
Polymorphic Subtyping for E�ect

Analysis: the Semantics

T.Amtoft & F.Nielson & H.R.Nielson & J.Ammann

Computer Science Department, Aarhus University, Denmark

e-mail:{tamtoft,fnielson,hrnielson,jammann}@daimi.aau.dk

April 17, 1996

Abstract

We study an annotated type and e�ect system that integrates let-poly-

morphism, e�ects, and subtyping into an annotated type and e�ect system

for a fragment of Concurrent ML. First a small step operational semantics

is de�ned for Concurrent ML and next the annotated type and e�ect sys-

tem is proved semantically sound. This provides insights into the rule for

generalisation in the annotated type and e�ect system.

1 Introduction

In a recent paper [3] we developed an annotated type and e�ect system for a
fragment of Concurrent ML. This system allowed the integration of ML-style

polymorphism (the let-construct), subtyping (with the usual contravariant or-
dering for function space), and e�ects (for the set of �dangerous variables�). One
key idea in the design of the annotated type and e�ect system was the follow-

ing [3]:

• Carefully taking e�ects into account when deciding the set of variables over
which to generalise in the rule for let in the inference system; this involves

taking upwards closure with respect to a constraint set and is essential for

maintaining semantic soundness and a number of substitution properties.

This is highlighted in the present paper. First we de�ne a small step opera-

tional semantics [4] for Concurrent ML. It employs one system for the sequential

1

components and another for the concurrent components and as in [5, 2] we use

evaluation contexts [1]. Next we extend the repertoire of techniques [3] for nor-

malising and manipulating the inference trees of the annotated type and e�ect

system. Finally, we show that the system is indeed semantically sound with

respect to the operational semantics.

2 Inference System and Semantics

We �rst brie�y recapitulate the inference system presented in [3]. Expressions

and constants are given by

e ::= c | x | fn x⇒ e | e1 e2 | let x = e1 in e2

| rec f x⇒ e | if e then e1 else e2

c ::= () | true | false | n | + | * | = |· · ·
| pair | fst | snd | nil | cons | hd | tl | isnil
| send | receive | sync | channel | fork

where there are four kinds of constants: sequential constructors like true and
pair, sequential base functions like + and fst, the non-sequential constructors
send and receive, and the non-sequential base functions sync, channel and
fork.

Types and behaviours are given by

t ::= α | unit | int | bool | t1 × t2 | t list
| t1 →b t2 | t chan | t com b

b ::= {t chan} | β | ∅ | b1 ∪ b2

Type schemes ts are of form ∀(~α~β : C). t with C a set of constraints, where a

constraint is either of form t1⊆ t2 or of form b1⊆ b2. The type schemes of selected
constants are given in Figure 1.

Fact 2.1 Let c be a constructor. Then there exists t′1,· · ·,t′m (m ≥ 0) and t′

such that

TypeOf(c) = ∀(~α~β : ∅). t′1 →∅ · · · t′m →∅ t′

where t′ is not a function type (i.e. the decomposition is �maximal�) nor a type
variable.

The ordering among types and behaviours is depicted in Figure 2; in particular

notice that the ordering is contravariant in the argument position of a function

type and that both t chan⊆ t′ chan and {t chan}⊆{t′ chan} demand that

2

c TypeOf(c)

+ int × int→∅ int

pair ∀(α1α2 : ∅). α1 →∅ α2 →∅ α1 × α2

fst ∀(α1α2 : ∅). α1 × α2 →∅ α1

snd ∀(α1α2 : ∅). α1 × α2 →∅ α2

send ∀(α : ∅). (α chan) × α→∅ (α com ∅)
receive ∀(α : ∅). (α chan)→∅ (α com ∅)
sync ∀(αβ : ∅). (α com β)→β α

channel ∀(αβ : {{α chan}⊆β}). unit→β (α chan)

fork ∀(αβ : ∅). (unit→β α)→∅ unit

Figure 1: Type schemes for selected constants.

t ≡ t′, i.e. t⊆ t′ and t′⊆ t, since t occurs covariantly when used in receive and
contravariantly when used in send.

The inference system is depicted in Figure 3 and employs the notion of well-
formedness: a constraint set is well-formed if all constraints are of form t⊆α
or b⊆ β; and a type scheme ∀(~α~β : C0). t0 is well-formed if C0 is well-formed

and if all constraints in C0 contain at least one variable among {~α~β} and if

{~α~β}
C0↑

= {~α~β}. Here1

XC↑ = {γ | ∃γ′ ∈ X : C ` γ′ ←∗ γ}

where the judgement C `γ1 ← γ2 holds if there exists (g1⊆ g2) in C such that

γi ∈ FV(gi) for i = 1, 2, and where we use ←∗ for the re�exive and transitive

closure. Dually we have

XC↓ = {γ | ∃γ′ ∈ X : C ` γ ←∗ γ′}.

Also we write C `C0 to mean that C ` g1 ⊆ g2 for all g1 ⊆ g2 in C0 and we say
that the type scheme ∀(~α~β : C0). t0 is solvable from C by S0 if Dom(S0) ⊆ {~α~β}
and if C `S0C0.

1Following [3] we use g to stand for t or b and we use γ to stand for α or β and we use σ to

stand for t or ts.

3

Ordering on behaviours

(axiom) C ` b1⊆ b2 if (b1⊆ b2) ∈ C

(re�) C ` b⊆ b

(trans)
C ` b1⊆ b2 C ` b2⊆ b3

C ` b1⊆ b3

(chan)
C ` t ≡ t′

C ` {t chan}⊆{t′ chan}

(∅) C ` ∅⊆ b

(∪) C ` bi⊆ (b1 ∪ b2) for i = 1, 2

(lub)
C ` b1⊆ b C ` b2⊆ b
C ` (b1 ∪ b2)⊆ b

Ordering on types

(axiom) C ` t1⊆ t2 if (t1⊆ t2) ∈ C

(re�) C ` t⊆ t

(trans)
C ` t1⊆ t2 C ` t2⊆ t3

C ` t1⊆ t3

(→)
C ` t′1⊆ t1 C ` t2⊆ t′2 C ` b⊆ b′

C ` (t1 →b t2)⊆ (t′1 →b′ t′2)

(×)
C ` t1⊆ t′1 C ` t2⊆ t′2
C ` (t1 × t2)⊆ (t′1 × t′2)

(list)
C ` t⊆ t′

C ` (t list)⊆ (t′ list)

(chan)
C ` t ≡ t′

C ` (t chan)⊆ (t′ chan)

(com)
C ` t⊆ t′ C ` b⊆ b′

C ` (t com b)⊆ (t′ com b′)

Figure 2: Subtyping and sube�ecting.

4

(con) C,A` c : TypeOf(c) & ∅

(id) C,A`x : A(x) & ∅

(abs)
C,A[x : t1]` e : t2 & b

C,A`fn x⇒ e : (t1 →b t2) & ∅

(app)
C1, A` e1 : (t2 →b t1) & b1 C2, A` e2 : t2 & b2

(C1 ∪ C2), A` e1 e2 : t1 & (b1 ∪ b2 ∪ b)

(let)
C1, A` e1 : ts1 & b1 C2, A[x : ts1]` e2 : t2 & b2

(C1 ∪ C2), A`let x = e1 in e2 : t2 & (b1 ∪ b2)

(rec)
C,A[f : t]` fn x⇒ e : t& b
C,A`rec f x⇒ e : t& b

(if)
C0, A` e0 : bool& b0 C1, A` e1 : t& b1 C2, A` e2 : t& b2

(C0 ∪ C1 ∪ C2), A`if e0 then e1 else e2 : t& (b0 ∪ b1 ∪ b2)

(sub)
C,A` e : t& b
C,A` e : t′& b′

if C ` t ⊆ t′ and C ` b ⊆ b′

(ins)
C,A` e : ∀(~α~β : C0). t0 & b

C,A` e : S0 t0 & b
if ∀(~α~β : C0). t0 is solvable from C by S0

(gen)
C ∪ C0, A` e : t0 & b

C,A` e : ∀(~α~β : C0). t0 & b
if ∀(~α~β : C0). t0 is both well-formed,

solvable from C, and satis�es {~α~β} ∩
FV(C,A, b) = ∅

Figure 3: The type inference system.

