
Models for Concurrency
(A revised version of DAIMI PB-429)

Glynn Winskel Mogens Nielsen
Computer Science Department, Aarhus University, Denmark

November 1993

Abstract

This is, we believe, the final version of a chaper for the Handbook of Logic
and the Foundations of Computer Science, vol.IV, Oxford University Press.
It surveys a range of models for parallel computertation to include inter-
leaving models like transition systems, synchronisation trees and languages
(often called Hoare traces in this context), and models like Petri nets, asyn-
chronous transition systems, event structures, promsets and Mazurkiewicz
traces where concurrency is represented more explicitly by a form of causal in-
dependence. The presentation is unifies by casting the models in an category-
theoretic framework. One aim is to use category theory to provide abstract
characterisations of constructions like parallel composition valid throughout
a range of different models and use adjunctions to provide formal means for
translating between different models. A knowledge of basic category theory
is assumed, up to an acquaintance with the notion of adjunction.

Contents

1 Introduction 4

2 Transition systems 11

2.1 A category of transition systems 11

2.2 Constructions on transition systems 15

2.2.1 Restriction . 15

2.2.2 Relabelling . 17

2.2.3 Product . 18

2.2.4 Parallel compositions 21

2.2.5 Sum . 23

2.2.6 Prefixing . 25

3 A process language 27

3.1 Operational semantics (version 1) 29

3.2 Operational semantics (version 2) 31

3.3 An example . 35

4 Synchronisation trees 37

5 Languages 42

6 Relating semantics 45

7 Trace languages 48

7.1 A category of trace languages 49

1

7.2 Constructions on trace languages 52

8 Event structures 55

8.1 A category of event structures 58

8.2 Domains of configurations . 60

8.3 Event structures and trace languages 62

8.3.1 A representation theorem 62

8.3.2 A coreflection . 70

8.3.3 A reflection . 74

9 Petri nets 80

9.1 A category of Petri nets . 84

9.2 Constructions on nets . 85

10 Asynchronous transition systems 91

10.1 Asynchronous transition systems and
trace languages . 94

10.2 Asynchronous transition systems and nets 97

10.2.1 An adjunction . 97

10.2.2 A coreflection . 107

10.3 Properties of conditions . 116

10.3.1 Connected conditions 117

10.3.2 Relational morphisms on nets 122

11 Semantics 129

11.1 Embeddings . 129

11.2 Labelled structures . 134

11.3 Operational semantics . 138

11.3.1 Transition systems with independence 138

11.3.2 Operational rules . 141

12 Relating models 149

13 Notes 154

2

A A basic category 161

B Fibred categories 162

C Operational semantics—proofs 167

C.1 Uniqueness for guarded recursions in T 168

C.2 Semantics in TI . 173

3

Chapter 1

Introduction

The purpose of this chapter is to provide a survey of the fundamental models
for distributed computations used and studied within theoretical computer
science. Such models have the nature of mathematical formalisms in which
to describe and reason about the behaviour of distributed computational
systems. Their purpose is to provide an understanding of systems and their
behaviour in theory, and to contribute to methods of design and analysis in
practice.

In the rich theory of sequential computational systems, several mathe-
matical models have been studied in depth, e.g. Turing machines, lambda
calculus, Post systems, Markov systems, random access machines, etc. A
main result of this theory is that the formalisms are all equivalent, in the
sense that their behaviours in terms of input-output functions are the same.

However, in reality, few computational systems are sequential. On all
levels, from a small chip to a world-wide network, computational behaviours
are often distributed, in the sense that they may be seen as spatially separated
activities accomplishing a joint task. Many such systems are not meant to
terminate, and hence it makes little sense to talk about their behaviours
in terms of traditional input-output functions. Rather, we are interested
in the behaviour of such systems in terms of the often complex patterns
of stimuli/response relationships varying over time. For this reason such
systems are often referred to as reactive systems.

In the study of reactive systems , we are forced to take a different, less
abstract, view of behaviours than the traditional one equating behaviour with
an input-output function. A notion of behaviour is needed which expresses

4

the patterns of actions which a system can perform, so as to capture such
aspects as deadlock, mutual exclusion, starvation, etc.

One may see such models as providing a foundation for the development of
all other theoretical and practical research areas on distributed computing.
To give some examples, the models are used to provide the semantics of
process description languages, and hence the basis of the many behavioural
equivalences studied in the literature on process calculi. They are used to
give the formal definition of specification logics, and hence underpin the work
on verification of systems with respect to such specifications. And given this,
they are at the heart of the development of automated tools for reasoning
about distributed systems.

Numerous models have been suggested and studied over the past 10-15
years. Here we shall not attempt to present a complete survey. Rather, we
have chosen to present in fair detail a few key models.

Common to all the models we consider, is that they rest on the central
idea of atomic actions, over which the behaviour of a system is defined. The
models differ mainly with respect to what behavioural features of systems
are represented. Some models are more abstract than others, and this fact is
often used in informal classifications of the models with respect to express-
ibility. One of our aims is to present principal representatives of models,
covering the landscape from the most abstract to the most concrete, and to
formalise the nature of their relationships by explicitly representing the steps
of abstraction that are involved in moving between them. In other words we
would like to set the scene for a formal classification of models.

Let us be more specific. Imagine a very simple distributed computational
system consisting of three individual components, each performing some inde-
pendent computations, involving one (Sender) occasionally sending messages
to another (Receiver) via the third (Medium):

Sender ←→ Medium ←→ Receiver

Imagine modelling the behaviour of this system in terms of some atomic
actions of the individual components, and the two actions of delivering a
message from Sender to Medium, and passing on a message from Medium to
Receiver. Obviously, having fixed such a set of atomic actions, we have also
fixed a particular physical level at which to model our system.

One main distinction in the classification of models is that between in-
terleaving and noninterleaving models. The main characteristic of an in-

5

terleaving model is that it abstracts away from the fact that our system
is actually composed of three independently computing agents, and models
the behaviour in terms of purely sequential patterns of actions. Formally,
the behaviour of our system will be expressed in terms of the nondeter-
ministic merging, or interleaving, of the sequential behaviours of the three
components. Prominent examples of such models are transition systems [42],
synchronisation trees [54], acceptance trees [35], and Hoare traces [33].

It is important to realise that in many situations abstraction like this is
exactly what is wanted, and it has been demonstrated in the references above
that many interesting and important properties of distributed systems may
be expressed and proved based on interleaving models. The whole point of
abstraction is, of course, to ignore aspects of the system which are irrelevant
for the features we would like to reason about.

However, there may be situations in which it is important to keep the in-
formation that our system is composed of the three independently computing
components, a possibility offered by the so-called noninterleaving models,
with Petri nets [2], event structures [97], and Mazurkiewicz traces [62] as
prime examples. One such situation is that where some behavioural prop-
erties (typically liveness properties) rest on the fact that each component
is a separate physical entity independently making its own computational
progress. Dealing with such properties in interleaving models is often hand-
led by a specific naming of the actions belonging to the components combined
with logical assertions expressing progress assumptions for the system under
study, i.e. handled outside the model in an ad hoc fashion.

Another issue is how models deal with the concept of nondeterminism in
computations, distinguishing between so-called linear-time and branching-
time models.

Imagine that in our system the component Medium is erroneous, in the
sense that delivering a message from the Sender may leave Medium in either
a normal state, having accepted the message and ready for another delivery
or a passing of a message to Receiver, or a faulty state insisting on another
delivery. A linear-time model will abstract away from this possibility of a
suspended behaviour of the process Medium (and hence from some possibil-
ities of deadlock). These models typically express the full nondeterministic
behaviour of a system in terms of its set of possible (determinate) “runs” (or
computation paths). Major examples of the structures used to model runs
are Hoare traces, Mazurkiewicz traces and Pratt’s pomsets.

6

As indicated, in many situations a more detailed representation of when
nondeterministic choices are made during a computation is necessary to re-
flect absence of deadlocks and other safety properties of systems. This is
possible to various degrees in branching time models like synchronisation
and acceptance trees, Petri nets, and event structures. Of course, the treat-
ment of nondeterminism is particularly important for the interleaving models,
where parallel activities are also expressed in terms of nondeterminism.

Finally, yet a third distinction is made between those models allowing
an explicit representation of the (possibly repeating) states in a system, and
models abstracting away from such information, which focus instead on the
behaviour in terms of patterns of occurrences of actions over time. Prime
examples of the first type are transition systems and Petri nets, and of the
second type, trees, event structures and traces.

Thus the seemingly confusing world of models for concurrency can be
structured according to a classification based on the expressiveness of the
various models. In following through this programme, category theory is a
convenient language for formalising the relationships between models.

To give an idea of the role categories play, let’s focus attention on transi-
tion systems as a model of parallel computation. A transition system consists
of a set of states with labelled transitions between them. Assume the tran-
sition system has a distinguished initial state so that it can be presented
by

(S, i, L,Tran)

where S is a set of states with initial state i, L is a set of labels and the tran-
sitions elements of Tran ⊆ S×L×S; a transition (s, a, s′) is generally written
as s

a→ s′. It then models a process whose transitions represent the process’s
atomic actions while the labels are action names; starting from the initial
state, it traces out a computation path as transitions occur consecutively.

Processes often arise in relationship to other processes. For example,
one process may refine another, or perhaps one process is a component of
another. The corresponding relationships between behaviours are often ex-
pressed as morphisms between transition systems. For several models, there
is some choice in how to define appropriate morphisms—it depends on the
extent of the relationship between processes we wish to express. But here,
we have an eye to languages like CCS, where communication is based on the
synchronisation of atomic actions. From this viewpoint, we get a useful class

7

of morphisms, sufficient to relate the behaviour of processes and their sub-
components, by taking a morphism from one transition system T to another
T ′ to be a pair (σ, λ), in which

• σ is a function from the states of T to those of T ′ that sends the initial
state of T to that of T ′,

• λ is a partial function from the labels of T to those of T ′ such that for

any transition s
a→ a′ of T if λ(a) is defined, then σ(s)

λ(a)→ σ(s′) is a
transition of T ′; otherwise, if λ(a) is undefined, then σ(s) = σ(s′).

Morphisms respect a choice of granularity for actions in the sense that an
action may only be sent to at most one action, and not to a computation
consisting of several actions. By taking λ to be a partial function on la-
bels, we in particular accommodate the fact that projecting from a parallel
composition of processes (e.g. in CCS) to a component may not only change
action names, but also allow some actions to vanish if they do not correspond
to those of the component, in which case their occurrence has no effect on
the state of the component.

This definition of morphism is sufficient to express the relationship be-
tween a constructed process and its components as morphisms, at least within
a language like CCS. But conversely the choice of morphisms also produces
constructions. This is because transition systems and their morphisms form
a category, and universal constructions (including limits and colimits) of a
category are determined uniquely to within isomorphism, once they exist. In
fact the universal constructions of the category of transition systems form the
basis of a process description language. It is a little richer than that of CCS
and CSP in the sense that their operations are straightforwardly definable
within it.

When we consider other models as categories the same universal con-
structions yield sensible interpretations of the process-language constructs.
Without categories this unity is lost; indeed, the denotations of parallel com-
positions, often nontrivial to define, have been invented in an ad hoc fashion
for most of the models we present.

Categorical notions also come into play in relating different models. An-
other model, synchronisation trees, arises by ignoring repetitive behaviour.
We can identify synchronisation trees with special transition systems (those
with no loops, no distinct transitions to the same state, in which all states

8

are reachable). Synchronisation trees inherit morphisms from transition sys-
tems, and themselves form a category. The inclusion of synchronisation trees
in transition systems is a functor. But more, the inclusion functor is part of
an adjunction; the inclusion functor (the left adjoint) is accompanied, in a
uniquely-determined way, by a functor (the right adjoint) unfolding transi-
tion systems to synchronisation trees. A further step of abstraction, this time
ignoring the branching of computation paths, takes us to languages as models
of processes. A process is represented by the set of strings of actions it can
perform. Languages can be identified with certain kinds of synchronisation
trees and again this inclusion is part of an adjunction.

Languages ↪→ Synchronisation ↪→ Transition
trees systems

As parts of adjunctions the functors enjoy preservation properties, which cou-
pled with the understanding of process operations as universal constructions,
are useful in relating different semantics.

Here we have discussed just the three simplest models, but the same gen-
eral approach applies to other models. The main idea is that each model will
be equipped with a notion of morphism, making it into a category in which
the operations of process calculi are universal constructions. The morphisms
will preserve behaviour, at the same time respecting a choice of granularity
of actions in the description of processes. One role of the morphisms is to
relate the behaviour of a construction on processes to that of its components.
As we shall see, it turns out that certain kinds of adjunctions (reflections and
coreflections1) provide a way to express that one model is embedded in (is
more abstract than) another, even when the two models are expressed in very
different mathematical terms. One adjoint will say how to embed the more
abstract model in the other, the other will abstract away from some aspect
of the representation, in the same manner as has been described above. The
adjunctions not only provide an aid in the understanding of the different
models and their relationships, but are also a vehicle for the transfer of tech-
niques from one model to another. In this chapter we concentrate on the
role of models in giving a formal semantics to process description languages.
The understanding of their operations as universal constructions guides us
away from ad hoc definitions. And importantly, we can use the preservation

1A reflection is an adjunction in which the right adjoint is full and faithful, a coreflection
one where the left adjoint is full and faithful.

9

properties of adjoints to show how a semantics in one model translates to a
semantics in another.

In summary, our goal is to survey a few, fundamental models for concur-
rency, and exploit category theory as a language for describing their structure
and their relationships.2

2A knowledge of basic category theory, up to an acquaintance with the notion of adjunc-
tion, is sufficient for the whole chapter. However a light aquaintance, and some goodwill,
should suffice, at least for the earlier parts. Good introductory references are [69] and [4],
while [50] remains the classic text.

10

Chapter 2

Transition systems

Transition systems are a commonly used and understood model of computa-
tion. They provide the basic operational semantics for Milner’s Calculus of
Communicating Systems (CCS) and often underlie other approaches, such as
that of Hoare’s Communicating Sequential Processes (CSP). The construc-
tions on transition systems used in such methods can frequently be seen as
universal in a category of transition systems, where the morphisms can be
understood as expressing the partial simulation (or refinement) of one process
by another. By “abstract nonsense” the universal properties will characterise
the constructions to within isomorphism. More strikingly, the same univer-
sal properties will apply in the case of other models like Petri nets or event
structures, which are seemingly very different in nature.

2.1 A category of transition systems

Transition systems consist of a set of states, with an initial state, together
with transitions between states which are labelled to specify the kind of
events they represent.

Definition: A transition system is a structure

(S, i, L,Tran)

where

• S is a set of states with initial state i,

11

• L is a set of labels, and

• Tran ⊆ S × L× S is the transition relation.

This definition narrows attention to transition systems, which are exten-
sional no two distinct transitions with the same label have the same pre and
post states.

Notation: Let (S, i, L,Tran) be a transition system. We write

as −→ s′

to indicate that (s, a, s′) ∈ Tran. This notation lends itself to the familiar
graphical notation for transition systems. For example,

represents a transition system which at the initial state i (encircled to dis-
tinguish it) can perform either an a or a b transition to enter the state s at
which it can repeatedly perform a c transition or a b transition to enter state
u.

We occasionally write

as �−→

to mean there is no transition (s, a, s′). It is sometimes convenient to extend
the arc-notation to strings of labels and write

vs −→ s′

12

when v = a1a2 · · · an is a, possibly empty, string of labels in L, to mean

a1s −→ s1
a2−→ · · · an−→ sn

for some states s1, . . . , sn. A state s is said to be reuchable when vi −→ s
for some string v.

Definition: Say a transition system T = (S, i, L,Tran) is reachable iff ev-
ery state in S is reachable from i and for every label a there is a transition

(s, a, s′) ∈ Tran. Say T is acyclic iff, for all strings of labels v, if vs −→ s
then v is empty.

It is convenient to introduce idle transitions, associated with any state.
This has to do with our representation of partial functions, explained in Ap-
pendix A. We view a partial function from a set L to a set L′ as a (total)
function λ : L → L ∪ {∗}, where ∗ is a distinguished element standing for
“undefined”. This representation is reflected in our notation λ : L →∗ L′ for
a partial function λ from L to L′. It assumes that ∗ does not appear in the
sets L and L′, and more generally we shall assume that the reserved element
∗ does not appear in any of the sets appearing in our constructions.

Definition: Let T = (S, i, L,Tran) be a transition system. An idle transi-
tion of T typically consists of (s, ∗, s), where s ∈ S. Define

Tran∗ = Tran ∪ {(s, ∗, s) | s ∈ S}.

Idle transitions help simplify the definition of morphisms between transi-
tion systems. Morphisms on transitions systems have already been discussed
in the Introduction. There, a morphism T → T ′ between transition systems
was presented as consisting of a pair, one component σ being a function on
states, preserving initial states, and the other a partial function λ on labels
with the property that together they send a transition of T to a transition
of T ′, whenever this makes sense. More precisely, if (s, a, s′) is a transition
of T then (σ(s), λ(a), σ(s′)) is a transition of T ′ provided λ(a) is defined;
otherwise, in the case where λ(a) is undefined, it is insisted that the two
states σ(s) and σ(s′) are equal. With the device of idle transitions and the
particular representation of partial functions, the same effect is achieved with
the following definition:

Definition: Let

13

T0 = (S0, i0, L0,Tran0) and
T1 = (S1, i1, L1,Tran1)

be transition systems. A morphism f : T0 → T1 is a pair f = (σ, λ) where

• σ : S0 → S1

• λ : L0 →∗ L1 are such that σ(i0) = i1 and

(s, a, s′) ∈ Tran0 ⇒ (σ(s), λ(a), σ(s′)) ∈ Tran1∗

The intention behind the definition of morphism is that the effect of a transi-
tion with label a in T0 leads to inaction in T1 precisely when λ(a) is undefined.
In our definition of morphism, idle transitions represent this inaction, so we
avoid the fuss of considering whether or not λ(a) is defined. With the intro-
duction of idle transitions, morphisms on transition systems can be described
as preserving transitions and the initial state. It is stressed that an idle tran-
sition (s, ∗, s) represents inaction, and is to be distinguished from the action
expressed by a transition (s, a, s′) for a label a.

Morphisms preserve initial states and transitions and so clearly preserve
reachable states:

Proposition 1 Let (σ, λ) : T0 → T1 be a morphism of transition systems.
Then if s is a reachable state of T0 then σ(S) is a reachable state of T1.

Transition systems and their morphisms form a category which will be
the first important category in our study:

Proposition 2 Taking

• the class of objects to be transition systems,

• the class of morphisms to be those of transition systems,

defines a category, where

• the composition of two morphisms f = (σ, λ) : T0 → T1 and g =
(σ′, λ′) : T1 → T2 is g ◦ f = (σ′ ◦ σ, λ′ ◦ λ) : T0 → T2—here composition
on the left of a pair is that of total functions while that on the right is
of partial functions, and

14

• the identity morphism for a transition system T has the form (1S, 1L),
where 1S is the identity function on states S and 1L is the identity
function on the labelling set L of T .

Proof: It is easily checked that composition is associative and has the iden-
tities claimed. ✷

Definition: Denote by T the category of labelled transition systems given
by the last proposition.

2.2 Constructions on transition systems

Transition systems are used in many areas. We focus on their use in mod-
elling process calculi. The constructions used there can be understood as
universal constructions in the category of transition systems. The point is
not to explain the familiar in terms of the unfamiliar, but rather to find char-
acterisations of sufficient generality that they apply to the other models as
well. As we will see, the category of transition systems is rich in categorical
constructions which furnish the basic combinators for a language of parallel
processes.

2.2.1 Restriction

Restriction is an important operation on processes. For example, in Milner’s
CCS, labels are used to distinguish between input and output to channels,
connected to processes at ports, and internal events. The effect of hiding
all but a specified set of ports of a process, so that communication can no
longer take place at the hidden ports, is to restrict the original behaviour of
the process to transitions which do not occur at the hidden ports. Given a
transition system and a subset of its labelling set, the operation of restriction
removes all transitions whose labels are not in that set:

Definition: Let T ′ = (S, i, L′,Tran ′) be a transition system. Assume L ⊆ L′

and let λ : L ↪→ L′ be the associated inclusion morphism, taking a in L to a
in L′. Define the restriction T ′ � λ to be the transition system (S, i, L,Tran)

15

with

Tran = {(s, a, t) ∈ Tran ′ | a ∈ L}.

Restriction is a construction which depends on labelling sets and functions
between them. Seeing it as a categorical construction involves dealing explic-
itly with functions on labelling sets and borrowing a fundamental idea from
fibred category theory. We observe that there is a functor p : T → Set∗,
to the category of sets with partial functions, which sends a morphism of
transition systems (σ, λ) : T → T ′ between transition systems T over L and
T ′ over L′ to the partial function λ : L →∗ L′. Associated with a restriction
T ′ � L is a morphism f : T ′ � L → T ′, given by f = (1S, λ) where λ is the
inclusion map λ : L → L′. In fact the morphism f is essentially an “inclu-
sion” of the restricted into the original transition system. The morphism f
associated with the restriction has the universal property that:

For any g : T → T ′ a morphism in T such that p(g) = λ there
is a unique morphism h : T → T ′ � L such that p(h) = 1L and
f ◦ h = g. In a diagram:

This says that the “inclusion” morphisms associated with restrictions are
cartesian; the morphism f is said to be a cartesian lifting of λ with respect
to T ′. In fact, they are strong Cartesian—see Appendix B.

Proposition 3 Let λ : L →∗ L′ be an inclusion. Let T ′ be a labelled transi-
tion system, with states S. There is a morphism f : T ′ � L → T ′, given by
f = (1S, λ). It is (strong) Cartesian.

Because an inclusion λ : L ↪→ L′ has Cartesian liftings for any T ′ with
labelling set L′, restriction automatically extends to a functor from transi-
tion systems with labelling set L′ to those with labelling set L. To state this

16

more fully, note first that a labelling set L is associated with a subcategory of
transition systems p−1(L), called the fibre over L, consisting of objects those
transition systems T for which p(T) = L (i.e. whose labelling set is L) and
morphisms h for which p(h) = 1L (i.e. which preserve labels). An explicit
choice of Cartesian lifting for each T ′ in p−1(L′) (as is provided by the re-
striction operation) yields a functor between fibres p−1(L′) → p−1(L)— the
functor’s action on morphisms coming from the universal property of Carte-
sian liftings.

Remark: In fact there are (strong) Cartesian liftings for any λ : L →∗ L′

and any T ′ with labelling set L′, and the functor p : T→ Set∗ is a fibration.

2.2.2 Relabelling

In CCS, one can make copies of a process by renaming its port names. This
is associated with the operation of relabelling the transitions in the transition
system representing its behaviour. When λ : L →∗ L′ is total, the relabelling
construction takes a transition system T with labelling set L to T{λ}, the
same underlying transition system but relabelled according to λ.

Definition: Let T = (S, i, L,Tran) be a transition system. Let λ : L → L′

be a total function. Define the relabelling T{λ} to be the transition system
(S, i, L′,Tran ′) where

Tran ′ = {(s, λ(a), s′) | (s, a, s′) ∈ Tran}.

The operation of relabelling is associated with a construction dual to
that of Cartesian lifting, that of forming a cocartesian lifting. Letting the
transition system T have states S, there is a morphism f = (1S, λ) : T →
T{λ}. Such a morphism is a cocartesian lifting of λ in the sense that:

For any g : T → T ′ a morphism in T such that p(g) = λ there
is a unique morphism h : T{λ} → T ′ such that p(h) = 1L′ and
h ◦ f = g. In a diagram:

17

Proposition 4 Let λ : L → L′ be a total function. Let T be a labelled
transition system, with states S. There is a morphism f : T → T{λ}, given
by f = (1S, λ) which is (strong) cocartesian—see Appendix B.

Relabelling extends to a functor p−1(L) → p−1(L′), where λ : L → L′ is
a total function.

Remark: The relabelling construction can also be defined more generally
when λ is partial. In fact there are (strong) cocartesian liftings for any
λ : L →∗ L′ and any T with labelling set L, and the functor p : T→ Set∗ is
a cofibration. Being a fibration too, this makes p a bifibration.

2.2.3 Product

Parallel compositions are central operations in process calculi; they set pro-
cesses in communication with each other. Communication is via actions of
mutual synchronisation, possibly with the exchange of values. Precisely how
actions synchronise with each other varies enormously from one language
to another, but for example in CCS and Occam processes are imagined to
communicate over channels linking their ports. In these languages, an input
action to a channel from one process can combine with an output action
to the same channel from the other to form an action of synchronisation.
The languages also allow for processes in a parallel composition to reserve
the possibility of communicating with a, yet undetermined, process in the
environment of both.

Parallel compositions in general can be derived, with restriction and rela-
belling, from a product operation on transition systems. In itself the product
operation is a special kind of parallel composition in which all conceivable
synchronisations are allowed.

18

Definition: Assume transition systems T0 = (S0, i0, L0,Tran0) and T1 =
(S1, i1, L1,Tran1). Their product T0 × T1 is (S, i, L,Tran) where

• S = S0 × S1, with i = (i0, i1), and projections ρ0 : S0 × S1 → S0, ρ1 :
S0 × S1 → S1

• L = L0 ×∗ L1 =
{(a, ∗) | a ∈ L0} ∪ {(∗, b) | b ∈ L1} ∪ {(a, b) | a ∈ L0, b ∈ L1}, with
projections π0, π1 and

• (s, a, s′) ∈ Tran∗ ⇔
(ρ0(s), π0(a), ρ0(s

′)) ∈ Tran0∗ & (ρ1(s), π1(a), ρ1(s
′)) ∈ Tran1∗

Define Π0 = (ρ0, π0) and Π1 = (ρ1, π1).

Example: Let T0 and T1 be the following transition systems

where T0 has {a} and T1 has {b} as labelling set. The product of these
labelling sets is

{a} ×∗ {b} = {(a, ∗), (a, b), (∗, b)}

with projections λ0 onto the first coordinate and λ1 onto the second. Thus
λ0(a, ∗) = λ0(a, b) = a and λ0(∗, b) = ∗. Their product takes the form:

Intuitively, transitions with labels of the form (a, b) represent synchronisa-
tions between two processes set in parallel, while those labelled (a, ∗) or (∗, b)

19

involve only one process, performing the transition unsynchronised with the
other. Clearly, this is far too “generous” a parallel composition to be useful
as it stands, allowing as it does all possible synchronisations and absences of
synchronisations between two processes. However, a wide range of familiar
and useful parallel compositions can be obtained from the product operation
by further applications of restriction (to remove unwanted synchronisations)
and relabelling (to rename the results of synchronisations).

The product of transition systems T0, T1 has projection morphisms Π0 =
(ρ0, π0) : T0 × T1 → T0 and Π1 = (ρ1, π1) : T0 × T1 → T1. They together sat-
isfy the universal property required of a product in a category; viz. given any
morphisms f0 : T → T0 and f1 : T → T1 from a transition system T there is
a unique morphism h : T → T0×T1 such that Π0◦h = f0 and Π−1◦h = f1:

Proposition 5 Let T0 and T1 be transition systems. The construction T0×T1

above, with projections Π0 = (ρ0, π0), Π1 = (ρ1, π1), is a product in the cat-
egory T. A state s is reachable in T0 × T1 iff ρ0(s) is reachable in T0 and
ρ1(s) is reachable in T1.

Although we have only considered binary products, all products exist in
the category of transition systems. In particular, the empty product is the
nil transition system

nil = ({i}, i, ∅, ∅),

consisting of a single initial state i. In this special case the universal property
for products amounts to:

for any transition system T , there is a unique morphism h : T →
nil ,

that is, nil is a terminal object in the category of transition systems. The
transition system nil is also an initial object in the category of transition
systems:

20

for any transition system T , there is a unique morphism h : nil →
T .

We remark that the product-machine contruction from automata theory
arises as a fibre product, viz. a product in a fibre. Recall a fibre p−1(L) is
a category which consists of the subcategory of transition systems with a
common labelling set L, in which the morphisms preserve labels.

2.2.4 Parallel compositions

In the present framework, we do not obtain arbitrary parallel compositions
as single universal constructions. Generally, they can be obtained from the
product by restriction and relabelling; a parallel composition of T0 and T1,
with labelling sets L0, L1 respectively, is got by first taking their product, to
give a transition system T0 × T1 with labelling set L0 ×∗ L1, then restricting
by taking (T0×T1) � S for an inclusion S ⊆ L0×∗L1, followed by a relabelling
((T0 × T1) � S){r} with respect to a total function r : S → L. In this way,
using a combination of product, restriction and relabelling we can represent
all conceivable parallel compositions which occur by synchronisation.

In general parallel compositions are derived using a combination of prod-
uct, restriction and relabelling. We can present the range of associative,
commutative parallel compositions based on synchronisation in a uniform
way by using synchronisation algebras. A synchronisation algebra on a set
L of labels (not containing the distinct elements ∗, 0) consists of a binary,
commutative, associative operation • on L ∪ {∗, 0} such that

a • 0 = 0 and (a0 • a1 = ∗ ⇔ a0 = a1 = ∗)
for all a, a0, a1 ∈ L∪{∗, 0}. The role of 0 is to specify those synchronisations
which are not allowed whereas the composition • specifies a relabelling. (It
may be helpful to look at the example ahead of the synchronisation algebra
of CCS.) For a synchronisation algebra on labels L, let λ0, λ1 : L×∗ L →∗ L
be the projections on its product in Set∗. The parallel composition of two
transition systems T0, T1, labelled over L, can be obtained as ((T0 × T1) �
D){r} where D ⊆ L×∗ L is the inclusion of

D = {a ∈ L×∗ L | λ0(a) • λ1(a) �= 0}
determined by the 0-element, and r : D → L is the relabelling, given by

r(a) = λ0(a) • λ1(a)

21

for a ∈ D.

We present two synchronisation algebras as examples, in the form of
tables—more, including those for value-passing, can be found in [92, 94].

Example: The synchronisation algebra for pure CCS: In CCS [55] events
are labelled by a, b, · · · or by their complementary labels ā, b̄, · · · or by the
label τ . The idea is that only two events bearing complementary labels may
synchronise to form a synchronisation event labelled by τ . Events labelled
by τ cannot synchronise further; in this sense they are invisible to processes
in the environment, though their occurrence may lead to internal changes
of state. All labelled events may occur asynchronously. Hence the synchro-
nisation algebra for CCS takes the following form. The resultant parallel
composition, of processes p and q say, is represented as p | q in CCS.

• ∗ a ā b b̄ · · · τ 0
∗ ∗ a ā b b̄ · · · τ 0
a a 0 τ 0 0 · · · 0 0
ā ā τ 0 0 0 · · · 0 0
b b 0 0 0 τ · · · 0 0
· · · · · · · · · · ·

Example: The synchronisation algebra in TCSP: In “theoretical” CSP—
see [34, 15]—events are labelled by a, b, · · · or τ . For one of its parallel
composition (usually written ‖) events must “synchronise on” a, b, · · · . In
other words non–τ–labelled events cannot occur asynchronously. Rather, an
a–labelled event in one component of a parallel composition must synchronise
with an a–labelled event from the other component in order to occur; the two
events must synchronise to form a synchronisation event again labelled by a.
The synchronisation algebra for this parallel composition takes the following
form.

• ∗ a b · · · τ 0
∗ ∗ 0 0 · · · τ 0
a 0 a 0 · · · 0 0
b 0 0 b · · · 0 0
· · · · · · · · ·

22

2.2.5 Sum

Nondeterministic sums in process calculi allow a process to be defined with
the capabilities of two or more processes, so that the process can behave like
one of several alternative processes. Which alternative can depend on what
communications the environment offers, and in many cases, nondeterminis-
tic sum plays an important role like that of the conditional of traditional
sequential languages.

With the aim of understanding nondeterministic sums as universal con-
structions we examine coproducts in the category of transition systems.

Definition: Let T0 = (S0, i0, L0,Tran0) and T1 = (S1, i1, L1,Tran1) be tran-
sition systems. Define T0 + T1 to be (S, i, L,Tran) where

• S = (S0 × {i1}) ∪ ({i0} × S1) with i = (i0, i1), and injections in0, in1,

• L = L0 � L1, their disjoint union, with injections j0, j1,

• transitions

t ∈ Tran ⇔ ∃(s, a, s′) ∈ Tran0. t = (in0(s), j0(a), in0(s
′)) or

∃(s, a, s′) ∈ Tran1. t = (in1(s), j1(a), in1(s
′)).

The construction T0+T1 on transition systems T0, T1 has injection morphisms
I0 = (in0, j0) : T0 → T0 +T1 and I1 = (in1, j1) : T1 → T0 +T1. They together
satisfy the universal property required of a coproduct in a category; viz. given
any morphisms f0 : T0 → T and f1 : T1 → T to a transition system T there
is a unique morphism h : T0 + T1 → T such that h ◦ I0 = f0 and h ◦ I1 = f1:

Proposition 6 Let T0 and T1 be transition systems. Then T0 + T1, with
injections (in0, j0), (in1, j1), is a coproduct in the category of transataon sys-
tems.
A state s is reachable in a coproduct if there is s0 reachable in T0 with
s = in0(s0) or there is s1 reachable in T1 with s = in1(s1).

23

The coproduct is not quite of the kind used in modelling the sum of CCS
for example, because in the coproduct labels are made disjoint. We look to
coproducts in a fibre.

