
Analysing Bang & Olufsen's BeoLink
Audio/Video System Using Coloured Petri Nets

S�ren Christensen & Jens B�k J�rgensen

Computer Science Department, University of Aarhus

Ny Munkegade, Bldg. 540, DK{8000 Aarhus C, Denmark

E-mail: fschristensen, jbjg@daimi.aau.dk

Abstract. Bang & Olufsen A/S (B&O) is a renowned manufacturer of

audio and video products. Their BeoLink (BeoLink) system distributes

sound and vision throughout a home via a network. In this way, e.g., while

doing the cooking in the kitchen, a person can remotely select and listen

to a track from a CD loaded in the CD player situated in the living room.

To resolve conicts, synchronisation between various actions is needed,

and is indeed taken care of by appropriate communication protocols.

The purpose of the project described in this paper was to test Coloured

Petri Nets (CP-nets or CPN) as a way to improve B&O's methods for

speci�cation, validation, and veri�cation of protocols. In the main ex-

periment, an engineer from B&O used the Design/CPN tool to build a

CPN model of vital parts of BeoLink, to validate its behaviour using

simulations with a familiar graphical feedback, and to formally verify

crucial properties using occurrence graphs (also known as state spaces

and reachability graphs/trees). The latter activity demonstrated the ap-

plicability of occurrence graphs for timed CP-nets. Moreover, CPN was

used to examine important aspects of a possible future revision of Beo-

Link, and to check compatibility between the new and the old version.

Based on the experiments reported in this paper, CPN has been included

in the set of methods for speci�cation, validation, and veri�cation of

future protocols at B&O.

Topics. System design and veri�cation using nets; higher-level net mod-

els; computer tools for nets; experience with using nets, case studies;

application of nets to protocols and embedded systems.

1 Introduction

The Danish company Bang & Olufsen A/S (B&O) has a long tradition for pro-

ducing sophisticated audio and video products. B&O employs 230 developers. 50

of these produce software full-time. Part of the software development deals with

communication protocols. This paper describes a project aimed at improving

B&O's ways of specifying, validating, and verifying communication protocols.

The project was carried out in cooperation between B&O and the CPN group,

University of Aarhus, with participation of the authors of this paper.



A relatively new invention of B&O is the BeoLink concept. A home equipped

with a BeoLink system has a central room, typically the living room, where

audio/video sources such as a radio, a CD player, a cassette recorder, a TV, and

a video recorder are located. The idea is that from the other rooms such as the

kitchen or the children's room, the audio/video sources of the central room can

be controlled and accessed remotely. In this way, there is no need to buy, e.g.,

two CD players. Figure 1 sketches a house with a BeoLink system, which can be

viewed as a number of audio/video devices connected in a network. The �gure is

drawn in a Petri net-like style. In this example, there are four devices. Generally,

a BeoLink system connects up to 16 devices.

Device2

Network

Device3Device1

Device4

Fig. 1. A BeoLink system.

The BeoLink concept stipulates synchronisation. Assume, e.g., that a home

has one CD player in the central room. If two persons being in separate rooms

want to listen to di�erent tracks at the same time, there is a conict. A commu-

nication protocol is needed to resolve the situation sensibly and gracefully.

The rest of this paper is structured as follows: Section 2 provides an overview

of the project. In Sect. 3, the considered vital part of BeoLink, the so-called lock

management protocol, and the CPN model created are outlined. Section 4 intro-

duces a new software library heavily used in this project for graphical feedback

from simulations. Moreover, the section describes the approach to simulation and

the validation results obtained. Section 5 covers how aspects of the CPN model

were formally veri�ed using occurrence graphs. Section 6 describes how CPN

was used to test an idea for a future revision of BeoLink. In particular, compat-

ibility between devices running the old and the new version of the considered

protocol is investigated. Section 7 describes a supplementary CPN experiment

2



at B&O. In Sect. 8, the project described in this paper is compared with three

other similar ones. The conclusions are drawn in Sect. 9.

2 Overview of the Project

The project began with intensive CPN training of three B&O engineers who

were not familiar with Petri nets. They attended a six-day course given by the

CPN group, with two days each week over three weeks. Practical application

of CPN was emphasised, more than theoretical and mathematical aspects. The

format was a mixture of lectures and practical exercises using textbook material

from [8].

The �rst two days introduced the basic CPN concepts through small toy

examples. Moreover, Design/CPN [10], the editing, simulation, and occurrence

graph analysis tool for CP-nets to be used in the project was presented. About

half the time was spent getting hands-on experience at the computer, modify-

ing and simulating small models. Design/CPN uses the language CPN ML for

declarations and net inscriptions. CPN ML is an extension of the functional

programming language Standard ML [12]. The engineers were experienced C-

programmers, but unacquainted with Standard ML. Therefore, some time was

devoted to an elementary introduction to this language. Also, other examples

on industrial CPN projects were presented to demonstrate the potential of the

method.

The middle two days covered more advanced topics such as hierarchical CP-

nets and CP-nets with time. During the last two days, models of systems chosen

by the engineers were created and simulated. Being able to use the CPN method

and tools on something that is well-known and relevant is an important con-

stituent in a learning activity like this. Two separate CPN projects were initi-

ated. The one that will be referred to as the lock management project, is the main

subject of this paper. It deals with the lock management protocol of BeoLink to

be described in Sect. 3. The other project is briey discussed in Sect. 7.

