

Computing Near-Optimal Solutions to the
Steiner Problem in a Graph Using a Genetic

Algorithm

Henrik Esbensen
Computer Science Department

Aarhus University
DK-8000 Aarhus C, Denmark

email: hesbensen@daimi.aau.dk

February 1994

1

Abstract

A new Genetic Algorithm (GA) for the Steiner Problem in a Graph
(SPG) is presented. The algorithm is based on a bit-string encoding.
A bitstring specifies selected Steiner vertices and the corresponding
Steiner tree is computed using the Distance Network Heuristic. This
scheme ensures that every bitstring correspond to a valid Steiner tree
and thus eliminate the need for penalty terms in the cost function.

The GA is tested on all SPG instances from the OR-Library of
which the largest graphs have 2,500 vertices and 62,500 edges. When
executed 10 times on each of 58 graph examples, the GA finds the
global optimum at least once for 55 graphs and every time for 43
graphs. In total the GA finds the global optimum in 77 % of all
program executions and is within 1 % from the global optimum in
more than 92 % of all executions.

The performance is compared to that of two branch-and-cut algo-
rithms and one of the very best deterministic heuristics, an iterated
version of the Shortest Path Heuristic (SPH-I). For all test examples
but one, even the worst result ever found by the GA is equal to or
better than the result of SPH-I and in many cases the average error
ratio of the GA is an order of magnitude better than that of SPH-I.
The runtime of the GA is moderate for all test examples. This is in
contrast to SPH-I as well as the branch-and-cut algorithms, for which
the runtime in some cases are extremely high.

2

1 Introduction

The Steiner Problem in a Graph (SPG) is one of the classic problems of
combinatorial optimization. Given a graph and a designated subset of the
vertices, the task is to find a minimum cost subgraph spanning the desig-
nated vertices. The SPG arises in a large variety of diverse optimization
problems such as network design, multiprocessor scheduling and integrated
circuit design [10, 28].

Numerous algorithms of various kinds have been developed for the SPG.
Exact algorithms can be found in e.g. [2, 3, 5, 8, 13, 23, 26]. However, since
the SPG is NP-complete [19] these algorithms have exponential worst case
time complexities. Therefore, a significant research effort has been directed
towards polynomial time heuristics, cf. e.g. [2, 20, 24, 25, 27, 31]. Simulated
annealing has also been applied to SPG [7].

The Rectilinear Steiner Problem (RSP) is an important special case of
SPG [14], which is still NP-complete [11]. While at least two genetic algo-
rithms for RSP have been published [15, 17], we are aware of only one previ-
ous genetic algorithm (GA) for the SPG, developed by Kapsalis, Rayward-
Smith and Smith [18].

The contribution of this paper is a new GA for the SPG which differs
significantly from the approach of Kapsalis et al. [18] in a number of ways.
While invalid solutions are allowed but penalized in [18], our approach is to
enforce constraint satisfaction at all times, thereby eliminating the need for
penalty terms in the cost function. Another major difference is our use of an
inversion operator.

The performance evaluation strategies also differs significantly. While
the parameter settings used in [18] varies from problem to problem, a fixed
set of parameter values has been used for all results reported in this paper.
From a practitioners point of view a stochastic algorithm is of limited use if
it requires its parameters to be tuned every time a new problem instance is
presented. Therefore we consider a fixed parameter setting to be of major
importance.

The presented algorithm is tested on all SPG instances from the OR-
Library [4]. This test suite consists of randomly generated graphs with up
to 2,500 vertices and 62,500 edges. The obtained performance is compared
to that of the GA by Kapsalis et al. [18], an iterated version of the Shortest
Path Heuristic called SPH-I, which is one of the very best deterministic
heuristics [31], and two recent branch-and-cut algorithms by Lucena and

3

Beasley [23] and Chopra, Gorres and Rao [5]. The experimental results
shows the following:

• The GA presented here clearly outperforms the GA in [18] with respect
to solution quality as well as runtime.

• The solution quality obtained by our GA is always at least as good as
that obtained by SPH-I, and often the error ratio is an order of mag-
nitude better. Depending on the problem, the two algorithms either
require similar amounts of runtime, or the GA is significantly faster.

• As opposed to the branch-and-cut algorithms, the GA is not guaranteed
to find a global optimal solution. However, the experiments reveals
that the GA do find the global optimum in more than 77 % of all
runs and is within 1 % from optimum in more than 92 % of all runs.
While the GA is capable of finding near-optimal solutions for all test
examples in a moderate amount of time, the runtime of the branch-and-
cut algorithms varies extremely and even prevent some of the largest
problem instances from being solved.

The paper is organized as follows. A precise problem definition is given
in Section 2. Section 3 presents a detailed description of the developed al-
gorithm and discusses some of the main design decisions taken. The experi-
mental method as well as detailed experimental results are given in Section
4, and in Section 5 possible directions for future work are suggested. Finally,
Section 6 concludes the paper.

2 Problem Definition

The graph terminology used in this paper is as in [1]. For a given graph
G = (V,E) and a subset V ′ ⊆ V , the subgraph of G induced by V’ is a graph
G = (V ′, E ′), such that 1) E ′ ⊆ E, 2) (vi, vj) ∈ E ′ ⇒ vi, vj ∈ V ′, and 3)
[vi, vj ∈ V ′ ∧ (vi, vj) ∈ E] ⇒ (vi, vj) ∈ E ′. A graph is complete if it has an
edge between every pair of vertices. The distance graph of G, denoted D(G),
is the complete graph having the same set V of vertices, in which the cost of
each edge (vi, vj) equals the cost of the shortest path in G from vi to vj. For
a given edge cost function c : E 7→ <, the cost of a graph G is the sum of the
cost of all edges of G, and is denoted by c(G). The problem considered can

4

now be defined:

The Steiner Problem in a Graph (SPG): Given a connected, undi-
rected graph G = (V,E), a positive edge cost function c : E 7→ <+, and a
subset W ⊆ V , compute a connected subgraph G′ = (V ′, E ′) of G, such that
W ⊆ V ′ and such that c(G′) is minimal.

Any acyclic subgraph G′ of G such that W ⊆ V ′ is called a Steiner Tree
for W in G. A solution G′ with minimal cost is called a Minimal Steiner Tree
(MStT) for W in G. The set S ⊆ V \W such that V ′ = W ∪ S is called the
Steiner vertices of G′. Note the generality of this problem formulation. We
do not require G to be planar, and we do not require c to satisfy the triangle
inequality.

Figure 1: An example instance of the SPG. The highlighted vertices consti-
tutes W.

Throughout this paper, let n = |V |,m = |W | and r = n − m. If m =
2, SPG reduces to the shortest path problem, which can be solved by e.g.
Dijkstra’s algorithm [22] in time O(|E| log n). If m = n, SPG is the Minimum
Spanning Tree problem (MSpT), which can be solved in O(n2) time by e.g.
Prim’s algorithm [1]. However, if 2 < m < n, SPG is in general NP-complete1

[19].

1Some special graph topologies do exist, for which SPG can still be solved in polynomial
time [30].

5

3 Description of the Algorithm

In this section the developed algorithm is described in detail. First an
overview of the algorithm is given in Section 3.1. Initially an attempt to
reduce the size of a given problem is made by applying some graph reduc-
tion techniques described in Section 3.2. The main idea of the GA is the
application of the Distance Network Heuristic for interpretation of the repre-
sentation manipulated by the genetic operators. This is discussed in Sections
3.3 and 3.4. Other components of the algorithm is described in Sections 3.5,
3.6 and 3.7. Finally, the time complexity of the algorithm is discussed in
Section 3.8.

3.1 Overview

The concept of genetic algorithms, introduced by John Holland [16], is based
on natural evolution. In nature, the individuals constituting a population
adapt to the environment in which they live. The fittest individuals have
the highest probability of survival and tend to increase in numbers, while
the less fit individuals tend to die out. This survival of-the-fittest Darwinian
principle is the basic idea behind the GA.

The algorithm maintains a population of indiuiduals, each of which corre-
sponds to a specific solution to the optimization problem at hand. A measure
of fitness defines the quality of an individual. Starting with a set of random
individuals, a process of evolution is simulated. The main components of
this process are crossover, which mimics propagation, and mutation, which
mimics the random changes occurring in nature. After a number of gener-
ations, highly fit individuals will emerge corresponding to good solutions to
the given optimization problem.

A phenotype is the physical appearance of an individual, while a genotype
is the corresponding representation or genetic encoding of the individual.
Crossover and mutation are performed in terms of genotypes, while fitness is
defined in terms of phenotypes. For a given genotype, the corresponding phe-
notype is computed by a decoder. A good introduction to genetic algorithms
is given in [12].

