
Strictness and Totality Analysis

Kirsten Lackner Solberg�

Hanne Riis Nielson and Flemming Nielson
Computer Science Dept.

Aarhus University, Denmark
e-mail: fkls,hrn,fng@daimi.aau.dk

To appear in Proceedings of SAS’94 (Springer Lecture Notes in Computer Science)

Abstract

We definea novel inference system for strictness and totality analysis for the simply-
typed lazy lambda-calculus with constants and fixpoints. Strictness information
identifies those terms that definitely denote bottom (i.e. do not evaluate to WHNF)
whereas totality information identifies those terms that definitely do not denote
bottom (i.e. do evaluate to WHNF). The analysis is presented as an annotated type
system allowing conjunctions only at “top-level”. We give examples of its use and
prove the correctness with respect to a natural-style operational semantics.

1 Introduction

Strictness analysis has proved useful in the implementation of lazy functional languages
as Miranda, Lazy ML and Haskell: when a function is strict it is safe to evaluate its
argument before performing the function call. Totality analysis is equally useful but has
not be adopted so widely: if the argument to a function is known to terminate then it is
safe to evaluate it before performing the function call [11].

In the literature there are several approaches to the specification of strictness analysis:
abstract interpretation (e.g. [12, 4]), projection analysis (e.g. [22]) and inference based
methods (e.g. [2, 8, 9, 10, 23]). Totality analysis has received much less attention
and has primarily been specified using abstract interpretation [12, 1]. It can be re-
garded as an approximation to time complexity analysis; most literature performing
such developments consider eager languages but [15] considers lazy languages.

In this paper we present an inference system for performing strictness and totality
analysis. We restrict our attention to a simply typed lambda-calculus with constants and
a fixpoint operator. The inference system is an extension of the usual type system in
that we introduce three annotations on types t:

�Dept. of Math. and Computer Science, Odense University, Denmark

� !bt: the value has type t and it definitely?,

� !nt: the value has type t and is definitely not ?, and

� !>t: the value has type t and it can be any value.

Annotated types can be constructed using the function type constructor and (top-level)
conjunction. As an example a function may have the annotated type (!nInt! !nInt)
^ (!bInt ! !bInt) which means that given a terminating argument the function
will definitely terminate and given a non-terminating argument it will definitely not
terminate. Thus we capture the strictness as well as the totality of the function. Strictness
and totality information can also be combined as in (!bInt ! !nInt ! !nInt) ^
(!nInt ! !bInt ! !nInt) ^ (!bInt ! !bInt ! !bInt) which will be the
annotated type of McCarthy’s ambiguity operator.

The inference based approach allows to combine the two analyses. Mycroft [12] presents
both analyses using abstract interpretation but the semantic foundations are different:
the strictness analysis is based on downward closed sets and the totality analysis on
upward closed sets. We believe that the two analyses could be combined using the
convex power-domains of [13] but this will be untractable for two reasons. One is
that the mathematical foundations will be rather complicated and extensions to richer
languages would not be easy. Another reason is that implementations based on abstract
interpretationoften are rather inefficient due to the local computation of fixpoints and we
would like to explore the use of other approaches that seem to offer better performance.

The semantic foundations of our work is based on natural style operational semantics.
We employ a lazy semantics so terms are evaluated to weak head normal form (WHNF).
This means we capture the semantics of “real-life” lazy functional languages in contrast
to most other papers on strictness analysis like [4] where terms are evaluated to head
normal forms. Since we are based on operational semantics fixpoint induction is not
available for free and in the soundness proof for the analysis we shall use the trick of
annotating the fixpoint operators with the number of unfoldings allowed.

In general, we followthe current trend of separating the specification of the analysis from
its algorithmic realisation. The specification is often by means of an annotated types
system and comes in one of two flavours. In the effect systems only type constructors
are annotated and examples of analyses specified in this vain are [17, 18, 19, 23]. Our
analysis belongs to the other group where subcomponents of types are annotated; further
analyses in this group are [2, 8, 9, 10]. Inference based methods have also been used
for variations of strictness and totality analysis; examples include [5] that uses a type
system with intersection types to determine “neededness” of redexes and [3] that studies
liveness properties.