In parallel with the CPN course for the B&O engineers, the CPN group

learned about the BeoLink concept by reading technical documentation and

getting demonstrations. Subsequently, the CPN group made a rough draft of

a CPN model of the lock management protocol. The model was based upon a

state-event matrix and a ow diagram, extracted from the existing description

of the protocol. This draft model certainly eased the initial discussions with the

B&O engineer who was going to carry out the lock management project. It was

highly valuable to discuss the pros and cons of this concrete proposal.

After the CPN course came a period with close contact between the B&O

engineers and the CPN group. The engineer responsible for the lock management

project spent eight full days within one month at University of Aarhus creating

the �rst parts of the CPN model. During these visits, he was working on his own

most of the time. When needed, he was assisted by a person from the CPN group

at the computer. It turned out to be an e�ective way of getting started with the

3



project. After this phase, the engineer was able to work quite independently, i.e.,

with one weekly meeting, in addition to contacts via telephone and e-mail.

The project was organised with a weekly visit by a person from the CPN

group at B&O. This day provided an opportunity to discuss di�erent ideas and

to solve technical problems. In addition, there were monthly meetings involving

several people, and with more general agendas. Models, simulation results etc

were presented, reviewed, and discussed; and the directions to take now were

decided.

In total, the project ran e�ectively for nine months in which the responsible

B&O engineer spent 50% of his time on the lock management project. In chrono-

logical order, the focus of the project was on modelling, on simulation, and on

occurrence graph analysis. Finally there was a phase with a mixture of all three

activities, because a design of a new version of the protocol was undertaken.

Modelling and simulation were, except for the �rst month after the initial

CPN course, done by the B&O engineer alone. In contrast, the CPN group par-

ticipated closely in the entire occurrence graph analysis phase. This was caused

by two reasons. First of all, the tool support for occurrence graph analysis of

CP-nets was rather new. Therefore, there was not much experience to draw from

regarding application of occurrence graph analysis to real-world CPN models.

Thus it would be at least di�cult, and most likely impossible, for the CPN

group to provide appropriate guidance without being an active participant. Sec-

ondly, this project was seen as an opportunity to test the applied tool which is

developed by the CPN group.

3 Lock Management in the BeoLink

This section �rst introduces the lock management protocol of BeoLink. The

corresponding CPN model created is described next.

3.1 The Lock Management Protocol

The lock management protocol is a vital part of BeoLink used to grant exclusive

access to various services. The purpose of the protocol is to prevent disorder,

e.g., that track 11 is selected on a CD if two users simultaneously request track 1.

The protocol manages a key which must be possessed by any device wanting to

execute a function that can alter the audio/video distribution, or is depending on

it. Examples of functions requiring the key are selection of audio/video source,

e.g., switch on a radio or change from radio to CD player; and control of source,

e.g., change of track on a CD. The device possessing the key is called the lock

manager.

Communications in the protocol are initiated by users issuing events. It is apt

to think of a user as a person operating a device, although this is a simpli�cation:

A person does not explicitly request a key. He or she does not even know that

such a thing exists. Instead, e.g., the person wants to change track on a CD, and

this prompts internal actions within a device resulting in communications in the

4



lock management protocol. In a similar simpli�ed fashion, an event issued by a

user can be thought of as a press of a button on a remote control.

Figure 2 depicts a typical communication sequence in the lock management

protocol. Only one user is shown, User1who operates Device1. Say that Device1

is a CD player, and that User1 wants to change track. The event key wanted

is sent to Device1, which is not the lock manager. Therefore, Device1 requests

the key on the network by broadcasting a REQUEST KEY telegram (telegram is

B&O's preferred synonym for message). Device3 is the lock manager and is

ready to give away the key. When Device3 sends the KEY TRANSFER telegram to

Device1, the key gets reserved. Device1 is granted the key upon reception of the

KEY TRANSFER telegram, and sends a NEW LOCK MANAGER to Device3 as an ac-

knowledgement of a successful transfer. Finally, User1 gets the event key ready,

and the change of track on the CD can take place.

key_wanted

KEY_TRANSFER

NEW_LOCK_MANAGER

key_ready

User1 Device1

REQUEST_KEY

Device2 Device3 Device4

Fig. 2. A communication sequence in the protocol.

This is an example of a typical communication sequence, but obviously it

is not a complete description of the protocol. Many cases must be dealt with:

What if the lock manager is not ready to give away the key? What if the key is

already reserved for a third device? What if the key is lost? Creating a formal

executable model of the protocol like it is done in this project provides a sound

basis for answering such questions.

When a BeoLink system starts from scratch, no key exists. The lock man-

agement protocol describes rules ensuring that a key gets generated in the ini-

tialisation phase. It is the obligation of the power master to do so. The power

master is the device delivering electrical current to the data connection of a

BeoLink system. Normally, there is exactly one power master. If there are more,

pathological situations may appear, as we shall see in Sect. 4.2. Also, if the key

is lost in a running BeoLink system, e.g., if the lock manager is turned o�, the

power master must ensure timely generation of a new key.

5



3.2 The Lock Management Model

The CPN model of the lock management protocol, the lock management model,

consists of 13 pages (also known as subnets and modules). An overview is given

in terms of the hierarchy page shown in Fig. 3 which has a node for each page.

BeoLink

network

device

func_lock

reqkey

newlock

keylost

keytrans

keyimpos

keywant

keyrel

timeout

user

Device1

Device2
Device3
Device4

Fig. 3. The hierarchy page.

