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Abstract

In this paper, we present a new computer tool for veri�cation of

distributed systems. As an example, we establish the correctness of

Lamport's Fast Mutual Exclusion Algorithm. The tool implements

the method of occurrence graphs with symmetries (OS-graphs) for

Coloured Petri Nets (CP-nets). The basic idea in the approach is to

exploit the symmetries inherent in many distributed systems to con-

struct a condensed state space. We demonstrate a signi�cant increase

in the number of states which can be analysed. The paper is to a large

extent self-contained and does not assume any prior knowledge of CP-

nets (or any other kinds of Petri Nets) or OS-graphs. CP-nets and

OS-graphs are not our invention. Our contribution is development of

the tool and veri�cation of the example.

Index Terms: Modelling and Analysis of Distributed Systems,

Formal Veri�cation, Coloured Petri Nets, High-Level Petri Nets, Oc-

currence Graphs, State Spaces, Symmetries, Mutual Exclusion.
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1 Introduction

Coloured Petri Nets (CP-nets) [1] is a language for modelling and analysis of

distributed systems. The ideas behind CP-nets build upon those of ordinary

Petri Nets (see, e.g., [2]) and those of Predicate/Transition Nets (see, e.g.,

[3]). CP-nets is at the same time theoretically well-founded and capable of

modelling large distributed systems. A number of formal veri�cation methods

are available, by which the behaviour of a CP-net can be analysed. One of

these methods is occurrence graphs (O-graphs) [4], also referred to as state

spaces and reachability trees/graphs. The basic idea is to construct a directed

graph with a node for each reachable state and an arc for each possible state

change. An abundance of veri�cation results can be derived from an O-graph.

The method unfortunately su�ers from the state explosion problem, which

severely limits its practical usability. An approach to alleviate this problem

is occurrence graphs with symmetries (OS-graphs) [4] [5], which are much

more compact, but still enable us to obtain the same veri�cation results as

with O-graphs. Consequently, it is possible to investigate larger distributed

systems, provided that they possess some kind of symmetry.

The applicability of OS-graphs is highly dependent on the existence of

computer tools supporting the approach. Manual calculations of OS-graphs

even for small systems are impossible. One contribution of this paper is to

present our new computer tool supporting OS-graphs, and thereby develop-

ing the method from being theoretically promising to something which can

be exploited in practice. Another contribution is the use of OS-graphs to

establish the correctness of Lamport's Fast Mutual Exclusion Algorithm [6],

in this paper referred to as Lamport's Algorithm.

Lamport's Algorithm is a mutual exclusion algorithm for shared-memory

multiprocessors. A shared-memory multiprocessor is an architecture con-

sisting of a number of CPUs connected to a common bus and with a single

shared memory. It is assumed that the memory supports atomic read and

write operations and that each process has a unique identi�er, which is a

positive integer. Fig. 1 depicts the code that process i executes in Lamport's

Algorithm, when attempting to enter the critical section. The algorithm uses

three global variables: x and y which are integers, and an array b[1::N ] of

booleans, where N is the number of processes. The statement await cond

represents a busy loop and can be seen as an abbreviation for while :cond

do skip. Angle brackets are used to enclose the atomic statements, which

are the reads and writes of x, y, and the entries of b. In this paper, we will
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1 start:

2 <b[i] := true>;

3 <x := i>;

4 if <y 6= 0> then

5 <b[i] := false>;

6 await <y = 0>;

7 goto start;

8 �;

9 <y := i>;

10 if <x 6= i> then

11 <b[i] := false>;

12 for j := 1 to N

13 do await <: b[j]> od;

14

15 if <y 6= i> then

16 await <y = 0>;

17 goto start;

18 �;

19 �;

20

21 critical section;

22

23 <y := 0>;

24 <b[i] := false>;

Figure 1: Lamport's Algorithm.

not explain how Lamport's Algorithm works, because it is not important for

our purpose. The curious reader is encouraged to consult [6].

The paper is organised as follows. In sect. 2, we present Coloured Petri

Nets and create the model of Lamport's Algorithm to be used throughout

the paper. In sect. 3, we introduce OS-graphs, and in sect. 4, the tool sup-

porting OS-graphs is described. In sect. 5, we formulate correctness criteria

for Lamport's Algorithm, and in sect. 6, we report on the use of the tool

for the actual veri�cation. Finally, in sect. 7, we draw some conclusions and

discuss related and future work.
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2 Coloured Petri Nets

In this section, we introduce Coloured Petri Nets (CP-nets or CPN). As

we go along with the explanation of the basic concepts, we show how these

can be used to model Lamport's Algorithm. Sect. 2.1 provides an informal

introduction to CP-nets. Sect. 2.2 contains the formal de�nitions and may

be skipped by readers already familiar with CP-nets. The complete CPN

model of Lamport's Algorithm can be seen in �g. 2.

2.1 Informal Introduction to CP-nets

In contrast to many modelling languages, CP-nets is both state and action

oriented. A state of a CP-net is represented by means of places. By conven-

tion, places are drawn as ellipses or circles with a name positioned inside. The

basic idea in our CPN model is to describe the value of the program counters

of the processes during the execution of Lamport's Algorithm. Therefore,

�g. 2 has a place for each line in Lamport's Algorithm. A place is named

according to the statement in that line. As an example, the place setx 3

near the upper left corner of the drawing of the model (rotated 90 degrees

in �g. 2) corresponds to the program counter being in a position, where the

statement < x := i > in line 3 is ready to be executed.

The global variables are also modelled by means of places. We have an

accordingly named place for each of the variables x, y, and b. All places

modelling variables are grayed in order to distinguish them from the places

modelling the program counters. The graying has no formal meaning. It

should be noted that in �g. 2, there are three places named y. These are

conceptually the same place, but have been drawn as three copies in order

to reduce the number of crossing arcs and thereby improve the legibility of

the CPN model. A similar remark applies to the four places named b.

Each place in a CP-net has a colour set (a type1), which determines the

kind of data the place may contain. An element of a colour set is called a

colour. By convention, the colour set is written in italics next to the lower

right corner of the place. From �g. 2, it can be seen that the place b has

the colour set PID � BOOL, and that the places x and y have the colour

set PID 0N . The places wait and done have colour set PID � PID. All

1An alternative and perhaps better name for Coloured Petri Nets might be \Typed

Petri Nets". However, the term \coloured" has a historical explanation, and it has stuck.

\Colour set" and \type" are used as synonyms in this paper.
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Figure 2: The CPN model of Lamport's Algorithm.
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other places have colour set PID. PID stands for Process IDenti�er. The

de�nition of the colour sets are as follows:

PID 0N = f0; 1; : : : ; Ng

BOOL = ftrue; falseg

PID = PID 0N n f0g

PID � BOOL = f(i; bi)ji 2 PID ^ bi 2 BOOLg

PID � PID = f(i; j)ji; j 2 PIDg.

Thus, the place b can contain pairs consisting of an integer and a boolean.

The places x and y can contain integers from 0 to N , and the places wait

and done can contain pairs of integers from 1 to N . All other places can

contain integers from 1 to N . The value 0 is special. It is used to signal

when the values of the shared variables x and y do not correspond to any of

the processes.

A state of a CP-net is called a marking. A marking describes how

tokens are distributed on the individual places. A token is a value, which is

a member of the colour set of the corresponding place. The initial marking of

a place is speci�ed in the CPN model, by convention, next to the upper right

corner of the place. The initial marking of the place start 1 is PID, i.e., the

tokens from 1 to N . This models that to begin with, the program counters

of all processes are positioned at the start label. For each of the places x,

y, and b, the initial marking describes the start value of the corresponding

variable. Both x and y are equal to 0 initially. The initial marking of the

b-place is determined by the expression PID� FALSE N , which evaluates

to a set of tokens modelling that all entries b[i] are false for 1 � i � N .

Initially, all other places are empty,

Besides from having di�erent tokens on a place, it is also possible to have

several tokens with the same colour. Therefore, the marking of a place is in

general a multi-set2. A number of operations such as addition and scalar-

multiplication are de�ned for multi-sets, and we will apply them freely is this

paper. For details, see [1].

The actions of a CP-net are represented by transitions, which, by con-

vention, are drawn as rectangles. Transitions and places are connected by

arcs. In �g. 2, solid arcs are used for control ow and dashed arcs are used

2A multi-set is often referred to as a bag. Sets can be considered a special kind of

multi-sets, and therefore, in this paper, we sometimes use a set-like notation for multi-

sets.
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for data manipulation. The graphical appearance of an arc has no formal

meaning. The two kinds of arcs are only used to make a more clear presen-

tation.

