
Modelling the Work Flow of a Nuclear Waste

Management Program

Kjeld H. Mortensen Valerio Pinci
Computer Science Department Meta Software Corporation

Aarhus University
Ny Munkegade, Bldg. 540 125 Cambridge Park Drive

DK-8000 Aarhus C, Denmark Cambridge, MA 02140, U.S.A.
Phone: +45 8942 3188 Phone: +1 617 576 6920
Fax: +45 8942 3255 Fax: +1 617 661 2008

E-mail: khm@daimi.aau.dk E-mail: pinci@metasoft.com

Abstract. In this paper we describe a modelling project to improve a

nuclear waste management program in charge of the creation of a new

system for the permanent disposal of nuclear waste.

SADT (Structured Analysis and Design Technique) is used in order to

provide a work-ow description of the functions to be performed by the

waste management program. This description is then translated into a

number of Coloured Petri Nets (CPN or CP-nets) corresponding to di�er-

ent program functions where additional behavioural inscriptions provide

basis for simulation. Each of these CP-nets is simulated to produce timed

event charts that are useful for understanding the behaviour of the pro-

gram functions under di�erent scenarios. Then all the CPN models are

linked together to form a single stand-alone application that is useful for

validating the interaction and cooperation between the di�erent program

functions.

A technique for linking executable CPN models is developed for support-

ing large modelling projects and parallel development of independent

CPN models.

1 Introduction

A large nuclear waste program1 in U.S.A. is responsible for permanently dis-
posing used nuclear fuel and similar high-level nuclear waste. The objective of
the program is to establish a capability to accept, transport and store nuclear
waste by 1998, and to start the storage of nuclear waste in a geological reposi-
tory by 2010. The program has quite unique characteristics; provide safe nuclear
waste isolation for 10,000 years with unprecedented oversight and control by dif-
ferent a�ected and interested groups. Additionally the program must take into

1 By program we mean an organised set of activities directed toward a common

purpose. A program is typically made up of, e.g., technology based activities and

projects.

account changing conditions in its environment as, e.g., changes in the current
legislation. The program director therefore decided to develop a new approach to
improve the current nuclear waste systems management strategy and to carefully
design the program, much like physical systems are designed. A general design
methodology is used to capture the functionality of the system2. The methodol-
ogy includes use of Structured Analysis and Design Technique (SADT) [4] and
Coloured Petri nets (CP-nets or CPN) [1].

The physical waste management system is composed of groups of people, doc-
uments, and equipment. They need to cooperate and interact with each other. A
group of people in charge of a speci�c domain needs to exchange many kinds of
information between other groups often with very di�erent domains. In order to
ensure an e�cient and consistent cooperation and interaction between groups,
the Nuclear Waste Management System (NWMS) is modelled (with SADT) and
the resulting model is analysed by translating it into CP-nets which subsequently
are simulated. Major components of the system are identi�ed which are called
the programmatic functions. The process of modelling and analysing will be re-
ferred to as the programmatic functional analysis (PFA). The modellers take the
perspective of functional behaviour on the nuclear waste management system.
E.g., one of the programmatic functions characterises sites for storage of nuclear
waste, and another major function performs systems engineering.

The PFA of the nuclear waste management program is the e�ort of identify-
ing all activities which must be performed in order to clarify interdependencies
between the activities and bring the physical system into being (thus meeting
the program objective). Models will provide a means for people in the program
to understand their position in the overall program, thus becoming able to iden-
tify their functions, e.g., how cooperation and interaction should take place with
other people in the system.

The result of the analysis is to be used for developing policies and guidelines
that determine how to actually implement the system itself. The programmatic
functions are the functions that bring the physical nuclear waste management
system into being. The main stages of the physical system functions are simply
stated: acceptance, transportation, storage, and disposal of nuclear waste. These
operations comprise the stages in the nuclear waste management program.

We will look at some of the programmatic functions in this paper, namely
the functions that are prepared for simulation in a CP-net design and simulation
tool.

1.1 CP-nets, SADT, and Similarities

CP-nets are recognised as a useful modelling language for validation and sim-
ulation of complex concurrent systems (see, e.g., the book [2]). CP-nets have a
hierarchy concept, which is very similar to the activity hierarchy resulting from
functional decomposition in SADT. However, SADT is a top-down method while
modelling with CP-nets do not need to be. See [4] for an in-depth description of

2 By system we here refer to a complex organisation.

2

SADT. There is also a direct correspondence between non-decomposed functions
in SADT models and transitions in CP-nets. These similarities make it possible
to do a semi-automatic translation from SADT diagrams into CP-nets, where the
hierarchy and the connections between activities of the SADT diagram are pre-
served. Places are automatically created, but net inscriptions with behavioural
information have to be added manually. Adding inscriptions to the model pro-
vides a basis for simulation, and thus also a means for validating the original
intention of the SADT model. See [11] and [9] for a more detailed description of
the process of going from an SADT model to a CP-net.

Above, we have described that SADT and CP-nets have a number of impor-
tant similarities. But the two languages also complement each other in several
interesting ways. SADT does not have a formal framework while CP-nets have.
SADT cannot be simulated where CP-nets can. Furthermore, CP-nets do not
have explicit guidelines for a structured and systematic approach to the model
creation process | but SADT does. Both methods build on principles and con-
cepts that are easy to learn and understand. The use of CP-nets in conjunction
with SADT implies that the dynamics of an SADT model easily can be exam-
ined. Hence, we obtain a better understanding of behavioural properties.

SADT in conjunction with CP-nets is the chosen method in this project
for doing the PFA. We use two tools in the project. One is for editing SADT
diagrams (Design/IDEF [6]), the other for editing and simulating CP-nets (De-
sign/CPN [5]). Design/CPN is able to load SADT diagrams and translate them
into CP-nets.

1.2 The Top-level SADT Function

With the purpose of further introduction to SADT and the waste management
system, let us take a look at the top-level SADT function from the modelled
system (see �gure 1).

An SADT diagram consists of three basic elements: boxes, arrows, and labels.

1. The boxes denote functions or activities. A box will always contain a short
text describing what the activity stands for. A box can be decomposed,
giving a more detailed description of the function by means of another SADT
diagram. Each box also has a number indicating its sequence number on
the page and the contents of its decomposition. E.g., \A0" means the top-
level function, \A3" is the third function on the �rst level of decomposition,
and \A31" is the �rst function on the second level of decomposition, of the
function \A3". The notation \3.1" is a variant of \A31".