For a labelling set L, each fibre p−1(L) has coproducts. Recall p−1(L)
is that subcategory of T consisting of transition systems over a common la-
belling set L with morphisms those which project to the identity on L. In
form fibre coproducts are very similar to coproducts of transition systems in
general—they differ only in the labelling part.

Definition: Let T0 = (S0, i0, L,Tran0) and T1 = (S1, i1, L,Tran1) be transi-
tion systems over the same labelling set L. Define T0 +L T1 = (S, i, L,Tran)
(note it is over the same labelling set) where:
S = (S0 × {i1}) ∪ ({i0} × S1) with i = (i0, i1), and injections in0, in1, and

t ∈ Tran ⇔ ∃(s, a, s′) ∈ Tran0. t = (in0(s), a, in0(s
′)) or

∃(s, a, s′) ∈ Tran1. t = (in1(s), a, in1(s
′)).

Proposition 7 Let T0 and T1 be transition systems over L. The transition
system T0 +L T1 with injections (in0, 1L) and (in1, 1L), as defined above, is
a coproduct in the subcategory of transition systems consisting of the fibre
p−1(L).

Neither the coproduct or fibre coproduct of transition systems quite
match the kind of sums used in modelling processes, for example, in CCS.
The coproduct changes the labels, tagging them so they are disjoint, while
the fibre coproduct, seemingly more appropriate because it leaves the labels
unchanged, assumes that the transition systems have the same labelling set.
A more traditional sum is the following:

Definition: Let T0 and T1 be transition systems over L0 and L1 respec-
tively. Define their sum T0 ⊕ T1 to be (S, i, L0 ∪ L1,Tran) where S =
(S0 × {i1}) ∪ ({i0} × S1) with i = (i0, i1), and injections in0, in1 and

t ∈ Tran ⇔ ∃(s, a, s′) ∈ Tran0. t = (in0(s), a, in0(s
′)) or

∃(s, a, s′) ∈ Tran1. t = (in1(s), a, in1(s
′)).

This sum can be understood as a fibre coproduct, but where first we form
cocartesian liftings of the inclusion maps into the union of the labelling sets;

24

this simply has the effect of enlarging the labelling sets to a common labelling
set, their union, where we can form the fibre coproduct:

Proposition 8 Let T0 and T1 be transition systems over L0 and L1 re-
spectively. Let jk : Lk ↪→ L0 ∪ L1 be the inclusion maps, for k = 0, 1. Then

T0 ⊕ T1
∼= T0{j0}+(L0∪L1) T1{j1}.

Only coproducts of two transition systems have been considered. All co-
products exist in fibres and in the category of all transition systems. Thus
there are indexed sums of transition systems of the kind used in CCS. The
sum construction on transition systems is of the form required for CCS when
the transition systems are “nonrestarting”, i.e. have no transitions back to
the initial state. In giving and relating semantics we shall be mindful of this
fact.

Example: The fibred coproduct T0 +L T1 of

both assumed to have the labelling set L = {a, b}, takes the form:

The sum can behave like T0 but then on returning to the initial state behave
like T1.

2.2.6 Prefixing

The categorical constructions form a basis for languages of parallel processes
with constructs like parallel compositions and nondeterministic sums. The
Cartesian and cocartesian liftings give rise to restriction and relabelling op-
erations as special cases, but the more general constructions, arising for mor-
phisms in the base category which are truly partial, might also be useful

25

constructions to introduce into a programming language. This raises an
omission from our collection of constructions; we have not yet mentioned an
operation which introduces new transitions from scratch. Traditionally, in
languages like CCS, CSP and Occam this is done with some form of prefix-
ing operation, the effect of which is to produce a new process which behaves
like a given process once a specified, initial action has taken place. Given
a transition system, the operation of prefixing a(−) introduces a transition,
with label a, from a new initial state to the former initial state in a copy
of the transition system. One way to define prefixing on transition systems
concretely is by:

Definition: Let a be a label (not ∗). Define the prefix aT = (S ′, i′, L′,Tran ′)
where

S ′ = {{s} | s ∈ S} ∪ {∅},
i′ = ∅,
L′ = L ∪ {a},
Tran ′ = {({s}, b, {s′}) | (s, b, s′) ∈ Tran} ∪ {(∅, a, {i})}

Because we do not ensure that the prefixing label is distinct from the
former labels, prefixing does not extend to a functor on all morphisms of
transition systems. However, it extends to a functor on the subcategory of
label-preserving morphisms, i.e. those morphisms (σ, λ) : T → T ′ between
transition systems for which λ : L ↪→ L′ is an inclusion function. As a
special case, prefixing a(−) extends to a functor between fibres p−1(L) →
p−1(L ∪ {a}).

26

Chapter 3

A process language

A process language Proc and its semantics can be built around the construc-
tions on the category of transition systems. Indeed the process language can
be interpreted in all the models we consider. Its syntax is given by

t ::= nil | at | t0 ⊕ t1 | t0 × t1 | t � Λ | t{Ξ} | x | rec x.t

where a is a label, Λ is a subset of labels and Ξ is a total function from
labels to labels. We have seen how to interpret most of these constructions
in transition systems, which in particular will yield a labelling set for each
term. It is convenient to broaden the understanding of a restriction t � Λ so
it means the same as t � Λ∩L in the situation where the labelling set L does
not include Λ. The denotation of t{Ξ} is obtained from the cocartesian lifting
with respect to t of the function Ξ : L → ΞL, so that t with labelling set L is
relabelled by Ξ cut down to domain L. The new construction is the recursive
construction of the form rec x.t, involving x a variable over processes. It
smooths the presentation that we insist that in a recursive definition rec x.t
the occurences of x in t are guarded in the sense that all occurrences of x in
t lie within a prefix term.

The presence of process variables means that the denotation of a term as a
transition system is given with respect to an environment ρ mapping process
variables to transition systems. We can proceed routinely, by induction on
the structure of terms, to give an interpretation of syntactic operations by
those operations on transition systems we have introduced, for example we
set

27

T[[nil]]ρ = nil , for a choice of initial transition systems
T[[t0 ⊕ t1]]ρ = T[[t0]]ρ ⊕ T[[t1]]ρ, the nondeterministic sum of section 2.2.5

But how are we to interpret T[[rec x.t]]ρ, for an environment ρ, assuming we
have an interpretation T[[t]]ρ′ for any environment ρ′?

There are several techniques in use for giving meaning to recursively de-
fined processes and in this section we will discuss two. One approach is to use
ω-colimits with respect to some suitable subclass of morphisms in the cate-
gory of transition systems and use the fact that the operations of the process
language can be represented by functors which are continuous in the sense of
preserving ω-colimits. For example, all the operations needed to model Proc
are continuous functors on the subcategory of transition systems with label-
preserving monomorphisms—this subcategory has all ω-colimits. However
we can work more concretely and choose monomorphisms which are inclu-
sions. In this instance the general method then becomes a mild generalisation
of that of fixed points of continuous functions on a complete partial order.
The method is based on the observation that transition systems almost form
a complete partial order under the relation

(S, i, L, tran) ✂ (S ′, i′, L′, tran ′) iff S ⊆ S ′ & i = i & L ⊆ L′ & tran ⊆ tran ′

associated with the existence of a morphism from one transition system to
another based on inclusion of states and labelling sets. Objects of the cate-
gory of transition systems do not form a set, but they do have least upper
bounds of ω-chains

T0 ✂ T1 ✂ · · ·✂ Tn ✂ · · ·

of transition systems Tn = (Sn, in, Ln, trann), for n ∈ ω; the least upper
bound

⋃
n∈ω Tn is given simply by⋃

n∈ω

Tn = (
⋃
n∈ω

Sn, in,
⋃
n∈ω

Ln,
⋃
n∈ω

trann).

There is no unique least element, but rather a class of minimal transition
systems ({i}, i, ∅ ∅) for a choice of initial state i. However this is no obstacle
to a treatment of guarded recursions based on the order ✂.

First observe that each operation, prefixing, sum, product, restriction
and relabelling has been defined concretely, and in fact each operation is

28

continuous with respect to ✂. It follows that for an term t, and process
variable x, that the operation F , given by

F (T) = T[[t]]ρ[T/x],

on transition systems is continuous. Moreover, if x is guarded in t, then for
any choice of transition system T , the initial state of F (T) is the same, i say.
Consequently, writing I = ({i}, i, ∅ ∅) we have

I ✂ F (I)

and inductively, by monotonicity:

I ✂ F (I) ✂ F 2(I) ✂ · · ·✂ F n(I) ✂ · · ·
Write fix (F) =def

⋃
n∈ω F n(I). By the continuity of F we see that fix (F)

is the ✂-least fixed point of F . In fact because F is defined from a term in
which x is guarded, we can show a uniqueness property of its fixed points:

Definition: For T = (S, i, L, tran) a transition system, define R(T) to be
the transition system (S ′, i, L′,Tran ′) consisting of states S ′ reachable from
i, with initial state i, and transitions Tran ′ = Tran ∩ (S ′ × L × S ′) with
labelling set L′ consisting of those labels appearing in Tran ′.

Lemma 9 If T is a transition system for which T ∼= R(F (T)), a label-
preserving isomorphism, then T ∼= R(fix (F)), a label-preserving isomor-
phism.

Proof: The proof of this fact depends on several subsidiary definitions and
results which we place in Appendix C. ✷

We can now complete our denotational semantics, the denotation
T[[rec x.t]]ρ being taken to be fix (F) where F (T) = T[[t]]ρ[T/x].

3.1 Operational semantics (version 1)

Alternatively, we can give a structural operational semantics to our language
on standard lines. In doing so it is useful to introduce a little notation
concerning the combination of labels. For labels a, b define

a× b =

{
∗ if a = b = ∗,
(a, b) otherwise

29

This notation along with the use of idle transitions gives a single compact
rule for product. The transitions between states, identified with closed terms,
are given by the following rules:

at
a→ t t

∗→ t

t0
a→ t′0

t0 ⊕ t1
a→ t′0

a �= ∗ t1
a→ t′1

t0 ⊕ t1
a→ t′1

a �= ∗

t0
a→ t′0 t1

b→ t′1

t0 × t1
a×b→ t0 × t′1

t
a→ t′

t � Λ
a→ t � Λ

a ∈ Λ
t

a→ t′

t{Ξ} Ξ(a)→ t′{Ξ}

t[rec x.t/x]
a→ t′

rec x.t
a→ t′

a �= ∗

A closed term t determines a transition system with initial state t consisting
of all states and transitions which are reachable from t.

Unfortunately the relationship between the transition systems obtained
denotationally and operationally is a little obscure. There are several mis-
matches. One is that the categorical sum makes states of the two components
of a sum disjoint, a property which cannot be shared by the transition system
of the operational semantics, essentially because of incidental identifications
of syntax. Furthermore, the transition system for recursive processes can lead
to transition systems with transitions back to the initial state. As we have
seen this causes a further mismatch between the denotational and operational
treatment of sums. Indeed the denotational treatment of recursive processes
will lead to acyclic transition systems, which are generally not obtained with
the present operational semantics. Less problematic is the fact that from
the very way it is defined the transition systems obtained operationally must
consist only of reachable states and transitions. This property is not pre-
served by the categorical operation of restriction used in the denotational
semantics.

30

Of course, if we use a coarser relation of equivalence than isomorphism
then the two semantics can be related. In the next section, it will be shown
that, given any term, there is a strong bisimulation (in the sense of [55])
between the reachable states of the transition system obtained denotationally
and those got from the operational semantics.

3.2 Operational semantics (version 2)

The denotational and operational approaches can be reconciled in a simple
way. The idea is to modify the operational semantics, to introduce new copies
of states where they are required by the denotational semantics. New copies
of states are got by tagging terms by 0, 1, or 2. States for the operational
semantics are built from closed terms from the syntax extended to include
the clauses

t ::= · · · | (0, t) | (1, t) | (2, t).

We call such terms tagged terms—note they include the ordinary terms.

The modified operational semantics for tagged terms is given by these
rules:

31

t
a→ t′

(n, t)
a→ (n, t′)

at
a→ t t

∗→ t

t0
a→ t′0

t0 ⊕ t1
a→ (0, t′0)

b �= ∗ t1
b→ t′1

t0 ⊕ t1
b→ (1, t′1)

a �= ∗

t0
a→ t′0 t1

b→ t′1

t0 × t1
a×b→ t′0 × t′1

t
a→ t′

t � Λ
a→ t′ � Λ

a ∈ Λ
t

a→ t′

t{Ξ} Ξ(a)→ t′{Ξ}

t[rec x.t/x]
a→ t′

rec x.t
a→ (2, t′)

The first rule expresses that a tagged term has the capabilities of the
untagged term. Notice that the former operational semantics is obtained
by stripping away the tags, and in fact such a relation is a bisimulation, in
the sense of Milner and Park [55], between the transition systems of the two
forms of operational semantics.

Now we can establish a close correspondence between the operational and
denotation al semantics.

Definition: Letting T be the transition system of the operational semantics,
with initial state a tagged term t, define

Op(t) = R(T).

Lemma 10 For any closed tagged term t, the transition system Op(t) is
acyclik.

Proof: We show this by mapping tagged terms t to |t| in a strict order
< (an irreflexive, transitive relation) in such a way that

t
a→ u & a �≡ ∗ ⇒ |t| < |u|. (3.1)

32

It then follows that →+ is irreflexive. The full proof, with the definition of
<, is given in Appendix C. ✷

Theorem 11 Let t be a closed term of the process language Proc. For
any environment ρ

Op(t) ∼= R(T[[t]]ρ),

a label-preserving isomorphism.

Proof: By structural induction we show if t is a term with free variables
x1, · · · , xk then for all closed terms t1, · · · , tk,

Op(t[t1/x1, · · · , tk/xk]) ∼= R(T[[t]]ρ[Op(t(t1/x1, · · · ,Op(tk)/xk]),

a label-preserving isomorphism. Henceforth in this proof we will use vector
notation, writing e.g. x for x1, · · · , xk and T/x for T1/x1, · · · , Tk/xk.

The basis cases, when t is nil or a variable, hold trivially. The case
where t is a prefix uses acyclicity of the operational semantics in order to
ensure disjointness of the initial state, as does that of sum where, as we have
seen, we require components are non-restarting in order for the categorical
sum to reflect that given operationally. The denotational and operational
semantics of the operations product, restriction and relabelling correspond
closely making the proof simple in these cases. The only case of difficulty is
that where t has the form rec y.u :

Assume rec y.u has free variables x and that s are closed terms to instan-
tiate x. Writing v = u[s/x], we observe that from acyclicity (lemma 10) it
follows that

Op(rec y.v) ∼= Op(v[rec y.v/y]),

—the isomorphism acts so

rec y.v �→ v[recy.v/y]
(2, r) �→ r

and is clearly label-preserving. Hence

Op(rec y.v) ∼= Op(v[rec y.v/y])

= Op(u[s/x, rec y.v/y])
∼= R(T[[u]]ρ[Op(s)/x,Op(rec y.v)/y])

33

where the latter isomorphism is label-preserving by the induction hypothesis.
Thus Op(rec y.v) ∼= R(F (Op(rec y.v)), also label-preserving, where

F (T) = T[[u]]ρ[Op(s)/x,T/y]

But T[[rec y.u]]ρ[Op(s)/x] = fix (F), and so by lemma 9,

Op(rec y.u[s/x]) = Op(rec y.v) ∼= R(T[[rec y.u]]ρ[Op(s)/x]),

the label-preserving isomorphism required for this case of the induction. ✷

There is another way in which the operational and denotational seman-
tics agree. There is a strong bisimulation (in the sense of [55]) between the
reachable states of the transition system obtained as the denotational se-
mantics of a term and those got from the operational semantics. In fact, the
bisimulation can be expressed as a special kind of morphism on transition
systems, called zig-zag morphisms by van Bentham—cf. the chapter [86].

Definition: A morphism of transition systems f : T → T ′ is called a zig-zag
morphism iff both T and T ′ have the same labelling set L, the morphism has
the form f = (σ, 1L) (i.e. f preserves labels) and

σ(s)
a−→ u in T ′ ⇒ ∃s′.s a−→ s′ in T ′

for all states s, u of T and labels a.

For a closed term t, let T1 be the transition system obtained from the op-
erational semantics (version 1) with initial state t. Write Op1(t) for R(T1).
It is easiest to relate the two forms of operational semantics by the obvious
function untag, taking a tagged term to its associated term without tags.
The isomorphism of theorem 11 then yields a zig-zag morphism relating the
denotation of a closed term to its operational semantics (version 1).

Proposition 12 Let t be a closed term. There is a unique morphism of
transition systems

Op(t) → Op1(t)

which takes a state s to untag(s); it is a zig-zag morphism.

Proof: Any derivation according to version 1 of the operational semantics
is matched by one according to version 2, and vice versa. ✷

34

3.3 An example

We will illustrate the different models on an example where the parallel
composition is given by the following synchronisation algebra. Labels have
the form a?, a!, a which intuitively can be thought of as representing receiving
on channel a (a?), sending on channel a (a!) and completed synchronisation
on channel a (simply a). The synchronisation algebra is given by the following
table.

• ∗ a? a! a b? b! b
∗ ∗ a? a! a b? b! b
a? a? 0 a 0 0 0 0
a! a! a 0 0 0 0 0
a a 0 0 0 0 0 0
...

The synchronisation algebra is like that for CCS, but instead of labelling
successful synchronisations by an anonymous τ they retain some identity.
We use ‖ to denote its associated parallel composition.

We introduce an example which will reappear in illustrating all the dif-
ferent models. In a form of process algebra it might be described by:

SY S = (V M ‖ V M ′ ‖ C) � {b, c, c1, c2, t}

where

V M = c2? c! V M ⊕ c2? t! V M
V M ′ = c1? t! V M ′ ⊕ b nil

C = c2! c? C ⊕ c1! t?nil

Intuitively, SYS consists of two (rather poorly designed) vending machines
V M , V M ′ in parallel with a customer C. The customer can insert a coin
(c2!) to get coffee (c?) repeatedly, or insert a coin (c1!) to get tea (t?) and
stop. The vending machine V M can receive a coin (c2?) to deliver coffee (c!)
or alternatively receive (c2?) to deliver tea (t!)—a customer can’t determine
which!. The other vending machine V M ′ is cheaper; it costs less (c1?) to
deliver tea (t!), but it may breakdown (b). A reasonable model for the system
SY S is as the transition system derivable from the operational semantics
(version 1) of section 3, illustrated below:

35

Notice, in particular, the deadlock which can occur if the customer inserts
coin c2 in machine V M , a situation where the customer’s request for coffee
is met by the machine V M only offering tea. Notice too that the transition
system does not capture concurrency in the sense that we expect that a
breakdown (b) can occur in parallel with the customer receiving coffee (c)
and this is not caught by the transition system. This limitation of transition
systems can be seen even more starkly for the two simple terms:

a b nil ⊕ b a nil a nil ‖ b nil .

both of which can be described by the same transition system, viz.

This contrasts the interleaving model of transition systems with noninterleav-
ing models, like Petri nets we shall see later, which represent independence
of actions explicitly.

36

Chapter 4

Synchronisation trees

We turn to consider another model. It gives rise to our first example illus-
trating how different models can be related through the help of adjunctions
between their associated categories.

In his foundational work on CCS [54], Milner introduced synchronisation
trees as a model of parallel processes and explained the meaning of the lan-
guage of CCS in terms of operations on them. In this section we briefly
examine the category of synchronisation trees and its relation to that of la-
belled transition systems. This illustrates the method by which many other
models are related, and the role category theoretic ideas play in formulating
and proving facts which relate semantics in one model to semantics in an-
other.

Example: We return to the example of 3.3. As a synchronisation tree
SY S could be represented by

37

where the trees stemming from S and T are repeated as indicated. The
synchronisation tree is obtained by unfolding the transition-system of 3.3.
Such an unfolding operation arises as an adjoint in the formulation of the
models as categories. In moving to synchronisation trees we have lost the
cyclic structure of the original transition system, that the computation can
repeatedly visit the same state. We can still detect the possibility of deadlock
if the customer inserts coin c2.

As we have seen, a synchronisation tree is a tree together with labels
on its arcs. Formally, we define synchronisation trees to be special kinds of
labelled transition systems, those for which the transition relation is acyclic
and can only branch away from the root.

Definition: A synchronisation tree is a transition system (S, i, L,Tran)
where

• every state is reachable,

• if s
v−→ s, for a string v, then v is empty (i.e. the transition system is

acyclic), and

• s′
a−→ s & s′′

b−→ s ⇒ a = b & s′ = s′′.

Regarded in this way, we obtain synchronisation trees as a full subcate-
gory of labelled transition systems, with a projection functor to the category

38

of labelling sets with partial functions.

Definition: Write S for the full subcategory of synchronisation trees in
T.

In fact, the inclusion functor S ↪→ T has a right adjoint ts : T→ S which
has the effect of unfolding a labelled transition system to a synchronisation
tree.1

Definition: Let T be a labelled transition system (S, i, L,Tran). Define
ts(T) to be (S ′, i′, L,Tran ′) where:

• The set S ′ consists of all finite, possibly empty, sequences of transitions

(t1, · · · , tj, tj+1, · · · , tn−1)

such that tj = (sj−1, aj, sj) and tj+1 = (sj, aj+1, sj+1) whenever 1 <
j < n. The element i′ = (), the empty sequence.

• The set Tran ′ consists of all triples (u, a, v) where u, v ∈ S ′ and u =
(u1, . . . , uk), v = (u1, . . . , uk, (s, a, s′)), obtained by appending an a
transition to u.

Define φ : S ′ → S by taking φ(()) = i and φ((t1, . . . , tn)) = sn, where
tn = (sn−1, an, sn).

Theorem 13 Let T be a labelled transition system, with labelling set L.
Then ts(T) is a synchronisation tree, also with labelling set L, and, with the
definition above, (φ, 1L) : ts(T) → T is a morphism. Moreover ts(T), (φ, 1L)
is cofree over T with respect to the inclusion functor S ↪→ T, i.e. for any
morphism f : V → T , with V a synchronisation tree, there is a unique mor-
phism g : V → ts(T) such that f = (φ, 1L) ◦ g:

1Because we shall be concerned with several categories and functors between them we
name the functors in a way th.at indicates their domain and range.

39

Proof: Let T be a labelled transition system, with labelling set L. It is
easily seen that ts(T) is a labelled transition system with labelling set L
and (φ, 1L) : ts(T) → T is a morphism. To show the cofreeness property, let
f = (σ, λ) : V → T be a morphism from a synchronisation tree V . We require
the existence of a unique morphism g : V → ts(T) such that f = (φ, 1L)g.
The morphism g must necessarily have the form g = (σ1, λ). The map σ1 is
defined by induction on the distance from the root of states of V , as follows:
On the initial state iV of V , we take σ1(iV) = (). For any state v′ for which
(v, a, v′) is a transition of V we take σ1(v

′) = σ1(v) if λ(a) = ∗ and otherwise,
in the case where λ(a) is defined, take σ1(v

′) = σ1(v)((σ(v), λ(a), σ(v′)).

It follows by induction on the distance of states v from the root that
σ(v) = φσ1(v), and that (σ1, λ) is the unique morphism such that f =
(φ, 1L)g. (For a very similar, but more detailed, argument see [94].) ✷

It follows that the operation ts extends to a functor which is right adjoint
to the inclusion functor from S to T and that the morphisms (φ, 1L) : ts(T) →
T are the counits of this adjunction (see [50, theorem 2, p.81]). This makes
S a (full) coreflective subcategory of T, which implies the intuitively obvious
fact that a synchronisation tree T is isomorphic to its unfolding ts(T) (see
[50, p.88]).

Like transition systems, synchronisation trees have been used to give se-
mantics to languages like CCS and CSP (see e.g. [54], [14]). Nondeterministic
sums of processes are modelled by the operation of joining synchronisation
trees at their roots, a special case of the nondeterministic sum of transition
systems. We use

∑
i∈I Si for the sum of synchronisation trees indexed by

i ∈ I. For the semantics of parallel composition, use is generally made of
Milner’s “expansion theorem” (see [54]). In our context, the expansion of a
parallel composition as a nondeterministic sum appears as a characterisation
of the product of synchronisation trees.

Proposition 14 The product of two synchronisation trees S and T of the
form

S ∼=
∑
i∈I

aiSi and T ∼=
∑
j∈J

bjTj.

40

is given by

S × T ∼=
∑
i∈I

(ai, ∗)Si × T ⊕
∑

i∈I,j∈J

(ai, bj)Si × Tj ⊕
∑
j∈J

(∗, bj)S × Tj.

Proof: The fact that the category of synchronisation trees has products and
that they are preserved by the unfolding operation ts is a consequence of
the general fact that right adjoints preserve limits. In particular, ts(S×T T)
is a product of the synchronisation trees S and T above; the proof that
products of trees have the form claimed follows by considering the sequences
of executable transitions of S ×T T . ✷

The coreflection between transition systems and synchronisation trees is
fibrewise in that it restricts to adjunctions between fibres over a common
labelling set. For example, for this reason its right adjoint of unfolding auto-
matically preserves restriction (see Appendix B). In fact, via the coreflection
S inherits a bifibration structure from T. As the following example shows,
right adjoints, such as the operation of unfolding a transition system to a
tree, do not necessarily preserve colimits like nondeterministic sums.

Example: Recall the fibred coproduct T0 +L T1 of

both assumed to have the labelling set L = {a, b}, is

It is easily seen that ts(T0 +L T1) is not isomorphic to ts(T0) +L ts(T1).

41

Chapter 5

Languages

Synchronisation trees abstract away from the looping structure of processes.
Now we examine a yet more abstract model, that of languages which further
ignore the nondeterministic branching structure of processes.

Definition: A language over a labelling set L consists of (H, L) where H
is a nonempty subset of strings L∗ which is closed under prefixes, i.e. if
a0 · · · ai−1ai ∈ H then a0 · · · ai−1 ∈ H.

Thus for a language (H, L) the empty string ε is always contained in H.
Such languages were called traces in [33] and for this reason, in the context
of modelling concurrency, they are sometimes called Hoare traces. They con-
sist however simply of strings and are not to be confused with the traces of
Mazurkiewicz, to be seen later.

Example: Refer back to the customer-vending machine example of 3.3. The
semantics of SY S as a language (its Hoare traces), loses the nondeterminis-
tic structure present in both the transition-system and synchronisation-tree
descriptions. The language determined by SY S is

{ε, c1, c2, b, c1t, c2c, c2b, bc2, · · · }

Lost is the distinction between for instance the two branches of computation
c2b, one which can be resumed by further computation and the other which
deadlocks.

Morphisms of languages are partial functions on their alphabets which
send strings in one language to strings in another:

42

Definition: A partial function λ : L →∗ L′ extends to strings by defin-
ing

λ̂(sa) =

{
λ̂(s)λ(a) if λ(a) defined ,

λ̂(s) if λ(a) undefined .

A morphism of languages (H, L) → (H ′, L′) consists of a partial function

λ : L →∗ L′ such that ∀s ∈ H. λ̂(s) ∈ H ′.
We write L for the category of languages with the above understanding of
morphisms, where composition is our usual composition of partial functions.

Ordering strings in a language by extension enables us to regard the lan-
guage as a synchronisation tree. The ensuing notion of morphism coincides
with that of languages. This observation yields a functor from L to S. On
the other hand any transition system, and in particular any synchronisation
tree, gives rise to a language consisting of strings of labels obtained from the
sequences of transitions it can perform. This operation extends to a func-
tor. The two functors form an adjunction from S to L (but not from T to L).

Definition: Let (H, L) be a language. Define ls(H, L) to be the synchroni-
sation tree (H, E, L, tran) where

(h, a, h′) ∈ Tran ⇔ h′ = ha.

Let T = (S, i, L,Tran) be a synchronisation tree. Define sl(T) = (H, L)
where a string h ∈ L∗ is in the language H iff there is a sequence, possibly
empty, of transitions

i
a1−→ s1

a2−→ · · · an−→ sn

in T such that h = a1a2 · · · an . Extend sl to a functor by defining sl(σ, λ) = λ
for (σ, λ) : T → T ′ a morphism between synchronisation trees.

Theorem 15 Let (H, L) be a language. Then ls(H, L) is a synchronisation
tree, with labelling set L, and, 1L : sl ◦ ls(H, L) → (H, L) is an isomorphism.
Moreover sl◦ ls(H, L), 1L is cofree over (H, L) with respect to the functor sl :
S → L, i.e. for any morphism λ : sl(T) → (H, L), with T a synchronisation
tree, there is a unique morphism g : T → ls(H, L) such that λ = 1L ◦ sl(g) :

43

Proof: Each state s of the synchronisation tree T is associated with a unique
sequence of transitions

i
a1−→ s1

a2−→ · · · an−→ sn

with sn = s. Defining σ(s) to be λ̂(a1 · · · an) makes (σ, λ) the unique mor-
phism g : T → ls(H, L) such that λ = 1L ◦ sl(g). ✷

This demonstrates the adjunction S → L with left adjoint sl and right
adjoint ls ; the fact that the counit is an isomorphism makes the adjunction
a (full) reflection. Let r : L → Set∗ be the functor sending a morphism
λ : (H, L) → (H ′, L′) of languages to λ : L →∗ L′. Let q : S → Set∗ be the
functor sending synchronisation trees to their labelling sets (a restriction of
the functor p from transition systems). With respect to these projections the
adjunction is fibred.

We can immediately observe some categorical constructions. The fibre
product and coproduct are simply intersection and union of languages over
the sar labelling set. The product of two languages (H0, L0), (H1, L1) takes
the form

(π̂−1
0 H0 ∩ π̂−1

1 H1, L0 ×∗ L1),

with projections π0 : L0×∗ L1 →∗ L0 and π1 : L0×∗ L1 →∗ L1 obtained from
the product in Set∗. The coproduct of languages (H0, L0), (H1, L1) is

(ĵ0H0 ∪ ĵ1H1, L0 � L1)

with injections j0 : L0 → L0 � L1, j1 : L1 → L0 � L1 into the left and
right component of the disjoint union. The fibre product and coproduct of
languages over the same alphabet are given simply by intersection and union
respectively.

The expected constructions of restriction and relabelling arise as (strong)
Cartesian and cocartesian liftings.

44

Chapter 6

Relating semantics

We can summarise the relationship between the different models by recalling
the coreflection and reflection (and introducing a little notation to depict
such adjunctions):

L S T

The coreflection and reflection are associated with “inclusions”, embedding
one model in another—the direction of the embedding being indicated by the
hooks . on the arrows, whose tips point in the direction of the left adjoint.
Each inclusion has an adjoint; the inclusion of the coreflection has a right
and that of the reflection a left adjoint. These functors from right to left
correspond respectively to losing information about the looping, and then in
addition the nondeterministic branching structure of processes.1

Such categorical facts are useful in several ways. The coreflection S T
tells us how to construct limits in S from those it T. In particular, we have
seen how the form of products in S is determined by their simpler form in
T. We regard synchronisation trees as transition systems via the inclusion
functor, form the limit there and then transport it to S, using the fact that
right adjoints preserve limits. Because the adjunctions are fibrewise, the
right adjoints also preserve Cartesian liftings and left adjoints cocartesian

1Warning: We use the term “coreflection” to mean an adjunction in which the unit is
a natural isomorphism, or equivalently (by theorem 1, p.89 of [50]) when the left adjoint is
full and faithful. Similarly, “reflection” is used here to mean an adjunction for which the
counit is a natural isomorphism, or equivalently when the right adjoint is full and faithful.
While the same uses can be found in the literature, they are not entirely standard.

45

liftings (as is shown in Appendix B, lemma 91). The fact that the embedding
functors are full and faithful ensures that they reflect limits and colimits, as
well as Cartesian and cocartesian morphisms because the adjunctions are
fibrewise (lemma 92).

Imagine giving semantics to the process language Proc of chapter 3 in
any of the three models. Any particular construct is interpreted as being
built up in the same way from universal constructions. For example, prod-
uct in the process language is interpreted as categorical product, and non-
deterministic sum in the language as the same combination of cocartesian
liftings and coproduct we use in transition systems. Constructions are in-
terpreted in a uniform manner in any of the different models. Prefixing for
languages requires a (straightforward) definition. Recursion requires a sep-
arate treatment. Synchronisation trees can be ordered in the same way as
transition systems. Languages can be ordered by inclusion. In both cases
it is straightforward to give a semantics. With respect to an environment
ρS from process variables to synchronisation trees we obtain a denotational
semantics yielding a synchronisation tree

S[[t]]ρS

for any process term t. And with respect to an environment ρL from process
variables to languages the denotational semantics yields a language

L[[t]]ρL

for a process term t. What is the relationship between the three semantics

T[[−]], S[[−]] and L[[−]]?

Consider the relationship between the semantics in transition systems and
synchonisation trees. Letting ρ be an environment from process variables, to
transition systems, the two semantics are related by

ts(T[[t]]ρ) = S[[t]]ts ◦ ρ

for any process term t. This is proved by structural induction on t. The cases
where t is a product or restriction follow directly from preservation properties
of right adjoints. The other cases require special, if easy, argument. For
example, the fact that

ts(T[[t0 ⊕ t1]]ρ) = S[[t0 ⊕ t1]]ts ◦ ρ

46

depends on T[[t0]]ρ,T[[t1]]ρ being nonrestarting, a consequence of acyclicity
(lemma 10) shown earlier. The case of recursion requires the ✂-continuity of
the unfolding functor ts. A similar relationship,

sl(S[[t]]ρ) = L[[t]]sl ◦ ρ

for a process term t, and environment ρ to synchronisation trees, holds be-
tween the two semantics in synchronisation trees and languages. This time
the structural induction is most straightforward in the cases of nil, nondeter-
ministic sum and relabelling (because of the preservation properties of the
left adjoint sl). However, simple arguments suffice for the other cases.

