
Design/CPN | A Computer Tool for

Coloured Petri Nets

S�ren Christensen, Jens B�k J�rgensen, and Lars Michael Kristensen

Computer Science Department, University of Aarhus

Ny Munkegade, Bldg. 540, DK{8000 Aarhus C, Denmark

E-mail: fschristensen, jbj, krisg@daimi.aau.dk

Abstract. In this paper, we describe the computer tool Design/CPN

supporting editing, simulation, and state space analysis of Coloured Petri

Nets. So far, approximately 40 man-years have been invested in the de-

velopment of Design/CPN. It is used world-wide by more than 200 com-

panies and research institutions. For the presentation, we draw from

the experiences gained in a recent industrial application using Coloured

Petri Nets in the design, validation, and veri�cation of communication

protocols for audio/video systems.

1 Introduction

Coloured Petri Nets (CP-nets or CPN) [11,12] is a powerful graphical language

for design, speci�cation, validation, and veri�cation of systems. CP-nets have a

wide range of application areas and many projects have been carried out in the

industry and documented in the literature, e.g., in the areas of communication

protocols [6], operating systems [3], hardware designs [7], embedded systems [17],

software system designs [18], and business process re-engineering [16].

The �rst graphical computer tool supporting CP-nets emerged in 1989, the

editor and simulator Design/CPN [10]. The tool is developed in close cooper-

ation between Meta Software Corporation, Cambridge, Massachusetts, and the

CPN group at University of Aarhus, Denmark. Design/CPN is under ongoing

development, with participation of the authors of this paper. Our aim here is

to describe Design/CPN as it appears in 1997, focussing more on the involved

concepts than on the user interface. In particular, we describe the recently de-

veloped support for formal analysis using state spaces, and the way in which it

is integrated with simulation.

The paper is organised as follows: Section 2 sums up the industrial application

used as running example throughout this paper. In Sect. 3, important concepts

of the CPN formalism are informally introduced. Section 4 provides an overview

of the architecture of Design/CPN. Sections 5, 6, and 7 describe the support for

editing, simulation, and state space analysis, respectively. Section 8 concludes

the paper by discussing related work and future plans for Design/CPN.

2 Example of Industrial Use | The B&O Project

As the main part of a two man-years CPN project [4], the renowned Danish man-

ufacturer of audio/video systems Bang & Olufsen A/S (B&O) used Design/CPN

for validation and veri�cation of an important communication protocol. The pro-

tocol is part of B&O's BeoLink system that connects the audio/video devices

of a home in a network. This allows sharing of resources such that, e.g., a per-

son can remotely use a CD player located in another room. In this paper, we

refer to the CPN model of the protocol under consideration as the B&O model.

The protocol is a mutual exclusion protocol ensuring exclusive access to various

services. A device must possess a key in order to be allowed to perform critical

actions, e.g., change of track on a CD. The purpose of the protocol is to prevent

disorder, e.g., that track 11 is selected on a CD if two users request track 1

simultaneously. There is exactly one key in the system. The key is being passed

between the devices upon request. Figure 1 depicts a typical communication.

key_wanted

KEY_TRANSFER

NEW_LOCK_MANAGER

key_ready

User1 Device1

REQUEST_KEY

Device2 Device3 Device4

Fig. 1. Communication between devices.

Communications in the protocol are initiated by users. When a user presses

the button on a remote control, internal actions inside a device are prompted,

which results in a request for the key. In Fig. 1, assume that Device1 is a CD

player, operated by User1 who wants to change track. The key is requested

by User1 with the event key wanted sent to Device1. Device1 does not have

the key. Therefore, the key is requested on the network by broadcasting a

REQUEST KEY telegram. Device1 is granted the key when the KEY TRANSFER tele-

gram is received. Now, a NEW LOCK MANAGER telegram is sent to the former key

holder Device3 as an acknowledgement. Finally, User1 gets the event key ready,

and the change of track can take place.

The protocol was thoroughly validated using simulation, and important parts

were formally veri�ed by state space analysis. Moreover, Design/CPN was used

for design, validation, and veri�cation of a possible future version of the protocol

under consideration.

3 Coloured Petri Nets

In this section, we give an informal introduction to CP-nets. The intention is to

give an idea of the involved concepts, not to provide a complete description. The

reader who is interested in a full and formal de�nition is referred to [11] or [12].

2

A CP-net is always created as a graphical drawing, a CPN diagram. An

example can be seen in Fig. 2, which shows an extract from the B&O model.

The extract models the actions taken in the mutual exclusion protocol, when

a device receives a REQUEST KEY telegram. The example is more complex than

usual introductory examples in order to give a avour of CPN models of real-

world, industrial systems.

