Strictness and Totality Analysis

Kirsten Lackner Solberg*
Hanne Riis Nielson and Flemming Nielson
Computer Science Dept.
Aarhus University, Denmark
e-mail: {kls, hrn,fnj@ai m . aau. dk

To appear in Proceedings of SAS' 94 (Springer Lecture Notes in Computer Science)

Abstract

We defineanovel inference systemfor strictnessand totdity analysisfor the simply-
typed lazy lambda-calculus with constants and fixpoints. Strictness information
identifies those terms that definitely denote bottom (i.e. do not evaluate to WHNF)
whereas totality information identifies those terms that definitely do not denote
bottom (i.e. do evaluateto WHNF). The analysisis presented as an annotated type
system allowing conjunctionsonly at “top-level”. We give examplesof its use and
prove the correctness with respect to a natural-style operational semantics.

1 Introduction

Strictnessanalysis has proved useful intheimplementation of lazy functiona languages
as Miranda, Lazy ML and Haskell: when a function is strict it is safe to evaluate its
argument before performing thefunctioncall. Totality analysisisequaly useful but has
not be adopted so widely: if the argument to afunction is known to terminate then it is
safe to evaluate it before performing the function call [11].

In the literature there are severa approaches to the specification of strictness analysis:
abstract interpretation (e.g. [12, 4]), projection analysis (e.g. [22]) and inference based
methods (e.g. [2, 8, 9, 10, 23]). Totality anaysis has received much less attention
and has primarily been specified using abstract interpretation [12, 1]. It can be re-
garded as an approximation to time complexity anaysis, most literature performing
such devel opments consider eager languages but [15] considers lazy languages.

In this paper we present an inference system for performing strictness and totality
analysis. Werestrict our attentionto asimply typed lambda-cal cul us with constants and
a fixpoint operator. The inference system is an extension of the usua type system in
that we introduce three annotations on typest:

*Dept. of Math. and Computer Science, Odense University, Denmark

o 1Bt thevalue hastypet and it definitely L,
o 1Nt: thevalue hastypet and is definitely not L, and

o |1t thevaue hastypet and it can be any vaue.

Annotated types can be constructed using the function type constructor and (top-level)
conjunction. Asan example afunction may have theannotated type (!"1 nt — 1" nt)
A (!bl nt — 10 nt) which means that given a terminating argument the function
will definitely terminate and given a non-terminating argument it will definitely not
terminate. Thuswecapturethestrictnessaswell asthetotality of thefunction. Strictness
and totality information can aso be combined asin (PInt — 1Nint — 1N nt) A
(Mnt — Prnt — 1Mnt) A PIrnt — 1Pint — 1PInt) which will be the
annotated type of McCarthy’s ambiguity operator.

Theinferencebased approach alowsto combinethetwo analyses. Mycroft [12] presents
both analyses using abstract interpretation but the semantic foundations are different:
the strictness analysis is based on downward closed sets and the totality anaysis on
upward closed sets. We believe that the two analyses could be combined using the
convex power-domains of [13] but this will be untractable for two reasons. One is
that the mathematical foundations will be rather complicated and extensions to richer
languages would not be easy. Another reason is that implementations based on abstract
interpretation often are rather inefficient dueto thelocal computation of fixpointsand we
would liketo explore the use of other approaches that seem to offer better performance.

The semantic foundations of our work is based on natural style operationa semantics.
We employ alazy semantics so termsare eval uated to weak head normal form (WHNF).
Thismeans we capture the semantics of “real-life” lazy functional languagesin contrast
to most other papers on strictness analysis like [4] where terms are evaluated to head
norma forms. Since we are based on operationa semantics fixpoint induction is not
available for free and in the soundness proof for the analysis we shal use the trick of
annotating the fixpoint operators with the number of unfoldingsallowed.

Ingeneral, wefollowthe current trend of separating the specification of theanalysisfrom
its algorithmic realisation. The specification is often by means of an annotated types
system and comes in one of two flavours. In the effect systems only type constructors
are annotated and examples of analyses specified in thisvain are [17, 18, 19, 23]. Our
analysisbelongsto the other group where subcomponents of typesare annotated; further
analyses in thisgroup are [2, 8, 9, 10]. Inference based methods have also been used
for variations of strictness and totality analysis; examples include [5] that uses atype
system withintersection typesto determine“ neededness’ of redexes and [3] that studies
liveness properties.