A transition removes tokens from the places connected to incoming arcs

(input places) and adds tokens to the places connected to outgoing arcs

(output places). The tokens to be removed from input places and added to

output places are determined by the arc expressions, which are positioned

next to the arcs.

In Lamport's Algorithm, the actions are execution of statements. There-

fore, we have associated an accordingly named transition with each state-

ment. E.g., the transition setbi 2 (see �g. 3) models the execution of the

statement b[i] := true in line 2 of �g. 1.

start_1

PID

PID

setbi_2

setx_3

PID

b

PIDxBOOL

PIDxFALSE Ni (i,true)

(i,bi)i

Figure 3: Modelling of an assignment.

The transition has two incoming arcs and two outgoing arcs. The arc

expressions of the incoming arcs are i and (i; bi), where i and bi are variables

of type PID and BOOL, respectively. To talk about an occurrence of

the transition setbi 2, the variable i has to be bound to a value from PID,

and bi has to be bound to a value from BOOL, in order to evaluate the arc

expressions. A pair consisting of a transition and a binding of the variables

of its surrounding arcs is called a binding element. A binding element may

occur, i� the tokens to be removed exist on the respective input places.

Assume now that we bind the variable i to 1 and bi to false. Then,

the expression on the incoming arc from start 1 will evaluate to 1, and the

expression on the incoming arc from b will evaluate to (1; false). Since in the

initial marking, denotedM0, a 1-token is on start 1, and a (1; false)-token is

on b, the described binding element, denoted (setbi 2; <i = 1; bi = false>),

may occur. The binding element is said to be enabled in M0. Several
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binding elements may be enabled in the same marking. E.g., the binding

element (setbi 2; < i = 2; bi = false >) is also enabled in M0. The two

binding elements may occur in the same step, since inM0, they do not share

any of the tokens on the input places. The two binding elements are said

to be concurrently enabled. This corresponds to processes 1 and 2 being

able to do this assignment independently of each other.

An occurrence of the binding element (setbi 2; < i = 1; bi = false>)

will remove the 1-token from start 1 and, similarly, remove the (1; false)-

token from b. As determined by the arc expressions of the outgoing arcs,

a 1-token will be added to setx 3, and a (1; true)-token will be added to b.

An occurrence of this binding element corresponds to process 1 executing

the statement <b[i] := true> in line 2 of �g. 1. In this way, an occurrence

of a transition models the execution of an atomic statement in Lamport's

Algorithm. All other assignments in Lamport's Algorithm are modelled in a

similar fashion.

We will now describe how to model the other statements in Lamport's

Algorithm, i.e., the if-, await-, for-, and goto-statements. Consider the

if-statement starting in line 4 of Lamport's Algorithm. This statement is

modelled by the part of the CPN model shown in �g. 4.

ify0_4

PID

yeq0_4

sety_9
PID

y
PID_0N

0

yne0_4

[y<>0]

setbi_5

PID
i

i

i

y0

i

Figure 4: Modelling of an if-statement.

The condition y 6= 0 evaluates to true or false, and depending on this, one

of the two branches in Lamport's Algorithm is chosen. The case where the

condition is false is modelled by the transition yeq0 4. It has two incoming

arcs, one from the place ify0 4 and one from the place3 y. The arc expression

on the arc from y is 0 and will evaluate to 0, independent of the binding of the

variable i, i.e., the process executing the if-statement. Thus, the transition

3A double arc is a shorthand for two arcs with the same arc expression, one arc in each

direction.

8



will only be enabled when y contains a 0-token, corresponding to y being

0 in Lamport's Algorithm. When the transition occurs, it puts the 0-token

back on y and puts an i-token on the place sety 9. The transition yne0 4

models the case in which the condition y 6= 0 is true. The transition has two

incoming arcs with arc expressions i and y, respectively. Associated with

the transition is also a guard. Guards are, by convention, put in brackets

and located next to the lower right corner of the transition. A guard is a

boolean expression, which imposes an additional condition on enabling. The

variables must be bound so that the guard evaluates to true. In this case,

the boolean expression is y <> 0. The transition is therefore only enabled,

when y is not bound to 0. The two if-statements starting in lines 10 and 15

are modelled in a similar fashion.

We now turn to the modelling of the await-statement in line 6. The

await-statement is modelled by the part of the CPN model shown in �g. 5.

awaity

awaity

PID
y

PID_0N

0

start_1

PID

i
0

i

Figure 5: Modelling of an await-statement.

The transition has an incoming arc from awaity and from y. The arc

expression from y evaluates to 0 independent of the binding of i on the arc

from awaity. Thus, the transition is only enabled when y contains a 0-token,

which corresponds to y being 0 in Lamport's Algorithm.

The goto-statements are modelled implicitly. Consider, e.g., the goto-

statement immediately after the await-statement in line 7. In the model,

we have drawn an arc from the transition modelling the execution of the

await-statement to the place start 1.

Finally, we consider the for-statement starting in line 12. It is modelled

by the part of the CPN model shown in �g. 6. For reasons to become clear

later (in sect. 6), we model a more general form of the for-statement. In

Lamport's Algorithm, the for-statement is used to test each of the entries
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in the b-array in turn starting from b[1]. In the model, we do not impose an

order in which the entries are tested.

fordo_12

wait

PIDxPID

await_13

b
PIDxBOOL

PIDxFALSE N

await_13

PID
forod_13

done
PIDxPID

fordo_12

PID
ifyi_15

PID

i

(i,j) (i,j)

ixPID i N ixPID i N

i

(j,false)

i

i i

Figure 6: Modelling of a for-statement.

When process i enters the for-statement by occurrence of the transition

fordo 12, the multi-set denoted i � PID i N = f(i; j)jj 2 PIDg is put on

the place wait, which contains the entries in the b-array that process i still

needs to test. The transition await 13 models the execution of the await-

statement inside the for-statement, and is only enabled when a (j; false)-

token is present on the b-place. An occurrence of that transition will remove

an (i; j)-token from wait and add it to the place done, which contains the

entries in the b-array that process i has already tested. Process i leaves the

for-statement, when the transition forod 13 occurs. As it can be seen, this

transition is only enabled, when place done contains the multi-set i � PID

i N , i.e., when all the entries in the b-array have been tested.

We have now explained how to model all the basic constructs of Lamport's

Algorithm. The creation of the complete model just consists in putting all

the pieces together. The process might even be automated. No ingenuity is

required | nor desired. This systematic strategy reduces the probability of

accidental errors, and thus makes it unlikely that the constructed CP-net is

not a proper model of the algorithm. Lamport's Algorithm is modelled in a

similar way in [7].

2.2 Formal De�nition of CP-nets

We now give a formal de�nition of CP-nets and their behaviour. The purpose

of this section is twofold. First of all, to clear out any ambiguity that might be

in the informal introduction to CP-nets in the previous section, and second, to
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�x the notation to be used in this paper. The de�nitions and notation closely

follow [1] and readers familiar with that reference may skip this section.

Structure of CP-nets

Before giving the formal de�nition of a CP-net, we �x some notation and

terminology. The term net expressions refers to the expressions describing

colour sets, initial markings, arc expressions, and guards. Related to net

expressions, we introduce the following notation:

� Type(expr) denotes the type of an expression expr.

� V ar(expr) denotes the set of variables in an expression expr.

� Type(v) denotes the type of a variable v.

� Type(vars), where vars is a set of variables, denotes the set of types

fType(v)jv 2 varsg.

� SMS denotes the set of multi-sets over a set S.

� Bool denotes the set of booleans, i.e., Bool = ftrue; falseg.

We now formally de�ne CP-nets. Explanation follows the de�nition.

De�nition 1 A CP-net is a tuple CPN = (�; P; T; A;N; C;G;E; I) satis-

fying the requirements below:

1. � is a �nite set of non-empty types, called colour sets.

2. P is a �nite set of places.

3. T is a �nite set of transitions.

4. A is a �nite set of arcs such that P \ T = P \ A = T \ A = ;.

5. N is a node function. It is de�ned from A into P � T [ T � P .

6. C is a colour function. It is de�ned from P into �.

7. G is a guard function. It is de�ned from T into expressions such that:

8t 2 T : [Type(G(t)) = Bool ^ Type(V ar(G(t))) � �].

11



8. E is an arc expression function. It is de�ned from A into expressions

such that:

8a 2 A : [Type(E(a)) = C(p(a))MS ^ Type(V ar(E(a))) � �],

where p(a) is the place of N(a).