5

2.1 Properties of the Inference System

In this paper we shall use a number of technical results from [3]; to be self-

contained we repeat their statements here.

Fact 2.2 Suppose C ∪ C0 ` γ1 ← γ2 with γ1 /∈ FV(C). Then C0 ` γ1 ← γ2.

Lemma 2.3 Suppose C is well-formed and that C ` t⊆ t′.

• If t′ = t′1 →b′ t′2 there exist t1, t2 and b such that t = t1 →b t2 and such

that C ` t′1⊆ t1, C ` t2⊆ t′2 and C ` b⊆ b′.

• If t′ = t′1 com b′ there exist t1 and b such that t = t1 com b and such that
C ` t1⊆ t′1 and C ` b⊆ b′.

• If t′ = t′1 × t′2 there exist t1 and t2 such that t = t1 × t2 and such that
C ` t1⊆ t′1 and C ` t2⊆ t′2.

• If t′ = t′1 chan there exist t1 such that t = t1 chan and such that C ` t1⊆ t′1
and C ` t′1⊆ t1.

• If t′ = t′1 list there exist t1 such that t = t1 list and such that C ` t1⊆ t′1.

• If t′ = int (bool, unit) then t = int (bool, unit).

Lemma 2.4 Suppose that C is well-formed:

if C ` b⊆ b′ then FV(b)C↓ ⊆ FV(b′)C↓.

Lemma 2.5 Substitution Lemma

For all substitutions S:

(a) If C `C ′ then S C `S C ′.

(b) If C,A` e : σ& b then S C, S A` e : S σ&S b (and has the same shape).

Lemma 2.6 Entailment Lemma

For all sets C ′ of constraints satisfying C ′ `C:

(a) If C `C0 then C ′ `C0.

(b) If C,A` e : σ& b then C ′, A` e : σ& b (and has the same shape).

6

Fact 2.7 Let x and y be distinct identi�ers: if C,A1[x : σ1][y : σ2]A2 ` e : σ& b
then C,A1[y : σ2][x : σ1]A2 ` e : σ& b (and has the same shape).

Fact 2.8 Let x be an identi�er not occurring in e and let t be an arbitrary type.

If C,A` e : σ& b then C,A[x : t]` e : σ& b (and has the same shape).

Recall from [3] that an inference tree is contraint-saturated whenever all oc-

currences of the rules (app), (let), and (if) have the same constraints in their

premises. Next recall that a strongly normalised inference tree is a constraint-

saturated inference tree whose structure essentially is that of the underlying ex-

pression: the rule (ins) is only allowed immediately after a (con) or (id), the rule

(gen) is only allowed immediately before a let (and only in the left branch), and

the rule (sub) is never allowed after a (gen) or (sub) and is required after all other

rules; we refer to [3] for the precise de�nition.

Fact 2.9 Enforcing Constraint-Saturation

Given an inference tree for C,A` e : σ& b there exists a constraint-saturated

inference tree C,A `c e : σ& b (that has the same shape).

Lemma 2.10 Enforcing Strong Normalisation

If A is well-formed and solvable from C then an inference tree C,A` e : σ& b
can be transformed into one C,A `s e : σ& b that is strongly normalised.

2.2 The Sequential Semantics

We are now going to de�ne a small-step semantics for the sequential part of the
language. Transitions take the form e→e′ where e and e′ are expressions that
are essentially closed: this means that they may contain free channel identi�ers

ch (created by previous channel allocations) but that they must not contain any

free program identi�ers.

We �rst stipulate the semantics of the sequential base functions by means of an

�evaluation function� δ:

De�nition 2.11 The function δ is a partial mapping from expressions into ex-
pressions: if δ(e) is de�ned then e will have the form c e1 with c a sequential base
function (but we do not claim that it is de�ned on all such arguments). It is

de�ned by the following (incomplete) table:

7

c e δ(c e)
fst pair e1 e2 e1

snd pair e1 e2 e2

hd cons e1 e2 e1

tl cons e1 e2 e2

isnil nil true

isnil cons e1 e2 false

+ pairn1 n2 n where n = n1 + n2
...

...

We next introduce the notion of weakly evaluated expressions (w ∈ WExp) that
are the �terminal con�gurations� of the sequential semantics:

De�nition 2.12 An expression w is a weakly evaluated expression provided that

either

• w is a constant c; or

• w is a channel identi�er ch; or

• w is a function abstraction fn x⇒ e; or

• w is of form cw1 · · ·wn, where n ≥ 1, where w1, · · · , wn are weakly
evaluated expressions, and where c is a constructor (sequential or non-

sequential).

To formalise the call-by-value evaluation strategy we shall employ the notion of
evaluation context:

De�nition 2.13 Evaluation contexts E take the form

E ::= [] | E e | wE | let x = E in e | if E then e1 else e2

Notice that E is a context with exactly one hole in it, and that this hole is not

inside the scope of any de�ning occurrence of a program identi�er. We write
E[e] for the expression that has the hole in E replaced by e, and similarly E[E′]
for the evalution context that results by replacing the hole in E with E′. The

following (rather obvious) fact is proved in Appendix A:

Fact 2.14 (E1[E2])[e] = E1[E2[e]].

Now we are ready for:

De�nition 2.15 Sequential Evaluation

The sequential transition relation → is de�ned by

8

E[e]→E[e′] provided e⇀e′ holds according to the following de�nition:

(apply) (fn x⇒ e)w ⇀ e[w/x]
(delta) cw ⇀ e′ if e′ = δ(cw)
(let) let x = w in e ⇀ e[w/x]
(rec) rec f x⇒ e ⇀ (fn x⇒ e)[(rec f x⇒ e)/f]

(branch) if w then e1 else e2 ⇀

{
e1 if w = true

e2 if w = false

Fact 2.16 If e→e′ with e essentially closed then also e′ is essentially closed.

Observe that e1 e2→e′ holds i� either (i) e1 e2⇀e′, or (ii) there exists e′1 such

that e1→e′1 and e′ = e′1 e2, or (iii) there exists e′2 such that e2→e′2 and e′ =
e1 e′2 (in which case e1 is a weakly evaluated expression). Further observe that
let x = e1 in e2→e′ holds i� either (i) let x = e1 in e2⇀e′, or (ii) there exists e′1
such that e1→e′1 and e′ = let x = e′1 in e2. Finally observe that
if e0 then e1 else e2→e′ holds i� either (i) if e0 then e1 else e2⇀e′, or (ii)

there exists e′0 such that e0→e′0 and e′ = if e′0 then e1 else e2.

As expected we have:

Fact 2.17 If w is a weakly evaluated expression then w 6→.

Proof It is easy to see that w 6⇀; the result then follows by an easy induction on

w. 2

We shall say that an essentially closed expression e is stuck if it is not weakly

evaluated and yet e 6→. We shall say that a stuck expression e is top-level stuck if
it cannot be written on the form e = E[e′] with E 6= [] and with e′ stuck. It is
easy to see (using Fact 2.14) that for any stuck expression e there exists E and
top-level stuck e′ such that e = E[e′].

Fact 2.18 Suppose that e is essentially closed and top-level stuck; then either

• e = cw with c a non-sequential base function; or

• e = cw with c a sequential base function where δ(e) is unde�ned; or

• e = chw with ch a channel identi�er; or

• e = if w then e1 else e2 with w /∈ {true, false}.

9

Proof We perform a case analysis on e. If e is a constant, a channel identi�er

or an abstraction then e is weakly evaluated and hence not stuck. If e is of form
rec f x⇒ e, then e⇀ · · · and hence e is not stuck.