In summary, the operations on processes are interpreted in a uniform man-
ner (with the same universal constructions) in the three different semantics.
The preservation properties of adjoints are useful in relating the semantics.
Less directly, a knowledge of what we can and cannot expect to be preserved
automatically provides useful guidelines in itself. The failure of a general
preservation property can warn that the semantics of a construct can only
be preserved in special circumstances. For instance, we cannot expect a right
adjoint like ts to always preserve a colimit, like a nondeterministic sum. Ac-
cordingly, the semantics of sums is only preserved by ts by virtue of a special
circumstance, that the transition systems denoted are nonrestarting. The
advantages of a categorical approach become more striking when we turn to
the more intricate models of the non-interleaving approach to concurrency,
but where again the same universal constructions will be used.

47

Chapter 7

Trace languages

All the models we have considered so far have identified concurrency, or par-
allelism, with nondeterministic interleaving of atomic actions. We turn now
to consider models where concurrency is modelled explicitly in the form of
independence between actions. In some models, like Mazurkiewicz traces, the
relation of independence is a basic notion while in others, like Petri nets, it
is derived from something more primitive. The idea is that if two actions are
enabled and also independent then they can occur concurrently, or in paral-
lel. Models of this kind are sometimes said to capture “true concurrency”, a
convenient though regrettably biased expression. They are also often called
“noninterleaving models” though this again is inappropriate; as we shall see,
Petri nets can be described as forms of transition systems. A much better
term is “independence models” for concurrent computation, though this is
not established. Because in such models the independence of actions is not
generally derivable from an underlying property of their labels, depending
rather on which occurrences are considered, we will see an important dis-
tinction basic to these richer models. They each have a concept of events
distinguished from that of labels. Events are to be thought of as atomic ac-
tions which can support a relation of independence. Events can then bear
the further structure of having a label, for instance signifying which channel
or which process they belong to.

A greater part of the development of these models is indifferent to the
extra labelling structure we might like to impose, though of course restriction
and relabelling will depend on labels. Our treatment of the models and their
relationship will be done primarily for the unlabelled structures. Later we

48

will adjoin labelling and provide semantics in terms of the various models
and discuss their relationship.

7.1 A category of trace languages

The simplest model of computation with an in-built notion of independence
is that of Mazurkiewicz trace languages. They are languages in which the
alphabet also possesses a relation of independence. As we shall see, this
small addition has a striking effect in terms of the richness of the associated
structures. It is noteworthy that, in applications of trace languages, there
have been different understandings of the alphabet; in Mazurkiewicz’s origi-
nal work the alphabet is thought of as consisting of events (especially events
of a Petri net), while some authors have instead interpreted its elements as
labels, for example standing for port names. This remark will be elaborated
later on in section 7.2.

Definition: A Mazurkiewicz trace language consists of (M, L, I) where L
is a set, I ⊆ L × L is a symmetric, irreflexive relation called the indepen-
dence relation, and M is a nonempty subset of strings L∗ such that

• prefix closed: sa ∈ M ⇒ s ∈ M for all s ∈ L∗, a ∈ L,

• I-closed: sabt ∈ M & aIb ⇒ sbat ∈ M for all s, t ∈ L∗, a, b ∈ L,

• coherent: sa ∈ M & sb ∈ M & aIb ⇒ sab ∈ M for all s ∈ L∗, a, b ∈ L.

The alphabet L of a trace language (M, L, I) can be thought of as the
set of actions of a process and the set of strings as the sequences of actions
the process can perform. Some actions are independent of others. The ax-
iom of I-closedness expresses a consequence of independence: if two actions
are independent and can occur one after the other then they can occur in
the opposite order. The axiom of coherence is not generally imposed. We
find it convenient (though not essential for a great deal that follows), and
besides, like I-closedness, it seems to follow from an intuitive understanding
of what independence means; it says if two actions are independent and both
can occur from the same state then they can occur one after the other, in
either order. Given that some actions are independent of others, it is to be
expected that some strings represent essentially the same computation as

49

others. For example, if a and b are independent then both strings ab and ba
represent the computation of a and b occurring concurrently. More generally,
two strings sabt and sbat represent the same computation when a and b are
independent. This extends to an equivalence relation between strings, the
equivalence classes of which are called Mazurkiewicz traces. There is an as-
sociated preorder between strings of a trace language which induces a partial
order on traces.

Definition: Let (M, L, I) be a trace language. For s, t ∈ M define −∼
to be the smallest equivalence relation such that

sabt −∼ sbat if aIb

for sabt , sbat ∈ M . Call an equivalence class {s}
−∼

for s ∈ M , a trace. For

s, t ∈ M define

s � t ⇔ ∃u. su −∼ t.

Proposition 16 Let (M, L, I) be a trace language with trace equivalence
−∼ . If su ∈ M and s −∼ s′ then s′u ∈ M and su −∼ s′u. The relation �

of the trace language is a preorder. Its quotient � / −∼ by the equivalence

relation −∼ is a partial order on traces.

Example: The independence relation of Mazurkiewicz allows us to express
the concurrency we remarked on earlier in example 3.3. By asserting that
the independence relation I is the smallest such that

b I c and b I c2,

corresponding to the idea that a breakdown b can occur in parallel with
the customer receiving coffee, the language of example 5 collapses under the

identifications of trace equivalence to give the following ordering � / −∼ on
traces:

50

We have drawn the traces as points and drawn an arrow
a→ from a trace

{s}
−∼

to a trace {sa}
−∼

. Although the potential concurrency of b and c, and b

and c2 is caught by the independence relation, this trace-language semantics,
like the language semantics before, is blind to the fact that the system can
deadlock after the customer inserts a coin c2. To make such a distinction we
would have to distinguish the two kinds of occurrences of c2, regarding them
as different events.

The partial order � / −∼ of a trace language can be associated with a

partial order of causal dependencies between event occurrences. This struc-
ture will be investigated in the next section.

Morphisms between trace languages are morphisms between the under-
lying languages which preserve independence:

Definition: A morphism of trace languages (M, L, I) → (M ′, L′, I ′) con-
sists of a partial function λ : L →∗ L′ which

• preserves independence: aIb & λ(a) defined & λ(b) defined⇒ λ(a)I ′λ(b)
for all a, b ∈ L,

• preserves strings: s ∈ M ⇒ λ̂(s) ∈ M ′ for all strings s.

It is easy to see that morphisms of trace languages preserve traces and
the ordering between them:

Proposition 17 Let λ : (M, L, I) → (M ′, L′, I ′) be a morphism of trace

51

languages. If s � t in the trace language (M, L, I) then λ̂(s) � λ̂(t) in the
trace language (M ′, L′, I ′).

Definition: Write TL for the category of trace languages with composi-
tion that of partial functions.

7.2 Constructions on trace languages

We examine some categorical constructions on trace languages. The con-
structions generalise from those on languages but with the added considera-
tion of defining independence.

Let (M0, L0, I0) and (M1, L1, I1) be trace languages. Their product is
(M, L, I) where L = L0 ×∗ L1, the product in Set∗, with projections π0 :
L →∗ L0 and π1 : L →∗ L1, with

aIb ⇔ (π0(a), π0(b) defined ⇒ π0(a)I0π0(b)) &
(π1(a), π1(b) defined ⇒ π1(a)I1π1(b)),

and

M = π̂−1
0 M0 ∩ π̂−1

1 M1

Their coproduct is (M, L, I) where L = L0 � L1, the disjoint union, with
injections j0 : L0 → L, j1 : L0 → L, the relation I satisfies

aIb ⇔ ∃a0, b0. a0I0b0 & a = j0(a0) & b = j0(b0) or
∃a1, b1. a1I1b1 & a = j1(a1) & b = j1(b1)

and

M = ĵ0M0 ∪ ĵ1M1

What about restriction and relabelling? Restriction appears again as a
cartesian lifting of an inclusion between labelling sets. Its effect is simply to
cut-down the language and independence to the restricting set. However, the
relabelling of a trace language cannot always be associated with a cocartesian
lifting. To see this consider a function λ : {a, b} → {c} sending both a, b to c.
If a trace language T has {a, b} as an alphabet and has a, b independent then,

52

λ cannot be a morphism of trace languages, and hence no cocartesian lifting of
λ with respect to the trace language T ; because independence is irreflexive,
independence cannot be preserved by λ.1 The difficulty stems from our
implicitly regarding the alphabet of a Mazurkiewicz trace language as a set
of labels of the kind used in the operations of restriction and relabelling.
Although the alphabet can be taken to have this nature, it was not the
original intention of Mazurkiewicz. Here it is appropriate to discuss the two
ways in which trace languages are used to the model parallel processes.

One way is to use trace languages in the same manner as languages.
This was implicitly assumed in our attempts to define the relabelling of a
trace language, and in the example above. Then a process, for example in
CCS, denotes a trace language, with alphabet the labels of the process. This
regards symbols of the alphabet of a trace language as labels in a process
algebra. As we have seen in the treatment of interleaving models labels can be
understood rather generally; they are simply tags to distinguish some actions
from others. However this general understanding of the alphabet conflicts
with this first approach. As the independence relation is then one between
labels, once it is decided that say a and b are independent in the denotation
of a process then they are so throughout its execution. However, it is easy
to imagine a process where at some stage a and b occur independently and
yet not at some other stage. To remedy this some have suggested that the
independence relation be made to depend on the trace of labels which has
occurred previously. But even with this modification, the irreflexivity of the
independence relation means there cannot be independent occurrences with
the same label; in modelling a CCS process all its internal τ events would be
dependent!

The other approach is to regard the alphabet as consisting, not of labels
of the general kind we have met in process algebras, but instead as con-
sisting of events. It is the events which possess an independence relation
and any distinctions that one wishes to make between them are then caught
through an extra labelling function from events to labels. True, this extra
level of labelling complicates the model, but the distinction between events
and the labels they can carry appears to be fundamental. It is present in
the other models which capture concurrency directly as independence. This
second view fits with that of Mazurkiewicz’s tracelanguage semantics of Petri

1If however we instead project to the category of sets with independence SetI we obtain
a fibration and cofibration—see section 8.3.3, in particular proposition 40.

53

nets. When we come to adjoin the extra structure of labels, restriction will
again be associated with a Cartesian lifting and relabelling will reappear as
a cocartesian lifting.

There remains the question of understanding the order � / −∼ of trace

languages. We shall do this through a representation theorem which will show

that � / −∼ can be understood as the subset ordering between configurations

of an event structure.

54

Chapter 8

Event structures

There is most often no point in analysing the precise places and times of
events in a distributed computation. What is generally important are the
significant events and how the occurrence of an event causally depends on the
previous occurrence of others. For example, the event of a process transmit-
ting a message would presumably depend on it first performing some events,
so it was in the right state to transmit, including the receipt of the message
which in turn would depend on its previous transmission by another process.
Such ideas suggest that we view distributed computations as event occur-
rences together with a relation expressing causal dependency, and this we
may reasonably take to be a partial order. One thing missing from such de-
scriptions is the phenomenon of nondeterminism. To model nondeterminism
we adjoin further structure in the form of a conflict relation between events
to express how the occurrence of certain events rules out the occurrence of
others. Here we shall assume that events exclude each other in a binary
fashion, though variants of this have been treated.

Definition: Define an event structure to be a structure (E,≤, #) consisting
of a set E, of events which are partially ordered by ≤, the causal dependency
relation, and a binary, symmetric, irreflexive relation # ⊆ E×E, the conflict
relation, which satisfy

{e′ | e′ ≤ e} is finite,
e#e′ ≤ e′′ ⇒ e#e′′

55

for all e, e′, e′′ ∈ E.

Say two events e, e′ ∈ E are concurrent, and write e co e′, iff ¬(e ≤ e′

or e′ ≤ e or e # e′). Write VV for # ∪ 1E, i.e. the reflexive closure of the
conflict relation.

The finiteness assumption restricts attention to discrete processes where
an event occurrence depends only on finitely many previous occurrences. The
axiom on the conflict relation expresses that if two events causally depend
on events in conflict then they too are in conflict. Note that events of an
event structure correspond to event occurrences.

Example: As an illustration, we examine how to represent the process SY S
of 3.3 as an event structure. Strictly speaking SY S is represented as the la-
belled event structure, drawn below, where the event ocurrences (the events
of the event structure) appear as “•”, labelled to indicate their nature. The
sequential nature of the components V M , V M ′ and C imposes a partial
order of causal dependency ≤, the immediate steps of which are drawn as
upwards arrows, and nondeterminism shows up as conflict, generated by the
relation indicated by dotted lines.

In fact this labelled event structure is that obtained from the denotational
semantics following the general scheme of section 11.2.

Guided by our interpretation we can formulate a notion of computation
state of an event structure (E,≤, #). Ta rn a computation state of a pro-
cess to be represented by the set x of events which have occurred in the

56

computation, we expect that

e′ ∈ x & e ≤ e′ ⇒ e ∈ x

—if an event has occurred then all events on which it causally depends have
occurred too—and also that

∀e, e′ ∈ x.¬(e # e′)

—no two conflicting events can occur together in the same computation.

Definition: Let (E,≤, #) be an event structure. Define its configurations,
D(E,≤, #), to consist of those subsets x ⊆ E which are

• conflict-free: ∀e, e′ ∈ x. ¬(e#e′) and

• downwards-closed: ∀e, e′. e ≤ e ∈ x ⇒ e′ ∈ x.

In particular, define !e" = {e′ ∈ E | e′ ≤ e}. (Note that !e" is a configuration
as it is conflict-free.)

Write D0(E,≤, #) for the set of finite configurations.

The important relations asociated with an event structure can be recov-
ered from its finite configurations (or indeed similarly from its configura-
tions):

Proposition 18 Let (E,≤, #) be an event structure. Then

• e ≤ e′ ⇔ ∀x ∈ D0(E,≤, #). e′ ∈ x ⇒ e ∈ x.

• e#e′ ⇔ ∀x ∈ D0(E,≤, #). e ∈ x ⇒ e′ /∈ x.

• e co e′ ⇔ ∃x, x′ ∈ D0(E,≤, #). e ∈ x & e′ /∈ x & e′ ∈ x′ & e /∈
x′ & x ∪ x′ ∈ D0(E, #,≤).

Events manifest themselves as atomic jumps from one configuration to
another, and later it will follow that we can regard such jumps as transitions
in an asynchronous transition system.

57

Definition: Let (E,≤, #) be an event structure. Let x, x′ be configura-
tions. Write

x
e−→ x′ ⇔ e /∈ x & x′ = x ∪ {e}.

Proposition 19 Two events e0, e1 of an event structure are in the concur-
rency relation co iff there exist configurations x, x0, x1, x

′ such that:

8.1 A category of event structures

We define morphisms on event structures as follows:

Definition: Let ES = (E,≤, #) and ES ′ = (E ′,≤′, #′) be event structures.
A morphism from ES to ES ′ consists of a partial function η : E →∗ E ′ on
events which satisfies

x ∈ D(ES) ⇒ ηx ∈ D(ES ′) &
∀e0, e1 ∈ x.η(e0), η(e1) both defined & η(e0) = η(e1) ⇒ e0 = e1

A morphism η : ES → ES ′ between event structures expresses how be-
haviour in ES determines behaviour in ES ′. The partial function η expresses
how the occurrence of an event in ES implies the simultaneous occurrence
of an event in ES ′; the fact that η(e) = e′ can be understood as expressing
that the event e′ is a “component” of the event e and, in this sense, that
the occurrence of e implies the simultaneous occurrence of e′. If two distinct

58

events in ES have the same image in ES ′ under η then they cannot belong
to the same configuration.

Morphisms of event structures preserve the concurrency relation. This is
a simple consequence of proposition 19, showing how the concurrency rela-
tion holding between events appears as a “little square” of configurations.

Proposition 20 Let ES be an event structure with concurrency relation co
and ES an event structure with concurrency relation co ′. Let η : ES → ES ′

be a morphism of event structures. Then, for any events e0, e1 of ES,

e0 co e1 & η(e0), η(e1) both defined ⇒ η(e0)co
′ η(e1).

Morphisms between event structures can be described more directly in
terms of the causality and conflict relations of the event structure:

Proposition 21 A morphism of event structures from (E,≤, #) to (E ′,≤′,
#′) is a partial function η : E →∗ E ′ such that

(i) η(e) defined ⇒ !η(e)" ⊆ η!e" and
(ii) η(e0), η(e1) both defined & η(e0)VV

′η(e1) ⇒ e0VVe1

The category of event structures possesses products and coproducts useful in
modelling parallel compositions and nondeterministic sums.

Proposition 22 Let (E0,≤0, #0) and (E1,≤1, #1) be event structures. Their
coproduct in the category E is the event structure (E0 � E1,≤, #) where

e ≤ e′ ⇔ (∃e0, e
′
0. e0 ≤0 e′0 & j0(e0) = e & j0(e

′
0 = e′) or

(∃e1, e
′
1. e1 ≤1 e′1 & j1(e1) = e & j1(e

′
1 = e′)

and

= #0 ∪#1 ∪ (j0E0)× (j1E1),

with injections j0 : E0 → E0�E1, j1 : E1 → E0�E1 the injections of E0 and
E1 into their disjoint union.

It is tricky to give a direct construction of product on event structures.
However, a construction of the product of event structures will follow from
the product of trace languages and the coreflection from event structures
to trace languages (see corollary 39), and we postpone the construction till
then.

59

8.2 Domains of configurations

Viewing computation states as such subsets, progress in a computation is
measured by the occurrence of more events. Let x, y ∈ D(E) for an event
structure E. If x ⊆ y then x can be regarded as a subbehaviour of y. The
relation of inclusion between configurations is an information order of the sort
familiar from denotational semantics, but special in that more information
corresponds to more events having occurred. It is easy to see that the order
(D(E),⊆) has least upper bounds, when they exist, given as unions, and
that the order is a cpo with least element the empty set. The domains
associated with event structures turn out to be familiar. (Proofs of the
following characterisations can be found in [98].)

The simplest characterisation of the domains represented by prime event
structures starts by observing that an event e in an event structure corre-
sponds to the configuration !e". Such elements are characterised as being
complete primes and domains of configurations have the property that every
element is the least upper bound of these special elements.

Definition: Let (D,#) be a partial order with least upper bounds of subsets
X written as

⊔
X when they exist.

Say D is bounded complete iff all subsets X ⊆ D which have an upper
bound in D have a least upper bound

⊔
X in D.

Say D is coherent iff all subsets X ⊆ D which are pairwise bounded
(i.e. such that all pairs of elements d0, d1 ∈ X have upper bounds in D)
have least upper bounds

⊔
X in D. (Note that coherence implies bounded

completeness.)

A complete prime of D is an element p ∈ D such that

p # ⊔
X ⇒ ∃x ∈ X. p # x

for any set X for which
⊔

X exists.

D is prime algebraic iff

x =
⊔{p # x | p is a complete prime},

for all x ∈ L. If furthermore the sets

{p # q | p is a complete prime}

60

are always finite when q is a complete prime, then D is said to be finitary.

If D is bounded complete and prime algebraic it is a prime algebraic do-
main.

Theorem 23 Let E be a event structure. The partial order (D(E),⊆) is
a cohereent, finitary, prime algebraic domain; the complete primes are the
set {!e" | e ∈ E}.

Proof: See [64]. ✷

Conversely, any coherent, finitary, prime algebraic domain is associated
with an event structure in which the events are its complete primes.

Theorem 24 Let (D,#) be a coherent, finitary, prime algebraic domain.
Define (P,≤, #) to consist of P , the complete primes of D, ordered by ’

p ≤ p′ ⇔ p # p′,

and with relation

p # p′ ⇔ p �↑ p′,

for p, p ∈ P . Then (P, S, #) is an event structure, with φ : (D,#) ∼= (D(P,≤
, #),⊆) giving an isomorphism of partial orders where φ(d) = {p # d | p is a
complete prime} with inverse θ : D(P,≤, #) → (D,#) given by θ(x) =

⊔
x.

Proof: See [64]. ✷

Event structures and coherent, finitary prime algebraic domains are equiv-
alent; one can be used to represent the other. Such domains are familiar in
another guise. (Recall that the dI-domains of Berry are distributive algebraic
cpos in which every finite element only dominates finitely many elements [8].)

Theorem 25 The finitary, prime algebraic domains are precisely the dI-
domains of Berry.

Proof: See [98] or [93]. ✷

Following Girard, call a function linear iff it is stable in the sense of
Berry (i.e. preserves bounded meets) and preserves joins when they exist.
The covering relation between configurations of an event structures is given

61

by

x → x′ ⇔def ∃e. x
e−→ x′,

for configurations x, x′.

Theorem 26 The category of event structures E is equivalent to the sub-
category of coherent dI-domains with morphisms those linear functions f :
D → D′ which further satisfy

x → x′ ⇒ f(x) = f(x′) or f(x) → f(x′).

Proof: A proof can be found in the report [92]. ✷

8.3 Event structures and trace languages

8.3.1 A representation theorem

Throughout this section assume (M, L, I) is a trace language. In this section
we study the preorder

s � t ⇔ ∃u. su −∼ t

of a trace language and show that its quotient � / −∼ can be represented by

the finite configurations of an event structure.

We use a, b, c, . . . for symbols in L and s, t, u, . . . for strings in L∗. Write
N(b, s) for the number of occurrences of b in the string s. We write a ∈ s to
mean a occurs in s, i. e. N(a, s) > 0. As an abbreviation, we write sIt if
aIb for every symbol a in s and b in t.

Events of (M, L, I), to be thought of as event occurrences, are taken to
be equivalence classes of nonempty strings with respect to the equivalence
relation ∼ now defined.

Definition: The relation ∼ is the smallest equivalence relation on nonempty
strings such that

sa ∼ sba if bIa, and

sa ∼ ta if s −∼ t

62

for sa, sba, ta ∈ M .

The next lemma yields an important technique for reasoning about trace
languages.

Lemma 27 Suppose sa, ta ∈ M .

¬(aIb) & sa ∼ ta ⇒ N(b, s) = N(b, t).

Proof: Assume ¬(aIb). It is sufficient to verify the lemma’s claim in the
case of sa ∼ ta where either

(i) (t = sc and cIa) or

(ii) s −∼ t

If (i) then b �= c (because one is independent of a and one not) so N(b, t) =
N(b, sc) = N(b, s). If (ii) then N(b, s) = N(b, t) because the number of

occurrences of a symbol is invariant under −∼ . ✷

As ¬(aIa) the lemma in particular yields

sa ∼ ta ⇒ N(a, s) = N(a, t)

for sa, ta ∈ M . Thus different occurrences of the same symbol in a string of
M are associated with different events:

Proposition 28 Suppose s0a, s1a are prefixes of t ∈ M such that s0a ∼ s1a.
Then s0a = s1a.

We can now show how the preorder of trace languages coincides with the
order of inclusion on the associated sets of events:

Definition: Let s ∈ M . Define the events of s, to be

ev(s) = {{u}∼ | u is a nonempty prefix of s}
Lemma 29 Let s, t ∈ M . Then

s � t ⇔ ev(s) ⊆ ev(t).

Proof: “⇒”: We show the claim that, letting s, t ∈ M ,

s −∼ t ⇒ ev(s) = ev(t),

from which “⇒” follows. It is sufficient to establish this claim for the case
where s = uabv and t = ubav with aIb. However, then

63

ev(s) = ev(u) ∪ {{ua}∼, {uab}∼} ∪ {{uabv′}∼ | v′ is a nonempty prefix of v}
= ev(u) ∪ {{uba}∼, {ub}∼} ∪ {{ubav′}∼ | v′ is a nonempty prefix of v}
= ev(t).

“⇐”: This is proved by induction on s. The basis s = ε is obvious.
Assume ev(s) ⊆ ev(t) where s = s′a and, inductively, that s′ � t, i.e.

s′u′ −∼ t for some u′. Because {s, a}∼ ∈ ev(s) certainly {sa}∼ ∈ ev(t) =

ev(s′u′). It follows that u′ = u0au1 for some u0, u1 such that s′a ∼ s′u0a.
(We cannot have {s′a}∼ ∈ ev(s′) by proposition 28 above.) We must have
u0Ia as otherwise there would be b ∈ u0 with ¬(bIa) and N(b, s′) < N(b, s′u0)

contradicting lemma 27. Hence t −∼ s′u0au1
−∼ s′au0u1 making da s′a � t.

This proves the induction step. ✷

The next lemma shows that incompatibility between traces stems from a
lack of independence between events.

Lemma 30 Let s, t ∈ M .

∃u ∈ M. ev(u) = ev(s) ∪ ev(t)

iff

∀v ∈ M, a, b ∈ L. {va}∼ ∈ ev(s) & {vb}∼ ∈ ev(t) ⇒ a(I ∪ 1L)b.

Proof: “if”: This implication is proved by induction on t. The basis case
when t = ε is obvious. To prove the induction step assume t = t′a ∈ M and
that

{va}∼ ∈ ev(s) & {vb}∼ ∈ ev(t) ⇒ a = b or aIb

for all v ∈ M and a, b ∈ L. Inductively we assume that there is u′ ∈ M for
which ev(u′) = ev(s) ∪ ev(t′). If {t′a}∼ ∈ ev(s) then ev(u′) = ev(s) ∪ ev(t′a)
as required. Assume otherwise that {t′a}∼ /∈ ev(s). By lemma 29, t′ � u′ so

t′w −∼ u′ for some string w. Assume w has the form b1 . . . bk. By lemma 29

and proposition 28, we necessarily have {t′b1 . . . bi}∼ ∈ ev(s) for all i where
0 < i ≤ k. Let

ui = t′b1 . . . bia

64

for 0 ≤ i ≤ k. We show by induction on i that ui ∈ M and ui ∼ t′a.
Certainly this holds for the basis when u0 = t′a. To establish the induction
step assume i > 0 and, inductively, that ui−1 = t′b1 . . . bi−1a ∈ M . Because
{t′b1 . . . bi−1a}∼ ∈ ev(t) and {t′b1 . . . bi−1bi}∼ ∈ ev(t) by assumption we have
a = bi or aIbi. However a �= bi because otherwise ui = t′b1 . . . bi−1bi making
{t′a}∼ ∈ ev(s), contrary to our assumption. Now that we know aIbi the
coherence axiom on trace languages ensures

ui = t′b1 . . . bi−1bia ∈ M.

In addition

ui = t′b1 . . . bi−1bia ∼ t′b1 . . . bi−1a = ui−1 ∼ t′a.

Thus by induction we have established that

ui ∈ M and ui ∼ t′a

for 0 ≤ i ≤ k. In particular

uk = t′b1 . . . bka = u′a ∈ M and uk ∼ t′a.

It follows that

ev(uk) = ev(u′) ∪ {{t′a}∼}
= ev(s) ∪ ev(t′) ∪ {{t′a}∼}
= ev(s) ∪ ev(t′a).

We can thus maintain the induction hypothesis whether or not {t′a}∼ ∈
ev(s). This establishes the “if” direction of the lemma by induction.

“only if”: Assume that ev(u) = ev(s) ∪ ev(t) for s, t, u ∈ M and that
the “only” if direction fails to hold. I.e. suppose {va}∼ ∈ ev(s), {vb}∼ ∈
ev(t)a �= b and ¬(aIb) for v ∈ M and a, b ∈ L. Then either u = u0au1bu2 with
va ∼ u0a and vb ∼ u0au1b, or the symmetric case with a and b interchanged.
In the former case we observe that

N(a, v) = N(a, u0) as va ∼ u0a by lemma 27,
< N(a, u0au1)

65

But N(a, v) = N(a, u0au1) as vb ∼ u0au1b by lemma 27. This, and the simi-
lar contradictions obtained in the symmetric case, demonstrate the absurdity
of our supposition, and thus the “only if” direction of the lemma. ✷

Remark The above lemma implies that the preorder � satisfies a finite
form of coherence in the sense that any pairwise bounded finite subset has a
least upper bound. The coherence axiom on trace languages was essential in
proving the “if” direction of the equivalence. Without the coherence axiom,
a finite form of bounded completeness can be demonstrated, i.e. a finite set
with an upper bound has a least upper bound. More precisely it can be
shown without use of the coherence axiom that

s � u & t � u ⇒ ∃v, w. u −∼ vw & ev(v) = ev(s) ∪ ev(t)

for all s, t, u ∈ M , from which the finite form of bounded completeness
follows.

The following lemma says that each event has a �-minimum representa-
tive.

Lemma 31 For all events e there is sa ∈ e such that

∀ta ∈ e. sa � ta.

Proof: We use a characterisation of ∼ in the proof. Define

sa ≺1 ta iff (t = sb & bIa) or s −∼ t.

for sa, ta in M . Take ∼1=def≺1 ∪ ≺−1
1 . Then it is easily seen that ∼= (∼1)

∗.

Let e be an event. Choose sa a �-minimal element of e. We show by
induction on k that

sa(∼1)
kta ⇒ sa � ta (8.1)

for ta ∈ e. As ∼= (∼1)
∗ the lemma follows.

The basic case, where k = 0, holds trivially. Assume inductively that
(8.1) holds for k. If sa(∼1)

k+1ta then sa(∼1)
kua ∼1 ta for some ua ∈ M .

From the induction hypothesis we obtain

sa � ua.

66

If ua ≺1 ta then (t = ub & bIa) for some b or u −∼ t, and in either case

ua � ta giving sa � ta, as required to maintain the induction hypothesis.
The rub comes if ua(≺1)

−1ta and this relation holds through u = tb and bIa
for some b. Gathering facts, we see

sa ∼ tba and su � tba with bIa

and that we require sa � ta.

By lemma 29 we get

ev(sa) ⊆ ev(tba) = ev(tab) = ev(ta) ∪ {{tab}∼}.

Thus if {tab}∼ /∈ ev(s) we obtain ev(sa) ⊆ ev(ta) and hence the required
sa � ta, by lemma 29.

We will show by contradiction that {tab}∼ /∈ ev(s). Suppose otherwise,
that {tab}∼ ∈ ev(s). Then

s = s0bs1 where s0b ∼ tab.

Suppose c ∈ s1 and ¬(cIb). Then

N(c, t) > N(c, s0)

which is impossible. Consequently s1Ib. Thus sa = s0bs1a ∼ s0s1ba ∼ s0s1a.

The fact that s0s1ab −∼ sa contradicts the �-minimality of sa. From this

contradiction we deduce {tab}∼ /∈ ev(s) from which, as remarked, the re-
quired sa � ta follows. ✷

The minimum representatives are used in defining the event structure as-
sociated with a trace language.

Definition: Let T = (M, L, I) be a trace language.
Define

tle(M, L, I) = (E,≤, #)

where

• E is the set of events of (M, L, I),

67

• ≤ is a relation between events e, e′ given by e ≤ e′ iff e ∈ ev(s) where
sa is a minimum representative of e′, and

• the relation e # e′ holds between events iff

∃e0, e
′
0. e0 #0 e′0 & e0 ≤ e & e′0 ≤ e′

where, by definition,

e0 #0 e′0 iff ∃v, a, b. va ∈ e0 & vb ∈ e′0 & ¬(a(I ∪ 1L)b).

Furthermore, define λT : E → L by taking λT ({sa}∼) = a. (From the defi-
nition of ∼, it follows that λT is well-defined as a function.)

Proposition 32 Let T = (M, L, I) be a trace language. Then the struc-
ture tle(T) = (E,≤, #) given by definition 8.3.1 is an event structure for
which

e ≤ e′ iff ∀s ∈ M. e′ ∈ ev(s) ⇒ e ∈ ev(s)

e#e′ iff ∀s ∈ M. e ∈ ev(s) ⇒ e′ /∈ ev(s).

Proof: The required facts follow by considering minimum representatives of
events. ✷

We now present the representation theorem for trace languages. We write

(M/ −∼ , � / −∼) for the partial order obtained by quotienting the preorder

� by its equivalence −∼ .

Theorem 33 Let T = (M, L, I) be a trace language. Let tle(T) = (E,≤, #).
There is an order isomorphism

Ev : (M/ −∼ , � / −∼) → D0(E,≤, #)

where Ev({s}
−∼

) = ev(s).

Moreover, for s ∈ M, x ∈ D0(E,≤, #) and a ∈ L,

(∃e. ev(s) e−→ x in D(E,≤,#) & λT (e) = a) ⇔ (sa ∈ M & ev(sa) = x). (†)

Proof: Let s ∈ M . By the “only if” direction of lemma 30 it follows that

68

ev(s) is a conflict-free subset of events. By lemma 31, ev(s) is downwards-
closed with respect to ≤. The fact that Ev is well-defined, 1-1, order pre-
serving and reflecting follows from lemma 29. To establish that Ev is an
isomorphism it suffices to check Ev is onto. To this end we first prove (†).

The “⇐” direction of the equivalence (†) follows directly, as follows. As-
sume sa ∈ M , and ev(sa) = x. Then taking e = {sa}

−∼
yields an event

for which ev(s)
e−→ x and λT (e) = a. To show “⇒”, assume ev(s)

e−→ x
and λT (e) = a. Let ta be a minimum representative of the event e. As x is
downwards-closed

ev(t) ⊆ ev(s).

Because x is conflict-free we meet the conditions of lemma 30 (“if” direction,
with s for s and ta for t) and obtain the existence of u ∈ M such that

ev(u) = ev(s) ∪ ev(ta) = x.