[#command tlg = LOCK_MANAGER_COMMAND,
 #type_ms tlg = REQUEST_KEY,

 outtlg =
 send(tlg, LOCK_MANAGER_STATUS, KEY_TRANSFER),
 outtlg1 =
 send(tlg, LOCK_MANAGER_STATUS, KEY_TRANSFER_IMPOS)]

REQ_KEY

fl_state
FL_STATE P

KEY_FREE

recbuf
TLG_LIST P

sendbuf
TLG_LIST P

fl_timer
TIMER P

tlg::tlg_list

tlg_list1^^(
case fl_state
of KEY_FREE => [outtlg]
 | KEY_USED => [outtlg1]
 | KEY_TRANS => [outtlg1]
 | KEY_TR_SE => [outtlg1]
 | default => [])

tlg_list

tlg_list1

case fl_state
of KEY_FREE => KEY_TRANS
 | default => fl_state

fl_state

(case fl_state
 of KEY_FREE =>
 set_timer (TRANS_VALUE)
 | default => empty)

Fig. 2. Extract of CPN diagram.

A CP-net describes both the states and the actions of a system. Below we

explain how. Moreover, we outline the operational semantics of CP-nets, and we

introduce the concepts of time and modules.

Modelling of states. The state of a CP-net is represented using places, drawn

as ellipses with a name positioned inside. A marking (or state) of a CP-net is a

distribution of tokens on the places. The tokens carry data values (colours), and

each place has a type1 (colour set) which determines the kind of tokens which

the place may contain. The type of a place is written in bold and italics at the

top left of the place.

In Fig. 2, the places recbuf and sendbuf both have the type TLG LIST de-

noting lists of telegrams (\TLG" abbreviates \telegram"). The two places model

the receive and send bu�ers used to temporarily store incoming and outgoing

telegrams respectively within a device. A list type is chosen to model that tele-

grams are handled in the order of reception. The place fl state (\" abbreviates

\function lock", which is B&O's name for the modelled protocol) has the type

FL STATE, used to model the state of a device with respect to the protocol, e.g.,

1 An alternative and perhaps better name for Coloured Petri Nets might be \Typed

Petri Nets". However, the term \Coloured" has a historical explanation, and it has

stayed the most commonly used term.

3

to signal whether the device has the key or not. The place fl timer is used for

time-outs, as explained later.

Modelling of actions. The actions of a CP-net are represented using transi-

tions, drawn as rectangles. Transitions and places are connected by arcs. The

actions of a CP-net consist of transitions removing tokens from the places con-

nected to incoming arcs (input places) and adding tokens to the places connected

to outgoing arcs (output places). This is often referred to as the token game. The

tokens removed and added are determined by arc expressions, which are posi-

tioned next to the arcs. E.g., the arc expression on the bold arc from recbuf to

the transition (named REQ KEY) is tlg::tlg list and the arc expression on the

thin outgoing arc to recbuf is tlg list.2 tlg is a variable of type TLG, i.e., a

telegram, and tlg list is a variable of type TLG LIST.

Operational semantics. A transition, which is ready to remove and add to-

kens, is said to be enabled and may occur. There are two kinds of conditions that

must be ful�lled for a transition to be enabled. The �rst kind is that appropri-

ate tokens are present on the input places. More precisely, it must be possible

to assign (bind) data values to the variables appearing on input arcs such that

the arc expressions evaluate to tokens available on the input places. In Fig. 2,

this means that one condition for enabling of REQ KEY is that recbuf contains

a non-empty list. In that case, the variable tlg can be bound to the head of the

list, and the variable tlg list to the tail. The expressions on the two input arcs

from the places sendbuf and fl state respectively are variables. A variable may

be bound to any token (of the right type). Thus the only condition on enabling

of REQ KEY from these two places are that they are non-empty, i.e., contain at

least one token each.

The second kind of condition comes from the guard, which is a boolean ex-

pression assigned to the transition. The guard must evaluate to true in order for

the transition to be enabled. In Fig. 2, the guard is positioned in square brack-

ets inside the transition. The commas between the constituents of the guard are

interpreted as logical conjunctions. The �rst two equations of the guard check

that a telegram, which is ready at recbuf, is of a type to be handled here. It

must be a LOCK MANAGER COMMAND (i.e., pertain to this mutual exclusion proto-

col | there are many other telegrams on the network used for other purposes),

and moreover a REQUEST KEY telegram. The two remaining equations are used

to construct an appropriate response in the variables outtlg and outtlg1.