9. I is an initialisation function. It is de�ned from P into expressions

without free variables such that:

8p 2 P : [Type(I(p)) = C(p)MS]. �

Item 1 determines the set of colour sets and hence the colours which can be

referred to in the net expressions. In the CPN model of Lamport's Algorithm,

� = fPID 0N;PID;BOOL; PID � BOOL; PID � PIDg. Items 2, 3,

and 4 specify the places, transitions, and arcs. Item 5, the node function,

determines the source and destination of arcs. Note that an arc always

connects a place and a transition. Item 6, the colour function, associates a

colour set with each place. In the CPN model of Lamport's Algorithm, the

colour function maps the place b into PID�BOOL, the places x and y into

PID 0N , the places wait and done into PID�PID, and all other places into

PID. Item 7, the guard function, ensures that guards are expressions which

evaluate to a boolean, and that the types of the variables in the guards are in

�. Likewise, items 8 and 9, the arc expression function and the initialisation

function, ensure similar, appropriate type constraints.

In the rest of this paper, we will assume that a CP-net CPN is given,

CPN = (�; P; T; A;N; C;G;E; I).

Normally, a CP-net is created in terms of a CPN diagram, i.e., a graphical

representation as in �g. 2, and not by specifying a 9-tuple as in def. 1. Fig. 2

is created using the tool Design/CPN [8], which supports construction and

analysis of CP-nets. For declarations of colour sets, variables, and functions;

and for net expressions, this tool uses CPN ML, which is an extension of the

functional programming language Standard ML (SML) (see, e.g., [9]). The

declarations for the CPN model of Lamport's Algorithm can be seen in �g. 7.

In line 2, the number of processes N is speci�ed. In this case, N = 3.

Lines 8-12 declare the colour sets. Lines 15-17 declare the variables and

their type. Finally, the function PID � FALSE used to specify the initial

marking on the place b, and the function i�PID used in the modelling of the

for-statement are declared. Both are typical SML-style recursive functions.

12



1 (� Number of processes - in this case 3 �)
2 val N = 3;

3

4 (� non-zero predicate �)
5 fun nonzero i = (i<>0);

6

7 (� Declaration of the colour sets �)
8 color PID 0N = int with 0. .N declare ms;

9 color BOOL = bool;

10 color PID = subset PID 0N by nonzero declare ms;

11 color PIDxPID = product PID � PID;

12 color PIDxBOOL = product PID � BOOL;

13

14 (� Declaration of the variables �)
15 var x,y : PID 0N;

16 var i,j : PID;

17 var bi : BOOL;

18

19 (� Function used to specify the initial marking on b �)
20 fun PIDxFALSE 0 = empty

21 j PIDxFALSE i = 1`(i,false)+(PIDxFALSE (i�1));

22

23 (� Function used in the for-statement �)
24 fun ixPID i 0 = empty

25 j ixPID i j = 1`(i,j)+(ixPID i (j�1));

Figure 7: Declarations for the CPN model of Lamport's Algorithm.

Behaviour of CP-nets

We now turn to the formal de�nition of behaviour of CP-nets. First, we �x

some more notation.

� V ar(t), for a transition t 2 T , denotes the set of variables of t present in

either the guard G(t) or in an arc expression of one of the surrounding

arcs denoted A(t). Formally:

V ar(t) = fvjv 2 V ar(G(t)) _ 9a 2 A(t) : v 2 V ar(E(a))g.

� A(x1; x2) for (x1; x2) 2 P � T [ T � P denotes the set of connecting

arcs. Formally:

A(x1; x2) = fa 2 AjN(a) = (x1; x2)g.

13



As a consequence, if x1 and x2 are not connected, A(x1; x2) = ;.

� E(x1; x2) for (x1; x2) 2 P�T [T�P denotes the expression of (x1; x2).

Formally:

E(x1; x2) =
P

a2A(x1;x2)
E(a).

It should be noted that the sum in the de�nition of E(x1; x2) is well-

de�ned because of item 8 in def. 1, which ensures that all terms in the

sum are of the same multi-set type. Having �xed the notation, we de�ne the

concept of a binding. expr<b> denotes the result of evaluating an expression

expr, whose variables are bound to values as determined by b.

De�nition 2 A binding of a transition t 2 T is a function b de�ned on

V ar(t) such that:

1. 8v 2 V ar(t) : b(v) 2 Type(v).

2. G(t)<b>.

B(t) denotes the set of all bindings for t. �

Item 1 ensures that only values of the correct type can be bound to a

variable. Item 2 expresses that in order for b to be a binding of t, the guard

must evaluate to true in b. In the following, bindings will be written on the

form <v1 = c1; v2 = c2; : : : vn = cn>, when V ar(t) = fv1; v2; : : : vng. Now, we

formally de�ne markings, binding elements, and steps.

De�nition 3 A marking M is a function de�ned on P such that M(p) 2

C(p)MS for all p 2 P . The set of all markings is denoted M . The initial

marking is denoted M0.

A binding element is a pair (t; b), where t 2 T and b 2 B(t). The set

of all binding elements is denoted BE, while the set of binding elements for

a speci�c transition t 2 T is denoted BE(t).

A step is a non-empty and �nite multi-set over BE. The set of all steps

is denoted Y. �

By de�ning a step as a multi-set of binding elements, we allow multiple

occurrences of a binding element in a given step. We now give the formal

de�nition of enabling.
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De�nition 4 A step Y 2 Y is enabled in a marking M 2 M , i� the

following property is satis�ed:

8p 2 P :
P

(t;b)2Y E(p; t)<b>� M(p).

M [Y> denotes that Y is enabled in M . �

The de�nition states that each binding element (t; b) 2 Y must be able

to get the tokens speci�ed by E(p; t)<b> | which is the multi-set of tokens

removed from p, when t occurs with the binding b | without having to

share these with other binding elements in Y . The summation is a multi-set

sum, i.e., if (t; b) appears in Y multiple times, this multiplicity is taken into

account in the sum. If a binding element for a transition t is included in an

enabled step in a marking M , we will say that t is enabled in M .

When a step Y is enabled, it may occur. When Y occurs, it removes

tokens from the input places and adds tokens to the output places of the

included transitions, according to the following de�nition, which also intro-

duces the concepts of occurrence sequences and reachability.

De�nition 5 When a step Y is enabled in a marking M1, it may occur,

changing the marking M1 to another marking M2 de�ned by:

8p 2 P :M2(p) =
�
M1(p)�

P
(t;b)2Y E(p; t)<b>

�
+
P

(t;b)2Y E(t; p)<b>.

In this case, we say that M2 is directly reachable from M1 by the

occurrence of the step Y, which we denote M1[Y >M2.

A �nite occurrence sequence is a sequence of markings and steps:

M1[Y1>M2[Y2>M3 : : :Mn[Yn>Mn+1

such that4 n 2 N and Mi[Yi>Mi+1 for i = 1; : : : ; n.

Analogously, an in�nite occurrence sequence is a sequence of mark-

ings and steps:

M1[Y1 >M2[Y2>M3 : : :

such that Mi[Yi>Mi+1 for i = 1; 2; : : :.

4
N = f0; 1; 2; : : :g denotes the set of non-negative integers.
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A markingM 0 is reachable from a marking M, i� there exists a sequence

of steps Y1; Y2; : : : Yn such that:

M [Y1>M2[Y2>M3 : : :Mn[Yn>M 0.

The set of markings which are reachable from M is denoted [M>. �

If a binding element for a transition t is included in a step Y , which occurs

in a marking M , we will say that t occurs in M .

Quite often, the purpose of creating a CP-net is to investigate whether

certain dynamic properties hold. An example of such a property is the exis-

tence of dead markings, corresponding to deadlocks of a considered system.

In sect. 5.2, we formally de�ne a number of dynamic properties for CP-nets

and use them to verify Lamport's Algorithm.

3 Occurrence Graphs with Symmetries

This section introduces the veri�cation method of occurrence graphs with

symmetries, which we are going to use to establish correctness of Lamport's

Algorithm. The section is structured as follows. Sect. 3.1 briey sums up the

concept of full occurrence graphs (O-graphs). In sect. 3.2, occurrence graphs

with symmetries (OS-graphs) are described in an informal way. OS-graphs

are formally de�ned in sect. 3.3, which may be skipped by readers familiar

with [4].

3.1 O-Graphs

One of the classical veri�cation methods for CP-nets employs occurrence

graphs. In its simplest form, an occurrence graph for a CP-net is a directed

graph with a node for each reachable marking and an arc for each occurring

binding element. This kind of graphs are called full occurrence graphs or

O-graphs. Except for concurrency properties5, all dynamic properties for a

CP-net6 can be derived from its O-graph | in particular, the properties to

be used for the veri�cation of Lamport's Algorithm.