Fig. 2 shows a template for the GA considered here. Before the GA itself
is executed, routine graphReductions tries to reduce the size of the given
problem as described in Section 3.2. Then the initial current population PC
is constructed from randomly generated individuals by routine

6

Figure 2: Outline of the algorithm.

generate. Routine evaluate described in Section 3.5 computes the fitness
of each of the given individuals, while bestOf finds the individual with the
highest fitness. One execution of the outer “repeat” loop corresponds to
the simulation of one generation. Throughout the simulation the number
of individuals M = |PC| is kept constant. We keep track of the best in-
dividual s ever seen. Routine stopCriteria terminates the simulation when
no improvement of the best or the average fitness has been observed for S
consecutive generations, or when the algorithm has converged so that all in-
dividuals have the same fitness. Each generation is initiated by the formation
of a set of offspring PN of size M . The two mates p1 and p2 are selected from
PC independently of each other, and each mate is selected with a probability
proportional to its fitness. The crossover routine described in Section 3.6
generates two offspring c1 and c2. Routine reduce returns the M fittest of
the given individuals, thereby keeping the population size constant. With

7

a small probability pmut, the mutation operator randomly changes each of
the components, or genes, of its argument, as described in Section 3.7. The
genetic operator invert(p) alters the genotype of an individual p without
altering the corresponding phenotype. As described in [12], the purpose of
this operator is to optimize the relative positions of the genes of p with re-
spect to the crossover operator. The inversion operator will be described in
Section 3.7. Routine optimize(s) performs simple local hill-climbing by exe-
cuting a sequence of mutations on s, each of which improves the fitness of s.
An exhaustive strategy is used so that when the routine has been executed,
no single mutation exists, which can improve s further. The output of the
algorithm is then the solution s.

3.2 Graph Reductions

Before the GA itself is executed an attempt to reduce the size of the given
problem is performed using standard graph reduction techniques. Routine
graphReductions of Fig. 2 performs four kinds of rather simple reductions
all of which are described in [30, 31]. More elaborate reductions as well as
proofs of the correctness of the reductions used here can be found in [9]. Let
evw denote the edge between vertices v and w, and let sp(u,w) ⊆ E denote
the shortest path between v and w. The four reductions used are:

a) Assume deg(v) = 1 and evw ∈ E. If v ∈ W any MStT must include evw.
Hence, v and evw can be removed from G and w is added to W if it is
not already there. If v ∈ V \W , no MStT can include evw i.e. in this
case v and evw can also be deleted.

b) If v ∈ V \ W , deg(v) = 2 and euv, evw ∈ E, then v, euv and evw can
be deleted from G and replaced by a new edge between u and w of
equivalent cost. More specifically, if euw /∈ E then E = E ∪ {euw} and
c(euw) = c(euv) + c(evw). If there is an edge from u to w already, i.e.,
euw ∈ E, then c(euw) = min{c(euw), c(euv) + c(evw)}.

c) If evw ∈ E and c(evw) > c(sp(v, w)) then no MStT can include evw, which
therefore can be deleted.

d) Assume that v ∈W and denote the closest neighbour to v by u ∈ V , and
the second-closest neighbour by w ∈ V . Since G is connected, u always
exists. If w does not exist, assume c(evw) = ∞. Let z be a vertex

8

in W \ {v} which is closest to u. If c(evu) + c(sp(u, z)) ≤ c(evw) then
any MStT must include evu. Therefore, G can be contracted along this
edge. Note that u ∈ W ⇒ z = u ⇒ c(sp(u, z)) = 0 i.e., contraction
can always be performed in this case.

To obtain the largest possible overall reduction of G, the above reduc-
tions are performed repeatedly as described below. Knowledge of the cost
of a shortest path is required whenever a reduction of type c or d is per-
formed. Shortest paths are also repeatedly needed by the GA as will become
apparent in Section 3.4. Therefore, the distance graph D(G) is computed
initially using Floyd’s algorithm [1] which requires time O(n3). Whenever
one of the above reductions are performed, D(G) has to be dynamically up-
dated. When representing D(G) as an adjacency matrix the update is trivial
for reductions of type a or b: It simply consists of deleting the row and col-
umn corresponding to the deleted vertex. Reductions of type c leaves D(G)
unchanged. However, for reductions of type d the update is slightly more
involved. Whenever a contraction is performed, D(G) is updated using an
O(n2) algorithm by Dionne and Florian [6].

In [30, 31] the following reduction is also suggested along with the re-
ductions described above: If max{c(sp(v, u)), c(sp(v, to))} < c(euw), euw ∈ E
and v ∈ W , then no MStT can include euw, which therefore can be deleted.
However, in this case the required update of D(G) has a worst case complex-
ity of O(n3) using Dionne and Florian’s algorithm [6]. I.e., the update could
be as expensive as recomputing the entire distance graph, and for this reason
this reduction is omitted.

When performing a sequence of reductions of the same type, the overall
result depends on the chosen traversal of the graph, that is, the order in
which reductions are tried out. Furthermore, reductions of distinct types are
mutually dependent in the sense that performing all possible reductions of
some type may allow new subsequent reductions of another type. It is not
clear in which order reductions should be performed to obtain the overall
best reduction of a given graph [31]. The arbitrarily chosen scheme for per-
forming reductions in routine graphReductions is shown in Fig. 3. Routine
reductions(x) performs a single traversal of all vertices (or edges in the case
of type c reductions) of G in an unspecified order and carries out a reduc-
tion of type x whenever possible. Routine graphReductions terminates when
no reduction of any type succeeded for a complete iteration, i.e., when no
reduction can reduce G further.

9

Figure 3: Outline of routine graphReductions.

To deduce the worst case time complexity of graphReductions, start by
considering the maximum total time spend on reductions of type d. Due to
the required update of D(G) a single reduction requires time O(n2). Since
vertices can be added to W when performing reductions of type a, O(n) type
d reductions are possible. Hence, the total time spend on type d reductions
is O(n3). One execution of reductions(x) require at most time O(n2) when
either x 6= d or x = d but no contraction is performed. Since each of the
reductions a, b and d decreases the number of vertices by one, and since type
c reductions are performed exhaustively in the sense that after executing
reductions(c) no edge exist which can be removed by a type c reduction, at
least one vertex must be removed in every second iteration of the “repeat”
loop in graphReductions. Hence, there can be no more than O(n) iterations.
In total this gives routine graphReductions the time complexity O(n3).

Although it is not difficult to construct a graph for which none of the
reductions performed by graphReductions applies, the routine has been ob-
served to be very effective on many graphs, as will be seen in Section 4.4.
When applied to the graph of Fig. 1, the result is the degenerate graph con-
sisting of one vertex only, implying that a MStT has been found. In general,
especially reductions of type d has been observed to be very powerful when
m is relatively large, which coincides with the results reported in [31].

3.3 Distance Network Heuristic (DNH)

The key point in designing any GA is the design of a suitable genotype
of an individual together with its interpretation, the decoder. The genetic
encoding developed here is based on use of the Distance Network Heuristic

10

(DNH), a deterministic heuristic for the SPG, developed by Kou et al [20].
Therefore, before proceeding by presenting the genotype and the decoder,
the DNH is described.

Given a graph G = (V,E), a cost function c and a subset of vertices W
in accordance with the definition of SPG in Section 2, the DNH computes
an approximation TDNH to the MStT for W in G in five steps:

1. Construct the subgraph G1 of D(G) induced by W .

2. Compute a MSpT T1 of G1.

3. Construct from T1 the subgraph G2 of G by substituting each edge in
T1 by the corresponding shortest path in G.

4. Compute a MSpT T2 of G2.

5. Compute TDNH from T2 by repeatedly deleting all vertices v ∈ V \W
having deg(v) = 1.

Any ties in Steps 2, 3 or 4 are broken arbitrarily. An example of how the
DNH works is shown in Fig. 4, given as input the graph G of Fig. 1 and the
subset W = {v0, v1, v2, v3}.

If D(G) is not known, Step 1 of DNH requires time O(mn2) to compute
shortest paths from each of the m vertices. Since G1 is complete the MSpT
in Step 2 is computed using Prim’s algorithm requiring time O(m2). Each
of the m− 1 edges of T1 may correspond to a path in G of up to n− 1 edges.
Hence, Step 3 requires time O(mn) and Step 4 requires time O(mn log(nm))
using Kruskal’s algorithm [1]. The final step is done in time O(n). Hence, if
D(G) is not known, Step 1 is the most expensive and gives the DNH a time
complexity of O(mn2).