An occurrence of the transition REQ KEY models reception of a REQUEST KEY

telegram by a device. The result is an appropriate response. There are three

possibilities: 1) The receiving device has the key and is willing to give it away:

The marking of fl state is KEY FREE, and is changed to KEY TRANS to signal

that a key transfer is started | see the case expression on the dashed arc to

fl state. Also, a KEY TRANSFER telegram is put on sendbuf | see the guard

2 The operator :: is the basic list constructor.

4

and the case expression on the bold arc to sendbuf.3 2) The receiving device

has the key but is not willing to give it away: A KEY TRANSFER IMPOS telegram

is put on sendbuf| can be seen as in the previous case. 3) The receiving device

does not have the key: There is no response | the case expression on the bold

arc to sendbuf evaluates to the empty list, and the marking of sendbuf remains

unchanged.

Time. In Fig. 2, when a key transfer is started, a timer is set in order to be

able to time out if an acknowledgement from the recipient does not arrive in

due time. To capture this aspect of the protocol, the model is timed. Time is

part of the CPN formalism [13]. In a timed CP-net, there is a global clock, delays

are assigned to some arcs and transitions, and some tokens have time stamps. A

token can only participate in an occurrence of a transition if it has a time stamp

smaller than the global clock. After each step, the global clock is incremented

such that at least one transition becomes enabled (if possible).

From the arc expression on the arc to the place fl timer, it can be seen that,

when a key transfer is started, a token is put on this place with a time stamp

indicating that the token cannot participate in any occurrence before a time

period of length TRANS VALUE has elapsed. TRANS VALUE is a globally de�ned

symbolic constant specifying the length of the delay.

Modules. The structuring and reusability o�ered by modules are part of the

CPN formalism. The B&O model consists of 13 modules, and we only consider

a small fraction in Fig. 2. Here, the small box with a P inside near each place

indicates that the place acts as an interface to the other modules of the full model:

The places are in a well-de�ned way merged with places on other modules, thus

allowing exchange of tokens between modules.

4 Tool Architecture

In this section, we give an overview of Design/CPN. The overall architecture is

shown in Fig. 3.

The two main components are the Graphical User Interface (GUI) and the

Abstract Machine. They communicate in the sense that graphical representations

are transformed into abstract/internal representations and vice versa.

When a CPN diagram has been created in the Editor, the Syntax Checker

of the Compiler is invoked to ensure that the model constitutes a legal CP-net.

When this is the case, the Simulation Code can be generated by the Simulation

Code Generator. Enabling and occurrence of transitions are calculated by the

Simulator of the Abstract Machine, and the simulation is controlled and viewed

by the user on the CPN diagram in the Simulator of the GUI. The Simulator

of the Abstract Machine also contains the State Space Code Generator which is

able to build the functions and data structures used for state space analysis. The

3 The operator # extracts a �eld from a record and ^^ concatenates two lists.

5

Graphical User Interface (GUI)

Abstract Machine

Compiler
Syntax Checker

Simulation Code
Generator

Editor Simulator State Space Analysis
Dead 4;
> true

State Space

Property Checking
Algorithms

Generation and Storage

Simulator
Simulation Code

State Space Code
Generator

Fig. 3. Architecture of Design/CPN.

State Space part of the Abstract Machine provides functionalities for Generation

and Storage of state spaces, and it contains the Property Checking Algorithms

which are available for the user through the State Space Analysis part of the

GUI.

The GUI is built on top of the general graphical package Design/OA [5]

and the Abstract Machine is built on top of the Standard ML (SML) New

Jersey compiler [1]. The GUI and the Abstract Machine run as two separate

communicating processes.

A language called CPN ML is used for declarations (of types, etc.) and net

inscriptions (arc expressions, guards, etc.) in CP-nets. CPN ML is SML [15]

extended with some syntactical sugar to ease declarations of types, variables,

etc. The fact that the inscription language is based on SML has several virtues.

Firstly, the expressiveness of SML is inherited by Design/CPN. Secondly, SML

is strongly typed allowing many modelling errors to be caught early. Thirdly,

SML is a functional language | evaluation of SML expressions has no side

e�ects, which is consistent with the operational semantics of CP-nets. It would

not make sense if, e.g., evaluation of a guard for a transition might have an

impact on the marking of some places. A forth virtue is that polymorphism and

de�nition of in�x operators in SML allow net inscriptions to be written in a

natural, mathematical syntax. Finally, SML is well documented (see, e.g., [19]),

tested, and maintained. The choice of SML has turned out to be one of the

most successful design decisions for Design/CPN. The main drawback is that

the generality, of course, has a negative impact on the size and speed of the

Abstract Machine.