Hence s � u, i.e. sw −∼ u for some string w. But ev(s)
e−→ ev(sw), so w

must be a with sa ∈ e.

Now a simple induction on the size of x ∈ D0(E,≤, #) shows that there
exists s ∈ M for which ev(s) = x. From this it follows that Ev is onto, and
consequently that Ev is an order isomorphism. ✷

The representation theorem for trace languages establishes a connection
between trace languages and the pomset languages of Pratt [76]. Via the
representation theorem, each trace of a trace language T = (M, L, I) corre-
sponds to a labelled partial order of events (a partially ordered multiset or
pomset)—the partial order on events in the trace is induced by that of the
event structure and the labelling function is λT . The trace language itself
then corresponds to a special kind of pomset language; it is special chiefly
because the concurrency relations in the pomsets arise from a single indepen-
dence relation on the alphabet of labels, so consequently pomsets of traces
have no autoconcurrency—no two concurrent events have the same label.
(See [9], [80] and [30] for more details.)

Via the representation theorem we can see how to read the concurrency
relation of an event structure in trace-language terms:

69

Proposition 34 For a trace language T = (M, L, I) the construction tle(M,
L, I) is an event structure in which the concurrency relation satisfies

e co e′ iff ∃va, vb ∈ M. va ∈ e & vb ∈ e′ & aIb. (†)

Proof: We show (†).
“if” : Assume va ∈ e, vb ∈ e′ with aIb. Then certainly va, vb are compatible
as traces making ¬e#e′. Moreover e, e′ /∈ ev(v) (by e.g. proposition 28)
ensuring neither e ≤ e′ nor e′ ≤ e, whence e co e′.
“only if”: Assuming e co e′ there are distinct configurations x = (!e"\{e})∪
(!e′" \ {e′}) and x1 = x ∪ {e}, x2 = x ∪ {e′}, y = x ∪ {e, e′}. From the
representation theorem 33 there is v ∈ M such that ev(v) = x. Assume
λT (e) = a and λT (e′) = b. By (†) of the representation theorem, as x

e−→ x1

we obtain va ∈ M with ev(va) = x1. It follows that va ∈ e. Again by (†) of

the representation theorem, this time because x1
e′−→ y we obtain vab ∈ M

with ev(vab) = y. It follows that vab ∈ e′. Similarly, it can be shown that
vb ∈ M and vb ∈ e′. Because both vab and vb are representatives of the
event e′, it follows directly that vb ∼ vab. If ¬(aIb) then lemma 27 would
imply N(a, v) = N(a, va). But this is clearly absurd, yielding aIb. We have
produced the va, vb ∈ M required. ✷

8.3.2 A coreflection

The representation theorem extends to a coreflection between the categories
of event structures and trace languages.

Definition: Let ES be an event structure with events E. Define etl(ES) to
be (M, E, co), where s = e1 . . . en ∈ M iff there is a chain

∅ e1−→ x1
e2−→ x2 . . .

en−→ xn

of configurations of ES.
Let η be a morphism of event structures η : ES → ES ′. Define etl(η) = η.

Proposition 35 etl is a functor E → TL.

Proof: The only nontrivial part of the proof is that showing that η is a

70

morphism from etl(E) to etl(E ′) provided η is a morphism ES → ES ′.
However, this follows from the proposition 20 and the observation that if a
sequence of events s is associated with a chain of configurations in ES then
η̂(s) is associated with a chain of configurations in ES ′. ✷

The function λT , for T a trace language, will be the counit of the adjunc-
tion.

Proposition 36 Let T = (M, L, I) be a trace language. Then,

λT : etl ◦ tle(T) → T

is a morphism of trace languages.

Proof: Let e1e2 · · · en be a string in the trace language etl ◦ tle(T). Then
there is a chain of configurations of the event structure tle(T)

∅ e1−→ {e1} e2−→ {e1, e2} . . .
en−→ {e1, e2, · · · , en}

By repeated use of (†) in the representation theorem 33, we obtain that

λ̂T (e1e2 · · · en) ∈ M . If e co e′, for events e, e′, then by proposition 34, it
follows directly that λT (e)IλT (e′). Thus λT : etl ◦ tle(T) → T is a morphism
of trace languages. ✷

Lemma 37 Let ES = (E,≤, #) be an event structure, such that etl(ES) =
(M, E, co). Let λ : etl(ES) → T ′ be a morphism in TL. If λ(e) is defined
then for all se, s′e ∈ M

λ̂(se) ∼ λ̂(s′e)

n T ′ = (M ′, L′, I ′).

Proof: It suffices to consider the following two cases.
The first case is where we assume s = ue0e1v and s′ = ue1e0v where u, v ∈ E∗,
e0, e1 ∈ E, e0 co e1 in ES: In this case e0 and e1 are independent in etl(ES).
But then λ(e0)I

′λ(e1) in T ′ if both defined (from properties of morphisms in
TL), and hence λ̂(ue0e1v) ∼ λ̂(ue1e0v) in T ′.
The second case arises when s = s′e′ for some e′ ∈ E such that e co e′ in ES:
In this case e and e′ are independent in etl(ES). But then λ(e)I ′λ(e′) in T ′

if λ(e′) is defined and hence λ̂(se) ∼ λ̂(s′e). ✷

71

Theorem 38 Let T ′ = (M ′, L′, I ′) be a trace language. Then the pair
etl ◦ tle(T ′), λT ′ , is cofree over T ′ with respect to the functor etl. That
is, for any event structure ES and morphism λ : etl(ES) → T ′ there is a
unique morphism η : ES → tle(T ′) such that λ = λT ′ ◦ etl(η).

Proof: Let ES = (E,≤, #), tle(T ′) = (E ′,≤′, #′) and etl(ES) = (M, E, co).
Define η : E →∗ E ′ by

η(e) =

{
∗ if λ(e) = ∗
{λ(se)}∼, where se ∈ M , if λ(e) �= ∗

It follows from lemma 37 that η is a well-defined partial function from E to
E ′. We need to prove that

(a) η is a morphism ES → tle(T ′)

(b) λ = λT ′ ◦ η

(c) η is unique satisfying (a) and (b).

(a): To prove (a), that η is a morphism, it suffices by proposition 21 to prove
(i) and (ii) below.
(i) For every e ∈ E, if η(e) is defined then !η(e)" ⊆ η(!e")
Choose se ∈ M such that the occurrences in s equal !e" (in ES). Assume
x′a′ ∈ M ′ such that

{x′a′}∼ ≤ {λ̂(se)}∼ in tle(T ′). (∗)

We have to prove the existence of e0 ∈ !e" in E such that {x′a′}∼ = η(e0).
But from (∗) we may choose a minimal prefix s0e0 of se such that x′a′ ∼
λ̂(s0e0), with e0 ∈ !e" from which we conclude the desired property.
(ii) For all e, e′ ∈ E. η(e)VV′η(e′) ⇒ eVVe′

Suppose ¬eVVe′ and η(e), η(e′) are both defined. There are essentially two
cases to consider, one where e co e′ and the other where e < e′ (or symmet-
rically e′ < e). Firstly assume e co e′ in ES. Then

eIe′ in etl(ES) & se ∈ M & se′ ∈ M,

for some s ∈ M . Applying the morphism λ, we obtain

λ(e)I ′λ(e′) in T ′ & λ̂(se) ∈ M ′ &λ̂(se′) ∈ M.

72

But now

η(e) co η(e′) in tle(T ′)

from proposition 34.
Secondly, assuming e < e′ in ES, there are s, s′ ∈ E∗ such that

ses′e′ ∈ M.

Applying λ,

λ̂(ses′e′) ∈ M ′.

Thus

η(e) ∈ ev(λ̂(ses′e′)) & η(e′) ∈ ev(λ̂(ses′e′)),

from which it follows that ¬η(e)#′η(e′) in tle(T ′), by proposition 32. Fur-
thermore, from ses′e′ ∈ M , we get η(e) �= η(e′); the assumption η(e) = η(e′)
implies λ(e) = λ(e′), but λ̂(se) ∼ λ̂(ses′e′) contradicts lemma 27. This com-
pletes the proof of (a).
(b): If λ(e) = ∗ then η(e) = ∗, so (λT ′ ◦ η)(e) = ∗. If λ(e) defined then
η(e) = {λ̂(se)}∼ for some se ∈ M . This implies λT ′(η(e)) = λ(e) by the
definition of λT ′ . Hence λ = λT ′ ◦ η.
(c): We now show the uniqueness of η. Assume η′ is any morphism from E
to tle(T), such that λT ′ ◦ η′ = λ. We want to show η(e) = η′(e) for all e ∈ E.
Let x

e−→ x ∪ {e} in ES, and assume inductively that η and η′ agree on all
elements of x. Firstly, from the assumption λT ′ ◦ η′ = λ we get η′(e) defined
iff λ(e) defined (since λT ′ is total) and hence iff η(e) defined. So, assume

η′(e) is defined and equal to e′. Then η′(x)
e′−→ η′(x ∪ {e}) in tle(T ′) (since

η′ morphism) and λT ′ = λ(e). However, from the representation theorem for
trace languages, it follows that there is exactly one event in tle(T ′) satisfying
these requirements—the one picked by η, and hence η(e) = η′(e). ✷

Corollary 39 The operation tle on trace languages extends to a functor,
right adjoint to etl, forming a coreflection E XL; the functor tle sends
the morphism λ : T → T ′ to η : tle(T) → tle(T ′) acting on events {sa}∼ of
tle(T) so that

η({sa}∼) =

{ ∗ if λ(a) undefined

{λ̂(sa)}∼, if λ(a) defined.

73

Proof: It follows from theorem 38 that tle extends to a functor, acting as
described, so that the pair of functors form an adjunction. From the proof
of theorem 38, the unit of this adjunction at ES is the morphism

η : ES → tle ◦ etl(ES)

given by η(e) = {se}∼, where se is a possible sequence of events of ES. It is
easy to see that η is an isomorphism with inverse η−1 : tle ◦ etl(ES) → ES
such that

η−1({se}∼) = e.

✷

The coreflection expresses the sense in which the model of event struc-
tures “embeds” in the model of trace languages. Because of the coreflection
we can restrict trace languages to those which are isomorphic to images of
event structures under etl and obtain a full subcategory of trace languages
equivalent to that of event structures.

The existence of a coreflection from event structures to trace languages
has the important consequence of yielding an explicit product construction
on event structures, which is not so easy to define directly. The product of
event structures E0 and E1 can be obtained as

tle(etl(E0)× etl(E1)),

that is by first regarding the event structures as trace languages, forming
their product as trace languages, and then finally regarding the result as an
event structure again. That this result is indeed a product of E0 and E1

follows because the right adjoint tle preserves limits and the unit of the ad-
junction is a natural isomorphism (i.e. from the coreflection). In a similar
way we will be able to obtain the product of event structures from that of
nets, asynchronous transition systems, or indeed more general event struc-
tures, from the coreflections between categories of event structures and these
models.

8.3.3 A reflection

The existence of a coreflection from the category of event structures to the
category of trace languages might seem surprising, at least when seen along-

74

side the analogous interleaving models, where we might think of trace lan-
guages as the analogue of languages. There is a reflection from the category
of languages to the category of synchronisation trees.

This mismatch can be reconciled by recalling the two ways of regarding
trace languages (cf. the discussion of section 7.2). One is that where the
alphabet of a trace language is thought of a consisting of events; this view is
adopted in establishing the coreflection. Alternatively, the alphabet can be
thought of as a set of labels. With the latter view a more correct analogy is:

• Labelled event structures generalise synchronisation trees.

• Trace languages generalise languages.

As we will see shortly, this analogy can be formalised in a diagram of ad-
junctions.

In order to define the appropriate category of labelled event structures we
first define the category SetI of sets with independence. It consists of objects
(L, I) where L is a set and I, the independence relation, is a binary, irreflexive
relation on L, and morphisms (L, I) → (L′, I ′) to be partial functions λ :
L →∗ L′ which preserve independence in the sense that

aIb & λ(a) defined & λ(b) defined ⇒ λ(a)I ′λ(b);

composition is that of partial functions.

The category of labelled event structures LI(E) has objects (ES, l :
(E, co) → (L, I)) where ES is an event structure with events E, and con-
currency relation co, and the labelling function l : (E, co) → (L, I) is a total
function in SetI (which therefore sends concurrent events to independent
labels). We remark that one way an ordinary set L can be regarded as a set
with independence is as (L, L×L\1L). The restriction on labelling functions
to such sets with independence amounts to the commonly used restriction of
banning autoconcurrency [25]. A morphism in LI(E) has the form

(η, λ) : (ES, l : (E, co) → (L, I)) → (ES ′, l′ : (E ′, co′) → (L′, I ′))

and consists of a morphism of event structures

η : ES → ES ′

75

and a morphism

λ : (L, I) → (L′, I ′)

in SetI such that

l′ ◦ η = λ ◦ l.

The right adjoint of a reflection is E : TL → LI(E) defined as follows:

Definition: Let T = (M, L, I) be a trace language. Define E(M, L, I) to be
(E,≤, #, λT) where (E,≤, #) is the event structure tle(T) and λT : (E, co) →
(L, I) in SetI is given by the counit at T of the coreflection between (unla-
belled) event structures and trace languages.

Let λ : T → T ′ be a morphism of trace languages. Define E(λ) to be
(tle(λ), λ).

In constructing a left adjoint we make use of a relabelling operation on
trace languages, where the relabelling function preserves independence. The
operation is described in the following proposition.1

Proposition 40 Let λ : (L′, I ′) → (L, I) be a morphism in SetI . Let
(M ′, L′, I ′) be a trace language. Define λ!(M

′, L′, I ′) to be (M, L, I) where M
is the smallest prefix-close, I ′-closed and coherent subset (as in the definition
of trace languages) containing λ̂M ′. Then λ : (M ′, L′, I ′) → λ!(M

′, L′, I ′) is
a morphism of trace languages.

Let (ES, l) be a labelled event structure in LI(E). Under the coreflection
the event structure ES can be a regarded as a trace language etl(ES) over
an alphabet consisting of its events. Proposition 40 provides a morphism

etl(ES) → l! ◦ etl(ES),

used in defining the left-adjoint of the reflection T : LI(E) → TL, given by:

Definition: Let (ES, l) ∈ LI(E), where ES = (E,≤, #) and l : (E, co) →
(L, I) in SetI . Define

T (ES, l) = l! ◦ etl(ES)

1In fact, proposition 40 shows how to construct cocartesian liftings of the functor
projecting morphisms λ : (M ′, L′, I ′) → (M, L, I) in TL to morphisms λ : (L′, I ′) → (L, I)
in SetI .

76

For (η, λ) : (ES, l) → (ES ′, l′) a morphism of LI(E), define T (η, λ) = λ.

The proof that E and T constitute a reflection uses the coreflection of
section 8.3.2. It hinges on the pun in which a set of events is regarded simul-
taneously as a set of labels.

Theorem 41 E : TL → LI(E) and T : Li(E) → TL are functions with T
left adjoint to E . In fact, if T = (M, L, I) is a trace language then

1L : T E(T) → T

is the counit at T making the adjunction a reflection.

Proof: It is easy to check E , T are functors. The fact that T E(T) = T
follows from the representation theorem (theorem 33), and ensures that
1L : T E(T) → T is a morphism in TL, for any T ∈ TL with labelling
set L.

Let (ES, l) ∈ LI(E), with l : (E, co) → (L′, I), and T = (M, L, I) ∈ TL.
We show the cofreeness property, that for any λ : T (ES, l) → T there is a
unique morphism (η, λ) : (ES, l) → E(T) such that

commutes. This follows from a corresponding cofreeness property associated
with the coreflection E TL, as we now show.

First note, the cocartesian morphism

l : etl(ES) → l! ◦ etl(ES) = T (ES)

composes with

λ : T (ES) → T

to yield a morphism

λ ◦ l : etl(ES) → T.

77

By definition, (η, λ) : (ES, l) → E(T) = (tle(T), λT) is a morphism in
LI(E) iff η : ES → tle(T) is a morphism in E and λT ◦ η = λ ◦ l. This is
equivalent to η : ES → tle(T) is a morphism in E such that the following
diagram commutes:

But the coreflection between E TL ensures the existence of a unique such
η : ES → tle(T). ✷

The reflection

L S

between the interleaving models of Hoare languages and synchronisation
trees, is paralleled by the reflection

TL LI(E)

between the noninterleaving models of labelled event structures and Mazur-
kiewicz trace languages. The strings in the Hoare languages are generalised to
Mazurkiewicz traces. We can view the relationship in another way which re-
lates to Pratt’s work. A Mazurkiewicz trace corresponds to a pomset which
has no autoconcurrency (no two concurrent events share the same label).
Mazurkiewicz trace languages correspond to particular kinds of pomset lan-
guages, ones which are, in particular, associated with a global independence
relation between actions. (See [9] for a precise characterisation.)

78

In more detail we have these reflections and coreflections:

The vertical coreflections have not been explained. Their left adjoints iden-
tify a synchronisation tree with a labelled event structure (the events are
arcs), and a language with a trace language. In both cases the independence
relation is taken to be empty.

What model is to generalise both transition systems and labelled event
structures? A suitable model would consist of labels attached to certain
structures; a fitting structure should allow loops in the behaviour and have
events on which it is possible to interpret a relation of independence. There
are several candidates for the appropriate structures, and we turn now to
consider one of the earliest used.

79

Chapter 9

Petri nets

Petri nets are a well-known model of parallel computation. They come in
several variants, and we choose one which fits well with the other models of
computation we have described (a good all-round reference on Petri nets is
[2]). Roughly, a Petri net can be thought of as a transition system where,
instead of a transition occurring from a single global state, an occurrence of
an event is imagined to affect only the conditions in its neighbourhood. The
independence of events becomes a derived notion; two events are independent
if their neighbourhoods of conditions do not intersect. As the definition of a
Petri net (or simply net) we take:

Definition: A Petri net consists of (B, M0, E, pre, post) where

B is a set of conditions, with initial marking M0 a nonempty
subset of B,
E is a set of events, and
pre : E → Pow(B) is the precondition map such that pre(e) is
nonempty for all e ∈ E,
post : E → Pow(B) is the postcondition map such that post(e)
is nonempty for all e ∈ E.

A Petri net comes with an initial marking consisting of a subset of con-
ditions which are imagined to hold initially. Generally, a marking, a subset
of conditions, formalizes a notion of global state by specifying those condi-
tions which hold. Markings can change as events occur, precisely how being

80

expressed by the transitions

M
e→ M ′

events e determine between markings M , M ′. In defining this notion it is
convenient to extend events by an “idling event”.

Definition: Let N = (B, M0, E, pre, post) be a Petri net with events E.
Define E∗ = E ∪ {∗}.
We extend the pre and post condition maps to ∗ by taking

pre(∗) = ∅, post(∗) = ∅.

Notation: Whenever it does not cause confusion we write •e for the pre-
conditions pre(e) and e• for the postconditions, post(e), of e ∈ E∗. We write
•e• for •e ∪ e•.

Definition: Let N = (B, M0, E, pre, post) be a net.
For M, M ′ ⊆ B and e ∈ E∗, define

M
e→ M ′ iff •e ⊆ M & e• ⊆ M ′ & M \• e = M ′ \ e•.

Say e0, e1 ∈ E∗ are independent iff •e• ∩• e• = ∅.

A marking M of N is said to be reachable when there is a sequence of events,
possibly empty, e,e2, . . . , en such that

M0
e1→ M2

e2→ · · · en→ Mn = M.

in N .

There is an alternative characterisation of the transitions between mark-
ings induced by event occurrences:

Proposition 42 Let N be a net with markings M , M ′ and event e. Then

M
e→ M ′ iff (1)•e ⊆ M & e• ∩ (M \• e) = ∅ and

(2)M ′ = (M \• e) ∪ e•.

81

Property (1) expresses that the event e has concession at the marking
M , while property (2) shows that the marking resulting from the occurrence
of an event at a marking is unique.

We illustrate by means of a few small examples how nets can be used
to model nondeterminism and concurrency. We make use of the commonly
accepted graphical notations for nets in which events are represented by
squares, conditions by circles and the pre and post condition maps by di-
rected arcs. The holding of a condition is represented by marking it by a
“token”; the distribution of tokens changes as the “token game” expressed
in section 9 takes place.

Example:
(1) Concurrency:

The events 1 and 2 can occur concurrently, in the sense that they both have
concession and are independent in not having any pre or post conditions in
common.

(2) Forwards conflict: Backwards conflict:

Either one of events 1 and 2 can occur, but not both. This shows how non-
determinism can be represented in a net.

82

(3) Contact:

The event 2 has concession. The event 1 does not—its post condition holds—
and it can only occur after 2.

Example (3) above illustrates contact. In general, there is contact at a
marking M when for some event e

•e ⊆ M & e• ∩ (M •e) �= ∅.

Definition: A net is said to be safe when contact never occurs at any
reachable marking.

Many constructions on nets preserve safeness. As we shall see any net can
be turned into a safe net with essentially the same behaviour—this follows
from the coreflection between certain asynchronous transition systems and
nets dealt with in section 10.2.2.

Example: We illustrate how one might model the customer-vending ma-
chine example of 3.3 by a net. We can represent its components by following
nets, in which the events are labelled:

Their composition as SYS can be represented by the following labelled net:

83

The fact that the b-event can occur concurrently (or in parallel with) either
of the c2-events is reflected in the bevent and c2-event both having concession
and being independent.

As this example makes clear, what’s needed are operations on nets to
build up this net description (or one with essentially the same behaviour)
These will appear as universal constructions in the category of labelled nets.

9.1 A category of Petri nets

As morphisms on nets we take:1

Definition: Let N = (B, M0, E, pre, post) and N ′ = (B′, M ′
0, E

′, pre ′, post ′)
be nets. A morphism (β, η) : N → N ′ consists of a relation β ⊆ B×B′, such
that Bop is a partial function B′ → B, and a partial function η : E → E ′

such that

βM0 = M ′
0,

β•e = •η(e) and
βe• = η(e)•

Thus morphisms on nets preserve initial markings and events when de-
fined. A morphism (β, η) : N → N ′ expresses how occurrences of events
and conditions in N induce occurrences in N ′. Morphisms on nets preserve
behaviour:

1The morphisms on nets will preserve the transition-and-independence behaviour of
nets while, as usual, respecting a choice of granularity fixed by the events. The rich struc-
ture of conditions on nets leaves room for variation, and another definition of morphism
gives sensible results on the subclass of safe nets—see section 10.3.2.

84

Proposition 43 Let N = (B, M0, E, pre, post), N ′ = (B′, M ′
0, E

′, pre ′, post ′)
be nets. Suppose (β, η) : N → N ′ is a morphism of net.

• If M
e→ M ′ in N then βM

η(e)→ βM ′ in N ′.

• If •e•1 ∩• e•2 = ∅ in N then •η(e1)
• ∩• η(e2)

• = ∅ in N ′.

Proof: By definition,

•η(e) = β•e• and η(e)• = βe•

for e an event of N . Observe too that because βop is a partial function, β
in addition preserves intersections and set differences. These observations

mean that βM
η(e)→ βM ′ in N ′ follows from the assumption that M

e→ M ′ in
N , and that independence is preserved. ✷

Proposition 44 Nets and their morphisms form a category in which the
composition of two morphisms (β0, η0) : N0 → N1 and (β1, η1) : N1 → N2 is
(β1 ◦ β0, η1 ◦ η0) : N0 → N2 (composition in the left component being that of
relations and in the right that of partial functions).

Definition: Let N be the category of nets described above.

9.2 Constructions on nets

We examine some of the more important constructions in the category of
nets. There are several constructions on nets which achieve the behaviour
required of a nondeterministic sum of processes. We describe a coproduct in
the category of nets.

Definition: Let N0 = (B0, M0, E0, pre0, post0) and N1 = (B1, M1, E1, pre1,
post1) be nets. Define N0 + N1 to be (B, M, E, pre, post) where

B = M0 ×M1 ∪ (B0 \M0)×∗ (B1 \M1),

which is associated with relations j0 ⊆ B0 ×B, j1 ⊆ B1 ×B given by

85

b0j0c ⇔ ∃b1 ∈ B1 ∪ {∗}. c = (b0, b1)

b1j1c ⇔ ∃b0 ∈ B0 ∪ {∗}. c = (b0, b1), and further

M = M0 ×M1,

E = E0 � E1, a disjoint union associated with injections

in0 : E0 → E1, in1 : E1 → E, and finally

pre(e) = j0 ◦ pre0(e0) and

post(e) = j0 ◦ post0(e0) if e = in0(e0), and

pre(e) = j1 ◦ pre1(e1) and

post(e) = j1 ◦ post1(e1) if e = in1(e1).

The only peculiarity in this definition is the way in which the conditions
are built. However, note that the relation β in any morphism

(β, η) : N → N ′

of nets N , N ′, with conditions B, B′ and initial markings M , M ′ respectively,
corresponds to a pair of functions

βop : (B′ \M ′) → (B \M) in Set∗,
βop : M ′ → M in Set.

Thus it is to be expected that the conditions of a coproduct of nets corre-
spond to products in Set∗× Set. This remark handles the only obstacle in
the proof of:

Proposition 45 The construction N0 + N1 above is a coproduct in the cat-
egory of nets N with injections (j0, in0) : N0 → N0 + N1, (j1, in1) : N1 →
N0 + N1.

86

Example:
(1)

(2)

In general the coproduct of nets can behave strangely, and allow a mix
of behaviours from the two component nets. However, in the case where the
component nets are safe, as they are in the example above, their coproduct
is safe too and has a behaviour which can be described in terms of that of
the components using the injection morphisms.

Lemma 46 Suppose N0, N1 are safe nets with initial markings M0, M1

respectively. Then their coproduct N0 + N1 is safe. Moreover:

87

(1a) Two events in0(e0), in0(e
′
0) are independent in N0 + N1 iff events

e0, e
′
0 are independent in N0. Similarly, two events in1(e1), in1(e

′
1)

are independent in N0 + N1 iff events e1, e
′
1 are independent in N1.

(1b) Two events in0(e0), in1(e1) are independent in N0 + N1 iff

•e•0 ⊆ M0 in N0 & •e•1 ∩M1 = ∅ in N1, or
•e•1 ⊆ M1 in N1 & •e•0 ∩M0 = ∅ in N0.

(2) X is reachable & X
e→ X ′ in N0 + N1 iff

∃e0, reachable X0, X
′
0

e = in0(e0) & X0
e0→ X ′

0 in N0 & X = j0X0 & X ′ = j0X
′
0, or

∃e1, reachable X1, X
′
1.

e = in1(e1) & X1
e1→ X ′

1 in N1 & X = j1X1 & X ′ = j1X
′
1

Proof: (1a) is obvious, and (1b) follows from the way the conditions of the
coproduct are constructed. The “if” direction of (2) follows as the injec-
tions are morphisms. The “only if” direction follows by showing: if X0 is a
reachable marking of N0 and j0X0

e→ X ′ in N0 + N1 then either

(a) e = in1 & X0 = M0 & X ′ = j1X
′
1 & M1

e1→ X ′
1, for some event

e1 and marking X ′
1 of N1, or

(b) e = in0(e0) & X ′ = j0X
′
0 & X0

e0→ X ′
0 in N0, for some event e0

and marking X ′
0 of N0.

To show this, assume j0X0
e→ X ′ in N0 + N1 where X0 is a reachable

marking of N0. Consider first the case where e = in1(e1). Because in1(e1)
has concession at j0X0

•in1(e1) ⊆ j0X0

from which we see

•e1 ⊆ M1

—otherwise in1(e1) would have a precondition of the form (∗, b1) which can-
not be in the image j0X0 of the marking X0 of N0. Because, by assumption,

88

we have some b1 ∈• e1 we see that

M0 × {b1} ⊆• in1(e1)

Because we now have

M0 × {b1} ⊆ j0X0

it follows that M0 ⊆ X0. But N0 is safe and X0 is assumed reachable from
M0, so we must have M0 = X0—otherwise a repetition of the same “token
game” which led from M0 to X0, but this time starting from X0, would lead
to contact. Letting X ′

1 be the marking such that M1
e1→ X ′

1 we calculate

X ′ = (j0X0 \• in1(e1)) ∪ in1(e1)
•

= (M0 ×M1 \• in1(e1)) ∪ in1(e1)
•

= (j1M1 \ j1
•e1) ∪ j1 e•j

= j1((M1 \• e1) ∪ e•1)
= j1X

′
1

This establishes (a) in the case where e = in1(e1). In the other case, where
e = in0(e0), a similar but easier argument establishes (b). An analogous
result holds for N1 in place of N0. The “only if” direction of (2) now follows.

Suppose N0 + N1 were not safe. Then

•e ⊆ X & e• ∩ (X \• e) �= ∅

for some reachable marking X and event e of N0 + N1. Suppose e = in0(e0).
Then by the results above, without loss of generality, we can suppose that
X = j0X0 for some reachable marking X0 of N0. By the definition of the pre
and post conditions of events of N0 + N1 we then obtain

•e0 ⊆ X0 & e•0 ∩ (X0 \• e0) �= ∅

contradicting the assumption that N0 is safe. ✷

The product of nets and its behaviour are more straightforward, and as
is to be expected correspond to a synchronisation operation on nets.

89

Definition: Let N0 = (B0, M0, E0, pre0, post0) and N = (B1, M1, E1, pre1,
post1) be nets. Their product N0 ×N1 = (B, E, M, pre, post); it has events

E = E0 ×∗ E1,

the product in Set∗ with projections π0 : E →∗ E0 and π1 : E →∗ E1.
Its conditions have the form B = B0 � B1 the disjoint union of B0 and B1.
Define ρ0 to be the opposite relation to the injection ρop

0 : B0 → B. Define
ρ1 similarly. Take M = ρop

0 M0 + ρop
1 M1 as the initial marking of the product.

Define the pre and postconditions of an event e in the product in terms of
its pre and postconditions in the components by

pre(e) = ρop
0 [pre0(π0(e))] + ρop

1 [pre1(π1(e))]

post(e) = ρop
0 [post0(π0(e))] + ρop

1 [post1(π1(e))]

Proposition 47 The product N0×N1, with morphisms (ρ0, π0) and (ρ1, π1),
is a product in the category of Petri nets.

Proposition 48 The behaviour of a product of nets N0×N1 is related to the
behaviour of its components N0 and N1 by

M
e−→ M ′ in N0 ×N1 iff (ρ0M

π0(e)−→ ρ0M
′ in N0 & ρ1M

π1(e)−→ ρ1M
′ in N1).

Example: The product of two nets:

90

Chapter 10

Asynchronous transition
systems

Asynchronous transition systems deserve to be better known as a model of
parallel computation. They were introduced independently by Bednarczyk
in [5] and Shields in [84]. The idea on which they are based is simple enough:
extend transition systems by, in addition, specifying which transitions are
independent of which. More accurately, transitions are to be thought of
as occurrences of events which bear a relation of independence. This in-
terpretation is sunnorted by axioms which essentially generalise those from
Mazurkiewicz languages.

Definition: An asynchronous transition system consists of (S, i, E,Tran)
where (S, i, E,Tran) is a transition system, I ⊆ E2, the independence rela-
tion is an irreflexive, symmetric relation on the set E of events such that

(1) e ∈ E ⇒ ∃s, s′ ∈ S. (s, e, s′) ∈ Tran

(2) (s, e, s′) ∈ Tran & (s, e, s′′) ∈ Tran ⇒ s′ = s′′

(3) e1Ie2 & (s, e1, s1) ∈ Tran & (s, e2, s2) ∈ Tran
⇒ ∃u.(s1, e2, u) ∈ Tran & (s2, e1, u) ∈ Tran

(4) e1Ie2 & (s, e1, s1) ∈ Tran & (s1, e2, u) ∈ Tran
⇒ ∃s2.(s, e2, s2) ∈ Tran & (s2, e1, u) ∈ Tran

91

Axiom (1) says every event appears as a transition, and axiom (2) that
the occurrence of an event at a state leads to a unique state. Axioms (3) and
(4) express properties of independence: if two events can occur independently
from a common state then they should be able to occur together and in so
doing reach a common state (3); if two independent events can occur one
immediately after the other then they should be able to occur with their
order interchanged (4). Both situations lead to an “independence square”
associated with the independence e1Ie2:

Axiom (3) corresponds to the coherence axiom on Mazurkiewicz trace lan-
guages, and, as there, a great deal of the theory can be developed without it.1

Example: We return to the example of 3.3. The transition system rep-
resenting SY S, in section 3.3 cannot be the underlying transition system of
an asynchronous transition system with events identified with labels—there
are, for example distinct c2 transitions from the initial state. If however we
distinguish between the two ways in which c2 can occur, and take the set of
events to be

{b, c, c1, c
′
2, c

′′
2, t}

and explicitly assert the independencies

b I c′2 and b I c′′2

we can obtain an asynchronous transition system with transitions

1Without axiom (3) asynchronous transition systems generate Mazurkiewicz trace lan-
guages, but without the coherence axiom, and unfold to more general event structures
than those with a binary conflict.

92

The parallelism is caught by the independence squares (two upper and one
lower).

Morphisms between asynchronous transition systems are morphisms be-
tween their underlying transition systems which preserve the additional re-
lations of independence.

Definition: Let T = (S, i, E, I,Tran) and T ′ = (S ′, i′, E ′, I ′,Tran ′) be asyn-
chronous transition systems. A morphism T → T ′ is a morphism of transition
systems

(σ, η) : (S, i, E,Tran) → (S ′, i′, E ′,Tran ′)

such that

e1Ie2 & η(e1), η(e2) both defined ⇒ η(e1)I
′η(e2).