3.4 Genotype and Decoder

The basic idea of the genotype and the associated decoder is the following:
The genotype specifies a set of selected Steiner vertices. The decoder com-
putes the corresponding phenotype by executing the DNH using the union
of the selected Steiner vertices and W as the set of vertices to be spanned.
The selected Steiner vertices are specified by a bitstring in which each bit
corresponds to a specific vertex. If the bit is set, the vertex is selected. For

11

Figure 4: The steps of DNH given the input graph from Fig. 1.

reasons to be discussed in Section 3.7, we need the genotype to be indepen-
dent of the ordering of the bits in the string. This is obtained by associating
with each bit a tag which identifies the vertex specified by that bit.

Specifically, the genotype and the decoder can be described as follows.
For a given instance of SPG, assume a fixed numbering 0, 1, . . . , r− 1 of the
vertices in V \W . Let π : {0, 1, . . . , r − 1} 7→ {0, 1, . . . , r − 1} be a bijective
mapping. A genotype is then a set of r tuples:

{(π(0), iπ(0)), (π(1), iπ(1)), . . . , (π(r − 1), iπ(r−1))}

where ik ∈ {0, 1}, k = 0, 1, . . . , r − 1. The Steiner vertices S ⊆ V \ W
specified by the genotype is S = {vk ∈ V | ik = 1}. The Steiner tree in
G corresponding to the genotype is the tree computed by DNH using the
set S ∪W as the vertices to be connected. In Step 5 of DNH every vertex
v /∈ W of degree 1 is deleted. Note that the Steiner tree is independent of π.

12

In other words, the Steiner tree constituting the phenotype of an individual
does not change if the tuples in its genotype are reordered.

Any set of values of the ik’s in a genotype correspond to a valid phenotype.
However, Lawler [21] has shown that a MStT in D(G) exists, which has at
most m− 2 Steiner vertices. This result relies on the fact that regardless of
the edge cost function c, the edge costs in D(G) always satisfy the triangle
inequality. Hence, it is sufficient to consider only the subset of genotypes
which satisfies |S| ≤min(m − 2, r). To take advantage of this reduction of
the search space, a routine filter has been defined, which given any genotype
g enforces the satisfaction of |S| ≤min(m − 2, r) by randomly selecting and
clearing the necessary number of set bits.

When the initial random population has been generated, the filter is
applied to each of the individuals. From then on, the search is limited to the
restricted region by applying the filter to every new individual generated by
one of the genetic operators.

It is important to note that the DNH is not chosen for use as decoder
because it is a especially good heuristic in terms of result quality. In [31] the
performance of DNH is compared to that of two other well-known polynomial
time heuristics for the SPG: The Shortest Path Heuristic (SPH) by Takahashi
and Matsuyama [27] and the Average Distance Heuristic (ADH) by Rayward-
Smith and Clare [25]. With respect to result quality the DNH is clearly
outperformed by both these heuristics. The reason to use DNH for decoding
is first of all that it provides a way to interpret any set of selected vertices
as a valid Steiner tree, and secondly, that it is relatively fast. The important
advantage of considering valid Steiner trees only is that it eliminates the need
for penalty terms in the cost measure, and thus avoids potential problems of
assigning a suitable cost value to an invalid or incomplete solution.

3.5 Fitness Measure

Given a population P = {p0, p1, . . . , pM−1} the routine evaluate of Fig. 2
computes the fitness of each individual as follows. Let C(p) be the cost of
individual p, i.e. the cost of the Steiner tree represented by p, and assume
that P is sorted so that C(p0) ≥ C(p1) ≥ . . . ≥ C(pM−1). The fitness F of
pi is then computed as

F (pi) = 2i
M−1

i = 0, 1, . . . ,M − 1.

13

This fitness computation scheme is called ranking and is discussed in [29].
Controlling the variance of the fitness values is one of the frequent prob-
lems of GA’s [12]. Ranking assures that the variance is constant throughout
the optimization process. The specific scheme chosen here constantly gives
the best individual twice the probability of the median individual of being
selected for crossover.

3.6 Crossover Operator

Given two parent genotypes α and β, the crossover operator generates two
offspring, φ and ψ. The parent genotypes are not altered by the operator.
An example of crossover is shown in Fig. 5. In this section, a superscript
specifies which individual the marked property is a part of Crossover consists
of three steps:

1. One of the parents, say β, is chosen at random, and a copy γ of β is
made. γ is then reordered so that it becomes homologous to α, that is,
πγ = πα.

2. Both offspring are given the same ordering as their parents, i.e., πφ =
πψ = πα. Standard 1-point crossover is then performed [12, 16]: A
crossover-point x is selected at random in {0, 1, . . . , r−2}. The selection
of Steiner vertices in φ and ψ is then defined by

iφπ(k) =

{
iαπ(k) if k ≤ x

iγπ(k) if k > x

and

iψπ(k) =

{
iγπ(k) if k ≤ x

iαπ(k) if k > x

where π = πα.

3. Finally, both φ and ψ are subjected to the filter routine, if necessary.

14

Figure 5: Illustration of the crossover operator with m = r = 5.

3.7 Mutation and Inversion Operators

The mutation operator is extremely simple. Given a genotype g, the operator
inverts each of the r bits in g with a small given probability pmut. This scheme
is called pointwise mutation. If necessary, g is then passed through the filter
routine.

For a given phenotype, several equivalent genotypes usually exist. Since
crossover is performed in terms of genotypes, the fitness of produced offspring
depends on which of the possible genotypes are used as codings of the given
phenotypes. The purpose of inversion is to optimize the performance of the
crossover operator by rearranging the components within a given genotype,
as explained in detail in [12, 16].

With a given probability pinv, the inversion operator reorders the tuples
of a given genotype g by altering its ordering π. This does not change the
phenotype corresponding to g. To obtain a uniform probability of movement
of all tuples, we consider the genotype to form a ring. A part of the ring is
then selected at random and reversed. More specifically, two points x, y ∈
{0, 1, . . . , r − 1}, x 6= y, are selected at random. The operator then defines

15

the new ordering π’ of g as2

π′((x+i) mod r) =

{
π((y − i) mod r if 0 ≤ i ≤ (y − x) mod r
π((x+ i) mod r otherwise

for all i = 0, 1, . . . , r − 1. The inversion operator is illustrated in Fig. 6.

Figure 6: Illustration of the inversion operator with r = 5.

3.8 Time Complexity

The filter routine described in Section 3.4, the generation of each of the
initial individuals, and the genetic operators crossover, mutate and invert
each requires time O(r) = O(n−m). The repeated decodings using DNH is
the most expensive operation of the GA. Since knowledge of shortest paths
is also required when performing some of the initial graph reductions, D(G)
is precomputed once and for all as mentioned in Section 3.2. This reduces
the time of Step 1 of DNH to O(1) and as a consequence, one decoding can
now be performed in time O(mn log(nm)). Fitness computation requires
O(M logM) to sort the individuals. In total, the GA’s setup time is O(n3),
and each generation requires time O(M [nm log(nm) + logM]).

Measurements reveals that the vast majority of the total runtime is spend
on decodings. It also turns out that in practice the graph formed in Step 3
of the decoding process is almost always a tree, and as a consequence, Step
4 is rarely executed. Therefore, the true bottleneck of the algorithm is the
MSpT computation performed in Step 2 of the decoding, which requires time
O(m2).

2The definition of π’ relies on the matematical definition of modulo, in which the
remainder is always non-negative.

16

4 Experiments

This section describes the experimental method applied and the results ob-
tained. Characteristics of the test examples used are given in Section 4.1.
The deterministic heuristic SPH-I used for comparison is described in Section
4.2 and Section 4.3 describes the chosen method for performing the compar-
ative experiments. The results are reported and discussed in Section 4.4.
As mentioned in Section 1 an earlier GA for SPG has been developed by
Kapsalis et al. and a comparison to that algorithm is presented in Section
4.5. Finally, Section 4.6 describes the typical behaviour of the GA during an
optimization process.

4.1 Test Examples

The algorithm is tested on all 78 SPG instances from the OR-Library [4].
According to their size, these graphs are divided into four classes denoted
by B, C, D and E. All graphs are generated at random subject only to the
connectivity constraint, that is, the topology is random and the vertices to be
spanned are selected at random. Every edge cost is a random integer in the
interval [1, 10]. In class B each graph has n equal to 50, 75 or 100. The value
of m is either n/6, n/4 or n/2 and the average vertex degree is either 2.5 or
4. Since all combinations exists, class B consists of 18 graphs. Classes C, D
and E consists of graphs with n equal to 500, 1, 000 and 2, 500 respectively.
m equals 5, 10, n/6, n/4 or n/2 and the average vertex degree is 2.5, 4, 10
or 50. Thus, each of the classes C, D and E consists of 20 graphs.