Overview Section 2 presents the natural-style operational semantics and the standard
type inference rules for our simply-typed lazy lambda calculus. Based on these (so-
called underlying) types we construct (in Section 3) the strictness and totality types and
give rules for coercing between them; also a notion of conjunction type is defined but

2

[var]UT A ÙT x : ut if x : ut 2 A

[abs]UT
A, x : ut1 ÙT e : ut2

A ÙT �x.e : ut1 ! ut2

[app]UT
A ÙT e1 : ut1 ! ut2 A ÙT e2 : ut1

A ÙT e1 e2 : ut2

[cond]UT
A ÙT e1 : Bool A ÙT e2 : ut A ÙT e3 : ut

A ÙT cond e1 e2 e3 : ut

[fix]UT
A ÙT e : ut ! ut
A ÙT fix e : ut

[const]UT A ÙT c : utc

Figure 1: Type inference

only at “top-level”; finally the inference system is presented and examples of its use are
given. In Section 4 we then present the correctness proof.

2 Syntax and Semantics

This section introduces the simply-typed lazy �-calculus with constants and fixpoints.
The underlying types, ut 2 UT, are either base types or function types

ut ::= A j ut ! ut

and the base types (the A’s) include Bool and Int. The terms, e 2 E, of the simply-
typed �-calculus are

e ::= x j �x.e j e e j fix e j cond e e e j c

where the constants (the c’s) include true and false of type Bool and all integers of
type Int. We only consider terms that are typeable according to the type inference
rules defined in Figure 1 and we shall require that the bound variables in terms are all
different. The list A of assumptions gives underlying types to free variables and for
each constant c there is an underlying type utc. The set of free variables in the term e is
written FV(e) and the usual substitution on terms is written e[e2/x].

The semantics will be lazy except that all built-in functions will be strict in each
argument. Figure 2 defines a natural-style operational semantics. Terms are evaluated

3

[app1]
` e1 + �x.e ` e[e2/x] + v

` e1 e2 + v

[app2]
` e1 + c ` e2 + w

` e1 e2 + u if (w, u) 2 meaning(c)

[fix]
` e (fix e) + v
` fix e + v

[abs]
` �x.e + �x.e

[condT]
` e1 + true ` e2 + v2

` cond e1 e2 e3 + v2

[const]
` c + c

[condF]
` e1 + false ` e3 + v3

` cond e1 e2 e3 + v3

Figure 2: Lazy semantics for closed terms

to WHNF, i.e. to constants or lambda-abstractions. The meaning of a constant c is given
by a set meaning(c) of pairs of constants and the idea is that if (u, v) 2 meaning(c)
then c u = v; e.g. (2, +2) 2 meaning(+) and (1, 3) 2 meaning(+2). As mentioned in the
introduction the semantics is faithful to current lazy languages like Miranda [20] and
this is unlike other approaches (e.g. [4]) where terms are evaluated to HNF rather than
WHNF. As usual we shall regard �-equivalent terms to be equal.

Two closed terms are semantically equivalent, written e1 �ut e2, if they both evaluate
to the same WHNF and have the same underlying type:

Definition 1 (e1 �ut e2) , ((` e1 + w) , (` e2 + w))
provided both ; ÙT e1 : ut and ; ÙT e2 : ut can be inferred. 2

We shall assume throughout the paper that there are no empty types, i.e. for each
underlying type there exists a terminating term with that type. Clearly, for each type
there exists a non-terminating term of that type, for example fix (�x.x).

3 Totality Types and Conjunction Types

We will now define the strictness and totality analysis for the simply-typed lazy �-
calculus. First we introduce the totality types and the coercions between them. On top
of this we define the conjunction types. Finally we give the inference system for the
combined strictness and totality analysis.

4

Totality types

A (strictness and) totality type, t2 T, is either an annotated underlying type or a function
type between totality types:

t ::= !sut j t ! t

The underlying type "(t) of a totality type t is obtained by erasing all annotations. The
annotations (the s’s) can either be >, n, or b. The idea is that a term with the totality
type !but has the underlying type ut and does not evaluate to a WHNF. A term with the
totality type !nut has the underlying type ut and does evaluate to a WHNF. Finally a
term with the totality type !>ut has the underlying type ut but we do not know anything
about the evaluation of the term. A term with the totality type t1 ! t2 will, when
applied to a term with totality type t1, yield a term with totality type t2. We do not allow
strictness and totality types of the form !s(t1 ! t2) where t1 and t2 are totality types
since such a type is equivalent to the type !s("(t1) ! "(t2)) ^ (t1 ! t2) and we wish to
deal separately with the complication of conjunction. (In this paper it will be allowed
at the “top-level” only.)