The topmost page BeoLink contains a high-level description of BeoLink and

is already shown in Fig. 1 in Sect. 1. Here, the objects Device1 to Device4 and

Network are substitution transitions meaning that their detailed behaviours are

described on subpages (for presentation purposes, Network has a non-standard

graphical appearance). Generally, in Fig. 3 an arc between two nodes indicates

that the page of the source node contains a substitution transition described on

the subpage of the destination node.

Thus a BeoLink system consists of a network and a number of devices. The

network page models the primitives for sending, receiving, and broadcasting

telegrams. In this presentation of the model, there are four instances of the

device page corresponding to four devices in the considered BeoLink system.

The device page models the selected aspects of a device, in particular device

is connected to a description of the lock management protocol: The protocol is

modelled by the page func lock plus all its subpages. In addition, device is

connected to the user page, which models the user of a device that sometimes

wants the key. Each device has its own separate set of page instances. In total,

for a BeoLink system with four devices, the model has 46 page instances.

The model contains colour sets, i.e., types, describing the telegrams. Also,

there is a colour set FL STATE (FL for function lock, a synonym used by B&O

for the lock management protocol) used to represent the state of a device with

respect to the key. The lock manager is either in state KEY FREE or KEY USED,

depending on whether the key can be given away or not. A device which does

not have the key and does not want it either, is in state KEY IDLE. A device

6



which has requested the key, but has not got it yet, is in state KEY WAIT. There

are a number of other possible states used for various purposes.

To give an impression of the model, we will now describe two selected pages

at a general level. Not all details are explained.

Page func loc. An extract of the page func loc is shown in Fig. 4. As men-

tioned earlier, this page is the topmost of the pages modelling the lock manage-

ment protocol.

sendbuf
TLG_LIST P

recbuf
TLG_LIST P

fl_state

FL_STATE

newlock

HS

keylost

HS

reqkey

HS

config
CONFIG P

keytrans

HS

keyimpos

HS

fl_timer
TIMER

Fig. 4. Extract of the page func loc.

All the transitions on func loc are substitution transitions. Hence, there

are no arc inscriptions in Fig. 4 | these details are hidden on subpages. The

transitions correspond to the pages of the rightmost column of the hierarchy

page in Fig. 3. Only �ve of the transitions are shown in Fig. 4. The shown

transitions describe how incoming telegrams are handled. The transitions not

shown correspond to the three bottommost pages in the rightmost column of

Fig. 3. Two of these transitions deal with incoming events from users, the third

transition handles timeouts.

In Fig. 4, when a telegram is available on the place recbuf, one of the actions

represented by the transitions handling incoming telegrams can happen. Which

action depends on the telegram. The action represented by such a transition may

produce a telegram on the place sendbuf; may change the state of the device

with respect to the key, i.e., change the marking of the place named fl state;

and it may read and/or set a timer, represented by the place fl timer. The

marking of the config place is used to make various choices. config contains

con�guration information for a device, e.g., saying whether a device is power

master or not.

Page reqkey. Now we will describe the reqkey page shown in Fig. 5. It is

subpage for the leftmost transition of Fig. 4.

7



[#command tlg = LOCK_MANAGER_COMMAND, 
 #type_ms tlg = REQUEST_KEY,

 outtlg  = 
   send(#from_address tlg, config, LOCK_MANAGER_STATUS, KEY_TRANSFER),
 outtlg1 = 
  send(#from_address tlg, config, LOCK_MANAGER_STATUS, KEY_TRANSFER_IMPOS)]

fl_state
FL_STATE P

recbuf
TLG_LIST P

sendbuf
TLG_LIST P

config
CONFIG P

fl_timer
TIMER P

tlg::tlg_list

tlg_list1^^(
case fl_state
of KEY_FREE   => [outtlg] 
 | KEY_USED   => [outtlg1]  
 | KEY_TRANS  => [outtlg1] 
 | KEY_TR_SE  => [outtlg1]
 | default    => [])

tlg_list

tlg_list1

config

case fl_state 
of KEY_FREE   => KEY_TRANS  
 | default    => fl_state

fl_state

(case fl_state
 of KEY_FREE => 1‘timer
  | default  => empty)
 @+ TRANS_VALUE

Fig. 5. The page reqkey.

There is only one transition on this page. The transition models the action

taken when a REQUEST KEY telegram is received by a device. In general, there

are three kinds of possible responses: 1) If the receiving device is lock manager

and is ready to give away the key, the response is a KEY TRANSFER telegram sent

to the requesting device. 2) If the receiving device is lock manager but is not

ready to give away the key, the response is a KEY TRANSFER IMPOS telegram sent

to the requesting device. 3) If the receiving device is not lock manager, it does

not reply at all.

We now take a closer look at Fig. 5 and explain how the above rules are

modelled.

A telegram is coming from the topmost place recbuf. To ensure that the

�rst telegram received by a device is also handled �rst, the colour set of recbuf

is the list type TLG LIST. The reception of a telegram consists in extracting the

�rst element of the list, i.e., taking a list matching the pattern tlg::tlg list

from recbuf and returning only tlg list. The operator :: is the basic list

constructor putting its left argument (here, the telegram bound to the variable

tlg) in front of its right argument (here, the list of telegrams bound to the

variable tlg list).

The �rst two equations of the (large) guard positioned in square brackets

inside the transition check that the telegram is to be handled here. The commas

in the guard are interpreted as logical conjunction. The �rst equation insists that

the telegram concerns the lock management protocol | there are many other

telegrams on the network used for other purposes. The second equation checks

that it is indeed a REQUEST KEY telegram.