If e is of form let x = e1 in e2 then e1 is essentially closed and e1 6→ (as otherwise

e→) but e1 is not stuck (as e is top-level stuck). Hence we conclude that e1 is

weakly evaluated, but this is a contradiction since then e⇀ · · ·.
If e is of form if e0 then e1 else e2 then e0 is essentially closed and e0 6→ (as

otherwise e→) but e0 is not stuck (as e is top-level stuck). Hence we conclude

that e0 is weakly evaluated; and this yields the claim since if e0 = true or
e0 = false then e⇀ · · ·.
If e is of form e1 e2 we infer (using the same technique as in the above two cases)

that e1 is a weakly evaluated expression w1 and subsequently that e2 is a weakly

evaluated expression w2. Since e is not a weakly evaluated expression it cannot

be the case that w1 is of form cw′1 · · ·w′n with c a constructor and with n ≥ 0;
and since e 6⇀ it cannot be the case that w1 is of form fn x⇒ e′1 or a sequential
base function such that δ(e) is de�ned. This yields the claim. 2

From the preceding results we get:

Proposition 2.19 Suppose that e is essentially closed and that e→∗e′ 6→. Then
either

1. e′ is a weakly evaluated expression; or

2. e′ is of form E[cw] with c a non-sequential base function; or

3. e′ is either of form E[cw] with c a sequential base function where δ(cw)
is unde�ned, or of form E[chw], or of form E[if w then e1 else e2] with
w /∈ {true, false}.

The con�gurations listed in case 3 can be thought of as error con�gurations,
whereas in Section 2.3 we shall see that case 2 corresponds to a process that may

be able to perform a concurrent action.

Fact 2.20 The rewriting relation → is deterministic.

Proof We perform induction on e to show that if e→e′ and e→e′′ then e′ = e′′.
If e is a constant, a variable or a function abstraction then e 6→ and if e is of form
rec f x⇒ e determinism is obvious.

If e is of form let x = w in e2 the claim follows from w 6→. If e is of form

let x = e1 in e2 with e1 not a weakly evaluated expression then e′ takes the
form let x = e′1 in e2 where e1→e′1 and by the induction hypothesis this e′1 is

unique.

10

If e is of form if w then e1 else e2 the claim follows from w 6→. If e is of form
if e0 then e1 else e2 with e0 not a weakly evaluated expression then e′ takes the
form if e′0 then e1 else e2 where e0→e′0 and by the induction hypothesis this e′0
is unique.

We are left with the case e = e1 e2. First suppose that e1 is not weakly evaluated.

Then e 6⇀ and we infer that e′ takes the form e′1 e2 where e1→e′1 so by the induction
hypothesis this e′1 is unique.

Next suppose that e = w1 e2 with e2 not weakly evaluated. Then e 6⇀ and as w1 6→
we infer that e′ takes the form w1 e′2 where e2→e′2 so by the induction hypothesis

this e′2 is unique.

Finally assume that e = w1w2. Then w1 6→ and w2 6→ so it must hold that e⇀e′.
If w1 is a function abstraction this e′ is clearly unique; and if w1 is a sequential

base function uniqueness follows from the fact that δ is a function. 2

2.3 The Concurrent Semantics

Next we are going to de�ne a small-step semantics for the concurrent part of the
language. Transitions take the form PP

a−→PP ′, where PP as well as PP ′ is a
process pool which is a �nite mapping from process identi�ers p into essentially
closed expressions, and where a is a label describing what kind of action is taken.

De�nition 2.21 Concurrent Evaluation

The concurrent transition relation
a−→ is de�ned by:

PP [p : e]
seq−→ PP [p : e′]

if e→e′

PP [p : E[channel()]]
p chan ch−→ PP [p : E[ch]]
if ch not in PP or E

PP [p : E[forkw]]
p fork p′−→ PP [p : E[()]][p′ : w ()]
if p′ /∈ Dom(PP) ∪ {p}

PP [p1 : E1[sync (send (pair chw))]]
[p2 : E2[sync (receivech)]]

comm−→ PP [p1 : E1[w]][p2 : E2[w]]

if p1 6= p2

11

2.4 Manipulation of Proof Trees

In this section we present some auxiliary results which will eventually enable us

to show that if there is a typing for e and if e gets �rewritten� into e′ (sequentially
or concurrently) then we can construct a typing for e′.

A common pattern will be that we have some judgement C ′, A′ `E[e] : σ′& b′,
but we want to reason about the typing of e rather than that of E[e]. To this

end we need to be precise about what it means for a judgement to occur �at the

address indicated by the hole in E�:

De�nition 2.22 The judgement jdg = (C,A` e : σ& b) occurs at E (with

depth n) in the inference tree for the judgement jdg′ = (C ′, A′ ` e′ : σ′& b′),
provided that either

• jdg = jdg′ and E = [] (and n = 0); or

• there exists a judgement jdg′′ and an evaluation context E′′ such that jdg
occurs at E′′ (with depth n − 1) in the inference tree for jdg′′, and such
that the last rule applied in the inference tree for jdg′ is either

� (sub), (ins), or (gen), with jdg′′ as premise and with E = E′′; or

� (app), with jdg′′ as leftmost premise and with E = E′′ e2 where e′ is
of form e1 e2; or

� (app), with jdg′′ as rightmost premise and with E = w1E′′ where e′

is of form w1 e2; or

� (let), with jdg′′ as leftmost premise and with E = let x = E′′ in e2

where e′ is of form let x = e1 in e2; or

� (if), with jdg′′ as leftmost premise and with E = if E′′ then e1 else e2

where e′ is of form if e0 then e1 else e2.

This is clearly well-de�ned in the size of the inference tree for jdg′. As expected
we have the following results, the latter to be proved in Appendix A:

Fact 2.23 Suppose that C,A` e : σ& b occurs at E in the inference tree for

C ′, A′ ` e′ : σ′& b′; then e′ = E[e].

Fact 2.24 Given jdg′ = (C ′, A′ `E[e] : σ′& b′); then there exists (at least one)
judgement jdg of form C,A` e : σ& b such that jdg occurs at E in the inference
tree for jdg′.

Some of the subsequent proofs will be by induction in the depth of a judgement

in an inference tree; for this purpose the following result is convenient:

12

Fact 2.25 Suppose the judgement jdg occurs at E with depth n in the inference

tree for jdg′, where n ≥ 2. Then there exists a judgement jdg′′ and evaluation

contexts E1 and E2 such that

jdg occurs at E1 with depth < n in the inference tree for jdg′′; and
jdg′′ occurs at E2 with depth < n in the inference tree for jdg′; and
E = E2[E1].

Proof We can clearly use jdg′′ as in De�nition 2.22. 2

Having set up the necessary machinery we are now ready for the �rst result,

which states that �equivalent� expressions may be substituted for each other:

Fact 2.26 Suppose the judgement C,A` e : σ& b occurs at E in the infer-

ence tree of C ′, A′ `E[e] : σ′& b′. If e0 is such that C,A` e0 : σ& b then also

C ′, A′ `E[e0] : σ′& b′.

Since the hole in an evaluation context is not inside the scope of any bound
identi�er we have:

Fact 2.27 Suppose the judgement C,A` e : σ& b occurs at E in the inference
tree of C ′, A′ ` e′ : σ′& b′; then A′ = A, and if C ′ is well-formed also C is well-
formed.

The (concurrent) transition which poses the greatest danger to semantic sound-
ness is channel allocation, due to the need for an environment update (cf. the

relationship to side e�ects in Standard ML). In order to construct an inference
tree with the new environment we must demand that the type of the new channel
is �present� in the behaviour:

Lemma 2.28 Suppose the judgement C,A` e : σ& b occurs at E in the infer-
ence tree of C ′, A`E[e] : σ′& b′ where C ′ (and hence also C) is well-formed.

Let ch be a channel identi�er not in E[e], and let t be a type and e0 an expression
such that

C `{t chan}⊆ b and C,A[ch : t chan]` e0 : σ& b.

Then it also holds that

C ′ ` {t chan}⊆ b′ and C ′, A[ch : t chan]`E[e0] : σ′& b′.

Proof See Appendix A. 2

Fact 2.27 told us something about the relationship between the root of an infer-

ence tree and the interior nodes of the tree. It proves useful to know some more:

13

Lemma 2.29 Suppose the judgement C,A` e : σ& b occurs at E in the

constraint-saturated inference tree of C ′, A `c e′ : σ′& b′ where C ′ (and hence

also C) is well-formed.

Then C ′ ⊆ C, and there exists S with Dom(S) ∩ FV(A) = ∅ such that C ′ `S C.
Proof See Appendix A. 2

The following lemma tells us something about the relationship between the type

of an expression c e1 · · · en, the type of c, and the type of each ei:

Lemma 2.30 Suppose that C is well-formed and that

C,A `s c e1 · · · en : t& b (n ≥ 0)

and that TypeOf(c) is of form

∀(~α~β : C0). t′1 →b′1 · · · t′m →b′m t′′

where we demand that if c is a base function then m ≥ n.