Example 2 All functions with the underlying type ut1 ! ut2 will also have the totality
types !>(ut1 ! ut2) and !>ut1 ! !>ut2. A function with no WHNF has the totality type
!b(ut1 ! ut2) and the function that applied to any term yields a term with no WHNF
has the totality type !>ut1 ! !but2. 2

Later we shall need the predicate BOTT(t) defined by

BOTT(!but) = tt

BOTT(!nut) = ff

BOTT(!>ut) = tt

BOTT(t1 ! t2) = BOTT(t2)

The idea is that it holds whenever the totality type must incorporate a term without
WHNF.

Coercions between totality types

Most terms have more than one totality type; as an example the totality types of �x.7
include !>(Int! Int), !n(Int! Int), and !>Int! !nInt. Some of these are
redundant and to express this we define coercions between them: t1 �T t2 may only
hold if all terms of totality type t1 also have totality type t2 (assuming the underlying
types are the same).

The relation �T is defined in Figure 3: it is reflexive, transitive, and anti-monotone in
contravariant position. We write� for the equivalence induced by�T, i.e. t1 � t2 if and
only if t1 �T t2 and t2 �T t1. The rule [top1] expresses that the totality type !>ut is the
greatest among the totality types with the underlying type ut. One axiom derived from

5

[ref] t �T t

[!]
t01 �T t1 t2 �T t02

t1 ! t2 �T t01 ! t02

[trans]
t1 �T t2 t2 �T t3

t1 �T t3

[top1]
t �T !>"(t)

[top2]
!>(ut1 ! ut2) �T !>ut1 ! !>ut2

[bot]
!b(ut1 ! ut2) �T !>ut1 ! !but2

[notbot]
!nut1 ! !nut2 �T !n(ut1 ! ut2)

[monotone]
t1 ! t2 �T t01 ! t02

if t01 = #t1 and t02 = #t2

Figure 3: Coercions between totality types

the rule [top1] is

!>ut1 ! !>ut2 �T !>(ut1 ! ut2) (1)

Axiom (1) then motivates rule [top2] because when combined they yield

!>(ut1 ! ut2) � !>ut1 ! !>ut2

The left-hand side of the rule [bot] represents the functions without WHNF and the
right-hand side represents all non-terminating functions; this also includes the functions
without WHNF. The rule [notbot] says that functions that map terms with a WHNF to
a term with WHNF are also included in the functions with a WHNF.

The rule [monotone] ensures that we live in a universe of monotone functions: if we
know less about the argument to a function, then we should know less about the result
as well. The formulation of this requires the function # on totality types defined by

#(!but) = !but

#(!nut) = !>ut

#(!>ut) = !>ut

#(t1 ! t2) = t1 ! #t2

The idea behind # is that #t is the smallest type (in the sense of “containing” fewest
elements) such that both t �T #t and BOTT(#t) hold; for the proof see [16].

The relation �T is sound but not complete. The soundness result is part of Lemma 6
below. For the lack of completeness consider the two totality types !bInt! !nInt

6

and !>Int ! !nInt. It must be the case that every term with the first type also
has the second type and vice versa since the terms are monotonic. However, although
we can infer !>Int! !nInt �T !bInt ! !nInt it turns out that we cannot infer
!bInt ! !nInt �T !>Int! !nInt using the coercions of Figure 3. This can be
remedied by introducing the rule [monotone2] below: first we define the function " on
totality types as follows:

"(!but) = !>ut

"(!nut) = !nut

"(!>ut) = !>ut

"(t1 ! t2) = t1 ! "t2

The idea behind " is that it is the smallest type such that both t�T "t and NOTBOTT("t)
hold where the predicate NOTBOTT(t) must hold whenever the totality type must incor-
porate a term with a WHNF. Now we can write the new coercion rule for ":

[monotone2] t1 ! t2 �T t01 ! t02
if t01 = "t1 and t02 = "t2

With this rule we can infer !bInt ! !nInt �T !>Int ! !nInt. More work is
needed to clarify if �T is complete with the new rule added.

