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ABSTRACT - A complex computational model of the human ability to listen to certain
signals in preference of others, also called the cocktail party phenomenon, is built on the
basis of surveys into the relevant psychological, DSP, and neural network literature. This
model is basically binaural and as such it makes use of both spectral data and spatial data
in determining which speaker to listen to.
The model uses two neural networks for �ltering and speaker identi�cation. Results from
some experimentation with type and architure of these networks is presented along with the
results of the model.
These results indicate that the model has a distinctive ability to focus on a particular speaker
of choice.

INTRODUCTION

This paper deals with a very interesting psychological phenomenon: The cocktail party phenomenon. In short
we have attempted to construct a computer model capable of concentrating on the speech of speci�ed speakers
when several people are speaking simultaneously. Readers, who are interested in the details of our model or in
the extensive literature surveys produced in the preliminary stages of this project, are referred to (Abolfazlian
& Karlsen 1994, or Karlsen & Abolfazlian, 1994).
One of the most prominent theories of such auditory processing is the one promoted by Bregman (1990).
Basically, his idea is that the objects of attention are the auditory events, called streams, which are sounds
that are perceived as being a whole in some sense, e.g. a singer and an accompanying piano. The sounds that
we receive are processed in two di�erent stages: the primitive process, and the schema-based process. The
primitive process makes use of cues such as pitch, formants, sound source localization, intensity and others to
form units and to group these units together in both the dimensions of time and spectrum. This is what Breg-
man calls sequential integration and simultaneous integration respectively. Once these groupings have been
made one needs to decide which group deserves to get attention. This task is handled by the schema-based
process, which on the basis of a mental organization of information is capable of selecting evidence out of a
mixture, which has not been subdivided by the primitive process. So the primitive process basically partitions
the evidence while the schema-based process selects from the resulting partitions.
Digital signal processing (DSP) is usually a must when handling sounds computationally. In DSP one can
basically make use of two types of method for analysis of signals: the nonparametric and the parametric
methods. The nonparametric methods include Fourier analysis, and these methods are very good at deriving
the objective measures inherent in a signal as they generally ignore the sound producing mechanism, and they
do therefore not assume anything about the acoustical-mechanical structure of the signal. The parametric
methods on the other hand allow compact representations, generally by means of a reduced number of co-
e�cients, as in Linear Predictive Coding, and take advantage of certain a priori information; for example, a
known production model of the sound (e.g. the voice) has a parametric representation. Parametric methods
are extremely interesting to computer processing, as they allow an in depth analysis of numerous factors about
the sound ranging from the psychoacoustics to the physical structure of the sound generator. Consequently,
parametric methods are very useful tools from an analysis point of view.
Arti�cial neural networks (ANN) are usually very good at classifying a mixed set of inputs, so it is only natural
to try to apply these computational architectures to signal processing as well. From our point of view there
are two overall types of neural networks; those that can handle temporal context and those that cannot. The
latter of these is usually referred to as feedforward networks. These networks are capable of subdividing any
set of static patterns into classes, if the network is built and taught properly. The former type of neural
network is a mixed set consisting of time-delay neural networks and sequential neural networks (SNN) (Hertz
et al., 1990). The SNN have limited feedback connections in the architecture, limited in the sense that only
certain units have these connections and the weights on these connections may be �xed. One example of such
a network with short-term memory context units is the one put forth by Jordan (1986).
In the following sections of this article we shall present our model, the experiments that we performed, and the
results that we obtained. Finally, we will give some pointers to future questions that need to be investigated.



THE STIMULI

The stimuli were recorded at a sampling rate of 44.1 kHz using a dummy head (Br�uel & Kj�r Head and
Torso Simulator WH2511), a microphone power supply (Br�uel & Kj�r Two Channel Power Supply), and a
DAT recorder (Studer D780). The recordings were made with 5 di�erent Danish speakers placed at 3 di�erent
positions in two di�erent rooms yielding a total of 2 sets of 15 recordings. Once these recordings had been
made they were transferred onto a NeXT for editing and DSP. Here the sound�les were �rst cut down to a
uniform size in each set. Then the sound�les were mixed so as to obtain all physically possible combinations
of speakers in di�erent positions in the two sets (a total of 120 combinations in each set). These mixes were
then used as the raw data of the model. However we had to downsample the sound�les to 22.05 kHz in order
to be able to use the DSP package called CARL (Loy, 1994).