Then in all cases (i.e. also if c is a constructor) we can write

TypeOf(c) = ∀(~α~β : C0). t′1 →b′1 · · · t′n →b′n t′

and there exists S, t1 · · · tn, and b1 · · · bn, such that

Dom(S) ⊆ {~α~β} and C `S C0 and C `S t′⊆ t;

for all i ∈ {1 · · · n}: C,A `s ei : ti & bi and C ` ti⊆S t′i and C ` bi⊆ b and
C `S b′i⊆ b.

Similarly, if TypeOf(c) = t′1 →b′1 · · · t′m →b′m t′′ in which case {~α~β} = ∅ and
C0 = ∅ (so we have S = Id).

Proof See Appendix A. 2

The following two lemmas, both to be proved in Appendix A, show

• that we can replace variables by expressions of the same type, provided

these expressions have an empty behaviour; and

• that the latter condition can always be obtained for weakly evaluated ex-
pressions.

Lemma 2.31 Suppose that C,A[x : σ′]` e : σ& b and that C,A` e′ : σ′& ∅;
then C,A` e[e′/x] : σ& b.

Lemma 2.32 Suppose that C,A `s w : σ& b with C well-formed;
then C,A`w : σ& ∅ and with the same shape.

14

3 Semantic Soundness

In this section we shall prove that the sequential as well as the concurrent tran-

sition relation �preserves types and behaviours�. First an auxiliary concept:

De�nition 3.1 An environment A is a channel environment if Dom(A) is a

subset of the channel identi�ers and for each ch ∈ Dom(A) that A(ch) takes the
form t chan.

We then impose that the concurrent transition relation only operates on channel

environments. This is going to hold for the initial environment which is going

to be empty, and we shall see that the concurrent soundness result guarantees

that the assumption is maintained; thus our decision seems to be a benign one.

To see that it is actually necessary to impose the condition, note that otherwise

the type of the channel would be polymorphic and the sender and receiver of a
transmitted value would then be allowed to disagree on its type; this is exactly

where type insecurities would creep in.

3.1 Sequential Soundness

First we shall prove that �top-level� reduction is sound:

Lemma 3.2 Let C be well-formed and let A be a channel environment and
suppose

C,A` e : σ& b.

If e⇀e′ then also

C,A` e′ : σ& b.

Proof Due to Lemma 2.10 (which can be applied since A is trivially well-formed

and solvable from C) we can assume that we in fact have C,A `s e : σ& b. It

will clearly su�ce to show the result when σ is a type. Moreover, it will be enough
if we can show the result in the case where the last application of the rule (sub)
is a trivial one. We perform case analysis on the transition ⇀:

The transition (let) has been applied: Then the situation is

C,A `s w : ts& b1 C,A[x : ts] `s e : t& b2

C,A`let x = w in e : t& b1 ∪ b2

and using Lemma 2.32 we have

15

C,A`w : ts& ∅

which by Lemma 2.31 can be combined with the second premise of the inference

to yield

C,A` e[w/x] : t& b2

and since C ` b2⊆ (b1 ∪ b2) we can apply (sub) to get the desired result.

The transition (rec) has been applied: Then the situation is

C,A[f : t] `s fn x⇒ e : t& b

C,A`rec f x⇒ e : t& b

and using Lemma 2.32 we have

C,A[f : t]`fn x⇒ e : t& ∅

so by applying (rec) we get the judgement

C,A`rec f x⇒ e : t& ∅

which by Lemma 2.31 can be combined with the premise of the inference to yield
the desired

C,A` (fn x⇒ e)[(rec f x⇒ e)/f] : t& b.

The transition (branch) has been applied: Then the situation is

C,A`w : bool& b0 C,A` e1 : t& b1 C,A` e2 : t& b2

C,A`if w then e1 else e2 : t& (b0 ∪ b1 ∪ b2)

and the claim is immediate.

The transition (apply) has been applied: Then the situation is

C,A[x : t′2] `s e : t′& b′0
C,A `s fn x⇒ e : t2 →b0 t& b1

(abs) (sub) C,A `s w : t2 & b2

C,A` (fn x⇒ e)w : t& (b1 ∪ b2 ∪ b0)

where C ` t′2 →b′0 t′⊆ t2 →b0 t. Since C is well-formed we can apply Lemma 2.3
to deduce that

16

C ` t2⊆ t′2 and C ` b′0⊆ b0 and C ` t′⊆ t.

By Lemma 2.32 followed by an application of (sub) we get

C,A`w : t′2 & ∅

which by Lemma 2.31 can be combined with the upmost leftmost premise of the

inference to yield

C,A` e[w/x] : t′& b′0

and since C ` t′⊆ t and C ` b′0⊆ b0⊆ b1 ∪ b2 ∪ b0 we can apply (sub) to get the

desired result.

The transition (delta) has been applied: The claim then follows from an

examination of the table de�ning δ; below we shall list some typical cases only.
In all cases we make use of Lemma 2.30 and Lemma 2.3 which can be applied
since C is well-formed.

e = fst (pair e1 e2) and δ(e) = e1: Then the situation is that

C,A `s fst (pair e1 e2) : t& b

so since TypeOf(fst) = ∀(α1α2 : ∅). α1 × α2 →∅ α1 Lemma 2.30 tells us that
there exists t0, b0 and S0 such that

C,A `s pair e1 e2 : t0 & b0 and

C `S0 α1⊆ t and C ` t0⊆S0 (α1 × α2) and C ` b0⊆ b.

Since TypeOf(pair) = ∀(α1α2 : ∅). α1 →∅ α2 →∅ α1 × α2 Lemma 2.30 tells us
that there exists t1, b1, t2, b2 and S such that

C,A `s e1 : t1 & b1 and C,A `s e2 : t2 & b2;

C ` t1⊆S α1 and C ` t2⊆S α2 and C ` b1⊆ b0 and C ` b2⊆ b0;

C `S (α1 × α2)⊆ t0.

Since C ` t1 × t2⊆S α1 × S α2⊆ t0⊆S0 α1 × S0 α2 we by Lemma 2.3 deduce

that

C ` t1⊆S0 α1⊆ t

and since C ` b1⊆ b0⊆ b we from C,A `s e1 : t1 & b1 get the desired judgement

C,A` e1 : t& b.

17

e = + (pairn1 n2) and δ(e) = n where n = n1 + n2: Then the situation is that

C,A `s + (pairn1 n2) : t& b

so since we have TypeOf(+) = int × int→∅ int we can infer by Lemma 2.30

that

C `int⊆ t.

But as C ` ∅⊆ b this is su�cient to show the desired judgement

C,A`n : t& b.

This completes the proof. 2

Theorem 3.3 Sequential soundness

Let C be well-formed and let A be a channel environment and suppose

C,A` e1 : σ& b.

If e1→e2 then also

C,A` e2 : σ& b.

Proof There exists E, e′1 and e′2 such that

e1 = E[e′1] and e2 = E[e′2] and e
′
1⇀e′2.

By Fact 2.24 there exists C ′, A′, σ′ and b′ such that C ′, A′ ` e′1 : σ′& b′ occurs at
E in the inference tree of C,A`E[e′1] : σ& b. By Fact 2.27 we infer that A′ = A
and that C ′ is well-formed. This enables us to use Lemma 3.2 from which we get

C ′, A′ ` e′2 : σ′& b′

and by Fact 2.26 we get the desired judgement

C,A`E[e′2] : σ& b.

This completes the proof. 2

18

Remark. The purpose of types is to detect certain kinds of errors at analysis

time rather than at execution time. To this end one usually wants a result that

guarantees that �error con�gurations are not typeable�; here we presuppose some

well-formed constraint set and some channel environmentA. By Proposition 2.19

and the discussion after it, it su�ces to consider each of the error-con�gurations

listed below, and to show that it is not typeable; for this we make use of Lemma

2.3 and Lemma 2.30.

chw with ch a channel identi�er: here we employ thatA(ch) is of form t chan.

if w then e1 else e2 with w /∈ {true, false}: for this to be typable it must

hold that

w can be assigned the type bool.

