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Abstract

We review different techniques for improving GA performance. By analysing
the fitness landscape a correlation measure between parents and offspring can
be provided, and we can estimate effectively which genetic operator to use in
the GA for a given fitness landscape. The response to selection equation fur-
ther tells us how well the GA will do, and combined the two approaches gives
us a powerful tool to automatic ensure the selection of the right parameter
settings for a given problem. In dynamic environments the fitness landscape
change over time, and the evolved systems should be able to adapt to such
changes. By introducing evolvable mutation rates and evolvable fitness for-
mulae we obtain such systems. The systems are shown to be able to adapt to
both internal and external constraints and changes.

1 Introduction.

In the 1970s Holland [7] introduced genetic algorithms (GAs) as a means to design
and implement robust adaptive systems. Holland emphasized that these systems
should be able to handle uncertain and changing environments, and that the sys-
tems via feedback from the environments in which they operate should be able to
self-adapt over time. Yet, most work with GAs has been done in time-invariant en-
vironments and not in dynamic environments, as was Hollands original idea. This
originates partly from the early insight that when implementing GAs the parameter
choices, such as population size, internal genetic representation, and genetic opera-
tors are very significant for the performance of the GAs, even in static environments.
Therefore, the main interest and achievement of the first decades of research in GAs
was emperical exploration of parameter settings (e.g. [1], [3]), and later the study
of GAs use in (function) optimization and other applications in static environments
has been highly appreciated (e.g. [20] ). In this paper it is outlined how the rein-
troduction of Hollands original idea of studying GA evolved systems in uncertain
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and changing environments gives us more insight into when and why GAs work.

In one environment a specific combination of one type of crossover and one type
of mutation may be suitable, while in another environment another combination of
crossover and mutation type may be preferable. In section 2 we introduce statisti-
cal features of the fitness landscape to tune GAs in different environments. These
statistical tools gives us a means to choose for a specific environment (i.e. prob-
lem) which type of crossover and mutation to use. Having chosen the right genetic
operators, we then turn to predict the performance of the GA in section 3, by out-
lining how the response to selection equation can be used on GAs. In uncertain and
changing environments a system must be able to adapt to new situations, why all
parameter settings, at least in theory, should be adaptive. In section 4 we discuss
adaptive mutation rates. By further introducing the fitness formula in section 5, the
evaluation function is let free to evolve to adapt to the environment, and through
simulations we can show speciation and pre-adaptation in complex systems without
strong assumptions (e.g. on number of species and/or the distribution of niches in
the environment), as in crowding [3], sharing [5], and tagging [1] methods. Finally,
in section 6 we conclude.

2 Fitness Landscape Analysis.

When we want to analyze when and why a GA works on a specific problem, we
will have to know if we use the right parameter settings, e.g. population size, the
chosen crossover and mutation operator and their rates. The first idea that comes
to mind is a systematic testing of numerous parameter settings, or to let the GA
itself find the optimal parameter values. Both approaches has been investigated
extensively, e.g. [16],[19], but have the major drawback to be computational very
expensive. An alternative and computational much less expensive approach is the
fitness landscape approach, as suggested in [12][13].

A genotype can be represented as a point in a N-dimensional space, where N is
the number of alleles in the genotype, e.g. connections in a neural network or bits in
a bitrepresentation. The value of an allele determines the position of the genotype
on the particular dimension representing the allele. In that way, such a space can
represent all possible genotypes. The performance, i.e. the fitness, of a genotype on
a particular task can be represented by an additional N+1th dimension. There will
be a performance surface with N+1 dimensions that goes through all the genotype
space and has higher and lower points. Each point in the genotype space (i.e. each
possible genotype) will be located on this surface. If it is placed on a high point
on the surface this means that its performance on the task is good; if it is on a low
point, its performance is bad. We call this the fitness landscape.

