. � a< pair in n binarydigits andmark theendof thesequencewith a stringof n zerobits.
Sucha simpleencodingrequires, � � �(D d . n bits for storingthemultiplicities of a markingof a� � � -placenetcontainingd distincttokens.

115

3.1 Representing Multiplicities

A multi-setµ over a setA canbe characterisedby two quantities:thecardinality, or the total
numberof items

t) ∑
a E Aµ , a.

andthenumberof distinctitems

d)*� � a $ A % µ , a.CB 0�F�G	
The cardinalitycantheoreticallybe any naturalnumber, but a finite-memoryimplementation
limits it, typically 0 � t � 2n for somen.

An user-definedcapacityconstraint, aBooleanconditionont, canreducethenumberof bits
requiredfor representingt. If therearem differentpossibilitiesfor thetotal numberof tokens
in a place,the actualnumbert canbe representedusing � log2m� bits, sincea k-digit binary
numbercanrepresent2k differentthings.

Encodingthe cardinality t beforethe numberof distinct itemsd hasoneadvantage:it is
straightforwardto seethat1 � d � t whent is nonzero.Therefore,d canberepresentedusing� log2 t � bits.

For thegreatestmultiplicity µmax in themulti-setit holdsthatH t
d I � µmax � 1 D t � d 	

If µmax is at its upperbound1 D t � d, theotherd � 1 distinct itemsmusthavea multiplicity of
1 in orderfor the total numberof itemsto be t. Similarly, if µmax)KJ td L , themultiplicities of
theremainingitemsmustbeequalto µmax or µmax � 1.

So,thegreatestmultiplicity µmax canalwaysberepresentedwithH
log2 M 2 D t � d � H t

d I/NOI
binarydigits. After decodingµmax, thedecoderknows theremainingcardinalityt PQ) t � µmax

and the numberof remainingdistinct items d PR) d � 1. If the multiplicities are encodedin
descendingorder, the encoderalwaysselectsthe greatestof the remainingmultiplicities and
representsit usinglessandlessbits.

Thisencodingof multiplicities appearsto bequitecompactevenwhencapacityconstraints
arenotused.For representingd) 5 multiplicities,thesimpleencodingdescribedin Section2.2
would use6n bits. The optimisedencodingneedsn bits for representingthe cardinality. As-
sumingthat it is 8, thenumberof distincttokensis encodedin 3 bits. Thegreatestmultiplicity
liesbetweenJ 85 L) 2 and8 � 5 D 1) 4; thereforeit canberepresentedwith 2 bits. Clearly, the
improvedencodingrequireslessthann D 3 D 5 2 2) n D 13bits. Thedifferencebetween6n and
n D 13 is tangiblealreadywhenn) 16.

Our encodingschemefor multiplicities is a variable-lengthcode. In the bestcase,when
d) 1 or d) t, our codeonly requires � log2 t � bits for representingd—no further bits are
requiredfor representingthe multiplicities. Figure1 comparesthe performanceof our code
againsta fixed-lengthcodethatmapsmultiplicity distributionsto a zero-basedindex numbers.
For instance,thereare7 differentmultiplicity distributionsfor multi-setsof cardinality5, if the

116

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90
Cardinality(TotalNumberof Items)

Best
Fixed
Mean
Worst

Figure1: Numberof Bits Requiredfor RepresentingMultiplicities

multiplicitiesaresortedin descendingorder:5,41,32,311,221,2111,11111.Eachdistribution
canberepresentedby a � log27� -bit number.

Theaveragebit consumptionof our codeis slightly morethantwo timesthesizerequired
by thefixed-lengthcode.Theresultis notsobad,sincethefixed-lengthcodeis computationally
muchmoreexpensivethanourmethod.Also, thereachablemarkingsin typicalPetrinetmodels
tendto consistof ordinarysets—anoptimalcasefor our code.

3.2 Representing Empty Multi-Sets

In many practicalmodels,there is a substantialnumberof empty placesin most reachable
markings.With our optimisedmultiplicity encoding,anemptyplacerequires � log2m� bits of
storage,if therearem differentpossibilitiesfor thetotal numberof tokensin theplace.

As it is ratheruncommonto definetight capacityconstraintsin models,representingthe
cardinalitiestypically requiresonemachineword per place. If the machineword length is n
bits,wewouldstill need � � � n bits for representinganemptymarking.Thereoughtto beamore
compactencodingfor emptyplaces.

Our solutionis to starttheencodedmarkingwith thenumberof emptyplacesne, 0 � ne �� � � . This requires � log2
, � � �(D 1. � binarydigits. ThereareS � � �

ne T) � � � !
ne!
, � � ��� ne. !

waysto pickasubsetof ne emptyplacesfrom thesetof all � � � places.It is possibleto enumerate
thesesubsetsandto representeachof themasa binarynumberwithU

log2

S � � �
ne T�V

digits. It is easyto seethat this codeoccupiesat most � � � bits, sincethe total amountof all
subsetsof theset

� W � W
∑

ne 1 0

S � � �
ne T

117

evaluatesto exactly2

W � W . For � � �X) 1 wehave1 D 1) 21, andassumingthattheclaimholdsfor
asetof magnitude� � � , it follows thatW � W Y 1

∑
ne 1 0

S � � �(D 1
ne T) S � � �GD 1

0 T D
W � W
∑

ne 1 0

S � � �GD 1
ne D 1 T) 1 D W � W

∑
ne 1 0

S � � �
ne T D

W � W + 1

∑
ne 1 0

S � � �
ne D 1T) 1 D 2

W � W D , 2 W � W � 1.) 2

W � W Y 1 	
Insteadof constructingthis kind of a fixed-lengthcode,we developedandimplementedin

MARIA a simplevariable-lengthencodingscheme,whichweshallpresentbelow.

3.2.1 A Variable-Length Code

Clearly, if thenumberof emptyplacesne happensto be0 or � � � , thereis only onewayto select
the subset,and it canbe identifiedby a zero-lengthcode. In the following, we assumethat
0 � ne

� � � � .
If 1

2 � � � � ne
� � � �—thatis, therearemoreemptyplacesthannonemptyones—thenit makes

senseto explicitly representtheidentityof thenonemptyplaces.Theencodingwehavedefined
so far identifieseachplacep $ � with an index number0 � o� , p. � � � � , andit encodesthe
multi-setsassociatedwith theplacesin ascendingorderof index numbers.

Thesmallestindex numberi1 of anonemptyplacemustbein therange

0) l1 � i1 � h1) ne

sincethereare at most ne emptyplacesin the beginning of the sequence.So, i1, the index
numberof thefirst nonemptyplace,canbestoredusing � log2

, h1 � l1 D 1. � binarydigits. What
aboutthefollowing nonemptyplacesik

Y
1? It holdsthat

ik

Y
1 Z lk

Y
1) ik D 1 �

sincethe indicesareprocessedin ascendingorder. It is easyto seethat thereare ik � , k � 1.
emptyplacesbeforeik, sinceik is the kth smallestindex of a nonemptyplace. Thus,of the
placesfollowing ik, ne � , ik � , k � 1.
. areempty, andfor theupperlimit hk

Y
1 Z ik

Y
1 wehave

hk

Y
1) lk

Y
1 D ne � , ik � , k � 1.
.) ik D 1 D ne � ik D k � 1) ne D k 	

Sinceh1) ne, it is easyto seethathk

Y
1) hk D 1.

Similarly, if 0 � ne � 1
2 � � � , we representtheindicesof emptyplaces.This is analogousto

thepreviouscase;we just startwith h1)[� � ��� ne.
This techniqueis illustratedin Figure2, which demonstratesa casewith 13 places,6 of

whichareto beidentified.Theonewith thesmallestindex i1 mustfulfill thecondition0 � i1 �
118

0 1 2 3 4 5 6 7 8 9 10 11 12

\ \ \ \ \ \

h1

h2

h3

h4

h5

h6

]
i1

l1\]
i2

l2\]
i3

l3 \]
i4

l4\]

i5

l5

]

i6

l6

Figure2: Representinga6-ElementSubsetof aSetwith 13 Elements

7. A fixed-lengthcoderepresentingi1 takes3 bits. Unfortunatelyfor us, i1 is at the smallest
possibleposition,andthe rangefor the next index is of the samesize: 1 � i2 � 8. Since i2
occursalmostat theendof its range,theuncertaintyover thepositionof theremainingindices
reduces.Our approachrequires1 bit for storingi3 and i4. After i4 hasbeenstored,no further
bits arerequired. Our encodingusesa total of 8 bits for identifying the emptyplaces. The

fixed-lengthcodewoulduse
H
log2 ^ 13

6 _ I) 11bits for this case.