2. The arrows denote incoming and outgoing ows of functions. Incoming ows
can be of three di�erent types; controls, inputs, or mechanisms. The type
of an arrow is determined by the side of the box it enters on or exits from.
A function maps input (arrows coming in on the left of the box) to output
(going out of the right), possible under some constraints (control arrows en-
tering from top), and by means of mechanisms (arrows entering from below).
Mechanisms are often used for modelling resources. Several arrows can join

3

EXECUTE
NWPA

A0

WASTE

TECH/
PROGRAM INPUT

EXTERNAL INFO

ISOLATED WASTE

LEGAL REQUIREMENTS
AND GUIDANCE

EXTERNAL INFO NEEDS

REGULATORY ACCEPTANCE/
AUTHORIZATION

FUNDS ORGANISATION

PROGRAM CONSTRAINTSDIRECTIONS

TECHNOLOGY

EXTERNAL REVIEWS

APPLICATIONS

REGULATORY REPORTS

Fig. 1. The topmost SADT function (\Execute Nuclear Waste Policy Act").

or one arrow can branch into several. (If not explicitly stated, input, control,
and mechanisms will go under the common term \input".)

3. Labels are associated with arrows. A label gives the name of the kind of
information owing on the arrow.

As the function above is the topmost SADT function, it provides an overview
of what kind of interaction the waste management system has with the external
environment. The function takes, e.g., waste and technology as input. When the
function is performing, it isolates nuclear waste in sites which are allocated by
functions found on lower levels of decomposition. The waste management pro-
gram, represented by the above function, operates under a number of constraints
imposed by its external environment. The program gets directions (a control ar-
row) from a department in the U.S. government. It also operates under require-
ments and guidance from the legislative environment, e.g., the Congress. The
resources or mechanisms necessary for the nuclear waste management system to
operate are an organisation (people and machinery) and funds. On the lower level
of decomposition, the resource arrows (mechanisms) are omitted which means
that resources are not taken into account in the rest of the model.

The rest of the paper is organised as follows: In section 2 we provide the de-
scription of the project and look at some of the SADT diagrams from the model.
Section 3 describes the work involved as the SADT diagrams are translated into
a CPN model. Examples will be given. We proceed with simulation of the indi-
vidual submodels in section 4, and in section 5 we explain how the submodels
are merged together, resulting in one model which is then simulated. Finally, we

4

have the conclusion where we also discuss work in progress and suggest further
work | all in section 6.

2 Project Description

In this section we elaborate on our participation in the project. The improvement
of the nuclear waste management program is still an ongoing activity, but the
work described in this paper was con�ned to six months (in 1991).

2.1 Con�guration Overview

Two groups of people with very di�erent backgrounds and quali�cations par-
ticipated in the project. The main group performing programmatic functional
analysis (which we will refer to as the PFA team) was responsible for design-
ing the systems management strategy. The PFA team produced, among other
things, functional descriptions and SADT diagrams. The size of the team varied
between 15 and 25 people.

The waste management program interacts with and is restricted by a variety
of groups in the world outside. The program has to work within laws (which may
change) of the government, and the program has to handle and interpret many
sorts of data coming from, e.g., geologists that analyse potential storage sites.
Therefore, many people with knowledge and experience in various domains like
geologists and lawyers are present in the team. These people do not have any
SADT or CPN modelling background.

The CPN team consisted of the authors of this paper having several years
of experience with SADT and CPN. Instead of training the PFA team in us-
ing CPN, we, with the CPN modelling expertise, were hired by the program
management. The CPN team took the produced SADT diagrams, and based on
some additional written descriptions of the intended functional behaviour, the
CPN team created a corresponding CPN model which simulates some aspects of
the dynamic behaviour of the system. Simulation and timed event charts gave
the necessary means for validating properties and answering questions about the
behaviour of the model. One interesting question is if there are any unintended
blocking of the information ow in the system. If the ow is blocked and other
activities are dependent on blocked information, it can under some circumstances
lead to a deadlock in the model. This does not mean that the system in the real
world also will deadlock. But it means that the set of activities in the model that
are going to be implemented in the real world will operate less optimal, because
the system will discover delays. These aws then need to be �xed (if possible)
which is more expensive than �xing the model in the �rst place.

The purpose of our involvement was to provide an executable model of the
PFA team's SADT model, in order to give a basis for validation of the accuracy
and completeness of the programmatic functional analysis they performed.

From the PFA team's point of view, the interaction and cooperation between
the various submodels can be compared with a protocol. As the SADT submod-
els are made independently by di�erent people it is not guaranteed that the

5

submodels will �t together when the model is viewed as a whole. The SADT
modellers made the choice of CP-nets, because CP-nets could help them to val-
idate, by means of the simulation tool, that the models really would be able to
interact and cooperate correctly. (Formal analysis of CP-nets was also of inter-
est but never used because of lack of tool support at that time.) The modellers
also wanted to be able to investigate the dynamics of the models in more detail
and obtain a concrete understanding, since this cannot be accomplished by just
looking at SADT diagrams.

2.2 The Major Components of the Nuclear Waste Program

In this project we focus on seven major programmatic system functions. Many
other functions are also in the SADT model, but they do not have nearly as
high priority as the seven major functions we describe in this paper and are
thus not considered. Furthermore, it would not be possible to complete the CPN
modelling e�orts with the available resources if we did not limit our scope.
The following is a short description, which explains the main purpose of the
considered major functions:

{ Provide Program Control (PPC): This function controls and provides overall
management direction for the NWMS program.

{ Ensure Regulatory Compliance (ERC): Identi�es regulations which applies
to the program and the physical system, and ensures they comply with these
regulations.

{ Perform Systems Engineering (PSE): The function translates the NWMS
program mission requirements into a set of functions, requirements, and
interfaces for the physical system.

{ Design Engineered System (DES): The function is divided into the four
phases; conceptual, preliminary, �nal, and as build design.

{ Identify and Characterise Sites (ICS): Provides site information for con-
sideration in system evaluations, and also identi�es and screens potentially
acceptable sites.

{ Evaluate Integrated System (EIS): The purpose of this function is to reduce
program technical performance risks.

{ Perform Con�rmation/Construction/Operational Testing (PCOT): This func-
tion plans, conducts, and documents tests to verify that the NWMS physical
system conforms to, e.g., technical requirements.

The latter �ve functions (PSE, DES, ICS, EIS, and PCOT) are the basis for
the decomposition of a function called \Con�gure System", shown in �gure 2.
PPC and ERC are located outside the Con�gure System function and the re-
lationship with PSE, DES, ICS, EIS, and PCOT is not easily visualised by a
simple �gure.

The �ve functions in �gure 2 interact throughout the NWMS program. Typ-
ically PSE provides input information to one of DES, ICS, EIS, or PCOT. They
in turn provide a result which is either a success (a �nal result) or a request for

6

more information or additional action. The result is processed by PSE, some-
times in cooperation with PPC. And so it goes on through all stages of the
NWMS program.

2.3 Understanding the SADT Model

Throughout the project the work procedure of the CPN team was as follows.
Typically the PFA team �nished a �rst version of one of the submodels. Our
task was then to translate the SADT diagram into a CPN diagram and �nish
the model by adding behavioural inscriptions so that a simulation could take
place.