Thus w cannot be a channel identi�er (as A is a channel environment);

w cannot be a function abstraction; and an examination of the function
TypeOf will reveal that w cannot be a constant (apart from true,false)
or of form cw1 · · ·wn (n ≥ 1) with c a constructor.

cw with c a sequential base function where δ(cw) is unde�ned: consider
e.g. the expression fstw. For this to be typeable there must exist t1 and
t2 such that

w can be assigned the type t1 × t2.

Thus w cannot be a channel identi�er (as A is a channel environment);

w cannot be a function abstraction; and an examination of the function
TypeOf will reveal that w cannot be a constant and that w cannot be of

form cw1 · · ·wn with c a constructor (apart from pair).

3.2 Concurrent Soundness

First some auxiliary results concerning the three kinds of concurrent transitions:

Lemma 3.4 Let C be well-formed and suppose that

C,A `s E[channel()] : σ& b.

Let ch be a channel identi�er that does not occur in E[channel()]; then there
exists t0 such that

C `{t0 chan}⊆ b and
C,A[ch : t0 chan]`E[ch] : σ& b.

19

Proof The strongly normalized inference tree contains a judgement of form

C ′, A `s channel() : t′& b′

where C ′ is well-formed (Fact 2.27). Since

TypeOf(channel) = ∀(αβ : {{α chan}⊆β}). unit→β (α chan)

it follows from Lemma 2.30 that there exists S such that

C ′ ` {S α chan}⊆S β and C ′ `S α chan⊆ t′ and C ′ `S β⊆ b′.

Now de�ne t0 = S α, then we have

C ′ ` {t0 chan}⊆ b′ and C ′, A[ch : t0 chan]` ch : t′& b′

so by Lemma 2.28 we arrive at the desired relations

C `{t0 chan}⊆ b and C,A[ch : t0 chan]`E[ch] : σ& b.

This completes the proof. 2

Lemma 3.5 Let C be well-formed and suppose that

C,A `s E[fork e] : σ& b.

Then there exists t′′, b′′ such that

(a) C,A`E[()] : σ& b;

(b) C,A` e () : t′′& b′′.

Proof The strongly normalized inference tree contains a judgement of form

C ′, A `s forke : t′& b′

and by Lemma 2.29 we infer that C ′ is well-formed and that there exists S ′ with
Dom(S ′) ∩ FV(A) = ∅ such that C `S ′C ′.
Since TypeOf(fork) = ∀(αβ : ∅). (unit→β α)→∅ unit Lemma 2.30 tells us
that there exists t1, b1 and S such that

20

C ′ ` unit⊆ t′ (1)

C ′, A `s e : t1 & b1 and C ′ ` t1⊆ unit→S β S α (2)

Here (1) (together with C ′ ` ∅⊆ b′) tells us that

C ′, A` () : t′& b′

which by Fact 2.26 yields claim (a).

For claim (b) we use Lemma 2.3 on (2) to �nd t′1, b
′
1, t
′′
1 such that

C ′, A `s e : t′1 →b′1 t′′1 & b1 and C ′ ` unit⊆ t′1.

This shows that

C ′, A` e () : t′′1 & b′′1 for some b′′1

and by Lemma 2.5 and Lemma 2.6 (since C `S ′C ′) this yields the desired judge-
ment

C,A` e () : S ′ t′′1 &S ′ b′′1.

This completes the proof. 2

Lemma 3.6 Let C be well-formed and let A be a channel environment and
suppose that

C,A `s E1[sync (send (pair chw))] : σ1 & b1 (3)

and suppose that

C,A `s E2[sync (receivech)] : σ2 & b2. (4)

Let A(ch) = t chan, then

(a) C,A`E1[w] : σ1 & b1;

(b) C,A`w : t& ∅;

(c) C,A`E2[w] : σ2 & b2.

Proof The tree (3) will contain a judgement of form

21

C1, A `s sync (send (pairchw)) : t1 & b′1 (5)

with C1 well-formed. Since TypeOf(sync) = ∀(αβ : ∅). (α com β)→β α Lemma

2.30 tells us that there exists t3, b3 and S3 such that

C1, A `s send (pair chw) : t3 & b3;

C1 `S3 α⊆ t1;
C1 ` t3⊆ (S3 α) com (S3 β);
C1 ` b3⊆ b′1.

Since TypeOf(send) = ∀(α : ∅). α chan × α→∅ α com ∅ Lemma 2.30 tells us

that there exists t4, b4 and S4 such that

C1, A `s pair chw : t4 & b4;
C1 ` (S4 α) com ∅⊆ t3;
C1 ` t4⊆ (S4 α) chan × (S4 α);
C1 ` b4⊆ b3.

Since TypeOf(pair) = ∀(α1α2 : ∅). α1 →∅ α2 →∅ α1 × α2 Lemma 2.30 tells us
that there exists t5, b5, t6, b6 and S5 such that

C1, A `s ch : t5 & b5; (6)
C1, A `s w : t6 & b6; (7)
C1 `S5 α1 × S5 α2⊆ t4;
C1 ` t5⊆S5 α1 and C1 ` t6⊆S5 α2;

C ` b6⊆ b4.

Since A(ch) = t chan we infer from (6) that

C1 ` t chan⊆ t5.

We now apply Lemma 2.3 repeatedly: from

C1 ` (S4 α) com ∅⊆ t3⊆ (S3 α) com (S3 β) and
C1 ` t5 × t6⊆S5 α1 × S5 α2⊆ t4⊆ (S4 α) chan × (S4 α)

we deduce that

C1 `S4 α⊆S3 α⊆ t1 and
C1 ` t chan⊆ t5⊆ (S4 α) chan and

C1 ` t6⊆S4 α.

22

By applying Lemma 2.3 once more2, exploiting the contravariance of · · · chan
(cf. the remarks concerning Figure 2), we end up with the following relations:

C1 ` t6⊆ t1 and C1 ` t6⊆ t.

As C1 ` b6⊆ b′1 we get from (7) that

C1, A`w : t1 & b′1,

which by Fact 2.26 yields claim (a); next using Lemma 2.32 on (7) we also get

C1, A`w : t& ∅.

By Lemma 2.29 there exists S1 with Dom(S1) ∩ FV(A) = ∅ such that C `S1C1,
so by applying Lemma 2.5 and Lemma 2.6 we arrive at

C,A`w : S1 t& ∅

which yields the claim (b) since FV(t) ⊆ FV(A) and hence S1 t = t.

Our remaining task is to show claim (c), where we �rst notice that the tree (4)
will contain a judgement of form

C2, A `s sync (receivech) : t2 & b′2 (8)

with C2 well-formed. Since TypeOf(sync) = ∀(αβ : ∅). (α com β)→β α Lemma
2.30 tells us that there exists t7, b7 and S7 such that

C2, A `s receivech : t7 & b7;
C2 `S7 α⊆ t2;
C2 ` t7⊆ (S7 α) com (S7 β).

Since TypeOf(receive) = ∀(α : ∅). (α chan)→∅ (α com ∅) Lemma 2.30 tells us

that there exists t8, b8 and S8 such that

C2, A `s ch : t8 & b8; (9)

C2 ` (S8 α) com ∅⊆ t7;
C2 ` t8⊆ (S8 α) chan.

Since A(ch) = t chan we infer from (9) that

2For later reference we note that if we were to use also the covariance of · · · chan we would

additionally get that C1 ` t⊆S4 α⊆ t1.

23

C2 ` t chan⊆ t8.

We now apply Lemma 2.3 repeatedly: from

C2 ` (S8 α) com ∅⊆ t7⊆ (S7 α) com (S7 β) and
C2 ` t chan⊆ t8⊆ (S8 α) chan

we get, by exploiting the covariance of · · · chan (cf. the remarks concerning

Figure 2),

C2 ` t⊆S8 α⊆S7 α⊆ t2.