In theworstcase,whenall m placesto be identifiedoccurin thefirst m positions,our ap-
proachrequiresthesamenumberof bits for representingeachindex, a total of m � log2

, m D 1. �
bits. In thebestcasewherethefirst index occursat theendof its range,the total requirement
dropsto � log2

, m D 1. � bits.

3.2.2 Keep it Simple

Figure3 comparesthespaceconsumptionof our variable-lengthencodingschemeagainstthe
fixed-lengthcodediscussedin thebeginningof this section.Wehaveseenthatthefixed-length
codeneverusesmorethan � log2

, � � �GD 1. �`Da� � � binarydigits. Its averagebit consumptionis

log2
, � � �GD 1. D 1� � �(D 1

W � W + 1

∑
ne 1 1

U
log2

S � � �
ne T�V 	

Theaveragespaceconsumptionof ourvariable-lengthcodeappearsto bemorethanonebit
perplace.Evenif our implementationmadeuseof fractionalbits, theworstcasefor � � �b) 20
would requirealmost39 bits, nearly two bits per place. This raisesa thought: Why not use
exactlyonebit perplacefor markingemptyplaces?Thedecoderwouldnotevenneedto know
thenumberof emptyplacesin advance,which allowsusto save further � log2

, � � �GD 1. � bits.
Thissimplecodecaneasilybeoptimisedfurtherfor placeshaving acapacityconstraint.No

signallingbit is requiredfor placesthatareconstrainedto benonempty. Also, if it is possible
to representthecardinalityusingno morethan,say, 2 bits, theemptinessbit canbeomitted.

A furtheroptimisationcanbemaderegardingplaceswith no capacityconstraints.In prac-
tice, placesin Petrinetsarelikely to containa smallnumberof tokens.Usinga shorterrepre-

119

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20
Numberof Elementsin theSet

Best

c c cdc cdcdcdc c&cdcec&cdcdcdc c&cdcdcdc

c
Fixed

D D D D D D D D D D D D D D
D D D D D D

D
Mean

f f f f f f f f f
f f f f f f f

f f f f ff
Worst

� � � � � �d�
� � �&� �d�

� � �
� �&� �d��

Figure3: Numberof Bits Requiredfor RepresentingSubsets

sentationfor small cardinalitiesseemsto make sense.Above we have suggesteda codeof at
most1 bit for representingthecardinalityt) 0. Thiscodecanonly tell whethert) 0 or t B 0.
In thelattercase,morebits arerequiredfor encodingtheexactvalueof t. Our implementation
in MARIA uses4 morebits for representingthe values1 � t � 8, 10 for 9 � t � 264, 19 for
265 � t � 65800,and4 D n bits for representingthevalues65801 � t � 2n.

3.3 Redundant Places

Certaincommonlyappliedmodellingpracticesintroduceredundancy in themarkingsof Petri
netmodels.Someof it canbe removedby transformingthe net to an equivalentone,but not
everything.For instance,if thereareno inhibitor arcsin theformalism,it is difficult to remove
complementplaces.

All practicalmodelsarelikely to containredundantplaces.Thestateencoderwouldperform
better if it could somehow omit all redundantplacesfrom the encodedmarking. The only
problemis that theremust be a mechanismfor computingthe contentsof redundantplaces
whendecodingthemarking.

MARIA solvesthe problemby allowing the initialisation expressionsof placesto refer to
themarkingsof otherplaces.Whena markingis aboutto beaddedto thereachabilitygraph,
the encoderensuresthat thereis no controversyin the initialisation expressionsof redundant
places,andissuesan error messageif thereis. Thus,theseuser-supplied“invariants”canbe
viewedasanadditionalsafetychecksuppliedby theanalyser, just likecapacityconstraintsand
checksin theexpressionevaluator.

4 An Example

Figure4 illustratesa high-level Petrinetmodelof a distributeddatabasemanagementsystem,
originally presentedby Genrich,LautenbachandJensen[3, 9]. In the initial markingof the
model,all placesexceptexclusion andinactive areempty. Thelatterplaceis initialisedwith

120

gihjik glhjik gihjik glhjlk gihjmkunused waiting inactive updating received

gihjik

gihjik

acknowledged

sent

gihjikexclusion

receive acknowledgements

update and send

acknowledge

receive message

no o
o o o o

o o o o
o o o o
o p

qqqq
qqq r

s s s s
s s s/t

u

u nns s
s s s s

s/t s s s s
s s s/t

qqqq
qqq r

qqqq
qqq r v v

u

u

q q q q q q q/wsssssss x

∑
r E �zy"{ s|: s� r <: < : s<

: s<∑r E �zy"{ s|: s� r <

∑
r E �zy�{ s|: s� r <

: < : s<
: s<

∑
r E �zy�{ s|: s� r <

: r <
: r <

: s� r <
: s� r <

: r < : s� r <
: r <
: s� r <

∑}
s~ r ���
�4���

s �1 r

: s� r <
∑

sE � : s<

: <

Figure4: Modelof aDistributedDataBaseManagementSystem

a multi-setsumof theitemsin theset � representingthedatabaseservers.In otherwords,all
databaseserversareinactive in theinitial stateof themodel.

It is fairly easyto seethatwhen � is finite, thereachablestatespaceof themodelis finite.
Themodelis alsobounded:theplaceswaiting andexclusion containat mostonetoken, the
placeinactive containsat most �9��� tokens,andtheotherplacesmay containat most ���=�
� 1
tokens.

4.1 Encoding the Initial Marking

Theinitial markinghas3 nonemptyplaces:unused, inactive andexclusion. Theseplacesare
actuallyredundant:The placeunused andthe arcsattachedto it could be removed from the
modelwithout affecting its behaviour. The placeexclusion is kind of complementaryto the
placewaiting, and inactive containsall thoseitemsof � not containedin the placeswaiting
andupdating. Utilising this information,our schemewould encodethe initial marking in 5
bits,onefor eachnon-redundantplace,signallingthattheplacesareempty.

If our encodingschemeis told nothingabouttheredundancy, it usesa total of � � �b) 8 bits
for identifying thethreenonemptyplaces.

Thecardinalityof themulti-setassociatedwith theplaceinactive is t) d)������ . If there
is a capacityconstraint0 � t ���9��� , thesetwo quantitiescanbeencodedin � log2

, ���=��D 1. ��D� log2 ���=� � bits; otherwise,nc
, ����� . D�� log2 ����� � bits arerequiredwherenc tells how many bits

ourvariable-lengthcodefor cardinalitiestakes:

nc
, t .) ���� ���

4 if 1 � t � 8
10 if 9 � t � 264
19 if 265 � t � 65800
4 D n if 65801 � t � 2n

121

All itemsin themulti-setfor inactive have themultiplicity 1. Althoughtheitemsin themulti-
setrepresentthewholeset � , ourencoderrepresentseachvalueseparately, using ������� log2 ���=� �
bits.

For the placeexclusion, we have t) 1. This leavesno choicefor the numberof distinct
tokens,which is also1. Encodingthe item takesno bits, sincethe datatype associatedwith
theplacehasonly onevalue—theemptytuple : < . If thereis a capacityconstraintthatdictates
0 � t � 1, onebit is enoughfor encodingthemulti-set.Otherwiset is representedwith 4 binary
digits,sinceit is in therange1 � t � 8.

Theplaceunused is initially markedwith amulti-setof thecardinalityt)[����� 2 ������� . The
reachablemarkingsof themodelappearto fulfill thecapacityconstraintt) 1 Da���=� 2 � 2 �����G�
t)��9��� 2 �����=� for this place. This capacityconstraintallows t to be representedin onebit.
The encoderdoesnot know that the numberof distinct items is d) t; it assumes1 � d � t
andthereforerepresentsd asa � log2 t � -digit binarynumber. Eachitemin themulti-setrequires� 2log2 ����� � bitsof storage,assumingthatthemodelusesanunconstraineddatatypefor storing
thepairs.2 Laterwe shallseethatrepresentingthis redundantmulti-setsubstantiallyincreases
thespacerequirements.In the following summary, we considera modelwherethis placehas
beenremoved.

To summarise,the initial marking—excluding the placeunused—fits in 11 D nc
, ���=� . D, ���=��D 1. � log2 �9��� � bitswhennocapacityconstraintsor redundancy informationareexploited.