As an example of a diagram page from the SADT model, the decomposition
of the function \Analyse Performance Variances" is shown in �gure 3, which is a
function within PPC. (We will henceforth base our examples on this function.)
The purpose of the function \Analyse Performance Variances" is to identify
performance variances (e.g., delays) in the waste management program. It bases
its analysis on, e.g., information about the physical system provided from PSE
and general information about the status of the program assembled from many
origins. If there are variances, the function is also responsible for identifying the
cause and issue alternative corrective actions (with associated risks) in order to
reduce the variance. It also determines where the action should be taken and
develop recovery plans for future actions. The analysis results from the function
in the �gure are used to make change requests of which approved changes are
sent to many functions in ERC as a part of general program information. ERC is
then responsible for realising the requests. Thus, the scope of the function really
covers most of the waste management program.

To help the CPN team to understand the intended behaviour of the SADT
models, these came together with clarifying function descriptions. Initially the
form was only unstructured textual descriptions. The textual descriptions con-
tained information about the relationship between input and output when a
function is activated. Figure 4 shows an example of a textual description for the
function Identify Corrective Actions" from �gure 3.

The textual description is divided into the mission and the scope of the
function. The mission just explains briey what the function itself is supposed
to do in terms of input and output, and the scope explains to what extent the
rest of the waste management program is involved in the actions of the function.

In the beginning of the project, this kind of textual description was the only
available explanation of the model. Communicating the intended functional be-
haviour in the above form showed quickly to be insu�cient and ambiguous,
therefore error prone and a waste of time for us. To support the textual de-
scriptions, a more formal description language for functional behaviour was in-
troduced. The exchanged information became decision tables and descriptions
which both speeded up the process of understanding the behaviour and reduced
the number of misunderstandings dramatically in comprehending the intended
functionality. Decision tables were useful for describing exactly when output is

7

I1 T
ec

hn
ol

og
y

C
1

S
ys

te
m

 c
on

fig
ur

at
io

n
di

re
ct

io
ns

O
2

S
ys

 c
on

fig
 in

fo

P
E

R
F

O
R

M

S
Y

S
T

E
M

S

E
N

G
IN

E
E

R
IN

G

2.
1.

1.
1

ID
E

N
T

IF
Y

 A
N

D

C
H

A
R

A
C

T
E

R
IZ

E

S
IT

E
S

2.
1.

1.
3

D
E

S
IG

N

E
N

G
IN

E
E

R
E

D

S
Y

S
T

E
M

S 2.
1.

1.
2

E
V

A
L

U
A

T
E

IN

T
E

G
R

A
T

E
D

S

Y
S

TE
M

N
W

M
S

 d
sg

n
rq

m
ts

S
ite

 c
ha

ra
ct

er
is

tic
s

P
E

R
F

O
R

M

C
O

N
F

IR
M

A
T

IO
N

/
C

O
N

S
T

R
U

C
T

IO
N

/
O

P
E

R
A

T
IO

N
A

L

T
E

S
T

IN
G

2.
1.

1.
5

N
W

M
S

 t
es

tin
g

rq
m

ts
N

W
M

S
 s

iti
ng

rq
m

ts

E
n g

rd
 s

ys
 in

fo

D
at

a
on

 e
va

l s
ys

T
es

t r
es

ul
ts

C
on

tr
ol

le
d

N
W

M
S

de
sc

pn

N
W

M
S

 i
nf

o
N

W
M

S
 r

qm
ts

N
W

M
S

 e
va

l r
qm

ts

I5 Im
pl

em
en

ta
tio

n
in

fo
rm

at
io

n

I4 A
cq

ui
re

d/

co
ns

tru
ct

ed
s y

s
co

m
po

ne
nt

s

C
on

tr
ol

le
d

en
gr

d
sy

s
de

sc
pn

C
on

tr
ol

le
d

N
W

M
S

 d
es

cp
n

S
ys

te
m

 c
on

fig
ur

at
io

n
in

fo
rm

at
io

n

N
ee

d
fo

r
re

vi
ew

 o
f

N
W

M
S

 d
sg

n
rq

m
ts

N
ee

d
fo

r
re

vi
ew

 o
f

N
W

M
S

 e
va

l r
qm

ts

N
ee

d
fo

r
re

vi
ew

of
 N

W
M

S
 r

qm
ts

N
ee

d
fo

r
re

vi
ew

 o
f

N
W

M
S

 t
es

tin
g

rq
m

ts

S
ui

t m
ea

su
re

s
an

d
at

tr
ib

ut
es

O
4

N
ee

d
fo

r
re

vi
ew

of
 p

gm
 d

ir

O
3

N
W

M
S

 i
m

pl
tn

rq

m
ts

I6 N
ee

d
fo

r
re

vi
ew

 o
f

N
W

M
S

 im
pl

tn
 r

qm
ts

A
pp

ro
ve

d
B

as
e

Li
ne

 c
ha

ng
es

P
ro

po
se

d
B

as
e

Li
ne

 c
ha

ng
es

E
va

lu
at

ed
 B

as
e

Li
ne

 c
ha

ng
es

N
ee

d
fo

r
re

vi
ew

 o
f

N
W

M
S

 s
iti

n g
 r

qm
ts

O
1

A
llo

ca
te

d
te

ch
re

gt
y

rq
m

ts

I2 P
ot

en
tia

lly
ap

pl
ic

ab
le

 t
ec

h
re

gu
la

to
ry

 r
qm

ts

I3 P
rio

rit
iz

at
io

n
cr

ite
ria

F
ai

lit
ie

s
an

d
su

pp
or

t
ne

ed
s

F
ac

ili
tie

s
an

d
su

pp
o

rt
 p

ro
vi

d
ed

2.
1.

1.
4

Fig. 2. Decomposition of the function \Con�gure System", which shows the relation

between �ve of major programmatic functions; PSE, DES, ICS, EIS, and PCOT.

8

I1 I2

O
1

P
er

f
an

ly
s

re
su

lts

ID
E

N
T

IF
Y

V

A
R

IA
N

C
E

S

S
U

B
JE

C
T

 T
O

A

N
A

L
Y

S
IS

2.
2.

2.
4.

5.
3.

1

D
E

T
E

R
M

IN
E

C

A
U

S
E

S
 O

F

V
A

R
IA

N
C

E
S

2.
2.

2.
4.

5.
3.

2

D
E

T
E

R
M

IN
E

V

A
R

IA
N

C
E

IM

P
A

C
T

S

2.
2.

2.
4.

5.
3.

3

ID
E

N
T

IF
Y

C

O
R

R
E

C
T

IV
E

A

C
T

IO
N

S

2.
2.

2.
4.

5.
3.

4

S
el

 v
rn

cs

V
rn

c
ro

ot
 c

au
se

s

N
ee

d
fo

r
ad

dl
 a

nl
ys

S
ig

ni
fic

an
t

im
pa

ct
s

P
er

f
vr

nc
s

N
ee

d
fo

r
ad

dl
 a

nl
ys

(P
er

fo
rm

an
ce

 v
ar

ia
nc

es
)

(N
ee

d
fo

r
ad

di
tio

na
l a

na
ly

si
s)

(S
el

ec
te

d
va

ria
nc

es
)

(V
ar

ia
nc

e
ro

ot
 c

au
se

s)

(P
er

fo
rm

an
ce

an
al

ys
is

 r
es

ul
ts

)

(N
ee

d
fo

r
ad

di
tio

na
l a

na
ly

si
s)

Fig. 3. Decomposition of the function \Analyse Performance Variances".