Conjunction types

Based on the totality types we now define the conjunction types. A conjunction type, ct
2 CT, is either a totality type or a conjunction of two conjunction types:

ct ::= t j ct ^ ct

Thus conjunction is only allowed at the top-level (just like type-schemes in ML are
only allowed at the top-level). The introduction of conjunction types means that it is
possible to have empty types like !nInt ^ !bInt. Actually, the fine details of empty
types are closely connected with the choice of semantic model: emptiness of the type
(!bInt! !nInt! !nInt) ^ (!nInt! !bInt! !nInt) ^ (!bInt! !bInt!
!bInt) depends on whether the semantic model allows non-sequential behaviours of
typeInt!Int!Int. This will normally be the case for denotational semantics but
will not be the case for natural-style operational semantics when the order of evaluation
is forced (as when specifying lazy reduction to WHNF). The restriction to top-level
conjunctions allows us to avoid some of the problems introduced by empty types; we
return to this later.

A term can only have one underlying type; therefore a well-formed conjunction type
will not involve types with different underlying types. The well-formedness predicate
is defined by:

[totality]
` t

[^]
` ct1 ` ct2

` ct1 ^ ct2
if "(ct1) = "(ct2)

7

[ref] ct �CT ct [trans]
ct1 �CT ct2 ct2 �CT ct3

ct1 �CT ct3

[^1] ct1 ^ ct2 �CT ct1
[^2] ct1 ^ ct2 �CT ct2

[^]
ct �CT ct1 ct �CT ct2

ct �CT ct1 ^ ct2
[type]

t1 �T t2

t1 �CT t2

Figure 4: Coercions between conjunction types

This allows us to overload the function " to also find the underlying type of a conjunction
type: "(ct1 ^ ct2) = "(ct1). The predicate BOTT is lifted to conjunction types:

BOTCT(ct1 ^ ct2) = BOTCT(t1) ^BOTCT(t2)

BOTCT(t) = BOTT(t)

The rules for coercing between conjunction types are given in Figure 4.

The analysis

We have now prepared the ground for presenting the conjunction type inference system
of Figure 5. The list A of assumptions gives totality types to free variables. Only the
lambda abstraction can extend the assumption list and since conjunction types only can
appear at the top-level this means that assumption lists always will associate totality
types, not conjunction types, with the variables. For each constant c, we assume
that a conjunction type ctc is specified; as an example ctsucc = (!nInt ! !nInt) ^
(!bInt! !bInt).

The rules [var]T, [abs]T, [app]T, and [const]T are just as their underlying type inference
counterparts. There are three rules for conditional — depending on whether the test is
of totality type !bBool, !nBool, or !>Bool.

The rule [coer]T can be applied to change the totality type to a greater totality type. It
is quite useful as a preparation for applying rule [cond3]. The rule [conj]T allows to
construct conjunction types (as is the case also for rule [const]T).

From rule [fix]T we may derive rules

[fix1]T
A T̀ e : t ! t
A T̀ fix e : t if BOTT(t)

and

[fix2]T
A T̀ e : t1 ! t2

A T̀ fix e : t2
if BOTT(t1) and t2 �T t1

8

[var]T A T̀ x : t if x : t 2 A

[abs]T
A, x : t1 T̀ e : t2

A T̀ �x.e : t1 ! t2

[abs2]T
A, x : t1 T̀ e : t2

A T̀ �x.e : !n"(t1 ! t2)

[app]T
A T̀ e1 : t1 ! t2 A T̀ e2 : t1

A T̀ e1 e2 : t2

[cond1]T
A T̀ e1 : !bBool A T̀ e2 : ct A T̀ e3 : ct

A T̀ cond e1 e2 e3 : !b"(ct)

[cond2]T
A T̀ e1 : !nBool A T̀ e2 : ct A T̀ e3 : ct

A T̀ cond e1 e2 e3 : ct

[cond3]T
A T̀ e1 : !>Bool A T̀ e2 : ct A T̀ e3 : ct

A T̀ cond e1 e2 e3 : ct if BOTCT(ct)

[fix]T
A T̀ e : t1 ! t2 ^ t2 ! t3 ^ : : : ^ tn�1 ! tn

A T̀ fix e : tn
if

8<
:

BOTT(t1),
9p; q : p < q

^ tq �T tp,

[const]T A T̀ c : ctc

[coer]T
A T̀ e : ct1

A T̀ e : ct2
if ct1 �CT ct2

[conj]T
A T̀ e : ct1 A T̀ e : ct2

A T̀ e : ct1 ^ ct2

Figure 5: Conjunction type Inference

9

that are simpler and more intuitive; they serve an important role in our proof strategy
for the soundness result. Note that in rule [fix]T we have to ensure that the type t1 can
describe bottom in order to be able to calculate the fixpoint. After the first iteration
the term has the totality type t2 and after the second the totality type t3, etc. When the
term reaches the totality type tq we can apply the rule [coer]T because we have tq �T tp
and so the term has the totality type tp. In this way we can go on as long as necessary
to evaluate the fixpoint. Finally we iterate n � q more times to get the type tn for the
fixpoint.