Since Lemma 2.29 ensures that C ⊆ C2 we can deduce from claim (b) that

C2, A`w : t& ∅

so by applying (sub) we arrive at

C2, A`w : t2 & b′2

which by Fact 2.26 yields claim (c). 2

We are now able to formulate what it means for our system to be semanti-
cally sound. We write C,A`PP : PT &PB, where PT (respectively PB) is
a mapping from process identi�ers into types (respectively behaviours), if the
domains of PP , PT and PB are equal and if C,A`PP (p) : PT (p) &PB(p) for
all p ∈ Dom(PP).
Theorem 3.7 Semantic (concurrent) soundness

Let C be well-formed and let A be a channel environment and suppose

C,A`PP : PT &PB.

If PP
a−→PP ′ then there exists PT ′, PB′ and channel environment A′ such that

C,A′ `PP ′ : PT ′&PB′

and such that if p is in the domain of PP then PT ′(p) = PT (p) and PB′(p) =
PB(p) and such that if ch occurs in PP then A′(ch) = A(ch).

Furthermore we have the following property:

• if a = p chan ch then there exists t0 such that C `{t0 chan}⊆PB(p) and
such that A′(ch) = t0 chan.

Proof Notice that by Lemma 2.10 we can assume that the inference trees in
C,A`PP : PT &PB are strongly normalised. We perform case analysis on the

action label a:

24

a = seq: It follows from Theorem 3.3 that we can use PT ′ = PT , PB′ = PB
and A′ = A.

a = p chan ch: It follows from Lemma 3.4 that there exists t0 such that the

claim follows with PT ′ = PT , PB′ = PB and A′ = A[ch : t0 chan]. (For p′ in the
domain of PP with p′ 6= p we must show that C,A`PP (p′) : PT (p′) &PB(p′)
implies C,A′ `PP (p′) : PT (p′) &PB(p′), but this follows from Fact 2.8.)

a = p fork p′: It follows from Lemma 3.5 that there exists t′′, b′′ such that we

can use PT ′ = PT [p′ : t′′], PB′ = PB[p′ : b′′] and A′ = A.

a = comm: It follows from Lemma 3.6 that we can use PT ′ = PT , PB′ = PB
and A′ = A. 2

Remark. Theorem 3.7 says that if we start with a correctly typed program
then we are never going to encounter programs that are not correctly typed. One
consequence of this is that Lemma 3.6 will be applicable at all stages; this is a
result that ensures that the value sent can always be given the type allowed on the

channel on which it was sent, that having sent the value we still have a correctly
typed sender, and that having received the value we still have a correctly typed
receiver. However, the statement of Lemma 3.6 does not directly relate:

• the type t6 of the value w actually communicated (see line 7),

• the type t of the entities allowed to be communicated over the channel,

• the type t1 that the sender thinks was communicated (see line 5), and

• the type t2 that the receiver thinks was communicated (see line 8).

However, by inspecting the proof of Lemma 3.6 one may note that the following
relations are established:

C1 ` t6⊆ t C1 ` t⊆ t1 C2 ` t⊆ t2

Here the constraint sets C1 and C2 are those corresponding to the point of sending

and receiving, respectively. Thus we can be ensured that a value is always received

with a type that is larger than the type it actually had when communicated. (It
is possible for the sender to think that an even larger type was communicated,

but this causes no harm.)

25

4 Conclusion

We have given a formal justi�cation of the semantic soundness of a previously

developed annotated type and e�ect system that integrates polymorphism, sub-

typing and e�ects [3]. Although the development was performed for a fragment

of Concurrent ML we believe it equally possible for Standard ML with references.

Acknowledgement This work has been supported in part by theDART project

(Danish Natural Science Research Council) and the LOMAPS project (ESPRIT

BRA project 8130); it represents joint work among the authors.

References

[1] M.Felleisen, D.P.Friedman: Control Operators, the SECD-Machine, and
the λ-calculus. Formal Descriptions of Programming Concepts III, North-

Holland, 1986.

[2] H.R. Nielson and F. Nielson. Higher-order Concurrent Programs with Finite

Communication Topology. In Proc. POPL'94, pages 84�97. ACM Press,
1994.

[3] H.R.Nielson, F.Nielson, T.Amtoft: Polymorphic Subtypes for E�ect Analy-

sis: the Integration, 1996.

[4] G.D.Plotkin: A Structural Approach to Operational Semantics, Report
DAIMI FN-19, Aarhus University, Denmark, 1981.

[5] J. H. Reppy. Concurrent ML: Design, Application and Semantics. In Proc.
Functional Programming, Concurrency, Simulation and Automated Reason-

ing, pages 165�198. SLNCS 693, 1993.

26

A Details of Proofs

The sequential semantics

Fact 2.14 (E1[E2])[e] = E1[E2[e]].

Proof The proof is by induction in E1. If E1 = [] the equation reads E2[e] =
E2[e], so assume that E1 is a composite context and let us consider the case

E1 = E e2 (the other cases are similar). By using the induction hypothesis for E
we get the desired equation

E1[E2][e] = (E e2)[E2][e] = (E[E2] e2)[e] = E[E2][e] e2 = E[E2[e]] e2 = E1[E2[e]].

This completes the proof. 2

Manipulation of proof trees

Fact 2.24 Given jdg′ = C ′, A′ `E[e] : σ′& b′; then there exists (at least one)
judgement jdg of form C,A` e : σ& b such that jdg occurs at E in the inference

tree for jdg′.

Proof The proof is by induction in the inference tree for jdg′. If E = [] we can
use jdg = jdg′, so assume E 6= []. Hence the last rule applied in the inference
tree for jdg′ is none of the following: (con), (id), (abs), or (rec). If (sub), (ins)

or (gen) has been applied the induction hypothesis clearly yields the claim. So
we are left with (app), (let) and (if); we only consider (app) as the other cases
are similar. Then E takes either the form E1 e2 or the form w1E2; we consider
the former only as the latter is similar.

The situation thus is that E[e] = E1[e] e2 so the left premise of jdg′ is of form
C ′′, A′′ `E1[e] : σ′′& b′′ (abbreviated jdg′′). Inductively we can assume that there

exists jdg which occurs at E1 in the inference tree for jdg′′; but this shows that
jdg occurs at E in the inference tree for jdg′. 2

Lemma 2.28 Suppose the judgement jdg = (C,A` e : σ& b) occurs at E with

depth n in the inference tree of jdg′ = (C ′, A`E[e] : σ′& b′) where C ′ (and hence

also C) is well-formed.

Let ch be a channel identi�er not in E[e], and let t be a type and e0 an expression
such that

C `{t chan}⊆ b and C,A[ch : t chan]` e0 : σ& b.

27

Then it also holds that

C ′ ` {t chan}⊆ b′ and C ′, A[ch : t chan]`E[e0] : σ′& b′.

Proof We perform induction in n: if n = 0 then E = [], C ′ = C, σ′ = σ, b′ = b
and the claim is trivial.

If n > 1 then by Fact 2.25 there exists judgement jdg′′ = C ′′, A′′ ` e′′ : σ′′& b′′

and evaluation contexts E1 and E2 such that E = E2[E1] and such that

jdg occurs at E1 with depth < n in the inference tree for jdg′′; and
jdg′′ occurs at E2 with depth < n in the inference tree for jdg′.

So if C ` {t chan}⊆ b and C,A[ch : t chan]` e0 : σ& b we can apply the induc-
tion hypothesis (with jdg and jdg′′) to infer that C ′′ `{t chan}⊆ b′′ and that
C ′′, A[ch : t chan]`E1[e0] : σ′′& b′′; and by applying the induction hypothesis
once more (with jdg′′ and jdg′) we can infer C ′ ` {t chan}⊆ b′ and

C ′, A[ch : t chan]`E2[E1[e0]] : σ′& b′ which is as desired (due to Fact 2.14).

So we are left with the case n = 1. We perform case analysis on E:

E = E1 e2: Here E1 = [] and the situation is:

jdg = C1, A` e1 : (t2 →b t1) & b1 C2, A` e2 : t2 & b2

jdg′ = (C1 ∪ C2), A` e1 e2 : t1 & (b1 ∪ b2 ∪ b)

and our assumptions are

C1 ` {t chan}⊆ b1 and C1, A[ch : t chan]` e0 : t2 →b t1 & b1

and we must show that

C1 ∪ C2 ` {t chan}⊆ b1 ∪ b2 ∪ b and
(C1 ∪ C2), A[ch : t chan]` e0 e2 : t1 & (b1 ∪ b2 ∪ b).