It has been shown how simple statistical features derived from the fitness land-
scape like the autocorrelation function, the correlation length, and the fitness cor-
relation coefficients of the different genetic operators can be used to tune different
components of the GA [12]. Let us here concentrate on the correlation coefficient,
ρOP , of a genetic operator, OP. The genetic operator could for instance be one
of the RAR, inversion, and swap mutation operators or one of the order-based,
position-based, partially mapped, and adjacency-based crossover operators that are
often used in ordering GAs on problems such as the travelling salesman problem
(TSP). We apply the operator OP to the parent(s) to generate offspring. For each
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application of the operator OP, Fp and Fc represent the fitness of the parent (or
mean fitness of two parents) and the fitness of its child (or mean fitness of its two
children). The operator OP is applied to a number of parents to get their offspring,
and we calculate the correlation coefficient between the fitnesses Fp and Fc as fol-
lows:

ρOP (Fp, Fc) =
Cov(Fp, Fc)
σ(Fp)σ(Fc)

where Cov(Fp,Fc) is the covariance between the values of Fp and Fc, and σ(Fp)
and σ(Fc) are the standard deviations of the values Fp and Fc.

There is a relationship between an operators correlation coefficient and the cor-
relation length of the underlying fitness landscape and it expresses how correlated
the landscape appears to the operator. We can for example look at crossover. Here
the distance between parents and children depends both on the distance between
the two parents, and on the chosen crossover point. If the fitness landscape is
rugged, i.e. neighboring points are weakly correlated and we do not have strong
causality [18], then the distance between parents and children may be larger than
the correlation length of that landscape and the fitnesses of the parents does not tell
anything of the expected fitnesses of the children. Crossover can therefore not do
anything more helpful than random search in to rugged fitness landscapes. Through
extensive experimentations Oliver et al. [16], and Starkweather et al.[19] found that
GA performance on TSP depends on the chosen genetic operators. With the fitness
landscape approach, such a result and the definition of which operators to use can
be obtained with much less computational efforts and even before doing the actual
problem solving, as shown by Manderick and Spiessens [13]. On the TSP they found
the correlation coefficients shown in table 1 and table 2 by taking the average of 30
different samples of 2*1024 parent genotypes.

Crossover operator Correlation coefficient ρ
Adjacency-based 0.78
PMX 0.61
Position-based 0.37
Order-based 0.68

Table 1. Correlation coefficients of the different crossover operators on TSP.

Mutation operator Correlation coefficient ρ
RAR 0.89
Inversion 0.93
Swap 0.84

Table 2. Correlation coefficients of the different mutation operators on TSP.

The performance of the GA with the operators specified in table 1 and table 2
on the TSP showed, that the GAs with operators with higher correlations coeffi-
cients led to better performances. For example, with the position-based crossover a
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tour of length 750 was found after 50 generations, while with the adjacency-based
crossover with higher correlation coefficient a tour of length 450 was found after
50 generations. Likewise the GA with inversion mutation did better than the two
other GAs. We conjecture that the fitness landscape approach is an important tool
to do prelimenary determination of which type of GA to use for a given problem.

3 Response to Selection.

Supposed to have chosen the right GA for a given problem with the fitness landscape
approach, we would know like to know if this actually will lead to finding an accept-
able solution to the problem. What we want is a measure of the GA performance.
To this end we will look at a specialized variant of the fitness landscape approach
that can be used to construct what has been called a Breeder Genetic Algorithm
[15]. The Breeder Genetic Algorithm models artificial selection as performed by
human breeders. The response to selection equation and concept of heritability
known by human breeders are of special interest, since they give us a means to pre-
dict the performance of the Breeder Genetic Algorithm. The response to selection,
R, is defined as the difference between the population mean fitness of generation
t+1 and the population mean fitness of generation t :

R(t) = M(t+ 1)−M(t)

The human breeder measures the selection with the selection differential, S, which
is defined as the difference between the mean fitness of the selected parents and the
mean fitness of the population:

S(t) = M(t, Ps) −M(t)

where Ps is the selected parents. The breeder tries to predict R(t+1) from S(t).
The prediction of the response to selection is given by

R(t) = bt ∗ S(t)

where bt is the realized heritability which the breeder e.g. can have estimated or
measured in previous generations. The realized heritability is normally assumed
constant for a certain number of generations, so we have

