
Type and Behaviour Reconstruction for
Higher-Order Concurrent Programs

Torben Amtoft, Flemming Nielson, Hanne Riis Nielson
DAIMI, Aarhus University

Ny Munkegade, DK-8000 Århus C, Denmark
{tamtoft,fn,hrn}@daimi.aau.dk

November 13, 1995

Abstract

In this paper we develop a sound and complete type and behaviour inference
algorithm for a fragment of CML (Standard ML with primitives for concur-
rency). Behaviours resemble terms of a process algebra and yield a concise
representation of the communications taking place during execution; types
are mostly as usual except that function types and “delayed communication
types” are labelled by behaviours expressing the communications that will
take place if the function is applied or the delayed action is activated. The
development of the present paper improves a previously published algorithm
in achieving completeness as well as soundness; this is due to an alternative
strategy for generalising over types and behaviours.

Chapter 1

Introduction

It is well-known that testing can only demonstrate the presence of bugs,
never their absence. This has motivated a vast amount of software related
activities on guaranteeing statically (that is, at compile-time rather than
run-time) that the software behaves in certain ways; a prime example is the
formal (and usually manual) verification of software. In this line of activities
various notions of type systems have been put forward because these allow
static checks of certain kinds of bugs: while at run-time there may still be a
need to check for division by zero there will never be a need to check for the
addition of booleans and files. As programming languages evolve in terms of
features, like module systems and the integration of different programming
paradigms, the research on “type systems” is constantly pressed for new
problems to be treated.

Our research has been motivated by the integration of the functional and
concurrent programming paradigms. Example programming languages are
CML [Rep91] that extends Standard ML with concurrency, Facile [PGM90]
that follows a similar approach but more directly contains syntax for ex-
pressing CCS-like process composition, and LCS [BS94]. The overall com-
munication structure of such programs may not be immediately clear and
hence one would like to find compact ways of recording the communications
taking place during execution. One such representation is behaviours, a kind
of process algebra expressions.

In [NN93] and [NN94a] inference systems are developed that extend the usu-
al notion of types with behaviours. Applications of such information are

1

demonstrated in [NN94a] and [NN94c].

The question remains: how to implement the inference system, i.e. how to
reconstruct the types and behaviours? It seems suitable to use a modified
version of algorithm W [Mil78]. This algorithm works by unification, but
since our behaviours constitute a non-free algebra (due to the laws imposed
on them) this approach is not immediately feasible in our framework. Instead
we employ the technique of algebraic reconstruction [JG91, TJ92]; that is the
algorithm unifies the free part of the type structure and generates constraints
to cater for the non-free parts.

This idea is carried out in [NN94b], where a reconstruction algorithm is pre-
sented which is sound but not complete. The algorithm returns two kind
of constraints: C-constraints and S-constraints. The C-constraints represent
the “monomorphic” aspects of the analysis whereas the S-constraints are
needed to cope with polymorphism: they express that instances of polymor-
phic variables should remain instances even after applying a solution substi-
tution. Using S-constraints is not a standard tool when analysing polymor-
phic languages; they seem to be needed because the C-constraints apparently
lack a “principal solution property” (a phenomenon well-known in unifica-
tion theory). Finding a “canonical” solution to C-constraints is feasible as
shown in [NN94b]; in sufficiently simple cases this solution can be shown to
be “principal”.

The present paper improves on [NN94b] by (i) achieving completeness in
addition to soundness, by means of another generalisation strategy (made
possible by a different formulation of S-constraints); (ii) avoiding some re-
dundancy in the generated constraints (and in the correctness proofs). For
simple cases we show how to solve the constraints generated, but it remains
an open problem how to solve the constraints in general and how to charac-
terise the solution as “principal”. This is related to the fact that S-constraints
can be viewed as a special case of semi-unification.

Overview of paper

Chapter 2 and 3 set up the background for the present work: in Chapter 2 we
give a brief motivating introduction to CML and behaviours, and in Chapter
3 we present the inference system from [NN94a]. Chapter 4 contains a de-
tailed motivation for our design of the reconstruction algorithm W . Chapter

2

5 elaborates on our choice of generalisation strategy. In Chapter 6 and 7
the algorithm is shown to be sound and complete; the proofs can be found
in Appendix B and C. In Chapter 8 we show how to solve the constraints
generated for some special cases. Chapter 9 concludes. Example output from
our prototype implementation is shown in Appendix A.

3

Chapter 2

CML-expressions and
behaviours

CML-expressions e are built from identifiers x, constants c, applications e1 e2,
monomorphic abstractions λx.e0, polymorphic abstractions let x=e1 in e0,
conditionals if e0 then e1 else e2, recursive function definitions rec f(x)⇒ e0,
and sequential composition e1;e2. This is much like ML, the concurrent
aspects being taken care of by the constants c some of which will appear in
the example below:

Example 2.1 The following CML-program map2 is a version of the well-
known map function except that a process is forked for each tail while the
forking process itself works on the head. A channel over which the com-
munication takes place is allocated by means of channel; then fork creates a
new process which computes map2 f (tail xs) and sends the result over this
channel. The purpose of the constant sync is to convert a communication pos-
sibility into an actual communication (see [Rep91] for further motivation).

rec map2(f) ⇒ λxs.if xs = [] then []
else let ch = channel ()

in fork (λd.(sync (send 〈ch,map2 f (tail xs)〉)));
cons (f (head xs)) (sync (receive ch))

The “underlying type” of map2 will be (α1 → α2)→ (α1 list→ α2 list) but
we can annotate this type with behaviour information yielding the type

(α1 →β1 α2)→ε (α1 list→b2 α2 list)

4

where b2 (the behaviour of map2 f) is expressed in terms of β1 (the behaviour
of f) as follows:

RECβ.(ε+ ((α2 list) CHAN; FORK (β; !(α2 list)); β1; ?(α2 list))).

So either b2 performs no communication (if the list xs is empty) or it will
first allocate a channel which transmits values of type α2 list; then it forks
a process which first calls b2 recursively (to work on the tail of the list) and
then outputs a value of type α2 list; then it performs β1 (by computing f on
the head of the list); and finally it receives a value of type α2 list. 2

The above example demonstrates that the use of behaviours enables us to ex-
press the essential communication properties of a CML program in a compact
way and thus supports a two-stage approach to program analysis: instead of
writing a number of analyses for CML programs one writes these analyses for
behaviours (presumably a much easier task) and then relies on one analysis
mapping CML programs into behaviours. The semantic soundness of this
approach is a consequence of the subject reduction theorem from [NN94a].

Some useful analyses on behaviours. In [NN94a] a behaviour is tested
for finite communication topology, that is whether only finitely many process-
es are spawned and whether only finitely many channels are created. If the
former is the case we may dispense with multitasking; if the latter is the case
we may dispense with multiplexing. Both cases lead to substantial savings in
the run-time system. In [NN94c] two analyses are presented which provide
information helpful for making a static (resp. dynamic) decision about where
to allocate processes.

Types. Types t can be either a type variable α, a base type like int or bool
or unit, a function type t1 →b t2 (given a value of type t1 a computation is
initiated that behaves as indicated by b and that returns a value of type t2),
a list type t list, a communication type t com b (if such a communication
possibility is activated it behaves as indicated by b and returns a value of
type t), or a channel type t chan (a channel able to transmit values of type
t).

Behaviours. Behaviours b are built using the syntax

b ::= β | ε | !t | ?t | t CHAN | FORK b | RECβ.b | b1; b2 | b1 + b2

5

that is they can be one of the following: a behaviour variable β; the empty
behaviour ε (no communications take place); an output action !t (a value of
type t is sent); an input action ?t (a value of type t is received); a channel
action t CHAN (a channel able to transmit values of type t is created); a fork
action FORK b (a process with behaviour b is created); a recursive behaviour
RECβ.b (where b can “call” itself recursively via β); a sequential composition
b1; b2 (first b1 is performed and then b2); a non-deterministic choice b1 + b2

(either b1 or b2 are performed). A recursive behaviour b = RECβ.b′ binds β
in the sense that the set of free variables fv(b) is defined to be fv(b′) \ {β};
and we assume alpha-conversion to be performed automatically.
Compared to [NN94a] we have omitted regions as these present no additional
problems to the algorithm.