One of the main advantages of using this test-suite is that it facilitates
comparison with the global optimal solutions. The global optima were first
computed by J. E. Beasley who developed a branch-and-cut algorithm which
was executed on a Cray X-MP/48 supercomputer [3].

For a given graph, the size of the search space S(n,m) to be explored by
the GA is

S(n,m) =
k∑
i=0

(
n−m
i

)

where k = min(m − 2, n −m), since this is the number of possible distinct
choices of the Steiner vertices. Some of the problem instances considered
represents extremely large search spaces, as will be seen in Section 4.4.4.

17

However, as mentioned in Section 3.7, the corresponding phenotype spaces
are smaller.

4.2 Iterated Shortest Path Heuristic (SPH-I)

As mentioned in Section 3.4 a comparative study of the deterministic heuris-
tics SPH, DNH and ADH has been made by Winter and Smith [31]. Several
variants of these heuristics, especially a number of repetitive variants of SPH,
are also considered in the study. The ADH is in general considered to be one
of the best deterministic heuristics, which is also confirmed by the investi-
gation in [31]. However, the results also reveals that some of the repetitive
variants of SPH consistently outperform ADH with respect to result quality.
Furthermore, by applying initial graph reductions the runtime of the repet-
itive SPH variants can be made comparable to that of the other heuristics.
One of the specific conclusions in [31] is that on the largest random graphs
considered, the repetitive SPH variant denoted SPH-ZZ outperforms all other
heuristics. Therefore, this heuristic has been chosen for comparison with the
GA.

Fig. 7 outlines our implementation of SPH-ZZ, denoted by SPH-I. It
starts by computing D(G) and performing graph reductions as described
in Section 3.2. For given vertices x and y, Gxy = (Vxy, Exy) denotes the
subgraph of G corresponding to the shortest path between x and y. In each
iteration of the outer loop a tree T is build which spans all vertices in W . T
is initialized with a shortest path between two of the vertices to be spanned,
and T is then extended by repeated addition of a shortest path to a closest,
not yet connected vertex. This scheme is tried for all possible initializations
of T , and the algorithm outputs the best such tree obtained.

As described in Section 3.2 routine graphReductions requires time O(n3).
The construction of each candidate solution T takes time O(m2n) since the
“while” loop is iterated O(m) times and it takes time O(mn) to find each z
vertex and extend T with a shortest path to it. This is due to the fact that
all distances have been precomputed. Since O(m2) candidate solution trees
T are computed, the total runtime of SPH-I becomes O(n3 +m4n).

4.3 Experimental Method

The GA is evaluated by four kinds of comparisons:

18

Figure 7: Outline of SPH-I.

• The solution quality obtained is compared to the global optimum.

• The absolute runtime is compared to that of two distinct branch- and-
cut algorithms by Lucena and Beasley [23] and Chopra, Gorres and
Rao [5].

• Solution quality and absolute runtime is compared to that of SPH-I.

• Comparison with the GA by Kapsalis et al [18].

The branch-and-cut algorithms are guaranteed to find the global opti-
mum. However, runtime may be unacceptable for some problem instances or
may even prevent some problems from being solved. It is therefore of inter-
est to investigate if a near-optimal solution can be found for all problems by
using a moderate amount of time.

The GA has been executed 10 times for each example in the B, C and D
classes. Solution quality is then evaluated in terms of best, average and worst
results produced. However, due to runtime requirements the GA was only
executed once for each of the examples in class E. The parameter settings
are M = 40, S = 50, pmut = 0.005 and pinv = 0.1. These values are used for
all executions, i.e., no problem specific tuning has been made. As mentioned
in Section 1 fixed parameter values are of major importance from a practical
point of view.

19

The GA as well as SPH-I are implemented in the C programming lan-
guage. For both algorithms, examples from classes B, C and D are executed
on a Sun Sparc IPX workstation having 32 Mb RAM. These examples re-
quire at most 10 Mb of memory. For the class E examples, the memory
requirement is about 58 Mb. Therefore, for these examples the GA as well
as SPH-I are executed on a DEC Mips 5000-240 workstation having 128 Mb
RAM.

The branch-and-cut algorithm by Lucena and Beasley [23] is a further
development of the algorithm presented in [3], but instead of using a Cray,
it is now executed on a Sun Sparc 2 workstation. This machine is roughly
as fast as the Sun Sparc IPX, but probably somewhat slower than the DEC
Mips 5000-240. Chopra et al’s algorithm [5] is executed on a VAX 8700 which
is at most as fast as the other machines. When comparing absolute runtimes
in Section 4.4 the reader should keep these differences regarding the used
hardware in mind. However, the runtime variations caused by the different
machines are insignificant compared to the variations caused by different
problem instances when considering a specific algorithm.

4.4 Results

In the following sections the detailed experimental results for all four problem
classes are commented. The tables referenced can be found in Appendix A.
A summary and conclusion of the results are given in Section 4.4.5.

4.4.1 The B Graphs

Table 2 lists the characteristics of the problems in class B before and after the
graph reductions of Section 3.2 are performed. The reductions significantly
impacts all graphs. Especially, graphs B-1, B-3 and B-9 are reduced to the
degenerate graph consisting of a single vertex only, which means that the
optimal solution is found solely by performing graph reductions.

Table 3 compares the solution quality obtained by the GA to the glob-
ally optimal solutions as well as to the solutions found by SPH-I. Copt is
the global optimum and Csph is the solution found by SPH-I. Cbest, Cavg
and Cworst is the best, average and worst result produced by the GA in
the 10 runs, while Cσ denotes the standard deviation of the 10 cost val-
ues. ∆Csph = 100(Csph\Copt − 1) is the relative error in percent of the
solution found by SPH-I compared to the optimum solution. Similarly,

20

∆Cavg = 100(Cavg\Copt− 1) denotes the average error of the solutions found
by the GA, and ∆Cworst = 100(Cworst\Copt − 1) is the worst error produced
by the GA. Finally, Nga denotes the number of the 10 runs which did not
find the global optimum. This notation is also used in the following sections.

As can be seen, the GA finds the global optimum for all examples in every
execution. SPH-I performs similarly for all graphs except B-13, for which it
has a 1.82 % overhead.

Table 4 compares the runtime of the GA with that of SPH-I and the
branch-and-cut algorithm by Lucena and Beasley [23]. Tbc2 denotes the run-
time of the latter algorithm and Tsph is the time of SPH-I. The average time
spent by the GA is denoted Tavg while Tσ denotes the standard deviation
of the time for the 10 runs. Chopra et al [5] gives no computational results
for these graphs. It can be seen that all runtimes are very small and within
the accuracy of these measurements it is difficult to draw any conclusions
regarding differences in speed for the different algorithms.

The fact that all three algorithms finds optimal solutions (except for
SPH-I on B-13) in a very short time suggests that these examples are simply
too small to facilitate any distinction of performance of the algorithms. For
several of the graphs the search spaces after graph reductions are indeed very
small and the largest search space is that of B-17 with less than 109 points,
which is not that much for a combinatorial optimization problem.

4.4.2 The C Graphs

From Table 5 it can be seen that the graph reductions are also very effective
on most graphs in the C class. Note especially graph C-5 which after reduc-
tions has a search space size of only approximately 106 points. However, as
the average vertex degree increases, the effect of reductions of types a and b
(see Section 3.2) decreases significantly. When m is small, the effect of re-
ductions of type d is also very limited, as can be seen by the results for C-11,
C-12, C-16 and C-17. The obtained reduction in search space sizes for these
problems are negligible. The effect of reductions of type c increases with the
number of edges. For C-16 through C-20 about two thirds of all edges are
eliminated by graph reductions, mainly of type c. However, since the GA op-
erates in terms of shortest paths, minimum spanning trees, etc., the number
of edges are not that important for the performance of the algorithm.

Table 6 shows that the GA finds the global optimum at least once for all
examples and every time for 12 of the graphs, while SPH-I finds the optimum

21

for 10 of the graphs. When neither the average GA run nor the SPH-I finds
the global optimum, ∆Cavg is often an order of magnitude better than ∆Csph.
This is the case for C-3, C-4, C-9, C-14, C-18 and C-l9. For C-18 and C-l9
the solutions produced by SPH-I are very poor with errors in the 6 - 7 %
range. The results for C-16 are in direct contrast to all other results. While
the SPH-I finds optimum, the GA encounters severe problems. In 7 of 10
runs it misses the global optimum value of 11 and outputs a tree of cost 12.
This corresponds to a huge relative error ∆Cworst of 9.09 %.