R(t) = b ∗ S(t)

and the prediction of the cumulative response for s generations is therefore

Rs =
s∑
t=1

R(t) =
s∑
t=1

b ∗ S(t)

To compute Rs we need to compute S(t) which is given by

S(t) = I ∗ σp(t)

when the fitness values are normal distributed and truncation selection is applied.
σp is the standard deviation and I is called the selection intensity. The relation
between the truncation threshold T and the selection intensity I is shown in table
3, from which we see that large differences in truncation lead only to minor changes
in selection intensity.
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T 80% 50% 40% 20% 10% 1%
I 0.34 0.8 0.97 1.2 1.76 2.66

Table 3. Selection intensity as function of truncation threshold.

We now obtain the response to selection equation:

R(t) = b ∗ I ∗ σp(t)

The science of artificial selection consist of estimating b and σp(t), which depend
on the fitness function. Application of this technique can be found in [14][15]. In-
teresting one can find the number of generations to convergence based on genetic
drift and the genetic operator used by the genetic algorithm.

There are different techniques for estimating heritability and regression. By
calculating differences in mean fitness of successive parents and children we can es-
timate the ruggedness of the fitness landscape, as described in the previous section.
This information can then be used to construct a genetic algorithm that chooses the
appropriate genetic operators and perform as described in the response to selection
equation.

4 Evolvable Mutation Rates.

In so far we have been looking at tools to predict and select the right operators
for the GA for a specific problem in a static environment. Yet, in uncertain and
changing environments the evolved system must be able to adapt to new situations.
The parameter settings can therefore not be expected to be fixed once and for all
for the whole evolution process, but should rather be let free to evolve by itself.
The selection of genetic operators presented in section 2 could become evolvable in
order to adapt to new environments and changed fitness landscapes. In this section
we will present how another parameter setting, namely the mutation rate, could
(and should) change itself through evolution.

We find wide evidence for the evolution of mutation rates in nature. In repli-
cation of DNA, differences between the original and its copy are detected and the
errors are corrected. There can be various levels of proof- reading, leading to a con-
trol of mutation rates [4]. Thus mutation rates are not given, fixed numbers, but are
themselves variable by mutation. A mutation rate in an immune system is enhanced
to increase the diversity of antibodies, which face an unknown antigenetic site [21].
The high mutation rate may look natural as for the level of the whole immune
system. However, each antibody itself is a replicating unit. Many antibodies com-
pete with each other for replication, and Darwinian selection acts for each antibody.

In GAs the mutation rate is decided before the actual simulation and remains
fixed for the whole evolution process. In the simulated annealing method, on the
other hand, the temperature for the Monte Carlo simulation is slowly cooled down
according to a schedule fixed in advance. The temperature here plays the same role
as the mutation rate, since both give an error rate of replication of a bit string. The
proposed evolution of mutation rates gives a spontaneous change of mutation rates,
and thereby a spontaneous simulated annealing method.
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Kaneko and Ikegami [8] have reported results with evolution of mutation rates.
As could be expected the mutation rate ultimatively went down with time. Once
a species with higher fitness was selected, species with lower mutation rates had
more offspring, independent of the population distribution, since the population
dynamics of one species did not directly depend on the population of the other
species. This argument is true after the species finds a string with a high fitness
in the landscape. Yet, in the transient time, the mutation rate can increase, if the
initial ensemble does not include species of high fitness. Later, the mutation rate
decreases towards zero. The transient increase of mutation rates occur since species
with higher mutation rates are faster in the search for larger fitness. Once the
species with larger fitness appears, it is then better to have a strategy to reproduce
the species with a smaller error, and the mutation rate starts decreasing.

The above example shows that the inclusion of mutation of mutation rates gives
an innovation in the GAs by an automatic simulated annealing. In the conventional
simulated annealing [9], one has to change the temperature (”mutation rate”) exter-
nally. Initially the system should be put in a high temperature to search effectively
for many local minima, and the temperature is lowered externally as the system
finds a configuration with lower energy. In the simulated annealing, one has to give
a schedule of temperature decrease in advance, which depends on the problem to
optimize.