6

Chapter 3

The type and behaviour
inference system

In Fig. 3.1 (explained below) we list the inference system. A judgement is
of the form E ` e : t & b and says that in the environment E one can infer
that expression e has type t and behaviour b. An environment is a list of type
schemes where the result of updating E with [x : ts] is written E ⊕ [x : ts].

As is always the case for program analysis we shall be interesting in getting as
precise information as possible, but due to decidability issues approximations
are needed. We shall approximate behaviours but not types, that is we have
“subeffecting” (cf. [Tan94]) but not “subtyping”. To formalise this we impose
a preorder w on behaviours just as in [NN94a, Table 3], with the intuitive
interpretation that if bwb′ then b approximates b′ in the sense that any action
performed by b′ can also be performed by b. (To be more precise: w is a subset
of the simulation ordering which is undecidable, whereas w is decidable for
behaviours not containing recursion.) This approximation is “inlined” in all
the clauses of the inference system and yields:

Fact 3.1 If E ` e : t & b and b′wb then E ` e : t & b′. 2

The preorder is axiomatised in Fig. 3.2, where b1≡b2 denotes that b1wb2 and
b2wb1 and where b[φ] denotes the result of applying the substitution φ to b.
The axiomatisation expresses that “; ” is associative (S1) with ε as neutral
element (E1,E2); that “w” is a congruence wrt. the various constructors
(C1,C2,C3,C4); and that + is least upper bound wrt. w (J1,J2).

7

E ` x : t & b
if E(x) � t
and bwε

E ` c : t & b
if CTypeOf(c) � t
and bwε

E ` e1 : t1 & b1, E ` e2 : t2 & b2

E ` e1 e2 : t & b

if t1 = t2 →b0 t
and bwb1; b2; b0

E ⊕ [x : t1] ` e0 : t0 & b0

E ` λx.e0 : t & b

if t = t1 →b0 t0
and bwε

E ` e1 : t1 & b1, E ⊕ [x : gen(t1, E, b1)] ` e0 : t & b0

E ` let x=e1 in e0 : t & b
if bwb1; b0

E ` e0 : bool & b0, E ` e1 : t & b1, E ` e2 : t & b2

E ` if e0 then e1 else e2 : t & b
if bwb0; (b1 + b2)

E ⊕ [f : t→b0 t′]⊕ [x : t] ` e0 : t′ & b0

E ` rec f(x)⇒ e0 : t→b0 t′ & b
if bwε

E ` e1 : t1 & b1, E ` e2 : t & b2

E ` e1;e2 : t & b
if bwb1; b2

Figure 3.1: The type and behaviour inference system.

8

P1 bwb P2 b1wb2 ∧ b2wb3 ⇒ b1wb3

C1 b1wb2 ∧ b3wb4 ⇒ b1; b3wb2; b4 C2 b1wb2 ∧ b3wb4 ⇒ b1 + b3wb2 + b4

C3 b1wb2 ⇒ FORK b1wFORK b2 C4 b1wb2 ⇒ RECβ.b1wRECβ.b2

S1 b1; (b2; b3)≡(b1; b2); b3 S2 (b1 + b2); b3≡(b1; b3) + (b2; b3)
E1 b≡ε; b E2 b; ε≡b
J1 b1 + b2wb1 ∧ b1 + b2wb2 J2 bwb+ b
R1 RECβ.b≡b[β 7→ RECβ.b]

Figure 3.2: The preorder w with equivalence ≡.

Fact 3.2 If b1wb2 then fv(b1) ⊇ fv(b2) and b1[φ]wb2[φ].

We now return to Fig. 3.1. The clause for monomorphic abstractions says
that if e0 in an environment where x is bound to t1 has type t0 and behaviour
b0, then λx.e0 has type t1 →b0 t0. The clause for applications reflects the call-
by-value semantics of CML: first the function part is evaluated (b1); then
the argument part is evaluated (b2); finally the function is called on the
argument (b0). The clause for an identifier x says that its type t must be
a polymorphic instance of the type scheme E(x) whereas the behaviour is
ε (again reflecting that CML is call-by-value). The clause for polymorphic
abstractions let x=e1 in e0 reflects that first e1 is evaluated (exactly once)
and then e0 is evaluated – the polymorphic aspects are taken care of by
the function gen(t1, E, b1) which creates a type scheme whose type part is t1
and where all variables are polymorphic except those which are free in the
environment E (which is a standard requirement) and except those which are
free in the behaviour b1 (which is a standard requirement for effect systems
[TJ94]). The clause for sequential compositions e1;e2 reflects that first e1 is
evaluated (for its side effects) and then e2 is evaluated to produce a value
(and some side effects).

For a constant c the type t must be a polymorphic instance of CTypeOf(c)
which is a closed extended type scheme, that is in addition to a type it also
contains a set of constraints of form b1wb2. Such constraints are denoted
C-constraints (for containment). The value of CTypeOf() on some constants
(all occurring in Example 2.1) is tabulated below (adopted from [NN94b,

9

Table 4]).

head : ∀ . . . (α list→β α, [βwε])
sync : ∀ . . . ((α com β1)→β2 α, [β2wβ1])
send : ∀ . . . (α chan × α→β1 α com β2, [β1wε, β2w!α])
receive : ∀ . . . (α chan→β1 α com β2, [β1wε, β2w?α])
channel : ∀ . . . (unit→β α chan, [βwα CHAN])
fork : ∀ . . . ((unit→β1 α)→β2 unit, β2wFORK β1)

The inference system is much as in [NN94a] (whereas the inference system
in [NN93] uses subtyping instead of polymorphism), but in [NN94a] the C-
constraints present in the definition of CTypeOf() have been “coded into”
the types.

10

Chapter 4

Designing the reconstruction
algorithm W

Our goal is to produce an algorithm which works in the spirit of the well-
known algorithm W [Mil78], but due to the additional features present in
our inference system some complications arise as will be described in the
subsequent sections. In Section 4.1 we introduce the notion of simple types
which is needed since behaviours constitute a non-free algebra; in Section 4.2
we introduce the notion of S-constraints which is needed since C-constraints
in general have no principal solution; in Section 4.3 we improve on the algo-
rithm from [NN94b] so as to get completeness; and in Section 4.4 we further
improve on our algorithm by eliminating some redundancy in the generat-
ed constraints thus making the output (and correctness proof) simpler, at
the same time providing the motivation for an alternative way to write type
schemes to be presented in Section 4.5. After all these preparations, our
algorithm W is presented in Section 4.6.

4.1 The need for simple types

Due to the laws in Figure 3.2 the behaviours do not constitute a free algebra
and hence the standard compositional unification algorithm is not immedi-
ately applicable. To see this, notice that even though b1; b2≡b′1; b′2 it does
not necessarily hold that b1≡b′1 since we might have that b1 = b′2 = ε and
b′1 = b2 = !int.

11

The remedy [TJ92, NN94b] is to introduce the notion of simplicity: a type
is simple if all the behaviours it contains are behaviour variables (so e.g.
t1 →b t2 is simple iff t1 and t2 are both simple and b = β for some β); a
behaviour is simple if all the types it contains are simple (so e.g. !t is simple
iff t is simple) and if it does not contain sub-behaviours of form RECβ.b;
a C-constraint is simple if it is of form βwb with b a simple behaviour; a
substitution is simple if it maps type variables into simple types and maps
behaviour variables into behaviour variables (rather than simple behaviours).

Fact 4.1 Simple types are closed under the application of simple substitu-
tion: t[φ] is simple if t and φ are; similarly for behaviours and C-constraints.
Also simple substitutions are closed under composition: φ;φ′ (first φ and
then φ′) is simple if φ and φ′ are. 2

Fact 4.2 All CTypeOf(c) have simple types and simple C-constraints.

We can now define a procedure UNIFY which takes two simple types t1 and
t2 and returns the most general unifier if one unifier exists – otherwise UNIFY
fails. There are two different non-failing cases: (i) if one of the types is a
variable, we return a unifying substitution after having performed an “oc-
cur check”; (ii) if both types are composite types with the same topmost
constructor, we call UNIFY recursively on the type components and subse-
quently identify the behaviour components (which is possible since these are
variables due to the types being simple).