It is an advantage to build Design/CPN upon Design/OA and SML, which

are both available on di�erent platforms, since the platform dependency is iso-

lated in these building blocks and not in the tool itself.

6

5 Editor

The Design/CPN editor supports construction, modi�cation, and syntax check

of CPN diagrams. In typical industrial applications, a CPN diagram consists of

10-100 modules with varying complexities. A modeller must �nd a suitable way

to divide the model into modules. Moreover, the modeller must �nd a suitable

balance between net structure (i.e., places, transitions, and arcs), declarations,

and net inscriptions. We list and discuss important features of the editor below.

Overview of modules. Design/CPN provides an overview of the modules of

a CP-net and their interrelation by automatically creating and maintaining a

so-called hierarchy window, which is similar to project managers known from

conventional programming environments. The hierarchy window for the B&O

model is shown in Fig. 4.

BeoLink

network

device

func_lock

reqkey

newlock

keylost

keytrans

keyimpos

keywant

keyrel

timeout

user

Device1

Device2
Device3
Device4

Fig. 4. Hierarchy window.

The hierarchy window represents each of the 13 modules as a node. There

is an arc from one module to another, if the �rst has parts that are described

in more detail in the second. E.g., the topmost module BeoLink consists of

a network and a number of devices, where the details are modelled by other

appropriately named modules. From the hierarchy window, the modules can be

opened, i.e., the user can browse the modules constituting the CPN model.

Flexible graphics. In order to be able to create easily readable CP-nets, De-

sign/CPN supports a wide variety of graphical parameters such as shapes, shad-

ing, borders, etc. The underlying formal CPN model (in the Abstract Machine

of Fig. 3) is una�ected by the graphical appearance. E.g., an object created as a

place remains a place forever, independent of graphical changes. Flexible graph-

ics is in Design/CPN accompanied by sensible defaults, e.g., the default shape

of a place is an ellipse. Figure 2 is an example on the use of exible graphics.

The main ow goes from the topmost place recbuf to the bottommost place

sendbuf, as indicated by the thick borders of the places and the bold arcs.

7

Syntax checking. The editor enforces a number of built-in syntax restrictions,

and thereby prevents the user from making certain syntax errors during the

construction of a model. It is, e.g., not possible to draw an arc between two

transitions or between two places. However, it is impossible to catch all syntax

errors e�ciently that way. Hence, there is a syntax checker, which can be invoked

when the user wants to ensure that the created model constitutes a legal CP-net.

Reporting of syntax errors is based on a hypertext facility. We illustrate this

by explaining how an error in the extract from Fig. 2 may be reported. Assume

that we made an error during the editing of the module reqkey that includes the

considered extract. In the hierarchy window (Fig. 4), an error box will appear.

The error box will contain a text saying that there is an error in the module

reqkey, and there will be a hypertext link pointing to the erroneous module.

Following this link will open the module reqkey and select another error box

with a further description of the problem. An example of an error may be that

an arc expression has a type which is di�erent from the type of the place of the

arc. Several errors can be reported at the same time during a syntax check.

In many cases, correcting syntax errors only involve local changes. For e�-

ciency reasons, the syntax check is incremental. This means that only the mod-

i�ed part of the model is syntax checked again | not the entire model. E.g.,

assume that all 13 modules of the B&O model depicted in Fig. 4 have been

syntax checked. When a syntax error regarding the transition REQ KEY has been

�xed, only that transition and its surrounding arcs are rechecked, not all 13

modules.

6 Simulator

The Design/CPN simulator supports execution of CPN models. Simulation of

CPN models has many similarities with debugging of programs written in high-

level languages such as Pascal or C. Design/CPN provides di�erent modes of

simulation suitable for di�erent purposes. We list and discuss important features

of the simulator below.

Simulation control. In the early phases of a modelling process, the user typ-

ically wants to make a detailed investigation of the behaviour of the individual

transitions. The simulator here plays the role of a single-step debugger. For this

purpose, Design/CPN o�ers an interactive mode: The user is in full control, sets

breakpoints, chooses between enabled transitions, possibly changes markings,

and studies the token game in detail. Typically, a few steps per minute are exe-

cuted. Interactive simulations do not require the model to be complete, i.e., the

user can start investigating the behaviour of parts of a model and directly apply

the gained insight in the ongoing design activities. Often, a model is gradually

re�ned | from a crude description towards a more detailed one.