The algorithm with mutation of mutation rates automatic enhances a mutation
rate initially and then lowers it as the system finds a lower energy. During the time
steps with enhanced mutation rates, lower energy is globally searched for, while the
mutation is decreased once a species of very low energy is found. Thus one can
reach optimal sequences very effectively with this inclusion of mutation of mutation
rates. We note that the algorithm does not require any external change of mutation
(temperature) rates. Everything goes spontaneously, once an initial condition is
given.

5 Evolvable Fitness Formula.

Not only the mutation rates should be let free to evolve, but also the individual
fitness formula, which indirectly leads to an evolution of the evaluation function
in the GA. The notion of a fitness formula arises from the Artificial Life field. In
simulations of the evolution of populations of artificial organisms (neural networks)
individual organisms generate offspring as a function of the degree that they satisfy
a criterion of fitness, or a fitness formula [10]. For example, organisms which live
in an environment that contains food elements may reproduce in proportion to the
number of food elements they are able to capture during life. The fitness formula
in this case is number of food elements captured. The fitness formula of organisms
living in another environment may be number of food elements eaten of type A
minus number of food elements eaten of type B.

In simulations using ecological neural networks [17], the fitness formula is impor-
tant, not only as a criterion measure, that networks should maximize evolutionarily,
but because it determines the type of behavior networks tend to exhibit in the en-
vironment. Lund and Parisi [10] have shown, that given a particular environment
and a particular fitness formula, organisms evolve behaviors which are appropriate
both to the environment and the fitness formula.
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In almost all simulations using GAs with populations of neural networks the fit-
ness formula is fixed and decided by the researcher. Yet, the fitness formula should
be let free to evolve as any other trait of the organisms without any necessary con-
trol from the researcher, since a moment of reflection suggests, that in biological
reality the fitness formula isn’t fixed, but as a trait of organisms, is evolvable. More
precisely, the fitness formula summarizes a number of properties of a particular
species of organisms related to their nutritional needs, to the mechanisms and pro-
cesses in their bodies which extract energy from ingested materials, etc. (For the
relation between food and the evolution of our species, cf. [6]) Like all other traits
of organisms, the fitness formula can evolve. In fact, we can interpret the fitness
formula of a particular species of organisms as an inherited property of that species
of organisms. If the fitness formula varies (slightly) from one individual to another,
is inherited, and is subject to random mutation, we can study its evolution in a
population of organisms as that of any other trait.

Lund and Parisi [10] showed how fixed fitness formulae and sensory apparatus of
populations of organisms shape the behavior which emerges in a particular environ-
ment. With evolvable fitness formula it is possible to study the role of co-evolution
of the fitness formula and of behavior given a particular sensory apparatus, for
example one can observe how organisms with either a generalist behavior (i.e. or-
ganisms which tend to eat of all kinds of food distributed in the environment) or a
specialist behavior (i.e. organisms which tend to eat only some, and not all, kinds of
food distributed in the environment) emerges, along with the evolution of a fitness
formula that either assigns equal values to all food types or assigns high values only
to the preferred type(s).

The concept of limited evolvable fitness formulae should also be considered. In
a limited evolvable fitness formula there is a limit on the energy, that an organism
can extract with its internal processing mechanism (fitness formula) from a given
food source. Although an evolving population of organisms can change its internal
mechanism for extracting energy from food, there are likely to be various constraints
and limits on this evolutionary process of change. A limited evolvable fitness for-
mula limits the maximum quantity of energy that can be extracted from a given
food source. When the limit has been reached, any mutation can only decrease this
quantity. Simulations with limited evolvable fitness formulae result in very abrupt
behavioral changes of organisms, as shown in figure 1-3, where a limit of 4 energy
units is put on the evolvable fitness formula.

Figure 2 shows that the organisms tend to evolve a specialist behavioral strat-
egy for most initial conditions. They obtain almost all of their energy from eating
A elements while B and C elements are virtually ignored. At the same time, the
energy value of A elements quickly reaches its maximum value of 4 units at around
generation 200 (cf. Figure 3), which is accompanied by a parallel rapid increase in
fitness (cf. Figure 1).