In Table 7 and subsequent tables Tbc1 denotes the runtime of the branch-
and-cut algorithm by Chopra et al [5]. Depending on the problem, the run-
time for both branch-and-cut algorithms varies extremely. Chopra’s algo-
rithm spans from 10 secs. for C-16 to more than 45, 000 secs. for C-18,
while Lucena’s algorithm varies from 5 secs. for C-5 to more than 20, 000
secs. for C-18. As a consequence, the branch-and-cut algorithms are signifi-
cantly faster than both the GA and SPH-I for some graphs and significantly
slower for others. The runtimes of the GA and the SPH-I are similar for
most graphs, although the GA is significantly faster for graphs C-15, C-19
and C-20. The time variation Tσ of the GA is relatively small.

4.4.3 The D Graphs

The effect of graph reductions on the class D graphs shows a pattern similar to
that observed for the C graphs although now the pattern is even clearer. Most
graphs are reduced significantly, note especially D-5. The effect of reductions
decreases as m decreases and as the average vertex degree increases.

On the class D graphs SPH-I finds optimum for 7 of the graphs, while
the GA finds the optimum at least once for 17 graphs and every time for 13
graphs. SPH-I has relative errors exceeding 2 % for 5 graphs while that only
happens for the GA on graph D-18. For all graphs we have Cworst ≤ Csph
and Cworst < Csph holds for 13 graphs.

On this class of problems the runtimes for both branch-and-cut algorithms
varies by three orders of magnitude and are as high as in the 200− 300, 000
secs. range corresponding to 2-3 days of computation. The runtime of SPH-
I now also varies significantly. For practical reasons it became necessary to
introduce a CPU-time limit of 50, 000 secs. for this algorithm on graphs from
classes D and E. When SPH-I did not complete its computation within this
limit, it was terminated and the best solution found so far was used. This
happened for graphs D-l9 and D-20. For these graphs the total time needed

22

by SPH-I is estimated to be 95, 000 secs. and 679, 000 secs., respectively.
These estimates can be considered to be quite accurate since they are based
on measurements of the CPU-time spend for each pair of vertices x, y ∈ V ,
cf. Fig. 7, which is then scaled with the relative number of vertex pairs not
yet considered at the time the CPU-limit is exceeded. The average runtime
of the GA varies from 504 secs. for D-5 to 3, 441 secs. for D-19, i.e., by a
factor of 7. This variation is small compared to the variation of the other
algorithms considered. For graphs D-8, D-9, D-10, D-13, D-14, D-15, D-
18, D-19 and D-20 the GA is on average an order of magnitude faster than
SPH-I while for the remaining graphs the runtimes of these algorithms are
comparable.

4.4.4 The E Graphs

For the graphs from class E the effect of graph reductions follows a pat-
tern which coincides perfectly with the patterns observed for classes C and
D. Even after reductions the search space sizes for the class E graphs are
enormous. Using the bound

S(n,m) >

(
n−m
k

)
≥
(
n−m− k + 1

k

)k

where k = min(m−2, n−m) reveals that a number of graphs in this class has
search spaces exceeding 10100 points. Especially, the search space for E-13
exceeds 10231 points and for E-18 it exceeds 10242 points. These bounds are
computed after graph reductions have been performed.

Table 12 lists the solution qualities obtained by the GA and the SPH-I
together with the runtimes of all algorithms considered. Due to the extensive
runtimes required for the graphs in this class, the GA was executed only
once for each example. Cga denotes the cost obtained by the GA, ∆Cga is
the relative error of the solution found by the GA and the time spend by
algorithm is denoted by Tga. Hence, Cga and Tga can be considered estimates
of Cavg and Tavg, respectively.

It should be noted that the listed value of Copt for E-18 may not be the
global optimum, but according to the information in OR-Library it is the
best known solution as found by Beasley’s algorithm [3]. The optimum for
this graph was not found within a CPU-limit of 21,600 secs. on the Cray X-
MP/48. Chopra et al [5] also encountered problems with E-18. No runtime

23

is listed for this graph since the algorithm did not terminate within a CPU-
limit of 10 days on the VAX 8700 [5]. Lucena and Beasley [23] does not
report any results for graphs E-6 through E-20, and a reason is not given.
However, considering the progression of runtime for the graphs in classes C
and D, it is reasonable to assume that the algorithm is unable to solve some
of these problems in a reasonable amount of time.

SPH-I exceeds the CPU-time limit of 50, 000 secs. for graphs E-3, E-
8, E-9, E-10, E-13, E-14, E-15, E-18, E-l9 and E-20. The estimated total
time required by SPH-I for these graphs varies from 81, 000 secs. for E-3 to
4.3× 107 secs., or more than 16 months, for E-20. Compared to the branch-
and-cut algorithms and SPH-I the runtimes of the GA are very moderate for
all graphs with a maximum runtime of 29, 105 secs. for E-18. For most of the
graphs for which SPH-I terminates within the CPU-time limit the runtimes
of the GA and SPH-I are very similar. Regarding solution quality, SPH-I
finds the global optimum for 4 of the graphs and has a worst relative error
ratio exceeding 9 % for E-18. The GA finds optimum for 11 graphs and has
a worst relative error ratio less than 2 %.

4.4.5 Summary of Results

This section summarizes the experimental results with respect to solution
quality and runtime. When comparing the solution quality obtained by the
GA to that obtained by SPH-I for all graphs in classes B, C and D the follow-
ing can be observed: Of a total of 58 graphs, SPH-I finds the global optimal
solution for 34 graphs, while the GA finds optimum 10 times out of 10 for 43
graphs and at least one time of 10 for 55 graphs. For the class E examples,
SPH-I finds optimum for 4 of the 20 graphs, while the GA finds the opti-
mum for 11 of these graphs.∆Cworst ≤ ∆Csph holds for all but one graph in
classes B, C and D, and in class E we have ∆Cga ≤ ∆Csph for all graphs. In
other words, with a single exception even the worst results generated by the
GA are equal to or better than the result generated by SPH-I. Furthermore,
for the graphs where both SPH-I and the average execution of the GA fails
to find the global optimum, the expected relative error ratio ∆Cavg of the
GA is often an order of magnitude better than the error ratio ∆Csph of SPH-I.

24

Error Ratio
Algorithm = 0% < 0.5 % < 1.0 %

SPH-I 48.7 66.7 70.5
GA 77.1 86.7 92.6

Table 1: Summary of solution qualities obtained by the GA and SPH-I.

Table 1 summarizes the solution qualities obtained by the GA and the
SPH-I. These figures are based on the results of all 600 executions of the GA
and all 78 executions of SPH-I performed in total. For each algorithm Table
1 gives the accumulated percentage of runs which gave a result within the
stated relative error from optimum. E.g., 66.7 % of all executions of the SPH-
I gave a result which was less than 0.5 % from the optimum solution. When
computing the values listed for the GA the results for the class E examples
have been weighted by a factor of 10 to compensate for the imbalance in the
number of executions for each graph.

The results regarding runtimes can be summarized in three main points:

• The GA is capable of finding a high-quality solution for all graphs
considered in a moderate amount of time. This is not the case for any
of the two branch-and-cut algorithms or for SPH-I.

• In most cases the runtime of the GA is very similar to that of SPH-
I. In a few cases the GA is significantly faster than SPH-I, while the
opposite is never the case.

• The variation of the runtime of the GA i8 very small compared to the
variation observed for the branch-and-cut algorithms as well as SPH-
I. As a consequence, the branch-and-cut algorithms are significantly
faster than both the GA and SPH-I for some examples, while they are
significantly slower on other examples.

AB problem size increases through the classes B, C, D and E the above
observations become increasingly pronounced. If only class B graphs are
considered, it is difficult to make any distinctions regarding performance of
the algorithms. These examples appears to be too simple.

4.5 Comparison with Kapsalis Algorithm

In this Section the GA by Kapsalis, Rayward-Smith and Smith [18] is de-
noted GA-KRSS. As mentioned in Section 1 GA-KRSS differs from the GA

25

presented here in a number of ways. Among other things, neither an inver-
sion operator nor a hill-climber is applied in GA-KRSS. However, the most
significant differences concerns the decoder and the cost computation. In
GA-KRSS a genotype is a bitstring of length n in which the i’th bit indi-
cates if the i’th vertex is part of the phenotype tree. To assure that every tree
spans W each genotype is xor’ed with the fixed string specifying W . Hence,
the encoding is very similar to our encoding. However, the interpretation
of a genotype is very different. Assume a genotype specifies the vertex set
Z, W ⊆ Z ⊆ V . The corresponding graph is then computed as the subgraph
GZ of G induced by Z. In general GZ is not connected. Assume it consists
of k ≥ 1 components. The cost of a solution is defined as the sum of the cost
of a minimum spanning tree for each component plus a penalty term which
grows linearly with k.