So the precise definition of UNIFY will contain the cases below:

UNIFY(α, t) = [α 7→ t] provided t = α or α 6∈ fv(t)

UNIFY(t1 com β1, t2 com β2) = θ′; [β ′1 7→ β ′2] where
UNIFY(t1, t2) = θ′ and β ′i = βi[θ′]

Fact 4.3 If UNIFY is called on simple types, all arguments to subcalls will
be simple types.

The substitution returned by UNIFY is simple. 2

The following two lemmas state that UNIFY really computes the most general
unifier:

12

Lemma 4.4 Suppose UNIFY(t1, t2) = θ. Then t1[θ] = t2[θ].

Proof: Induction in the definition of UNIFY, using the same terminology.
For the call UNIFY(α, t) we have α[α 7→ t] = t = t[α 7→ t] where we employ
that α 6∈ fv(t) (or t = α).

Now suppose UNIFY(t1 com β1, t2 com β2) = θ with θ = θ′; [β ′1 7→ β ′2]. By
induction we have t1[θ′] = t2[θ′] and hence

(t1 com β1)[θ] = t1[θ] com β ′1[β
′
1 7→ β ′2] = t2[θ] com β ′2 = (t2 com β2)[θ].

Lemma 4.5 Suppose t1[ψ] = t2[ψ] (with t1,t2 simple). Then UNIFY(t1, t2)
succeeds with result θ, and there exists ψ′ such that ψ = θ;ψ′.

Proof: Induction in the size of t1 and t2. If one of these is a variable, then
the claim follows from the fact that if α[ψ] = t[ψ] then ψ = [α 7→ t];ψ.

Otherwise, they must have the same topmost constructor say com (the
other cases are rather similar). That is, the situation is that (t1 com β1)[ψ] =
(t2 com β2)[ψ]. Since t1[ψ] = t2[ψ] we can apply the induction hypothesis
to infer that the call UNIFY(t1, t2) succeeds with result θ′ and that there
exists ψ′ such that ψ = θ′;ψ′. With β ′i = βi[θ′] and with θ = θ′; [β ′1 7→ β ′2]
we conclude that UNIFY(t1 com β1, t2 com β2) succeeds with result θ. Since
β ′1[ψ′] = β1[θ′;ψ′] = β1[ψ] = β2[ψ] = β2[θ′;ψ′] = β ′2[ψ′] it holds that ψ′ =
[β ′1 7→ β ′2];ψ

′. Hence we have the desired relation ψ = θ′;ψ′ = θ;ψ′. 2

4.2 The need for S-constraints

The most distinguishing feature of our approach is the presence of the so-
called S-constraints (for substitutions), whose purpose is to record that the
solution chosen for polymorphic variables and their instances must be in
the same “solution class” with the solution for the polymorphic variables
“principal” in that class. This is necessary because there seems to be no
notion of “principal solutions” to C-constraints. For an example of this, con-
sider the constraint βw!int; !int; β. Both the substitution ψ1 which maps
β into RECβ.(!int; !int; β) and as the substitution ψ2 which maps β into
RECβ.(!int; β) will satisfy this constraint; but with the current axiomatisation
it seems hard to find a sense in which ψ1 and ψ2 are comparable.1

1A remedy might be to adopt more rules for behaviours such that RECβ.b is equivalent
to its infinite unfolding (cf. rule R1 in Fig. 3.2 which states that RECβ.b is equivalent

13

As we shall see in Chapter 8 it is always possible to find a solution to a given
set of C-constraints, but due to the lack of principality such a solution may
not correspond to a valid inference: if β is a polymorphic variable occurring
in the type of a let-bound identifier x and β ′ is a copy of β made when
analysing an instance of x then (as the constraints for β are copied too) any
solution to the constraints for β ′ is a copy of a solution to the constraints
for β (and hence an instance of the principal solution if a such existed), but
the solution actually chosen for β needs not have the solution chosen for β ′

as instance. Hence we need to record, by means of an S-constraint, that the
solution chosen for β should have the solution chosen for β ′ as an instance.
The above considerations motivated the design of the algorithm in [NN94b]
where the environment binds each identifier x to a type scheme2 of form
∀~γ.(t, C) and where the following actions are taken when such an x is met:
copies t′ and C ′ of t and C are created, where ~γ has been replaced by fresh
variables ~γ′; and an S-constraint ~γ � ~γ′ is generated.

An additional feature present in [NN94b], needed in order for the soundness
proof to carry through (and enforced by another kind of S-constraints), is
that there is a sharp distinction between polymorphic variables and non-
polymorphic variables in the sense that a solution must not “mix” those
variables. This requirement has severe impact on which variables to quantify
(i.e. make polymorphic) in the type scheme ∀~γ.(t, C) of a let-bound identifier:
apart from following the inference system in ensuring that variables free in
the environment or in the behaviour (these variables will be called EB in the
rest of the paper) are not quantified over one will also need to ensure that
the set of variables not quantified over (these variables will be denoted NQ
in the rest of the paper) is downwards closed as well as upwards closed wrt.
C, according to the following definitions:

Definition 4.6 Let F be a set of variables and let C be a set of (simple)
C-constraints. We say that F is downwards closed wrt. C if the following
property holds for all βwb ∈ C: if β ∈ F then fv(b) ⊆ F . 2

Definition 4.7 Let F be a set of variables and let C be a set of (simple) C-
constraints. We say that F is upwards closed wrt. C if the following property

to its finite unfoldings, and cf. [CC91] where a similar change in axiomatisation is made
concerning recursive types).

2We use γ to range over type variables and behaviour variables collectively and use g
to range over types and behaviours collectively.

14

holds for all βwb ∈ C: if fv(b) ∩ F 6= ∅ then β ∈ F . 2

We define the downwards closure of F wrt. C, denoted F ↓C, as the least set
which contains F and which is downwards closed wrt. C. It is easy to see
that this set can be computed constructively. Similarly for the “downwards
and upwards closure”.

Demanding NQ to be downwards closed amounts to stating that a non-
polymorphic variable cannot have polymorphic subparts (which seems rea-
sonable); whereas additionally demandingNQ to be upwards closed amounts
to stating that a polymorphic variable cannot have non-polymorphic subparts
(which seems less reasonable).

4.3 Achieving completeness

The last remarks in the preceding section suggest that the proper demand
to NQ is that it must be downwards closed but not necessarily upwards
closed. This modification is actually the key to getting an algorithm which is
complete. But without NQ being upwards closed we cannot expect the exis-
tence of a solution which does not mix up polymorphic and non-polymorphic
variables. Hence this restriction has to be weakened; and it turns out that
a suitable “degree of distinction” between the two kinds of variables can be
coded into the S-constraints by letting them take the form ∀F.~g � ~g′ (with
F a set of variables which one should think of as non-polymorphic). Such
a constraint is satisfied by a substitution ψ iff ~g′[ψ] is an instance of ~g[ψ],
i.e. of form ~g[ψ][φ], where the domain dom(φ) of the instance substitution
φ is disjoint from fv(F [ψ]). This explains S-constraints as a special case of
semi-unification.

4.4 Eliminating redundancy

S-constraints are introduced when meeting an identifier x which is bound
to a type scheme ∀~γ.(t, C); then the constraint ∀F.~γ � ~γ′ is generated
where ~γ′ are fresh copies of ~γ and where F = fv(t, C) \ ~γ. In addition
copies of the C-constraints in C are generated (replacing ~γ by ~γ′). There
is some redundancy in this and actually it is possible to dispense with the

15

copying of C-constraints. This in turn enables us to remove constraints
from the type schemes. The virtues of doing so are twofold: the output
from the implementation becomes much smaller; and the correctness proofs
become simpler. The price to pay is that even though C can be removed
from ∀~γ.(t, C) we still have to remember what fv(C) is (as otherwise F as
defined above will become too small and hence the generated S-constraints
will become too easy to satisfy, making the algorithm unsound).

4.5 Type schemes

The considerations in the previous section suggest that it is convenient to
write type schemes ts on the form ∀F.t where F is a list of free variables (so
fv(ts) = F). There is a natural injection from type schemes in the classical
form ∀~γ.t into type schemes in the new form (let F = fv(t) \ ~γ). A type
scheme ∀F.t which is in the image of this injection (i.e. where F ⊆ fv(t))
is said to be kernel and corresponds to the inference system; type schemes
which are not necessarily kernel are said to be enriched (and are essential for
the algorithm).