Overview Section 2 presents the natural -style operationa semantics and the standard
type inference rules for our simply-typed lazy lambda calculus. Based on these (so-
called underlying) types we construct (in Section 3) the strictness and totdity types and
give rules for coercing between them; aso a notion of conjunction type is defined but

[var]uT AT XUl if x:uteA

A, X: Uty e: ut
AR Ax.e: ut; — ut

[abs]ur

Abre Ut —ut, ARre Uty
[applut A 66 0

Akre :Bool AR;e&:ut Ahk;e: ut
AR;conde & & : ut

[cond]ur

. Ak;e: ut—ut
[fiXlur 5 R fixe: ut

[const]ur & K- C: ute

Figure 1: Typeinference

only at “top-level”; finally theinference system is presented and examples of itsuse are
given. In Section 4 we then present the correctness proof.

2 Syntax and Semantics

This section introduces the simply-typed lazy A-calculus with constants and fixpoints.
The underlying types, ut € UT, are either base types or function types

ut::=A|ut— ut

and the base types (the A's) include Bool and | nt. Theterms, e € E, of the smply-
typed A-calculus are

e:=x|Ax.e|ee|fixe|condeee|c

where the constants (the c's) include true and false of type Bool and all integers of
typel nt . We only consider terms that are typeable according to the type inference
rules defined in Figure 1 and we shall require that the bound variablesin terms are al
different. Thelist A of assumptions gives underlying types to free variables and for
each constant c there is an underlying type ut.. The set of free variablesinthetermeis
written FV(€) and the usua substitution on terms iswritten €] ex/x].

The semantics will be lazy except that al built-in functions will be strict in each
argument. Figure 2 defines a natural-style operational semantics. Terms are evaluated

Fe lAxe Feelx] v
Feelv

[appl]

- -
[app2] elkuef s qu Wit (w, u) € meaning(c)

Fe(fixe) v
[fix] Ffixellv
[abs] F Ax.el Ax.e [const] Fclc
Feltrue Fe v Fe || fadse Fezlvs

[condT] Fconde & e Vs [condF] Fconde e 63 v

Figure2: Lazy semantics for closed terms

to WHNF, i.e. to constants or lambda-abstractions. The meaning of aconstant cisgiven
by a set meaning(c) of pairs of constants and the idea is that if (u, v) € meaning(c)
thencu=v; eg. (2, +2) € meaning(+) and (1, 3) € meaning(+2). As mentioned in the
introduction the semantics is faithful to current lazy languages like Miranda[20] and
thisis unlike other approaches (e.g. [4]) where terms are eval uated to HNF rather than
WHNF. Asusua we shall regard «-equivaent terms to be equal .

Two closed terms are semantically equivalent, written e; ~yt &, if they both evaluate
to the same WHNF and have the same underlying type:

Definition1 (e ~yt &) < ((F e w) < (F & Jw))
provided both § Hyr € @ ut and (§ ;€ : Ut can be inferred. m]

We shall assume throughout the paper that there are no empty types, i.e. for each
underlying type there exists a terminating term with that type. Clearly, for each type
there exists a non-terminating term of that type, for example fix (Ax.x).

3 Totality Typesand Conjunction Types

We will now define the strictness and totality analysis for the simply-typed lazy A-
caculus. First we introduce the totality types and the coercions between them. On top
of this we define the conjunction types. Finally we give the inference system for the
combined strictness and totality analysis.

Totality types

A (strictnessand) totality type, t € T, iseither an annotated underlying type or afunction
type between totality types:

to=15ut|t—t

The underlying type (t) of atotality typet is obtained by erasing all annotations. The
annotations (the s’s) can either be T, n, or b. Theideaisthat aterm with the totality

type! byt hasthe underlying type ut and does not evaluateto aWHNF. A term with the
totality type !"ut has the underlying type ut and does evaluate to a WHNF. Finally a

termwith thetotdity type! Tut hasthe underlying type ut but we do not know anything
about the evauation of the term. A term with the totality type t; — t; will, when
applied to aterm with totality typet,, yield aterm with totality typet,. Wedo not allow
strictness and totality types of the form !5(t; — tp) where t; and t, are totality types
since such atypeis equivaent to thetype ¥ (e(t1) — &(t2)) A (t1 — to) and we wish to
deal separately with the complication of conjunction. (In this paper it will be alowed
at the “top-level” only.)