The following observations are easily verified: If we can infer A T̀ e : ct then the
conjunction type ct is well-formed; that is ` ct. The analysis is sound with respect to
the underlying type system in the sense that if A T̀ e : ct can be inferred, then so can
"(A) ÙT e : "(ct). We also have a form of completeness: if we can infer A ÙT e : ut
then we also have top(A) T̀ e : !>ut where top(x : ut, A) = x : !>ut, top(A).

Example 3 In the system we can infer ; T̀ fix (�x.x) : !bInt which is more precise
that the information obtained by [23] which in our notation is !>Int. In the systems
of [2, 8, 9] one can infer the type !>Int for the term fix (�x.7) whereas we infer
; T̀ fix (�x.7) : !nInt so again we are more precise. However, we cannot cope with
the reordering of parameters: consider the term

fix (�f.�x.�y.�z.cond (z = 0) (x + y) (f y x (z -1)))

and the (well-formed) conjunction type

(!bInt! !>Int! !>Int! !bInt) ^ (!>Int! !bInt! !>Int! !bInt)

We cannot infer this type in our system because so far we only allow conjunction at the
“top-level”. The strictness analysis of [2, 8, 9] does not have this restriction on the use
of conjunction types and may therefore obtain the desired type. 2

4 Soundness

Our final task is to prove that the conjunction type inference system (Figure 5) is sound
with respect to the natural-style operational semantics (Figure 2). First we define a
predicate j= e : ct stating that the term e is valid of conjunction type ct. Then we show
some useful lemmas and finally we can prove the soundness result: if A T̀ e : ct then
j= e[v/x] : ct for all closed substitutions [v/x] that are valid of the types in A. For the
full details of the proof see [16].

The validity predicate is shown in Figure 6. The term e is valid of conjunction type
ct1 ^ ct2 if e is valid of type ct1 as well as ct2. That the term e has a WHNF and the
underlying type ut amounts to j= e : !nut being true; that e has no WHNF but has the
underlying type ut amounts to j= e : !but being true (i.e there exists no WHNF v such
that ` e + v). A term with conjunction type !>ut just has to be of the underlying type

10

(I) (j= e : ct1 ^ ct2) , (j= e : ct1) ^ (j= e : ct2)

(II) (j= e : !but) , (8v: 6` e + v) ^ (; ÙT e : ut)

(III) (j= e : !nut) , (9v: ` e + v) ^ (; ÙT e : ut)

(IV) (j= e : !>ut) , (; ÙT e : ut)

(V) (j= e : t1 ! t2) ,
�

(8e0: (j= e0 : t1)) (j= e e0 : t2)) ^
(; ÙT e : "(t1) ! "(t2))

�

Figure 6: The definition of validity

ut, as we do not know anything about the evaluation of the term. A term e is valid
of function type t1 ! t2 if for any other term e0 that is valid of totality type t1, also e
applied to e0 will be valid of totality type t2.

Here we also see the importance of not having empty types; as with empty types the
rule [notbot] will not be sound.

To prepare for the soundness of the conjunction type inference system we first need to
bind all the free variables in the term. Let x be the list of variables in A, let t be the list
of the totality types corresponding to the variables x, and let v be a list of closed terms
that are valid of the types t, i.e. j= v : t. We now define j= v : t inductively by

j= (v, v) : (t, t) = (j= v : t)^ (j= v : t)

j= [] : [] = tt

The substitution [v/x] is defined inductively by

e[(v, v)/(x, x)] = (e[v/x])[v/x]

e[[]/[]] = e

For the proof of soundness of the conjunction inference system we find it helpful to
introduce the terms fixn e where n is a number greater than or equal to 0. The idea is
that n indicates how many times the fixpoint is allowed to be unfolded. So we need
to expand the underlying type inference system and the semantics of the simply-typed
�-calculus. The underlying type of fixn e is the same as for fix e:

[fixn]UT
A ÙT e : ut! ut
A ÙT fixn e : ut

and the semantics for fixn e is:

[fixn]Sem
` e (fixn e) + v
` fixn+1 e + v

11

There are no rules for fix0 e and hence fix0 e is stuck. The underlying types that can be
inferred for a term e without any fixn’s can also be inferred for the term e0 with fixn
replacing some occurrences of fix and vice versa. We do not allow the programmer to
use fixn; it is merely a piece of syntax needed to facilitate the proof of the soundness
theorem.