The instance relation is defined in a way consistent with the classical defini-
tion: ∀F.t � t′ holds iff there exists a substitution φ with dom(φ) ∩ F = ∅
such that t′ = t[φ]. For extended type schemes we say that ∀ . . . (t, C) � t′

holds iff there exists φ such that φ satisfies C (as usual this is written φ |= C)
and t′ = t[φ].
We also need a relation ts � ts′ (to be read: ts is more general than ts′) on
type schemes (to be extended pointwise to environments). Usually this is
defined to hold if all instances of ts′ are also instances of ts, but it turns out
that for our purposes a stronger version will be more suitable (as it is more
“syntactic”): with ts = ∀F.t and ts′ = ∀F ′.t′ we say that ts � ts′ holds if
t = t′ and F ⊆ F ′. As expected we have

Fact 4.8 Let E and E′ be kernel environments with E′ � E. Suppose that
E ` e : t & b. Then also E′ ` e : t & b.

Finally we need to define how substitutions work on these newly defined
entities:3 if ts = ∀F.t then ts[ψ] = ∀F ′.t[ψ] where F ′ = fv(F [ψ]); and the re-

3As long as substitutions do not affect the bound variables (which we can prove will

16

sult of applying ψ to the S-constraint ∀F.~g � ~g′ is ∀F ′.~g[ψ] � ~g′[ψ] where
again F ′ = fv(F [ψ]). Notice that the S-constraint ∀F.t � t′ is satisfied by
ψ iff the type t′[ψ] is an instance of the (enriched) type scheme (∀F.t)[ψ].

4.6 Algorithm W

We are now ready to define the reconstruction algorithm W , as is done in
Figure 4.1 and 4.2. The algorithm fails if and only if a call to UNIFY fails.
W takes as input a CML-expression and an environment where all types are
simple and returns as output a simple type, a simple behaviour, a list of
constraints where the C-constraints are simple, and a simple substitution.

Most parts of the algorithm are either standard or have been explained earlier
in this chapter. Note that in the clause for constants we generate a copy of the
C-constraints rather than an S-constraint, unlike what we do in the clause
for identifiers. This corresponds to the difference in use: in an expression
let x=e1 in . . . x . . . x . . . the types of the two x’s must be instances of what
we find later (when solving the generated constraints) to be the type of
e1; whereas in an expression . . . c . . . c . . . the types of the two c’s must be
instances of a type that we know already.

be the case for the substitutions produced by our algorithm) the usual laws still hold, e.g.
that if ts � t then ts[ψ] � t[ψ] but this result is not needed for our correctness proofs.

17

W (x,E) = (t, b, C, θ)
iff E(x) = ∀Fx.tx and ~γ = fv(tx) \ Fx and ~γ′ are fresh copies of ~γ
and t = tx[~γ 7→ ~γ′] and b = ε and C = [∀Fx.~γ � ~γ′] and θ = id

W (c, E) = (t, b, C, θ)
iff CTypeOf(c) = ∀ . . . (tc, Cc)
and ~γ = fv(tc) ∪ fv(Cc) and ~γ′ are fresh copies of ~γ
and t = tc[~γ 7→ ~γ′] and b = ε and C = Cc[~γ 7→ ~γ′] and θ = id

W (e1 e2, E) = (t, b, C, θ)
iff W (e1, E) = (t1, b1, C1, θ1) and W (e2, E[θ1]) = (t2, b2, C2, θ2)
and α and β0 are fresh and UNIFY(t1[θ2], t2 →β0 α) = θ0

and t = α[θ0] and b = b1[θ2; θ0]; b2[θ0]; β0[θ0]
and C = C1[θ2; θ0]⊕C2[θ0] and θ = θ1; θ2; θ0

W (λx.e0, E) = (t, b, C, θ)
iff α1 is a fresh variable and W (e0, E ⊕ [x : α1]) = (t0, b0, C0, θ0)
and β0 is a fresh variable and t = α1[θ0]→β0 t0 and b = ε
and C = C0⊕[β0wb0] and θ = θ0

Figure 4.1: Algorithm W , first part.

18

W (let x=e1 in e0, E) = (t, b, C, θ)
iff W (e1, E) = (t1, b1, C1, θ1)
and W (e0, E[θ1]⊕ [x : ∀NQ.t1]) = (t0, b0, C0, θ0)
and t = t0 and b = b1[θ0]; b0 and C = C1[θ0]⊕C0 and θ = θ1; θ0

where EB = fv(E[θ1]) ∪ fv(b1) and NQ = EB↓C1

W (if e0 then e1 else e2, E) = (t, b, C, θ)
iff W (e0, E) = (t0, b0, C0, θ0)
and W (e1, E[θ0]) = (t1, b1, C1, θ1)
and W (e2, E[θ0; θ1]) = (t2, b2, C2, θ2)
and UNIFY([t0[θ1; θ2], t1[θ2]], [bool, t2]) = θ′

and t = t2[θ′] and b = (b0[θ1; θ2]; (b1[θ2] + b2))[θ′]
and C = (C0[θ1; θ2]⊕C1[θ2]⊕C2)[θ′] and θ = θ0; θ1; θ2; θ′

W (rec f(x)⇒ e0, E) = (t, b, C, θ)
iff α1, α2 and β are fresh variables
and W (e0, E ⊕ [f : α1 →β α2]⊕ [x : α1]) = (t0, b0, C0, θ0)
and UNIFY(α2[θ0], t0) = θ′

and t = (α1[θ0]→β[θ0] t0)[θ′] and b = ε
and C = (C0⊕[β[θ0]wb0])[θ′] and θ = θ0; θ′

W (e1;e2, E) = (t, b, C, θ)
iff W (e1, E) = (t1, b1, C1, θ1) and W (e2, E[θ1]) = (t2, b2, C2, θ2)
and t = t2 and b = b1[θ2]; b2 and C = C1[θ2]⊕C2 and θ = θ1; θ2

Figure 4.2: Algorithm W , second part.

19

Chapter 5

Choice of generalisation
strategy

It turns out that in order to prove soundness (as is done in Appendix B) all
we need to know about NQ is that

ψ |= C1 ⇒ fv(NQ[ψ]) ⊇ fv(EB[ψ]) (5.1)

and it turns out that in order to prove completeness (as is done in Appendix
C) all we need to know about NQ is that

ψ |= C1 ⇒ fv(NQ[ψ]) ⊆ fv(EB[ψ]) . (5.2)

From Fact 3.2 it is immediate to verify that these two properties indeed hold
for NQ as defined in Figure 4.2. In this chapter we shall investigate whether
other definitions of NQ might be appropriate.

Requiring NQ to be upwards closed. (As already mentioned this is
essentially what is done in [NN94b].) Then (5.1) will still hold so soundness
is assured. On the other hand (5.2) does not hold; in fact completeness fails
since there exists well-typed CML-expressions on which the algorithm fails,
e.g. the expression below:

20

λx. let f = λy. let ch1 = channel () in let ch2 = channel ()
in λh.((sync (send 〈ch1,x〉));

(sync (send 〈ch2,y〉)))
; y

in f 7;f true

which is typable since with E = [x : αx] we have

E ` λy.. . . : αy →αx CHAN;αy CHAN αy & ε

and hence it is possible to quantify over αy. On the other hand, when
analysing λy.. . . the algorithm will generate constraints whose “transitive
closure” includes something like

βwαx CHAN;αy CHAN

and since αx belongs to EB and hence to NQ also αy will be in NQ.

Not requiring NQ to be downwards closed. (So we have NQ = EB.)
It is trivial that (5.1) and (5.2) still hold and hence neither soundness nor
completeness is destroyed. On the other hand, failures are reported at a later
stage as witnessed by the expression e = let ch=channel () in e1 where in e1

an integer as well as a boolean is transmitted over the newly generated chan-
nel ch. The proposed version of W applied to e will terminate successfully
and return constraints including the following

[βwα CHAN, ∀{β}.α � bool, ∀{β}.α � int]

which are unsolvable since for a solution substitution ψ it will hold (with
B = fv(β[ψ])) that ∀B.α[ψ] � bool and ∀B.α[ψ] � int; in addition we
have fv(α[ψ]) ⊆ B so it even holds that α[ψ] = bool and α[ψ] = int. On
the other hand, the algorithm from Figure 4.1 and 4.2 applied to e will fail
immediately (since α is considered non-polymorphic and hence is not copied,
causing UNIFY to fail). So it seems that the proposed change ought to be
rejected on the basis that failures should be reported as early as possible.