9

2.2.2.4.5.3.4 IDENTIFY CORRECTIVE ACTIONS

MISSION: Develop alternative actions to correct root causes and

mitigate impacts of the variances affecting the program.

SCOPE: Analyse the variance root causes and impacts and develop

alternative corrective actions to correct the cause or mitigate

the impact. Analysis includes identifying and evaluating the

risks associated with each corrective action.

Fig. 4. Description provided with the function \Identify Corrective Actions" (�gure 3).

produced, given that some combination of inputs has changed. An example of
this format can be seen in �gure 5.

Arrow labels give the name of the arrow from the SADT diagram. Types of
the arrow can be \in", \control", or \out", as provided by the SADT terminol-
ogy. The operative cycles should be read as follows. Conditions (\x") for the �rst
execution of the function is speci�ed in columns labelled \1". Subsequent exe-
cution is speci�ed by columns labelled \S". Each column in the table describes
one alternative. Thus, the function above will initially produce either \Perfor-
mance analysis results" or \Need for additional analysis" when both inputs are
available (have changed). Similar for subsequent execution.

Arrow label Operative Cycles

Type 1 1 S S Notes

Signi�cant impacts In x x x x 1,2

Variance root causes In x x x x 1,2

Performance analysis results Out x x

Need for additional analysis Out x x

1) Initial execution requires both the Signi�cant Impacts and Variance Root Causes

and will produce either the Performance Analysis Results (which includes alternative

corrective actions is applicable) or the Need for Additional Analysis.

2) Subsequent executions of the function behave in the same manner as the initial

execution.

Fig. 5. Decision table for the function \Identify Corrective Actions" from �gure 3.

As mentioned earlier, the decision tables provided a signi�cant speedup in
the process of understanding the SADT model. We were also, at an early stage,
able to predict malfunctioning behaviour in the model. E.g., with the above
decision table we can identify a blocking of the information ow on the page in
�gure 3. From the table one can read that both inputs are always required for the
function to execute. In the case that \Identify Corrective Actions" issue \Need
for additional analysis", subsequent execution of \Determine Variance Impacts"
results in a change in only one of the inputs of \Identify Corrective Actions". But
this function requires both inputs to change in order to execute and therefore

10

erroneously waits instead of processing the local feedback immediately. This
was reported to the PFA team and they modi�ed the decision table so that
subsequent execution of \Identify Corrective Actions" only required a change in
one of its inputs. These aws and similar errors were reported to the PFA team
on a very early stage, and thus saved time later when they were not so easy to
�x.

3 Entering the Environment of CPN

This section is about the CPN model that was built. We do not show the total
model, but only a typical example to give a feeling for the general intentions.

The �nal SADT model has seven major submodels. A total of 116 SADT
diagram pages were drawn summing up to more than 300 non-decomposed func-
tions, which in the corresponding CPN model are transitions. Each diagram page
was automatically converted into CPN and manually extended with behavioural
inscriptions.

3.1 The CPN Submodels

In the following we describe the translation process. We take each SADT sub-
model and translate it automatically into a CP-net. In the translation process,
places are added in the net where necessary to get a syntactically correct CP-net,
but the structure of the original SADT diagram is preserved. Now, based on the
textual descriptions and decision tables, we add inscriptions to the CP-net so
that we end up with a complete model ready for simulation. As an example we
have taken the SADT diagram from �gure 3 and completed the corresponding
CP-net with inscriptions. The result can be seen in �gure 6. Grey places and
arcs are extensions to the original SADT diagram. Inscriptions are also added
manually, except from colour sets.

There are a lot of details in the �gure, but we will only explain the most
important ones. The basic colour set used for most places in the model is a
speci�c record called InfoObject. All other colour sets are structurally equal to
InfoObject:

color InfoObject = record Ver:int * Info:string * Av:bool;

color Perf_vrncs = InfoObject;

color Sel_vrncs = InfoObject;

...

The Ver �eld contains a version number. It is used to identify changes when
new tokens are issued. Info is the information �eld. The Info �eld of a token
from an output arc in the CP-net will have the name of the corresponding arrow
in the SADT diagram. Av denotes the availability of the token. This �eld is only
used rarely in the model, thus not considered futher in this paper. As most places
use the colour set InfoObject we could have chosen just to use this colour set

11

name on these places instead of using many di�erent names. But this would
violate one of the principles of the SADT method, viz. that the type (or kind)
of information owing on arrows is associated with the arrow name, not with
the implementation of the type. As it is the intention that the PFA team, who
are used to read SADT diagrams, should be able to read the CPN model, it is
preferable to use the arrow names from the SADT model as colour set names in
the CPN model.

The grey places are modelling local information about the current version
number of the tokens on the input places, except the place called \st" which
has information about whether it is the �rst time the transition occurs or not.
Initially all places contains one token with the record value {Ver=0, Info="",

Av=true} or �rst on \st" places. With this at hand we can easily implement the
decision tables by writing a guard that take advantage of the local information.

The guards in this �gure determine when a new version of a token has arrived
on the input places. We use the convention that a guard is placed above its
transition and the guard-expression is enclosed in \[]". Notice that the third
guard (\Determine Variance Impacts") has logic for the case when it occurs the
�rst time and subsequently. Recall the decision table in �gure 5.

Then there are the code segments, which are actions called as a side e�ect
when the transition occurs. The \C" in the lower left corner of a transition indi-
cates that the transition has a code segment. The contents of the code segments
are not visible in the �gure. The code segments are responsible for creating,
among other things, values used for generating the output tokens, determined
by a set of con�gurable reference variables. These are: the maximum number
of times a transition will fail (or produce abnormal output), the probability of
failure, and the amount to decrement the probability of failure each time it fails.
In the next paragraphs we will discuss these variables in detail. The code is
also responsible for updating the graphics in the time event charts, which shows
the relation between time and the occurrence of transitions. We will not show
the contents of the code segments because it is just a lot of trivial code for
manipulating reference values and the graphical output.