Example2 All functionswith the underlyingtypeut; — ut, will aso havethetotality
types! T(utl — utp) and !Tutl — !Tutz. A functionwith no WHNF has thetotality type
!b(utl — Utp) and the function that applied to any term yields a term with no WHNF
hasthe totality type !Tutl — !butz. o

Later we shall need the predicate BOT+(t) defined by

BOT:(Put) = tt BOT+(! Tut)
BOT(1"ut)y = ff BOT(ty — tp)

tt
BOT+(t2)

The idea is that it holds whenever the totality type must incorporate a term without
WHNF.

Coercions between totality types

Most terms have more than one totality type; as an example the totality types of Ax.7
include! T(Int — I nt), M nt —Int),and! I nt — !N nt. Some of these are
redundant and to express this we define coercions between them: t; <t t, may only
hold if al terms of totality type t; aso have totality type t, (assuming the underlying
types are the same).

Therdation <t isdefined in Figure 3: it is reflexive, transitive, and anti-monotonein
contravariant position. We write = for the equivalenceinduced by <t,i.e.t; =t if and
onlyif t; <7 tx and t; <7 t;. Therule[topl] expressesthat the totdity type 1 Tut isthe
greatest among the totality types with the underlying type ut. One axiom derived from

[ref] =7+ [trang] %
s as e
NP2 Tty — vt <7 1Tt — 1 Tty
[bot] Bty — utp) <7 ! Tut; — Pty
[notbot]

!”utl — !”utz <7 !”(utl — Uutp)

[monotone] i — ift)=|trandt, = |ty

1—b<rt]

Figure 3: Coercions between totality types

therule [topl] is
!Tutl — !Tutz <7 !T(utl — utp) (@D}
Axiom (1) then motivates rule [top2] because when combined they yield
!T(utl — utp) = !Tutl — !Tutz

The left-hand side of the rule [bot] represents the functions without WHNF and the
right-hand side represents all non-terminating functions; thisa so includesthe functions
without WHNF. The rule[notbot] says that functions that map terms with a WHNF to
aterm with WHNF are aso included in the functions with a WHNF.

The rule [monotone] ensures that we live in a universe of monotone functions: if we
know less about the argument to a function, then we should know less about the result
aswell. The formulation of thisrequiresthe function | on totality types defined by

1(Puyy = 1Pyt 10Tay = 1Tut

1"ty = 1 Tut i—t) = t1— |t
The idea behind | isthat |t is the smallest type (in the sense of “containing” fewest
elements) such that both t <t |t and BOT+(|t) hold; for the proof see [16].

The relation <t is sound but not complete. The soundness result is part of Lemma 6
below. For the lack of completeness consider the two totality types 10 nt — 1Ny nt

and ! TInt — 1M nt. It must be the case that every term with the first type also
has the second type and vice versa since the terms are monotonic. However, athough
we caninfer | TInt — 1" nt <7 !PInt — 1M nt it turns out that we cannot infer
10 nt — 1N nt <7 1 Tint — NI nt using the coercions of Figure 3. This can be
remedied by introducing the rule [monotone2] below: first we define the function | on
totality types as follows:

[
S_|
[
S_|

1Py 10 Tut)
T(1Nu)y = Nut ti—t) = t—Tt

Theideabehind | isthat it isthe smallest type such that both t <t {t and NOTBOT+(]t)
hold where the predicate NOTBOT 1 (t) must hold whenever the totality type must incor-
porate aterm with a WHNF. Now we can write the new coercion rulefor {:

i T — R
[monotone?] P ift] =Tty andt, = Tty

With this rule we can infer 1PInt — Mnt <7 ! Tint — M nt. More work is
needed to clarify if <t iscomplete with the new rule added.