Note that e above can be typed if ch is assigned the type scheme ∀∅.α chan
but cannot be typed if ch is assigned the type scheme ∀{α}.α chan. The
former case will arise if α chan is handled as α list; whereas the latter case
will arise if α chan is handled by the techniques for α ref developed in [TJ94]
and [BD93].

21

The approach in [TJ94].

We have seen that there are several possibilities for satisfying (5.1) and (5.2);
so settling on the downwards closure as we have done may seem somewhat
arbitrary but can be justified by observing the similarities to what is done in
[TJ94].
Here behaviours are sets of atomic “effects” (thus losing causality informa-
tion) and any solvable constraint set C has a “canonical” solution C which
is principal in the sense that for any ψ satisfying C it holds that ψ = C;ψ.
What corresponds to our NQ is then essentially defined as fv(EB[C]) and
notice that since C is principal as defined above (5.1) and (5.2) hold.

The principal solution C basically for each β ⊇ B ∈ C maps β into B ∪{β};
so applying C corresponds to taking the downwards closure.

22

Chapter 6

Soundness of algorithm W

We shall prove that the algorithm is sound; i.e. that a solution to the con-
straints gives rise to a valid inference in the inference system of Figure 3.1.

Theorem 6.1 Suppose that W (e, ∅) = (t, b, C, θ)
and that ψ is such that ψ |= C and t′ = t[ψ] and b′wb[ψ].
Then it holds that ∅ ` e : t′ & b′. 2

This theorem follows easily (using Fact 3.1) from Proposition 6.2 below that
allows an inductive proof, to be found in Appendix B. The formulation makes
use of a function κ(E) which maps enriched environments (as used by the
algorithm) into kernel environments (as used in the inference system): for a
type scheme ts = ∀F.t we define κ(ts) = ∀F ′.t where F ′ = F ∩ fv(t).

Proposition 6.2 Suppose that W (e, E) = (t, b, C, θ). Then for all ψ with
ψ |= C we have κ(E[θ][ψ]) ` e : t[ψ] & b[ψ]. 2

23

Chapter 7

Completeness of algorithm W

We shall prove that if there exists a valid inference then the algorithm will
produce a set of constraints which can be satisfied. This can be formulated
in a way which is symmetric to Theorem 6.1:

Theorem 7.1 Suppose ∅ ` e : t′ & b′.
Then W (e, ∅) succeeds with result (t, b, C, θ)
and ∃ ψ such that ψ |= C and t′ = t[ψ] and b′wb[ψ]. 2

We have not succeeded in finding a direct proof of this result so our path will
be (i) to define an inference system which is equivalent to the one in Fig. 3.1
(ii) prove the algorithm complete wrt. this inference system.

The problem with the original system is that generalisation is defined as
gen(t1, E, b1) = ∀F.t1 where F = (fv(E) ∪ fv(b1)) ∩ fv(t1); this is in contrast
to the algorithm where no intersection with fv(t1) is taken. This motivates
the design of an alternative inference system which is as the old one except
that F = fv(E) ∪ fv(b1). Hence inferences will be of form E `2 e : t & b
where the environment E may now contain enriched type schemes. We have
the desired equivalence result, to be proved in Appendix D:

Proposition 7.2 Assume κ(E′) = E. Then E ` e : t & b holds iff it holds
that E′ `2 e : t & b. (In particular, ∅ ` e : t & b iff ∅ `2 e : t & b.) 2

So in order to prove Theorem 7.1 it will be sufficient to show Proposition 7.3
below that allows an inductive proof, to be found in Appendix C. Often (as

24

in e.g. [Jon92]) the assumptions in a completeness proposition are (using the
terminology of Prop. 7.3) that E[φ] is equal to E′; but as in [Smi93] this is
not sufficient since an identifier may be bound to a type scheme which is less
general than the one to which it is bound in the algorithm. (In our system this
phenomenon is due to the presence of subeffecting in the inference system so
one may produce behaviours containing many “extra” variables which cannot
be quantified over in let-expressions; whereas in [Smi93] it is due to the fact
that the inference system gives freedom to quantify over fewer variables than
possible.)

Proposition 7.3 Suppose E′ `2 e : t′ & b′ and E[φ] � E′. Then W (e, E)
succeeds with result (t, b, C, θ) and there exists a ψ such that1 θ;ψ E= φ and
ψ |= C and t′ = t[ψ] and b′wb[ψ]. 2

1We write φ1
E= φ2 to denote that γ[φ1] = γ[φ2] for all γ ∈ var(E), where var(E) are all

the variables (i.e. var(∀F.t) = fv(t) ∪ F).

25

Chapter 8

Solving the constraints

In this chapter we discuss how to solve the constraints generated by Algo-
rithm W . We have seen that the C-constraints are simple and hence of form
βwb with b a simple behaviour; and at some effort one can show that the
S-constraints are of form ∀F.~α~β � ~t′~β ′ where ~α and ~β are vectors of disjoint
variables. The right hand sides of the C-constraints may be quite lengthy,
for instance they will often involve sub-behaviours of form ε; ε; . . ., but we
have implemented an algorithm that applies the behaviour equivalences from
Fig. 3.2 so as to decrease (in most cases) the size of behaviours significantly.
The result of running our implementation on the program in Example 2.1 is
depicted in Appendix A (only C-constraints are generated; > stands for w;
e stands for ε; the ri are “region variables” and can be omitted).

Solving constraints sequentially. Given a set of constraints C, a natural
way to search for a substitution ψ that satisfies C is to proceed sequentially:

• if C is empty, let ψ = id;

• otherwise, let C be the disjoint union of C ′ and C ′′. Suppose ψ′ solves
C ′ and suppose ψ′′ solves C ′′[ψ′]. Then return ψ = ψ′;ψ′′.

It is easy to see that ψ |= C provided C ′[ψ′] is such that for all φ we have
φ |= C ′[ψ′]. This will be the case if C ′[ψ′] only contains C-constraints (due to
Fact 3.2) and S-constraints of form ∀F.~g � ~g, the latter kind to be denoted
S-equalities. So we arrive at the following sufficient condition for “sequential

26

solving” to be correct:

S-constraints are solved only when they become S-equalities. (8.1)

To see why sequential solving may go wrong if (8.1) is not imposed consider
the constraints below:

βw!α, β ′w!α, ∀∅.(α, β) � (int, β ′), ∀∅.(α, β) � (bool, β ′). (8.2)

The two S-constraints are solved (but not into S-equalities!) by the iden-
tity substitution; so if we proceed sequentially we are left with the two C-
constraints which are solved by the substitution ψ which maps β as well as
β ′ into !α. One might thus be tempted to think that ψ is a solution to the
constraints in (8.2); but by applying ψ to these constraints we get

∀∅.(α, !α) � (int, !α), ∀∅.(α, !α) � (bool, !α)

and these constraints are easily seen to be unsolvable.

Constraints that admit monomorphic solutions. If C is a list of con-
straints, such that all S-constraints in C are of form ∀F.(~α, ~β) � (~α′, ~β ′),
we can apply the scheme for sequential solution outlined in the preceding sec-
tion (we shall not deal with other kinds of S-constraints even though some
of those might have simple solutions as well).

First we convert the S-constraints into S-equalities, cf. (8.1). This is done
by identifying all type and behaviour variables occurring in “corresponding
positions” (thus going from a polymorphic world into a monomorphic world).
Next we have to solve the C-constraints sequentially; and during this pro-
cess we want to preserve the invariant that they are of form βwb (where
b is no longer assured to be a simple behaviour, as it may contain recur-
sion). It is easy to see that this invariant will be maintained provided we
can solve a constraint set of the form {βwb1, . . . , βwbn} by means of a sub-
stitution whose domain is {β}. But this can easily be achieved by adopting
the canonical solution of [NN94b]: due to rule R1 in Figure 3.2 we just map
β into RECβ.(b1 + . . .+ bn) (if β does not occur in the bi’s, we can omit the
recursion).