Finally we associate with each transition a delay value modelling that the
corresponding activity in the SADT diagram takes time to complete. The value
is a global reference to an integer typically of the form:

val tA2224533 = ref 1;

here meaning that the activity \Determine Variance Impacts" (labelled A2224-
533) takes one time unit to process its inputs in order to make a complete output.
We have chosen to represent the global reference values like this, because it is
then convenient (for the user) to con�gure the model in the beginning of the
simulation (or at any other time) by just reading external �les with a set of
values and then assigning them directly to the references. The contents of the
reference value is accessed by means of the function called par. In general, models
with global references are not safe, since side e�ects might inuence the enabling
calculations as the global scope of references violate the locality principle. But we

12

ID
E

N
T

IF
Y

V

A
R

IA
N

C
E

S
SU

B
JE

C
T

 T
O

A

N
A

L
Y

SI
S

A
22

24
53

1
C

[
#
V
e
r

p
e
r
f
_
v
r
n
c
s

>

#
V
e
r

p
e
r
f
_
v
r
n
c
s
x
]

D
E

T
E

R
M

IN
E

C

A
U

SE
S

O
F

V
A

R
IA

N
C

E
S

A
22

24
53

2
C

D
E

T
E

R
M

IN
E

V

A
R

IA
N

C
E

IM

PA
C

T
S

A
22

24
53

3
C

ID
E

N
T

IF
Y

C

O
R

R
E

C
T

IV
E

A

C
T

IO
N

S A
22

24
53

4
C

Se
l_

vr
nc

s

V
rn

c_
ro

ot
_c

au
se

s

Si
gn

if
ic

an
t_

im
pa

ct
s

I1

B
In

P
er

f_
vr

nc
s

I2

B
In

N
ee

d_
fo

r_
ad

dl
_a

nl
ys

O
1

B
O

u
t

P
er

f_
an

ly
s_

re
su

lt
s

i1

i

st

i
i2

i

i

[
#
V
e
r

s
e
l
_
v
r
n
c
s

>

#
V
e
r

s
e
l
_
v
r
n
c
s
x
]

[

#
V
e
r

s
e
l
_
v
r
n
c
s

>

#
V
e
r

s
e
l
_
v
r
n
c
s
x

o
r
e
l
s
e

(
s
=
n
o
t

f
i
r
s
t

a
n
d
a
l
s
o

#
V
e
r

n
e
e
d
_
a
d
d
l
_
a
n
l
y
s

>

#
V
e
r

n
e
e
d
_
a
d
d
l
_
a
n
l
y
s
x
]

[

#
V
e
r

v
r
n
c
_
r
o
o
t
_
c
a
u
s
e
s

>

#
V
e
r

v
r
n
c
_
r
o
o
t
_
c
a
u
s
e
s
x

o
r
e
l
s
e

#
V
e
r

s
g
n
f
c
n
t
_
i
m
p
a
c
t
s

>

#
V
e
r

s
g
n
f
c
n
t
_
i
m
p
a
c
t
s
x
]

p
e

rf
_

vr
n

cs
{V

e
r=

(#
V

e
r

p
e

rf
_

vr
n

cs
)+

1
,I

n
fo

=
"S

e
le

ct
e

d

V
a

ri
a

n
ce

s"
,A

v=
tr

u
e

}@
+

(p
a

r
tA

2
2

2
4

5
3

1
)

se
l_

vr
n

cs

{V
e

r=
(#

V
e

r
se

l_
vr

n
cs

)+
1

,I
n

fo
=

"V
a

ri
a

n
ce

R

o
o

t
C

a
u

se
s"

,A
v=

tr
u

e
}@

+
(p

a
r

tA
2

2
2

4
5

3
2

)

se
l_

vr
n

cs
sg

n
fc

n
t_

im
p

a
ct

s@
+

(p
a

r
tA

2
2

2
4

5
3

3
)

n
e

e
d

_
a

d
d

l_
a

n
ly

s

n
e

e
d

_
a

d
d

l_
a

n
ly

s

 @
+

(p
ar

 t
A

22
24

53
4)

vr
n

c_
ro

o
t_

ca
u

se
s

sg
n

fc
n

t_
im

p
a

ct
s

p
e

rf
_

a
n

ly
s_

re
s

 @

+
(p

ar
 t

A
22

24
53

4)

p
e

rf
_

vr
n

cs
x

p
e

rf
_

vr
n

cs

n
o

t
fir

st
s

Fig. 6. The CP-net as a result of translating the SADT page from �gure 3. Grey places

and arcs are extensions to the original SADT diagram.

13

only use reference values on output arcs, which are independent of the enabling
rule in CP-nets.

The four lines related to the CP-net in �gure 6 from a typical con�guration
�le have the following format:

1 (* A2224531 IDENTIFY VARIANCES SUBJECT TO ANALYSIS *)

1 (* A2224532 DETERMINE CAUSES OF VARIANCES *)

1 (* A2224533 DETERMINE VARIANCE IMPACTS *)

1 2 100 20 (* A2224534 IDENTIFY CORRECTIVE ACTIONS *)

The �rst number is always the duration information. If there are additional
numbers on the same line, in groups of three numbers like the last line above,
then they have the following meaning: the �rst determines the maximum number
of times the function will fail or generate a request for something, i.e., something
unusual. E.g., in this case the abnormal or unusual output is \Need for additional
analysis". The second parameter determines the initial probability of failure, and
the third and last parameter determines how much the probability of failure is
decremented each time the transition produces abnormal output. In the above
output �le we have that the transition will fail at most two times. The �rst time,
it will fail with a 100% probability and the second time it will fail with a 80%
probability. Subsequently the transition will never fail. This simple scheme of
handling non-determinism in the model was satisfactory from the point of view
of the PFA team.

3.2 Adding Inscriptions, an Example

To give a better idea of the process of adding inscriptions to the CP-net that
comes from the automatic translation of SADT diagrams, we will complete the
function \Identify Corrective Actions". There are many approaches on adding in-
scriptions to the CPN model. We chose to keep the amount of structural changes
in the model to a minumum, so that it resembled the SADT model as much as
possible.

Most of the e�orts of adding inscriptions will appear to be rather trivial.
Work is in progress to automate this process [10]. Let us �rst take a look at
the corrected table from �gure 5 (recall that it had an error that could lead to
a blocking of the information ow). The corrected table is located in �gure 7.
If we cut out the example function \Identify Corrective Actions" from �gure 6
with surrounding arcs and places we get the result as in �gure 8 (with added
inscriptions).

In the process of adding inscriptions we �rst add extra places (labelled \i");
one for each arc coming in from the left of the transition (the SADT input
arrows). This is in order to be able to detect that input to the function has been
updated, reected by an increment in the version number (the #Ver �eld of the
token). Therefore we store the latest information on \local" places.

Next, we add initial markings, which is the multi-set 1`{Ver=0, Info="",

Av=true}. On these places there will always be just one token. Thus in order

14

Arrow label Operative Cycles

Type 1 1 S S S S Notes

Signi�cant impacts In x x x x

Variance root causes In x x x x

Performance analysis results Out x x x

Need for additional analysis Out x x x

Fig. 7. The corrected decision table of \Identify Corrective Actions" from �gure 5.