Theorem 4 Soundness For expressions e without any fixn we have
(A T̀ e : ct)) (8v: (j= v : t)) (j= e[v/x] : ct)). 2

Before we prove the soundness theorem we need some lemmas.

First we lift semantic equivalence to conjunction types:

Lemma 5 ((j= e1 : ct) ^ (e1 �"(ct) e2))) (j= e2 : ct) 2

Proof By induction on ct. 2

Next we note that our rules for�CT are sound:

Lemma 6 ((j= e : ct1) ^ (ct1 �CT ct2))) (j= e : ct2) 2

Proof By induction on the proof-tree for ct1 �CT ct2. 2

We know from the semantics that fix0 e cannot evaluate hence it is valid of any type
that can describe non-termination:

Lemma 7 (BOTT(t1) ^ "(t1) = "(t2) ^ j= e : t1 ! t2)) (j= fix0 e : t1) 2

Proof It is easy to show that j= fix0 e : !b"(t1) holds. Since we can show that BOTT(t1)
implies !b"(t1) �T t1 we obtain the result using Lemma 6. 2

Unfolding fixn or fix does not change validity:

Lemma 8 (j= e (fixn e) : ct) , (j= fixn+1 e : ct) 2

Lemma 9 (j= e (fix e) : ct) , (j= fix e : ct) 2

Proof of Lemma 8 and Lemma 9. We show that fixn+1 e and e (fixn e) are semantically
equivalent, and then we apply Lemma 5. 2

The relationship between fixj and fix is clarified by:

Lemma 10 (9j0 : 8j � j0 : (j= fixj e : t))) (j= fix e : t) provided e is without any
fixn 2

Proof By induction on t. 2

Finally we can prove Theorem 4:

Proof of Soundness Theorem We assume that A T̀ e : ct and that j= v : t are true; we
then prove j= e[v/x] : t by induction on the proof-tree for A T̀ e : ct. Most of the cases
are straightforward: we only give two of the cases.

12

The case [fix1]: We assume A T̀ fix e : t, BOTT(t) = tt, and that j= v : t is true. From
the [fix1]-rule we get A T̀ e : t ! t and by applying the induction hypothesis we
have j= e[v/x] : t ! t. From Lemma 7 we get j= fix0 e[v/x] : t and we now have
j= e[v/x] (fix0 e[v/x]) : t. By applying Lemma 8 we have j= fix1 e[v/x] : t. We
arrive at 8j � 0 : j= fixj e[v/x] : t and we can apply Lemma 10 to get the result.

The case [fix2]: We assume A T̀ fix e : t2, BOTT(t1), t2 �T t1, and that j= v : t is
true. From the [fix2]-rule we have A T̀ e : t1 ! t2 and by applying the induc-
tion hypothesis we get j= e[v/x] : t1 ! t2. Since t1 ! t2 �T t1 ! t1 we have
by Lemma 6 j= e[v/x] : t1 ! t1 and we can apply the proof of rule [fix1] to
get j= fix e[v/x] : t1. Now we have j= e[v/x] (fix e[v/x]) : t2 and we can apply
Lemma 9 to get the result.

2

5 Conclusion

We have described an inference system for combining strictness and totalityanalysis and
we have proved the analysis sound with respect to a natural-style operational semantics.
A promising approach towards the construction of an inference algorithm for strictness
and totality types is to construct an abstract machine as suggested by Hankin and Le
Métayer [6, 7]. We plan to investigate this in our future work and compare it with
constraint based techniques.

We have briefly compared the results obtained by our analysis to those obtained by e.g.
[2, 8, 9, 10, 23]. In some cases we get more precise results, in others they do. One
may note that the type systems of Jensen [8] and Benton [2] allows general conjunction
types. The reason that Jensen has no problems with unrestricted conjunctions is that
it is not possible to construct empty types: the type system only includes the b and >
annotated part of our system.