With tight capacityconstraints,only 8 D�� log2
, �����(D 1. �zD , �9���
D 1. � log2 ����� � bits are re-

quired. The difference3 D nc
, �9��� . �d� log2

, �����(D 1. � is always positive in our implementa-
tion, sincenc

, t .�B � log2 t � . For �9����) 10,utilising thecapacityconstraintssaves9 bits. When
theredundancy informationis utilised,theinitial marking(whereall non-redundantplacesare
empty)canbeencodedin only 5 bits, independentof ���=� andn.

4.2 Encoding All Reachable Markings

Our schemefor encodingmarkingshasbeenimplementedin MARIA [11, 12], a reachability
analyserfor AlgebraicSystemNets[10] with user-definablefinite-domainstructureddatatypes.
We comparetheperformanceof MARIA with PROD [15], a reachabilityanalyserfor a kind of
Predicate/TransitionNets[4].

Tables1 and2 illustratethe performanceof our stateencodingscheme.We analysedthe
model dbm.net distributed with PROD without and with unfolding, and threevariantsof a
correspondingmodelwith MARIA: without andwith capacityconstraints,andwith redundant
placesindicated.

Thefiguresin Table2 arefor modelswheretheredundantplaceunused hasbeenremoved.
Thespaceconsumptiondropsto lessthanafifth whenthis placeis omitted.A naturalexplana-
tion is thatthisplacehasacomplementarycharacter:it containsa largenumberof tokensin all
reachablemarkings.If PROD or MARIA usedtheinitial markingasa referencewhenencoding
othermarkings,thedifferencesbetweenthetwo tableswouldbeconsiderablysmaller.

Thefiguresdonot includethespacerequiredfor thegraphdirectory. In PROD, it consistsof
a fixedheaderandof a recordof 8 machinewords—typically32 bytes—perstate.In MARIA,
thedirectoryis atableof hashvaluesandfile offsets.Ona32-bitsystemwith 32-bitfile offsets,

2This numberwould drop to � log2 ������� 2 � ����� ¢¡ if we definedthe domainof the placeto be a multi-setover���¤£¥�z b¦¨§ s©«ª`¬� s® s̄G° insteadof �±£²� .

122

Table1: ReachabilityGraphSizesfor theDistributedDataBaseModel

ModelSize EncodedStateSpacein Bytes����� States PROD (unfolded) MARIA (cap.) (red.)
1 2 19 3 4 2 2
2 7 99 29 28 15 9
3 28 645 844 223 168 86
4 109 3,925 1,745 1,403 1,090 414
5 406 21,519 10,151 8,439 7,487 2,396
6 1,459 107,967 54,307 46,109 42,292 10,807
7 5,104 505,297 280,229 208,807 198,599 43,569
8 17,497 2,239,617 1,296,227 908,810 873,816 168,089
9 59,050 9,507,051 5,605,363 4,423,852 4,308,020 738,397
10 196,831 38,972,539 23,134,187 18,006,540 17,685,747 2,683,381

Table2: ReachabilityGraphSizesfor theModelExcludingthePlaceunused

ModelSize EncodedStateSpacein Bytes����� States PROD (unfolded) MARIA (cap.) (red.)
1 2 17 3 4 2 2
2 7 76 21 21 14 9
3 28 389 139 150 111 86
4 109 1,848 761 724 543 414
5 406 8,113 3,651 3,565 3,159 2,396
6 1,459 33,548 16,045 15,725 14,266 10,807
7 5,104 132,693 76,067 60,786 55,683 43,569
8 17,497 507,400 357,219 233,702 217,213 168,089
9 59,050 1,889,585 1,511,227 998,945 952,558 738,397
10 196,831 6,889,068 6,009,887 3,559,389 3,526,147 2,683,381

123

thebookkeepingoverheadis 8 bytesperencodedstate.
When thereis no capacityconstraint,our implementationrepresentsthe cardinality of a

multi-setusinga variable-lengthcode,which occupies1 D 4 bits morethanonemachineword
in theworstcase.Theotherextremeis a capacityconstraintthatallows only onevaluefor the
total numberof tokens. Defining a capacityconstraintcanthussave morethanonemachine
word for eachnon-emptyplacein themarking.

We alsotranslateda variantof the ISDN-DSS1 protocolmodel[8] from PROD to MARIA

format. The encodedrepresentationof the 20,084statestakes37.2 bytesper statein PROD

(38.3for anunfoldedmodel)and9 in MARIA, or 13.7if nocapacityconstraintsaredefined.
Therun-timeoverheadof our encodingmethodis negligible, asour implementationmakes

heavy useof automaticallygenerated,dynamicallylinkedC code. Whenanalysingtheabove
mentionedISDN-DSS1 model,theanalyzerspendslessthan4 percentof its total time in theen-
coder. Thiscanpartiallybeexplainedby therelatively largenumberof placesandtransitionsin
themodel,which shiftsthebottleneckto transitioninstanceanalysis.Whenanalysingdifferent
variationsof thedatabasemodel,weexperiencedthatencodingstatestakes9–22percentof the
total time. Theworstfigurewasobtainedfor amodelthatincludedtheredundantplaceunused
andsuppliedamarking-dependentinitialisationexpressionfor it.

5 Conclusion and Future Work

Wehavepresentedaschemefor condensedexplicit storageof markingsof high-level Petrinets,
representingthe multiplicities of multi-set itemsin a compactway. Even thoughour scheme
doesnot utilise any similaritiesbetweenor insidemarkingsin any way, an implementationof
it performsup to anorderof magnitudebetterthana previously implementedschemeevenfor
simplemodels.

Our ideaof using � log2 ����� � binary digits for representingmulti-set itemsbelongingto a
finite set � assumesthateachitemoccurswith equalprobability. This is oftennot thecasewith
practicalmodels,andit would beworth investigatinghow well Holzmann’s ideason recursive
indexing andcompressiontrainingruns[7] couldbecombinedwith our approach.

References

[1] EdmundM. ClarkeJr., OrnaGrumberg, andDoronA. Peled.ModelChecking. MIT Press,
Cambridge,MA, USA, 1999.

[2] JacoGeldenhuysandPieterde Villiers. Runtimeefficient statecompactionin SPIN. In
DennisDams,RobGerth,StefanLeueandMiekeMassink,editors,TheoreticalAspectsof
ModelChecking, 5th and6th InternationalSPINWorkshops, pages12–21,Trento,Italy,
July1999.Springer-Verlag,Berlin, Germany, 1999.

[3] HartmannJ.GenrichandKurt Lautenbach.Theanalysisof distributedsystemsby means
of Predicate/Transition-Nets.In Gilles Kahn,editor, Semanticsof ConcurrentComputa-
tion, volume70 of Lecture Notesin ComputerScience, pages123–146,Evian, France,
July1979.Springer-Verlag,Berlin, Germany, 1979.

124

[4] HartmannJ.Genrich.Predicate/TransitionNets.In Wilfried Brauer, WolfgangReisig,and
GrzegorzRozenberg, editors,Petri Nets:Central Modelsandtheir Properties—Advances
in Petri Nets1986,Part I, Proceedingsof an AdvancedCourse, volume254 of Lecture
Notesin ComputerScience, pages207–247,Bad Honnef, Germany, September1986.
Springer-Verlag,Berlin, Germany, 1987.

[5] PatriceGodefroidandGerardJ.Holzmann.On theverificationof temporalproperties.In
13thIFIP SymposiumonProtocolSpecification,TestingandVerification, pages109–124,
Liège,Belgium,May 1993.

[6] Jean-CharlesGrégoire. Statespacecompressionin SPIN with GETSs. In 2nd Interna-
tional SPINVerificationWorkshop, New Brunswick,NJ,USA, August1996.

[7] GerardJ. Holzmann. Statecompressionin SPIN: Recursive indexing andcompression
training runs. In 3rd InternationalSPINVerification Workshop, Enschede,The Nether-
lands,April 1997.

[8] NisseHusberg, TeemuTynjälä andKimmo Varpaaniemi.Modelling andanalysingthe
SDL descriptionof the ISDN-DSS1protocol. To appearin Applicationand Theoryof
Petri Nets2000:21stInternationalConference, ICATPN’00, Århus,Denmark,June2000.

[9] Kurt Jensen.ColouredPetriNetsandtheinvariantmethod.TheoreticalComputerScience,
14(3):317–336,June1981.

[10] EkkartKindler andHagenVölzer. Flexibility in algebraicnets.In Jörg DeselandManuel
Silva,editors,ApplicationandTheoryof Petri Nets1998: 19thInternationalConference,
ICATPN’98, volume1420of LectureNotesin ComputerScience, pages345–364,Lisbon,
Portugal,June1998.Springer-Verlag,Berlin, Germany.