THE MODEL

The model consists of a number of signal processing tools and an ANN for identifying speakers from their
fundamental frequencies and formants. The model is only concerned with speci�c speakers and not with
words. The clues that it makes use of are the aforementioned frequencies and the speakers azimuth angle
relative to the listener. Basically, the model consists of three major units: the spectral pathway, the spatial
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Figure 1: The coctail party listener model

pathway, and the selective attention unit.

The Spectral Pathway

In this unit the raw speech signals from both channels are �rst transformed into Linear Predictive Coding
(Makhoul, 1975). The resulting coe�cients are then used to derive the fundamental frequency as well as the
formants. The LPC is carried out using an all-pole model and the covariance method (Markel & Gray, 1976),
as we are here dealing with speech which can be considered to be a quasi-stationary type of signal. The
fundamental frequency of each speaker is computed using the autocorrelation of the LPC models error signal
(Saito & Nakata, 1985), and the formants are computed by solving the equation

A(z) = zp + �1z
p�1 + �2z

p�2 + � � �+ �p�1z + �p = 0 (1)

where the roots correspond to the poles of the all-pole LPC model with transfer function H(z) = 1=A(z). For
each time-slice these data are then fed to a sequential neural network (Jordan, 1986) which has been trained
to disect separate auditory events (e.g. speakers). On the basis of the network output it is then possible to
estimate how many auditory events are present and what their separate signals are. In short the network is
actually performing an analysis which integrates spectral components both simultaneously and sequentially as
Bregman has proposed (1990).

The Spatial Pathway

This part of the model was heavily inspired by Blauert's ideas of \Spatial Hearing" (1983). Here the raw
speech signals are �rst bandpass �ltered using a bank of critical bandpass �lters. Thereafter a lowpass �lter
is applied to all the band signals from both channels in order to derive the envelope of the signals. For each
pair (left and right) of these lowpassed band signals a set of specialized cross-correlation coe�cients are then



computed as follows:

�i =

N�i�1X
n=0

xnyn+iG(N � i � 1� n)sign(xn � yn+i)L(xn � yn+i); (2)

where x is the left signal, y is the right signal, N is the number of samples over which to average, i =
0; : : : ; T � 1 where T = 13 samples (' 0:6 ms) is the number of delays, and

G(s) =

8<
:

e�s=�RC for s � 0

0 for s < 0

is a weighting function that gives less and less signi�cance the farther the values lie in the past (�RC = 28
samples ' 1:25 ms) and

L(s) = �e�s
2=M + 1:1 (3)

is the level di�erence weighting function we have chosen. This function is maximal when the absolute value
of s is maximal, otherwise it drops o� monotonically as s goes to zero as required by Blauert. M is chosen
so that it �ts the order of magnitude of s, in this case 5:0 � 10�10. On the basis of these coe�cients the
position on the axis of delay where the maximum correlation between the left and the right channel in each
band is found. This delay time corresponds to the estimated azimuth angle of the sound source relative to
the listener. This means that each band gets one \vote" in estimating the angular positions of all the present
sound sources, but we have found it necessary to introduce a threshold value when counting the \votes": If
more than 10% of the total number of bands point to the same value on the time delay axis, we say that there
is a genuine sound source, otherwise these votes are regarded as spurious and are ignored when estimating the
number of speakers. By averaging the estimates over several time frames we obtain a greater reliability.

The Selective Attention Unit

The previous two analyses combine to yield a determination of what auditory events are present in the input
currently. In principle the results of the two pathways can be in conict with each other. Such a conict is
then resolved by preferring the estimates of the spectral pathway as the psychological evidence shows that we
humans do not assign such a big importance to the results of the spatial pathway, simply because it is more
uncertain due to possible interference from all kinds of physical circumstances (e.g. echo, obstructing objects,
noise etc.). The auditory events determined by the output of the �ltering ANN in the spectral pathway is then
used one at a time as input for the identi�cation ANN in an attempt to recognize the speakers. If a speaker is
identi�ed by the ANN the next step is to determine whether this particular speaker is of interest to the model
or not. This is simply done by checking a priority queue to see if the speaker is the one with top priority at
the moment. Once all this is done the last remaining step takes care of outputting only the fundamental and
the formants of the interesting speaker.