Later on in a modelling process, the focus shifts from the individual tran-

sitions to the overall behaviour of the full model. The automatic mode of De-

sign/CPN is suitable here: The simulator itself makes random choices between

8

enabled transitions, and the token game is not displayed; feedback has a di�er-

ent form, e.g., graphical animation or write to a �le. Many steps are executed

in a short time. This is achieved even for large models, because the enabling

and occurrence rules of Petri Nets are local. This means that, when a transition

has occurred, only enabling of the nearest transitions need to be recalculated,

i.e., the number of steps per second is independent of the size of the model. The

speed in automatic mode is high, typically more than 1,000 steps per second.

Viewing interactive simulations. In Fig. 5, a snapshot from an interactive

simulation is depicted.

[#command tlg = LOCK_MANAGER_COMMAND,
 #type_ms tlg = REQUEST_KEY,

 outtlg =
 send(tlg, LOCK_MANAGER_STATUS, KEY_TRANSFER),
 outtlg1 =
 send(tlg, LOCK_MANAGER_STATUS, KEY_TRANSFER_IMPOS)]

fl_state
FL_STATE

1 1‘KEY_FREE

recbuf
TLG_LIST

1

1‘[{to_address = NODE_NO(1),
from_address = NODE_NO(2),
command =
LOCK_MANAGER_COMMAND
,type_ms = REQUEST_KEY}]

sendbuf
TLG_LIST

1 1‘[]

fl_timer
TIMER P

REQ_KEY

tlg::tlg_list

tlg_list1^^(
case fl_state
of KEY_FREE => [outtlg]
 | KEY_USED => [outtlg1]
 | KEY_TRANS => [outtlg1]
 | KEY_TR_SE => [outtlg1]
 | default => [])

tlg_list

tlg_list1

case fl_state
of KEY_FREE => KEY_TRANS
 | default => fl_state

fl_state

(case fl_state
 of KEY_FREE =>
 set_timer (TRANS_VALUE)
 | default => empty)

Fig. 5. Visualisation of interactive simulation.

The current marking is indicated: The number of tokens on a place is con-

tained in the circle on top of the place. The absence of a circle corresponds to

zero tokens. The data values of the tokens are shown in the box with a dashed

border positioned next to the place. If desired, the user can make a box invisible,

e.g., if the data values are irrelevant or too big to print. The transition is shown

with a thick border to indicate that it is enabled in the current marking.

Viewing automatic simulations. Before and after an automatic simulation,

the current marking and the enabled transitions are indicated as described above.

Of course, this is typically less information than desired. The user wants to know

what happened during an automatic simulation. Design/CPN supports that a

log of the transitions executed are saved in a text �le. This is full information,

but the representation may be inappropriate.

Often, the user wants to de�ne his own abstract view focussing on a particular

aspect of the model. In the B&O model, the goal was to study the telegrams

exchanged between devices. Hence, the model was instrumented to give feedback

in terms of a message sequence chart as the one already shown in Fig. 1. It was

9

much easier and more e�cient for the involved B&O engineers to discuss results

of simulations in terms of the familiar message sequence charts than in terms of

the token game. It was also important for presentation purposes, since simulation

results could easily be discussed with colleagues not familiar with CP-nets.

Message sequence charts in Design/CPN are supported by a library, which

was easily built due to the generality, expressiveness, and exibility provided by

Design/OA and SML.

Integration with the editor. Often, a simulation results in the desire to mod-

ify the model. Some of these modi�cations can be made immediately: It is possi-

ble to make minor changes while remaining in the simulator, e.g., to edit an arc

expression. Other modi�cations require more involved rechecking/regeneration

of the simulator code, which is only supported in the editor, e.g., it is not pos-

sible to add or change a type in the simulator. In Design/CPN, the editor and

simulator are closely integrated. Therefore, it is easy and fast to switch from

the simulator back to editor, �x a problem, re-enter the simulator, and resume

simulation.

7 State Space Analysis

The state space of a CP-net is a directed graph with a node for each reachable

state and an arc for each possible state change. If the state space is �nite, it can

be used to prove an abundance of properties, e.g., reachability, boundedness,

liveness, and fairness.

Design/CPN supports generation, analysis, and drawing of state spaces for

CPN models (timed as well as un-timed). The well-known state explosion prob-

lem is, of course, a practical obstacle. Whether a model can be analysed is

determined by the amount of memory of the computer and the complexity of

the model. Design/CPN has been used to handle state spaces with up to 400,000

nodes and 1,000,000 arcs.

We list and discuss important features of support for state space analysis in

Design/CPN below.