[11] Marko Mäkelä. Maria: Modular Reachability Analyzerfor Algebraic SystemNets. On-
line documentation,http://www.tcs.hut.fi/maria/.

[12] Marko Mäkelä. A Reachability Analyserfor Algebraic SystemNets. Licentiate’s thesis,
Helsinki University of Technology, Departmentof ComputerScienceandEngineering,
Espoo,Finland,March2000.

[13] RobertSedgewick. Algorithms. Addison-Wesley, Reading,MA, USA, 1984.

[14] ClaudeE. ShannonandWarrenWeaver. TheMathematicalTheoryof Communication.
Universityof Illinois Press,Urbana,IL, USA, 1949.

[15] Kimmo Varpaaniemi,Jaakko Halme,Kari HiekkanenandTino Pyssysalo.PROD refer-
encemanual. TechnicalReportB13, Helsinki Universityof Technology, Departmentof
ComputerScienceandEngineering,Digital SystemsLaboratory, Espoo,Finland,August
1995.

125

http://www.tcs.hut.fi/maria/

126

Compositionality in the GreatSPN tool and its

application to the modelling of industrial

applications�

S. Bernardi, S. Donatelli, and A. Horv�ath

Dipartimento di Informatica

Universit�a di Torino, Torino, Italy

fbernardi,susi, horvathg@di.unito.it

Abstract

An implementation of compositionality for Generalized Stochastic Petri

Nets (GSPN) and for Stochastic Well-formed Nets (SWN) has been recently

included in the GreatSPN tool. Given two GSPNs (or SWNs), and a labelling

function for places and transitions, it is possible to produce a third one as su-

perposition of places and transitions of equal label, for SWN colour domains

and arc functions have to be treated appropriately.

The main motivation for this extension was the need to evaluate a library

of fault tolerant \mechanisms" that have been recently de�ned, and are now

under implementation, in a European project called TIRAN.

The goal of the TIRAN project is to devise a portable software solution

to the problem of fault tolerance in embedded systems, while the goal of the

evaluation is to provide evidence of the e�cacy of the proposed solution. Mod-

ularity being a natural \must" for the project, we have tried to reect it in our

modelling e�ort.

In this paper we discuss the implementation of compositionality in the

GreatSPN tool, and we show its use for the modelling of one of the TIRAN

mechanisms, the so-called Local Voter.

1 Introduction and motivations

TIRAN (Tailorable fault tolerance framework for embedded applications) is an Euro-

pean ESPRIT project, involving six European partners from industries and universi-

ties, that is de�ning and implementing a new approach to fault tolerance in embedded

systems. The TIRAN solution is built around a software solution which provides fault

�We acknowledge contribution of the EEC project 28620 TIRAN.

127

tolerance capabilities to automation systems. TIRAN basically consists of a library

of functions that add fault tolerant behaviour to software, a support for their exe-

cution, and a language to specify how to react to errors: this is what is called \the

TIRAN framework." The framework is meant to allow application programmers to

equip their programs with a variety of software-based solutions for fault masking, er-

ror detection, isolation and recovery. The framework is currently under development

on di�erent hardware platforms, while two pilot applications are being developed to

test the framework[5].

Modelling in TIRAN is meant for validation, evaluation, and library documenta-

tion. Models are built out of a software speci�cation document. Validation is done

with respect to a number of \environment scenarios", that include application model,

fault model and recovery action speci�cation.

The role of the modelling team in the project is to provide models of the single

mechanism and of the system software, in such a way as to be easily composed

with models of the di�erent target applications developed by the partners as test

cases for the library. Moreover each mechanism is usually a set of tasks that interact

through the communication primitive o�ered by the run time support. Due to the high

complexity of the problem, coloured nets [18, 19] have been used for most mechanisms.

Important required feature of coloured nets include e�cient solution mechanism [7, 8],

as well as modularity, reuse and easy modi�cations of models.

Figure 1 shows the compositional approach to TIRANmodelling. Starting from the

speci�cation of the components (whether they are TIRAN mechanisms or hardware

speci�cation, or user behaviour) a model per each component is built. The di�erent

models are then integrated into a single GSPN/SWN model for evaluation of the

whole TIRAN framework. There are a number of boxes all tagged as \model con-

struction," but they may actually require di�erent construction techniques since the

input speci�cation are of di�erent types: the speci�cation of the mechanisms is done

with UML diagrams (typically state diagrams and message charts) plus some textual

comments, fault speci�cation is instead taken from the requirements speci�cation

document, that describes the type of faults and the type of the a�ected component

in a semi-formal language, hardware speci�cation has not been included yet, while

the user speci�cation is again based on the requirement speci�cation document.

Most of the mechanisms are built as a collection of tasks, and usually there is

a state diagram per task, plus a speci�cation of the interactions among them: the

corresponding models are built using GSPN/SWN and the compositional facility of

GreatSPN described in this paper.

The construction of the integrated model is, in general, a more complicated task,

since this is where model reuse really comes into play. To adequately support this

composition the PSWN class [1] has been recently de�ned, that allows the de�nition

of parametric colour classes, and for which a compositional operator has been de�ned

that allows to import and export values and types. Unfortunately no implementation

is yet available for PSWN.

SWN were a natural choice for their e�cient analysis techniques both for state

128

.

integrated
model

GSPN / SWN and
compositional operator

GSPN / Parametric SWN and
compositional operator

mechanism 1
specification

mechanism N
specification

.

model 1
construction

model N
construction

 fault
specification

model of fault
construction

.

GSPN/SWN
model 1

GSPN/SWN
model N

GSPN/SWN
model of faults

recovery action
 specification

model of
recovery

construction

GSPN/SWN
model of recovery

GSPN/SWN
model of hardware

model of
hardware

construction

 hardware
specification

model of
user

construction

user behavior
 specification

GSPN/SWN
model of users

complete model
construction

Figure 1: Compositional modelling in TIRAN

space generation and for performance evaluation based on aggregated Markov chains,

but the tool GreatSPN [9], that nicely supports state space generation exploiting

symmetries, steady state computation exploiting lumpability, and discrete event sim-

ulation with con�dence interval computation, has also a number of weak points, since

there is: a) no support for modularity, b) very few tools for debugging the model

(no invariant computation or check, no reachability analysis is possible apart from

checking the properties that are more relevant for performance evaluation, typically

the presence of an home state, or to do an inspection of the reachability graph written

in ASCII form), and c) no concept of a parameterized \library of models".

To overcome this weak points a number of activities are planned and/or are under

implementation by the GreatSPN group, in particular: 1) to implement composition

over places and transitions for GSPN and SWN 2) to implement PSWN, recently

de�ned in [1], to allow reuse of coloured models in di�erent contexts 3) to export

GreatSPN model to PROD nets [23], so as to apply all PROD tools for reachability

analysis 4) to export GreatSPN model to AMI-nets [12], so as to apply the P-invariant

computation for coloured nets [11] that is available in CPN-AMI [12]. 5) to extend the

de�nition and to implement the PSR methodology [13] for the modelling of layered

hardware and software architecture.

This paper discusses the implementation of the �rst point, and shows its use in a

129

non-trivial modelling case taken from the TIRAN library: a mechanism to implement

application replication and voting.

Of the remaining points, the export to PROD nets is at the latest stages of im-

plementation, while the export to AMI-nets has not started yet. For what concerns

PSWN, their implementation is a non trivial extension of the composition operator

that has been implemented. Indeed the compositional rule implemented is not very

sophisticated from the point of view of the treatment of the colour classes: there is

no concept of parametric colour classes, nor of import and export values and types,

as it is the case in the PSWN class de�ned in [1].

There are a number of techniques proposed in the literature for the composition or

compositional analysis of high level models: [15, 10, 2, 6, 4, 20], and a very thorough

survey of these methods can be found in [20], but in this paper we concentrate only

on tool support for compositional construction, and not for compositional analysis.

To the best of our knowledge there is no other tool o�ering the possibility of com-

posing stochastic coloured nets based on labelling, although composition based on

labelling is a well established technique for Petri nets [3], and there is an implemen-

tation available for a class of high level nets called M-nets [4], that do not include a

notion of time, and that have been used to provide a semantic to the programming

language B(PN)2 [4].

However there are tools to assist modular modelling also in a stochastic context.

CPN-AMI gives the possibility to paste modules next to each other in one model

and use the modular services of the graphical interface for the fusion of places or

transitions [12]. Design/CPN makes use of hierarchy to assist the user to build

complex models, a transition that represent a complex activity may be replaced by a

subnet [14], and a similar approach is taken in HiQPN [17], that o�ers also a larger

number of performance evaluation features. UltraSANmodels may be combined using

the operations replicate and join, these operations provide common places that can

be used for communication between the submodels [22].