8



The two remaining equations of the guard are used to construct the response

to be sent on the network. send is a function returning a telegram with an

appropriate sender and receiver composed from the given arguments. Whether

the response is a KEY TRANSFER telegram, a KEY TRANSFER IMPOS telegram, or

nothing at all, can be seen from the guard and the case expression on the

arc going to the bottommost place send buf. The case expression evaluates

to a list with either one or zero elements, which is concatenated to the list of

telegrams already present on sendbuf using the operator ^^. The marking of the

rightmost place fl state is used to determine the response, and may change as

a consequence of the decision made.

If a key transfer is started, a timer is set: A token is put on the place fl timer.

This is done in order to be able to time out if an acknowledgement of a successful

transfer from the recipient of the key does not arrive in due time.

The four other subpages of page func loc for handling incoming telegrams

have the same net structure as reqkey, but di�erent guards and arc expressions.

The three subpages for handling user events and time-outs are simpler.

The CPN model described in this section is easily extensible. This is an

important property, because presently, only the lock management protocol of

BeoLink is modelled. It is natural to consider inclusion of other functionalities,

e.g., selection of audio/video source. Selection of a source can be added as an

additional subpage for the device page. In this case, the hierarchy page (Fig. 3)

would appear with another column of pages next to and similar to func loc and

its subpages. The only modi�cation of existing pages would be addition of one

substitution transition to the device page.

4 Simulation

This section �rst introduces the concept of message sequence charts that were

used to provide graphical feedback from simulations in a way that is very familiar

to the B&O engineers. The approach to simulation of the lock management

model and the validation results obtained are described next.

4.1 Message Sequence Charts

When discussing behaviour of distributed systems, designers often draw charts

illustrating the message passing between components of the system. Such mes-

sage sequence charts [7] are very useful to capture normal behaviours, and also to

discuss special cases. In fact, the B&O engineers used exactly this kind of charts

when they explained the BeoLink concept and the lock management protocol

for the CPN group in the beginning of this project. We already saw an example

of a message sequence chart in this paper, Fig. 2 in Sect. 3.

The Design/CPN tool includes a recently implemented library [3] supporting

automatic creation of message sequence charts as logs of simulations. Figure 6

shows an example of a message sequence chart from the lock management model.

9



There is a vertical bar for each of the four devices of the considered BeoLink

system.

TimeDevice1

REQUEST_KEY 512

NEW_LOCK_MANAGER 1648

Device2

REQUEST_KEY 124

KEY_LOST 1624

Device3

REQUEST_KEY 136

KEY_LOST 1612

Device4

REQUEST_KEY 112

KEY_LOST 1636

Fig. 6. A message sequence chart.

The lock management model is timed. Timed CP-nets are formally de�ned

in [9], and will be explained in more detail in Sect. 5.1 of this paper. For now it

su�ces to say that there is a global clock, and it makes sense to speak about the

time of an action. The message sequence chart of Fig. 6 displays the telegrams

sent to the network and the time at which the sending happens. A horizontal

arrow indicates the sender and the receiver. Multi-headed arrows are used for

broadcasts.

Figure 6 shows a snapshot of the initialisation phase, a simulation in the

time interval from 0 to 1648. A time unit in the CPN model corresponds to a

millisecond in the protocol implementation. At time 112, Device4 requests the

key. Shortly after, the three other devices do the same. However, as mentioned

in Sect. 3.1, no key exists in the BeoLink system when it starts from scratch.

Device3 is �rst to discover this | at time 1612, it does so by broadcasting a

KEY LOST telegram. Subsequently, both Device2 and Device4 also discover the

missing key and take appropriate action by broadcasting KEY LOST telegrams.

At time 1648, the power master, Device1, �nally noti�es the other devices that

it has generated a key by broadcasting a NEW LOCK MANAGER telegram.

10



4.2 Simulation Approach and Results

In the early modelling phase, interactive simulations were used intensively. In

these kinds of simulations, the behaviour of the model is investigated on the level

of the token game. Often, the B&O engineer and a person from the CPN group

sat together at the computer and studied the e�ect of the individual transitions

in detail in order to get the model right.

After about three months, the lock management model was considered com-

plete. It was now instrumented to create and update message sequence charts.

This consisted in attaching code segments, i.e., pieces of Standard ML code, to

two transitions. A code segment is evaluated when its transition occurs. Quite

often, like here, the purpose is to have a side e�ect such as an update of a

drawing. From this point, the B&O engineer used almost exclusively automatic

simulations to study the behaviour of the model. In an automatic simulation,

the token game is not displayed and the feedback comes solely from the e�ects

of code segments. Automatic simulation allows a large number of steps to be

executed in a short time.

At a certain point in the simulation phase, the engineer was convinced that

the model behaved correctly in the normal cases. His next objective was to

validate that it was able to deal with a number of special cases.

A case where an extra key was implanted into the model was simulated. Two

keys may appear in the real world if telegrams are lost, although this occurs

only very rarely. However, the lock management protocol must be su�ciently

robust to handle such a situation. It indeed turned out to be. Two keys are

merged into one shortly after their appearance. When a lock manager receives

a NEW LOCK MANAGER telegram, it immediately accepts that somebody else has a

key and consequently abandons its own. The real-world e�ect of two simultane-

ously existing keys could be some noise in a set of loud speakers during a short

time interval, e.g., sound from the radio and the CD player at the same time.

Also, it could be that a press on a button of a remote control is lost.