SPEAKER IDENTIFICATION USING ANN'S

Two basic architectures are compared in use as arti�cial neural networks for identifying the speakers on the
basis of the di�erent frequencies. These two architectures are a basic feedforward network and a recurrent
network with context units in Jordan style (Jordan, 1986). From a theoretical standpoint the recurrent network
should in principle be better at solving the task of speaker identi�cation than the feedforward network, simply
because the recurrent network has a kind of short-term memory incorporated in the architecture. Therefore
the recurrent network has a broader base on which to make a classi�cation, in our case extending 200 ms back
in time. The feedforward network on the other hand must base a classi�cation solely on one time-frame, in
our case corresponding to 15 ms.
The actual networks that we used for our experiments were a 24-12-6 feedforward network trained by using
standard backpropagation (Rumelhart et al., 1986) and o�-line learning, and a 24-12-6-6 sequential network
also trained by using backpropagation and o�-line learning. The parameters used in both cases were a learning
rate � = 0:25, a momentum term � = 0:9, and a maximum number of epochs of 1501. Also in both cases
the network was trained from scratch 10 times, each time with a new random intialization of the weights of
the network between -1 and 1. All the unit activations were initialized to 0 except from the context units in
the recurrent network which were initially set to 0.5. During training the target values were copied back into
the context units of the recurrent network and not the actual output values of the network.
The inputs of the networks were normalized formants and fundamentals of the individual present speakers, and
the targets were localized binary codings, in which one speaker would turn on exactly one unit in the output
layers of the networks.



RESULTS OF THE MODEL

Spatial Pathway

Running the 120 di�erent mixes through the spatial pathway produced some quite interesting results. In �gure
2 and �gure 3 one can see the average estimated number of speakers over time for each mix as the completed
line while the dashed line marks the actual number of speakers.
We did not test the model on one person speaking, because this was considered to easy for the model to
esimate. If you threshold the output values of the spatial pathway at 1.5 and 2.5 it is possible to see that the
model makes correct estimates in all the situations.
Also in �gure 4 and in �gure 5 we have depicted the root mean square error of the estimates that the model
makes on the di�erent mixes. These graphs basically show a quite small error in relation to the correct number
of speakers. The average error made by the model is 13.2% and 14.4% in room 1 and room 2 respectively.
If you isolate the error in the two situations when 2 and 3 people are speaking, you get an average error for
2 speakers in room 1 of 16.4% and 9.9% for 3 speakers in room 1. In room 2 the corresponding ratios are
17.3% for 2 speakers and 11.5% for 3 speakers. From this it is clear that the model is not equally good at
estimating 2 and 3 speakers, however due to time-constraints we have not been able to test if this di�erence
is statistically signi�cant. But we have computed the correlation coe�cient between number of speakers and
root mean square error. This gave -0.549 for room 1 and -0.506 for room 2. It is clear from this that the root
mean square error grows as the number of speakers decrease, but what is the cause of this? Does it depend
on the number of male or female speakers? This was also tested by computing the correlation coe�cients
between the number of male/female speakers in each mix and the root mean square error. In room 1 this
resulted in -0.247 for male speakers and -0.172 for female speakers. In room 2 the results were -0.337 for
male speakers and -0.043 for female speakers. As can be seen, all these correlation coe�cients are negative
indicating that it is only the number of speakers that is responsible for the reverse relationship to root mean
square error and not the sex of the speakers.

Spectral Pathway

Training the �ltering network on the set of data obtained from our recordings in room 1 as described above, we
found that the sequential network needed about 4500 epochs to be able to perform the task in a satisfactory
manner. In �gure 6 the networks performance, averaged over the 10 runs, on the training pattern can be
seen as the top curve. This curve shows a quite slow, but reasonable, climb in performance as the number
of epochs grow, ending up at about 93.1% performance. As the bottom curve in �gure 6 the corresponding
performance on the test pattern set from room 2 can be found. We have, as the reader can gather from this
�gure, tested the entire test set after every learning epoch making it possible for us to see the development in
the networks ability to generalize as training progresses. The networks �nal performance on the test set was
89.7%.
It should be clear that the networks ability to generalize to the test patterns follows the rise in performance
for the training patterns quite closely as training progresses. Considering the non-static nature of the inputs
and targets this is quite impressive. Another thing which is impressive is how well the sketched method for
determining the number of speakers on the basis of the network output works. This can for example be seen in
�gure 7. Basically, the network determines the number speakers absolutely correct in all cases in the training
room (room 1) and only makes few mistakes in the test room (room 2).