Our system implements the abovementioned (nondeterministically specified)
algorithm; and when run on the program from Example 2.1 it produces (after
appropriate line-breaking):

27

*** Selected solution: ***
Type: ((a4 -b17-> a14) -e-> (a4_list -b2-> a14_list))
Behaviour: e
where b2 -> rec b2.(e+(r2_chan_a14_list;fork_((b2;r2!a14_list));

b17;r2?a14_list))

which (modulo renaming) was what we expected.

Solving constraints in the general case. One can code up solving S-
constraints as a semi-unification problem and though the latter problem is
undecidable several decidable subclasses exist. We expect our S-constraints
to fall into one of these (since they are generated in a “structured way”) and
hence one might be tempted to use e.g. the algorithm for semi-unification
described in [Hen93]. But this is not enough since we in addition have to
solve the C-constraints, and as witnessed by the constraints in (8.2) this may
destroy the solution to the S-constraints.

28

Chapter 9

Conclusion

In this paper we have adapted the traditional algorithm W to apply to our
type and behaviour system. We have improved upon a previously published
algorithm [NN94b] in achieving completeness and eliminating some redun-
dancy in representation. The algorithm has been implemented and has pro-
vided quite illuminating analyses of example CML programs.

One difference from the traditional formulation of W is that we generate
so-called C-constraints that then have to be solved. This is a consequence of
our behaviours being a non-free algebra and is an phenomenon found also in
[JG91].

Another and major difference from the traditional formulation, as well as
that of [JG91], is that we generate so-called S-constraints that also have to
be solved. This phenomenon is needed because our C-constraints would seem
not to have principal solutions. This is not the case for the traditional “free”
unification of Standard ML, but it is a phenomenon well-known in unifica-
tion theory [Sie89]. As a consequence we have to ensure that the different
solutions to the C-constraints (concerning the polymorphic definition and its
instantiations) are comparable and this is the purpose of the S-constraints.
Solving S-constraints is a special case of semi-unification and even though the
latter is undecidable we may expect the former to be decidable. At present
it is an open problem how hard it is to solve S-constraints in the presence of
C-constraints. This problem is closely related to the question of whether the
algorithm may generate constraints which cannot be solved.

The approach pursued is this paper is to accept that there are constraints

29

which do not have principal solutions; future work along this avenue is to
develop heuristics and/or algorithms for solving the resulting S-constraints.

Acknowledgements. This research has been supported by the DART
(Danish Science Research Council) and LOMAPS (ESPRIT BRA 8130) projects.

30

Bibliography

[BD93] Dominique Bolignano and Mourad Debabi. A coherent type system
for a concurrent, functional and imperative programming language.
In AMAST ’93, 1993.

[BS94] Bernard Berthomieu and Thierry Le Sergent. Programming with
behaviours in an ML framework: the syntax and semantics of LCS.
In ESOP ’94, volume 788 of LNCS, pages 89–104. Springer-Verlag,
1994.

[CC91] Felice Cardone and Mario Coppo. Type inference with recur-
sive types: Syntax and semantics. Information and Computation,
92:48–80, 1991.

[Hen93] Fritz Henglein. Type inference with polymorphic recursion. ACM
Transactions on Programming Languages and Systems, 15(2):253–
289, April 1993.

[JG91] Pierre Jouvelot and David K. Gifford. Algebraic reconstruction of
types and effects. In ACM Symposium on Principles of Program-
ming Languages, pages 303–310. ACM Press, 1991.

[Jon92] Mark P. Jones. A theory of qualified types. In ESOP ’92, volume
582 of LNCS, pages 287–306. Springer-Verlag, 1992.

[Mil78] Robin Milner. A theory of type polymorphism in programming.
Journal of Computer and System Sciences, 17:348–375, 1978.

[NN93] Flemming Nielson and Hanne Riis Nielson. From CML to process
algebras. In CONCUR ’93, volume 715 of LNCS. Springer-Verlag,
1993. An expanded version appears as DAIMI technical report no.
PB-433.

31

[NN94a] Hanne Riis Nielson and Flemming Nielson. Higher-order concur-
rent programs with finite communication topology. In ACM Sym-
posium on Principles of Programming Languages. ACM Press, Jan-
uary 1994.

[NN94b] Flemming Nielson and Hanne Riis Nielson. Constraints for poly-
morphic behaviours of concurrent ML. In Constraints in Compu-
tational Logics (CCL ’94), volume 845 of LNCS. Springer-Verlag,
September 1994.

[NN94c] Hanne Riis Nielson and Flemming Nielson. Static and dynamic
processor allocation for higher-order concurrent languages. Techni-
cal Report PB-483, DAIMI, University of Aarhus, Denmark, 1994.

[PGM90] Sanjiva Prasad, Alessandro Giacalone, and Prateek Mishra. Oper-
ational and algebraic semantics for Facile: A symmetric integration
of concurrent and functional programming. In ICALP 90, 1990.

[Rep91] John H. Reppy. CML: A higher-order concurrent language. In
SIGPLAN’91 Conference on Programming Language Design and
Implementation, June 1991.

[Sie89] Jörg H. Siekmann. Unification theory. J. Symbolic Computation,
7:207–274, 1989.

[Smi93] Geoffrey S. Smith. Polymorphic type inference with overloading
and subtyping. In TAPSOFT ’93, volume 668 of LNCS, pages
671–685. Springer-Verlag, 1993.

[Tan94] Yan-Mei Tang. Systemes d’Effet et Interpretation Abstraite pour
l’Analyse de Flot de Controle. PhD thesis, Ecole Nationale Su-
perieure des Mines de Paris, 1994. Report A/258/CRI. In English.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region
and effect inference. Journal of Functional Programming, 2(3):245–
271, 1992.

[TJ94] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect disci-
pline. Information and Computation, 111(2), 1994.

32

Appendix A

Output from Example 2.1

Type:
((a4 -b17-> a14) -b48-> (a4_list -b2-> a14_list))

Behaviour:
e

Constraints:
C: b5 > e
C: b8 > r2_chan_a14_list
C: b29 > e
C: b18 > e
C: b16 > e
C: b28 > b26
C: b26 > r2?a14_list
C: b27 > e
C: b57 > (b16;b17;b18;b27;b28;b29)
C: b56 > fork_(b34)
C: b55 > b42
C: b42 > r2!a14_list
C: b54 > e
C: b53 > e
C: b47 > e
C: b51 > e
C: b34 > (b47;b48;b51;b2;b53;b54;b55)
C: b2 > (b5;(e+(b8;b56;b57)))
C: b48 > e

33

Appendix B

Proof of Proposition 6.2.

Proof: We perform induction on e; to conserve space we use the same
terminology as in the definition of the relevant clause for W . The cases for
if e0 then e1 else e2, rec f(x)⇒ e0, and e1;e2 are omitted as they present no
further complications.

The case W (x,E): Let F ′ = fv(Fx[ψ]) and let F ′x = F ′ ∩ fv(tx[ψ]).

We must show that κ(E[ψ])(x) � t[ψ] which amounts to

∀F ′x.(tx[ψ]) � tx[~γ 7→ ~γ′][ψ]. (B.1)

Since ψ |= C we have ∀F ′.~γ[ψ] � ~γ′[ψ]; so there exists a φ′ with dom(φ′) ∩
F ′ = ∅ such that ψ;φ′ equals [~γ 7→ ~γ′];ψ on ~γ. This implies, since fv(tx) ⊆
~γ ∪ Fx, that we even have that ψ;φ′ equals [~γ 7→ ~γ′];ψ on fv(tx). But this
shows that (B.1) holds, with φ′ as the “instance substitution”.

The case W (c, E): Since ψ |= C we have [~γ 7→ ~γ′];ψ |= Cc so it holds that
∀ . . . (tc, Cc) � tc[[~γ 7→ ~γ′];ψ]. Therefore we have the inference

κ(E[θ][ψ]) ` c : tc[[~γ 7→ ~γ′];ψ] & ε

which amounts to the desired relation.

The case W (e1 e2, E): Since ψ |= C it holds that θ2; θ0;ψ |= C1 so we can
apply the induction hypothesis on the call W (e1, E) and the substitution

34

θ2; θ0;ψ to get

κ(E[θ][ψ]) ` e1 : t1[θ2; θ0;ψ] & b1[θ2; θ0;ψ].

which by the soundness of UNIFY (Lemma 4.4) amounts to

κ(E[θ][ψ]) ` e1 : t2[θ0;ψ]→β0[θ0;ψ] α[θ0;ψ] & b1[θ2; θ0;ψ].