A BeoLink system installed with a wrong kind of cable may have two power

masters. This case was simulated. If the users of the two devices being power

masters never want the key, an apparently never-ending sequence of regenerating

a key and immediately abandoning it in each of the two power masters may

take place. It is an actual livelock of the protocol. However, it is not critical,

because it can only happen in an incorrectly installed system. On the other

hand, B&O generally strives to make software robust, i.e., not relying too much

on assumptions about proper functioning of the environment. Thus it would

make sense to modify the protocol to be able to deal sensibly with the presence

of two power masters as well. It would even be quite easy to do so.

Another observation from the simulation runs is that the protocol is highly

dependent on the duration of the time periods before a time-out. If time is

switched o� in the model | this corresponds to every action happening in-

stantly | the protocol malfunctions. Several keys appear, and no proper lock

management is in e�ect.

11



Except for the last one, the observations above were as expected by the

engineer. He found it very interesting to recognise the real-world behaviour of

the protocol in the CPN model. He believes that if the model had existed before

the implementation, thus allowing experiments with di�erent solutions in an

easy and cheap fashion, the protocol would certainly have pro�ted from that.

5 Occurrence Graph Analysis

This section �rst contains a general discussion of occurrence graph analysis for

timed CP-nets such as the model of the lock management protocol. The veri�-

cation results obtained using the method are described next.

The tool applied was the Design/CPN Occurrence Graph Tool [4] o�ering

functionalities to generate occurrence graphs, to draw them, and to do queries.

5.1 The Challenge of Applying Timed Occurrence Graphs

An occurrence graph [9] for a CP-net is a directed graph with a node for each

reachable marking and an arc for each occurring binding element1. An arc is

going from the node of the marking in which the associated binding element

occurs to the node of the marking resulting from the occurrence.

The lock management model is timed: Each marking has an associated global

time and some tokens carry time stamps determining when they are ready to

take part in occurrence of transitions. Time stamps are taken into account when

two markings are tested for equality in generation of the occurrence graph. The

global time is as well. Two identical markings existing at di�erent global times

are considered di�erent. Another way to put it is to say that the global time is

part of the state. Because the global clock advances and the protocol is intended

to run forever, the occurrence graph for the lock management model is expected

to be acyclic and in�nite. An occurrence graph for a timed CP-net is called a

timed occurrence graph.

If timing aspects were suppressed in the model, there would be a chance of

generating a full occurrence graph. It might very well be huge, but expectedly

�nite. Unfortunately, as was noted in Sect. 4.2, timing is essential. Without it,

the protocol malfunctions. Thus the challenge of analysing the original timed

model was faced. The natural question to ask now was: Is it at all possible

to use timed occurrence graphs to derive any formal analysis in practice? As

with simulations, negative results may be obtained. E.g., if one of the markings

encountered during a generation is dead, certainly the considered CP-net has

a dead marking | because it has just been found. Here however, the aim was

to establish positive results, i.e., prove that something works as expected. To

achieve this, before a generation was initiated, we had to carefully decide how to

proceed. It was impossible to encounter all reachable markings. Thus the target

was less ambitious and more speci�c.

1 A binding element is a pair containing a transition and a binding. The binding assigns

values to all variables of the transition.

12



The Design/CPN Occurrence Graph Tool provided help through its function-

ality of branching options. A branching option is a user-de�ned predicate taking

a state as argument and determining whether successors are generated or not.

A certain generation strategy can thus be enforced by writing an appropriate

predicate.

Figure 7 gives an example of the use of a branching option. The model giving

rise to the �gure is a much simpli�ed version of the lock management model only

used for illustration purposes here.

1

0
no_key

2

900
no_key

3

500
no_key

4 1700
key

5 1800
key

6 1650
key

8
1200
no_key

7 2000
key

9

1900
key

Fig. 7. Sketch of a partial timed occurrence graph.

The considered branching option says whether a marking has a key or not

(key/no key). In all the leaves, i.e., all states for which no successors have been

generated, a key is present. Therefore, the generation has stopped and the graph

is partial. We will return to this existence of a key issue for the real lock man-

agement model in Sect. 5.2.

In Fig. 7, next to each node is shown the associated global time2. Another

example of a branching option could be a predicate saying whether the global

time of a state is less than a certain value. This would make it possible to

investigate all behaviours of a model up to a certain global time. If this value is,

say, 1000, in Fig. 7, only the nodes 1, 2, and 3 shown with a thick border, would

be processed during generation.

Having a branching option in e�ect is often not su�cient to yield a usable

partial occurrence graph that can be stored in the memory of the computer

available. In addition, typically the model itself must be adapted to make it

tractable for occurrence graph analysis. In theory, the occurrence graph method

2 The global clock is not necessarily advanced in consecutive steps. After occurrence

of a step, the clock is set to the next moment at which something can happen, i.e.,

time leaps.

13



is pleasantly simple: Generate the graph and do the queries. In practice, this is

often a deceit. Even for a system with a �nite occurrence graph, because of the

well-known state explosion problem, the graph is typically too big to be stored

in the computer available. Thus a modeller working towards veri�cation using

occurrence graphs must initially consider modi�cation and recon�guration of the

model so that there is at least a chance of succeeding.

A necessary modi�cation of the lock management model was to introduce

bounds on the bu�ers used for input and output between the devices and the

network, e.g., the places recbuf and sendbuf on the page reckey shown in

Fig. 5. These bu�ers were unbounded in the model used for simulation, and

starting generation of an occurrence graph for this model would certainly not

be wise. The time may be spent and the memory of the computer �lled while

the occurrence sequence, i.e., behaviour, where one device just produced a long

sequence of telegrams in its output bu�er is being recorded. I.e., there would be

no guarantee at all that usable information was derived.