5When working with O-graphs, we only consider steps consisting of one single binding

element.
6Only CP-nets with a �nite number of reachable markings are considered.
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As mentioned in sect. 1, a serious drawback of the occurrence graph

method is that it su�ers from the state explosion problem: Even for rel-

atively small CP-nets, the occurrence graphs are often so large that they

cannot be constructed in practice given the computer technology presently

available. Alleviation of this inherent complexity problem is a major chal-

lenge of research. Several theoretical methods have been proposed. Among

them are OS-graphs. They are de�ned in [4]. The main ideas will be repeated

here.

3.2 Informal Introduction to OS-graphs

Lamport's Algorithm treats all processes in the same way. The processes are

symmetric in a sense to be illustrated in the following. In the CPN model

for N = 3, consider the two markings M1 and M2 shown below. Multi-sets

are written in the notation from [1]: As a sum using the symbol \+", where

the number of appearances of each element is the coe�cient preceeding the

symbol ` (pronounced \back quote" or \of").

M1(setx 3) = 1`1

M1(start 1) = 1`2 + 1`3

M1(b) = 1`(1; true) + 1`(2; false) + 1`(3; false)

M1(x) = 1`0

M1(y) = 1`0

M2(setx 3) = 1`2

M2(start 1) = 1`1 + 1`3

M2(b) = 1`(1; false) + 1`(2; true) + 1`(3; false)

M2(x) = 1`0

M2(y) = 1`0.

For all other places p, M1(p) = M2(p) = empty, where empty denotes the

empty multi-set. In both markings, all processes but one are on the place

start 1. The remaining one is on the place setx 3. The two markings di�er

by which process is on setx 3. In Mk, the marking of setx 3 is k for k = 1; 2.

M1 and M2 are symmetric, in the sense that one can be obtained from

the other by interchanging the colours 1 and 2. The crucial observation

about symmetric markings is that they describe states of the system that

are similar: If we know the possible behaviours of the system starting from
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M1, then we do not need to explore the possible behaviours from M2. An

indication of this is to consider the set of binding elements BEk, which are

enabled in Mk, for k = 1; 2:

BE1 = f(setbi 2; < i = 2; bi = false >);

(setbi 2; < i = 3; bi = false >); (setx 3; < i = 1; x = 0 >)g

BE2 = f(setbi 2; < i = 1; bi = false >);

(setbi 2; < i = 3; bi = false >); (setx 3; < i = 2; x = 0 >)g.

BE1 is symmetric to BE2, i.e., BE2 can be obtained from BE1 by in-

terchanging 1 and 2. Now, consider the marking M
0

1 reached when, e.g., the

binding element (setx 3; < i = 1; x = 0 >) occurs in M1; and the marking

M
0

2 reached when the binding element (setx 3; < i = 2; x = 0 >) occurs in

M2. M
0

1 is identical to M1, and M
0

2 is identical to M2, except for the places

listed below:

M
0

1(x) = 1`1

M
0

1(setx 3) = empty

M
0

1(ify0 4) = 1`1

M
0

2(x) = 1`2

M
0

2(setx 3) = empty

M
0

2(ify0 4) = 1`2.

It is easy to see that M
0

1 and M
0

2 are symmetric, i.e., that M
0

1 can be

obtained from M
0

2 by interchanging 1 and 2.

The property illustrated above is that symmetric markings have symmet-

ric sets of enabled binding elements, and symmetric sets of directly reachable

markings. Using induction, this property can be expanded to �nite and in�-

nite occurrence sequences.

The CPN model of Lamport's Algorithm contains many markings that

are symmetric in this way. The basic idea in OS-graphs is to lump together

symmetric markings and symmetric binding elements.

De�nition of an OS-graph for a CP-net requires the presence of two

equivalence relations | one on the set of markings and one on the set of

binding elements. The OS-graph has a node for each reachable equivalence
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class of markings7. The OS-graph has an arc between two nodes, i� there is a

marking in the equivalence class of the source node in which a binding element

is enabled, and whose occurrence leads to a marking in the equivalence class

of the destination node. There is exactly one arc for each equivalence class of

binding elements with this property. Typically an OS-graph is much smaller

than the corresponding O-graph, but always contains as much information.

The two equivalence relations are induced by an algebraic group of func-

tions called permutation symmetries. A permutation symmetry maps

markings to markings and binding elements to binding elements. Two mark-

ings are equivalent (or symmetric), i� there exists a permutation sym-

metry mapping one of the markings to the other. Similarly for binding

elements8.

The user de�nes the group of permutation symmetries by writing a per-

mutation symmetry speci�cation. A permutation symmetry speci�ca-

tion assigns a symmetry group to each atomic colour set appearing in the

CP-net. A colour set de�ned without reference to other colour sets is atomic.

In the CPN model of Lamport's Algorithm, there are two atomic colour sets:

PID 0N and BOOL. A symmetry group determines how the colours of an

atomic colour set are allowed to be permuted. E.g., a symmetry group may

specify that all colours can be permuted arbitrarily, or that they must all

be �xed, i.e., cannot be changed. Many intermediate forms exists, e.g., all

rotations of a �nite, ordered colour set.

A permutation symmetry speci�cation for the CPN model of Lamport's

Algorithm capturing that processes corresponding to the integers in the set

f1; :::; Ng behave in a symmetric way, and that the integer 0 is a special value

used for initialisation purposes, can be described as follows: We assign the

symmetry group to PID 0N , that allows arbitrary permutations in the set

f1; ::; Ng, and insists that 0 is �xed. This symmetry group has N ! elements.

BOOL is assigned the singleton symmetry group consisting of the identity

function id only. Thus, the values true and false cannot be swapped. They

are (of course) fundamentally di�erent.

A structured colour set is one, which is not atomic. The symmetry

7A reachable equivalence class is one, which contains a reachable marking. As we shall

see, for two equivalent markings, either both of them are reachable or none of them are

reachable.
8A permutation symmetry can also be used to map colours to colours. We will speak

about two colours being equivalent (or symmetric), i� there exists a permutation symmetry

mapping one to the other.
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group for a structured colour set is inherited from the symmetry groups

of its base colour sets, i.e., the colour sets that it is built from. In the

CPN model of Lamport's Algorithm, there are three structured colour sets:

PID, PID � BOOL, and PID � PID. PID inherits its symmetry group

from its base colour set PID 0N . An element of the symmetry group for

PID 0N induces a permutation on PID. Likewise, PID�BOOL inherits its

symmetry group from the symmetry groups of PID and BOOL: An element

of the symmetry group of PID�BOOL is a pair, where the �rst element is a

member of the symmetry group of PID, and the second element is a member

of the symmetry group of BOOL. PID� PID inherits its symmetry group

from the symmetry group of PID: An element of the symmetry group of

PID � PID is a pair, where the �rst and the second element are identical

members of the symmetry group of PID.

The purpose of a permutation symmetry speci�cation is to capture in-

herent symmetries of the model. A permutation symmetry speci�cation in

accordance with the model, in a way to be de�ned precisely in sect. 3.3, is said

to be consistent. As we will see, the permutation symmetry speci�cation

described above for the CPN model of Lamport's Algorithm is consistent.

But if we, e.g., assigned a symmetry group to PID 0N that allowed ar-

bitrary permutations in the set f0; 1; : : : ; Ng, and, hence, had not insisted

that 0 should stay �xed, the resulting permutation symmetry speci�cation

would not be consistent. To see this, consider, e.g., the transition awaity

in �g. 5. A necessary requirement for this transition to be enabled, is that

the place y contains a 0-token. Thus, if we allowed to swap 0 with another

colour, we could obtain two symmetric markings, where awaity was enabled

in one of them, but not in the other. These two marking would not contain

the same information, and it would be wrong to consider them symmetric.

Consequently, a consistency requirement is crucial.

3.3 Formal De�nition of OS-graphs

In this section, we introduce the concepts necessary to formally de�ne OS-

graphs. All de�nitions and propositions are taken from [4] and are included

here to make this paper self-contained. Readers familiar with [4] may skip

this section. First the basics.

De�nition 6 A permutation symmetry speci�cation is a function SG

that maps each atomic colour set S 2 � into a subgroup SG(S) of the set of
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permutations of S. SG(S) is called the symmetry group of S.