Computational results are given only for the class B graphs from the
OR-Library. The solution quality obtained for each graph is reported as
the best result of five runs. For each graph some parameter setting of GA-
KRSS has been found with which the global optimum is found in five runs.
However, the parameter setting varies with the problems given. When fixing
the parameter setting for all graphs, GA-KRSS finds the global optimum in
approximately 70 % of all runs and the worst result generated is 7.3 % above
the global optimum.

All experiments with GA-KRSS are run on a Apple Mac IIfx. No total
runtimes are given. Instead the time spend until the best solution found
appears first time, referred to as Last Improvement Time (LIT), is measured.
It is not clear exactly which stop criteria is used, i.e., how long the algorithm
takes to terminate beyond LIT. For many of the graphs, the average LIT is
in the range from 200 to 2, 000 secs. There is a time limit of 4, 000 secs. for
a complete execution.

GA-KRSS is clearly inferior to each of the other algorithms considered
in this paper, both with respect to solution quality as well as runtime. We
believe that the main reason for the performance gap between GA-KRSS and
the GA presented here is the different decoding strategy and consequently,
the different cost evaluation strategy.

4.6 Typical Behavior

The progress of the typical optimization process is illustrated by Figures 9,
10 and 11, which stems from a sample execution of the GA with graph D-15

26

as input. It should be emphasized that although the graphs stems from a
specific single run, the picture they give is very typical.

Figure 8: Cost of average and best individual as functions of generation
number.

For each generation, the top graph of Fig. 9 indicates the average cost
of the individuals in the population at that time, while the bottom graph
indicates the cost of the current best individual. Initially, the average cost is
1, 197 and the best is 1, 156. The global optimum of 1, 116 is obtained first
time in generation 203, and the algorithm terminates after 358 generations.
Note that improvement is very rapid during the first part of the process.
Then it levels out and further improvement is obtained only slowly. As
mentioned in Section 3.1 the best as well as the average cost are parts of
the stop criteria. If only the cost of the best solution were considered, the
process would have terminated after generation 253, corresponding to a 29 %
reduction of the runtime. However, the used stop criteria reflects a priority
of solution quality as being more important than runtime.

Fig. 10 shows for each generation the standard deviation of cost in the
population. From a value of 19.2 in generation 0, the standard deviation
decreases within 10 generations to about 2.0 and then stays at that level
throughout the optimization process.

As described in Section 3.1 each generation is initiated by the generation
of M offspring individuals. From the total of 2M individuals the best M
individuals are then kept as members of the new population while the rest

27

Figure 9: Standard deviation of cost as a function of generation number.

are discarded. Fig. 11 shows for each generation the percentage
of individuals in the newly created population which has just emerged as

results of crossover. The percentage of newly generated individuals is very
stable around 50. The important thing to note is that the fraction of new
individuals do not decrease with time but is constant also into the late phase
of the process. In other words, throughout the process half the individuals
generated by the crossover operator are better than some other individual
already in the population. This confirms the role of crossover as the most
important of the genetic operators.

5 Future Work

The work presented here can be continued in at least three sections:

1. Performance improvement: As discussed in Section 3 the main idea of
the GA presented is the application of the DNH for interpretation of
bitstrings. In contrast, the genetic operators for crossover, mutation
and inversion are all standard. They are characterized by being very
simple and blind in the sense that they do not utilize knowledge of
the application domain in any way. The same is true for the hill-
climber. One frequently used way of improving the performance of
a GA is to apply more advanced genetic operators and/or operators

28

Figure 10: Percentage of new individuals in the population as a function of
generation number.

exploiting application specific knowledge [12]. It is therefore likely that
the performance of the GA presented here can be further improved by
applying such techniques.

2. Other graph types: An obvious weakness of the test-suite used in this
work is that all graphs are sparse and randomly generated. It remains
to be seen how the GA performs on e.g. dense graphs, rectilinear
graphs, non-random graphs arising in real-world applications, etc.

3. Contributions to performance: To obtain a detailed understanding of
the reasons for the success of the algorithm it would be interesting to
investigate how the various components of the algorithm contribute
to the overall performance. What is the individual effect on solution
quality and runtime caused by e.g. the decoding strategy, the inversion
operator, the search space reduction or the initial graph reductions ?

6 Conclusion

In this paper a new Genetic Algorithm (GA) for the Steiner Problem in a
Graph (SPG) has been presented. The main idea behind the algorithm is the
application of the Distance Network Heuristic for interpretation of bitstrings

29

specifying selected Steiner vertices. This scheme ensures that every bitstring
corresponds to a valid solution and eliminates the need for penalty terms in
the cost measure, thereby avoiding potential problems of assigning a suitable
cost value to an incomplete or invalid solution.

The performance of the algorithm has been tested on random graphs with
up to 2, 500 vertices and 62, 500 edges. The experimental results shows that
in more than 92 % of all executions the GA finds a solution which is within 1
% from the global optimum. This performance compares favorably with one
of the very best deterministic heuristics for SPG as well as with an earlier GA
by Kapsalis et al. Performance is also compared to that of branch-and-cut
algorithms by Lucena and Beasley and by Chopra et al. While the runtimes
of these algorithms varies extremely and prevents the solution of some of the
problem instances considered, the GA is capable of generating a near-optimal
solution for all problems within a moderate amount of time.

We therefore conclude the following: In cases where a globally optimal so-
lution is absolutely required, the size of the given problem is not too big and
runtime is not important, one of the branch-and-cut algorithms are prefer-
able. On the other hand, if a near-optimal solution is sufficient, or the prob-
lem is very large or a moderate runtime limit is needed, the GA presented
here is the best choice of the possibilities considered.

Acknowledgement

The author wishes to thank Pinaki Mazumder, University of Michigan, who
supervised this work in its initial phase when the author was at University
of Michigan. Also thanks to Jens Clausen and Pawel Winter, Copenhagen
University, for pointing out possible improvements of an earlier version of
the algorithm and for suggesting a suitable strategy for performance evalua-
tion. Finally thanks to Peter Møller-Nielsen, Ole Caprani and Holger Orup,
Aarhus University, for several useful discussions and suggestions concerning
this work.

30

A Computational Results

Problem size Reduced size
Graph n m | E | n m | E |

B-1 50 9 63 1 1 0
B-2 50 13 63 7 4 12
B-3 50 25 63 1 1 0
B-4 50 9 100 34 7 72
B-5 50 13 100 35 10 76
B-6 50 25 100 25 10 60
B-7 75 13 94 16 6 26
B-8 75 19 94 16 7 25
B-9 75 38 94 1 1 0
B-10 75 13 150 50 10 115
B-11 75 19 150 47 8 108
B-12 75 38 150 31 11 74
B-13 100 17 125 28 9 47
B-14 100 25 125 22 8 42
B-15 100 50 125 16 9 28
B-16 100 17 200 63 9 148
B-17 100 25 200 51 12 113
B-18 100 50 200 35 12 84

Table 2: Characteristics of the class B graphs before and after reductions.

31

Graph Copt Csph ∆Csph Cbest Cavg Cworst Cσ ∆Cavg ∆Cworst Nga

B-1 82 82 0 82 82 82 0 0 0 0
B-2 83 83 0 83 83 83 0 0 0 0
B-3 138 138 0 138 138 138 0 0 0 0
B-4 59 59 0 59 59 59 0 0 0 0
B-5 61 61 0 61 61 61 0 0 0 0
B-6 122 122 0 122 122 122 0 0 0 0
B-7 111 111 0 111 111 111 0 0 0 0
B-8 104 104 0 104 104 104 0 0 0 0
B-9 220 220 0 220 220 220 0 0 0 0
B-10 86 86 0 86 86 86 0 0 0 0
B-11 88 88 0 88 88 88 0 0 0 0
B-12 174 174 0 174 174 174 0 0 0 0
B-13 165 168 1.82 165 165 165 0 0 0 0
B-14 235 235 0 235 235 235 0 0 0 0
B-15 318 318 0 318 318 318 0 0 0 0
B-16 127 127 0 127 127 127 0 0 0 0
B-17 131 131 0 131 131 131 0 0 0 0
B-18 218 218 0 218 218 218 0 0 0 0

Table 3: Comparison of solution quality for the graphs in class B.