Generally, when trying to make a CPN model tractable for occurrence graph

analysis, it is often bene�cial to �x small values of possible system parameters.

In the lock management model, the system parameter is the number of devices

on the BeoLink system considered. However, as we shall see below, the (par-

tial) occurrence graphs generated for the four devices system, which has been

considered throughout this paper, are, with the chosen branching options, of a

manageable size. Thus in this case, it was not needed to decrease the chosen

system parameter.

5.2 Occurrence Graph Analysis Results

First, the part of the lock management protocol taking care that a key is gen-

erated when a BeoLink system starts from scratch was veri�ed. It was formally

proved that no matter what happens during this initialisation phase, the system

always reaches a state where a key exists.

By means of the key/no key branching option illustrated in Fig. 7, an oc-

currence graph for the entire initialisation phase was generated. It was of a very

manageable size and generated within a short time. For the four devices system,

there was 13,420 nodes and 41,962 arcs. To get more results than just for the

four devices system, the B&O engineer augmented the model with a new exible

mechanism to turn devices on and o�, and thus conveniently experiment with

di�erent numbers of devices. For each case, it was veri�ed that the occurrence

graph was acyclic, and that all terminal nodes corresponded to markings in which

a key exists. This means that in a �nite number of steps, eventually a marking

where a key is present will be reached. Moreover, the minimum and maximum

times to reach a marking in which the key is generated were found. For the four

devices system, the minimum was 1600 and the maximum 2000. As mentioned

previously, these measures are in milliseconds. Thus the analysis showed that it

takes between 1.6 and 2.0 seconds before a key is generated. These times are in

accordance with the times known from the real world, i.e., the actual times it

14



takes from power is switched on until a BeoLink system is ready. This indicates

that reliable performance measures are indeed derivable from the CPN model.

The next natural step in the formal veri�cation of the model was to try to

verify that at all times, there is at most one key. Of course, it was not possi-

ble to do it the straightforward way because the occurrence graph was in�nite.

Instead, the lock management model was partially veri�ed as follows: An occur-

rence graph containing all occurrence sequences, i.e., behaviours of the system,

within one key transfer was generated. The initialisation phase had already been

veri�ed. Thus it was safe to initialise the model to already have a lock manager

before the occurrence graph generation was started. A branching option was in-

stalled expressing that there is a new lock manager, i.e., the key is transferred to

one of the other devices. It was interesting to check, e.g., that there were no dead

markings, and that the bounds on places were as expected. For four devices, the

graph had 2,578 nodes and 5,335 arcs. An intuitive appealing idea is to use this

experiment as basis in a proof of total correctness using mathematical induction

in the number of key transfers. Unfortunately, when the key is transferred once,

the system may be in several di�erent states. In fact, it turned out that there

were too many cases to make the approach usable in practice. However, even

though this experiment did not serve as a total veri�cation of the protocol, the

con�dence in its correctness was strongly increased.

6 Next Revision of BeoLink

This section describes an experiment made alone by the engineer responsible

for the lock management project. He wanted to use CPN to solve a recurring

compatibility problem within the company. Each year, B&O releases a new series

of products. Under the very reasonable assumption that the typical customer is

not willing to replace his or her expensive audio/video system in total at one

instant, new and old devices must be able to co-exist. A radio some years old,

and a brand new TV installed by the dealer yesterday, must be able to function

together in the same BeoLink system without causing communication problems.

Therefore the engineer wanted to design a possible future revision of the

lock management protocol, and ensure that a BeoLink system with a mixture of

devices running the new and the old protocol will have a proper lock management

in e�ect. Without having an executable model of the protocol, a proposal for a

new version, and in particular its compatibility with the old one, is cumbersome

and expensive to try out. In practice, an implementation must be done before

any testing can take place.

In the design of the new protocol, the concept of a power master is abandoned.

Instead, there is now a video master and/or an audio master. The video master

has the obligation and the right to generate a new key, immediately when it

discovers that none exists. Under the same condition, the audio master may

generate a new key, but only after some time period has elapsed. This asymmetry

between the masters is introduced to ensure that only one key is generated. If

they both respond immediately, there is a high risk of two keys appearing.

15



The CPN model of the new protocol was created by the engineer without

support from the CPN group. At this stage, the engineer was fully capable of

working with the CPN method and tools all by himself. It took only about

two weeks (four weeks half-time) to design the new protocol, and to create and

investigate the corresponding CPN model. In the original model, described in

Sect. 3.2, new versions were created of four of the pages modelling the protocol,

i.e., some of the subpages of the page func loc (see Fig. 4). New substitution

transitions were added accordingly to func loc. A exible con�guration mecha-

nism was created, making it possible to vary the mixture of new and old devices

without changing the structure of the model itself. When the engineer presented

the results of his e�orts for the CPN group, the behaviour was conveyed using

message sequence charts. Many simulation runs had been done, including de-

tailed investigation of �ve cases corresponding to di�erent con�gurations with

new/old devices and presence of video/audio masters. The simulations con�rmed

that the new protocol is indeed sensible. In the �rst place, a BeoLink system

with all new devices work as expected. Secondly, and equally important, new

and old devices do co-exist without problems.

In addition to simulation, the model including a mixture of new and old

devices was formally veri�ed using occurrence graphs in the same way as the

original model. The same �ve cases as considered using simulation, were investi-

gated again. The work was done by the engineer alone. Being now experienced

in this activity, it took only about half a day.