The former is a trivial consequence of the assumptions, and the latter will follow

provided we can show that C2, A[ch : t chan]` e2 : t2 & b2. But this follows from
Fact 2.8 since ch does not occur in e2.

E = wE2: Similar to the case above (now exploiting that for all C it holds

that C ` b2⊆ b1 ∪ b2 ∪ b).

28

E = let x = E1 in e2: Here E1 = [] and the situation is:

jdg = C1, A` e1 : ts1 & b1 C2, A[x : ts1]` e2 : t2 & b2

jdg′ = (C1 ∪ C2), A`let x = e1 in e2 : t2 & (b1 ∪ b2)

and our assumptions are

C1 ` {t chan}⊆ b1 and C1, A[ch : t chan]` e0 : ts1 & b1

and we must show that

C1 ∪ C2 ` {t chan}⊆ b1 ∪ b2 and
(C1 ∪ C2), A[ch : t chan]` let x = e0 in e2 : t2 & (b1 ∪ b2).

The former is a trivial consequence of the assumptions, and the latter will fol-
low provided we can show that C2, A[ch : t chan][x : ts1]` e2 : t2 & b2. But this
follows from Fact 2.8 and Fact 2.7 since ch 6= x and ch does not occur in e2.

E = if E0 then e1 else e2: Here E0 = [] and the situation is:

jdg = C0, A` e0 : bool& b0 C1, A` e1 : t1 & b1 C2, A` e2 : t1 & b2

jdg′ = (C0 ∪ C1 ∪ C2), A`if e0 then e1 else e2 : t1 & (b0 ∪ b1 ∪ b2)

and our assumptions are

C0 ` {t chan}⊆ b0 and C0, A[ch : t chan]` e0 : bool& b0

and we must show that

C0 ∪ C1 ∪ C2 ` {t chan}⊆ b0 ∪ b1 ∪ b2 and

(C0 ∪ C1 ∪ C2), A[ch : t chan]` if e0 then e1 else e2 : t1 & (b0 ∪ b1 ∪ b2).

The former is a trivial consequence of the assumptions, and the latter will follow if
we can show C1, A[ch : t chan]` e1 : t1 & b1 and C2, A[ch : t chan]` e2 : t1 & b2.

But this follows from Fact 2.8 since ch does not occur in e1 or e2.

E = []: In this case jdg′ follows from jdg by one application of either (sub),
(ins) or (gen).

29

(sub) has been applied: the situation is

jdg = C,A` e : t0 & b

jdg′ = C,A` e : t′& b′

where C ` t0⊆ t′ and C ` b⊆ b′. Our assumptions are

C `{t chan}⊆ b and C,A[ch : t chan]` e0 : t0 & b

and we must show that

C `{t chan}⊆ b′ and C,A[ch : t chan]` e0 : t′& b′.

But this is trivial.

(ins) has been applied: the situation is

jdg = C,A` e : ∀(~α~β : C0). t0 & b

jdg′ = C,A` e : S0 t0 & b

where ∀(~α~β : C0). t0 is solvable from C by S0. Our assumptions are

C `{t chan}⊆ b and C,A[ch : t chan]` e0 : ∀(~α~β : C0). t0 & b

and we must show that

C `{t chan}⊆ b and C,A[ch : t chan]` e0 : S0 t0 & b.

But this is trivial.

(gen) has been applied: this is the really interesting case! The situation is

jdg = C ∪ C0, A` e : t0 & b

jdg′ = C,A` e : ∀(~α~β : C0). t0 & b

where ∀(~α~β : C0). t0 is well-formed and where {~α~β} ∩ FV(C,A, b) = ∅ and where

there exists S with Dom(S) ⊆ {~α~β} such that C `S C0. Our assumptions are

C ∪ C0 ` {t chan}⊆ b (1)

C ∪ C0, A[ch : t chan]` e0 : t0 & b (2)

and we must show that

30

C `{t chan}⊆ b (3)

C,A[ch : t chan]` e0 : ∀(~α~β : C0). t0 & b (4)

It will su�ce to prove

{~α~β} ∩ FV(t) = ∅ (5)

for then (1) and Lemma 2.5(a) give that C ∪S C0 ` t chan⊆ b which (by Lemma

2.6) implies (3); and we will be able to use (gen) to arrive at (4) from (2).

So we are left with the task of proving (5). Since ∀(~α~β : C0). t0 is well-formed it

holds that {~α~β}
C0↑

= {~α~β}, that is

if C0 `γ ← γ′ with γ ∈ {~α~β} then also γ′ ∈ {~α~β}. (6)

By Fact 2.2 we are able to infer (as {~α~β} ∩ FV(C) = ∅) that

if C ∪ C0 `γ ← γ′ with γ ∈ {~α~β} then C0 ` γ ← γ′. (7)

By combining (6) and (7) we infer that

if C ∪ C0 `γ ← γ′ with γ ∈ {~α~β} then also γ′ ∈ {~α~β}

which amounts to {~α~β}
(C ∪C0)↑

= {~α~β}. Since {~α~β} ∩ FV(b) = ∅ we have

{~α~β}
(C ∪C0)↑

∩ FV(b) = ∅, and hence we do not have C ∪ C0 ` γ ←∗ γ′ for any
γ ∈ {~α~β} and γ′ ∈ FV(b). But this is just another way of saying that

{~α~β} ∩ FV(b)(C ∪C0)↓ = ∅. (8)

From (1) and from Lemma 2.4 (which can be applied since we know that C ∪ C0

is well-formed) we infer that

FV(t)(C ∪C0)↓ ⊆ FV(b)(C ∪C0)↓. (9)

Combining (8) and (9) we get {~α~β} ∩ FV(t)(C ∪C0)↓ = ∅ which trivially implies

(5). This completes the proof. 2

Lemma 2.29 Suppose the judgement jdg = C,A` e : σ& b occurs at E with

depth n in the constraint-saturated inference tree of jdg′ = C ′, A `c e′ : σ′& b′

where C ′ (and hence also C) is well-formed.

31

Then C ′ ⊆ C, and there exists S with Dom(S) ∩ FV(A) = ∅ such that C ′ `S C.

Proof We perform induction in n: if n = 0 then C ′ = C and we can use S = Id.

If n > 1 then by Fact 2.25 there exists judgement jdg′′ = C ′′, A′′ ` e′′ : σ′′& b′′

and evaluation contexts E1 and E2 such that

jdg occurs at E1 with depth < n in the inference tree for jdg′′; and
jdg′′ occurs at E2 with depth < n in the inference tree for jdg′.

We can thus apply the induction hypothesis twice to infer that C ′ ⊆ C ′′ ⊆ C
and that there exists S1,S2 with Dom(S1) ∩ FV(A) = ∅ = Dom(S2) ∩ FV(A)
such that C ′ `S2C ′′ and C ′′ `S1C. But then we by Lemma 2.5 and 2.6 arrive

at C ′ `S2 S1C, where clearly Dom(S2 S1) ∩ FV(A) = ∅.
So we are left with the case n = 1. We perform case analysis on the inference
rule applied. The only interesting case is (gen), for otherwise we have C ′ = C
due to our assumption about the inference tree being constraint saturated and
hence we can use S = Id. The situation thus is

jdg = C ∪ C0, A` e : t0 & b

jdg′ = C,A` e : ∀(~α~β : C0). t0 & b

where {~α~β} ∩ FV(C,A, b) = ∅ and where there exists S with Dom(S) ⊆ {~α~β}
such that C `S C0. Our task can be accomplished by showing that C ⊆ C ∪ C0

and that Dom(S) ∩ FV(A) = ∅ and that C `S C0 and that C `S C. But all this
follows directly. 2

Lemma 2.30 Suppose that C is well-formed and that

C,A `s c e1 · · · en : t& b (n ≥ 0)

and that TypeOf(c) is of form

∀(~α~β : C0). t′1 →b′1 · · · t′m →b′m t′′

where we demand that if c is a base function then m ≥ n.