After generation 200, the energy value of B elements begins to increase gradually
and, more slowly, the energy value of C elements increases (cf. Figure 3). Further,
it is remarkable that during this stage the number of B or C elements eaten con-
tinues to be very low while the number of A elements increases until a stable state
at around generation 500 is reached (cf. Figure 2). This is paralleled by a slow
increase in fitness (cf. Figure 1).

It is not until around generation 1750, when the energy value of B elements
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Figure 1: Total fitness of the best organism of each generation with a limited
evolvable fitness formula.
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Figure 2: Number of food elements of each type eaten by the best organism of each
generation with a limited evolvable fitness formula.
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Figure 3: Evolution of the fitness formula for the best organism of each generation.

also has reached its maximum value of 4 energy units, that B elements are actively
sought and eaten. In fact, at this stage it happens quite suddenly that A elements
and B elements are eaten almost with the same frequency, at a level only slightly
below the frequency of eating A elements in previous generations (cf. Figure 2).
This result causes a rapid increase in global fitness at this stage (cf. Figure 1).

The same happens some generations later for C elements. They reach their
maximum energy value at around generation 2250 and, at this point, organisms
suddenly start to eat them with the same frequency as elements of type A and
B. As expected, the curve for global fitness shows three sudden increases: before
generation 200, at generation 1750, and at generation 2250, while it only increases
slightly in the periods in between.

The general conclusion is that when the fitness formula evolves, but there are
limits on the possibile energy value of single food types, the behavioral strategy
which emerges initially is specialist but then this strategy is replaced by progres-
sively more generalist strategies. The organisms first prefer the single food type
that has the highest energy value but when the energy value that can be extracted
from this food type has reached its maximum value, they include other food types
that can provide increasing quantities of energy.

In a dynamic environment , e.g. an environment where food elements are de-
pleted due to some environmental catastrophe such as polution, the evolved system
will have to self-adapt to the changed situation. With an evolvable fitness formula
the system is allowed to change the fitness landscape in order to cope with the
changed environment.
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Figure 4: Number of food elements of each type eaten by the best organism of each
generation.
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Figure 5: The fitness formula of the best organism of each generation.
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A population of organisms with unlimited evolvable fitness formula live in an
environment as the one in the simulation above with organisms with limited evolv-
able fitness formula. However, each 200 generation a number of food elements of
the preferred food type (C) disappears from the environment. There is therefore
no presure posed from the researcher in parameter settings to change behavior, but
from the environment that changes over time. As we will see, the organisms with
evolvable fitness formulae are able to adapt to these changes in the environment.

Figure 4 shows the change in behavioral strategy over time. Initially the organ-
isms prefer and eat food elements of type C, and the fitness formula is co-evolved
to let the organisms extract high energy from the preferred food type (cf. figure
5). As food elements of type C disappear from the environment each 200 genera-
tions, at generation 1000 there will be no food elements of the preferred food type
left in the environment. Yet, the organisms quickly turn to eat food elements of
type A through a very sudden change in behavioral strategy (cf. figure 4), which
is accompanied by an increase in the fitness value of type A in the evolvable fitness
formula. The same happens with type B later in the evolution. We can conclude
that populations of artificial neural networks with individual evolvable fitness for-
mulae have shown pre-adaptation to environments different from those in which
they evolved. A more thourough analysis of this phenonemon is provided by Lund
and Parisi [11], who did analysis of the neural network units activations to explain
the abrupt changes in behavior.

6 Conclusion.

In many years parameter settings in GAs have been done based on emperical studies,
with no underlying theory. The fitness landscape analysis provide such a theory for
the selection of genetic operators, and has proven advantageous both quantitatively
and qualitatively. It ensures the selection of the right genetic operators in for the
problem specific fitness landscape through a very fast estimation of the fitness land-
scape. But as the fitness landscape may change over time due to both internal and
external causes, we have to study the evolved systems in dynamic environments.
By using evolvable mutation rates and evolvable fitness formulae we get tools to
evolve systems able to adapt to dynamic environments. We have shown how the
systems are able to adapt when internal constraints occur (i.e. limited evolvable
fitness formula) and when external constraints occur (i.e. dynamic environments).
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