7 The CD Protocol | A Supplement

The lock management project was the main experiment in B&O's investigation of

CPN. As an independent supplement, the CD project was carried out in parallel.

Here, the CD protocol describing rules for communication between two processes

internal to a so-called interactive CD was studied. The protocol is documented

as prose text and adheres to the 7-layer OSI model. All other layers but 1, 2,

and 7 are empty. The CD protocol is quite di�erent from the lock management

protocol.

In an intricate way, the CD protocol governs communication between two

processes. These processes are not symmetrical. Reception of messages has pri-

ority over transmission of messages in one of the processes. This means that if

this process is engaged in transmitting a message, and it detects that it has an

incoming message waiting, it must immediately switch to receiving. The inter-

rupted transmission must subsequently be resumed. The other process cannot

be interrupted in any activity.

The aim of creating a CPN model was to investigate properties like data

transmission reliability and collision handling. In comparison with the lock man-

agement project, only a small e�ort was invested. Nevertheless, it resulted in a

sensible 9-page model. There was no attempt to do occurrence graph analysis.

Simulation was done on the level of the token game. The project never got to a

phase where a more appropriate way of representing the results of simulations

16



was implemented, such as using message sequence charts in the lock management

project. Anyway, using simulation, the responsible B&O engineer discovered a

bug in the design of the CD protocol. It was related to the situation where a

switch from transmission to reception was forced. The bug did not cause the

protocol to malfunction, but it did decrease its performance. It turned out that

the programmer responsible for the implementation actually recognised this bug.

But it had �rst been found late in the test phase, and it had been very convenient

to have �xed it earlier.

According to the engineer who carried out the CD project, if the protocol

was about to be implemented now, the CPN model would have provided a basis

for writing better and simpler code.

In addition to investigating CPN for speci�cation, validation, and veri�cation

at B&O, a small experiment was made to test the feasibility of CPN to document

communication protocols. Presently, B&O has good methods for documenting

the static parts of protocols, e.g., the involved telegrams/messages and states.

However, better ways of documenting the dynamics of protocols are pursued as

well. As an attempt, the CPN model of the CD protocol was connected with

a textual description of the protocol via a hypermedia application [6] support-

ing organisation of information from many sources using cross references. This

allowed easy navigation between the textual description of a part of the pro-

tocol and the corresponding location in the CPN model. In this way, the CPN

model served as an integrated supplement to the existing documentation of the

protocol.

8 Related Work

In this section, the project described in this paper, referred to as the B&O

project, is compared with three other similar ones recently documented in the

literature.

Philips Audio Protocol. In [1], the formal veri�cation of an audio protocol

from Philips is described. The protocol focuses on low-level data transmission,

much like the CD protocol. It speci�es rules for exchange of control messages

between processes within a certain audio device. The model created is a timed

automata which is veri�ed using the model-checking tool UPPAAL [2]. The prop-

erties established are formulated as temporal logic formulas. As an example, it

is proved that the receiver only receives messages that are actually transmitted.

[1] has many similarities with the B&O project. Both are attempts of research

groups to test approaches and tools for systems speci�cation and veri�cation

within a large company producing audio/video systems. A notable di�erence

is that the modelling and veri�cation described in [1] was carried out by the

authors, i.e., by the research group. In the B&O project, most of the work was

done by the B&O engineers. The CPN group was merely consultants. This was a

deliberate choice which we see as a success. We learned that it is possible, within

a reasonable time frame, to teach CPN including occurrence graph analysis to

17



engineers from the industry, enabling them to apply the method themselves. An-

other di�erence is that [1] focussed exclusively on formal veri�cation. In addition

to that, the B&O project included validation using simulation, an activity highly

appreciated by the B&O engineers.

Modelling using CPN is quite similar to programming in a high-level lan-

guage. This competence is obviously wide-spread in the industry, providing a

good starting point for introducing CPN in other companies as well. With respect

to formal veri�cation using occurrence graphs as applied in the B&O project,

the underlying mathematics is hidden for the user. The interface to generation,

drawing, and querying of the Design/CPN Occurrence Graph Tool makes it

possible to take advantage of the method without knowing the details of its the-

oretical foundation. We cannot judge how easy it is to understand the ideas of

timed automata and temporal logic, although we do believe that it does require

a rather strong mathematical background.

Alarm Systems. The small Danish company Dalcotech has successfully been

using CPN for the design of a new alarm system as documented in [11]. This

project and the B&O project were organised the same way: First came a phase

with initial CPN training for the engineers, and initial model drafts made in

close cooperation between the company and the CPN group. It continued with a

long phase where the engineers worked relatively independently. Dalcotech and

B&O share many conclusions on the CPN projects carried out. However, Dal-

cotech takes a more dramatic step and introduces CPN as a general development

method for all future designs of alarm systems. B&O already uses SA/SD [13]

as the main development method. A lot of resources have been invested in ed-

ucation of the B&O engineers, and SA/SD serves its purposes well. Thus B&O

never had the intention to base all their development activities on CPN. Also,

the Design/CPN tool lacks version control and proper support for multiple users

working on the same project, obstructing optimal large-scale use in a company

like B&O. Use of the current version of the tool, e.g., by 15 engineers working

together on producing software for a new TV, would be awkward.

Network Gateways. Another recent industrial application of CPN and De-

sign/CPN is described in [5]: The design of a gateway between radio networks

and broadband integrated services digital networks within the Australian De-

fence Force. Of particular interest in this project is the fact that occurrence

graphs were applied in an industrial environment. Quite similar to the B&O

project, occurrence graphs were used to verify basic behaviours of a CPN model,

not to do a total veri�cation of the full model.