The choice of GreatSPN was taken based on practical consideration (like the avail-

ability of the source code and of their knowledge), but mainly because of the need to

have aggregated symbolic state space generation like the one provided by GreatSPN

for SWN (the same analysis is also provided by CPN-AMI, but through an export

to GreatSPN). An example of the importance of aggregated, symbolic state space

generation will be given in the example section.

Section 2 introduces the compositional rule for SWN and its implementation in

GreatSPN. Section 3 describes the Local Voter mechanism, as given in the TIRAN

speci�cation document, while Section 4 shows and discusses the SWN models of the

local voter. Section 5 concludes the paper.

130

2 Composition for SWN in the GreatSPN tool

2.1 Composition of two labelled SWN

The composition rule proposed is centered around the classical idea of \matching

labels": transitions and places are labelled and pairs of transitions (places) with

matching labels are superposed. Let LT (LP) be the set of labels for the set of

transitions T (of places P), then we can de�ne the labelling function �, under the

hypothesis that LT and LP are disjoint, as:

�(x) =

(
T �! P(LT) if x 2 T

P �! P(LP) if x 2 P
(1)

that implies that more than one label can be associated with a single place or tran-

sitions (we call this aspect \multilabelling", and it should not be confused with mul-

tilabelling in Petri Boxes [3], that refers to bag of labels). The formal de�nition of

superposition is not given here for space restriction reasons, since it is a simpli�cation

of the one presented in [1] (that does not consider parametric colours), while we recall

here, through examples, the main ideas.

First, we concentrate on the case in which only transitions are superposed. LetN =

hP; T;Pre;Post; Inh;pri; C; cd ;w; �i be a labelled SWN obtained by the composition

of two labelled SWN N1 and N2; then the elements of N are obtained as follows.

The set of places P is the union of the sets of places, i.e. P = P1

S
P2 (renaming of

place names may be necessary in order to avoid matching names). The colour domain

function cd gives cd1(p) if p 2 P1, cd2(p) otherwise.

The unlabelled transitions are considered non-observable with respect to the com-

position, and those whose labels do not appear in the other operand, are not involved

in superposition. These transitions are simply copied into T (as for places, renaming

may be necessary). To show how the operation proceeds to superpose transitions

let us assume that N1 is multilabelled, while N2 is not, and the labelling is non-

injective. Let T2(l) denote the set of transitions t
0 of T2 with l 2 �(t0), where �(t)

gives the set of labels of t. In N there will be a replica of t 2 T1 for each element

in
N

l2�(t);T2(l)6=fg
T2(l), where

N
is the Cartesian product. An example is shown in

Fig. 2, for transition t1: �(t1) = fl1 ; l2 ; l3g and the above de�ned Cartesian product

has the elements ft2; t4g and ft3; t4g. In the composed net t11 (t12) is obtained by

superposing t1,t2 and t4 (t1,t3 and t4).

If two arcs connected to di�erent transitions that are involved in the same super-

position have identical variable names in their arc expression, then these variables are

renamed in the arc expression of all the arcs connected to one of the two transitions.

If these variables appear in the guard of the transition whose arcs' expressions are

changed, the renaming is performed in the guard as well. As an example, in Fig. 2,

during the superposition of t1; t2 and t4 the variable x of the arcs and guard func-

tion connected to t2 is renamed to x1. (As it will be mentioned in Section 2.2 the

implemented version of the algorithm allows the user to override the above described

131

P1
A,B

l1,l2,l3

t1

P3P2
A A,B

< x,y >

< !x,y >< x >

[d(x)=d1]

N1
P4

A

l1

t2

< x >

[d(x)=d2]

N2

P5
A

< x >

P6
B

l1

t3

< x >

P7
B

< !x >

P8
A

l2

t4

< x >

P9
A

< !x >

P1
A,B

l1,l2,l3

P3P2
A A,B

< x,y >

< !x,y >
< x >

 [d(x)=d1] and [d(x1)=d2]

N P4
A

P5
A

P6
B

P7
B

P8
A

P9
A

l1,l2,l3
t12

< x,y >
< x1 >

[d(x)=d1]t11

< x >

< !x,y >
< x1 >

< !x1 >

< x1 >

< x2 >

< !x2 >
< !x2 >

< x2 >

Figure 2: A multilabelled, non-injective example

renaming rule to \unify" values of the nets.) When two superposed transitions have

both a guard function these guard functions are joined with logical and relation.

The matrices Pre;Post; Inh describing the arc structure of Nare built in the

following way. The arcs ofN1 and N2 connected to transitions that are not involved in

superposition are simply copied into N . An arc connected to a transition involved in

superpositions will have as many instances as the times the transition is superposed.

In our example the arc P1-t1 has two instances in the composed net: P1-t11 and

P1-t12.

The priority function pri gives the same value as before for the transitions that are

not involved in superposition. A transition resulting from superposition inherits the

priority value from the involved transition of N1. The weight function w is handled

similarly to the priority one. We assume that there are not marking dependent weights

and rates, and we basically leave the user the task of rede�ning pri and w for the

�nal net, since compositional ways to handle pri and w are still an open question,

although some attempts to address this problem may be found in [16, 21].

132

P1
A

l2

t1

< x >

[d(x)=d2]

N1

P2
A

< !x >

P3
A

l2

t2

< x >

P4
A

< x >

P5
A

l2

t3

< x >

P6
A

< !x >

N2
P1

A

l2

t11

< x > + < x1 >

[d(x)=d2]

N

P2
A

< !x >

P4
A

P5
A

l2
t12

< x 1>

P6
A

< !x1 >

< x1 >
< !x >

< x >

l1l1l1

[d(x)=d2]

Figure 3: Superposition of places and transitions

The set of basic colour classes C and their de�nitions are assumed to be common

for N1 and N2.

The operation to superpose places is the direct counterpart of the operation de-

scribed above, with the additional, obvious, constraint, that places of equal label

should have the same colour domain. However the superposition of places is less

complicated as it does not require renaming of arc or guard expressions.

The simultaneous application of superposing places and transitions has two features

that were not shown in the above description. First, having an arc whose place

(transition) is involved in np (nt) superpositions, there will be np � nt instances of the

arc in the composed net connecting all the instances of its place with all the instances

of its transition. Second, having two arcs whose places and transitions are superposed,

the arc expressions of these two arcs are added. An example for the latter is shown

in Fig. 3 where the arc expressions of the arcs P1� t1 and P3 � t2 are summed.

2.2 Implementation

The compositional operators described in the previous subsection are implemented

by a program called algebra, that uses and produces SWN nets in GreatSPN format.

The modeller may build the component nets using the graphical interface of Great-

SPN. Since the present interface does not allow to de�ne labels, they are encoded in

the name of the transitions and places. Both transition and place names have the

structure tagjlabel1jlabel2:::, where tag is the name of the transition or place followed

by its labels separated by bars.

The user may de�ne the set of labels which will be taken into account during the

composition. This feature may be useful when composing more than two nets and the

modeller wish to avoid that all labels are considered at all stages of the composition.

Right now algebra is able to deal with non-injective labelling in both operands,

133

P2

A,B

P1

A

T1|L1

<!x,#y>

<x>

P3

B

P4

B

P6

A

P5

A

T2|L1 T3|L1

<#y>

<#y>

<x>

<x>

P2

A,B

P1

A

P3

B

P4

B

P6

A

P5

A

T2|L1

T1|L1

<x>

P5

T2|L1

<!x,y>

P6
T2|L1

P4

T1|L1<!x,y>

P3 T1|L1
<x>

< x1 >

< x1 >

< y >

< y >

N1 N2 N

Figure 4: Superposition using GSPN

while only one of the two may be multilabelled. This was judged an adequate com-

promise between the complexity of the implementation and the foreseen use of the

operator (this choice is adequate, for example, to support the implementation of the

PSR methodology cited before as point 5 of the \wish-list" of GreatSPN).

When composing algebra attempts to create a well-readable net. The \shape" of

the original components are maintained. The user may de�ne where the individual

components are placed in the composed model. If a transition (or place) has multiple

instances in the resulting net, the additional instances are placed around the original

position of the transition. When, as a result of the composition, an arc's place and

transition are in di�erent subnets the arc is drawn as \broken arc" in the resulting

net. A small example for the output of the program is given in Fig. 4. GreatSPN

does not draw arc expressions on broken arcs, those have been written on the �gure

\by hand".