Conjunction types

Based on the totality types we now define the conjunctiontypes. A conjunction type, ct
€ CT, iseither atotality type or a conjunction of two conjunction types:

cti=t|ctAct

Thus conjunction is only allowed at the top-level (just like type-schemes in ML are
only allowed at the top-level). The introduction of conjunction types means that it is
possible to have empty typeslike "l nt A 10y nt . Actually, the fine details of empty
types are closely connected with the choice of semantic model: emptiness of the type
Prnt —1Mint —1Mnt)A ™ nt — 1Pt —Mnt)aPint — Pt —
10| nt) depends on whether the semantic mode allows non-sequentia behaviours of
typel nt — I nt — I nt. Thiswill normally bethe case for denotationa semantics but
will not be the case for natural-style operational semantics when the order of evaluation
is forced (as when specifying lazy reduction to WHNF). The restriction to top-level
conjunctions alows us to avoid some of the problems introduced by empty types; we
return to thislater.

A term can only have one underlying type; therefore a well-formed conjunction type
will not involve types with different underlying types. The well-formedness predicate
is defined by:

[totality] =

Fcty Fcty .
N oA, 1elct) =e(ctz)

- cty <cr cty cty <cr i3
[ref] Ct<crct [trans] Cty <cr Cf3
[A1] Cty Aclp <cr cfy [A2] Cty A ctz <cr Cl2
ct <crcty ct<crcty ; Th
[A] ct<crciy Ach [type] t1 <CT [P

Figure 4: Coercions between conjunction types

Thisallowsusto overload thefunction ¢ to a so find theunderlyingtype of aconjunction
type: e(cty A ctp) = e(cty). The predicate BOT islifted to conjunction types:

BOTcr(cty Acty) = BOTcr(ty) ABOTer(to)
BOTcr(t) = BOTH(Y)

Therules for coercing between conjunction types are givenin Figure 4.

Theanalysis

We have now prepared the ground for presenting the conjunction typeinference system
of Figure 5. Thelist A of assumptions gives totdity types to free variables. Only the
lambda abstraction can extend the assumption list and since conjunction types only can
appear a the top-level this means that assumption lists aways will associate totaity
types, not conjunction types, with the variables. For each constant ¢, we assume
that a conjunction type ct. is specified; as an example ctg,ec = ("I nt — N nt) A
(P nt — 10 nt).

Therules[var]t, [abs]T, [app]T, and [const]t are just astheir underlying type inference

counterparts. There are three rules for conditional — depending on whether the test is
of totality type 'PBool , !"Bool , or ! TBool .

The rule [coer]t can be applied to change the totality type to a greater totdity type. It

is quite useful as a preparation for applying rule [cond3]. The rule [conj]t allows to
construct conjunction types (as isthe case aso for rule[const]).

From rule [fix]+ we may deriverules

Ake:t—

and

Ake:t;—

[fix2]r AR fixe: t

f BOTT(tl) andt, <7t

[var]t ifx:teA

AkX:t

AX:t1ke:t
ARk AXxe:ti—1

[abs]t

AX:tike:t

[abs2]r & R ax.e: Me(t; — ty)

Ake:ti—t ARe:t;
[applT AT E6 G

AI—TelzleooI Ake:c Akes:ct
Ak conde e e;: !be(ct)

[condl]y

Ak e :!"Bool Ake:ct Akes:ct
Ak conde & e3: ct

[cond2]t

AI—TelleBool Ake:c Akes:ct

[cond3]T AR conde 66 if BOTCT(Ct)
AR Ee t—bAb—tA.. At —t, | BOTT)
[fix]T AFTfixe 1 if< dp,qg:p<yg
! o Aty <Ttp,
[constlr A+ cr e
Ak eict
[coer]r AR e ch if ¢ty <cr ct2

Ake:cty Ake:ct

[conlT —are A

Figure 5: Conjunction type Inference

that are simpler and more intuitive; they serve an important role in our proof strategy
for the soundness result. Note that in rule [fix]+ we have to ensure that the typet; can
describe bottom in order to be able to calculate the fixpoint. After the first iteration
the term has the totality typet, and after the second the totality type ts, etc. When the
term reaches the totality typet, we can apply therule [coer]t because we havet, <t t,
and so the term has the totality typet,. In thisway we can go on as long as necessary
to evaluate the fixpoint. Finally we iterate n <-¢ more times to get the typet, for the
fixpoint.