As it moreover holds that θ0;ψ |= C2 we can apply the induction hypothesis
on the call W (e2, E[θ1]) and the substitution θ0;ψ to get

κ(E[θ][ψ]) ` e2 : t2[θ0;ψ] & b2[θ0;ψ].

The last two judgments enable us to arrive at the desired judgment

κ(E[θ][ψ]) ` e1 e2 : t[ψ] & b[ψ].

The case W (λx.e0, E): We can apply the induction hypothesis to get

κ(E[θ0][ψ])⊕ [x : α1[θ0][ψ]] ` e0 : t0[ψ] & b0[ψ]

and since β0[ψ]wb0[ψ] we due to Fact 3.1 also have

κ(E[θ0][ψ])⊕ [x : α1[θ0][ψ]] ` e0 : t0[ψ] & β0[ψ].

This shows the desired judgement

κ(E[θ0][ψ]) ` λx.e0 : (α1[θ0]→β0 t0)[ψ] & ε.

The case W (let x=e1 in e0, E): Since θ0;ψ |= C1 we can apply the induc-
tion hypothesis on the call W (e1, E) and the substitution θ0;ψ to get

κ(E[θ][ψ]) ` e1 : t1[θ0;ψ] & b1[θ0;ψ]. (B.2)

Since ψ |= C0 we can apply the induction hypothesis on the call
W (e0, E[θ1]⊕ [x : . . .]) and the substitution ψ to get

κ(E[θ][ψ])⊕ [x : ∀F ′.(t1[θ0;ψ])] ` e0 : t0[ψ] & b0[ψ] (B.3)

where F ′ = fv(NQ[θ0;ψ]) ∩ fv(t1[θ0;ψ]).

35

Let F ′′ = (fv(κ(E[θ][ψ]))∪ fv(b1[θ0;ψ]))∩ fv(t1[θ0;ψ]). As (5.1) holds for our
choice of NQ, we can use it on the substitution θ0;ψ to infer that F ′′ ⊆ F ′.
Hence we can apply Fact 4.8 on (B.3) to get

κ(E[θ][ψ])⊕ [x : ∀F ′′.t1[θ0;ψ]] ` e0 : t0[ψ] & b0[ψ].

which together with (B.2) is enough to show the desired judgment

κ(E[θ][ψ]) ` let x=e1 in e0 : t0[ψ] & b[ψ].

2 2

36

Appendix C

Proof of Proposition 7.3.

Proof: Induction on the proof tree for E′ `2 e : t′ & b′; to conserve space
we use the same terminology as in the definition of the relevant clause for
W . The cases for if e0 then e1 else e2, rec f(x)⇒ e0, and e1;e2 are omitted
as they present no further complications.

The case e = x: Suppose E′ `2 x : t′ & b′ holds because E′(x) = ∀F ′x.t′x,
because t′ = t′x[φ′] with dom(φ′) ∩ F ′x = ∅, and because b′wε.
Since E[φ] � E′ it holds that tx[φ] = t′x (thanks to our syntactic definition
of �) and that fv(Fx[φ]) ⊆ F ′x. From this we infer that

dom(φ′) ∩ fv(Fx[φ]) = ∅. (C.1)

Now define ψ as follows: it maps ~γ′ into ~γ[φ;φ′]; and otherwise it behaves
like φ. This ensures that θ;ψ E= φ; and it is trivial that b′wb[ψ]. For our
remaining claims, observe that due to (C.1) we have

[~γ 7→ ~γ′];ψ equals ψ;φ′ on ~γ ∪ Fx

showing that ∀Fx[ψ].~γ[ψ] � ~γ′[ψ] implying ψ |= C; and that (since fv(tx) ⊆
Fx ∪ ~γ) t′ = t′x[φ′] = tx[φ;φ′] = tx[ψ;φ′] = tx[[~γ 7→ ~γ′];ψ] = t[ψ].

The case e = c: Let CTypeOf(c) = ∀ . . . (tc, Cc). Suppose E′ `2 c : t′ & b′

holds because b′wε and because there exists a ψ′ with ψ′ |= Cc such that

37

t′ = tc[ψ′]. Now define ψ as follows: it maps ~γ′ into ~γ[ψ′]; and otherwise it
behaves like φ. We have

t[ψ] = tc[ψ′] and C[ψ] = Cc[ψ′]

which shows that t′ = t[ψ] and that ψ |= C. It is trivial that θ;ψ E= φ and
that b′wb[ψ].

The case e = e1 e2: Some terminology: we define V1 = var(t1, b1, C1, θ1)
and V2 = var(t2, b2, C2, θ2) and E1 = var(E[θ1]); and say that a variable is
“internal” if it occurs in V1 but not in E1. We can assume that no internal
variable occurs in V2.

Suppose E′ `2 e1 e2 : t′ & b′ holds because E′ `2 e1 : t′1 & b′1, because
E′ `2 e2 : t′2 & b′2, and because there exists b′0 such that t′1 = t′2 →b′0 t′ and
b′wb′1; b′2; b′0.

By induction we find ψ1 such that θ1;ψ1
E= φ; such that ψ1 |= C1; such that

t′1 = t1[ψ1] and such that b′1wb1[ψ1].

Since E[θ1][ψ1] = E[φ] we infer that E[θ1][ψ1] � E′ so we can apply the
induction hypothesis once more to find ψ2 such that θ2;ψ2

E1= ψ1; such that
ψ2 |= C2; such that t′2 = t2[ψ2] and such that b′2wb2[ψ2].

Now define ψ0 to behave as ψ2 except that is behaves as ψ1 on internal
variables; that it maps α into t′; and that it maps β0 into b′0.

We have the following relations:

ψ0
V2= ψ2 and θ2;ψ0

V1∪E1= ψ1 (C.2)

where the second part follows from the following reasoning: if γ is inter-
nal then γ[θ2;ψ0] = γ[ψ0] = γ[ψ1]; and if γ is not internal (and hence be-
longs to E1) then γ[θ2] does not contain any internal variables so γ[θ2;ψ0] =
γ[θ2;ψ2] = γ[ψ1].

From (C.2) we infer that

t1[θ2][ψ0] = t1[ψ1] = t′1 = t′2 →b′0 t′ = (t2 →β0 α)[ψ0]

which by the completeness of UNIFY (Lemma 4.5) implies that the call to
UNIFY succeeds and that there exists ψ such that ψ0 = θ0;ψ. Using this and
(C.2) we can infer the desired properties of ψ:

38

• If γ ∈ var(E) then γ[θ;ψ] = γ[θ1][θ2][θ0;ψ] = γ[θ1][θ2][ψ0] = γ[θ1][ψ1]
= γ[φ].

• To show that ψ |= C holds we must show θ2; θ0;ψ |= C1 and θ0;ψ |= C2

which follows from ψ1 |= C1 and ψ2 |= C2.

• t′ = α[ψ0] = α[θ0;ψ] = t[ψ].

• Since w is a pre-congruence (Rule C1 in Fig. 3.2) we infer that

b′wb′1; b′2; b′0wb1[ψ1]; b2[ψ2]; β0[ψ0] = b1[θ2][ψ0]; b2[ψ0]; β0[ψ0] = b[ψ].

The case e = λx.e0: Suppose E′ `2 λx.e0 : t′ & b′ holds because
E′ ⊕ [x : t′1] `2 e0 : t′0 & b′0 and because t′ = t′1 →b′0 t′0 and because b′wε.
Define φ0 to behave like φ except that it maps α1 into t′1. Then we clearly
have

(E ⊕ [x : α1])[φ0] � E′ ⊕ [x : t′1]

so by induction we find ψ0 such that θ0;ψ0
E∪{α1}= φ0; such that ψ0 |= C0; such

that t′0 = t0[ψ0] and such that b′0wb0[ψ0].

Define ψ as follows: it maps β0 into b′0; and otherwise it behaves like ψ0. It
is obvious that θ;ψ E= φ and that ψ |= C0. Since it moreover holds that

β0[ψ] = b′0wb0[ψ]

we conclude that ψ |= C. Clearly b′wb[ψ], and finally we have

t′ = t′1 →b′0 t′0 = α1[φ0]→β0[ψ] t0[ψ0] = (α1[θ0]→β0 t0)[ψ].