Morphisms of asynchronous transition systems compose as morphisms be-
tween their underlying transition systems, and are readily seen to form a
category.

Definition: Write A for the category of asynchronous transition systems.

The category A has categorical constructions which essentially generalise
those of transition systems and Mazurkiewicz traces. Here are the product
and coproduct constructions for the category A:

Definition: Assume asynchronous transition systems T0 = (S0, i0, E0, I0,
Tran0) and T1 = (S1, i1, E1, I1, Tran1). Their product T0 × T1 is (S, i, E, I,

93

Tran) where (S, i, E,Tran) is the product of transition systems (S0, i0, E0,
Tran0) and (S1, i1, E1,Tran1) with projections (ρ0, π0) and (ρ1, π1), and the
independence relation I is given by

aIb ⇔ (π0(a), π0(b) defined ⇒ π0(a)I0π0(b)) &
(π1(a), π1(b) defined ⇒ π1(a)I1π1(b)).

Definition: Assume asynchronous transition systems T0 = (S0, i0, E0, I0,
Tran0) and T1 = (S1, i1, E1, I1,Tran1). Their coproduct T0 + T1 is (S, i, E, I,
Tran) where (S, i, E,Tran) is the coproduct of transition systems (S0, i0, E0,
Tran0) and (S1, i1, E1, Tran1) with injections (in0, j0) and (in1, j1), and the
independence relation I is given by

aIb ⇔ (∃a0, b0. a = j0(a0) & b = j0(b0) & a0I0b0) or
(∃a1, b1. a = j1(a1) & b = j1(b1) & a1I1b1)

10.1 Asynchronous transition systems and

trace languages

That asynchronous transition systems generalise trace languages is backed
up by a straightforward coreflection between categories of trace languages
and asynchronous transition systems. To obtain the adjunction we need to
restrict trace languages to those where every element of the alphabet occurs
in some trace (this matches property (1) required by the definition of asyn-
chronous transition systems).

Definition: Define TL0 to be the full subcategory of trace languages (M, E, I)
satisfying

∀e ∈ E∃s. se ∈ M.

A trace language forms an asynchronous transition system in which the
states are traces.

Definition: Let (M, E, I) be a trace language in TL0, with trace equiv-

94

alence −∼ . Define tla(M, E, I) = (S, i, E, I,Tran) where

S = M −∼ with i = {ε}
−∼

(t, e, t′) ∈ Tran ⇔ ∃s, se ∈ M. t = {s}
−∼

& t′ = {se}
−∼

Let η : (M, E, I) → (M ′, E ′, I ′) be a morphism of trace languages. Define
tla(η) = (σ, η) where

σ({s}
−∼

) = {η̂(s)}
−∼

.

(Note this is well-defined because morphisms between trace languages respect
−∼ —this follows directly from proposition 17.)

Proposition 49 The operation tla is a functor TL0 → A.

An asynchronous transition system determines a trace language:

Definition: Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem. Define atl(T) = (Seq , E, I) where Seq consists of all strings of events,
possibly empty, e1e2 . . . en for which there are transitions

(i, e1, s1), (s1, e2, s2), . . . , (sn−1, en, sn) ∈ Tran

Let (σ, η) : T → T ′ be a morphism of asynchronous transition systems. De-
fine atl(σ, η) = η.

Proposition 50 The operation atl is a functor A→ TL0.

In fact, the functors tla, atl form a coreflection:

Theorem 51 The functor atl : TL0 → A is left adjoint to tla : A→ TL0.

Let L = (M, E, I) be a trace language. Then atl◦tla(M, E, I) = (M, E, I)
and the unit of the adjunction at (M, E, I) is the identity 1E : (M, E, I) →
atl ◦ tla(M, E, I).

Let T be an asynchronous transition system, with events E. Then (σ, 1E) :
tla ◦ atl(T) → T is the counit of the adjunction at T , where σ(t), for a trace

95

t = {e1e2 . . . en}−∼
, equals the unique state s for which i

e1e2...en−→ s.

Proof: Let L = (M, E, I) be a trace language in TL0 and T = (S, i, E ′, I ′,Tran ′)
be an asynchronous system. Given a morphism of trace languages

η : L → atl(T)

there is a unique morphism of asynchronous transition systems

(σ, η) : tla(L) → T

—the function σ must act so σ(t), on a trace t = {e1e2 . . . en}−∼
, equals the

unique state sn for which there are transitions, possibly idle,

(i, η(e1), s1), (s1, η(e2), s2), . . . , (sn−1, η(en), sn)

in T . That this is well-defined follows from T satisfying axiom 4 in the
definition of asynchronous transition systems. The stated coreflection, and
the form of the counit, follow. ✷

The coreflection does not extend to an adjunction from TL to A—TL0

is a reflective and not a coreflective subcategory of TL.

We note that a coreflection between event structures and asynchronous
transition systems follows by composing the coreflections between event struc-
tures and trace languages and that between trace languages and asynchronous
transition systems. It is easy to see that the coreflection E TL restricts
to a coreflection to E TL0. The left adjoint of the resulting coreflection,
is the composition

E
etl−→ TL0

tla−→ A.

A left adjoint of the coreflection can however be constructed more directly.
The composition tla ◦ etl is naturally isomorphic to the functor yielding an
asynchronous transition system directly out of the configurations of the event
structure, as is described in the next proposition.

Proposition 52 For ES = (E,≤, #) an event structure, define

Γ(ES) = (D0(ES), ∅, E, co,Tran)

96

where the transitions between configurations, Tran, consist of (x, e, x′) where
e /∈ x & x′ = x ∪ {e}. For η : ES → ES ′ a morphism of event structures,
define Γ(η) = (σ, η) where σ(x) = ηx, for x a configuration of ES . This
defines a functor Γ : E→ A. Moreover, Γ is naturally isomorphic to tla ◦etl .

Proof: It is easy to check that Γ is a functor. The representation theo-
rem 33, and its consequence, proposition 34, yield a morphism

(Ev−1, λT) : Γ ◦ tle(T) → tla(T),

of asynchronous transition systems, which can be checked to be natural in
T . Letting T be the trace language etl(ES), of an event structure ES, we
obtain a morphism

(Ev−1, λetl(ES)) : Γ ◦ tle ◦ etl(ES) → tla ◦ tle(ES),

natural in ES. The coreflection 39 ensures that the counit at etl(ES)

λetl(ES) : etl ◦ tle ◦ etl(ES) → etl(ES),

is an isomorphism. This makes the function λetl(ES) a bijection, which to-
gether with the bijection Ev given by the representation theorem 33, ensures
(Ev−1, λetl(ES)) is an isomorphism, necessarily natural in ES. It composes
with the natural isomorphism Γ(ηES) : Γ(ES) → Γ ◦ tle ◦ etl(ES), where
ηES : ES → tle ◦ etl(ES) is the unit of the coreflection at ES, to give the
required natural isomorphism. ✷

10.2 Asynchronous transition systems and nets

10.2.1 An adjunction

There is an adjunction between the categories A and N. First, we note there
is an obvious functor from nets to asynchronous transition systems.

Definition: Let N = (B, M0, E, •(), ()•) be a net. Define na(N) =
(S, i, E, I,Tran) where

S = Pow(B) with i = M0,
e1Ie2 ⇔• e•1 ∩•e•2 = ∅,
(M, e, M ′) ∈ Tran ⇔ M

e→ M ′ in N , for M, M ′ ∈ Pow(B).

97

Let (β, η) : N → N ′ be a morphism of nets. Define

na(β, η) = (σ, η)

where σ(M) = βM , for any M ∈ Pow(B).

Proposition 53 na is a functor N → A.

Proof: Letting N be a net, it is easily checked that na(N) is an asynchronous
transition system: properties (1) and (2) of definition 10 are obvious while
properties (3) and (4) follow directly from the interpretation of independence
of events e1, e2 as •e•1 ∩•e•2 = ∅. Letting (β, η) : N → N ′ be a morphism of
nets, proposition 43 yields that na(β, η) is a morphism na(N) → na(N ′).
Clearly na preserves composition and identities. ✷

As a preparation for the definition of a functor from asynchronous tran-
sition systems to nets we examine how a condition of a net N can be viewed
as a subset of states and transitions of the asynchronous transition system
na(N). Intuitively the extent |b| of a condition b of a net is to consist of
those markings and transitions at which b holds uninterruptedly. In fact, for
simplicity, the extent |b| of a condition b is taken to be a subset of Tran∗,
the transitions (M, e, M ′) and idle transitions (M, ∗, M) of na(N); the idle
transitions (M, ∗, M) play the role of markings M .

Definition: Let b be a condition of a net N . Let Tran be the transition
relation of na(N). Define the extent of b to be

|b| = {(M, e, M ′) ∈ Tran∗ | b ∈ M & b ∈ M ′ & b /∈• e•}.

Not all subsets of transitions Tran∗ of a net N are extents of conditions
of N . For example, if (M, e, M ′) /∈ |b| and (M ′, ∗, M ′) ∈ |b| for a transition
M

e→ M ′ in N this means the transition starts the holding of b. But then
b ∈ e• so any other transition P

e→ P ′ must also start the holding of b. Of
course, a condition cannot be started or ended by two independent events
because, by definition, they can have no pre- or postcondition in common.
These considerations motivate the following definition of condition of a gen-
eral asynchronous transition system.

Definition: Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem. Its conditions are nonempty subsets b ⊆ Tran∗ such that

98

1. (s, e, s′) ∈ b ⇒ (s, ∗, s) ∈ b & (s′, ∗, s′) ∈ b

2. (a) (s, e, s′) ∈• b & (u, e, u′) ∈ Tran ⇒ (u, e, u′) ∈• b

(b) (s, e, s′) ∈ b• & (u, e, u′) ∈ Tran ⇒ (u, e, u′) ∈ b•

where for (s, e, s′) ∈ Tran we define

(s, e, s′) ∈• b ⇔ (s, e, s′) /∈ b & (s′, ∗, s′) ∈ b,
(s, e, s′) ∈ b• ⇔ (s, ∗, s) ∈ b & (s, e, s′) /∈ b and
•b• =• b ∪ b•.

3. (s, e1, s
′) ∈• b• & (u, e2, u

′) ∈• b• ⇒ ¬e1Ie2.

Let B be the set of conditions of T . For e ∈ E∗, define

e• = {b ∈ B | ∃s, s′. (s, e, s′) ∈• b},
•e = {b ∈ B | ∃s, s′. (s, e, s′) ∈ b•}, and

•e• = •e ∪ e•.

(Note that •∗• = ∅.)
Further, for s ∈ S, define M(s) = {b ∈ B | (s, ∗, s) ∈ b}.

As an exercise, we check that the extent of a condition of a net is indeed
a condition of its asynchronous transition system.

Lemma 54 Let N be a net with a condition b. Its extent |b| is a condi-
tion of na(N). Moreover,

(I) (M, e, M ′) ∈• |b| ⇔ b ∈ e•.

(II) (M, e, M ′) ∈ |b|• ⇔ b ∈• e.

whenever M
e→ M ′ in N .

Proof: We prove (I) (the proof of (II) is similar):

(M, e, M ′) ∈• |b| ⇔ (M, e, M ′) /∈ |b| & (M ′, ∗, M ′) ∈ |b|
⇔ ¬(b ∈ M & b ∈ M ′ & b /∈ •e•) & b ∈ M ′

⇔ (b /∈ M & b ∈ M ′) or (b ∈ •e• & b ∈ M ′)

⇔ b ∈ e•, as M
e→ M ′

99

Using (I) and (II), it is easy to check that |b| is a condition of na(N).
First we note |b| is nonempty because it contains for instance ({b}, ∗, {b}).
We quickly run through the axioms required by definition 10.2.1:

1. If (M, e, M ′) ∈ |b| then b ∈ M and b ∈ M ′ whence (M, ∗, M), (M ′, ∗, M ′ ∈
|b|.

2. (a) If (M, e, M ′) ∈ •|b| then b ∈ e•, by (I) “⇒”. Hence, if P
e→ P ′ by

(I) “⇐” we obtain (P, e, P ′) ∈• |b|. The proof of (2)(b) is similar.

3. If (M, e1, M
′), (P, e2, P

′) ∈• |b| then b ∈ e•1 and b ∈ e•2, by (I) applied
twice. Hence ¬e1Ie2. ✷

Definition: Let (σ, η) : T → T ′ be a morphism between asynchronous
transition systems T = (S, i, E, I,Tran) and T ′ = (S ′, i′, E ′, I ′,Tran ′). For
b ⊆ Tran ′

∗, define

(σ, η)−1b = {(s, e, s′) ∈ Tran∗ | (σ(s), η(e), σ(s′)) ∈ b}

Lemma 55 Let (σ, η) : T → T ′ be a morphism between asynchronous tran-
sition systems. Let b be a condition of T ′. Then (σ, η)−1b is a condition of
T provided it is nonempty. Furthermore,

(1) (σ, η)−1b ∈ •e ⇔ b ∈ •η(e)

(2) (σ, η)−1b ∈ e• ⇔ b ∈ η(e)•

for any event e of T .

Proof: We show (1), assuming b ⊆ Tran ′
∗ and an event e of T . Observe

(σ, η)−1b ∈• e ⇔ (s, e, s′) ∈ (σ, η)−1b•, for some states s, s′

⇔ (s, ∗, s) ∈ (σ, η)−1b & (s, e, s′) /∈ (σ, η)−1b
⇔ (σ(s), ∗, σ(s)),∈ b & (σ(s), η(e), σ(s′)) /∈ b
⇔ (σ(s), η(e), σ(s′)) ∈ b•

⇔ b ∈• η(e)

100

The proof of (2) is similar. That (σ, η)−1 is a condition of T , if nonempty,
follows straightforwardly from the assumption that b is a condition. ✷

Definition: Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem. Define an(T) = (B, M0, E, pre, post) by taking B to be the set of
conditions of T , M0 = M(i), with pre and post condition maps given by the
corresponding operations in T , i.e. pre(e) =• e and post(e) = e• in T . Let
(σ, η) : T → T ′ be a morphism of asynchronous transition systems. Define
an(σ, η) = (β, η) where for conditions b of T and b′ of T ′ we take

bβb′ iff b = (σ, η)−1b′.

(Note that because of lemma 55,

bβb′ iff ∅ �= b = (σ, η)−1b′.

where we only assume b′ is a condition of T ′.)

The verification that an(T) is indeed a net involves demonstrating that
every event has at least one pre and post condition. This follows from the
following lemma which indicates how rich an asynchronous transition system
is in conditions (it says an arbitrary pairwise-dependent set of events can be
made to be both the starting and ending events of a single condition):

Lemma 56 Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem. Suppose X is a nonempty subset of E such that

e1, e2 ∈ X ⇒ ¬e1Ie2

Then, there is a condition b of T such that

X = {e | b ∈ e•} & X = {e | b ∈• e}.

Proof: Define

b = {(s, e, s′) ∈ Tran∗ | e /∈ X}.

It is simply checked that b is a condition with beginning and ending events
X. ✷

101

Lemma 57 Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem. Then an(T) is a net. Moreover,

e1Ie2 ⇔• e•1 ∩•e•2 = ∅,

and

(s, e, s′) ∈ Tran ⇒ M(s)
e→ M(s′) in an(T).

Proof: For an(T) to be a net it is required that its initial marking, and
pre and post conditions of events be nonempty. However, taking b = Tran∗
yields a condition in the initial marking, while for an event e, letting X be
{e} in lemma 56 produces a pre and post condition of e.

If e1Ie2 then axiom (3) on conditions (definition 10.2.1) ensures •e•1∩•e•2 =
∅. Conversely, by lemma 56, if ¬(e1Ie2) we can obtain a condition in •e•1∩•e•2.

Suppose (s, e, s′) ∈ Tran. Then, letting B be the set of conditions of T ,

•e = {b ∈ B | (s, ∗, s) ∈ b & (s, e, s′) /∈ b} ⊆ M(s),
e• = {b ∈ B | (s, e, s′) /∈ b & (s′, ∗, s′) ∈ b} ⊆ M(s′), and

M(s) \•e = {b ∈ B | (s, ∗, s) ∈ b} \ {b ∈ B | (s, ∗, s) ∈ b & (s, e, s′) /∈ b}
= {b ∈ B | (s, e, s′) ∈ b}
= {b ∈ B | (s′, ∗, s′) ∈ b} \ {b ∈ B | (s, e, s′) /∈ b & (s′, ∗, s′) ∈ b}
= M(s′) \ e•.

Thus M(s)
e→ M(s′). ✷

We illustrate how a net is produced from an asynchronous transition sys-
tem.

Example: Consider the following asynchronous transition system T with
two :

102

It has these conditions, where those transitions in the condition are rep-
resented by solid arrows:

Consequently the asynchronous transition system T yields this net an(T):

Lemma 58 an is a functor A → N.

Proof: The only difficulty comes in showing the well-definedness of an on
morphisms. Let (σ, η) : T → T ′ be a morphism of asynchronous transi-
tion systems T = (S, i, E, I,Tran), T ′ = (S ′, i′, E ′, I ′,Tran ′). We require

103

that an(σ, η) =def (β, η) is a morphism of nets an(T) → an(T ′). Let
an(T) = (B, M0, E, pre, post), an(T ′) = (B′, M ′

0, E
′, pre ′, post ′). We see β

preserves initial markings by arguing:

b′ ∈ M ′
0 ⇔ (i′, ∗, i′) ∈ b′

⇔ (σ(i), ∗, σ(i)) ∈ b′

⇔ (i, ∗, i) ∈ (σ, η)−1b′

⇔ βop(b′) ∈ M0.

The fact that βe• =• η(e) and β•e = η(e)• follows directly from (1) and (2)
of lemma 55. ✷

In fact, an is left adjoint to na. Before proving this we explore the unit
and counit of the adjunction. The unit of the adjunction:

Lemma 59 Let T be an asynchronous system. Defining σ0(s) = M(s) for s
a state of T and letting 1E be the identity on the events of T , we obtain a
morphism of asynchronous transition systems

(σ0, 1E) : T → na ◦ an(T).

Proof: That (σ0, 1E) is a morphism follows directly from lemma 57. ✷

The counit:

Lemma 60 Let N = (B, M0, E,•(), ()•) be a net. Let Tran be the transitions
of na(N). For b ∈ B and c ⊆ Tran∗, taking

cβ0b ⇔def c = |b|
defines a relation between conditions of na(N) and B, such that

(β0, 1E) : an ◦ na(N) → N

is a morphism of nets.

Proof: By lemma 54, |b| is a condition of na(N) if b is a condition of N .
This ensures that β0 is a relation between the conditions of na(N) and B.
We should check (β0, 1E) : an ◦ na(N) → N is a morphism of nets. Let M ′

0

be the initial marking of an ◦ na(N): We see for any b ∈ B that

βop
0 (b) ∈ M ′

0 ⇔ (M0, ∗, M0) ∈ βop
0 (b)

by the definition of an and na,

⇔ b ∈ M0 by the definition of β0.

104

From the equivalence

βop
0 (b) ∈ M ′

0 ⇔ b ∈ M0

we deduce β0M0 = M ′
0 that β0 preserves initial marking. In addition β0

preserves pre and post conditions of events from II, I of lemma 54. ✷

Now we establish the adjunction between A and N in which an is left
adjoint to na.

Lemma 61 Let T = (S, i, E, I,Tran) be an asynchronous transition sys-
tem and N = (B, M0, E

′, pre, post) a net.

For a morphism of nets (β, η) : an(T) → N , defining σ(s) = β ◦M(s),
for s ∈ S, yields a morphism of asynchronous transition systems

θ(β, η) =def (σ, η) : T → na(N).

For a morphism of asynchronous transition systems (σ, η) : T → na(N),
defining

cβb iff ∅ �= c = {(s, e, s′) ∈ Tran∗ | b ∈ σ(s) & b ∈ σ(s′) & b /∈• η(e)•},

yields a morphism

ϕ(σ, η) =def (β, η) : an(T) → N.

Furthermore, θ and ϕ are mutual inverses, establishing a bijection between
morphisms

an(T) → N

and

T → na(N).

Proof: First note θ(β, η) and ϕ(σ, η) above are morphisms because they are
the compositions

θ(β, η) : T
(σ0,1E)−→ na ◦ an(T)

na(β,η)−→ na(N)

ϕ(σ, η) : an(T)
an(σ,η)−→ an ◦ na(N)

(β0,1E′)−→ N

105

with the “unit” and “counit” morphisms of lemmas 59, 60. We require that
θ, ϕ form a bijection.

Letting (σ, η) : T → na(N), we require θ ◦ ϕ(σ, η) = (σ, η). We know
θ ◦ ϕ(σ, η) has the form (σ′, η). Writing (β, η) =def ϕ(σ, η) we have σ′(s) =
β ◦M(S) for any s ∈ S. Now note

b′ ∈ σ′(s) ⇔ b ∈ β ◦M(s)

⇔ βop(b′) ∈ M(s)

⇔ (s, ∗, s) ∈ βop(b′)

⇔ b′ ∈ σ(s).

where the final equivalence follows from the definition of ϕ, recalling (β, η) =
ϕ(σ, η). Thus σ′ = σ and hence θ ◦ ϕ(σ, η) = (σ, η).

To complete the proof, it is necessary to show ϕ ◦ θ(β, η) = (β, η) for an
arbitrary morphism (β, η) : an(T) → N . Then, write (β′, η) =def ϕ ◦ θ(β, η).
To show β′ = β, consider an arbitrary (s, e, s′) ∈ Tran∗. Let b ∈ B. From
the definitions of θ and ϕ,

(s, e, s′) ∈ β′op ⇔ b ∈ βM(s) & b ∈ βM(s′) & b /∈• η(e)•. (†)

Note that

b′ ∈ βM(s) ⇔ βop(b) ∈ M(s)

⇔ (s, ∗, s) ∈ βop(b)

Note too that, as (β, η) is a morphism,

b ∈• η(e)• ⇔ βop(b) ∈• e•.

Hence, rewriting (†),

(s, e, s′) ∈ β′op ⇔ (s, ∗, s) ∈ βop(b) & (s′, ∗, s′) ∈ βop(b) & βop(b) /∈• e•.

. However, under the assumption that (s, ∗, s) and (s′, ∗, s′) belong to βop(b)
we have

βop(b) /∈• e• ⇔ (s, e, s′) ∈ βop(b).

106

(Recall the definition of •e and e• in an(T).)

Thus

(s, e, s′) ∈ β′op(b) ⇔ (s, e, s′) ∈ βop(b).

Consequently, β′ = β, and we conclude ϕ ◦ θ(β, η) = (β, η). ✷

Theorem 62 The functors an : A → N and na : N → A form an ad-
junction with an left adjoint to na; the components of the units and counits
of the adjunction are the morphisms given in lemmas 59, 60.

Proof: Let T be an asynchronous transition system and N a net. Let
(σ0, 1E) : T → na ◦ an(T) be the morphism described in lemma 59. Let
(σ, η) : T → na(N) be a morphism in A. Then, because of the bijection,
ϕ(σ, η) is the unique morphism h : an(T) → N such that

(σ, η) = θ(h) = na(h) ◦ (σ0, 1E)

—as remarked in the proof of lemma 61, θ(h) is this composition. ✷

10.2.2 A coreflection

Neither A nor N embeds fully and faithfully in the other category via the
functors of the adjunction. This accompanies the facts that neither unit
nor counit is an isomorphism (see [50, p.88]); in passing from a net N to
an ◦ na(N) extra conditions are most often introduced; the net an ◦ na(N)
is always safe, as we will see. While passing from an asynchronous transition
system T to na ◦ an(T) can, not only blow-up the number of states, but also
collapse states which cannot be separated by conditions.

A (full) coreflection between asynchronous transition systems and nets
can be obtained at the cost of adding three axioms. Let A0 be the full sub-
category of asynchronous transition systems T = (S, i, E, I,Tran) satisfying
the following:

Axiom 1 Every state is reachable from the initial state, i.e. for every s ∈ S
there is a chain of events e1, . . . , en, possibly empty, for which i

e1···en−→ s,
where i is the initial state.

Axiom 2 M(u) = M(s) ⇒ u = s, for all s, u ∈ S.

107

Axiom 3 •e ⊆ M(s) ⇒ ∃s′.(s, e, s′) ∈ Tran, for all s ∈ S, e ∈ E.

Axioms 2 and 3 enforce two separation properties. The contraposition of
Axiom 2 says

u �= s ⇒ M(U) �= M(s)

i.e. that if two states are distinct then there is a condition of T holding at
one and not the other. In fact, Axiom 2 is equivalent to

u �= s ⇒ ∃b. b ∈ M(u) & b /∈ M(s)

though we postpone the justification of this till after we have treated com-
plementation of conditions. We can recast Axiom 3 into the following form
when it becomes more clearly a separation axiom: If (u, e, u′) is a transition
and s is a state from which there is no e-transition then there is a condition
b of T such that

b ∈ M(u) & (u, e, u′) /∈ b & b /∈ M(s).

Axioms 2 and 3 hold for any asynchronous transition system na(N) got from
a net N . The proof that Axiom 3 holds uses the operation of complementa-
tion on conditions of an asynchronous transition system. The properties of
complementation are listed below:

Proposition 63 Let b be a condition of an asynchronous transition system
T = (S, i, E, I,Tran). Define

b = {(s, e, s′) ∈ Tran∗ | (s, e, s′) /∈ b & (s, ∗, s) /∈ b & (s′, ∗, s′) /∈ b}.

If nonempty, b̄ is a transition of T . It has the following properties:

(s, ∗, s) ∈ b ⇔ (s, ∗, s) /∈ b, for any s ∈ S,

b ∈• e ⇔ b ∈ e• & b /∈• e

b ∈ e• ⇔ b ∈• e & b /∈ e• for any e ∈ E.

Let (σ, η) : T ′ → T be a morphism of asynchronous transition systems and b
be a condition of T . Then

(σ, η)−1b = (σ, η)−1b.

108

Suppose u, s are two distinct markings of a net N . Then certainly there
is a condition b of the net in one but not the other.

Suppose for instance b /∈ u and b ∈ s. Then, from the way the extent of
a condition is defined,

|b| /∈ M(u) and |b| ∈ M(s).

With complementation we can separate the other way:

|b| ∈ M(u) and |b| /∈ M(s).

This justifies our earlier remark that that Axiom 2 is equivalent to the seem-
ingly stronger axiom:

u �= s ⇒ ∃b. b ∈ M(u) & b /∈ M(s)

We return to the verification that the asynchronous transition system na(N)
of a net N satisfies Axioms 2 and 3.

Proposition 64 Let N = (B, M0, E, pre, post) be a net. Then na(N) satis-
fies the Axioms 2 and 3 above.

Proof: If u, s are distinct states of na(N) they are distinct markings of
N and hence only one contains some condition b. But then |b| can only
be an element of one of M(u) and M(s) which are therefore unequal. This
demonstrates (the contraposition of) Axiom 2.

Now we show na(N) satisfies the contraposition of Axiom 3. Supposing

u
e→ u′ and s

e

�→ in N required to exhibit a condition c of na(N) such that

c ∈• e & c /∈ M(s).

There are two ways in which the marking s can fail to enable event e. Either

(i) pre(e) �⊆ s or
(ii) post(e) ∩ (s \ pre(e)) �= ∅.

In the case of (i), there is a condition b ∈ B of the net such that

b ∈ pre(e) & b /∈ s.

109

Hence

|b| ∈• e & |b| /∈ M(s)

In the case of (ii), there is a condition b ∈ B of the net such that

b ∈ post(e) & b ∈ s & b /∈ pre(e)

Hence

|b| ∈ e• & |b| ∈ M(s) & |b| /∈• e

But then, taking the complement of |b|,

|b| ∈• e & |b| /∈ M(s)

by proposition 63.

In either case, (i) or (ii), we obtain a condition c of na(N) for which

c ∈• e & c /∈ M(s).

✷

Recall a net is safe if for each reachable marking M and event e

e• ⊆ M ⇒ e• ∩ (M \• e) = ∅

As we now see, if T is an asynchronous transition system which satisfies
Axioms 2 and 3 then an(T) is a safe net whose behaviour is seen to be iso-
morphic to that of T on reachable states.

Lemma 65 Assume T = (S, i, E, I,Tran) is an asynchronous transition
system satisfying Axioms 2 and 3 above. Then

1. e1Ie2 ⇔• e•1 ∩• e•2 = ∅ in an(T), for any events e1, e2,

2. (s, e, s′) ∈ Tran ⇔ M(s)
e→ M(s′) in an(T) for any s, s′ ∈ S and

e ∈ E,

3. an(T) is a safe net in which every reachable marking has the form M(s)
for some state s of T .

110

Proof: By lemma 57,

e1e2 ⇔• e•1 ∩• e•2 = ∅,
(s, e, s′) ∈ Tran ⇔ M(s)

e→ M(s′) in an(T).

This yields (1) and (2) “⇒”. To establish the converse, (2)“⇐”, with the
assumption of Axioms 2 and 3, suppose M(s)

e→ M(s′). Then •e ⊆ M(s)
so (s, e, s1) ∈ Tran from some state s1 by Axiom 3. Thus M(s)

e→ M(s1)
and so M(s′) = M(s1). Now by Axiom 2 we deduce s′ = s1, and hence the
converse

M(s)
e→ M(s′) ⇒ (s, e, s′) ∈ Tran.

We now show (3). Any reachable marking of an(T) has the form M(s)
for some s ∈ S by the following argument: Assuming M(s)

e−→ M1 we nec-
essarily have •e ⊆ M(s) whereupon, as above, there is a transition (s, e, s1)
of T with M1 = M(s1); thus, by induction along any reachability chain,
any reachable marking of an(T) is of the form M(s) for some state s of T .
Because the two sets

e• = {b ∈ M(s′) | (s, e, s′) /∈ b},
M(s) \• e = {b ∈ M(s) | (s, e, s′) ∈ b}

are clearly disjoint, the net an(T) is safe. ✷

Corollary 66 For any net N the net an ◦ na(N) is safe.

The coreflection between A0 and N is defined using a simple coreflection
between the full subcategory of A, consisting of objects, where all states are
reachable, and A.

Definition: Let AR be the full subcategory of A consisting of asynchronous
transition systems (S, i, E, I,Tran) satisfying Axiom 1, i.e. so that all states
s are reachable.

Let R act on an asynchronous transition system T = (S, i, E, I,Tran) as
follows:

R(T) = (S ′, i′, E ′, I ′,Tran ′)

where

111

S ′ consists of all reachable states of T
E ′ = {e ∈ E | ∃s, s′ ∈ S ′. (s, e, s′) ∈ Tran}
I ′ = I ∩ (E ′ × E ′)

Tran ′ = Tran ∩ (S ′ × E ′ × S ′).

For a morphism (σ, η) : T → T ′ of asynchronous transition systems, define
R(σ, η) = (σ′, η′) where σ′ and η′ are the restrictions of σ and η to the states,
respectively events, of R(T).

We note that a morphism from an asynchronous transition system in
which all states are reachable is determined by how it acts on events:

Proposition 67 Suppose (σ, η) and (σ′, η) are morphisms T → T ′ between
asynchronous systems where each state of T is reachable. Then σ = σ′.

Proof: An obvious consequence of the determinacy property

(s, e, s1) ∈ Tran & (s, e, s2) ∈ Tran ⇒ s1 = s2

of asynchronous transition systems. ✷

Proposition 68 The operation R is a functor A → AR which is right
adjoint to the inclusion funtor I : AR → A. The unit of the adjunction
at T ∈ AR is the identity on T , making the adjunction a coreflection. The
counit at T ∈ AR is given by (jS, jE) : R(T) → T where jS and jE are
the inclusion maps on states and events respectively. Moreover, R preserves
Axioms 2 and 3 in the sense that if T satisfies Axiom 2 (or 3) then R(T)
satisfies Axiom 2 (or 3).

Proof: We omit the straightforward proof that R is a right adjoint to the
inclusion of categories with counit as claimed. Let j : R(T) → T be a com-
ponent of the counit. The transitions Tran ′ of R(T) are a subset of those of
T . If b is a condition of T then j−1b = b ∩ Tran ′ is a condition of R(T) pro-
vided it is nonempty. Suppose s1 and s2 are two distinct states of R(T). If T
satisfies Axiom 2 then there is a condition b of T such that one and only one
of (s1, ∗, s2) ∈ b, (s2, ∗, s2) ∈ b holds. But then j−1b is a condition of R(T)
separating s1, s2. Thus R preserves Axiom 2, and by a similar argument,
Axiom 3. ✷

We show the adjunction, with an left adjoint to R ◦ na, obtained as the
composition forms a coreflection. Its counit is given by the notion of reach-

112

able extent of a condition. This consists essentially of the reachable markings
and transitions at which b holds uninterruptedly.

Definition: Let N be a net. Let Tran∗ be the transitions and idle tran-
sitions of R ◦ na(N). Define

|b|R = |b| ∩ Tran∗.

Theorem 69 Defining na0 = R ◦ na, the composition of functors, yields a
functor na0 : N→ A0 which is right adjoint to an0 : A0 → N, the restriction
of an to A0.

The unit at T = (S, i, E, I,Tran) ∈ A0 is an isomorphism

(σ, 1E) : T → na0 ◦ an(T)

where σ(s) = M(s) for s ∈ S, making the adjunction a coreflection.

The counit at a net N is

(β, 1E) : an ◦ na0 → N

where

cβb iff ∅ �= c = |b|R

between conditions c of na0(N) and b of N .