Then in all cases (i.e. also if c is a constructor) we can write

TypeOf(c) = ∀(~α~β : C0). t′1 →b′1 · · · t′n →b′n t′ (10)

and there exists S, t1 · · · tn, and b1 · · · bn, such that

32

Dom(S) ⊆ {~α~β} and C `S C0 and C `S t′⊆ t;

for all i ∈ {1 · · · n}: C,A `s ei : ti & bi and C ` ti⊆S t′i and C ` bi⊆ b and
C `S b′i⊆ b.

Similarly, if TypeOf(c) = t′1 →b′1 · · · t′m →b′m t′′ in which case {~α~β} = ∅ and
C0 = ∅ (so we have S = Id).

Proof We perform induction in n. If n = 0 we can trivially always assume

(10), i.e. that TypeOf(c) takes the form ∀(~α~β : C0). t′, and the claim is that if

C,A `s c : t& b then there exists S with Dom(S) ⊆ {~α~β} and C `S C0 such

that C `S t′⊆ t. But since C,A `s c : t& b is constructed by an application of

(con) followed by an application of (ins) followed by an application of (sub), this

is immediate.

Next consider the inductive step. The situation is that there exists tn, t−, bn, b′

and b′′ such that

C,A `s c e1 · · · en−1 : tn →b′′ t−& b′ C,A `s en : tn & bn
C,A `s c e1 · · · en : t& b

(app)(sub)

where C ` t−⊆ t and C ` b′ ∪ bn ∪ b′′⊆ b.
By the induction hypothesis we infer that in all cases it holds that

TypeOf(c) takes the form ∀(~α~β : C0). t′1 →b′1 · · · t′n−1 →b′n−1 t′′′

and that there exists S, t1 · · · tn−1, and b1 · · · bn−1, such that

Dom(S) ⊆ {~α~β} and C `S C0;

C `S t′′′⊆ tn →b′′ t−; (11)

for all i ∈ {1 · · · n− 1}: C,A `s ei : ti & bi and C ` ti⊆S t′i and
C ` bi⊆ b′⊆ b and C `S b′i⊆ b′⊆ b.

Since C is well-formed we can apply Lemma 2.3 on (11) to infer that S t′′′ is a
function type. If c is a constructor Fact 2.1 tells us that t′′′ cannot be a vari-
able; hence in all cases we can write t′′′ = t′n →b′n t′ which amounts to (10).

Lemma 2.3 further tells us that C ` tn⊆S t′n and that C `S b′n⊆ b′′⊆ b and that

C `S t′⊆ t−⊆ t. Thus all our proof obligations are ful�lled. 2

Lemma 2.31 Suppose that C,A[x : σ′]` e : σ& b and that C,A` e′ : σ′& ∅;
then C,A` e[e′/x] : σ& b.

Proof Induction in the shape of the proof tree for C,A[x : σ′]` e : σ& b which
we by Fact 2.9 can assume to be constraint saturated. We perform case analysis

on the last rule applied:

33

(con) has been applied: Then e is a constant, and e[e′/x] = e so the claim

is clear.

(id) has been applied: Then e is an identi�er y. If y 6= x then e[e′/x] = e
and the claim is clear since A[x : σ′](y) = A(y).

If y = x then σ = σ′ and b = ∅. Since e[e′/x] = e′ the claim follows from the

second part of the assumption.

(abs) has been applied: Here the inference takes the form

C,A[x : σ′][y : t1]` e : t2 & b

C,A[x : σ′]` fn y ⇒ e : t1 →b t2 & ∅

where we can assume (by suitable alpha-renaming) that y 6= x and that y does
not occur in e′. Hence we can apply Fact 2.7 and Fact 2.8 to get

C,A[y : t1][x : σ′]` e : t2 & b with the same shape as the premise and
C,A[y : t1]` e′ : σ′& ∅.

We can thus apply the induction hypothesis and subsequently use (abs) to con-
struct an inference tree whose last inference is

C,A[y : t1]` e[e′/x] : t2 & b

C,A`fn y ⇒ e[e′/x] : t1 →b t2 & ∅

which is as desired since (fn y ⇒ e)[e′/x] = (fn y ⇒ e[e′/x]).

(app) has been applied: Here the inference (which was assumed to be con-
straint saturated) takes the form

C,A[x : σ′]` e1 : t2 →b t1 & b1 C,A[x : σ′]` e2 : t2 & b2

C,A[x : σ′]` e1 e2 : t1 & (b1 ∪ b2 ∪ b)

where we can apply the induction hypothesis twice and subsequently use (app)
to construct an inference tree whose last inference is

C,A` e1[e′/x] : t2 →b t1 & b1 C,A` e2[e′/x] : t2 & b2

C,A` e1[e′/x] e2[e′/x] : t1 & (b1 ∪ b2 ∪ b)

which is as desired since (e1 e2)[e′/x] = e1[e′/x] e2[e′/x].

34

(let), (rec) or (if) has been applied: Similar to the above two cases, ex-

ploiting Fact 2.7 and Fact 2.8 and we only spell the case (rec) out in detail. Here

the inference takes the form

C,A[x : σ′][f : t]` fn y ⇒ e : t& b

C,A[x : σ′]` rec f y ⇒ e : t& b

where we can assume that y 6= x, f 6= x and that neither y nor f occurs in e′.
Hence we can apply Fact 2.7 and Fact 2.8 to get

C,A[f : t][x : σ′]` fn y ⇒ e : t& b with the same shape as the premise and

C,A[f : t]` e′ : σ′& ∅.

We can thus apply the induction hypothesis to infer

C,A[f : t]` (fn y ⇒ e)[e′/x] : t& b

which since y 6= x and y is not free in e′ amounts to

C,A[f : t]`fn y ⇒ e[e′/x] : t& b.

By applying (rec) we get

C,A`rec f y ⇒ e[e′/x] : t& b

which is as desired since (rec f y ⇒ e)[e′/x] = (rec f y ⇒ e[e′/x]).

(sub) has been applied: Here the inference takes the form

C,A[x : σ′]` e : t& b

C,A[x : σ′]` e : t′& b′
with C ` t⊆ t′ and C ` b⊆ b′

so we can apply the induction hypothesis and subsequently use (sub) to construct

an inference tree whose last inference is

C,A` e[e′/x] : t& b

C,A` e[e′/x] : t′& b′

(ins) has been applied: Similar to the above case.

35

(gen) has been applied: Here the inference takes the form

C ∪ C0, A[x : σ′]` e : t0 & b

C,A[x : σ′]` e : ts& b

where ts = ∀(~α~β : C0). t0 is well-formed, solvable from C, and satis�es {~α~β} ∩
FV(C,A[x : σ′], b) = ∅. By Lemma 2.6 we have

C ∪ C0, A` e′ : σ′& ∅

so we can apply the induction hypothesis to get

C ∪ C0, A` e[e′/x] : t0 & b.

We can then apply (gen) (since {~α~β} ∩ FV(C,A, b) = ∅) to arrive at the desired
judgement C,A` e[e′/x] : ts& b. 2

Lemma 2.32 Suppose that C,A `s w : σ& b with C well-formed;

then C,A `s w : σ& ∅ and with the same shape.

Proof It is enough to consider the case where σ is a type t, for if the inference

C ∪ C0, A`w : t0 & b

C,A`w : ∀(~α~β : C0). t0 & b
(gen)

is valid it remains valid when b is replaced by ∅. We now prove the claim by
induction in the size of w, and the only interesting case is where w = cw1 · · ·wn
for n ≥ 1 and with c being a constructor.

Lemma 2.30 combined with Fact 2.1 tells us that

TypeOf(c) takes the form ∀(~α~β : ∅). t′1 →∅ · · · t′n →∅ t′

and Lemma 2.30 further tells us that there exists t1 · · · tn, b1 · · · bn, and S with
Dom(S) ⊆ {~α~β} such that

C `S t′⊆ t;

for all i ∈ {1 · · · n}: C,A `s wi : ti & bi and C ` ti⊆S t′i.

The induction hypothesis tells us that

for all i ∈ {1 · · · n}: C,A `s wi : ti & ∅

and by using (con), (ins) and (sub) we have

36

C,A `s c : t1 →∅ · · · tn →∅ t& ∅.

This shows that we can construct the desired judgementC,A `s cw1 · · ·wn : t& ∅
(where the applications of (sub) are justi�ed by C `∅ ∪ ∅ ∪ ∅⊆ ∅). 2

37