9 Conclusions

Towards the end of the project described in this paper, the involved B&O engi-

neers wrote a status report for their managers. Here they summed up the goals

18



and the results obtained. The goal of using CPN was to improve the methods

for speci�cation, validation, and veri�cation of protocols. The main conclusion

of the status report is that the goals were met. Being able to create executable,

formal models is recognised as a valuable basis for obtaining better results faster.

Many industrial modelling and simulation projects using Petri nets have been

documented in the literature over the years. Thus, it is important to make clear

what the contribution of this paper is for the research area of Petri nets. Did we

learn anything new?

We learned that it is possible to convey the CPN method in a relatively short

time to make it usable for industrial engineers in a way so that they are able

to work independently. The hardest part for the B&O engineers was to cope

with Standard ML. As experienced C-programmers, they were used to think in

terms of an imperative language, and the shift to a functional language turned

out to involve some di�culties. A lot of the consultancy work of the CPN group

consisted in assisting with Standard ML tasks.

We learned that application-speci�c graphical feedback from simulations

is highly important. The B&O engineer responsible for the lock management

project relied heavily on the new support for message sequence charts in De-

sign/CPN. It made his work both more pleasant and more e�cient. Moreover, it

enabled the engineer to discuss results of simulations with colleagues unfamiliar

with CPN.

We learned that it is possible to introduce a formal analysis method, oc-

currence graphs, in an industrial company. It was demonstrated that timed oc-

currence graphs can prove really useful, also to derive positive formal analysis

results.

B&O's interest in this project was explained by the fact that communication

protocols are gaining increasing attention within the company. Today, BeoLink

o�ers access to sound and vision throughout a home using traditional audio and

video sources. B&O anticipates that its products will be used more and more to

disseminate information in general in the home, e.g., via access to the Internet.

Proper communication protocols are essential to achieve good results in this

area. Based on the project described in this paper, B&O has concluded that

CPN can be a useful aid in this process.

Acknowledgements

We thank B&O for being willing to participate in this project. In particular,

we thank the involved B&O engineers: Niels Toft S�rensen was responsible for

the lock management project, Kristian Lund for the CD project. Without their

e�orts and abilities, this project could not have happened.

We thank Kurt Jensen and Kim Halskov Madsen for valuable guidance, ideas,

and comments during the project. Moreover, we thank Rikke Drewsen Andersen,

Lars M. Kristensen, and Kjeld H�yer Mortensen for proof-reading and comments

on the paper.

This work has been supported by grants from the Faculty of Science at Uni-

versity of Aarhus.

19



References

1. J. Bengtsson, W.O.D. Gri�oen, K.J. Kristo�ersen, K.G. Larsen, F. Larsson, P. Pet-

tersson, and W. Yi. Veri�cation of an Audio Protocol with Bus Collision Using

UPPALL. In R. Alur and T. Henzinger, editors, Proceedings of the 8th International

Conference on Computer-Aided Veri�cation, New Brunswick, New Jersey, USA,

volume 1102 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

2. J. Bengtsson, K.G. Larsen, F. Larsson, P. Petterson, and W. Yi. UPPALL | A Tool

Suite for Automatic Veri�cation of Real-Time Systems. In Proceedings of the 4th

DIMACS Workshop on Veri�cation and Control Hybrid Systems, New Brunswick,

New Jersey, USA, 1995. To appear in Lecture Notes in Computer Science, Springer-

Verlag.

3. S. Christensen. Design/CPN Message Sequence Charts Library Manual. Computer

Science Department, University of Aarhus, Denmark.

Online: http://www.daimi.aau.dk/designCPN/.

4. S. Christensen, K. Jensen, and L.M. Kristensen. Design/CPN Occurrence Graph

Manual. Computer Science Department, University of Aarhus, Denmark.

Online: http://www.daimi.aau.dk/designCPN/.

5. D.J. Floreani, J. Billington, and A. Dadej. Designing and Verifying a Commu-

nications Gateway Using Coloured Petri Nets and Design/CPN. In J. Billington

and W. Reisig, editors, Proceedings of the 17th International Conference on Appli-

cation and Theory of Petri Nets, Osaka, Japan, volume 1091 of Lecture Notes in

Computer Science. Springer-Verlag, 1996.

6. K. Gr�nb�k and R.H. Trigg. Design Issues for a Dexter-based Hypermedia System.

Communications of the ACM, Vol. 37, 2, 1994.

7. International Telecommunication Union | Telecommunication Standardiza-

tion Sector (ITU-T). ITU-T Recommendation Z.120: Message Sequence Chart,

Geneva, Switzerland, 1993.

8. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Prac-

tical Use. Vol. 1, Basic Concepts. EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, 1992.

9. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Practical

Use. Vol. 2, Analysis Methods. Monographs in Theoretical Computer Science.

Springer-Verlag, 1994.

10. K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN Reference Manual.

Computer Science Department, University of Aarhus, Denmark.

Online: http://www.daimi.aau.dk/designCPN/.

11. J.L. Rasmussen and M. Singh. Designing a Security Systen by Means of Coloured

Petri Nets. In J. Billington and W. Reisig, editors, Proceedings of the 17th Interna-

tional Conference on Application and Theory of Petri Nets, Osaka, Japan, volume

1091 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

12. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.

13. E. Yourdan. Modern Structured Analysis. Prentice-Hall, 1989.

20