Proof: The adjunctions compose to give R ◦ na : N → AR a right ad-
joint to I ◦ an : AR → N. However, the image R◦ na(N) of a net N always
satisfies Axioms 2 and 3 as well as 1. This is because na(N) satisfies Axioms
2 and 3, andR preserves these axioms. Thus the adjunction cuts down to one
where na0 : N → A0 is right adjoint to an0 : A0 → N. It is an adjunction
with unit at T = (S, i, E, I,Tran) ∈ A0 a morphism in A0

(σ, 1E) : T → na0 ◦ an(T)

where σ(s) = M(s) for s ∈ S.

That the unit (σ, 1E) : T → na0 ◦ an(T) is an isomorphism follows from
lemma 65. Hence the functors an, na0 form a coreflection with an0 left
adjoint to na0.

113

That the counit has the form claimed follows by composing the natural
bijections of the adjunctions given by proposition 68 and lemma 61. ✷

One consequence of the coreflection is that any net N can be converted to
a safe net an ◦na0(N) with the same behaviour, in the sense that that there
is as an isomorphism between reachable asynchronous transition systems the
two nets induce under na0. Another is that A0 has products and coproducts
given by the same constructions as those of A.

Proposition 70 The category A0 has products and coproducts which co-
incide with those in the category A.

Proof: The product of nets in N becomes the product in A0 of asynchronous
transition systems under na0. Its behaviour, which is described in proposi-
tion 48, ensures that its image under na0 coincides with the product in A.

The coproduct in A will be the coproduct in A0 provided it is the image
to within isomorphism of a net. However, if T0, T1 are objects of A0, then by
lemma 46 their coproduct in A is isomorphic to na0(an(T0) + an(T1)). ✷

The coreflection A0 N cuts down to an equivalence of categories by
restricting to the appropriate full subcategory of nets.

Definition: Let N0 be the full subcategory on nets such that

b �→ |b|R

is a bijection between conditions of N and those of na0(N).

Theorem 71 The functor an restricts to a functor an0 : A0 → N0. The
functor R ◦ na restricts to a functor na0 : N0 → A0. The functors an0, na0

form an equivalence of categories.

Proof: Recall the coreflection of theorem 69: na0 = R ◦ na : N → A0

is right adjoint to an0 : A0 → N, the restriction of an to A0. The counit of
the coreflection, at a net N ,

(β, 1E) : an0 ◦ na0(N) → N

has cβb iff c = |b|R, between condition. This is an isomorphism iff N ∈ N0.
We thus obtain an equivalence of categories. ✷

114

Nets in N0 are saturated with conditions in the sense that they have as
many conditions as is allowed by their reachable behaviour and independence
(regarded as an asynchronous transition system). Nets in N0 cannot however
have more than one copy of a condition with particular starting and ending
events (they are condition-extensional). This is because:

Proposition 72 Let T be an asynchronous transition system for which each
state is reachable. If b1, b2 are conditions of T for which

•b1 =• b2 and b•1 = b•2

then

b1 = b2

Proof: Suppose •b1 =• b2 and b•1 = b•2 for conditions b1, b2 of T . Inductively
along a chain of transitions

(i, e1, s1), (s1, e2, s2), . . . , (sn−1, en, sn)

the membership of (si−1, ei, si) (or (si, ∗, si)) in b1 and in b2 must agree. ✷

If on the other hand an asynchronous transition system T has a state
which is not reachable then there will be distinct conditions of T with the
same end points. Suppose T has states which are not reachable let Tran0

be all transitions, including idle ones, which are not reachable. If b1 is a
condition, say consisting solely of reachable transitions of T , then so is b2 =
b1 ∪ Tran0 a condition, necessarily distinct from b1, but with •b1 =• b2 and
b•1 = b•2.

We have already observed the coreflection from event structures to asyn-
chronous transition systems E A. In fact the coreflection cuts down to
one between E A0.

Proposition 73 For any event structure E, the asynchronous transition
system tla ◦ etl(E) is an object in A0. Consequently, tla ◦ etl cuts down to
a functor E → A0 left adjoint to the restriction of atl ◦ tle to A0 → E also
forming a coreflection.

Proof: The functor tla ◦ etl : E→ A is left adjoint to atl ◦ tle : A→ E and

115

forms a coreflection. It suffices to show that tla ◦ etl(E) is an object of A for
any event structure E. Let E be a event structure. Note that tla ◦ etl(E)
is an asynchronous transition system isomorphic to the asynchronous tran-
sition system with transitions x

e→ x′, between finite configurations of E,
and independence relation co—see proposition 52. There are many ways of
adjoining conditions to events of an event structure so as to produce a (safe)
net N with reachable transition and independence relations isomorphic to
that of the configurations of E (see e.g. the construction of an occurrence
net from an event structure in [64]). Hence by theorem 69, na0(N), and so
the isomorphic tla ◦ etl(E), belong as objects to A0. ✷

10.3 Properties of conditions

In this section we explore briefly the “logical” properties of conditions of
an asynchronous transition system. These follow from the construction of
conditions out of special subsets. A general condition can be decomposed
into a disjoint union of minimal components, called connected conditions.
As will be seen, the behaviour of the net constructed from an asynchronous
transition system is determined by just its connected conditions. The notion
of connected condition appears automatically in establishing an adjunction
between asynchronous transition systems and a previously studied category
of safe nets. This category of nets has a broader class of morphisms, ones
which allow general foldings.

Let us first summarise the properties of conditions of an asynchronous
transition system that have arisen in the proofs above:

• If b is a condition of an asynchronous transition system T and (σ, η) :
T ′ → T is a morphism of asynchronous transition systems, then the
inverse image (σ, η)−1b is a condition of T ′, if nonempty (cf. lemma
55).

• If X is a nonempty pairwise dependent subset of events of an asyn-
chronous transition system T (so e1Ie2 for all e1, e2 ∈ X) then there
is a condition of T started by precisely the events X and ended by
precisely X (cf. lemma 56).

• Any condition b of an asynchronous transition system has a complement

116

b, either empty or a condition whose starting and ending events reverse
those of b (cf. proposition 63).

ln general, conditions or an asyncnronous transition system are not closed
under intersections and unions. However in the case where the unions are
disjoint:

• If S be a nonempty collection of conditions of an asynchronous transi-
tion system T which is disjoint, in the sense that

if b1 ∩ b2 �= ∅ then b1 = b2, for all b1, b2 ∈ S,

then
⋃

S is a condition of T .

10.3.1 Connected conditions

A new condition can be built up out of disjoint components. And in fact,
conversely, any condition can be decomposed into a disjoint union of con-
nected components which cannot be decomposed further.

Definition: Let T be an asynchronous transition system with conditions
B. For b, b′ ∈ B ∪ {∅}, write

b′ comp b ⇔def b′ ⊆ b & b\b′ ∈ B ∪ {∅}

If b′ comp b we say b′ is a component of b.)

Say a condition b is connected iff there are not conditions b1, b2 such that

b = b1 ∪ b2 & b1 ∩ b2 = ∅.

Notation: We shall write b = b1 ∪ b2 to mean b = b1 ∪ b2 and b1 ∩ b2 = ∅,
for sets b, b1, b2.

In fact, a component of a condition b of an asynchronous transition sys-
tem is either empty or a condition included in b whose boundary of start-
ing/ending events agrees with that of b:

Lemma 74 Let c, b be conditions of an asynchronous transition system T .
Then,

117

c comp b ⇔ c ⊆ b & for all transitions (s, e, s′) of T
(s, e, s′) ∈• c ⇒ (s, e, s′) ∈• b &

(s, e, s′) ∈ c• ⇒ (s, e, s′) ∈ b•.

Proof: By basic set-theory from the definition of a condition of an asyn-
chronous transition system. ✷

Proposition 75 Let T be an asynchronous transition system with condi-
tions B.

i. The relation comp is a partial order on B ∪ {∅}.

ii. A condition is connected iff it is a minimal condition with respect to
comp.

iii. If ci, i ∈ I, is a family of components of a condition b, then⋂
i∈I

ci,
⋃
i∈I

ci

are also components of b.

iv. If c1 and c2 are components of a condition b, then c1 \ c2 is also a
component of b.

Proof:
(i) Clearly comp is reflexive. Suppose c comp b comp a. Then c ⊆ b and b \ c
is a condition if nonempty as well as b ⊆ a and a \ b forming a condition if it
is nonempty. It follows that c ⊆ a and that

a \ c = (a \ b) ∪ (b \ c)

and hence a \ c is itself a condition if nonempty. But this makes c comp a.
(ii) Clear.
(iii) Assume ci, i ∈ I is a family of components of a condition b. It can be
checked that

⋃
i∈I ci and

⋂
i∈I ci satisfy the axioms required of conditions of

T , if nonempty.

To give the flavour of the arguments, assume (s, e, s′) ∈ (
⋂

i ci)
• and that

(u, e, u′) is a transition of which we wish to show (s, e, s′) ∈ (
⋂

i ci)
•—one of

118

the properties needed for the intersection to be a condition. As (s, e, s′) ∈
(
⋂

i ci)
•, there is a component cj for which (s, e, s′) ∈ cj

•. But then (s, e, s′) ∈
b• (lemma 74). As b is a condition, (u, e, u′) ∈ b• and, in particular, (u, e, u′) /∈
b. As cj is a condition, (u, e, u′) ∈ cj

•, and in particular (u, ∗, u) ∈ cj.
But then (u, ∗, u) ∈ ⋃

i ci, and (u, e, u′) /∈ ⋃
i ci as

⋃
i ci ⊆ b. This makes

(u, e, u′) ∈ (
⋃

i ci)
•.

The conditions
⋃

i∈I ci and
⋂

i∈I ci are also components because the com-
plements,

b \
⋃
i

ci =
⋂
i

(b \ ci)

b \
⋂
i

ci =
⋃
i

(b \ ci)

and, as we have just remarked, intersections and unions of components of b
form conditions if nonempty.
(iv) Finally, suppose c1 and c2 are components of b. Then (b\c1)∪c2 is a union
of components of b, and hence itself a component, ensuring b \ ((b \ c1) ∪ c2)
is a component of b. Note c1 \ c2 = b \ ((b \ c1) ∪ c2). ✷

Definition: Let b be a condition of an asynchronous transition system.
Define

conn(b) = {c | c is a connected condition & c comp b}.

The family of connected components conn(b), of a condition b is disjoint
and covers b in the following sense:

Lemma 76 Given a condition b of an asynchronous transition system,

(i) c1 ∈ conn(b) & c2 ∈ conn(b) & c1 ∩ c2 �= ∅ ⇒ c1 = c2, and
(ii) b =

⋃
conn(b).

Proof:
(i) Suppose c1, c2 ∈ conn(b) and c1 ∩ c2 �= ∅. It follows that c1 ∩ c2 and c1 \ c2

are components of b if nonempty, with

c1 = (c1 \ c2) ∪ (c1 ∩ c2).

119

But c1 is connected so c1\c2 = ∅ yielding c1 ⊆ c2. Similarly, c2 ⊆ c1, implying
c1 = c2.
(ii) Clearly

⋃
conn(b) ⊆ b. To show the converse inclusion, let t ∈ b. Take

d =
⋂
{c | t ∈ c & c comp b}.

Being an intersection of b′s components, d is itself a component of b. Clearly
it contains t, is a minimal component of b, and so is connected. Thus t ∈ d
and d ∈ conn(b), ensuring t ∈ ⋃

conn(b). ✷

Recall the construction an(T) of a net from an asynchronous transition
system T . When T is an object of A0, the net an(T) is safe and has be-
haviour isomorphic to that of T (cf. lemma 65). In fact we can restrict the
construction to just the connected conditions—these are sufficient to deter-
mine the net’s behaviour.

Definition: Let T be an asynchronous transition system in A0. Assume
an(T) has the form (B, M0, E, pre, post). Define anc(T) = (C, M0∩C, E, prec,
post c) where C consists of the connected conditions of T and

prec(e) = pre(e) ∩ C, post c(e) = post(e) ∩ C.

Lemma 77 Let T be an asynchronous transition system in A0. Then:

(i) anc(T) is a safe net.
(ii) There is an isomorphism (σ, 1E) : T → na0 ◦ anc(T) where

σ(s) = M(s) ∩ C for s a state of T with connected condi-
tions C.

Proof: The separation axioms Axiom 2 and Axiom 3 hold iff they hold
restricted to only connected conditions. For this reason the proof proceeds
pretty much as that of lemma 65. There are a couple of refinements. First
showing that anc(T) is a net requires that prec(e) and post c(e) are nonempty
for any event e. As earlier, in the proof of lemma 57, lemma 56 yields b
a pre and post-condition of e, though it is not necessarily connected; how-
ever amongst its connected components conn(b) are connected pre and post-
conditions of e. An extra argument is needed in showing that independence
of the net anc(T) coincides with that of T , as is required for the isomorphism

120

of (ii). This involves showing that if ¬e1Ie2 in T then there is a connected
condition c in •e•1 ∩• e•2. By lemma 56, there is a condition b (not necessarily
connected) such that

{e1, e2} = {e | b ∈• e} = {e | b ∈ e•}.

As T is a asynchronous transition system in which all transitions are reach-
able, it has transitions (s1, e1, s

′
1) and (s2, e2, s

′
2) that are connected by a

chain of transitions (backwards and then forwards from the initial state)
which do not involve the events e1, e2. This chain must be included in a sin-
gle connected component c of b—otherwise, by lemma 74, c and so b would be
started or ended by an event other than e1 or e2. This connected component
is one for which c ∈• e•1 ∩• e•2. ✷

Example: The asynchronous transition system

gives rise, under anc, to the following net, in which every condition is con-
nected:

121

10.3.2 Relational morphisms on nets

With the aid of connected conditions we can link to another definition of
morphism on nets. A limitation with the definition of morphism on nets
(in section 9.1) is that it does not permit “folding” morphisms of the kind
illustrated in the example below.

Let us temporarily broaden our attention to Petri nets in which conditions
can hold with multiplicities, in other words to general Petri nets, though
without capacities. Typically such a net consists of

(B, M0, E, pre, post)

with much the same intuition as before, but where the initial marking M0

is now a multiset of the set of conditions B and pre and post are now mul-
tirelations specifying the multiplicity of conditions used or produced by an
event in E. Letting M, M ′ be markings (i.e. multisets of conditions) and A

be a finite multiset of events we define M
A→ M ′ iff

pre.A ≤ M and M ′ = M − (pre.A) + (post .A).

Here we are using a little multiset notation. Thinking of multisets as vec-
tors (of possibly infinite dimension) and multirelations as matrices (possibly
infinite), we can compare two multisets coordinatewise with the relation ≤,

122

add and subtract multisets (provided no component goes negative). Using
matrix multiplication we can apply a multirelation to a multiset as in pre.A
which yields the multiset of preconditions of the multiset of events A. The
fact that A is a multiset reveals concurrency amongst event occurrences; for
example a transition

M
3e+2f→ M

is interpreted as meaning that three occurrences of the event e occur con-
currently with each other and with two of f in taking the marking M to
M ′.2

What about morphisms between two general Petri nets N = (B, M0, E,
pre, post), N ′ = (B′, M ′

0, E
′, pre ′, post ′)? Taking account of multiplicities,

and at the same time respecting events, it is reasonable to take a morphism
to be (β, η) : N → N ′ where β is a multirelation from B to B′ and η is a
partial function from E to E ′ (which in this context will be understood as a
special kind of multirelation) such that

β.M0 = M ′
0

β(pre.e) = pre ′.(η.e) and
β(post .e) = post ′.(η.e) for all e ∈ E.

Such morphisms preserve behaviour:

Proposition 78 Let (β, η) : N → N ′ be a morphism of general nets. If

M is a reachable marking of N and M
A→ M ′ in N , then β.M is a reachable

marking of N ′ and β.M− η.A→ β.M ′ in N ′.

Proof: A straightforward induction on the number of steps to the reach-
able marking M . ✷

Provided we restrict attention to general Petri nets in which every con-
dition occurs with nonzero multiplicity either in the initial marking or the
pre- or postconditions of some event, we can form a category by taking the
composition of

(β, η) : N → N ′ and (β′, η′) : N ′ → N ′′

2A thorough treatment of multisets and multirelations can be found in the appendix
of [96].

123

to be (β′ ◦ β, η ◦ η) where β′ ◦ β is the multirelation composition of β′ and β,
and η′ ◦ η is a composition of partial functions—without the restriction the
composition could yield infinite multiplicities.

This whole set-up makes sense for safe nets, and we can define Safe to
be the full subcategory of general Petri nets in which objects are safe nets
for which every condition belongs either to the initial marking or the pre- or
postcondition of some event. For such safe nets if M is a reachable marking

and M
A→ M ′ then the multiset of events A has no multiplicity exceeding 1,

i.e. A can be identified with a subset of events, which are to be thought of
as occurring concurrently. For later, we define the concurrency notation on
events e1, e2 by taking

e1 co e2 ⇔def M
{e1,e2}−→ M ′ for some reachable markings M, M ′.

In a safe net the relation e1 co e2 amounts to there existing a reachable
marking M for which

•e1 ⊆ M & •e2 ⊆ M & •e1 ∩• e2 = ∅,

or equivalently, the two events e1, e2 are independent and both have conces-
sion at some reachable marking.

A little work shows that morphisms in Safe, between N = (B, M0, E, pre,
post), N ′ = (B′, M ′

0, E
′, pre ′, post ′), can be given equivalently as (β, η) :

N → N ′ where β ⊆ B ×B′ is a relation and η : E →∗ E ′ such that

βM0 ⊆ M ′
0 and ∀b′ ∈ M ′

0∃!b ∈ M0. bβb′,

and for any event e ∈ E,

βpre(e) ⊆ pre ′(η(e)) and ∀b′ ∈ pre ′(η(e)) ∃!b ∈ pre(e). bβb′, and
βpost(e) ⊆ post ′(η(e)) and ∀b′ ∈ post ′(η(e)) ∃!b ∈ post(e). bβb′,

where the character of multiset application reappears in the form of unique-
ness restrictions local to the initial marking and neighbourhoods of events.
These say that βop is a function local to M ′

0, pre
′(η(e)) and post ′(η(e)). It

is not required that βop be a partial function globally. The added generality
permits the following kind of morphism:

Example: Consider the “folding” morphism in Safe

124

sending each event e0, e1, . . . to the common event e, and each condition
b0, b1, . . . to the condition b, so

η(ei) = e and biβb

for i ∈ ω. Note that while this morphism does preserve the concurrency
relation co it does not preserve independence and, for example we have •e•1∩•

e•3 = ∅, making the events e1 and e2 independent whereas their common image
e cannot be independent with itself.

So morphisms in Safe do not preserve the independence relation on nets
if we interpret independence as disjointness of pre and postconditions. But
the morphisms do preserve the concurrency relation. We can obtain a functor
from Safe to asynchronous transition systems by instead interpreting inde-
pendence as the concurrency relation on safe nets. The functor will map into
the category Ac—the full subcategory of A0 consisting of objects for which
the following property holds of the independence relation I:

e1Ie2 ⇒ s
e1→ s1 & s

e2→ s2 for some states s, s1, s2.

Proposition 79 Ac is a coreflective subcategory of A0.

Proof: The inclusion functor has a right adjoint V which from an object
T = (S, i, E, I,Tran) in A0 produces V (T) = (S, i, E, I ′,Tran) in which the
independence relation is restricted so

e1I
′e2 ⇔def e1Ie2 & s

e1→ s1 & s
e2→ s2 for some states s, s1, s2.

125

✷

We use V , the right adjoint of the coreflection Ac A0, to obtain a
functor from Safe to Ac. For N in Safe, define

nac(N) = V ◦ na0(N),

an asynchronous transition system whose states are the reachable markings
of N and with independence the concurrency relation on N . For a morphism,
(β, η) : N → N ′ in Safe , define nac(β, η) = (σ, η) where σ(M) = βM for
any reachable marking M of N .

Via the next lemma, the coreflection between A0 N yields a coreflec-
tion Ac Safe.

Lemma 80 Let T be an asynchronous transition system in A0 with events
E.

(i) There is a morphism in Safe
(γ, 1E) : anc(T) → an0(T)

with cγb ⇔ c ∈ conn(b).
(ii) For any morphism (ϕ, η) : an0(T) → N in Safe,

there is a unique morphism (ϕ, η) : an0 → N
in N such that the following diagram commutes:

Proof: Assume T is an asynchronous transition system and that

an0(T) = (B, M0, E, pre, post)
anc(T) = (C, M0 ∩ C, E, prec, post c)

where C consists of the connected conditions of T , and

prec(e) = pre(r) ∩ C, post c(e) = post(e) ∩ C

for any event e. For a state s of T , we write Mc(s) = M(s)∩C. In particular,
M0 ∩ C = Mc(i), where i is the initial state of T .

126

(i) We show (γ, 1E) is a morphism in Safe, according to definition of this
section.

Let c ∈ Mc(i), where i is the initial state of T . If cγb then (i, ∗, i) ∈ c, so
(i, ∗, i) ∈ b giving b ∈ M(i). Thus γM0 ∩ C ⊆ M0. Suppose c1, c2 ∈ Mc(i)
with c1γb and c2γb. Then (i, ∗, i) ∈ c1γc2 where c1, c2 ∈ conn(b). By lemma
76, c1 = c2.

Suppose c ∈ prec(e), for e ∈ E, and cγb. Then there is a transition
(s, e, s′) such that (s, e, s′) ∈ c•. By lemma 74, (s, e, s′) ∈ b•, and hence b ∈
pre(e). Thus γprec(e) ⊆ pre(e). Suppose c1, c2 ∈ prec(e) with c1γb and c2γb.
Considering an arbitrary transition (s, e, s′), we must have (s, ∗, s) ∈ c1 ∩ c2.
As c1, c2 ∈ conn(b), by lemma 76, c1 = c2.

A similar argument holds for postconditions, and (γ, 1E) fulfils the re-
quirements of a relational morphism.
(ii) The proof relies on a simple fact about relational morphisms, which is a
direct consequence of proposition 78:

Let (β, η) : N → N ′ be a morphism in Safe. If M is a reachable
marking of N , then βM is a reachable marking of N ′ such that
b1βb′ and b2βb′ implies b1 = b2 for all conditions b1, b2 ∈ M and
b′ of N ′.

We return to the proof of (ii). Let (β, η) : anc(T) → N be a morphism
in Safe. For p a condition of N , we claim that

{c | cβp}
is a disjoint family of connected conditions. To establish the claim assume
that c1βp and c2βp, where c1 ∩ c2 is nonempty and so necessarily contains
(s, ∗, s), for some state s of T . Then c1, c2 ∈ Mc(s), where Mc(s) is a reachable
marking of anc(T), by lemma 77(ii). Now, by the fact observed above, we
conclude c1 = c2, justifying the claim.

Thus we can define a relation ϕ between conditions of an0(T) and N by
taking ϕop as the partial function which, for p a condition of N , yields

ϕop(p) =

{ ⋃{c | cβp} if nonempty,
undefined otherwise

—as remarked earlier, the union of a nonempty disjoint family of conditions
is a condition. That (ϕ, η) : an0(t) → N is a morphism in N follows straight-
forwardly from (β, η) : anc(T) → N being a morphism in Safe. In order for

127

the above diagram to commute we require β = ϕ ◦ γ, i.e. ,

cβp ⇔ c(ϕ ◦ γ)p

⇔ ∃b. cγb & bγp

⇔ c ∈ conn(ϕop(p)) with ϕop(p) defined.

But this shows that ϕ is determined uniquely. ✷

Corollary 81 The functors anc : Ac → Safe and nac : Safe → Ac form a
coreflection with anc left adjoint to nac.

Proof: The natural bijection required for the adjunction follows by compos-
ing the bijections of the two adjunctions from Ac to A0 with right adjoint
V , and from A0 to N with left and right adjoint an0, na0 respectively, with
the bijection of the previous lemma 80; letting T be an object in Ac and N
in Safe, there is a chain of bijections between morphisms:

T → nac(N) = V ◦ na0(N) in Ac,

T → na0(N) in A0,

an0 → N in N, and

anc(T) → N in Safe.

That the adjunction from Ac to Safe, with left and right adjoints anc, nac

respectively, is a coreflection follows from lemma 77. ✷

So certain asynchronous transition systems are again in coreflection with
a category of safe nets, but this time with a definition of morphism different
from that in section 9.1. The neutral position of asynchronous transition
systems with respect to which definition of morphism on nets is taken, argues
for their central role as models for concurrency. The coreflection from event
structures to asynchronous transition systems cuts down to one E Ac. It
composes with that to safe nets to yield a coreflection

E Ac Safe.

The composite left adjoint is the construction of an “occurrence net” from
an event structure given in [64] (with the addition of a solitary marked
condition)—see [97].

128

Chapter 11

Semantics

In this section we show how to extend the models to include labels so that
they can be used in giving semantics to process languages such as that of
section 3. The denotational semantics involves a use of direct limits to handle
recursively defined processes. The direct limits are with respect to embedding
morphisms in the various categories. In many cases they can be replaced by a
simpler treatment based on inclusion morphisms. We conclude by giving an
operational semantics equivalent to a denotational semantics using labelled
asynchronous transition systems. As will be seen, the operational semantics is
obtained by expanding the rules of section 3.2, which generate the transitions,
to include extra rules which express the independence between transitions.

11.1 Embeddings

The non-interleaving models, nets, asynchronous transition systems, trace
languages and event structures support recursive definitions. The idea of
one process approximating another is caught in the notion of an embedding,
a suitable kind of monomorphism with respect to which the categorical op-
erations we have seen are continuous, in the sense of preserving ω-colimits.
This means that solutions of recursive definitions can be constructed as de-
scribed for instance in cite4. Recall the least fixed point fixF of a continuous
functor F : X→ X, on a category X with all ω-colimits and initial object I,
is constructed as the colimit of

I
!→ F (I)

F (!)→ F 2(I)
F 2(!)→ · · · F (n−1)(!)→ F n(I)

F n(!)→ · · ·

129

where the morphism ! : I → F (I) is determined uniquely by the initiality of
I.

In fact, for all models but nets, it suffices to restrict to inclusion-embeddings,
embeddings based on inclusions, which form a large complete partial order.
Fortunately the embeddings appropriate for different models are all related
to each other. In the case of event structures the embeddings have already
been introduced and studied by Kahn and Plotkin under the name rigid
embeddings (see [40, 97]).

Petri nets: We first consider embeddings between nets. These are sim-
ply monomorphisms in the category N.

Definition: An embedding of nets consists of a morphism of nets

(β, η) : N0 → N1

such that η is an injective function and βop is surjective, in the sense that for
any condition b0 of N0 there is a condition b1 of N1 for which b0 β b1.

Example: Injection functions of a sum such as

are examples of embeddings between nets. The need to include such injec-
tions, is a chief reason for allowing that part of a net-morphism which relates
conditions to not be injective. (Note too there is no “projection morphism”
sending e1 to e0 and e2 to undefined.)

Net embeddings are complete with respect to ω-colimits. They have an
initial object the net consisting of a simple marked conditions (which coin-
cides the initial object in the fuller category N). The existence of ω-colimits

130

is shown explicitly in the following construction:

Proposition 82 Let

N0
(β1,η1)−→ N1

(β2,η2)−→ · · · (βk,ηk)−→ Nk
(βk+1,ηk+1)−→ · · · (†)

be an ω-chain of embeddings between nets Nk = (Bk, Mk, Ek, prek, postk) for
k ∈ ω.

Define N = (B, M, E, pre, post) where:

• B consists of ω-sequences

(b0, b1, . . . , bk, . . .)

where bk ∈ Bk ∪ {∗} such that bk = βop
k+1(bk+1) for all k ∈ ω, with the

property that bm ∈ Bm for some m ∈ ω; the initial marking M consists
of all such sequences for which b0 ∈ M0.

• E consists of ω-sequences

(e0, e1, . . . , ek, . . .)

where ek ∈ Ek ∪ {∗} such that ek �= ∗ implies ηk+1(ek) = ek+1 for all
k ∈ ω, with the property that em ∈ Em for some m ∈ ω.

• the maps pre : E → Pow(B) and post : E → Pow(B) satisfy

b ∈ pre(e) ⇔ ∀k ∈ ω. (ek �= ∗ ⇒ (bk �= ∗ & bk ∈ prek(ek))
b ∈ post(e) ⇔ ∀k ∈ ω. (ek �= ∗ ⇒ (bk �= ∗ & bk ∈ postk(e))),

where we use ek and bk for the k-th components of the sequences e and
b respectively.

Then N is a net. For each k ∈ ω, the pair fk = (γk, εk) consisting of a
relation γk ⊆ B ×Bk such that

cγkb ⇔ c = bk

and a function εk : Ek → E such that

εk(e
′) = e ⇔ e′ = ek

131

is an embedding of nets fk : Nk → N . Furthermore, N and the collection of
embeddings fk, k ∈ ω, is a colimit of the ω-chain (†).

Asynchronous transition systems: An embedding between asynchronous
transition systems consists of a monomorphism which reflects the indepen-
dence relation.

Definition: An embedding of asynchronous transition systems consists of
a morphism

(σ, η) : T0 → T1,

between asynchronous transition systems T0 and T1 with independence rela-
tions I0, I1 respectively, such that σ and η are injective and

η(e0), η(e1) defined & η(e0)I1η(e1) ⇒ e0 I0 e1

for any events e0, e1 of T0.

Proposition 83
(i) If f : N0 → N1 is an embedding of nets, then na(f) : na(N0) → na(N1)
is an embedding of asynchronous transition systems. Moreover, na preserves
ω-colimits of embeddings.
(ii) If g : T0 → T1 is an embedding of asynchronous transition systems, then
an(g) : an(T0) → an(T1) is an embedding of nets. Moreover, an preserves
ω-colimits of embeddings.

The operations on asynchronous transition systems we have seen are all
continuous with respect to an order based on embeddings which are inclu-
sions:

Definition: Let T0 = (S0, i0, E0, I0, tran0) and T1 = (S1, i1, Ei, Ii, tran1)
be asynchronous transition systems. Define T0 ✂ T1 iff S0 ⊆ S1, E0 ⊆ E1 and
(σ, η) is an embedding where σ is the inclusion S0 ↪→ S1 and η the inclusion
E0 ↪→ E1.

Asynchronous transition systems have ω-colimits of embeddings. In par-
ticular, if

T0 ✂ · · ·✂ Tn ✂ · · ·

132

is an ω-claim of asynchronous transition systems Tn = (Sn, in, En, In, trann),
it has a least upper bound

(
⋃
n∈ω

Sn, i0,
⋃
n∈ω

En,
⋃
n∈ω

In,
⋃
n∈ω

trann)

which is not only an ω-colimit in the category of inclusion-embeddings, but
also in the category of embeddings. The situation restricts to asynchronous
transition systems in A0; they are closed under least upper bounds of ω-
chains under ✂.

Trace languages: Embeddings on asynchronous transition systems induce
embeddings on trace languages via the identification given by tla:

Definition: An embedding of trace languages consists of a morphism η :
T → T ′ of trace languages T, T ′, with independence relations I, I ′ respec-
tively, such that η is injective and

η(a), η(b) defined & η(a)I ′η(b) ⇒ aIb, for all a, b ∈ E.

Let T = (M, E, I), T ′ = (M ′, E ′, I ′) be trace languages. Define T ✂ T ′ iff

M ⊆ M ′,
E ⊆ E ′ and
aIb ⇔ aI ′b, for all a, b ∈ E.

Again, embeddings and inclusion-embeddings have colimits of ω-chains
which in the case of inclusion embeddings are given by unions. The functors
atl and tla are continuous with respect to inclusion-embeddings.

Event structures: To treat recursively defined event structures we use
a notion of embedding equivalent to that of the rigid embeddings of Kahn
and Plotkin (see [40, 97]). Note that in the case of event structures (though
not for the other models of this section) embeddings are always associated
with projection morphisms in the opposite direction. When the embeddings
are inclusions they amount to a substructure relation on event structures.

Definition: An embedding of event structures consists of a morphism η :
ES0 → ES1 between event structures ES0, ES1 where η is injective and such

133

that its opposite, the partial function ηop, is a morphism of event structures
ηop : ES1 → ES0.

Let ES0 = (E0,≤0, #0), ES1 = (E1,≤1, #1) be event structures. Define
ES0 ✂ ES1 iff

E0 ⊆ E1,

∀e ∈ E1. e ≤0 e0 ⇔ e ≤1 e0,

for all e0 ∈ E0, and

e #0 e′ iff e #1 e′,

for all e, e′ ∈ E0.

The ✂ order on event structures is a special case of the order on trace
languages:

Proposition 84

(i) If ES ✂ ES ′, for event structures ES, ES ′, then etl(ES) ✂ etl(ES ′),
for the associated trace languages. Moreover, etl preserves ω-colimits
of inclusion-embeddings.

(ii) If T ✂ T ′, for trace languages T, T ′, then tle(T) ✂ tle(T ′), for the
associated event structures. Moreover, tle preserves ω-colimits of
inclusion-embeddings.