A permutation symmetry for SG is a function � that maps each

atomic colour set S 2 � into a permutation �s 2 SG(S). The set of all

permutation symmetries for SG is denoted �SG. �

The permutation symmetry speci�cation SGL for the CPN model of Lam-

port's Algorithm, informally described in sect. 3.2, is formally de�ned below.

PERM(I) is the set of all permutations of a �nite set I.

SGL(PID 0N) = f� 2 PERMf0; :::; Ngj�(0) = 0g

SGL(BOOL) = fidg.

An example of a permutation symmetry � 2 �SGL is the following, where

the function (l k)I swaps the values k and l in the set I:

� : PID 0N 7! (1 2)f0;:::;Ng

� : BOOL 7! fidg.

� induces the following mappings on the structured colour sets:

� : PID 7! (1 2)f1;:::;Ng

� : PID � BOOL 7! ((1 2)f1;:::;Ng; id)

� : PID � PID 7! ((1 2)f1;:::;Ng; (1 2)f1;:::;Ng).

As mentioned in sect. 3.2, each permutation symmetry � 2 �SG induces a

function which maps markings into markings. �(M) is simply a substitution

of each colour (value) v 2 S, where S is some colour set, by �(S)(v). A

function mapping binding elements to binding elements is induced similarly.

E.g., consider the markings and binding elements used in the example from

sect. 3.2. � 2 �SGL de�ned above maps M1 to M2. Moreover, � maps

the binding element (setx 3; < i = 1; x = 0 >) to the binding element

(setx 3; < i = 2; x = 0 >), and � also maps M
0

1 to M
0

2.

Def. 7 formally de�nes consistency of a permutation symmetry speci�ca-

tion. The transition of a given arc a is denoted t(a).

De�nition 7 A permutation symmetry speci�cation SG is consistent, i�

the following properties are satis�ed for all � 2 �SG, all t 2 T , and all a 2 A:

1. �(M0) =M0.
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2. 8b 2 B(t) : �(b) 2 B(t).

3. 8b 2 B(t(a)) : E(a) <�(b)>= �(E(a) <b>). �

Item 1 ensures that each permutation symmetry maps the initial marking

to itself. Item 2 says that each permutation symmetry must map binding

elements into binding elements. In particular, this means that no transition

is allowed to have an asymmetric guard, i.e., a guard that treats two symmet-

ric colours di�erently. Item 3 states that arc expressions and permutation

symmetries must commute. Thus, asymmetric arc expressions are ruled out.

It is important to notice that all three properties are local and structural.

They can be checked without considering occurrence sequences.

When a consistent permutation symmetry speci�cation is given, the im-

portant dynamic property proved in [4] and stated in the next proposition

holds. It formalises that symmetric markings have symmetric sets of en-

abled binding elements, and symmetric sets of directly reachable markings,

as illustrated in sect. 3.2. Thus, the proposition justi�es that it is su�cient

to explore the possible behaviours of the system for one marking of each

equivalence class.

Proposition 1 A consistent permutation symmetry speci�cation SG satis-

�es the following property:

8M1;M2 2 M 8b 2 BE 8� 2 �SG : M1[b>M2 , �(M1)[�(b)>�(M2). �

We now formally de�ne the two equivalence relations that are derived

from the group of permutation symmetries, determined by a permutation

symmetry speci�cation SG.

De�nition 8 The relation �M � M � M is de�ned by:

M �M M�
, 9� 2 �SG :M = �(M�).

The relation �BE� BE �BE is de�ned by:

b �BE b� , 9� 2 �SG : b = �(b�). �

The fact that �SG 2 [M ! M ] and �SG 2 [BE ! BE] both constitute

algebraic groups ensures that the two relations �M and �BE are indeed

equivalence relations. The set of all equivalence classes for �M is denoted
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M � . Similarly with �BE and BE�. The equivalence class of an element x is

denoted [x]. This notation is naturally extended to sets: [X] =
S
x2X [x].

Now OS-graphs are formally de�ned.

De�nition 9 Let a consistent permutation symmetry speci�cation for CPN
be given. The OS-graph is the directed graph OSG = (V;A;N) where:

1. V = fC 2 M � jC � [M0>g.

2. A = f(C1; B;C2) 2 V �BE�� V j9(M1; b;M2) 2 C1 �B �C2 :M1[b>M2g.

3. 8a = (C1; B;C2) 2 A : N(a) = (C1; C2). �

Item 1 de�nes the set of nodes | one node for each reachable equivalence

class of markings. Item 2 similarly de�nes the set of arcs. Item 3 is necessary,

because we utilise a de�nition of directed graphs, which is slightly di�erent

from what normally appears in classical literature on graph theory. Apart

from the set of nodes and the separately de�ned set of arcs, we have a function

mapping each arc to a pair of nodes | the �rst component being the source

and the second the destination. In this way, multiple arcs between two nodes

are allowed, and this may appear in OS-graphs.

4 A Computer Tool Supporting OS-graphs

This section describes the newly developed Design/CPN OS Graph Tool

(OS-tool) [10], which supports generation, analysis, and drawing of OS-

graphs. The OS-tool is embedded in Design/CPN [8], the general tool for CP-

nets mentioned in sect. 2, which supports editing, simulation, and occurrence

graph analysis of CP-nets. The existing support for O-graphs in Design/CPN

(O-tool) [11] has served as a basis for the implementation of the OS-tool.

Sect. 4.1 provides an overview of the OS-tool, while sect. 4.2 uses the drawing

facilities of the tool to compare O- and OS-graphs.

4.1 Overview of the OS-tool

Fig. 8 gives an overview of the various parts of the OS-tool. The grey boxes

in the �gure represent parts which are either modi�ed or new compared to

the O-tool. The white boxes are parts which are identical to parts in the O-

tool. The OS-tool consist of three major parts. A Graphical User Interface

(GUI ), a CPN ML part, and an Interface between these two parts.

23



Graphical User Interface (GUI)

Interface

CPN ML

Editor GUI Simulator GUI OS-tool

Compiler

Syntax 
Checker

Simulator Code 
Generator

ML Simulator ML OS-tool

Utility Functions

OS-graphOS Code 
Generator

Query Functions
Simulation Code

CPN Diagram CPN Diagram

OS Specification

Queries

OS-graph

Figure 8: Overview of the OS-tool.

The Graphical User Interface is the front-end of the application. When

the user has created a CPN Diagram in the Editor, the Compiler in the

CPN ML part can be invoked. The Compiler has two parts: First, the CPN

diagram is syntax checked by the Syntax Checker. If the CPN diagram rep-

resents a legal CP-net, then the Simulation Code Generator is invoked to

generate the Simulation Code for the ML Simulator. Once this code has

been generated, the CPN model can be simulated | the user can exam-

ine markings and execute steps directly on the CPN Diagram in the GUI

Simulator. In the ML Simulator, we have implemented an OS Code Genera-

tor. This code generator uses the Simulation Code and the user-written OS

Speci�cation (a permutation symmetry speci�cation), provided through the

GUI OS-tool, to generate the necessary code for the ML OS-tool. The OS

Speci�cation is written using the Utility Functions. When the code for the

ML OS-tool has been generated, the user can start generate and draw (parts

of) an OS-graph, and make Queries using the Query Functions to investigate

properties of his CPN model.
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The OS-tool stores equivalence classes using representatives: Each node

in the OS-graph is represented by a marking from its equivalence class. Anal-

ogously for arcs and binding elements.

Before an OS-graph can be generated, the user is required to implement

a permutation symmetry speci�cation. In the current version of the OS-tool,

this consists of writing two CPN ML functions: A predicate EquivMark

de�ning when two markings are equivalent, and a predicate EquivBE de�n-

ing when two binding elements are equivalent. These two predicates must

reect the symmetry groups that the user has assigned to the atomic colour

sets, and they must implement the rules saying how structured colour sets

inherit their symmetry groups from their base colour sets. Moreover, the

user must make sure that the predicates implement a consistent permutation

symmetry speci�cation. In the current version of the tool, this is not checked

automatically. In a future version, the user will only have to assign a symme-

try group to each of the atomic colour sets. The tool will then automatically

generate EquivMark and EquivBE.

When the predicates EquivMark and EquivBE have been written, a

prede�ned function that generates the OS-graph can be invoked. When the

generation has �nished, the user is ready to analyse the OS-graph to get

information about the considered CP-net. The function that generates the

OS-graph implements an algorithm from [4]. This algorithm is a natural

modi�cation of the algorithm to construct a normal state space, i.e., an O-

graph: The test of equality before a new node is inserted, is replaced by a

test for equivalence. Similarly, the algorithm to construct OS-graphs precedes

insertion of an arc with a test for equivalence.