Fig. 4 demonstrates another feature of the program: if a variable name starts with

the character #, it is not renamed during the superposition. This allows the modeller

to use the same variables in di�erent components, so as to \unify" values.

algebra may be called from the command line by

>> algebra net1 net2 op labels net [placement shiftx shifty]

The two operands are net1 and net2, the resulting SWN is net. The operator is

de�ned by op and may be t to superpose transitions, p to superpose places or b to

superpose both places and transitions. The set of labels over which the superposition

will be performed may be given in the �le labels, this �le has the following format:

transition=ftl1|tl2g

place=fpl1|pl2|pl3g

The labels that are not given in this �le are not considered during the operation. If

the �le does not exist all labels are considered. The last three arguments may be used

to de�ne the placement of the components: if the parameter placement is 1 (2) the

two nets are placed next to each other horizontally (vertically), if it is 3 the second

134

net is shifted by (shiftx,shifty) compared to the �rst net.

3 The local voter speci�cation

The Local Voter mechanism (LV) aims at masking the occurrence of faults during

the execution of a piece of code of an application process. Fault masking is achieved

by the adoption of a spatial redundancy of the execution of the piece of code and by

the voting on the results coming from the replicas.

I
R

Plane 0

Plane 1

Plane 2

IST 10I
D

0

O
C

0

BB

O
V

1

APP 1

IST n0

Figure 5: A description of the local voter

Depending on the voting technique adopted in the LV and on the spatial redun-

dancy, a limited number of faults may be masked; for instance, by using a majority

voting algorithm and by running concurrently N replicas, up to [N�1
2
] faults can be

made transparent for an application process.

Figure 5 shows a graphical representation of LV taken from the speci�cation doc-

ument of TIRAN; the LV can be used concurrently by several application processes

and three replicas are considered per application.

The replicas are executed on separate \planes", that naturally correspond to sepa-

rate processing nodes. The application process APPi that uses the LV mechanism is

split in two parts, a part that does not require a replicated execution, and a part that

instead requires it. If there are n applications that can use LV, then each application

has its distinct piece of code to be executed.

Since each replica, called ISTij in the �gure, should receive the same input data

there is a task IR (input replicator) that performs a replica over the three planes of

the input data: the data do not go directly to the application replica, but to the input

dispatcher of the corresponding plane IDj,that takes care of passing it on to the right

application.

A similar approach is used to collect the results: when a replica ISTij ends its

computation it sends its output data to the output collector of the corresponding

135

Acr. description no. of them

APP application n

IR input replicator 1

ID input dispatcher 3

IST replicated software to vote upon 3 � n

OC output collector 3

OV output voter n

BB backbone {

Table 1: Acronyms

plane OCj, that takes care of forwarding it to the appropriate voting task OVi; there

is one voting task per application.

The components of the local voter interact with the backbone BB, that is a sort of

run-time support for the TIRAN library of mechanism, that handles all exceptions

as well as the recovery actions. All interactions among tasks are based on mailbox

communications.

Table 1 lists the acronyms used in the paper for the di�erent tasks, and for each

task lists how many copies of that task there are in a LV that serves n applications.

The OV behaviour is described by a state diagram in the speci�cation document,

that basically amounts to a 2-out-of-3 voting. An additional textual speci�cation also

states that, as soon as OVi for application APPi receives the �rst output from one

of the replicas, it sets a time-out for receiving the other replicas. Each OV sends a

message back to the corresponding application only if all three replicas are received

before the time-out expires, and there is a match 3-out-of-3 of the results. In all other

cases BB comes into play.

4 The SWN model of the local voter

The following assumptions were made to model LV: tasks communicate in an asyn-

chronous manner via mailboxes, and there is one mailbox for each ordered pair of

tasks, time required to prepare a message is in general negligible, while the time to

actually transmit it from the task output bu�er to the recipient mailbox is not. For

what concerns the graphical representation, we have used grid places to emphasize

mailboxes and shadowed boxes to delimit portions of the nets that corresponds to

\recovery actions", and that will be explained in the next subsection.

Three colour classes have been de�ned:

AP is the colour class of applications that can request a replicated execution of a

piece of their code, and it is de�ned as AP = uApp, that is to say a single static

subclass, unordered, de�ned as App = fap1; ::; apng;

136

P is the colour of the planes, there are always three planes in LV, therefore P = uP l,

and P l = fpl1; pl2; pl3g;

Exc is the colour used to distinguish the positive or negative outcome of a LV activity,

and it is built out of two static subclasses Exc = uEcx1; Ecx2, where Exc1 =

fe1g means that there has been a time-out expiration, while Exc2 = fe2g

means that there was no time-out expiration.

P2ap
AP

ap|mbxAP-IR
AP

P3ap
AP

Idle_Appl

A
AP

P1ap
AP

ap|mbxBB-AP

AP

T1ap
<x> <x>

activity
<x> <x>

rcv_reply

<x>

<x>

<x>

snd_LV

<x>

<x>

<x>

Figure 6: The application model

Figure 6 shows the SWN model of the application, that cyclically executes its own

activity, sends a message to the task IR of the local voter, and waits for a message

coming from the backbone BB.

P2ir
AP

ir|mbxIR-ID
AP,P

P3ir
AP

ir|mbxID-IR
AP,P

ir|mbxAP-IR

AP

P1ir
AP

Idle_IR

T1ir

<x> <x,S>

broad_to_pls

<x>

<x>
<x>

rcvack_ID

<x>
<x,S>

rcv_data
<x>

<x>

π:6
ir2|resetIR

<#x>

π:6
ir|resetIR

<#x,y>

Figure 7: The input replicator model

Figure 7 shows the SWN model of the input replicator IR: it waits for messages

coming from the applications. As soon as a request of replicated execution for appli-

cation Appi is received, it broadcasts it to the input dispatcher task of each plane, and

waits for an acknowledge from ID. Since there is only one IR task, then no colours

are needed.

137

Figure 8 shows the SWN model of the input dispatcher ID. There is one task ID

for each of the three planes: it receives from IR the identity of the application to be

executed, it acknowledges reception to IR, and it activates a task corresponding to

the requested replica (called instance) for that plane.

P4id
AP,P

P2id
AP,P

id|mbxID-IST
AP,P

P3id
AP,P

id|mbxIR-ID

AP,P

Idle_ID

A

P

P1id
AP,P

id|mbxID-IR
AP,P

snd(datax,ply)_IST

<x,y>

<y>

<x,y>

T2id

<x,y><x,y>

T1id

<x,y><x,y>

sndack_IR

<x,y>

<x,y><x,y>

rcvdata_IR

<x,y>

<y>

<x,y>

π:5
id4|resetID

<#x,y>

π:5
id|resetID

π:5
id2|resetID

π:5
id3|resetID

<y>

<#x,y>

<#x,y>

<#x,y>

Figure 8: The input dispatcher model

Figure 9 shows the SWN model of the replica of the code to be executed on the

di�erent planes: since the TIRAN framework allows only static tasks, then it is correct

to assume that all replica are activated at the beginning and then suspend themselves

waiting for a message from the ID tasks. There are jAP j � jP j instances, i.e. one for

each application and for each plane. Each instance (x; y) waits for a message (x; y)

from ID y. When a message (x; y) is received the instance of application x on plane

y starts its activity, modelled by timed transition comp, and then sends the result of

the computation to OC.

Figure 10 shows the SWN model of the output collector (OC): there is one such

process for each plane, and each OC waits for a message coming from the replicas

running on its plane, and it forwards it to the output voter. According to the textual

portion of the speci�cation, the OC should wait for a \ready message" from OV, but

since the conditions under which OV should send this ready message are not speci�ed,

we assume that OV is always willing to accept messages in its mailbox.

Figure 11 shows the SWN model of the output voter task OV: there is an OV for

each application that can use LV. Each OV executes the voting algorithm (majority

voting 2 out of 3) on replicas of the same application, independently from the others.

OV waits for the replicas outcome from the three di�erent planes. As soon as the

�rst outcome is received, a timeout for reception of the other two replicas outcome is

set. Then three situations may occur:

C1 all the three outcomes are received before the time-out expiration, i.e. transition

recv3noTO �res and voting on the three outcomes takes place;

138

ist|mbxIST-OC
AP,P

P3ist
AP,P

ist|mbxID-IST
AP,P

Idle_Ist
BAP,P

P1ist
AP,P

P2ist
AP,P

T1ist
<x,y><x,y>

comp

<x,y>

<x,y>

sndrepl_OC

<x,y>

<x,y>

<x,y>

rcvdata_ID

<x,y> <x,y>

<x,y>
π:4
ist|resetIST

<#x,y>

<x,y>

π:4
ist2|resetIST

<#x,y>

π:4
ist3|resetIST

<#x,y>

Figure 9: The model of the replicated code

C2 the time-out has expired and two of the three outcomes have been received (�ring

of transition recv2&TO), and a vote on the two replicas takes place;

C3 the time-out has expired and only one of the three outcomes has been received

by OV, i.e. �ring of transition recv1&TO.