11.2 Labelled structures

For noninterleaving models of concurrency like event structures, we distin-
guish between events, which carry the independence structure, and labels of
the kind one sees in process algebras, whose use is to specify the nature of
events, to determine for example how they synchronise. The denotation of
a process, for example from the process language Proc, will most naturally
be a labelled structure. The models we consider possess a set of events to
which we can attach a labelling function. The set of events of an object X
in a typical category X of structures (for example, X could be the category

134

of event structures) is given by a functor E : X → Set∗. This permits us
to adjoin labelling sets to several different categories of models in the same
way, using the following construction:

Definition: Let E : X → Set∗ be a functor from a category X. Define
L(X) to be the category consisting of

objects (X, l : E(X) → L) where X is an object of X and l is a
morphism in Set, and

morphisms pairs (f, λ) : (X, l : E(X) → L) → (X ′, l′ : E(X ′) →
L′) where f : X → X ′ in X and λ : L → L′ in Set satisfy

l′ ◦ E(f) = λ ◦ l,

with composition defined coordinatewise, i.e. (f ′, λ′) ◦ (f, λ) =
(f ′ ◦ f, λ′ ◦ λ) provided f ′ ◦ f and λ′ ◦ λ are defined.

To understand how this construction is used, take X to be one kind of
model, say event structures, so X is E. Then understanding E to be the
forgetful functor to sets of events and partial functions, has the effect of
adjoining to event structures extra structure in the form of total labelling
functions on events: the objects of the category L(E) are labelled event
structures (ES, l : E → L) where ES is an event structure and l is a total
function from its events E to a set of labels L; morphisms (ES, l : E → L) →
(ES ′, l′ : E ′ → L′) are pairs (η, λ), with η : ES →∗ ES ′ a morphism of event
structures, and λ : L →∗ L′ such that l′ ◦ η = λ ◦ l.

Products and coproducts in L(E) are obtained from the corresponding
constructions in the unlabelled category because of the following general
facts:

Proposition 85 Let E : X → Set∗ be a functor from a category X. As-
sume X has products. Then, a product of (X0, l0 : E(X0) → L0) and
(X1, l1 : E(X1) → L1) in L(X) is given by (X, l : E(X) → L) with pro-
tections (η0, λ0), (η1, λ1), where

• X is a product of X0, X1 in X with projections η0 : X → X0, η1 : X →
X1

135

• L is a product of L0, L1 in Set∗ with projections λ0 : L → L0, λ1 : L →
L1

• l = 〈l0 ◦E(η0), l1 ◦E(η1)〉 : E(X) → L the unique mediating morphism
to the product L such that λ0 ◦ l = l0 ◦ E(η0) and λ1 ◦ l = l1 ◦ E(η1).

Proposition 86 Let E : X→ Set∗ be a functor from a category X. Assume
X has coproducts preserved by E. Then, a coproduct of (X0, l0 : E(X0) →
L0) and (X1, l1 : E(X1) → L1) in L(X) is given by (X, l : E(X) → L) with
injections (η0, λ0),where

• X is a coproduct of X0, X1 in X with injections η0 : X0 → X, η1 :
X1 → X

• L is a coproduct of L0, L1 in Set∗ with injections λ0 : L0 → L, λ1 :
L1 → L

• l = [λ0 ◦ l0, λ1 ◦ l1] : E(X) → L is the unique mediating morphism from
the coproduct E(X) such that λ0 ◦ l0 = l ◦E(η0) and λ1 ◦ l1 = l ◦E(η1).

There is a functor p : L(X) → Set∗; a morphism of labelled structures

(f, λ) : (X, l : E(X) → L) → (X ′, l′ : E(X ′) → L′)

is sent to

λ : L →∗ L′.

For any total function λ : L → L′ in Set∗, this functor does have a strong
cocartesian lifting of λ with respect to any object (X, l : E(X) → L) in
L(X): it is given by the morphism

(1X , λ) : (X, l : E(X) → L) → (X, λ ◦ l : E(X) → L′)

in L(X). This yields a relabelling operation when X is specialised to one of
the models.

For any of the models, there are also strong cartesian liftings of inclu-
sions L ↪→ L′ in Set∗ with respect to a labelled structure (X, l : E(X) → L),
though this requires an argument resting on the fact that the categories of

136

structures (without labels) that we consider support an operation of restric-
tion to a prescribed subset of events. For example, given an event structure
ES = (E ′,≤′, #′) and a specified subset E ⊆ E ′ there is an event structure,
the restriction of ES to E gives an event structure (E0,≤, #) as follows:

its set of events consists of E0 = {e ∈ E | ∀e′ ≤ e.e′ ∈ E};

its causal dependency relation satisfies

e ≤ e′ ⇔ e, e′ ∈ E0 & e ≤′ e′;

its conflict relation satisfies

e#e′ ⇔ e, e′ ∈ E0 & e#′e′.

To treat recursion on labelled structures we extend embeddings to labelled
structures, such as L(E). A morphism of labelled structures

(f, λ) : (X, l : E → L) → (X ′, l′ : E ′ → L′)

is taken to be an embedding (or an inclusion-embedding) if f : X → X ′ is
embedding (or an inclusion embedding) and λ is an inclusion of sets. The
labelled structures have colimits of ω-chains formed from colimits of the
unlabelled structures. In particular, a chain

(X0, l0) ✂ · · ·✂ (Xn, ln) ✂ · · ·

of labelled structures (Xn, ln : En → Ln), has least upper bound (
⋃

n∈ω Xn,⋃
n∈ω ln). The labelling function

⋃
n∈ω ln has domain

⋃
n∈ω En and codomain⋃

n∈ω Ln.

In section 3 we had to go to a little trouble to extend the restriction and
relabelling operations to all transition systems regardless of their labelling
set. In general, some care is needed in making functors with respect to
embeddings out of some of the operations. The operations of restriction and
relabelling (− � Λ) and (−{Ξ}) yield functors on categories of embeddings.
Suppose there is an embedding f : X → X ′ between labelled structures
X, X ′ with labelling sets L, L′ respectively, necessarily related by an inclusion
L ↪→ L′. The structure X with labelling set L restricts to X � Λ associated
with a particular cartesian lifting

c : X � Λ → X

137

of the inclusion L ∩ Λ ↪→ L. Similarly, X ′ is associated with the cartesian
lifting

c′ : X ′ � Λ → X ′

of the inclusion L′ ∩Λ ↪→ L′. Because c′ is strong cartesian there is a unique
morphism

(f � Λ) : X � Λ → X ′ � Λ

projecting to the inclusion L∩Λ ↪→ L′∩Λ such that f ◦ c = c′ ◦ (f � Λ). This
ensures that (− � Λ) is a functor from the subcategory with embeddings.
Moreover, for each model, (f � Λ) is an (inclusion-)embedding provided f is.
In a similar way a relabelling function Ξ is associated with cocartesian liftings
X → X{Ξ} of L → ΞL for any structure X with labelling set L, and gives
rise to a functor with respect to embeddings. For all the models here, it is a
straightforward matter to define a prefixing operation on the various labelled
structures so that it is continuous with respect to a choice of embedding given.
The labelled versions of continuous functors are continuous.

The various categories of labelled structures, such as L(E) for example,
provide a semantics to the process language Proc interpreting constructions
in the process language as the appropriate universal construction, so ab-
stractly this proceeds exactly as in chapter 3.

11.3 Operational semantics

11.3.1 Transition systems with independence

The model of asynchronous transition systems is based on events which carry
an independence relation. The nature of these events can then be specified
by a further level of labelling. There is an alternative, more direct, pre-
sentation of (certain kinds of) labelled asynchronous transition systems, got
by extending transition sytems with an independence relation on its transi-
tions. Transition systems with independence are definable by the techniques
of structural operational semantics in a way which directly extends that of
section 3.

138

Definition: A transition system with independence1 is defined to be a struc-
ture

(S, i, L,Tran, I)

where (S, i, L,Tran) is a transition system and the independence relation
I ⊆ Tran2 is an irreflexive, symmetric relation, such that

1. (s, a, s1) ∼ (s, a, s2) ⇒ s1 = s2

2. (s, a, s1)I(s, b, s2) ⇒ ∃u. (s, a, s1)I(s1, b, u) & (s, b, s2I(s2, a, u)

3. (s, a, s1)I(s1, b, u) ⇒ ∃s2. (s, a, s1)I(s, b, s2) & (s, b, s2)I(s2, a, u)

i (s, a, s1) ≺ (s2, a, u)I(w, b, w′) ⇒ (s, a, s1)I(w, b, w′)

ii (w, b, w′)I(s, a, s1) ≺ (s2, a, u) ⇒ (w, b, w′)I(s2, a, u)

where the relation ≺ between transitions is defined by

(s, a, s1) ≺ (s2, a, u) ⇔ ∃b. (s, a, s1)I(s, b, s2)
& (s, a, s1)I(s1, b, u) & (s, b, s2)I(s2, a, u),

and ∼ is the least equivalence relation including ≺.

As morphisms on transition systems with independence we take mor-
phisms on the underlying transition systems which preserve independence,
i.e. a morphism (σ, λ) : T → T ′ should satisfy

If (s, a, s′) and (u, b, u′) are independent transitions of T and λ(a)
and λ(b) are both defined, then (σ(s), λ(a), σ(s′)) and (σ(u), λ(b),
σ(u′)) are independent transitions of T ′.

Composition is inherited from that in T. We write TI for the category of
transition systems with independence.

Thus transition systems with independence are precisely what their name
suggests, viz. transition systems of the kind used to model languages like CCS
and CSP but with an additional relation expressing when one transition is

1Axiom 2 of transition systems with independence is not essential to much of the
development. It ensures that the trace language of a transition system with independence is
coherent, so that the associated event structure has the property that conflict is determined
in a binary fashion.

139

independent of another. The axioms (2) and (3) describe intuitive properties
of independence, similar to those we have seen. The relation ≺ expresses
when two transitions represent occurrences of the same event. This relation
extends to an equivalence relation ∼ between transitions; the equivalence
classes {(s, a, s′)}∼, of transitions (s, a, s′), are the events of the transition
system with independence. Property (4) is then seen as asserting that the
independence relation respects events. Note that property (4) implies that if
(s, a, s1) ≺ (s2, a, u), i.e. there is a “square” of transitions

with

(s, a, s1)I(s, b, s2) & (s, a, s1)I(s1, b, u) & (s, b, s2)I(s2, a, u),

then we also have the independence

(s1, b, u)I(s2, a, u).

The first property (1) simply says that the occurrence of an event at a state
yields a unique state. Note that property (1) implies the uniqueness of the
states, u and s2, whose existence is asserted by properties (2) and (3) respec-
tively.

In this way a transition system with independence can be viewed as an
asynchronous transition system in which the events are labelled, an event
{(s, a, s′)}∼ carrying the label a. The resulting asynchronous transition sys-
tem is extensional in that it has the property that

(1) for any label there is at most one event with that label involved in a
transition between two states.

140

It is special in another way too. An asynchronous transition system can be
regarded as a transition system with independence, in which the indepen-
dence on transitions is induced by that on its events. The asynchronous
transition systems which result from transition systems with independence
have the special property that

(2) the map {(s, e, s′)}
−∼
�→ e is a bijection.

There is in fact an equivalence between the category of transition systems
with independence and the full subcategory of L(A) for which the objects
are labelled transition systems with the properties (1) and (2).

Let’s return to our example of 3.3. It is now an easy matter to extend
the transition-system semantics there to take account of independence. We
simply specify which transitions are independent of which others. Copying
the transition system of 3.3,

we assert in addition the following independencies

(0, c2, 1)I(0, b, 2), (1, c, 0)I(1, b, 3), (0, b, 2)I(0, c2, 4)

which then generate others by the axioms in the definition of a transition
system with independence.

11.3.2 Operational rules

Transition systems with independence have the feature that they are defin-
able by structural operational semantics in much the same way as transition

141

systems, but with the usual rules for transitions being supplemented by rules
specifying the independence relation between transitions.

To motivate the rules we first examine how the product lends itself read-
ily to a presentation via rules of structural operational semantics. Assume
T0 = (S0, i0, L0,Tran0, I0) and T1 = (S1, i1, L1,Tran1, I1) are transition sys-
tems with independence. Their categorical product T0×T1 is (S, i, L,Tran, I)
where (S, i, L,Tran) is the product of the underlying transition systems
(S0, i0, L0,Tran0), (S1, i1, L1,Tran1), with projections (ρ0, π0), (ρ1, π1), and
the independence relation I on transitions is given by

(s, a, s′)I(u, b, u′) iff

π0(a), π0(b) defined ⇒ (ρ0(s), π0(a), ρ0(s
′))I0(ρ0(u), π0(b), ρ0(u

′)) &

π1(a), π1(b) defined ⇒ (ρ1(s), π1(a), ρ1(s
′))I1(ρ1(u), π1(b), ρ1(u

′)).

The characterisation of the independence relation can be simplified through
the use of idle transitions. An independence relation like I ⊆ Tran × Tran
extends to a relation I∗ ⊆ Tran∗ × Tran∗ in which

(s, a, s′)I∗(u, b, u′) ⇔ a = ∗ or b = ∗ or (s, a, s′)I(u, b, u′).

An idle transition is thus always independent of any transition, idle or oth-
erwise. Now we have the simplification:

(s, a, s′)I∗(u, b, u′) iff
(ρ0(s), π0(a), ρ0(s

′))I0∗(ρ0(u), π0(b), ρ0(u
′)) &

(ρ1(s), π1(a), ρ1(s
′))I1∗(ρ1(u), π1(b), ρ1(u

′)).

We have already seen rules to give the transitions of the product (section 3.2).
To define the product of transition systems with independence we adjoin
the following rule, which reformulates the condition for two transitions of a
product to be independent:

(s0, a0, s
′
0)I0∗(u0, b0, u

′
0), (s1, a1, s

′
1)I1∗(u1, b1, u

′
1)

((s0, s1), a0 × a1, (s′0, s
′
1))I∗((u0, u1), b0 × b1, (u′

0, u
′
1))

Similarly, the fibre coproduct of transition systems with independence is
given by the fibre coproduct of the underlying transition systems together
with an independence relation inherited directly from the components. This
too can be expressed by simple rules, which are essentially unchanged in the

142

nondeterminis-tic sum ⊕, where we first enlarge the labelling sets to their
union and then form the fibre coproduct. Let T0 and T1 be the transition
systems with independence above. Their sum T0⊕T1 consists of a transition
system, formed as the nondeterministic sum of their underlying transition
systems associated with injection functions in0, in1 on states, together with
an independence relation satisfying

(s, a, s′)I(u, b, u′)
iff
[∃s0, s

′
0, u0, u

′
0.

s = in0(s0) & s′ = in0(s
′
0) & u = in0(u0) & u′ = in0(u

′
0) & (s0, a, s′0)I0(u0, b, u

′
0)]

or
[∃s1, s

′
1, u1, u

′
1.

s = in1(s1) & s′ = in1(s
′
1) & u = in1(u1) & u′ = in1(u

′
1) & (s1, a, s′1)I1(u1, b, u

′
1)].

Expressed by rules the condition on the independence relation becomes:

(s0, a, s′0)I0(u0, b, u
′
0),

(in0(s0), a, in0(s′0))I(in0(u0), b, in0(u′
0,))

(s1, a, s′1)I1(u1, b, u
′
1),

(in1(s1), a, in1(s′1))I(in1(u1), b, in1(u′
1,))

As usual a restriction can be understood as a cartesian lifting of an inclu-
sion morphism on labelling sets; there is an obvious functor from TI to Set∗
projecting to the labelling sets and the labelling functions between them.
Letting T = (S, i, L,Tran, I) be a transition system with independence, the
restriction to a subset of labels Λ is

T � Λ = (S, i, L′,Tran ′, I ′)

where L′ = L ∩ Λ, Tran ′ = Tran ∩ (S × L′ × S) and I ′ = I ∩ (Tran ′ ×
Tran ′). Although this operation may change the w relation, increasing the
number of events, it preserves the axioms required of a transition system with
independence. The rule in the operational semantics for the independence
relation of a restriction expresses that it is got simply by cutting down the
original independence relation.

Relabelling is associated with a cocartesian lifting of the relabelling func-
tion on labelling sets. In defining it we can take advantage of a unicity
property of those transition systems arising from the operational semantics:

143

Suppose s
a−→ s′ and s

b−→ s′ are transitions obtained from the
operational semantics (version 2) of section 3.2. Then a = b.

This property is easily observed to be preserved by the rules.
Let T = (S, i, L,Tran, I) be a transition system with independence, assumed
to satisfy the unicity property

(s, a, s′) ∈ Tran & (s, b, s′) ∈ Tran ⇒ a = b.

For Ξ : L → L′ the relabelling

T{Ξ} = (S, i, L′,Tran ′, I ′),

where Tran ′ = {(s, b, s′) | ∃a. b = Ξ(a) & (s, a, s′) ∈ Tran} and

(s, a, s′)I ′(t, b, t′) ⇔ ∃a′, b′. a = Ξ(a′) & b = Ξ(b′) & (s, a′, s′)I ′(t, b′, t′).

Because the transition system T satisfies the unicity property the construc-
tion T{Ξ} yields a transition system with independence (without the assump-
tion of unicity the new relation I ′, as defined, need not respect events, and
a more complicated definition is needed). Consequently in the operational
semantics we can get away with a rule which says the independence relation
of the relabelled transition system is simply the image of the original.

We obtain an operational semantics for Proc as transition system with
independence by extending version 2 of the rules of section 3 for the tran-
sitions between (tagged) states by the following rules for the independence
relation (also . relating idle transitions):

Rules for independence

(s, a, s′)I(u, ∗, u)
(s, a, s′)I(u, b, u′)
(u, b, u′)I(s, a, s′)

(s, a, s′)I(t, b, t′)
((n, s), a, (n, s′))I((n, t), b, (n, t))

Sum:
(s, a, s′)I(u, ∗, u)

(s⊕ t, a, (0, s′))I(s⊕ t, b, (0, s′′))
a, b �= ∗

(t, a, t′)I(t, b, t′′)
(s⊕ t, a, (1, t′))I(s⊕ t, b, (1, t′′))

a, b �= ∗

144

(s, a, s′)I(u, b, u′)
(s⊕ t, a, (0, s′))I((0, u), b, (0, u′))

u �≡ s, a �≡ ∗

(t, a, t′)I(u, b, u′)
(s⊕ t, a, (1, t′))I((1, u), b, (1, u′))

u �≡ t, a �≡ ∗

Product:
(s1, a1, s

′
1)I(s2, a2, s

′
2) (t1, b1t

′
1)I(t2, b2, t

′
2)

(s1 × t1, a1 × b1, s′1 × t′1)I(s2 × t2, a2 × b2, s′2 × t′2)

Restriction and relabeling:

(s, a, s′)I(t, b, t′)
(s � Λ, a, s′ � Λ)I(t � Λ, b, t′ � Λ)

a, b ∈ Λ

(s, a, s′)I(t, b, t′)
(s{Ξ},Ξ(a), s′{Ξ})I(t{Ξ},Ξ(b), t′{Ξ}) a, b �= ∗

Recursion:
(t[rec x.t/x], a, s)I(t[rec x.t/x], b, u)
(rec x.t, a, (2, s))I(rec x.t, b, (2, u))

a, b �= ∗

(t[rec x.t/x], a, s)I(u, b, u′)
(rec x.t, a, (2, s))I((2, u), b, (2, u′))

u �≡ t[rec x.t/x], a �= ∗

A closed term of Proc determines a transition system with independence con-
sisting of all those states and transitions forwards-reachable from it together with
an independence relation determined by the rules above. Notice there are no ex-
tra rules for prefixing because the transition immediately possible for a prefixed
process is not independent to any other. The rules for product, restriction and
relabelling are straightforward reformulations as rules of the requirements on their
independence relations. The rules for sum and recursion require further explana-
tion. For a sum s ⊕ t, taking the injection functions in0, in1 on states to satisfy,
e.g.

in0(s) = s⊕ t, and in0(u) = (0, u) if u �≡ s,

we can understand the rules for sum, together with the rule for tagged terms,
as saying that independence for a sum is precisely that inherited separately from
the components. Because the transition system is acyclic (lemma 10), there is an
isomorphism between the transition system reachable from rec x.t and its unfolding

145

t[rec x.t/x] (this fact is used earlier in the proof of theorem 11). The isomorphism
is given by

rec x.t �→ t[rec x.t/x]
(2, u) �→ u.

The rules for recursively defined processes, with the final rule for tagged terms,
ensure that transitions reachable from rec x.t are independent precisely when their
images under this isomorphism are independent.

A denotational semantics where denotations are transition systems with in-
dependence can be presented along standard lines; the categorical constructions
defined above are used to interpret the operations.

We have already discussed the categorical constructions in TI which are used
to interpret the operations of the process language. It remains to handle recursion.
We define an appropriate ordering, with respect to which all the constructions are
continuous:

Definition: Let T = (S, i, L, tran, I) and T ′ = (S′, i′, L′, tran ′, I ′) be transition
systems with independence. Define T ✂ T ′ iff

S ⊆ S′ with i = i, L ⊆ L′, tran ⊆ tran ′ and

∀(s, a, s′), (t, b, t′) ∈ tran. (s, a, s′)I(t, b, t′) ⇔ (s, a, s′)I ′(t, b, t′).

Now, as earlier in section 3, for straightforward transition systems, we can give
denotations to recursively defined processes. The result is that with respect to
an environment ρ assigning meanings to process variables as transition systems
with independence, we can give the denotation of a process term t as a transition
system with independence

TI[[t]]ρ.

The denotational semantics agrees with the operational semantics. The proof pro-
ceeds analogously to that of theorem 11—further details are given in Appendix
C(b).

Definition: For T = (S, i, L,Tran, I) consisting of a transition system (S, i, L,Tran)
and relation I ⊆ Tran × Tran, define R(T) to be (S′, i, L′,Tran ′, I ′) consist-
ing of states S′ reachable from i, with initial state i, and transitions Tran ′ =
Tran ∩ (S′ × L × S′) with labelling set L′ consisting of those labels appearing in
Tran ′ and I ′ = I ∩ (Tran ′ × Tran ′).

146

Assume t is a closed term of Proc. Let T consist of the transition system got
from version 2 in section 3, with initial state t, with independence relation given
by the rules above. Define

Op(t) = R(T).

Theorem 87 Let t be a closed process term. Then, for any arbitrary environ-
ment ρ,

Op(t) ∼= R(TI[[t]]ρ),

a label-preserving isomorphism.
The denotational semantics in TI is closely related to that in L(A) which we

write as A[[t]]ρ, for a term t and an environment ρ interpreting variables in L(A).
There is an obvious functor from L(A) to TI (it is not however adjoint to that
functor identifying a transition system with idependence with an equivalent la-
belled asynchronous transition system). On objects it acts as follows:

Definition: Let T = (S, i, E, I,Tran, l : E → L) be an object of L(A). De-
fine u(T) to be (S, i, L,Tran ′, I ′) where

(s, a, s′) ∈ Tran ′ ⇔ ∃e. l(e) = a & (s, e, s′) ∈ Tran
(s, a, s′)I ′(t, b, t′) ⇔ ∃e0, e1. l(e0) = a & l(e1) = b & (s, e0, s

′)I(t, e1, t
′).

Theorem 88 Let t be a term of the process language Proc. For any environment
ρ interpreting process variables in L(A),

TI[[t]](u ◦ ρ) = u(A[[t]]ρ).

Proof: The operation u can be shown to be continuous with respect to the order-
ings ✂ and to preserve the operations of Proc. A structural induction on terms t
of Proc shows that

TI[[t]](u ◦ ρ) = u(A[[t]]ρ),

for an environment ρ interpreting variables in L(A). The case where t is a recursive
process relies on the fact that if F and G are continuous functions on (large) cpo’s
TI and L(A) resectively, ordered by ✂, such that

F ◦ u = u ◦G

147

then, because u is continuous and preserves the bottom element in the definitions
by recursion,

fixF = u(fixG).

✷

As we will see, the coreflections between categories of unlabelled structures
extend to categories of labelled structures. In particular, this yields a coreflection
L(E) L(A). This coreflection cuts down to one L(E) TI and semantics in
L(A) and TI unfold to the same semantics in labelled event structures.2

2It follows that the labelled event structure obtained from the Petri net semantics is
isomorphic to that got by “unfolding” the operational semantics. We can also ask about the
following method for obtaining a labelled-net semantics directly from the semantics in TI.
Certainly we can regard a transition system with independence as a labelled asynchronous
transition system (how, is explained early in this section) and thus we can obtain a net via
the adjunction between asynchronous transition systems and nets. At the time of writing,
it is not decided whether or not this yields an asynchronous transition system in A0, and
thus, via the coreflection, a net with the same underlying asynchronous transition system
as its behaviour.

148

Chapter 12

Relating models

Earlier in section 11.2, it was seen how to attach labels to events of structures in
a uniform way. In relating semantics in terms of the different models, we shall
also wish to extend functors between categories of models to functors between
their labelled versions. For this we use the fact that the functors of interest are
accompanied by natural transformations, so that a general scheme described in
the following definition applies. The components of the natural transformation
relate the event sets before and after application of the functor; for example, the
natural transformation accompanying the functor from trace languages to event
structures has components mapping events of a trace language to their associated
symbols in the alphabet.

Definition: Let EC : C → Set∗ and ED : D → Set∗ be functors (taking struc-
tures to their underlying event sets).

Suppose F : C → D is a functor and φ : ED ◦ F → EC is a natural trans-
formation with components in Set (the natural transformation relates the event
sets resulting from the application of F to those originally). Define the functor
L(F, φ) : L(C) → L(D) to act on objects so

(C, l : EC(C) → L) �→ (F (C), l ◦ φC : ED ◦ F (C) → L)

and on morphisms so

(f, λ) �→ (F (f), λ)

where (f, λ) : (C, l : EC(C) → L) → (C ′, l′ : EC(C ′) → L′).
Under reasonable conditions the labelIing operation L(−) preserves adjunc-

tions, coreflections and reflections:

149

Lemma 89 Let EC : C → Set∗ and EC : D → Set∗ be functors.
Suppose F : C → D is a functor and φ : ED ◦ F → EC is a natural trans-

formation. Suppose G : D → C is a functor and γ : EC ◦ G → ED is a natural
transformation. Suppose there is an adjunction with F left adioint to G, with unit
η and counit ε.

If, for any C ∈ C, D ∈ D,

1EC(C) = φC ◦ γF (C) ◦ EC(ηC) and ED(εD) = γD ◦ φG(D), (12.1)

then the functors L(F, φ) : L(C) → L(D) and L(G, γ) : L(D) → L(C) form
a fibrewise adjunction with L(F, φ) left adjoint to L(G, γ) and unit and counit
given as follows: the unit at (C, l : EC(C) → L) is (ηC , 1L); the counit at
(D, l : ED(D) → L) is (εD, 1L). If, in addition, the adjunction between F and
G is a coreflection or reflection, then L(F, φ) and L(G, γ) form a coreflection or
reflection respectively.

Proof: By [50] theorem 2 p.81, the adjunction between C and D, is determined
by the functors F , G, the natural transformations η, ε and the fact that the com-
positions

G(D)
ηG(D)−→ GFG(D)

G(εD)−→ G(D),

F (C)
F (ηC)−→ FGF (C)

εF (C)−→ F (C)

are identities. The condition (1) is sufficient to ensure that these facts lift straight-
forwardly to the labelled categories and functors, determining an adjunction with
unit and counit as claimed. The unit and counit are vertical, making the adjunc-
tion fibrewise. Given their form, they become natural isomorphisms if η or ε are;
the property of being a coreflection or reflection is preserved by the construction.
✷

This lemma enables us to transport the adjunctions that exist between cate-
gories of unlabelled structures to adjunctions between the corresponding categories
labelled structures. The role of the natural transformations is to relate the event
sets of the image of a functor to the event set of the original object. We are only
required to check that the natural transformations, tracking the functors in the
labelling category of sets, relate well to the unit and counit, in the sense of (8.1)
above.

As an example we consider how to extend the coreflection between event struc-
tures and trace languages to labelled versions of these structures using lemma 89.

150

The role of the natural transformations in the lemma is to relate the event sets of
the image of a functor to the event set of the original object, as can be seen by
considering the functor

tle : TL → E.

Let ETL : TL → Set∗ be the forgetful functor from trace languages to their
alphabets. Let EE : E → Set∗ be the forgetful functor from event structures
to their sets of events. A component of the counit of the coreflection between E
and TL maps the events of a trace language to its alphabet. It yields a natural
transformation γ : EE ◦ tle → ETL. A trace language T = (M, A, I) with labelling
l : A → L can now be sent to the event structure tle(T) with labelling l ◦γT : E →
L. This extends to a functor L(tle, γ) : L(TL) → L(E). The functor etl : E →
TL does not change the set of events and we associate it with the identity natural
transformation 1 : ETL ◦ etl → EE . These choices of natural transformations to
associate with the functors etl and tle ensure that condition (8.1) of lemma 89
hold. To see this, we use the fact that

εetl(E) ◦ etl(ηE) = 1etl(E)

obtains for counit ε and unit η of the adjunction, for any E ∈ E. Thus applying
the functor ETL, we get

ETL(εetl(E)) ◦ ETL(etl(ηE)) = ETL(1etl(E)).

But now, recalling how ETL and etl act, we see

εetl(E) ◦ ηE = 1E ,

i.e. that the first half of (8.1) holds. The remaining half of (8.1) reduces to an
obvious equality. We conclude by lemma 89 that

L(etl , 1) : L(E) → L(TL)

forms a coreflection, with right adjoint L(tle, γ). The coreflection E TL cuts
down to one E TL0, which extends to labelled structures.

So, in particular, we can lift the coreflection between event structures and trace
languages to labelled versions of these structures. In a similar, but much easier
manner, we can lift the adjunction between A and N, and the coreflections

E TL0 A, E TL0 N, Ac Safe,

151

to the categories of labelled structures. Lemma 89 requires that each functor
is associated with a natural transformation relating the events of the image to
those originally. In most cases the functors leave the event sets unchanged, which
makes the identity natural transformations the evident associates of the adjoint
functors and the verification of condition (8.1) of lemma 89 a triviality. One
exception is right adjoint of the coreflection from TL0 to E, dealt with in section
11.2. Another is the functor na0 : N → A0 which has the effect on event sets of
reducing them to those events which are reachable. Accordingly, when extending
this functor to labelled structures we take the natural transformation associated
with na0 to have components the inclusion of the events of na0(N) in those of a
net N . A straightforward application of lemma 89 lifts the coreflection between
asynchronous transition systems and nets to labelled structures. We obtain an
adjunction between L(A) and L(N), and the coreflections

LE LTL0 LA, LE L(A0) L(N) L(Ac) Safe,

We can use the adjunctions to relate constructions, and thus semantics, across
different categories of labelled structures.

In section 8.3.3 we saw that the reflection between languages and synchro-
nisation trees is paralleled by a reflection between Mazurkiewicz trace languages
and labelled event structures. Several independence models are generalisations of
transition systems: labelled Petri nets, labelled asynchronous transition systems,
transition systems with independence. There is a coreflection T TI given by
regarding a transition system as having empty independence relation. However
there are not coreflections from transition systems T to the categories of labelled
nets or asynchronous transition systems. There are not for the irritating reason
that, unlike transition systems, these two models allow more than one transition
with the same label between two states. This stops the natural bijection required
for the “inclusion” of transition systems to be a left adjoint. A more detailed com-
parison between interleaving and independence models can suggest new models.
See, for example, [81, 82] for a classification of models which includes a generali-
sation of Mazurkiewicz traces, associated with a broad class of pomset languages.

Remark: An alternative scheme of labelling is possible for the independence
models. Instead of labelling events simply by sets of labels, in Set∗, we can label
by sets together with an independence relation, in the category SetI , respecting
the independence on events in the labelling function. We met the category SetI

of sets with independence earlier in section 8.3.3 and, as an example of the gen-
eral construction, the category LI(E) of event structures labelled by sets with
independence. The general construction for labelling in SetI proceeds as with

152

Set∗ and similar general lemmas apply; in particular, the adjunctions/ coreflec-
tions/reflections between the categories of unlabelled structures lift when labelling
by sets with independence. For all the independence models but nets the evident
projection functors from the categories with labelling sets with independence to
SetI are bifibrations—for nets we get just cofibrations. This contrasts with the
situation when labelling the independence models by Set∗. Then the associated
projections only form cofibrations, not fibrations; while the labelled categories
do have Cartesian liftings of total maps between labelling sets, they do not have
Cartesian liftings of truly partial maps. A limitation with labelling by sets with
independence is that the relabelling construction on processes is determined as a
cocartesian lifting only when the relabelling function is a morphism of the cate-
gory SetI , and so preserves independence. The categories labelling by plain sets
are more suitable for the semantics of traditional process algebras. Still, we can
imagine process algebras, in which processes have sorts consisting of sets with in-
dependence, with relabelling operations only for relabelling functions preserving
independence.

153

Chapter 13

Notes

In this chapter we have surveyed a number of models for concurrency, with special
emphasis on the use of category theory in relating the models. We have chosen
not to go into any detail on the theories and applications of the individual models.
In the following we give some references to such work, and work related to our
presentation in general.

Labelled transition systems are arguably the most fundamental model within
theoretical computer science. An early reference is Keller [42]. In the context of
concurrency, they are central to the work on process algebras, like CCS, where
processes are typically first given a semantics as labelled transition systems on
which behavioural equivalences, like bisimulation, and logics, like Hennessy-Milner
logic, are then defined. For one prototypical example of such an approach, see
Milner’s treatment of CCS in [55], and for surveys of the many equivalences and
logics which have been studied see the papers of van Glabbeek [26] and [27].