The algorithm is shown in �g. 9. It uses a number of auxiliary functions:

Node/Arc creates a node/arc in the OS-graph for the given equivalence class,

and Node moreover adds its argument to the set Waiting of unprocessed

nodes. Select picks a node from a given set. Represented uses the predicates

EquivMark and EquivBE, provided by the user, to determine whether the

equivalence class of the given node/arc is already in the OS-graph.

4.2 A First use of the OS-tool

In this section, we will illustrate the drawing facilities of the OS-tool. With

respect to veri�cation, drawing is of minor importance. Generation of the

OS-graph followed by suitable queries is the way to verify systems. However,

drawings are very adequate for presentation purposes. Here, we will use them
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Waiting := ;;
Node([M0]);

repeat

Select(M1,[Waiting]);

forall (b,M2) such that M1[b>M2 do

begin

if not(Represented(M2)) then

Node([M2])

�;

if not(Represented([M1],[b],[M2])) then

Arc([M1],[b],[M2])

�

end

Waiting := Waiting � f[M1]g
until Waiting = ;;

Figure 9: Algorithm to generate an OS-graph.

to compare the O- and OS-graph for the CPN model of Lamport's Algorithm,

for N = 3.

Part of the O-graph is shown in �g. 10. To enhance readability, we have

only shown some of the markings and some of the binding elements. Node

1 is the initial marking. The text placed right above the node describes

the marking. Empty places are not listed. In the initial marking, three

binding elements are enabled. They correspond to the three output arcs

from node 1. Consider the arc leading from node 1 to node 2. From the text

placed on this arc, it can be seen that an occurrence of the binding element

(setbi 2; < i = 3; bi = false >), in the initial marking, leads to the marking

of node 2. This marking is described by the text right above node 2.

When the permutation symmetry speci�cation SGL for the CPN model

of Lamport's algorithm is implemented, the OS-graph can be generated and

drawn. Part of it is shown in �g. 11. As in �g. 10, we have associated

texts with the nodes and arcs, which describe the corresponding marking or

binding element, chosen as representatives for the equivalence classes.

Let us in detail compare the partial O-graph in �g. 10 with the partial

OS-graph in �g. 11. We will argue that they contain the same information,

namely all occurrence sequences of the CPN model with at most two single

steps. Consider node 1 in the OS-graph. This node represents the set of

markings, which are equivalent to the initial marking. Because the permu-
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1

1
start_1: 1‘1+ 1‘2+ 1‘3
y: 1‘0
x: 1‘0
b: 1‘(1,false)+ 1‘(2,false)+ 1‘(3,false)

2

2
start_1: 1‘1+ 1‘2
setx_3: 1‘3
y: 1‘0
x: 1‘0
b: 1‘(1,false)+ 1‘(2,false)+ 1‘(3,true)

3 4

4
start_1: 1‘2+ 1‘3
setx_3: 1‘1
y: 1‘0
x: 1‘0
b: 1‘(1,true)+ 1‘(2,false)+ 1‘(3,false

56 78910

1:1->2
(setbi_2,<i=3,bi=false>)

3:1->4
(setbi_2,<i=1,bi=false>)

Figure 10: Part of O-graph for the CPN model of Lamport's Algorithm.

1

1
start_1: 1‘1+ 1‘2+ 1‘3
y: 1‘0
x: 1‘0
b: 1‘(1,false)+ 1‘(2,false)+ 1‘(3,false

2

2
start_1: 1‘1+ 1‘2
setx_3: 1‘3
y: 1‘0
x: 1‘0
b: 1‘(1,false)+ 1‘(2,false)+ 1‘(3,true)

3

3
start_1: 1‘1+ 1‘2
ify0_4: 1‘3
y: 1‘0
x: 1‘3
b: 1‘(1,false)+ 1‘(2,false)+ 1‘(3,true)

4

4
start_1: 1‘1
setx_3: 1‘2+ 1‘3
y: 1‘0
x: 1‘0
b: 1‘(1,false)+ 1‘(2,true)+ 1‘(3,true)

1:1->2
(setbi_2,<i=3,bi=false>)

2:2->3
(setx_3,<j=0,i=3>)

3:2->4
(setbi_2,<i=2,bi=false>)

Figure 11: Part of OS-graph for the CPN model of Lamport's Algorithm.
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tation symmetry speci�cation is consistent, we know from item 1 of def. 7

that the size of this equivalence class is 1. Hence, node 1 in the OS-graph

represents the equivalence class consisting exactly of node 1 in the O-graph.

Nothing is saved yet.

Things, however, improve when we consider the immediate successors of

node 1 in the two graphs. In the O-graph, node 1 has three successors;

in the OS-graph, only one successor. This is because nodes 2, 3, and 4 in

the O-graph are symmetric, i.e., belong to the same equivalence class. E.g.,

node 2 can be mapped into node 4 by swapping the processes 1 and 3. The

occurring binding elements, which lead from node 1 to the nodes 2, 3, and 4,

are also symmetric, and therefore, the OS-graph has only one arc from node

1 to node 2.

In a similar fashion, nodes 5, 8, and 10 of the O-graph are symmetric.

They are all markings in which two di�erent processes have executed one

statement each, and they are represented by node 4 in the OS-graph. The

same goes for the nodes 6, 7, and 9. They are all markings in which one

process has executed two statements, and are represented by node 3 in the

OS-graph.

5 Correctness of Lamport's Algorithm

In this section, we describe how to verify Lamport's Algorithm by means of

OS-graphs. In sect. 5.1, some properties expressing the correctness of Lam-

port's Algorithm are listed. In sect. 5.2, these are translated into dynamic

properties of the CPN model. Finally in sect. 5.3, we consider how to verify

dynamic properties for CP-nets using OS-graphs.

5.1 Properties of Lamport's Algorithm

In [12], a number of properties that mutual exclusion algorithms must posses

in order to be correct are discussed. These properties are 1 to 4 listed below:

1. Mutual exclusion: At any time, no more than one process is in the

critical section.

2. Persistent reachability of the critical section: When several processes

attempt to enter the critical section, eventually one will do so. It is not

possible to have a situation in which all processes are starved.
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3. No deadlocks: No execution of the mutual exclusion protocol can lead

to a situation in which there is no activity among the processes, i.e., a

situation in which all processes are blocked.

4. Independence: The behaviour of a process outside the mutual exclusion

protocol does not inuence the protocol.

In addition to these minimal requirements, there are some additional

properties, which we would like to verify. They are:

5. Return to start: In any execution, it is always possible to return to a

state in which all processes are positioned at the start label.

6. No dead code: Any statement always has the possibility of being exe-

cuted by some process in the future.

Obviously, there are logical relations between some of these properties.

E.g., No dead code implies No deadlocks.

5.2 Translation into CPN Dynamic Properties

Now, we explain how the properties formulated for Lamport's Algorithm

in the previous section can be veri�ed by means of the CPN model. Each

property of Lamport's Algorithm is translated into a dynamic property of the

CPN model. The necessary formal de�nitions are given as we proceed. For

a more complete description of dynamic properties for CP-nets, the reader

is encouraged to consult [1].

Mutual exclusion

An integer bound for a place p is a limit on the number of tokens on p

in all reachable markings. The best integer bound for p is the maximal

number of tokens on p in any reachable marking. Formally:

De�nition 10 n 2 N is an integer bound for p 2 P , i�

8M 2 [M0>: jM(p)j � n.

If an integer bound exists, p is said to be bounded. For a bounded place

p, the best integer bound is the minimal n 2 N such that n is an integer

bound. �
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The Mutual exclusion property can be veri�ed by considering the place

CS 21 in the CPN model (see �g. 2): When CS 21 contains a token with

colour i, it corresponds to process i being in the critical section. If 1 is an

integer bound for CS 21, then at any time at most one process will be in the

critical section.

Persistent reachability of the critical section

A transition t is impartial, i� in any in�nite occurrence sequence starting

in the initial marking, t has in�nitely many occurrences. Formally:

De�nition 11 Let IOS be the set of in�nite occurrence sequences starting

in M0 and OCt(�) be the number of occurrences of a transition t 2 T in an

in�nite occurrence sequence � 2 IOS.

A transition t 2 T is impartial, i�

8� 2 IOS : OCt(�) =1. �

The Persistent reachability of the critical section property can be veri�ed

by considering the transition sety0 23: When it occurs, process i is leaving

the critical section. If sety0 23 is impartial, then we cannot have an in�nite

occurrence sequence in which the critical section is not left and, hence, not

entered by some process an in�nite number of times. Thus, the critical

section remains always reachable.