IDENTIFY
CORRECTIVE
ACTIONS

A2224534C

[#Ver vrnc_root_causes
 > #Ver vrnc_root_causesx
orelse #Ver sgnfcnt_impacts
 > #Ver sgnfcnt_impactsx]

Vrnc_root_causes

Significant_impacts

I2

B In

Need_for_addl_anlys

O1 B Out

Perf_anlys_results

i

i

need_addl_anlys
 @+(par tA2224534)

vrnc_root_causes

sgnfcnt_impacts

perf_anlys_res
 @+(par tA2224534)

sgnfcnt_impactsx
sgnfcnt_impacts

Fig. 8. The transition \Identify Corrective Actions" cut out of �gure 6.

not to consume the token upon occurrence of the transition, we add extra arcs
(indicated in the �gure with grey) in the other direction to put back the same
token (input) or an updated token (output and local copies of input). Arc in-
scriptions are then added so we can refer to tokens from the surrounding places
(on output we also add time delay expressions \@+delay"). Now we are ready
to determine when the transition can occur by creating the guard. We do this
by �rst inspecting the decision table from �gure 7. From the table we get that
the �rst time the transition occurs, we need new versions on both inputs. Subse-
quently the transition can occur if just one of the inputs changes. Thus, a guard
that has not been optimised, can look as follows:

[(<first time> andalso <Variance Root Causes changed>

andalso <Significant Impacts changed>)

orelse

15

(not <first time> andalso (<Variance Root Causes changed>

orelse <Significant Impacts changed>))]

Based on the knowledge that the two precedent transitions initially change
the two inputs to this example transition at the same point in time, and that
the Boolean expression \(X and Y) or (X and Y)" is equivalent to \Y" we get
the optimised guard as seen in �gure 8:

[<Variance Root Causes changed>

orelse <Significant Impacts changed>]

Finally, we get to the code segment. Apart from updating the graphics in the
timed event charts, it also produces values for variables used on the output
arcs. This transition can issue \Need for additional analysis" to which we will
associate a probability. We say that the transition (or the function) fails if it
issues \Need for additional analysis" otherwise it will behave normally if it issues
\Performance analysis results". The probability of failure will decrease on every
failure with some user speci�ed amount (which crudely models that activities
learn from their failures). Following is a very rough sketch of the code segment:

input <empty>

output <perf_anlys_res, need_addl_anlys>

action

if <graphics output is on> then

<update timed event chart>

else

<do not update chart>

if <failed less than the max # of times> then

if <we should fail this time> then

<decrement probability of failure>

<increment number of times failed so far>

<output> need_addl_anlys

else

<output> perf_anlys_res

else

<output> perf_anlys_res

3.3 Work Schedule

We quickly got experience in predicting how long it would take to complete
a CP-net with inscriptions and test it. This knowledge is very valuable when
making work schedules that are realistic and thus possible to keep up with.

One part of the work is to add inscriptions to the CP-net that is generated
from the SADT diagrams. A minor part of the inscription work is to understand
the textual descriptions and the decision tables as provided by the PFA team.
The major part is to add the actual inscriptions. The amount of inscription work

16

is somewhat proportional to the number of non-decomposed transitions. These
transitions require most of the work, while adding arc inscriptions and extra
places are less laborious. The time it took to test a major submodel tended
mostly to depend on the complexity of the inscriptions.

Just to give an idea of the amount of work it takes to complete a CP-net,
we give a few examples of how long it took to complete three of the major
submodels. The numbers in the following table are based on the work of one
person.

Model Number Non-decomposed Time to do Time to com-
of Pages transitions inscription work plete testing

PPC 12 34 6 days 5 days
ERC 17 45 7 days 6 days
PCOT 11 18 3 days 3 days

From the table it can be seen that it takes almost as long time to test and �x a
model as it takes to build it. Work is in progress with the intention to reduce the
time spent doing the inscription work by automating the process. As mentioned
in the previous subsection, adding the inscriptions manually tend to be more
or less trivial. Most likely, adding many of the inscriptions automatically to the
CPN model can signi�cantly reduce the time spent on testing, because syntactic
and some semantic errors are not introduced in the process.

3.4 Pushing the Technology

Because of the size of the total SADT model, it was evident from the beginning of
the project that we were forced to break it down into smaller and more manage-
able submodels. It was fairly easy to do so, because of the inherent modularity of
the SADT model. Another argument for breaking down the full model was that
it would enable more people to be able to work on the model at the same time,
creating a exible work environment. However, as the technology has advanced
signi�cantly since then, it should today be possible to have the full model on one
machine and even to have more than one person working on the same document
at the same time. Alas, this was not possible during the period of our modelling
project.

As more and more complex inscriptions were added to the CPN models, we
soon realised, that they would not �t into the memory of the machines. This
was simply because the machines were running Mac OS version 6.0.7, which
only supports 8Mb addressable memory. We wanted to be able to simulate each
of the major CPN-submodels individually, with a minimum of extra e�orts in
setting up an initialisation environment for each submodel. The initialisation
uses the knowledge based on assumptions about how the major submodels in-
teract with each other. The interaction is not as well de�ned on a lower level of
decomposition. In fact, that is what we would like to get more information about
from the simulation of each major submodel. Therefore it was unfavourable to

17

break up the submodels even further, because it would not make the test of each
major submodel very convincing.

Two solutions were found to the memory problem. We applied both in order
to be able to proceed our modelling e�orts. The �rst solution was to upgrade
our Macintosh machines to Apple's new OS System 7, allowing us to add more
physical memory. The second solution was to improve the simulation code gen-
erated for the executable models. The e�ort of investigating di�erent approaches
resulted in less code generation and also improved code. This reduced the size
of the generated simulation code by an average factor of 40%. As a side e�ect,
the execution time of the simulation models was also reduced signi�cantly.

4 Simulating Individual CPN Submodels

After all the inscription work on the CPN model of the waste management
system (as described in the previous section), we next generate simulation code
from the CPN model and enter simulation mode. In this section we will look at
the output from a typical simulation run.

The CPNmodel takes input in form of an input �le, speci�ed by the user, with
parameters to initialise the model. The output of the model is a set of graphical
reports showing when in time and how often a transition occurs. We will refer to
these reports as the timed event charts. Whenever one of the transitions occurs,
it updates the graphics in the timed event charts. It is these reports which were
sent back to the PFA team for review. The intention was to give them a better
and more detailed understanding of the dynamics behind the SADT models they
created.

>..

>....................................*.......................

>.....................................*......................

>......................................*.....................

>......................................*.*..*................

>.......................................*.*..*...............

>..*..*..............

Activity
Time

A222451

A222452

A2224531

A2224532

A2224533

A2224534

A222454

110 120 130 140 150

Fig. 9. Extract of a timed event chart illustrating the relation between time and oc-

curring transitions. See also �gure 3 with the corresponding SADT diagram page.

Each CPN submodel produces a page with a graphical report. Figure 9 shows
an output from the submodel PPC (Provide ProgramControl). The discrete time

18

is displayed from left to right and transitions are shown from top to bottom. A
\." in the body of the report, means that the transition (or function) did not
occur at that time, while an *" means that the transition occurred once at a
particular time. If the transition occurs more than once at the same point in
time, a number (instead of an *") will indicate how many times it occurred. (A
\?" will show up if the transition occurs more than nine times, without the time
advancing.) The timed event charts are updated during simulation and more
pages with charts are created as needed.