Under condition C1 a message of exception of type e2 (no time-out has occurred)

is sent to the the backbone BB; in cases C2 and C3 a message of exception of type

e1 (a time-out has occurred) is sent to BB. Observe that we are not passing on to

the backbone the information on whether the vote was successful or not, although

this will be a trivial extension, since the success or failure of the 2-out-of-3 algorithm,

according to the state diagram of the speci�cation document, is modelled in detail in

the SWN of Figure 11.

When the message is sent to BB, OV waits for an acknowledge from BB to return

back into its idle state. Observe that we are assuming that no direct answer goes

back directly from OV to APP, not even in the case of a \normal" 3-out-of-3 voting,

since we impose that all restarted are caused by BB.

Figure 12 shows the SWN model of the Backbone task, or, more precisely, of that

part of BB devoted to interactions with LV. BB is in an idle state until it receives an

exception message coming from OV. If the exception is of type e2, i.e. no time-out has

occurred, then BB sends an acknowledge to OV and to the application. If instead the

exception is of type e1, then a time-out has occurred, and therefore a reset operation

is needed, before sending back the messages to OV and to APP.

4.1 Local voter without recovery actions: an open model

A �rst analysis was performed for the case of a \single run" for each application. In

order to obtain the complete model the single nets have to be composed using the

139

P2oc
AP,P

oc|mbxOC-OV
AP,P

Idle_OC

APoc|mbxIST-OC

AP,P

P1oc
AP,P

snd_toOV

<x,y>

<x,y>

<y>
T1oc

<x,y><x,y>

rcvrepl_IST

<y>

<x,y>

<x,y>
π:3
oc3|resetOC

<#x,y>

<y>

π:3
oc|resetOC

<#x,y>

π:3
oc2|resetOC

<#x,y>

Figure 10: The model of the output collector

program algebra explained in Section 2. The nets used are the one without shad-

owed portion, so that no message is passed from OV to BB, so that each application

is executed only once. The resulting SWN net has been solved, for the single ap-

plication case, using the symbolic reachability graph construction of GreatSPN, that

produces 589 tangible states corresponding to 4261 ordinary ones.

There are 3 symbolic dead markings, corresponding to 7 ordinary dead markings.

Each marking is described in terms of dynamic colour subclasses associated to places,

and, for each dynamic subclass, its cardinality is given. For each symbolic marking

the number of corresponding ordinary markings is given; for instance, the following

dead marking:

MARKING D856 # ordinary marking: 3 (dead)

Idle_BB(1) oc|mbxOC-OV(1<App0,Pl1>) Idle_OC(1<Pl0>1<Pl1>) Idle_IR(1)

Idle_ID(1<Pl0>1<Pl1>) Idle_Ist(1<App0,Pl0>1<App0,Pl1>) P3ap(1<App0>)

Exception(1<App0,Exc10>)

|Exc10|=1 |Exc21|=1 |App0|=1 |Pl0|=1 |Pl1|=2

corresponds to a case of time-out expiration: only one replica has been received

by OV and the time-out has expired while waiting for the remaining replicas. All

components, except OV and APP, are in their initial states (idle state), APP and

OV are both waiting for a msg from BB, that will, of course, never arrives. Observe

that symbolic marking provides a more abstract information with respect to ordinary

one: in this case the abstraction is on the identity of the replica (plane) that has

�nished �rst. Other deadlocks represent the case of reception of all the three replicas

before the time-out expiration, corresponding to an ordinary deadlock marking, and

the case of time-out expiration after two replicas have been received, corresponding

to three ordinary markings.

140

ov|mbxOV-BB

P6ov
AP,Exc

P7ov
AP

ov|mbxBB-OV

AP

fired
AP

setTO
AP

Exception

AP,Exc

idle_OV

AAP
ov|mbxOC-OV

AP,P

P1ov
AP

P3ov
AP

P2ov
AP

P4ov
AP

P15
AP

T2ov
<x,w>

<x,w>

timeout

<x>

<x>
vote2&TO

<x>

<x>

vote3

<x>

<x>

BBack

<x>
<x>

<x>

ok33

<x>

<x,S Exc2>

ko22
<x><x,S Exc1>

ko23
<x>

<x,S Exc2>

ok23

<x>

<x,S Exc2>

ok22

<x>

<x,S Exc1>

BBnotify

<x,w>

<x,w>

<x>

setTOforx

<x,y>

<x>
<x>

<x>

<x,y>

<x>

<x>
recv3noTO

<x,S>

<x>

<x>

<x>

recv1&TO
<x,y>

<x>

<x>

<x,S Exc1>

ko3
<x><x>

π:2
recv2&TO

<x,y>+<x,z>

<x>

<x>

<x>

π:2
ov|resetOV

<#x,y>

AP,Exc

Figure 11: The model of the output voter

4.2 Local voter and recovery actions: an ergodic model

All the deadlocks found describe a \good" (expected) behaviour, so that it makes

sense to proceed to add also the recon�guration activities needed to restart an ap-

plication. The model obtained composing all nets, including also with the shadowed

portions, is ergodic (there is a single strongly connected component)

The basic idea is that the recovery action taken by BB is:

� to remove messages from mailboxes that refer to the application that has sig-

naled the exception;

� to take the corresponding tasks back to the their initial states.

To accomplish this BB enables a number of immediate transitions, one per model

component, and they are labelled in such a way as to superpose with the cleaning

transitions in the model components. Observe that these transitions are assigned a

di�erent priority, mainly to avoid the generation of useless interleavings, that could

signi�cantly slow down the state space generation.

141

bb|mbxBB-AP
AP

P2bb
AP

bb|mbxBB-OV
AP

P3bb
AP

clean
AP

P4bb

AP

Idle_BB

P1bb
AP

bb|mbxOV-BB
AP,Exc

T1bb

<x>

<x>

T2bb

<x>

<x>

OKclean

<x>
<x>

<x>

rcv_OV_reset
[d(w) = Exc1]

<x,w>

<x> <x>
rcv_OV_noreset

[d(w) = Exc2]

<x,w>

<x>

ack_OV&AP

<x>

<x><x>

<#x>
<#x>

<#x>
<#x>

<#x>
<#x>

<#x>
<#x>

<#x>
<#x>

π:2
bb|resetOV

π:3
bb|resetOC

π:4
bb|resetIST

π:5
bb|resetID

π:6
bb|resetIR

Figure 12: The model of the backbone

The symbolic reachability graph for the single application case has 1452 tangi-

ble states, while the ordinary one has 7074. Initial marking is a home state. The

generation took a few minutes on a rather standard 64Mbyte Pentium 2 machine.

Since the running time of the reachability graph generation grows very signi�cantly

into an almost trashing situation even when increasing only by 1 the number of

applications, then we have tried the discrete event simulation available in GreatSPN,

to compute performance indices for our LV model while varying the number N of

applications. Table 2 shows the list of timing parameters to be assigned to transitions

to perform a simulation. For a timing assignment in which values di�er for up to one

order of magnitude the simulator was able to provide estimates for throughput and

mean value of tokens in places in a few minutes, for an accuracy level set to 10 percent

and a con�dence level of 0.95. Table 3 shows the results obtained varying the number

of application processes that use the LV mechanism in the range [1; 10].

4.3 Local voter without recovery actions and explicit faults

In the models considered up to now no faults are explicitly included in the model, so

that a time-out can expire only due to a delay in the completion of one of the replicas.