However, if no in�nite occurrence sequence exists, the impartiality prop-

erty is trivially ful�lled. We therefore also have to establish the existence of

an in�nite occurrence sequence.

No deadlocks

A marking M is dead, i� no binding element is enabled in M . Formally:

De�nition 12 A marking M 2 M is a dead, i�

8x 2 BE : :M [x> : �

The No deadlocks property can be proved directly by proving that the

CPN model has no dead markings: Then, at any time during execution, at

least one transition will be enabled and, hence, at least one process will be

able to execute a statement.
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Independence

For this property, we only need the basic concepts of markings and enabling

already de�ned in defs. 3 and 4.

The Independence property is established, if we can verify that a process

cannot be forced to enter the mutual exclusion protocol in order to unblock

processes, which are executing the mutual exclusion protocol.

Entering the mutual exclusion protocol corresponds to occurrence of the

transition setbi 2. All other transitions of the CPN model are internal to the

protocol. What we want to show, is that if setbi 2 is the only enabled tran-

sition, then all processes are outside the protocol, i.e., on the place start 1.

Return to start

A set of markings X is a home space, i� it is possible from any reachable

marking to reach one of the markings in X. Formally:

De�nition 13 A set of markings X � M is a home space, i�

8M 2 [M0>: X \ [M>6= ;. �

The Return to start property holds, if the set of markings X described

next constitutes a home space: A marking M belongs to X, i� it is identical

to the initial marking for all places but x, which is allowed to contain any

single PID-token | in contrast to y, x will never be equal to 0, except from

at the very beginning.

No dead code

A transition t is live, i� from any reachable marking, we can reach a marking

in which t is enabled. Formally:

De�nition 14 A transition t 2 T is live, i�

8M 0
2 [M0> 9M 00

2 [M 0> 9x 2 BE(t) : M 00[x>. �

The No dead code property holds, if all transitions are live: Liveness of a

transition means that the corresponding statement always has the possibility

of being executed.
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No fairness

In addition to the properties listed in sect. 5.1, yet another property of Lam-

port's Algorithm is easy to derive from the CPN model. The algorithm is

not fair: Any process wanting to enter the critical section may be starved

forever. In the CPN model in �g. 2, an in�nite occurrence sequence starving

any given process can easily be constructed.

5.3 Veri�cation by Means of OS-graphs

The dynamic properties for CP-nets introduced in sect. 5.2, can be proved

by considering the OS-graph. It is worthwhile also to construct the strongly

connected components (SCCs) of the OS-graph and consider the SCC-graph

[4]. Investigating the SCC-graph instead of the OS-graph may signi�cantly

speed up the check of a dynamic property. Using Tarjan's algorithm (see,

e.g., [13]) or a similar algorithm, the construction of the SCC-graph is an

inexpensive operation. Its time complexity is linear in the size of the OS-

graph.

The reader interested in how the individual dynamic properties are veri-

�ed using the OS- and the SCC-graph is referred to [4] or [14]. The crucial

observation to make here is that to use the OS-tool, it is not necessary to

know these details. The user simply invokes the appropriate query function

and gets back a result. E.g., if the user wants to verify the mutual exclu-

sion property, formulated as an integer bound on the place CS 21, he simply

invokes a function, which takes a place as argument and returns the best

integer bound as result. Since all other properties of Lamport's Algorithm

in the previous section were formulated as dynamic properties of the CPN

model, they can all be veri�ed using the query functions, which are part of

the OS-tool.

6 Carrying out the Veri�cation

In this section, we consider the actual veri�cation of Lamport's Algorithm

using the OS-tool. Sect. 6.1 describes necessary preparations. Sect. 6.2

reports on the application of the OS-tool, and includes statistics gathered to

compare O- and OS-graphs. Finally, in sect. 6.3, the obtained veri�cation

results are discussed.
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6.1 Preparation of the Veri�cation

In order to use the OS-Tool for veri�cation of Lamport's Algorithm, we have

to prove that the permutation symmetry speci�cation SGL is consistent, i.e.,

prove that the three requirements in def. 7 are ful�lled. The proof, which is

included in full detail in [14], consists of a large number of cases, all of which

are truly trivial. We will not present the proof in this paper. One thing

related to the proof should, however, be noted at this point. In sect. 2.1, we

modelled a more general form of the for-statement in Lamport's Algorithm.

We did not specify the order in which the entries in the b-array were to be

tested. Had we done so, the permutation symmetry speci�cation would not

have been consistent. The reason is that if the entries are to be tested in turn

staring from b[1], then an ordering is imposed on the processes in Lamport's

Algorithm. Hence, all processes are not treated in the same way from a

symmetric point of view.

Once the permutation symmetry speci�cation is proved consistent, the

OS-tool can be applied. Veri�cation of Lamport's Algorithm amounts to the

following steps, which will be discussed below.

1. Implementation of the permutation symmetry speci�cation.

2. Generation of the OS-graph.

3. Generation of the SCC-graph for the OS-graph.

4. Invocation of suitable query functions.

Item 1 consists of implementing the predicates EquivMark and EquivBE

previously discussed in sect. 4.1. The utility functions provided by the OS-

tool to support the implementation of the predicates are described, together

with the underlying data structures, in [15].

In this paper, we will not describe how to implement the two predicates.

They are included in full detail in [14]. For a CPN model like the one for Lam-

port's Algorithm, it is very easy to program a naive version of EquivMark

and EquivBE. One way to implement, e.g., EquivMark is just to let it

test all permutation symmetries in turn. If one is found that maps the �rst

marking given as argument to the second, true is returned. Otherwise false

is returned. However, for e�ciency reasons, it is important to write the

predicates in a more clever way. We experienced that this was manageable,
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although both algorithmic and programming errors were made and had to

found and corrected.

When the permutation symmetry speci�cation has been implemented,

the OS-graph and the SCC-graph can be generated (items 2 and 3). This

is fully automatic | two generation functions are available via menus. Fi-

nally, suitable query functions (item 4) can be invoked to produce the desired

veri�cation results.

6.2 Application of the OS-tool

An inherent property of the occurrence graph method is that any graph is

generated for a �xed value of the system parameters | in this case the

number of processes N . Thus, the algorithm was veri�ed for a set of �xed

values. The computing power available determines the possible values of N .

The results presented here were obtained on a SUN Sparc Workstation with

256 MB of RAM.

In addition to generating and analysing the OS-graphs, we also considered

O-graphs. This is a main point, because the overall goal of using OS-graphs

is to save space, and we want to demonstrate that this was actually accom-

plished. Table 1 contains the sizes of the O- and OS-graphs. The columns

with headline Ratio shows the reduction factor for the OS-graph compared

with the O-graph. It holds the number of nodes and arcs, respectively, for

the O-graph divided with the corresponding number for the OS-graph. The

outermost right column lists the factorial N ! of N , i.e., the size of the group

of permutation symmetries.

Table 1: Sizes of O- and OS-graphs.

Nodes Arcs

N O-graph OS-graph Ratio O-graph OS-graph Ratio N!

2 380 191 2.0 716 358 2.0 2

3 19,742 3,367 5.9 58,272 9,788 6.0 6

4 1,914,784 83,235 23.0 9,046,048 383,030 23.6 24

Due to the state explosion problem, O-graphs could only be generated for

values of N up to 3. In spite of this, for N = 4, we actually do know the size
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of the O-graph. It is calculated from the OS-graph. Using algebraic group

theory, we have designed an e�cient algorithm to do so without unfolding.

The details of the method are described in [16]. This algorithm is interest-

ing, because it enables us to compare the sizes of the O- and OS-graph, even

when generation of the O-graph is impossible. The algorithm also turned out

to be a signi�cant test to justify that the implementation of the permutation

symmetry speci�cation, i.e., the predicates EquivMark and EquivBE was

correct, in the sense that it captured the intended assignment of symmetry

groups to the atomic colour sets, and the inheritance rules for the structured

colour sets. Moreover, the algorithm was suitable to increase our con�dence

in the consistency of the chosen permutation symmetry speci�cation. For

N � 3, if a discrepancy between the size of a generated O-graph and the

size calculated from the OS-graph appeared, then we knew that something

was wrong. Using this test, we corrected two non-trivial errors (see [14]) in

our initial implementation of EquivMark. When an accordance between the

sizes obtained by generation and calculation was recorded, it was very strong

evidence that the CPN model and the permutation symmetry speci�cation

were as intended. In this way, the algorithm was used to narrow the gap be-

tween the abstract permutation symmetry speci�cation, i.e., the assignment

of algebraic groups to the atomic colour sets, and its implementation.