Generation control. Often, a state space is so huge that it cannot be fully

generated. Thus, the user is forced to focus on certain aspects of the model,

corresponding to generating only subsets of the state space. For this purpose,

Design/CPN provides stop options and branching options. Stop options are used

to terminate the generation, e.g., when a certain number of nodes has been

generated. Branching options enable the user to specify that, for some states,

no successors should be generated. An example of a use of branching options

comes from the B&O model, where the investigated protocol governs a key.

When the system starts from scratch, no key exists. The protocol must ensure

that a key is initially generated. Thus, a branching option was used to specify

that, for states where a key is present, no successors should be generated. In

10

this way, a partial state space was generated, and it was used to formally prove

that the protocol does in fact ensure that a key is always generated. For a

system with four audio/video devices, this partial state space had 13,420 nodes

and 41,962 arcs. On a Sun Ultra Sparc Enterprise 3000 computer with 512 MB

RAM, the generation took about three minutes, and the desired analysis results

were subsequently achieved within a few seconds.

It is also possible to generate (parts of) a state space interactively. Here the

user speci�es a state, and Design/CPN then calculates all direct successors. This

is typically used in conjunction with drawing of parts of state spaces (see below).

Queries. The aim of generating a state space is to check whether the considered

model has certain properties. Some standard queries are relevant for many mod-

els, e.g., to give generation statistics (number of nodes and arcs), list of dead

states, and information on liveness of transitions. Design/CPN supports that

the results of the standard queries are automatically saved in a textual report.

Negative answers to standard queries are constructive, i.e., they help the user

investigate why an expected property does not hold. E.g., if an unexpected dead

state is found, a shortest path from the initial state to the dead state is provided

as helpful information.

Other queries depend on the model being investigated. Design/CPN provides

a general query language implemented in SML for that purpose. An example of

a model-dependent query from the B&O project is to �nd all states in which a

given device has the key.

In addition to the standard SML-based query language, the Design/CPN

library ASK-CTL [2] allows analysis of state spaces by means of a CTL-like

temporal logic. It is not only possible to formulate queries about states, but also

queries about state changes.

Drawing. Since state spaces often get large, it rarely makes sense to draw them

in full. However, the result of a query is often a set of nodes and/or arcs possessing

certain interesting properties, e.g., a path in the state space leading from one

state to another. A good and quick way in which to get detailed information

on a small number of nodes and arcs is to draw the necessary part of the state

space.

In Design/CPN, part of the state space can be drawn either manually or

automatically. An example of a drawing of a selected part of the state space from

the B&O model can be seen in Fig. 6. Node 37 corresponds to the state which

was shown in Fig. 5, where the transition REQ KEY is enabled. The occurrence of

this transition corresponds to the arc leading to node 43. Design/CPN provides

descriptors for nodes and arcs. For the nodes, the descriptors typically show the

marking of certain places; in Fig. 6, the places recbuf and sendbuf. For the arcs,

the descriptors typically show the occurring transition and the binding of some

of its variables. The descriptors have sensible defaults but may be customised

by the user, thus o�ering a exible way in which to de�ne a view on the state

space.

11

37

Marking 37:
recbuf :
 1‘[{to_adress = NODE(1),
 from_adress = NODE(2),
 command = LOCK_MANAGER_COMMAND,
 type_ms = REQUEST_KEY}]
sendbuf: 1‘[]

30

39

36

43

38

37 -> 43:
Transition: REQ_KEY
Binding: {fl_state = KEYFREE,
 tlg_list1 = [] }

Fig. 6. Drawing of a state space.

Integration with the simulator. During a modelling process, the user often

switches between state space analysis and simulation. Design/CPN supports

transfer of a state from the generated state space to the simulator. The new

state of the simulator is displayed graphically as usual on the CPN diagram.

The user may now start a simulation from this state. E.g., transferring the state

corresponding to node 37 in Fig. 6 into the simulator results in Fig. 5. In this way,

the simulator can be used as a quick way of viewing a state fetched from the state

space. Transferring the simulator state into the state space is supported as well.

If the simulator state is not already included in the state space, the state will be

added. Otherwise, the number of the node corresponding to the simulator state

is returned to the user. A typical use of this feature is to investigate all possible

states reachable within a few steps from the current simulator state. Here the

user transfers the simulator state into the state space. Now, all successor states

can easily be found and drawn as explained above. In contrast, the simulator

itself can, of course, only be used to investigate one execution at a time.

Time and space e�ciency. The major time-consuming task when generating

a state space is to check if a given state is already included. Design/CPN uses

hash coding to speed up this check. The hash coding maps all states with the

same number of tokens on all places to the same key.