To this goal the model of IST has been modi�ed to include a timing transition that

models the fault and that takes IST into an error state place. The resulting model,

for the single application case, has 1185 symbolic tangible markings (corresponding

to 6008 ordinary ones) and there are 7 symbolic dead markings, corresponding to

20 ordinary dead markings. Among them a very interesting one is the marking that

represents the state of the model where all the instances are in an error state, and

142

Param. Description Value(ms.)

act time of normal operations of an application 1

tr toIR transmission time of a msg to IR 0.1

broad time for IR to broadcast to IDs 0.1

snd toist time for ID to send a msg to a same-plane istance 0.1

tr acktoIR transmission time of an ack to IR 0.1

tr toID transmission time of a msg to IDs 0.1

tr toIst transmission time of a msg to Ists 0.1

comp time spent by the istances to perform operations 2

tr toOC transmission time of a msg to OCs 0.1

snd toov time spent by OC to send the replica to OV 0.1

tr toOV transmission time of a msg to OVs 0.1

TO time-out 5

vote3 time spent by OVs to vote on 3 replicas 0.1

vote2&TO time spent by OVs to vote on 2 replicas 0.1

tr toBB transmission time of msg to BB 0.1

tr BB-OV transmission time of an ack from BB to OV 0.1

tr BB-AP transmission time of a reply to application. 0.1

Table 2: Timing parameters

No.Appl. Xactivity Acc.(%) Xrcv reply Acc.(%) NP2ir Acc.(%)

1 0.211637 5.092404 0.211637 5.092404 0.020518 9.141612

2 0.419355 0.483286 0.419433 0.488460 0.041899 1.311778

3 0.625945 0.663775 0.626182 0.666935 0.062012 1.594000

4 0.827432 1.076573 0.827014 1.103949 0.081316 1.966425

5 1.025215 1.037140 1.027469 1.023215 0.101616 2.34418

6 1.227929 1.227031 1.228012 1.141775 0.120755 4.246115

7 1.413914 0.904866 1.414766 0.911834 0.145302 3.139288

8 1.595689 2.375840 1.596397 2.388058 0.163623 6.134849

9 1.779154 1.517227 1.777283 1.534383 0.177373 4.467230

10 1.952531 3.056724 1.949649 2.366157 0.206051 7.254697

Table 3: Simulation results

143

this correspond to a case in which no replica will ever reach OV, so no time-out will

be set. This case is, up to now, not considered in the speci�cation document.

Observe that, to produce an ergodic model it will not be enough to consider the

reset activity of BB, but an explicit testing for the three replicas all being in an error

state should be added to the model.

5 Conclusions

In this paper we have described the compositional operator that is now implemented

in GreatSPN for the superposition over labelled places and transitions for GSPN

and SWN nets, and its application for the study of a mechanism for fault tolerance

called local voter. Tool support was fundamental in the model developing phase,

since speci�cation were still changing and the de�nition of the abstraction level for

modelling was not set.

To provide more exibility to these models we should include a modular de�nition

of the communication (for example to investigate rendez-vous instead of mailboxes),

and di�erent models of fault.

Another open point is how to take into account the hardware on which the applica-

tions and the framework will run: indeed for this point we are planning to extend the

de�nition of PSR to SWN models. It seems envisionable that the size of the models

will only allow simulation since the models that we have produced are quite detailed

as they are meant for validation, while an interesting open problem is how to derive

from these models some more compact ones to be used for performance evaluation

purposes.

We have already mentioned in the introduction that there is very little support

for reachability analysis right now in GreatSPN, so that, if a net has an error that

make some place unbounded, the state space generation simply does not stop. Indeed

before running the state space generation we have always run simulation, that allows,

by checking the accumulated performance indices, to check whether certain place

markings grow in a suspicious manner.

Acknowledgements. We would like to thank the anonymous reviewers for their

very careful reading of the paper, and for pointing out various ways to improve it.

References

[1] P. Ballarini, S. Donatelli, and G. Franceschinis. Parametric Stochastic Well-

formed Nets and compositional modelling. In Proc. of the 21st International

Conference in Application and Theory of Petri Nets, ICATPN 2000, Aarhus,

Denmark, June 2000. Springer Verlag. LNCS, to be published.

[2] E. Battiston, O. Botti, E. Crivelli, and F. De Cindio. An incremental speci�cation

of a hydroelectric power plant control system using a class of modular algebraic

144

nets. In Proc. of the 16th International Conference on Application and Theory

of Petri nets 1995, Torino, Italy, 1995. Springer Verlag. Volume LNCS935.

[3] E. Best, R. Devillers, and J. Hall. The Petri box calculus: a new causal algebra

with multilabel communication. In G. Rozenberg, editor, Advances in Petri Nets,

volume 609 of LNCS, pages 21{69. Springer Verlag, 1992.

[4] E. Best, H. Flrishhacl ANF W. Fraczak, R. Hopkins, H. Klaudel, and E. Pelz. A

class of composable high level Petri nets with an application to the semantics of

B(PN)2. In Proc. of the 16th International Conference on Application and Theory

of Petri nets 1995, Torino, Italy, 1995. Springer Verlag. Volume LNCS935.

[5] O. Botti, V. De Florio, G. Deconinck, R. Lauwreins, F. Cassinari, A. Bobbio,

S. Donatelli, A. Lein, H. Kufner, E. Thurner, and E. Verhulst. The TIRAN

approach to reusing software implemented fault-tolerance. In Proc. 8th Euromicro

Workshop on Parallel and Distributed Processing (PDP2000) , Rhodos, Greece,

Jan. 2000.

[6] P. Buchholz. A hierarchical view of GCSPN and its impact on qualitative and

quantitative analysis. Journal of Parallel and Distr. Computing, (15), July 1992.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed

coloured nets and their symbolic reachability graph. In Proc. 11th Intern. Con-

ference on Application and Theory of Petri Nets, Paris, France, June 1990.

Reprinted in High-Level Petri Nets. Theory and Application, K. Jensen and G.

Rozenberg (editors), Springer Verlag, 1991.

[8] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A Symbolic Reach-

ability Graph for Coloured Petri Nets. Theoretical Computer Science B (Logic,

semantics and theory of programming), 176(1&2):39{65, April 1997.

[9] G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphi-

cal Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Eval-

uation, special issue on Performance Modeling Tools, 24(1&2):47{68, November

1995.

[10] S. Christensen and L. Petrucci. Modular state space analysis of coloured Petri

nets. In Proc. of the 16th international conference on Application and Theory of

Petri nets 1995, Torino, Italy, 1995. Springer Verlag. Volume LNCS935.

[11] J.M. Couvreur and J. Martinez. Linear invariants in commutative high-level

nets. In Proc. 10th Intern. Conference on Application and Theory of Petri Nets,

Bonn, Germany, June 1989.

[12] CPN-AMI. http://www-src.lip6.fr/logiciels/framekit/cpn-ami.html.

145

[13] S. Donatelli and G. Franceschinis. The PSR methodology: integrating hardware

and software models. In Proc. of the 17th International Conference in Applica-

tion and Theory of Petri Nets, ICATPN '96, Osaka, Japan, june 1996. Springer

Verlag. LNCS, Vol 1091.

[14] Design/CPN. http://www.daimi.au.dk/designCPN.

[15] S. Haddad and P. Moreaux. Evaluation of high level Petri nets by means of

aggregation and decomposition. In Proc. of the 6th International Workshop on

Petri Nets and Performance Models, Durham, North Carolina, U.S.A, October

1995.

[16] Jane Hillston. The nature of synchronization. In U. Herzog and M. Rettelbach,

editors, Proc. 2nd Workshop on Process Algebra and Performance Modelling,

Erlangen, 1994.

[17] The HiQPN Software. http://ls4-www.informatik.uni-dortmund.de/QPN.

[18] K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical

Use. Volume 1. Springer Verlag, 1992.

[19] K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical

Use. Volume 2. Springer Verlag, 1995.

[20] Isabel C. Rojas M. Compositional construction and Analysis of Petri net Sys-

tems. PhD thesis, University of Edinburgh, 1997.

[21] E. Teruel, G. Franceschinis, and M. De Pierro. Clarifying the priority speci�ca-

tion of gspn: Detached priorities. In Proc. 8th Intern. Workshop on Petri Nets

and Performance Models, Zaragoza, Spain, September 1999. IEEE-CS Press.

[22] The UltraSAN Software. http://www.crhc.uiuc.edu/UltraSAN.

[23] K. Varpaaniemi, J. Halme, K. Hiekkanen, and T. Pyssysalo. PROD reference

manual. Technical Report Series B, number 13, Helsinki University of Technol-

ogy, August 1995.

146

	Workshop on Practical Use of High-Level Petri Nets
	Preface
	Table of Contents
	Executable Petri Net Models for the Analysis of Matabolic Pathways
	Web Based Interfaces for Simulation of Coloured Petri Net Models
	High-Level Petri Nets for a Model of Organizational Decision Making
	Specification and Validation of a Concurrent System: An Educational Project
	Modelling and Analysing a Distributed Dynamic Channel Allocation Algorithm for Mobile Computing Using High-Level Petri Net Me
	Modelling and Initial Analysis of the Resource Reservation Protocol using Coloured Petri Nets
	Condensed Storage of Multi-Set Sequences
	Compositionality in the GreatSPN tool and its application to the modelling of industrial applications