Selective Attention

As the reader may remember we had decided to compare two types of ANN architectures for the identi�cation
part of the selective attention unit. In �gure 8 the performance of the feedforward network averaged over
10 runs on both the training set and the test set can be seen as the top and bottom curve respectively.
The two curves clearly follow each other rather nicely. After 1500 epochs where we terminated training, the
performance on the training set was 93.1% and correspondingly 92.3% on the test set. This indicates a very
good ability to generalize to other examples of speech from each speaker, which again seems to point towards
the conclusion that the network has learned some kind of signi�cant speech characteristic of each speaker.
Like the performance curves of the feedforward network followed each other rather closely, so does the cor-
responding curves of the sequential network. But there is one big di�erence: the performance curves of the
sequential network rise slower than the ones for the feedforward network as can be seen in �gure 9. However
the �nal performance of the sequential network after 1500 epochs is 97.4% and 94.7% for the training set
and test set respectively. This means that the sequential network is actually signi�cantly better than the
feedforward network at the identi�cation task after being trained in exactly the same way on exactly the same
patterns.We chose to keep our priority queue static.



CONCLUSION

All in all one can conclude from the above results that our model is quite apt at performing its task.
Our model seems to predict a better performance on determining number of speakers when there are 3 speak-
ers present than when there are 2. There do not to our knowledge exist any psychological experiments which
have tested this.
Futhermore, we have determined that a sequential network is more apt at identifying speakers than a feed-
forward network is. So we recommend that researchers working with speaker identi�cation use some kind of
neural network with feedback connections implementing a short-term memory. This is clearly superior to no
memory feedforward networks.
Finally, one should keep in mind that the way the task of the model is performed might not be possible to
state explicitly in terms of rules or words but only in terms of examples. This is a statement which applies
generally to the area of auditory modelling. In our opinion researchers in this �eld are in general far to focused
on determining the acoustical features that governs this and that piece of the auditory system and not so
interested in the actual functionality of the system.
For simplicity's sake we have chosen to ignore all other possible dimensions of the input than fundamental
frequency and formants, and in line with the above argument it should in fact be avoided to split the input up
into a lot of more or less arti�cial features. It would be much more functionally satisfying if one could simulate
the processes of the auditory system by using some kind of self-organizing system on the raw data. However,
these kinds of systems are not quite so advanced yet that this is a possible option, and one is therefore forced
to handle all the preprocessing explicitly which necessarily leads to measuring certain dimensions.
We believe that the overall functionality of the model is close to being cognitively correct as is Bregman's
theory on auditory scene analysis, so in principle it is only a matter of �nding the right way to implement it.
This includes �nding new ways of processing sound, and as argued above this is one of the primary problems
of cognitive auditory models of today. Once this problem is solved we will probably be able to built specialized
hearing aids for the elder that will do away with their cocktail party problem, but in our opinion the technique
for this is not completely present yet.
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Figure 2: Estimates on number of speakers in room
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Figure 3: Estimates on number of speakers in room
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Figure 4: Root mean square error on the estimates
in room 1
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Figure 5: Root mean square error on the estimates
in room 2
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Figure 6: Performance of the �ltering ANN dur-
ing training (the top curve) and testing (the bottom
curve)
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Figure 7: Number of speakers in room 1 estimated
by the �ltering network

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200 1400

Pe
rf

or
ma

nc
e 

in
 p

er
ce

nt

Epochs

Figure 8: Performance of the feedforward identi�ca-
tion ANN during training (the top curve) and testing
(the bottom curve)
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Figure 9: Performance of the sequential identi�ca-
tion ANN during training (the top curve) and testing
(the bottom curve)