An open problem is the meaningful integration of lists and other data-types. For the
strictness part one may be inspired by [21]. Consider the type A listwhere A is a base
type. The totality type (!nA)list might then describe the finite lists with no bottom
elements, the type (!bA)list might describe the infinite lists or lists with bottom
elements, and the totality type (!>A)list might describe all list. The totality type of
the map function would then be (!nA! !nB)! (!nA)list! (!nB)list. Similarly,
foldl and foldr will have totality types (!nA ! !nB ! !nA) ! !nA ! (!nB)list!
!nA and (!nA ! !nB ! !nB) ! !nB ! (!nA)list! !nB, respectively. However,
to get this information from the analysis we need to analyse fixpoints in a better way,
e.g. as suggested in [14].

Another open problem is to lift the restriction on the placement of conjunction; if
successful, this will result in a somewhat more powerful system. One of the technical
problems that need to be solved is the treatment of # for conjunction types.

13

Acknowledgements Thanks to Olivier Danvy and Alan Mycroft for valuable discus-
sions and to LOMAPS (Esprit Basic Research) and DART (Danish Science Research
Council) for partial funding.

References

[1] Samson Abramsky. Abstract interpretation, logical relations and Kan extensions.
Journal of Logic and Computation, 1(1):5–39, 1990.

[2] Nick Benton. Strictness Analysis of Functional Programs. PhD thesis, University
of Cambridge, 1993. Available as Technical Report No. 309.

[3] Stefano Berardi. “Pruning” simply typed �-terms. Technical report, Turin Uni-
versity, 1993.

[4] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for
higher-order functions. Science of Computer Programming, 7:249–278, 1986.

[5] Philippa Gardner. Discovering needed reductions using type theory. In Proceeding
of TACS’94, 1994.

[6] Chris Hankin and Daniel Le Métayer. Deriving algorithms from type inference
systems: Application to strictness analysis. In Proceedings of POPL’94, pages
202 – 212, 1994.

[7] Chris Hankin and Daniel Le Métayer. Lazy type inference for the strictness analysis
of lists. In Proceedings of ESOP’94, LNCS 788, pages 257 – 271, 1994.

[8] Thomas P. Jensen. Strictness analysis in logical form. In Proceedings FPCA’91,
LNCS 523, pages 352 – 366, 1991.

[9] Thomas P. Jensen. Disjunctive strictness analysis. In Proceedings LICS’92, pages
174 – 185, 1992.

[10] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based
on type inference. In Proceedings of FPCA’89, pages 260 – 272. ACM Press,
1989.

[11] Alan Mycroft. The theory and practice of transforming call-by-need into call-by-
value. In Proceeding of the 4th International Symposium on Programming, LNCS
83, pages 269–281, 1980.

[12] Alan Mycroft. Abstract Interpretation and Optimising Transformation for Ap-
plicative programs. PhD thesis, University of Edinburgh, Scotland, 1981.

[13] Alan Mycroft and Flemming Nielson. Strong abstract interpretation using power
domain (extended abstract). In Proceedings of ICALP’83, LNCS 154, pages 536
– 547, 1983.

14

[14] Flemming Nielson, Hanne Riis Nielson. Termination Analysis. Manuscript,
Aarhus University, 1994.

[15] David Sands. Complexity Analysis for a Lazy Higher-Order Language. In Pro-
ceedings of ESOP’90, LNCS 432, pages 361–376, 1990.

[16] Kirsten Lackner Solberg. Strictness and totality analysis. Forthcoming report,
Odense University, Denmark, 1994.

[17] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect infer-
ence. Journal of Functional Programming, 2(3):162 – 173, 1992.

[18] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. In Proceed-
ings of LICS’92, 1992.

[19] Mads Tofte and Jean-Pierre Talpin. Data region inference for polymorphic func-
tional languages. In Proceedings of POPL’94, pages 188 – 201, 1994.

[20] D. A. Turner. Miranda: A non-strict functional language with polymorphic types.
In Proceeding of FPCA’85, LNCS 201, pages 1 – 16, 1985.

[21] Phil Wadler. Strictness analysis on non-flat domains by abstract interpretation
over finite domains. In S. Abramsky and C. Hankin (eds.), editors, Abstract
Interpretation of Declarative Languages, pages 266 – 275. Ellis Horwood, 1987.

[22] Phil Wadler, John Hughes. Projections for strictness analysis. In Proceedings of
FPCA’87, LNCS 274, 1987.

[23] David A. Wright. A new technique for strictness analysis. In Proceedings of
TAPSOFT’91, LNCS 494, pages 260 – 272, 1991.

15