The case e = let x=e1 in e0: First some terminology: we define V1 =
var(t1, b1, C1, θ1) and V0 = var(t0, b0, C0, θ0) and Ve = var(E[θ1])∪NQ∪fv(t1);
and say that a variable is “internal” if it occurs in V1 but not in Ve. We can
assume that no internal variable occurs in V0.

Suppose E′ `2 let x=e1 in e0 : t′ & b′ because of E′ `2 e1 : t′1 & b′1 and of
F ′ = fv(E′) ∪ fv(b′1) and of E′ ⊕ [x : ∀F ′.t′1] `2 e0 : t′ & b′0 and because of
b′wb′1; b′0. By induction we see that W (e1, E) succeeds and that there exists
ψ1 such that θ1;ψ1

E= φ, such that ψ1 |= C1, such that t′1 = t1[ψ1], and such
that b′1wb1[ψ1]. It holds that

fv(NQ[ψ1]) ⊆ F ′

39

for since (5.2) holds (cf. Chapter 5) we have fv(NQ[ψ1]) ⊆ fv(fv(E[θ1])[ψ1])∪
fv(b1[ψ1]), by assumption fv(fv(E[θ1])[ψ1]) = fv(E[θ1][ψ1]) = fv(E[φ]) ⊆
fv(E′), and from Fact 3.2 we have fv(b1[ψ1]) ⊆ fv(b′1). (Here we see the
need for � , cf. the discussion in Chapter 7.)
Using the above observation it is easy to verify that

(E[θ1]⊕ [x : ∀NQ.t1])[ψ1] � E′ ⊕ [x : ∀F ′.t′1]

so by induction we see that W (e0,) succeeds and that there exists ψ0 such
that θ0;ψ0 equals ψ1 on Ve, such that ψ0 |= C0, such that t′ = t0[ψ0] and such
that b′0wb0[ψ0].

Now define ψ to behave as ψ0 except that is behaves as ψ1 on internal vari-
ables. We have the following relations:

ψ equals ψ0 on V0 and θ0;ψ equals ψ1 on V1 ∪ Ve (C.3)

where the second part follows from the following reasoning: if γ is internal
then γ[θ0;ψ] = γ[ψ] = γ[ψ1]; and if γ is not internal (and hence belongs to
Ve) then γ[θ0] does not contain any internal variables so γ[θ0;ψ] = γ[θ0;ψ0] =
γ[ψ1].

Using (C.3) enables us to infer the desired properties of ψ: (i) if γ ∈ var(E)
then γ[θ;ψ] = γ[θ1][θ0;ψ] = γ[θ1][ψ1] = γ[φ]; (ii) ψ |= C holds because
ψ |= C1[θ0] (which follows from ψ1 |= C1) and because C0[ψ] = C0[ψ0]; (iii)
t′ = t0[ψ0] = t[ψ]; (iv) we infer that b′wb′1; b′0wb1[ψ1]; b0[ψ0] = b1[θ0][ψ]; b0[ψ] =
b[ψ]. 2 2

40

Appendix D

Proof of Proposition 7.2.

The proposition follows from the two lemmas below:

Lemma D.1 Suppose E `2 e : t & b. Then also κ(E) ` e : t & b. 2

Proof: Induction in the proof tree. The only interesting case is “let”:

Suppose that E `2 let x=e1 in e0 : t & b because E `2 e1 : t1 & b1 and
because E ⊕ [x : ∀F.t1] `2 e0 : t & b0 and because bwb1; b0, where F = fv(E)∪
fv(b1).

By induction it holds that

κ(E) ` e1 : t1 & b1

and that κ(E)⊕ [x : ∀F ′.t1] ` e0 : t & b0; where F ′ = F ∩ fv(t1). Let F ′′ =
(fv(κ(E)) ∪ fv(b1)) ∩ fv(t1); then F ′′ ⊆ F ′. Fact 4.8 then tells us that

κ(E)⊕ [x : ∀F ′′.t1] ` e0 : t & b0

which is enough to show the desired judgment

κ(E) ` let x=e1 in e0 : t & b.

2

Lemma D.2 Suppose E ` e : t & b; and that κ(E′) = E. Then also
E′ `2 e : t & b. 2

41

Before embarking on the proof, we first need an auxiliary concept: with
s = ∀F.t and s′ = ∀F ′.t′ type schemes, we say that s α= s′, to be read “s is
alpha-equivalent to s′”, holds iff F = F ′ and t′ = t[ψ] where ψ is a bijective
mapping from variables into variables such that F 6∈ var(ψ). Two auxiliary
results:

Fact D.3 Suppose E ` e : t & b; and suppose that ψ is a bijective mapping
from variables into variables. Then also E[ψ] ` e : t[ψ] & b[ψ]. 2

Proof: A straight-forward induction in the proof tree. 2

Fact D.4 Suppose that E α= E′ and E ` e : t & b. Then also E′ ` e : t & b.
2

Proof: Induction in the proof tree; the only interesting case being the base
case e = x. Suppose E ` x : t & b because E(x) � t and because bwε. Let
E(x) = ∀F.tx; there thus exists φ with dom(φ) ∩ F = ∅ such that t = tx[φ].
We have E′(x) = ∀F.t′x where t′x = tx[ψ] with ψ a bijective mapping from
variables into variables such that var(ψ)∩ F = ∅.
Now define φ′ as follows: if γ ∈ fv(t′x) then γ[φ′] = γ[ψ−1;φ]; and γ[φ′] = γ
otherwise. It is clear that t′x[φ′] = tx[φ] = t and that dom(φ′)∩F = ∅; which
shows that E′ ` x : t & b. 2

Now we are able to prove Lemma D.2:

Proof: Structural induction in e. Two interesting cases:

e = x: Suppose E ` x : t & b because E(x) � t and because bwε. Let
E(x) = ∀F.tx; then there exists a φ with dom(φ)∩F = ∅ such that tx[φ] = t.
We have E′(x) = ∀F ′.tx, with F ′∩fv(tx) = F . Now let φ′ be the restriction of
φ to fv(tx); then dom(φ′) ∩ F ′ = ∅ and tx[φ′] = t. This shows that E′(x) � t
and hence E′ `2 x : t & b.

e = let x=e1 in e0: Suppose E ` let x=e1 in e0 : t & b holds because
E ` e1 : t1 & b1, because E ⊕ [x : ∀F.t1] ` e0 : t & b0 and because bwb1; b0;
with F = (fv(E) ∪ fv(b1)) ∩ fv(t1).

Let ~γ = fv(t1) \ (fv(E)∪ fv(b1)); and let ~γ′ be “fresh” copies of ~γ. Let ψ be a
substitution which maps ~γ into ~γ′; which maps ~γ′ into ~γ and which otherwise

42

behaves as the identity. By Fact D.3 it holds (exploiting dom(ψ)∩ fv(b1) = ∅)
that E[ψ] ` e1 : t1[ψ] & b1. It is easy to see (since var(ψ)∩ fv(E) = ∅) that
E[ψ] α= E and hence we by Fact D.4 conclude that E ` e1 : t1[ψ] & b1. The
induction hypothesis now tells us that

E′ `2 e1 : t1[ψ] & b1. (D.1)

Define F ′ = fv(E′) ∪ fv(b1). We have F ′ ∩ fv(t1[ψ]) = F ′ ∩ (fv(t1) \ ~γ) =
F ′ ∩ fv(t1)∩ (fv(E)∪ fv(b1)) = fv(t1)∩ (fv(E)∪ fv(b1)) = F which shows that

κ(E′ ⊕ [x : ∀F ′.t1[ψ]]) = E ⊕ [x : ∀F.t1[ψ]]. (D.2)

Since var(ψ)∩ F = ∅ we conclude that ∀F.t1 α= ∀F.t1[ψ]. Fact D.4 now tells
us that

E ⊕ [x : ∀F.t1[ψ]] ` e0 : t & b0. (D.3)

Due to (D.2) we can apply the induction hypothesis on (D.3) to get

E′ ⊕ [x : ∀F ′.t1[ψ]] `2 e0 : t & b0 (D.4)

and by combining (D.1) and (D.4) we arrive at the desired judgment

E′ `2 let x=e1 in e0 : t & b.

2

43