The following observations are easily verified: If we can infer A b= e: ct then the
conjunction type ct is well-formed; that isF ct. The analysisis sound with respect to
the underlying type system in the sense that if A i e: ct can be inferred, then so can
£(A) kr e: e(ct). We dso have a form of completeness: if we can infer A by e ut

thenwe also havet op(A) k= e: 1 Tut where t op(x: ut,A)=x: !Tut,t op(A).

Example3 In the system we can infer § F fix (Ax.x) : 1P| nt whichis more precise
that the information obtained by [23] which in our notation is 1TInt. Inthe systems

of [2, 8, 9] one can infer the type 1 TI nt for the term fix (AX.7) whereas we infer
0k fix (Ax.7) - 11 nt so again we are more precise. However, we cannot cope with
thereordering of parameters: consider theterm

fix (Af.Ax.Ay.Az.cond (z=0) (x +y) (fy x (z-1)))
and the (well-formed) conjunction type
(Prnt —1Tint —1Tint = 1PrntyA(Tint — 1Pt —1Tint —1Prnt)

We cannot infer thistypein our system because so far we only allow conjunction at the
“top-level”. The strictness analysis of [2, 8, 9] does not have this restriction on the use
of conjunction types and may therefore obtain the desired type. i

4 Soundness

Our final task isto provethat the conjunction typeinference system (Figure 5) is sound
with respect to the natural-style operational semantics (Figure 2). First we define a
predicate |= e: ct stating that the term e is valid of conjunction type ct. Then we show
some useful lemmas and finally we can prove the soundness result: if A = e: ct then
E €v/X] : ct for al closed substitutions[v/X] that are valid of the typesin A. For the
full details of the proof see[16].

The validity predicate is shown in Figure 6. The term e is valid of conjunction type
cty A cty if eisvalid of type ct; aswdll as ctp. That the term e has a WHNF and the
underlying type ut amountsto = e: !"ut being true; that e has no WHNF but has the

underlying type ut amountsto = e: 1Pyt bei ng true (i.e there exists no WHNF v such
that - el v). A term with conjunction type 1 Tut just has to be of the underlying type

10

() (Fercinct) = (Feict)A(=e:ct)

) (=e: Pu) e (v el v) A @y e: ut)

iy (Fe:"Muye@vikellv)A @k, e: ut)
(V) (Ee:!Tu) e (0hye: u)

i (Ve:(Fe€:t)=(Fe€:t))A
V) (lze-t1—>tz)<:><(@FUTezg(tl):g(tz)) ’)

Figure 6: The definition of validity

ut, as we do not know anything about the evaluation of the term. A term e is valid
of function typet; — t; if for any other term € that is valid of totdity typet;, aso e
applied to € will bevaid of totality typets.

Here we aso see the importance of not having empty types,; as with empty types the
rule[notbot] will not be sound.

To prepare for the soundness of the conjunction type inference system we first need to
bind all thefree variablesin theterm. Let X be thelist of variablesin A, let t bethelist
of the totality types corresponding to the variables X, and let v be alist of closed terms
that are valid of thetypest, i.e. |= v : t. We now define |= v : tinductively by

FV9):t) = (Fviha(EV:D
E01:0] = tt
The substitution [V/X] is defined inductively by

el(v, V)/(x, X)] (efv/X])[V/X]
dllf]l = e

For the proof of soundness of the conjunction inference system we find it helpful to
introduce the terms fix,, e where n is a number greater than or equa to 0. Theideais
that » indicates how many times the fixpoint is allowed to be unfolded. So we need
to expand the underlying type inference system and the semantics of the simply-typed
A-cdculus. The underlying type of fix,, eisthe same asfor fix e

f Ak e: ut— ut
[fix.Jur & M, fiX, e: ut

and the semantics for fix,, eis:

i Fe(fix, € §v
[fiXn]sem fix, 1elv

11

There are no rules for fixg € and hence fixg eis stuck. The underlying typesthat can be
inferred for a term e without any fix,,’s can aso be inferred for the term € with fix,,
replacing some occurrences of fix and vice versa. We do not allow the programmer to
usefix,,; it is merely a piece of syntax needed to fecilitate the proof of the soundness
theorem.

Theorem 4 Soundness For expressions e without any fix,, we have
Ake:ct)= (W: (EV: 1) = (E VX :). O

Before we prove the soundness theorem we need some lemmas.