4.1 Informal Validation of the SADT Models

The main purpose of our involvement is to validate the accuracy and the com-
pleteness of the programmatic functional analysis. More speci�cally: do the mod-
els reect the intended behaviour and how well do each submodel interact and
cooperate with other submodels?

To answer such questions, simulation is used extensively. As submodels are
completed, each of them is simulated individually. In order to be able to do
that, a primitive initial state is generated based on assumptions on how the
environment of the model would behave. This kind of simulation is not only able
to identify the worst misunderstandings and bugs, but also to give important
and valuable feedback to the PFA team so that they can modify, if necessary,
their SADT models accordingly.

Especially a lot of blockings in the information ow (like the one mentioned
in section 2.3) have been discovered during the construction and simulation of
the individual submodels. Blocking of the ow caused by the interaction of a
submodel with the other models, are not investigated or discovered until the
models are merged together.

The timed event charts were inspected by the team responsible for the SADT
models in order to determine whether the functions, in the waste management
program, will be performed satisfactory or not. Often the inspections resulted in
requests for changes in the CPN model or redesign of pages in the SADT model.
The reports provide important knowledge about how the waste management
system can be improved.

5 Merge of the CPN Submodels

We have built a set of submodels that can be simulated individually. In order to
validate that they actually work together it is necessary to �nd a way of merging
them together into one large model. Once we have one CPN model containing
all the submodels which can be simulated, it is possible to look at the interaction
between the major functions.

The e�ort of having translated the SADT models into CPN, has produced
seven CPN submodels each having 7{20 pages, 150{350 places, and 20{50 non-
decomposed transitions. Because of the size and complexity of each submodel,

19

the attempt of generating one single graphical CPN model was quickly aban-
doned3. Instead we developed a technique for linking the binary formats of the
simulation code from the CPN models.

5.1 Using Standard ML

We use the functional programming language Standard ML (SML) for the pur-
pose of generating code for the CPN simulator. In this project we use an ML
compiler, that is developed at the University of Edinburgh, as the simulation
engine, and for generating stand-alone executables.

ML was originally designed with the purpose to be used as a meta language
for theorem proving. Robin Milner is one of the persons behind the design of
Standard ML and David MacQueen introduced the module concept [7,8].

Standard ML is a strongly typed functional programming language support-
ing, among other things, parametric modules (functors) and type inference. Most
ML-compilers have an interactive environment, where it is possible to save com-
piled declarations to �les (e.g., functors), which then later can be loaded into
a new environment. These features will show to be useful for the purpose of
merging models.

5.2 The Interface between the Major Functions

One SADT diagram page (see �gure 2) gives the necessary information about the
interface between the functions PSE, DES, ICS, EIS, and PCOT. The remaining
two (PPC and ERC) are on a di�erent level of decomposition, and thus not shown
here. An arrow between two major subfunctions shows that there is an interface
relationship, and thus the location where the subfunctions interact and need to
cooperate.

5.3 Generating the Stand-alone Executable

Viewed from outside, only the interface of a CPN submodel is interesting. The
interface consists of a set of places from which tokens can be added or removed.
The colour set (type) of these places should be speci�ed. As a submodel has
to be executed we also need ML-functions in the interface for calculating the
enabling and execution of transitions.

The SML compiler (Edinburgh version) has a feature for saving individual
parametric modules (called functors) as binary data in a �le for later retrieval.
The interface speci�cation will therefore be captured in a functor and saved,
resulting in a binary �le with all the information about the submodel but only
the possibility for manipulating markings and execution of transitions through
the interface.

For all the CPN submodels we have one common environment with all the
colour set declarations among other things. This common environment is a model

3 However, the technology today will not inhibit one from handling models of this size.

20

in itself. When we need to insert each submodel into the common environment,
SML provides a safe way of doing this. SML is a strongly typed programming
language, and thus ensures that the types in the interface of a submodel match
with any other submodel it is connected to.

5.4 The Principle of Model Merge

Merging models with our developed technique is similar to modular linking fea-
tures used in software development environments. The principle of model merge
is simple: given a set of models with a well de�ned interface, create a common
environment for controlling the simulation of each submodel (see �gure 10).

Common Environment
&

Controlling Model

S1 S2 S7...

Fig. 10. The principle of merging submodels into a common environment.

Each submodel has an interface which is a set of places. The interface is
determined by how the submodels are connected with arcs on the higher level.
E.g., from �gure 2 we can determine the common places (i.e., the interface)
between PSE, DES, ICS, EIS, and PCOT. What do we need in order to control
a submodel for the purpose of simulation? We need to be able to read and write
markings in the interface places, and we need to have a facility for calculating
the enabling and executing a step. The signature (type speci�cation) of the
functor in which the submodel is encapsulated and later accessed, typically has
the following appearance:

functor SubM () :

sig

val SubM'calc_enab : unit -> TIME

val SubM'exec : unit -> unit

val SubM'assign :

(((P1 tms) ref) * ((P2 tms) ref) *

((P3 tms) ref) * ((P4 tms) ref) *

((P5 tms) ref) * ((P6 tms) ref)) -> bool

21

val SubM'get : unit ->

(((P1 tms) ref) * ((P2 tms) ref) *

((P3 tms) ref) * ((P4 tms) ref) *

((P5 tms) ref) * ((P6 tms) ref))

end

= struct ... end;

Here we have a submodel with six places (P1, P2, : : :, P6) in the interface. The
tms denotes the type timed multi-set. Furthermore, there are four ML-functions
for accessing and manipulating the places in the interface and for executing the
submodel. The �rst SubM'calc enab calculates the enabling and returns the
minimal time at which something is enabled. The function SubM'exec executes
one step in the submodel. The two last functions SubM'assign and SubM'get,
respectively assigns and reads markings to and from the places in the interface.
The assign function returns true if the marking assigned is di�erent from the
previous marking in the interface otherwise false. We use this functionality to
determine if a recalculation of the enabling is needed (an expensive operation),
i.e., when something changed in the interface marking. The four ML-functions
above will be the only way of accessing the submodel, once saved to a �le.

We can then save each submodel, encapsulated in the functors, into separate
�les. How does the controlling model look like? Submodels are passive compo-
nents, so we need to implement a simple simulation engine in the controlling
model. The engine should do the following during simulation:

1. Read minimal enabling time from the individual submodels. This step is
necessary in a timed simulation, and it identi�es what the minimal time is,
when one or more transitions are enabled. If the time found is less than the
current time (the global model time), we choose the current time instead.
The global time is managed by the controlling model, while each submodel
has its own local time. The global time is derived from the local time of the
submodels; thus the global time is the model time.

2. Select an appropriate candidate model for execution. Candidates found in
this step will have the smallest enabling time. We only execute models with
the smallest enabling time less than or equal to the global model time (if
any exists).