Now, consider the time used for the veri�cation. Generation of SCC-

graphs and evaluation of query functions take a relatively short time. The

dominant time-consuming task is to generate the OS-graphs (or the O-graphs

when we want to compare). These generation times are contained in table 2.

An empty entry (-) signals that the measure could not be obtained.

Table 2: Generation times for O- and OS-graphs.

Seconds of CPU time

N O-graph OS-graph Ratio

2 5 4 1

3 2,259 84 27

4 - 17,472 -
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6.3 Discussion of the Veri�cation

With OS-graphs, we could verify Lamport's Algorithm for allN � 4. Results

from queries in the OS-tool showed that the correctness properties listed in

sect. 5 were true.

From table 1, it can be seen that for a given N , the O-graph is almost

N ! bigger than the OS-graph. This is remarkable. Because no more than N !

permutation symmetries are available, an equivalence class cannot be bigger

than N !. Therefore, N ! is a theoretical limit on the size of the O-graph

divided by the size of the OS-graph. I.e., the reduction obtained is almost

maximal.

From table 2, it can be seen that for a given N , generation of the OS-

graph was faster than generation of the O-graph. Even though we only have

two observations, they indicate what seems to be a general fact: What it lost

on a more expensive test on equivalence of markings and binding elements,

is accounted for by having fewer nodes and arcs to generate; and also to

compare with before a new node or arc can be inserted in the OS-graph.

However, for N = 4, it took about �ve hours to generate the OS-graph. Thus

pursuing more time-e�cient generation methods are of paramount interest.

At a �rst glance, the values of N , for which Lamport's Algorithm can be

veri�ed, might not impress. We would of course like as large values as pos-

sible. Can anything be done with respect to creating a model more suitable

for occurrence graph analysis? The answer is yes, but we pay a price with

respect to the credibility of the veri�cation. If we model the for-statement in

a more coarse fashion, we are be able to do the veri�cation for allN � 6. The

way to modify the modelling of the for-statement is to have one transition,

which is enabled when all b[i]'s are false, instead of testing all the entries

of the b-array individually. This is a bit dangerous though, because it vio-

lates the assumption about atomicity in Lamport's Algorithm. A non-atomic

statement is modelled as if it was atomic, jeopardising the correctness of the

model. Anyway, for N = 6, the OS-graph has 83,895 nodes and 360,933 arcs.

The O-graph is very big: 34,258,216 nodes and 175,300,026 arcs.

As explained in the beginning of this section, a slightly generalised version

of Lamport's Algorithm was the subject for our veri�cation, because of a

problem caused by the for-statement with respect to applying OS-graphs.

The model of the generalised algorithm has a larger O-graph than the model

of the original algorithm. Thus, even though OS-graphs yield big savings, in

some cases, the starting point for using them is worse than the starting point
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for using O-graphs. However, it is still worthwhile to use OS-graphs: For

N = 3, the O-graph for the CPN model of the original algorithm has 11,978

nodes and 32,226 arcs. The OS-graph for the CPN model of the generalised

algorithm has only 3,367 nodes and 9,788 arcs.

As an aside, after our own veri�cation of Lamport's Algorithm, we dis-

covered that for-statements have also been identi�ed as causing problems

with respect to exploiting symmetries in veri�cation in [17].

7 Conclusions

The main contributions of this paper are the presentation of our newly de-

veloped OS-tool supporting veri�cation of CP-nets by means of OS-graphs,

and the demonstration of the OS-graph method on a non-trivial example.

Using OS-graphs, it was possible to verify the crucial properties of Lam-

port's Algorithm. Once the permutation symmetry speci�cation was proved

consistent and implemented in terms of the predicates EquivMark and

EquivBE, the veri�cation was very easy and almost automatic: Generate

an OS-graph and an SCC-graph, and invoke suitable query functions in the

OS-tool.

In our search for a good example to demonstrate the OS-tool for veri�ca-

tion, the inspiration to consider Lamport's Algorithm came from Balbo et al.

[7]. Here, the authors verify Lamport's Algorithm using Coloured Stochas-

tic Petri Nets [18] [19] and place invariants. Balbo et al. verify Lamport's

Algorithm on a model in which the for-statement is modelled in the coarse

fashion described at the end of sect. 6. An advantage of the approach of

Balbo et al. is that Lamport's Algorithm is veri�ed for an arbitrary value of

N .

In the original presentation of Lamport's Algorithm in [6], Lamport him-

self establishes correctness. He uses an axiomatic method decorating the

algorithm text with assertions. Lamport concentrates on establishing dead-

lock freedom and mutual exclusion. As in [7], the properties are proved for an

arbitrary value of N . Both Balbo et al. and Lamport conduct complex and

lengthy mathematical proofs. For the mutual exclusion property, the former

only sketch the proof, while the latter more generally relies on a number of

proof sketches.

Balbo et al. also study the performance of Lamport's Algorithm. It is an

important subject, but outside the scope of the work we present in this paper.
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With respect to the logical behaviour of the algorithm, we establish similar

properties to Balbo et al. and Lamport, plus other important properties.

The main virtue of our proof is that it is almost automatic and, hence,

much less error-prone. We do not need to engage in detailed or complex

mathematical arguments. One quali�cation should be made though: The

complexity in our approach lies in implementing a permutation symmetry

speci�cation and in proving that it is consistent. If these two tasks were

automated, the proof would be fully automatic. Although this would improve

and ease the approach, the present situation is acceptable. This is because

a manual proof of consistency of the permutation symmetry speci�cation

reduces to checking a number of trivial cases. Based on this, we claim that

our results are quite reliable.

Our approach, however, has some drawbacks. First of all, it is necessary

to �x the system parameter | in this case the number of processes. Sec-

ondly, the number of processes, which can be handled presently, is restricted

to N � 4. Therefore, it is relevant to ask if we could have done better

with respect to the chosen method of veri�cation, e.g., if we had combined

symmetries with other methods for condensing occurrence graphs. One idea

is to consider Haddad's structural reductions [20]. However, as can be seen

from an inspection of the CPN model in �g. 2, the conditions which are

required in order to use structural reductions are not present. Yet another

idea is to apply Valmari's stubborn sets [21]. It is generally recognised that

stubborn sets and symmetries can be applied simultaneously, thus yielding

an even smaller occurrence graph. Unfortunately, unlike symmetries, none of

the versions of stubborn sets that we know of preserve, e.g., the best integer

bound for places, used to prove mutual exclusion. Also, for CP-nets, no tool

support for stubborn sets exists.

Exploiting the symmetries present in many distributed systems has also

been done in related approaches like [22] in which arbitrary transition sys-

tems are considered. Here, symmetries are combined with binary decision

diagrams (BDDs) to design an e�cient model checking algorithm. With re-

spect to symmetries, the basic ideas of this approach are to a large extent

a reinvention of the ideas behind OS-graphs. Also, the ideas of Well-formed

Coloured Nets (WNs) [23] resemble those of OS-graphs. Detection of sym-

metries in WNs can be fully automated, thus e�ectively eliminating the need

of conducting a consistency proof.

The veri�cation of Lamport's Algorithm showed three areas in which the

OS-tool must be improved. First of all, writing the permutation symmetry
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speci�cation (the predicates EquivMark and EquivBE) was error-prone and

time-consuming, since it had to be done manually. Presently, we are working

on an improved interface for permutation symmetry speci�cations: The user

is only asked to assign his chosen symmetry groups to the atomic colour sets.

The OS-tool then automatically generates EquivMark and EquivBE. A

preliminary prototype of the new interface exists. It is documented in [24].

Secondly, proving the consistency of the permutation symmetry speci�cation

is tedious, because of the many cases in the proof, which need to be consid-

ered. Therefore, it would be preferable, if the tool could check most or all of

these cases automatically. This can be done in a way similar to the checking

of a proposed place invariant as described in [4]. Finally, the time used for

the generation of the OS-graph should be improved. One way of doing this

is to take advantage of a special kind of symmetries called self-symmetries.

The details of this idea are described in [4] [15].

In [25], the OS-tool has been used to study the correctness of other well-

known mutual exclusion algorithms. Here, the authors were not in advance

familiar with OS-graphs nor our tool. It took them less than two weeks to be-

come familiar with the approach and to carry out the veri�cation. These ex-

amples and our veri�cation of Lamport's Algorithm con�rm that OS-graphs,

with the emergence of the OS-tool, is a step towards practical formal veri�-

cation of non-trivial distributed systems.
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