First we lift semantic equivalence to conjunction types:

Lemma5 ((Fer:ct) A~ @)= (Fex:a 0
Proof By inductionon ct. |
Next we note that our rulesfor <cr are sound:

Lemma6 ((Fe: cty) A (cty <cr b)) = (= e: ctp) o
Proof By induction on the proof-treefor ct; <ct cto. O

We know from the semantics that fixg e cannot evaluate hence it is valid of any type
that can describe non-termination:

Lemma7 (BOTr(t) Ae(ty) =c(t)) AEe: ti—t) = (Efixoe: t1) O
Proof Itiseasy toshow that |= fixg e: !be(tl) holds. Sincewe can show that BOT+(t1)
implias!be(tl) <7 t; we obtain the result using Lemma 6. a
Unfoldingfix,, or fix does not change validity:

Lemma8 (E e(fix, €): ct) < (E fix,y1€: ct) O
Lemma9 (Ee(fixe) :c) < (Efixe: ct) O

Proof of Lemma 8 and Lemma 9. We show that fix,, +1 e and e (fix,, €) are semantically
equivalent, and then we apply Lemma 5. O

The relationship between fix; and fix is clarified by:

Lemmal0 (3jo:Vj > jo: (E=fix; e:t)) = (=fixe: t) provided eis without any
fix,,]

Proof By inductionont. |
Finally we can prove Theorem 4:

Proof of Soundness Theorem We assumethat A e: ct and that = v : t are trueg; we
then prove = g[V/X] : t by induction on the proof-treefor A i e : ct. Most of the cases
are straightforward: we only give two of the cases.

12

Thecase [fix1]: WeassumeA | fix e: t, BOTy(t)=t t,andthat =V : tistrue. From
the[fix1]-rulewe get A i e: t — t and by applying the induction hypothesiswe
have = €[v/X] : t — t. From Lemma 7 we get |= fixo €[V/X] : t and we now have
E €v/X] (fixo €[V/X]) : t. By applying Lemma 8 we have |= fix; gV/X] : t. We
ariveat Vj > 0: [fix; €v/X] : t and we can apply Lemma 10 to get the result.

Thecase [fix2]: We assume A & fixe: tp, BOT(t1), to <t t3, and that =V :1is
true. From the [fix2]-rule we have A i e t; — t; and by applying the induc-
tion hypothesis we get = €V/X] : t; — to. Sincet; — t, <t t; — t; we have
by Lemma 6 |= €[V/X] : t; — t; and we can apply the proof of rule [fix1] to
get = fix gv/X] : t;. Now we have = €v/X] (fix g[v/X]) : t, and we can apply
Lemma 9 to get the result.

O

5 Conclusion

We have described an inference system for combining strictnessand totality analysisand
we have proved the anal ysi s sound with respect to a natural -style operational semantics.
A promising approach towards the construction of an inference algorithm for strictness
and totality types is to construct an abstract machine as suggested by Hankin and Le
Métayer [6, 7]. We plan to investigate this in our future work and compare it with
constraint based techniques.

We have briefly compared the results obtained by our analysisto those obtained by e.g.
[2, 8,9, 10, 23]. In some cases we get more precise results, in others they do. One
may notethat the type systems of Jensen [8] and Benton [2] allows genera conjunction
types. The reason that Jensen has no problems with unrestricted conjunctions is that
it isnot possible to construct empty types: the type system only includestheb and T
annotated part of our system.

An open problem is the meaningful integration of lists and other data-types. For the
strictnesspart onemay beinspiredby [21]. Consider thetypeAl i st whereA isabase
type. The totdity type (I"A)l i st might then describe the finite lists with no bottom
elements, the type (!bA)I i st might describe the infinite lists or lists with bottom
elements, and the totality type(!TA)I i st might describe dl list. The totality type of
themap functionwould thenbe (I"A — 1"B) — (INA)l i st — (1"B)I i st . Similarly,
foldl and foldr will have totality types (I"A — 1"B — 1NA) — INA —. (1INB) i st —
A and (I"A — 1"B — 1"B) — INB — (1NA)l i st — 1"B, respectively. However,
to get this information from the analysis we need to analyse fixpointsin a better way,
e.g. as suggested in [14].