3. Execute one step in the selected model.
4. Transfer markings between places in the interfaces by means of the assign

and get functions.
5. Recalculate the enabling and minimal time for involved models, if interface

marking has changed. In this step, only submodels with changed markings on
interface places, need recalculation of enabling. This step can also advance
the current model time if it is needed for anything to be time-enabled.

6. If anything is enabled, restart at 1, else terminate the simulation.

The above simple algorithm is implemented as part of the controlling model.

22

Each submodel is then loaded into the controlling model while the SML type
system ensures that there are no type conict. The SML type system will capture
human errors, typically when trying to glue places together between interfaces
where the places have di�ering types.

We now have one single model consisting of all the submodels and we can
save this model as a stand-alone executable, ready for simulation.

5.5 Simulating the Merged CPN Model

We are now able to simulate the whole model. The size of the model is large,
as a result from merging the major submodels: there are more than 110 pages,
2000 places, and 300 transitions (not counting substitution transitions). The �le
size of the binary simulation image is in the order of 5MB.

As the simulation proceeds, we end up with report pages from the submodels.
Typically a simulation session will produce in the order of 60 windows/pages of
timed event charts, which makes it rather di�cult to �nd and view interesting
pages. To make it easier to navigate through all this information we introduce
the concept of hierarchical reports. It is simply a page where you can get a
high level view of what is happening in each of the submodels. An example of a
hierarchical report can be seen in �gure 11.

>***************************************2**............................**********

>....*..................*...............*..............................*.........

>*2**...........2**2*2**...........***22.......................***2*2**..........

>.......................................*****2********2********..................

>..

>..

>.......................................*..

>..

>..

Activity
Time
PPC

ERC

PSE

DES_CD

DES_PD

DES_FD_AB

ICS

EIS

PCOT

310 320 330 340 350 360 370

Fig. 11. A hierarchical report, giving a high level view of the activity in the model.

A row has a link to the page where the timed event chart from the submodel
is updated. To follow a link, the user just double clicks on a row and then the
corresponding timed event chart of the submodel will show up on the screen. It
is also possible to follow the link backwards, in order to return quickly to the
hierarchical report.

In the above �gure one can see that PPC �rst is active. Later the conceptual
design phase (DES CD) takes over, then shortly PSE before PPC regains control.
Therefore, we also �nd the hierarchical report useful for giving a quick overview
of submodels in where transitions occur. It quickly shows if anything is wrong,
e.g., if a submodel unintentionally starts at a wrong time. In the above �gure
one can see that ICS does something at time 339. This is not intended and needs
to be investigated further.

23

6 Conclusion and Future Developments

Both the CPN team and the PFA team have learned useful lessons and gained
valuable experience in this project. The PFA team obtained an improved SADT
model. They were \forced" to provide a more formal description of the behaviour
of the activities in the SADT model. To accomplish this level of description
the PFA team needed to peruse each activity in the model more carefully. As
a result they discovered many ambiguities and inconsistencies | the SADT
model was essentially incomplete. Consequently, more concise SADT diagrams
were created and more importantly many errors were found at a very early stage.
Additionally, the ability to simulate the models gave the PFA team new insight
into behaviour. Studying the SADT model in itself does not necessarily provide
unequivocal information. At the stage of simulation, more errors were discovered
and improvements to the model carried out.

The CPN team identi�ed and implemented improvements in the modelling
and simulation tool as a consequence of practical work with a large and non-
trivial model. Hardware limits forced us to reduce the memory requirements. By
rewriting the code used for simulation we improved performance. We developed
a technique for merging CPN models and we also created support for parallel
working on models. Both techniques performed well in practice.

When we deal with work ow models, a signi�cant part of the translation
from SADT to CPN can be automated. In this way the CP-net methodology be-
comes available for non-CPN experts. More importantly; the project described
in this paper contributes to the opening of a path in this area of automatic trans-
lation, reducing the turn-around time. Work is in progress to create support for
a more automated translation from SADT to CPN [10]. A translation tool is
under development, which is speci�c for work ow models. The tool supports
automatic generation of a CPN model, based on the SADT diagrams with ad-
ditional behavioural information. Furthermore, the tool will also add simulation
code for various kinds of analysis of the work ow (e.g., bottle neck analysis),
and simulation code for generating textual and graphical reports. The textual
output will be in a format such that advanced external analysis tools can be
included as needed.

The purpose of the PFA team's work is to describe the work ow of the
nuclear waste management program and ensure that their model is consistent
and complete. An obvious extension to the model is to take into account mech-
anisms, i.e., resources like funds and people. This gives the possibility to create
more sophisticated and detailed scenarios by means of simulation. An extended
analysis of the resulting information can then be performed to determine more
precisely the con�guration of the nuclear waste management system. Another
useful aspect to have in models is time. Time delays are already included in
this model, but they were never exploited fully. For most simulations all time
delays were set to 1. This was su�cient for validating consistency in the ow
of the model. But more advanced results can be obtained by giving individual
functions non-trivial delays. The model can then be used to do completion time
analysis of functions with realistic simulation scenarios.

24

Acknowledgements. We would like to thank Kurt Jensen, Jens B�k J�rgen-
sen, Charles Lakos, and S�ren Christensen for patiently reviewing draft versions
of this paper, providing constructive critique and food for discussion.

References

1. K. Jensen. Coloured Petri Nets: A High-level Language for System Design and

Analysis. In G. Rozenberg, editor, Advances in Petri Nets 1990, number 483 in

Lecture Notes in Computer Science, pages 342{416. Springer-Verlag, 1991. Also

in [3], pages 44{122.

2. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Practical

Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science. An

EATCS Series. Springer-Verlag, 1992.

3. K. Jensen and G. Rozenberg, editors. High Level Petri Nets. Springer-Verlag, 1991.

4. D. A. Marca and C. L. McGowan. SADT. McGraw-Hill, New York, 1988.

5. Meta Software Corporation, Cambridge, Mass. Design/CPN User's Manual, 1992.

6. Meta Software Corporation, Cambridge, Mass. Design/IDEF User's Manual, 1992.

7. R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,

1990.

8. L.C. Paulson. ML for the Working Programmer. Cambridge University Press,

1991.

9. V. O. Pinci and R. M. Shapiro. An Integrated Software Development Methodology

Based on Hierarchical Coloured Petri Nets. In G. Rozenberg, editor, Advances in

Petri Nets 1991, volume 524 of Lecture Notes in Computer Science, pages 227{252.

Springer-Verlag, 1991. Also in [3] pages 649{666.

10. V.O. Pinci and R.M. Shapiro. Work Flow Analysis. Meta Software Corporation.

Cambridge, Massachusetts, 1993.

11. R. M. Shapiro, V. O. Pinci, and R. Mameli. Modelling a NORAD Command

Post Using SADT and Coloured Petri Nets. In P. E. Lauer, editor, Functional

Programming, Concurrency, Simulation and Automated Reasoning, volume 693 of

Lecture Notes in Computer Science, pages 84{107. Springer-Verlag, 1993.

25