For many states, only the markings of a few places di�er. Because of that,

Design/CPN uses sharing when storing a state space. Information is shared on

two levels: Firstly, the states are separated into a part for each module of the

model | which means that a transition often only changes one of these parts.

The other parts can be shared immediately. Secondly, the representations of the

markings of places are stored only once. All places, having the same marking,

will refer to this one representative.

Condensation methods. Even with the considerations above taken into ac-

count, the sizes of the state spaces remain a problem, and improvements are

12

needed. Several methods for construction of smaller state spaces have been pro-

posed. One approach relies on the observation that many models have states that

are very similar | they are in a well-de�ned way equivalent [13]. Design/CPN

has recently been extended to support this method through the library the De-

sign/CPN OE/OS Tool [10].

8 Conclusions

We now conclude the paper by considering related tools for construction and

analysis of systems, and future plans for Design/CPN. We discuss one good

Petri Net tool and two other well-known and ingenious tools. The two latter are

not based in Petri Nets. The three tools are described, �rst by listing important

virtues, then by listing drawbacks compared to Design/CPN.

PEP [8] is another Petri Net based tool. Compared to Design/CPN, PEP has

a more modern, graphical user interface, and it allows process algebraic speci�ca-

tion of systems as well. The main drawback of PEP is that, before veri�cation, a

system speci�cation is always translated (unfolded) into an ordinary (low-level)

Petri Net. This approach entails a serious complexity problem with respect to

analysis of many real-world systems. Design/CPN does all analysis directly on

the given CP-net without unfolding.

SPIN [9] is a widely used tool for design and analysis of systems. Like De-

sign/CPN, SPIN supports editing, simulation, and state space analysis of models.

Input to SPIN is given in the C-like textual language PROMELA. With respect

to formal veri�cation, SPIN is currently more sophisticated than Design/CPN.

SPIN includes, e.g., the bit state hashing technique and partial order reduction

as means to alleviate the state explosion problem. We believe that the approach

to modelling by drawing is one of the main virtues of Design/CPN. It is as easy

and convenient to structure a large model as a set of graphical modules with

well-de�ned relations between them in Design/CPN, as it is to create modules

of text in SPIN. Moreover, although it certainly requires expertise to create

models in Design/CPN, they can often be easily understood also by non-experts

because of the appealing graphics. With respect to simulation, SPIN primarily

presents the results in terms of message sequence charts. Design/CPN is more

open, and allows users to customise the feedback, e.g., [17] describes use of ad-

vanced graphical feedback in Design/CPN to design an alarm system.

SMV [14] is a tool using binary decision diagrams (BDDs) to obtain space-

e�cient storage of state spaces. Like in SPIN, input to SMV is given in a textual

language. SMV is capable of analysing systems with indeed very many states,

and has proven highly useful for veri�cation of systems in which the states have

a simple (in some sense) description. SMV is tuned for design and analysis of

hardware and hence not as general as Design/CPN. The type concept of SMV

is restricted to simple types like booleans and enumeration types. It is unknown

whether the BDD technique can be e�ectively generalised to CP-nets with their

very elaborated notion of state. If it is possible, it may induce a dramatic im-

13

provement of Design/CPN. The support for simulation in SMV is limited. SMV

only supports what corresponds to the interactive mode of Design/CPN.

Many improvements and extensions are interesting for future versions of De-

sign/CPN. Here we mention two important ones. A new version of the simulator

is being built. Several data structures and internal algorithms have been re-

designed and reimplemented. Experimental measures show that, for many mod-

els, the new simulator runs about a thousand times faster than the old. So far,

three man-years have been invested in the design and implementation of the new

simulator, but one man-year is still needed. The second extension is to support

other formal analysis methods in addition to state space analysis. Design/CPN

will be extended with a part for place invariant analysis. An early prototype

exists [10]. It is able to check the validity of (many) proposed place invariants

without generating all reachable states. Instead, the check is done locally | for

each transition, it is checked that no occurrence can change the proposed invari-

ant. Only the arc expressions and guards need to be considered. The check is

in general undecidable, but indeed possible for many CPN models appearing in

practical applications.

Design/CPN is a complex and comprehensive tool, and in this paper we

have merely given an overview. More information on CP-nets and Design/CPN

is available on the World Wide Web at http://www.daimi.aau.dk/designCPN/,

e.g., a tutorial, a user's manual, many examples, and more on future plans. Also,

here it is described how to get a free-of-charge copy of the tool.

Acknowledgements. We thank the numerous people involved in the devel-

opment of Design/CPN, in particular Peter Huber, Kurt Jensen, and Robert

Shapiro. We thank Niels Toft S�rensen, B&O, who was responsible for devel-

oping the B&O model used as example. Finally, we thank Allan Cheng, Kjeld

H�yer Mortensen, and Kim Sunesen for comments and proof-reading.