Another open problem is to lift the restriction on the placement of conjunction; if
successful, thiswill result in a somewhat more powerful system. One of the technical
problemsthat need to be solved isthe treatment of | for conjunction types.

13

Acknowledgements Thanksto Olivier Danvy and Alan Mycroft for valuabl e discus-
sions and to LOMAPS (Esprit Basic Research) and DART (Danish Science Research
Council) for partia funding.

References

[1] Samson Abramsky. Abstract interpretation, logical relations and Kan extensions.
Journal of Logic and Computation, 1(1):5-39, 1990.

[2] Nick Benton. Strictness Analysis of Functional Programs. PhD thesis, University
of Cambridge, 1993. Available as Technical Report No. 309.

[3] Stefano Berardi. “Pruning” simply typed A-terms. Technica report, Turin Uni-
versity, 1993.

[4] Geoffrey L. Burn, Chris Hankin, and Samson Abramsky. Strictness analysis for
higher-order functions. Science of Computer Programming, 7:249-278, 1986.

[5] PhilippaGardner. Discovering needed reductionsusing typetheory. In Proceeding
of TACS 94, 1994.

[6] Chris Hankin and Daniel Le Mé&tayer. Deriving agorithms from type inference
systems. Application to strictness analysis. In Proceedings of POPL' 94, pages
202 - 212, 1994.

[7] ChrisHankinand Daniel LeMé&tayer. Lazy typeinferencefor thestrictnessanaysis
of lists. In Proceedings of ESOP’ 94, LNCS 788, pages 257 — 271, 1994.

[8] Thomas P. Jensen. Strictness analysisin logica form. In Proceedings FPCA 91,
LNCS 523, pages 352 — 366, 1991.

[9] ThomasP. Jensen. Digunctivestrictnessanalysis. In Proceedings LICS 92, pages
174185, 1992.

[10] Tsung-MinKuo and Prateek Mishra. Strictnessanalysis: A new perspective based
on type inference. In Proceedings of FPCA 89, pages 260 — 272. ACM Press,
1989.

[11] Alan Mycroft. The theory and practice of transforming call-by-need into cal-by-
value. In Proceeding of the 4th International Symposium on Programming, LNCS
83, pages 269-281, 1980.

[12] Alan Mycroft. Abstract Interpretation and Optimising Transformation for Ap-
plicative programs. PhD thesis, University of Edinburgh, Scotland, 1981.

[13] Alan Mycroft and Flemming Nielson. Strong abstract interpretation using power
domain (extended abstract). In Proceedings of ICALP’ 83, LNCS 154, pages 536
— 547, 1983.

14

[14] Flemming Nielson, Hanne Riis Nielson. Termination Anaysis. Manuscript,
Aarhus University, 1994,

[15] David Sands. Complexity Analysis for a Lazy Higher-Order Language. In Pro-
ceedings of ESOP’ 90, LNCS 432, pages 361376, 1990.

[16] Kirsten Lackner Solberg. Strictness and totality analysis. Forthcoming report,
Odense University, Denmark, 1994.

[17] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect infer-
ence. Journal of Functional Programming, 2(3):162— 173, 1992.

[18] Jean-Pierre Talpin and Pierre Jouve ot. The typeand effect discipline. In Proceed-
ings of LICS 92, 1992.

[19] Mads Tofte and Jean-Pierre Talpin. Data region inference for polymorphic func-
tional languages. In Proceedings of POPL’ 94, pages 188 — 201, 1994.

[20] D. A. Turner. Miranda: A non-strict functional language with polymorphic types.
In Proceeding of FPCA 85, LNCS 201, pages 1 — 16, 1985.

[21] Phil Wadler. Strictness analysis on non-flat domains by abstract interpretation
over finite domains. In S. Abramsky and C. Hankin (eds.), editors, Abstract
Interpretation of Declarative Languages, pages 266 — 275. EllisHorwood, 1987.

[22] Phil Wadler, John Hughes. Projections for strictness analysis. In Proceedings of
FPCA 87, LNCS 274, 1987.

[23] David A. Wright. A new technique for strictness analysis. In Proceedings of
TAPSOFT 91, LNCS 494, pages 260 — 272, 1991.

15