32

Graph Tbc2 Tsph Tavg Tσ

B-1 0.1 0.1 0.1 0.0
B-2 0.1 0.1 0.2 0.0
B-3 0.1 0.1 0.1 0.0
B-4 0.6 0.1 1.2 0.6
B-5 1.9 0.1 0.7 0.2
B-6 0.6 0.1 0.2 0.1
B-7 0.2 0.2 0.5 0.1
B-8 0.1 0.2 0.5 0.1
B-9 0.1 0.2 0.2 0.0
B-10 3.1 0.3 1.7 0.5
B-11 1.4 0.3 1.4 0.6
B-12 0.6 0.3 0.6 0.1
B-13 0.7 0.4 1.4 0.4
B-14 1.2 0.5 0.9 0.3
B-15 0.3 0.5 0.8 0.1
B-16 18.4 0.6 4.4 1.9
B-17 3.3 0.6 2.3 0.6
B-18 1.0 0.6 1.5 0.30

Table 4: Comparison of CPU-time in seconds for the graphs in class B.

33

Problem size Reduced size
Graph n m | E | n m | E |

C-1 500 5 625 145 5 263
C-2 500 10 625 130 8 239
C-3 500 83 625 120 35 232
C-4 500 125 625 109 38 221
C-5 500 250 625 37 17 91
C-6 500 5 1,000 369 5 847
C-7 500 10 1,000 382 9 869
C-8 500 83 1,000 336 54 818
C-9 500 125 1,000 349 78 832
C-10 500 250 1,000 213 76 624
C-11 500 5 2,500 499 5 2,184
C-12 500 10 2,500 498 9 2,236
C-13 500 83 2,500 463 65 2,108
C-14 500 125 2,500 427 81 1,961
C-15 500 250 2,500 299 92 1,471
C-16 500 5 12,500 500 5 4,740
C-17 500 10 12,500 499 9 4,698
C-18 500 83 12,500 486 70 4,668
C-19 500 125 12,500 473 98 4,490
C-20 500 250 12,500 386 143 3,850

Table 5: Characteristics of the class C graphs before and after reductions.

34

Graph Copt Csph ∆Csph Cbest Cavg Cworst Cσ ∆Cavg ∆Cworst Nga

C-1 85 85 0 85 85 85 0 0 0 0
C-2 144 144 0 144 144 144 0 0 0 0
C-3 754 754 0.40 754 754.2 755 0.4 0.03 0.13 2
C-4 1,079 1,081 0.19 1,079 1,079.1 1,080 0.3 0.01 0.09 1
C-5 1,579 1,579 0 1,579 1,579 1,579 0 0 0 0
C-6 55 55 0 55 55 55 0 0 0 0
C-7 102 102 0 102 102 102 0 0 0 0
C-8 509 512 0.59 509 509 509 0 0 0 0
C-9 707 714 0.99 707 707.4 708 0.5 0.06 0.14 4
C-10 1,093 1,098 0.46 1,093 1,093 1,093 0 0 0 0
C-11 32 32 0 32 32 32 0 0 0 0
C-12 46 46 0 46 46 46 0 0 0 0
C-13 258 263 1.94 258 259.7 260 0.6 0.66 0.78 9
C-14 323 327 1.24 323 323.4 324 0.5 0.12 0.31 4
C-15 556 558 0.36 556 556 556 0 0 0 0
C-16 11 11 0 11 11.7 12 0.5 6.36 9.09 7
C-17 18 18 0 18 18 18 0 0 0 0
C-18 113 121 7.08 113 114.3 115 0.8 1.15 1.77 8
C-19 146 155 6.16 146 147 148 0.4 0.68 1.37 9
C-20 267 267 0 267 267 267 0 0 0 0

Table 6: Comparison of solution quality for the graphs in class C.

35

Graph Tbc1 Tbc2 Tsph Tavg Tσ

C-1 27 25 61 79 6
C-2 812 45 61 79 3
C-3 543 25 72 104 19
C-4 510 23 75 83 10
C-5 474 5 61 63 0
C-6 49 561 83 130 11
C-7 83 522 86 153 24
C-8 674 1,106 260 263 39
C-9 1,866 5,813 966 425 93
C-10 246 32 544 181 49
C-11 333 2,769 119 187 20
C-12 120 1,175 119 224 19
C-13 9,170 9,895 646 544 91
C-14 212 1,150 1,316 547 130
C-15 211 913 1,544 262 56
C-16 10 877 119 180 22
C-17 98 14,557 119 203 26
C-18 45,848 20,276 873 563 102
C-19 117 1,689 3,050 601 136
C-20 15 225 11,374 334 57

Table 7: Comparison of CPU-time in seconds for the graphs in class C.

36

Problem size Reduced size
Graph n m | E | n m | E |

D-1 1,000 5 1,250 274 5 510
D-2 1,000 10 1,250 285 10 523
D-3 1,000 167 1,250 224 67 441
D-4 1,000 250 1,250 159 66 339
D-5 1,000 500 1,250 97 48 246
D-6 1,000 5 2,000 761 5 1,741
D-7 1,000 10 2,000 754 10 1,735
D-8 1,000 167 2,000 731 124 1,708
D-9 1,000 250 2,000 654 155 1,613
D-10 1,000 500 2,000 418 146 1,317
D-11 1,000 5 5,000 993 5 4,674
D-12 1,000 10 5,000 1,000 10 4,671
D-13 1,000 167 5,000 922 122 4,433
D-14 1,000 250 5,000 853 160 4,173
D-15 1,000 500 5,000 550 157 2,925
D-16 1,000 5 25,000 1,000 5 10,595
D-17 1,000 10 25,000 999 9 10,531
D-18 1,000 167 25,000 978 145 10,140
D-19 1,000 250 25,000 938 193 9,676
D-20 1,000 500 25,000 814 324 8,907

Tabel 8: Characteristics of the class D before and after reductions.

37

Graph Copt Csph ∆Csph Cbest Cavg Cworst Cσ ∆Cavg ∆Cworst Nga

D-1 106 106 0 106 106 106 0 0 0 0
D-2 220 220 0 220 220 220 0 0 0 0
D-3 1,565 1,570 0.32 1,565 1,565 1,565 0 0 0 0
D-4 1,935 1,940 0.26 1,935 1,935 1,080 0 0 0 0
D-5 3,250 3,254 0.12 3,250 3,250 3,250 0 0 0 0
D-6 67 71 5.97 67 67.1 68 0.3 0.15 1.49 1
D-7 103 103 0 103 103 103 0 0 0 0
D-8 1,072 1,095 2.15 1,072 1,072.7 1,074 0.6 0.07 0.19 6
D-9 1,448 1,471 1,59 1,448 1,448.4 1,450 0.7 0.03 0.14 3
D-10 2,110 2,120 0.47 2,110 2,110 2,110 0 0 0 0
D-11 29 29 0 29 29 29 0 0 0 0
D-12 42 42 0 42 42 42 0 0 0 0
D-13 500 514 2.80 500 500.6 502 0.7 0.12 0.40 5
D-14 667 675 1.20 668 669.7 671 0.9 0.40 0.60 10
D-15 1,116 1,121 0.45 1,116 1,116 1,116 0 0 0 0
D-16 13 13 0 13 13 13 0 0 0 0
D-17 23 23 0 23 23 23 0 0 0 0
D-18 223 239 7.17 226 227.7 230 1.2 2.11 3.14 10
D-19 310 335 8.06 312 313.3 315 0.9 1.06 1.61 10
D-20 537 539 0.37 537 537 537 0 0 0 0

Table 9: Comparison of solution quality for the graphs in class D.

38

Graph Tbc1 Tbc2 Tsph Tavg Tσ

D-1 476 200 486 523 8
D-2 284 148 488 537 13
D-3 2,290 106 785 650 39
D-4 3,529 41 689 554 21
D-5 811 37 522 504 8
D-6 2,340 4,148 687 788 44
D-7 100 1,037 681 795 29
D-8 6,985 17,858 13,237 2,101 381
D-9 4,630 16,458 29,354 2,744 624
D-10 1,312 1,678 14,780 1,100 169
D-11 1,374 24,609 949 1,070 59
D-12 305 5,843 961 1,085 20
D-13 1,864 91,718 15,187 2,357 245
D-14 3,538 61,335 41,237 2,601 393
D-15 1,410 16,889 24,828 1,302 102
D-16 871 9,721 956 1,047 21
D-17 6,965 147,598 950 1,068 26
D-18 245,192 227,841 31,015 2,536 491
D-19 878 304,380 50,003 3,441 580
D-20 47 1,276 50,010 2,638 658

Table 10: Comparison of CPU-time in seconds for the graphs in class D.