The work on this paper has been supported by grants from University of

Aarhus Research Foundation and the Faculty of Science at University of Aarhus.

References

1. A.W. Appel and D.B. MacQueen. Standard ML of New Jersey. In J. Maluszy�nski

and M. Wirsing, editors, Third International Symposium on Programming Lan-

guages Implementation and Logic Programming, volume 528 of Lecture Notes in

Computer Science. Springer-Verlag, 1991.
2. A. Cheng, S. Christensen, and K.H. Mortensen. Model Checking Coloured

Petri Nets Exploiting Strongly Connected Components. In M.P. Spathopoulos,

R. Smedinga, and P. Koz�ak, editors, Proceedings of the International Workshop on

Discrete Event Systems, WODES96. Institution of Electrical Engineers, Comput-

ing and Control Division, Edinburgh, UK, 1996.
3. L. Cherkasova, V. Kotov, and T. Rokicki. On Scalable Net Modeling of OLTP.

In Proceedings of the 5th International Workshop on Petri Nets and Performance

Models, Toulouse, France. IEEE Computer Society Press, 1993.
4. S. Christensen and J.B. J�rgensen. Analysing Bang & Olufsen's BeoLink Au-

dio/Video System Using Coloured Petri Nets. Technical report, Computer Science

Department, University of Aarhus, Denmark, 1996.

14

5. Meta Software Corporation. Design/OA. Meta Software Corporation, 150 Cam-

bridgePark Drive, Cambridge MA 02140, USA.

6. D.J. Floreani, J. Billington, and A. Dadej. Designing and Verifying a Commu-

nications Gateway Using Colored Petri Nets and Design/CPN. In J. Billington

and W. Reisig, editors, Proceedings of the 17th International Conference on Appli-

cation and Theory of Petri Nets, Osaka, Japan, volume 1091 of Lecture Notes in

Computer Science. Springer-Verlag, 1996.

7. H.J. Genrich and R.M. Shapiro. Formal Veri�cation of an Arbiter Cascade. In

K. Jensen, editor, Proceedings of the 13th International Conference on Application

and Theory of Petri Nets, She�eld, UK, volume 616 of Lecture Notes in Computer

Science. Springer-Verlag, 1992.

8. B. Grahlmann and E. Best. | PEP | More than a Petri Net Tool. In T. Mar-

garia and B. Ste�en, editors, Proceedings of TACAS96, the Second International

Workshop on Tools and Algorithms for the Construction and Analysis of Systems,

Passau, Germany, volume 1055 of Lecture Notes in Computer Science, 1996.

9. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall In-

ternational Editions, 1991.

10. K. Jensen. Design/CPN Online, Computer Science Department, University of

Aarhus, Denmark. Online: http://www.daimi.aau.dk/designCPN/.

11. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Prac-

tical Use. Vol. 1, Basic Concepts. EATCS Monographs on Theoretical Computer

Science. Springer-Verlag, 1992.

12. K. Jensen. An Introduction to the Theoretical Aspects of Coloured Petri Nets. In

J.W. de Bakker and W.-P. de Roever, editors, A Decade of Concurrency, Reec-

tions and Perspectives, volume 803 of Lecture Notes in Computer Science. Springer-

Verlag, 1993.

13. K. Jensen. Coloured Petri Nets | Basic Concepts, Analysis Methods and Practical

Use. Vol. 2, Analysis Methods. Monographs in Theoretical Computer Science.

Springer-Verlag, 1994.

14. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

15. R. Milner, R. Harper, and M. Tofte. The De�nition of Standard ML. MIT Press,

1990.

16. K.H. Mortensen and V. Pinci. Modelling the Work Flow of a Nuclear Waste

Management Program. In R. Valette, editor, Proceedings of the 15th International

Conference on Application and Theory of Petri Nets, Zaragoza, Spain, volume 815

of Lecture Notes in Computer Science. Springer-Verlag, 1994.

17. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured

Petri Nets. In J. Billington and W. Reisig, editors, Proceedings of the 17th Interna-

tional Conference on Application and Theory of Petri Nets, Osaka, Japan, volume

1091 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

18. G. Scheschonk and M. Timpe. Simulation and Analysis of a Document Storage

System. In R. Valette, editor, Proceedings of the 15th International Conference

on Application and Theory of Petri Nets, Zaragoza, Spain, volume 815 of Lecture

Notes in Computer Science. Springer-Verlag, 1994.

19. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1993.

15