39

Problem size Reduced size
Graph n m | E | n m | E |

E-1 2,500 5 3,125 680 5 1,286
E-2 2,500 10 3,125 710 9 1,328
E-3 2,500 417 3,125 637 199 1,233
E-4 2,500 625 3,125 435 164 964
E-5 2,500 1,250 3,125 222 108 649
E-6 2,500 5 5,000 1,845 5 4,318
E-7 2,500 10 5,000 1,891 10 4,372
E-8 2,500 417 5,000 1,723 286 4,193
E-9 2,500 625 5,000 1,608 358 4,069
E-10 2,500 1,250 5,000 1,046 366 3,388
E-11 2,500 5 12,500 2,498 5 12,093
E-12 2,500 10 12,500 2,500 10 12,123
E-13 2,500 417 12,500 2,341 321 11,760
E-14 2,500 625 12,500 2,139 388 11,325
E-15 2,500 1,250 12,500 1,461 443 8,514
E-16 2,500 5 62,500 2,500 5 129,332
E-17 2,500 10 62,500 2,500 10 29,090
E-18 2,500 417 62,500 2,429 355 28,437
E-19 2,500 625 62,500 2,351 485 27,779
E-20 2,500 1,250 62,500 1,988 758 24,423

Table 11: Characteristics of the class E graphs before and after reductions.

40

Cost CPU-time(secs)
Graph Copt Csph ∆Csph Cga ∆Cga Tbc1 Tbc2 Tsph Tga

E-1 111 111 0 111 0 1,150 1,394 7,334 7,395
E-2 214 216 0.93 216 0.93 6,251 1,993 7,355 7,444
E-3 4,013 4,060 1.17 4,013 0 26,468 15,782 50,004 9,449
E-4 5,101 5,113 0.24 5,102 0.02 46,008 1,660 29,921 7,763
E-5 8,128 8,134 0.07 8,128 0 12,564 411 9,318 7,474
E-6 73 76 4.11 73 0 678 - 10,060 10,148
E-7 145 149 2.76 145 0 27,124 - 10,306 10,458
E-8 2,640 2,690 1.89 2,646 0.23 118,618 - 50,013 12,896
E-9 3,604 3,671 1.86 3,611 0.19 24,528 - 50,014 14,933
E-10 5,600 5,624 0.43 5,600 0 39,261 - 50,014 12,976
E-11 34 34 0 34 0 1,901 - 14,472 14,559
E-12 67 68 1.49 68 1.49 7,200 - 14,497 14,588
E-13 1,280 1,317 2.89 1,289 0.70 207,059 - 50,003 21,787
E-14 1,732 1,767 2.02 1,736 0.23 29,263 - 50,030 23,022
E-15 2,784 2,795 0.40 2,784 0 7,666 - 50,020 18,424
E-16 15 15 0 15 0 179 - 14,425 14,586
E-17 25 25 0 25 0 36,040 - 14,458 14,619
E-18 572 625 9.27 583 1.92 - - 50,017 29,105
E-19 758 802 5.80 766 1.06 16,372 - 50,037 27,319
E-20 1,342 1,357 1.12 1,342 0 272 - 50,055 25,107

Table 12: Comparison of solution quality and CPU-time for the graphs in class E.

41

References

[1] A. V. Aho, J. E. Hopcroft, J. D. Ullman,
Data Structures and Algorithms,
Addison-Wesley, Reading, Mass, 1983.

[2] Y. P. Aneja,
“An Integer Linear Programming Approach to the Steiner Problem in
Graphs,”
Networks, Vol. 10, pp. 167-178, 1980.

[3] J. E. Beasley,
“An SST-Based Algorithm for the Steiner Problem in Graphs,”
Networks, Vol. 19, pp. 1-16, l989.

[4] J. E. Beasley,
“OR-Library: distributing test problems by electronic mail,”
Journal of the Operational Research Society, Vol. 41, pp. 1069-1072,
1990.

[5] Sunil Chopra, Edgar R. Gorres, M. R. Rao,
“Solving the Steiner Tree Problem on a Graph Using Branch and Cut,”
Operations Research Society of America Journal of Computing, Vol. 4,
No. 3, pp. 320-335, 1992.

[6] R. Dionne, M. Florian,
“Exact and Approximate Algorithms for Optimal Network Design,”
Networks, Vol. 9, pp. 37-59, 1979.

[7] K. A. Dowsland,
“Hill-climbing simulated annealing and the Steiner problem in graphs,”
Eng. Opt., Vol. 17, pp. 91-107, 1991.

[8] S. E. Dreyfuss, R. A. Wagner,
“The Steiner problem in graphs,”
Networks, Vol. 1, pp. 195-207, 1971.

[9] C. W. Duin, A. Volgenant,
“Reduction Tests for the Steiner Problem in Graphs,”
Networks, Vol. 19, pp. 549-567, 1989.

42

[10] L. R. Foulds, V. J. Rayward-Smith,
“Steiner problems in graphs: algorithms and applications,”
Eng. Opt. Vol. 7, pp. 7-16, 1983.

[11] M. R. Garey, D. S. Johnson,
“The Rectilinear Steiner Tree Problem is NP-complete,”
SIAM Journal of Applied Mathematics, Vol. 32, No. 4, pp. 826-834, 1977.

[12] D. E. Goldberg,
Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, 1989.

[13] S. L. Hakami,
“Steiner’s problem in graphs and its implications,”
Networks, Vol. 1, pp. 113-133, 1971.

[14] M. Hanan,
“On Steiner’s Problem with Rectilinear Distance,”
SIAM Journal of Applied Mathematics, Vol. 14, No. 2, pp. 255-265, 1966.

[15] J. Hesser, R. Männer, O. Stucky,
“Optimization of Steiner Trees using Genetic Algorithms,”
Proceedings of the 3th International Conference on Genetic Algorithms,
pp. 231-236, 1989.

[16] John H. Holland,
Adaption in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, MI., 1975.

[17] Bryant A. Julstrom,
“A Genetic Algorithm for the Rectilinear Steiner Problem,”
Proceedings of the 5th international Conference on Genetic Algorithms,
pp. 474-480, 1993.

[18] A. Kapsalis, V. J. Rayward-Smith, G. D. Smith,
“Solving the Graphical Steiner Tree Problem Using Genetic Algo-
rithms,”
Journal of the Operational Research Society, Vol. 44, No. 4, pp. 397-406,
1993.

43

[19] R. M. Karp,
“Reducibility among Combinatorial Problems”
In R. E. Miller, J. W. Thatcher (Eds.), Complexity of Computer Com-
putations, Plenum Press, New York, pp. 85-103, 1972.

[20] L. Kou, G. Markowsky, L. Berman,
“A Fast Algorithm for Steiner Trees,”
Acta Informatica, Vol. 15, pp. 141-145, 1981.

[21] E. L. Lawler,
Combinatorial Optimization: Networks and Matroids,
Holt, Rinehart and Winston, New York, 1976.

[22] J. van Leeuwen,
“Graph Algorithms,”
in: J. van Leeuwen, ed., Handbook of Theoretical Computer Science, Vol.
A: Algorithms and Complexity, Elsevier, Amsterdam, 1990.

[23] A. Lucena, J. E. Beasley,
“A branch and cut algorithm for the Steiner problem in graphs,”
working paper, The Management School, Imperial College, England,
July 1992.

[24] J. Plesnik,
“A bound for the Steiner tree problem in graphs,”
Math. Slovaca, Vol. 31, pp. 155-163, 1981.

[25] V. J. Rayward-Smith, A. Clare,
“On finding Steiner vertices,”
Networks, Vol. 16, pp. 283-294, 1986.

[26] M. L. Shore, L. R. Foulds, P. B. Gibbons,
“An algorithm for the Steiner Problem in Graphs,”
Networks, Vol. 12, pp. 323-333, 1982.

[27] H. Takahashi, A. Matsuyama,
“An Approximate Solution for the Steiner Problem in Graphs”,
Mathematica Japonica, Vol. 24, No. 6, pp. 573-577, 1980.

[28] R. Venkateswaran, P. Mazumder,
“Routing Algorithms in Semiconductor Circuit Design,”

44

In preparation, 1993.

[29] Darrell Whitley,
“The Genitor Algorithm and Selection Pressure: Why Rank-Based Al-
location of Reproductive Trials is Best,”
Proceedings of the 3th International Conference on Genetic Algorithms,
pp. 116-121, 1989.

[30] Pawel Winter,
“Steiner Problem in Networks: A Survey,”
Networks, Vol. 17, pp. 129-167, 1987.

[31] Pawel Winter, J. MacGregor Smith,
“Path-Distance Heuristics for the Steiner Problem in Undirected Net-
works,”
Algorithmica, Vol. 7, pp. 309-327, 1992.

45