Labelled transition systems have been introduced here in their most basic
form. Many extensions have been suggested and studied. As a simple example,
we have assumed each transition system has one and only one initial state. A
similar theory can be developed with a set of initial states, the interpretation
being that initially one and only one of the initial states holds, though it is not
determined which (a notable difference is that then the coproduct amounts to just
disjoint juxtaposition). More significant extensions include explicit representations
of concepts like fair, timed and probabilistic behavours. Using labelled transition
systems as a model for distributed systems, one often needs to restrict the set
of infinite behaviours to those which meet certain progress assumptions for the
individual components of the system. Extensions of labelled transition systems
dealing with this and other notions of fairness may be found in the works of

154

Manna and Pnueli [51]. Recently, a lot of attention has been paid to extensions
taking an explicit account of timing aspects, e.g. associating a time measure to
each transition, see e.g. [63]. Some work has also been done on versions of labelled
transition systems extended with probability distributions associated with non-
deterministic branching, as in [47]. For all three types of extensions, generalised
theories of equivalences and logics have been developed. Specifications typically
take the form of an existing formalism extended to fair, timed or probabilistic
behaviours.

Synchronisation trees appeared in Milner’s early work of CCS [54]. We use the
term in a more general sense, of trees in which arcs are labelled by actions which
may be, but are not exclusively, CCS actions.

It is fairly common to see languages, or sets of sequences of states, used to
give semantics to parallel processes. The expression Hoare traces often turns up in
this context, stemming from Hoare’s article [33] though the idea did not originate
there, for example appearing in the early work on path expressions [48].

Hoare traces and synchronisation trees represent two extremes in a variety of
views on the branching structure of behaviours, often referred to as the linear time
versus branching time spectrum. In the literature they have been given names like
acceptance, refusal, ready, and failure semantics. For a comprehensive survey of
these views in terms of models, equivalences and logics see [26, 27]. The models in
between Hoare traces and synchronisation trees are typically defined in terms of
languages of strings decorated with some branching information. For a thorough
treatment of one such model (acceptance trees and testing) see Hennessy’s book
[35].

The “partial simulation” morphisms we define on transition systems seem to
have been discovered several times. They bear a close relationship to bisimulation,
as pointed out by several authors, e.g. [39]. Their relevance to the operators of
proces algebras like CCS and CSP was first pointed out by Winskel in [94]. Because
morphisms relate the behaviour of a constructed transition system to that of its
components, they also play a role in compositional reasoning (see e.g. [100]).

One omission from our categorical explication of operators is a treatment of
hiding, in which certain specified actions are made internal. In the case of lan-
guages, such an operation of hiding is achieved by the functor λ! associated with
cocartesian lifting; even when λ is partial, and taken to be undefined on the ac-
tions to be hidden, it has cocartesian liftings. But this operation does not seem
to capture hiding correctly on the branching structures of transition systems and
synchronisation trees. Prefixing might also be expected to play a deeper role cat-
egorically than it does at present.

Synchronisation algebras were used largely for the purpose of generality in

155

[92]. They can be regarded as generalising Milner’s monoids of actions [56] by
allowing asynchrony between processes (however, here we are on sticky ground, as
Milner’s monoids are open to different interpretations). A similar idea appeared
independently in the work of Aczel, and also Bergstra and Klop [7].

Equivalences between operational and denotational semantics, like the one pre-
sented for our process language in chapter 3, are well known from sequential pro-
gramming languages, e.g. [100]. Here the operational semantics is given in a
syntax-directed way using Plotkin’s structural operational semantics, SOS [74],
and the denotational semantics based on the complete partial order approach of
Scott [83]. Plotkin’s SOS approach has also been used to give operational se-
mantics for high level process languages with value-passing like OCCAM (see e.g.
[18]). Many equivalence results between operational and denotational semantics
exist for the linear time versus branching time spectrum mentioned above, see e.g.
[15, 16, 35]).

An early reference for Mazurkiewicz traces is [61], though the material can also
be found in [62]. Mazurkiewicz traces are generally defined a little differently. In
particular it is not usual to insist on the coherence axiom (referred to as properness
by Mazurkiewicz [62]) in their definition.

As remarked, Mazurkiewicz traces may be viewed as special kinds of labelled
partial orders of events. Labelled partial orders of events appeared earlier in the
study of concurrency by Lamport [46] and Petri [71], and has been advocated
under the name of pomsets by Pratt in a series of papers beginning with [76],
and by Grabowski under the name of partial words [30]. Note that far from all
pomsets can be seen as Mazurkiewicz traces. Consequently Mazurkiewicz trace
languages correspond to special kinds of pomset languages (see [30], [9] and [82]
for some results on their formal relationship). Temporal logics for partially ordered
behaviours have been studied by Pinter and Wolper [73] and Katz and Peled [41].

On the other hand, Mazurkiewicz traces may also be seen as a generalisa-
tion of normal strings (with the extra notion of independence between letters),
and, following this view, much of the theory of classical formal language theory
has been lifted to trace languages. As an example, regular trace languages have
been characterized by acceptors (the asynchronous automata of Zielonka [103]),
algebraically (by Ochmanski [66]) and logically (by Thomas [89]).

Event structures of the kind treated here were introduced by Plotkin and the
authors in [64], and the theory of these and generalized event structures devel-
oped by Winskel [91, 95, 97, 98]. Event structures can have a general, and not
just a binary conflict, and so can represent precisely the dI-domains of Berry (not
just the coherent ones). Through replacing the partial order of causal dependency
by an enabling relation, they can represent nondistributive domains. Stable event

156

structures bear the same relation to dI-domains as do information systems to Scott
domains. The article [97] gives a reasonable survey, and see [24] for some exten-
sions. The characterisations of the domains of configurations as prime algebraic
appear in [64] and [91], and the realisation that prime algebraicity amounts to
precisely distributivity in [98, 93].

The difficulty in defining operations like products and parallel compositions
on event structures of the form (E ≤,#) has encouraged the use of more general
event structures with which it is easier to give semantics to parallel programming
languages, or even languages with higher types (see [97, 98]). Provided the more
general event structures have coherent dI-domains as domains of configurations
an event structure of the form (E ≤,#) can always be extracted as its complete
primes. This line has been followed in [92, 97, 11]. The method is similar to that
of using another model like trace languages, asynchronous transition systems or
Petri nets to give a semantics, from which an event-structure semantics is then
induced by the coreflection Event-structure semantics for CCS/TCSP-like lan-
guages was made systematic by Winskel in [92], which exploited a new definition
of morphism—that which appears here.

A variation of event structures as models for process languages appear in the
“flow event structures” of Boudol and Castellani developed in [11, 13]; here the
problems with the definition of parallel composition is overcome at the expense of
an unusual treatment of restriction, one where the events to be restricted away are
made self-conflicting instead of removed [20]. Other variations include the bundle
event structures of Langerak [49], the families of posets of Rensink [79], and the
event automata of Gunawardena [32] and Pinna and Poigne [72].

Like most of our models, event structures have been equipped with notions of
behavioural equivalences (like the history preserving bisimlation of Rabinovich and
Trakhtenbrot [78]) and logics (for some axiomatizations see the works of Mukund,
Thiagarajan [58, 59] and Penczek [70]).

The relationship between event structures and Mazurkiewicz trace languages
seems first to have been made explicit by Bednarczyk [5]. However, the proof of
the representation theorem here appears to be new. For an alternative proof see
Rozoy and Thiagarajan [80].

A good reference on Petri nets is [2]. The version of Petri nets we describe
can be found in the paper [62] of Mazurkiewicz. They are more general than
Thiagarajan’s elementary net systems [88] because they allow an event to occur
even when there is a condition which is simultaneously a pre and post condition.
There is a well-known technique known as “complementation” for making a non-
safe net safe. It is notable that this construction comes out of the adjunction
between nets and asynchronous transition systems. Our version of Petri nets has

157

been used as semantic model for process languages in the works of e.g. Olderog
[68].

There are several versions of morphisms on nets in the literature, some more
deserving of attention than others. We have examined two. The original definition
by Petri [71] seems to have been motivated by graph-theoretic considerations—
Petri’s morphisms do not respect the behaviour of nets. To some extent the ideas
presented here generalise to nets in which events can fire and markings hold with
multiplicities, as indicated in [99], though at present it is not known how to link
up with other models via adjunctions. See also Meseguer and Montanari’s study
of several definitions of net morphisms [53].

Categories of Petri nets have been shown to form a model of Girard’s linear
logic, offering an interpretation of the logical operations of linear logic as operations
on nets and of proofs as kinds of simulation morphisms like those here (see [17]).
Since the morphisms preserve behaviour, the existence of a morphism from one
net to another may be interpreted as saying that one net (the implementation)
satisfies another (the specification). Recently categories of games have been shown
to be models of linear classical logic [1, 36, 45, 21]. The games have the structure of
special Petri nets in which the distinction between moves of a player and opponent
is made through one being conditions and the other events (linear negation is
caught as reversal of the roles of the players corresponding to swapping the nature
of conditions and events). Morphisms are identified with (partial) strategies. As
well as providing a refinement of Berry and Curien’s sequential algorithms the new
categories are suggestive of new paradigms for computation.

Asynchronous transition systems are due to Bednarczyk [5] and Shields [84]
who discovered them independently. Bednarczyk’s thesis [5] contains the definition
of the category of asynchronous transition systems and the coreflections with event
structures and Mazurkiewicz traces. Transition systems with independence are
related to the concurrent transition systems of Stark [85]. A related “geometric”
approach towards noninterleaving transition systems is taken by Pratt in [77] and
Goubault and Jensen in [29].

As remarked, when presented as transition systems with independence, asyn-
chronous transition systems are amenable to the same techniques (e,g. definition
by structural operational semantics) as ordinary transition systems. Alternatively,
asynchronous transition systems can arise directly through operational semantics,
but where instead of just labels, transitions carry more complicated information
from which event names and independence can be extracted (see [12, 60, 3] for
three examples of this approach). The use of asynchronous transition systems in
semantics is often less clumsy than that of nets, which can be extracted afterwards
via the adjunction with nets—though sometimes care must be taken to show that

158

the constructions used stay within A0.
The adjunction between asynchronous transition systems and nets is new. It

can be viewed as an extension of the adjunction between elementary net systems
and elementary transition systems of Nielsen, Rosenberg and Thiagarajan [65]. A
similar result for general place transition nets and a class of transition systems is
presented by Mukund in [57].

A lot of attention has been paid to noninterleaving semantics in the presence
of operators changing the level of atomicity of actions. It turns out that such
operators do not admit compositional definitions in the interleaving models, and
hence they motivate directly the study of noninterleaving. For examples, see the
complementary works of Vogler [90] and Boudol [10]. Other examples of equiva-
lences of operationlly and denotationally defined noninterleaving semantics have
been provided by Boudol and Castellani [13], Degano, De Nicola and Montanari
[23], Gorrieri [28], and Mukund and Nielsen [60].

Transition systems play an important role in model checking. Interestingly,
the extra notion of independence has recently proved to be of value in the search
for efficient model checkers—see the works of Wolper [102].

We have chosen in our treatment not to discuss the various equivalences or
logics that one might impose on the models. A good survey of the intimidating
range of possible equivalences is given in [25] and for noninterleaving models see
e.g. [22]. Some evidence that categorical ideas might help clean up the mess,
is contained in [39]; there a method is shown for obtaining a generalisation of
bisimulation equivalence on categories of models like those here. A central notion
in [39] is that of open map which, restored to the topos setting where it originated,
yields presheaf categories as models, into which synchronization trees and labelled
event structures embed fully and faithfully.

The work on relating models for concurrency has been pursued by others, like
Bednarczyk [5], Rensink [79], and Kwiatkowska [43]. A fuller picture than the one
presented here in chapter 12 has been worked out by Sassone and the authors [81].
For good introductions to category theory we refer to [4] and [50].

Haunting this survey of models for concurrency and their relationship has been
the feeling, from time to time, that perhaps the existing models are not quite the
right ones, that the lack of existence of certain operations is due to an inadequacy
in the models as they are traditionally presented. As our knowledge and experience
of what is required of languages and models for parallel computation increases, we
will surely be led to richer models and to understand better what structure they
should possess. And whatever their form, we should understand how the new
models fit with the traditional models studied here.

159

Acknowledgements

We are grateful to P.S.Thiagarajan, Bart Jacobs, Nils Klarlund, Peter Knijnen-
burg, Vladimiro Sassone and Rob van Glabeek for helpful suggestions. In partic-
ular, Bart Jacobs supplied the short proofs for the appendix on fibred categories.
Allan Cheng and Bettina Blaaberg Sørensen are to be thanked for spotting several
errors in an earlier draft. Thanks to Uffe Engberg and Madhaven Mukund for
their preparation of several of the diagrams.

160

Appendix A

A basic category

We shall work with a particular representation of the category of sets with partial
functions. Assume that X and Y are sets not containing the distinguished symbol
∗. Write f : X →∗ Y for a function f : X ∪ {∗} → Y ∪ {∗} such that f(∗) = ∗.
When f(x) = ∗, for x ∈ X, we say f(x) is undefined and otherwise defined. We
say f : X →∗ Y is total when f(x) is defined for all x ∈ X. Of course, such total
morphisms X → Y correspond to the usual total functions X →∗ Y , with which
they shall be identified. For the category Set∗, we take as objects sets which do
not contain ∗, and as morphisms functions f : X →∗ Y , with the composition
of two such functions being the usual composition of total functions (but on sets
extended by ∗). Of course, Set∗ is isomorphic to the category of sets with partial
functions, as usually presented.

We remark on some categorical constructions in Set∗. A coproduct of X and
Y in Set∗ is the disjoint union X � Y with the obvious injections. A product of
X and Y in Set∗ has the form X ×∗ Y =

{(x, ∗) | x ∈ X} ∪ {(∗, y) | y ∈ Y } ∪ {(x, y) | x ∈ X, y ∈ Y }

with projections those partial functions to the left and right coordinates.

161

Appendix B

Fibred categories

Our presentation relies on some basic notions from fibred category theory origi-
nating in the work of Grothendieck [31], and Bénabou [6].1

Definition: Let p : X→ B be a functor.
A morphism f : X → X ′ in X is said to be cartesian with respect to p if for

any morphism g : Y → X ′ in X such that p(g) = p(f) there is a unique morphism
h : Y → X such that p(h) = 1p(X) and f ◦ h = g. As a diagram:

A Cartesian morphism f : X → X ′ in X is said to be a cartesian lifting of
the morphism p(f) in B with respect to X ′.
Say p : X→ B is a fibration if

• every morphism λ : B → B′ in B has a Cartesian lifting with respect to any
X ′ such that p(X ′) = B′, and

• a any composition of Cartesian morphisms is again Cartesian.

10ur presentation has been improved by incorporating proofs of Bart Jacobs.

162

A morphism f : X → X ′ in X is said to be vertical if p(f) = 1p(X).
Often p is called the projection, B the base category, and each subcategory

p−1(B) of X, which is sent to the subcategory consisting of the identity morphism
on an object B of B, the fibre over B.

A fibration can also be presented a little differently. A morphism f : X → X ′

in X is said to be strong cartesian with respect to a functor p : X→ B if for any
g : Y → X ′ in X and morphism λ : p(Y) → p(X) in B for which p(f) ◦ λ = p(g)
there is a unique morphism h : Y → X such that p(h) = λ and f ◦ h = g. It is
not hard to show that strong cartesian morphisms compose and that any strong
cartesian morphism is cartesian. Moreover in a fibration any cartesian morphism
is strong cartesian (again not hard to show). Hence a fibration can alternatively
be defined as a functor p : X → B for which each morphism in the base category
possesses a strong cartesian lifting (without needing the further requirement that
cartesian maps compose).

Definition: Let p : X → B be a functor. It is a cofibration if pop : Xop → Bop is
a fibration. A morphism f : X → X ′ in X is said to be cocartesian with respect
to p if fop is cartesian in the fibration; the morphism f is a cocartesian lifting of
p(f). (Call f srong cocartesian if fop is strong cartesian.) We say p is a bifibration
if it is both a fibration and cofibration.

Thus a morphism f : X → X ′ in X is cocartesian with respect to p if for any
morphism g : X → Y in X such that p(g) = p(f) there is a unique morphism
h : X ′ → Y such that p(h) = 1p(X′) and h ◦ f = g. As a diagram:

For later proofs it is convenient to have a characterisation of (strong) cartesian
morphisms. Let p : X→ B be a functor. For X, X ′ in X and λ : p(X) → p(X ′) in
B, write

Xλ(X, X ′) =def {f : X → X ′ | p(f) = λ}

It is easily verified that:

163

Proposition 90
A morphism f : X → X ′ in X, with p(f) = λ, is strong cartesian iff for each X ′′

in X and λ′ : p(X ′′) → p(X), the map

(f ◦ −) : Xλ′(X ′′, X) → Xλ◦λ′′(X ′′, X ′),

obtained by composing with f , is an isomorphism (of sets, i.e. a bisection).
A morphism f : X → X ′ in X, with p(f) = λ, is Cartesian iff for each X ′′ in X,
the map

(f ◦ −) : X1p(X)
(X ′′, X) → Xλ◦λ′′(X ′′, X ′),

obtained by composing with f , is an isomorphism.
(Strong) cocartesian morphisms can be characterised similarly.
We are also concerned with functors F : X→ Y between fibrations p : X→ B

and q : Y → B. The functors will preserve the base category in the sense that

q ◦ F = p.

Such functors are said to be cartesian when they preserve cartesian morphisms.
As the next lemma shows, this property will be automatic for right adjoints of
fibrewise adjunctions, i.e. those in which the functors preserve the base category
and cut down to adjunctions between fibres over common objects in the base cat-
egory. A dual result holds for left adjoints and cofibrations.

Definition: Suppose p : X → B and q : Y → B and that functors F : X → Y
and G : Y → X form an adjunction with F left adjoint to G. The adjunction is
said to be fibrewise, with respect to p and q, iff q ◦ F = p and p ◦G = q and each
component of the counit εY : FG(Y) → Y is vertical, for Y ∈ Y, i.e. q(εY) = 1q(Y)

(or equivalently, components of the unit are vertical).

Lemma 91 Suppose p : X → B and q : Y → B and that functors F : X → Y
and G : Y → X form a fibrewise adjunction with F left adjoint to G. Then the
right adjoint G preserves strong cartesian morphisms, and cartesian morphisms.

Proof: Assume g : Y → Y ′ in Y is strong Cartesian over β in B.

164

Naturality of the adjunction yields that the diagram

commutes, where X ∈ X and θ, θ′ are components of the natural isomorphisms of
the adjunction. Because the adjunction is fibrewise, p(−) = q ◦ θ(−).

Letting X ∈ X and α : p(X) → pG(Y), we observe the following chain of
isomorphisms

Xα(X, G(Y)) θ∼= Yα(F (X), Y)

(g ◦ −)∼= Yβ◦α(F (X), Y) as g is strong cartesian

θ
′−1
∼= Yβ◦α(X, G(Y ′))

whose composition, θ
′−1(g ◦θ(−)), equals (G(g)◦−) from the commuting diagram

above. Hence G(g) is strong cartesian by proposition 90.
The proof in the case of just cartesian morphisms is got by specialising the

morphism α above to the identity. ✷

Note that lemma 91 does not state that the left adjoint F preserves cartesian
morphisms. Nor does it entail that the right adjoint G preserves cocartesian mor-
phisms, and these are not true in general. For instance, they do not hold for the
coreflection between synchronisation trees and transition systems.

In the case where the adjunctions form coreflections (or reflections) there are
further useful results. The left adjoint of a coreflection (recall this is an adjunction
in which the unit is a natural isomorphism) is automatically full and faithful, as
is the right adjoint of a reflection, and thus the following lemma applies to these
functors in a fibrewise adjunction:

Lemma 92 Suppose p : X→ B and q : Y → B and that functor F : X− → Y is
full and faithful with q◦F = p. Then F reflects (stong) (co) Cartesian morphisms.

165

Proof: The conditions on F imply that F restricts to an isomorphism

Xγ(X, X ′) F∼= Yγ(F (X), F (X ′))

for any X, X ′ ∈ X and γ : p(X) → p(X ′) in B.
Let X ′′ ∈ X and α : p(X ′′) → p(X) in B. The chain of isomorphisms

Xα(X ′′, X) F∼= Yα(F (X ′′), F (X))

(F (f) ◦ −)∼= Yβ◦α(F (X ′′), F (X ′)) as F (f) is strong cartesian

F−1
∼= Xβ◦α(X ′′, X ′)

composes to F−1(F (f)◦F (−)) = (f◦−). Hence f is strong cartesian by proposition
90.

The proof for just cartesian morphisms follows by specialising α to the identity.
The proof for cocartesian liftings is similar. ✷

166

Appendix C

Operational semantics—proofs

Here we provide the proofs required in showing the equivalence between the deno-
tational and operational semantics of the process language in terms of transition
systems of section 3.2 (part (a)) and, by a slightly more general argument, section
11.3 (part (b)). Both parts rely on acyclicity of the transition relation got via the
operational semantics.

Lemma 10 For any closed tagged term t, the transition system Op(t) is acyclic.
Proof: We show this by mapping tagged terms t to | t | in a strict order < (an
irreflexive, transitive relation) in such a way that

t
a→ u & a �≡ ∗ ⇒| t |<| u | (C.1)

It then follows that →+ is irreflexive.
Define <⊆ ω×ω by taking (m, n) < (m′, n′) ⇔ m < m′ or (m = m′ & n > n′).

(In other words < is the lexicographic combination of < and > on integers.) The
relation < is a strict order. For t a closed tagged term, define

| t |= (tag(t), size(t))

where the functions tag and size are defined by the following structural inductions:

tag(nil) = tag(x) = 0 size(nil) = size(x) = 0
tag(at) = tag(t) size(at) = 1 + size(t)
tag(t0 ⊕ t1) = min(tag(t0), tag(t1)) size(t0 ⊕ t1) = 1 + size(t0) + size(t1)
tag(t0 × t1) = tag(t0) + tag(t1) size(t0 × t1) = 1 + size(t0) + size(t1)
tag(t � Λ) = tag(t{Ξ}) = tag(t) size(t � Λ) = size(t{Ξ}) = 1 + size(t)
tag(rec x.t) = tag(t) size(rec x.t) = 1 + size(t)
tag((l, t)) = 1+ tag(t) size((n, t)) = 1 + size(t)

167

The rules for operational semantics can be shown to preserve property (C.1)
above, which hence holds of all derivable transitions. For example, considering the
rule for recursion, assume

| t[rec x.t/x] |<| t′ | .

holds of the transition t[rec x.t/x] a→ t′ in its premise if a �= ∗. It follows that

tag(t[rec x.t/x] ≤ tag(t′).

Clearly tag(t) ≤ tag(t[rec x.t/x]) so

tag(rec x.t) = tag(t) < 1 + tag(t′) = tag((2, t′)).

Hence

| rec x.t |<| (2, t′) | .

holds of the transition rec x.t
a→ (2, t′). ✷

C.1 Uniqueness for guarded recursions in T

We prove lemma 9, showing that solutions to guarded recursions are unique to
within isomorphism. The proof rests on the definition of a family of functors
(−)(k), for k ∈ ω, “projecting” a transition system to the transition system con-
sisting of that part reachable within k steps.

Lemma 93 Suppose Tn,m are transition systems for n, m ∈ ω with the property
that

Tn,m ✂ Tn′,m′ when n ≤ n′ and m ≤ m′.

Then the set {Tn,m | n, m ∈ ω} has a least upper bound⋃
n,m∈ω

Tn,m =
⋃
n∈ω

(
⋃

m∈ω

Tn,m) =
⋃

m∈ω

(
⋃
n∈ω

Tn,m) =
⋃
n∈ω

Tn,n

Proposition 94

1. For each k ∈ ω, the operation (−)(k) is a functor on the category T of
transition systems; it restricts to an endofunctor on the subcategory where
morphisms are label-preserving.

168

2. Let T be a transition system. Then T (k) ✂ T , for k ∈ ω. If k ≤ l then
T (k) ✂ T (l). For k, l ∈ ω, (T (k))(l) = Tmin(k,l). Recalling the operation R of
chapter 3 taking the reachable part of a transition system, we have

R(T) =
⋃
k∈ω

T (k)

3. The operations (−)(k) for k ∈ ω, and R are continuous with respect to ✂.

Proof: (1) A s morphisms preserve or collapse transitions, it follows that a mor-
phism f : T0 → T1 restricts to a morphism f (k) : T

(k)
0 → T

(k)
1 . The operation

(−)(k) clearly preserves identities and composition. It is easily checked that these
facts also hold when restricting attention to label-preserving morphisms.

(2) is obvious.
(3) From the definition of (−)(k) for k ∈ ω it is easily seen that it is continuous.

To show R is continuous suppose

T0 ✂ · · ·✂ Tn ✂ · · ·

a chain of transition systems. Then

R(
⋃

n Tn) =
⋃

k(
⋃

n Tn)k by the definition of R
=

⋃
k

⋃
n T

(k)
n by continuity of (−)(k)

=
⋃

n

⋃
k T

(k)
n by lemma 93

=
⋃

nR(Tn) by the definition of R.

✷

Say an operation F on transition systems is definable if it acts on T so that

F (T) = T[[t]]ρ[T/x]

for some choice of process term t and variable x. Any operation F definable in the
process language is ✂-monotonic and continuous and has the property that

F ((T))(k) = (F (T (k)))(k). (C.2)

This follows by structural induction from facts such as

(T × U)(k) = (T (k) × U (k))(k)

about the basic operations. A prefixing operation a(−) has the stronger property
that, for k > 0,

(a(T))(k) = (a(T (k−1)))(k).

169

It follows that an operation F defined by a guarded recursion satisfies

F ((T))(k) = (F (T (k−1)))(k). (C.3)

for k > 0. All the operations extend to functors with respect to label-preserving
morphisms on transition systems. The facts above extend to morphisms A functor
F defined by a guarded recursion has the property that

F ((f))(k) = (F (f (k−1)))(k). (C.4)

for k > 0, on label-preserving morphisms f .

Definition: We will call a functor F on the category of transition systems with
label-preserving morphisms guarded when it satisfies (C.2) and (C.3) above.

Now we can complete the proof of lemma 9:
Lemma 9 If F is defined from a guarded recursion we have:

T ∼= R ◦ F (T) ⇒ T ∼= R(fix (F)).

(Here, and in the proof below, morphisms are understood to be in the category
with label-preserving morphisms. In particular, the isomorphisms above are label-
preserving.)

Proof: Any functor, on the category of transition systems with label-preserving
morphisms, definable in the process language is ✂-continuous. In particular, we
remark that such a guarded F has the property that

(fix (F))(n) = (F k(I))(n). (C.5)

for all k, n ∈ ω for which k ≥ n. This is obviously so for n = 0 when (fix (F))0 =
I = (F k(I))(0), where I is the transition system consisting of a single initial state.
Assume C.4 as induction hypothesis. We deduce, assuming k ≥ n + 1, that

(F k(I))(n+1) = (F (F k−1(I)))(n+1)

= (F ((F k−1(I))(n)))(n+1) as F is guarded
= (F ((fix (F))(n))(n+1) from the induction hypothesis

as k − 1 ≥ n

= (F (fix (F)))(n+1) as F is guarded
= (fix (F))(n+1).

We conclude (C.5) holds for general n ∈ ω, with k ≥ n, by induction.

170

With the help of an observation we can simplify the proof notationally. For an
operation F definable in the process language

R ◦ F = R ◦ F ◦ R. (C.6)

To see this, for an arbitrary transition system T , reason that

R ◦ F ◦ R(T) = R ◦ F (∪kT
(k)) by definition of R,

= ∪kR ◦ F (T (k)) by continuity of R and F ,
= ∪k ∪n (F (T (k)))(n) by definition of R,
= ∪k(F (T (k)))(k) by lemma 93
= ∪k(F (T))(k) by (C.1)
= R ◦ F (T) by definition of R

It follows that

R(fix (F)) = R(∪nFn(I))
= ∪nRFn(I)
= ∪n(R ◦ F)nR(I) by repeated use of (C.6)
= ∪n(R ◦ F)n(I)
= fix ◦ (R ◦ F).

Hence, writing G = R ◦ F , we can restate the goal of our proof (in the statement
of the theorem) as

T ∼= G(T) ⇒ T ∼= fix (G) (†)

where we have G is ✂-continuous and guarded (i.e. satisfies (C.3) and (C.4)),
because these properties are assumed of F and inherited by G.

To prove (†), assume T ∼= G(T) and let

θ : G(T) ∼= T

name the isomorphism. It is also convenient to let u be the unique morphism

u : I → T.

By induction on n we show

(Gn(u))(n) : (Gn(I))(n) → (Gn(T))(n)

is an isomorphism. The basis case amounts to showing u(0) : I(0) → T (0) is an
isomorphism which is trivially so as each transition system consists only of a single
initial state. Notice that

171

(Gn+1(u))(n+1) = (G(Gn(u)))(n+1)

= (G((Gn(u))(n)))(n+1)

because G is guarded. From the fact that G and (−)(n+1) are functors and so
preserve isomorphism, we now see that (G(n+1)(u))(n+1) being an isomorphism
follows inductively from (Gn(u))(n) being an isomorphism.

Let θn be the isomorphism

(θ ◦G(θ) ◦ · · ·G(n−1)(θ)) : Gn(T) → T

for n ∈ ω. The fact that (−)(n) is a functor ensures θ
(n)
n is also an isomorphism

Gn(T)(n) → T (n),

for n ∈ ω. As remarked in (C.5) above, (fix (G))(n) = (Gn(I))(n). Thus we obtain
isomorphisms

φn =def (θn ◦ (Gn(u)))(n) : (fix (G))(n) → T (n)

for n ∈ ω. These are consistent in the sense that

φn = φ
(n)
n+1,

for n ∈ ω, as we will now show.
Let j be the monomorphism associated with I ✂ G(I). Applying Gn followed

by (−)(n), we obtain an inclusion morphism

(Gn(j))(n) : (Gn(I))(n) → (Gn+1(I))(n)

But now by (C.5),

(Gn(j))(n) : (fix (G))(n) → (fix (G))(n)

which being an inclusion morphism must be the identity, i.e.

(Gn(j))(n) = 1(fix(G))(n) .

Certainly we have

u = θ ◦G(u) ◦ j,

which may be depicted by the following commuting diagram:

172

I
→
u T

j ↓ ↑ θ

G(I)
G(u)→ G(T)

Hence, for n ∈ ω, applying the functors Gn and (−)(n) , we obtain

(Gn(u))(n) = (Gn(θ))(n) ◦ (Gn+1(u))(n) ◦ (Gn(j))(n)

= (Gn(θ))(n) ◦ (Gn+1(u))(n).

Thus

φn = (θn ◦Gn(u))(n)

= (θ ◦ · · · ◦G(n−1)(θ))(n) ◦ (Gn(θ))(n) ◦ (Gn+1(u))(n)

= (θn+1 ◦Gn+1(u))(n+1))(n) by proposition 94(2)
= φ

(n)
n+1

It follows that

φ =
⋃
n∈ω

φn

is an isomorphism fix (G) → T. ✷

C.2 Semantics in TI

This part of the Appendix is dedicated to showing the equivalence between the
operational and denotational semantics of Proc in terms of transition systems
with independence:

Theorem 87 Let t be a closed process term. Then, for an arbitrary environ-
ment ρ

Op(t) ∼= R(TI[[t]]ρ),

a label-preserving isomorphism of transition systems with independence.
The proof is very like that of theorem 11. However in carrying out the proof

we move to more general structures than transition systems with independence,
to pre-structures of the same form but which do not necessarily satisfy the axioms
required of a transition system with independence. This is because a priori we do
not know that Op(t) is a transition system with independence for t a closed term.

Definition: Define pTI to be the category consisting of

173

• objects (S, i, L,Tran, I) where (S, i, L,Tran) is a transition system and I ⊆
Tran × Tran (the independence relation),

• morphisms are morphisms between the underlying transition systems which
preserve independence, i.e. a morphism (σ, λ) : T → T ′ should satisfy

If (s, a, s′) and (u, b, u′) are independent transitions of T and λ(a)
and λ(b) are both defined, then (σ(s), λ(a), σ(s′)) and (σ(u), λ(b), σ(u′))
are independent transitions of T ′.

Composition is inherited from that in T.

It is clear that TI is a full subcategory of pTI and the two categories share
many constructions. The same definitions of the process language operations,
given in section 11.3.1 for TI, serve also for pTI. In particular, the definition of
✂ can be lifted to give a least-fixed-point semantics of recursion. All told, we can
give a denotational semantics of terms in Proc as objects of pTI; for a term t of
Proc, with respect to an environment ρ from process variables to objects of pTI
we obtain a denotation

pTI[[t]]ρ,

an object in pTI. When the environment ρ yields objects in the subcategory TI
for any free variable of t, the two denotations, pTI[[t]]ρ and TI[[t]]ρ coincide.

As in (a), a key idea is that of an endofunctor (−)(k) on pTI “projecting” an
object to that part of it which is reachable within k steps, taking T to T (k) ✂ T .
In detail:

Definition: Let T = (S, i, L,Tran, I) be in pTI. Define T (k) to be (S′, i, L′,
Tran ′, I ′) where S′ is the subset of states S reachable by k or less transitions from
i,Tran ′ is the subset of transitions Tran which are reachable by k or less transitions,
L′ is the subset of labels a ∈ L for which there is a transition (s, a, s′) ∈ Tran ′,
and I ′ = I ∩ (Tran ′ × Tran ′).

Let f = (σ, λ) : T0 → T1 be a morphism of of pTI. Define f (k), for k ∈ ω, to be
(σ′, λ′) where σ′ is the restriction of σ to the states of T

(k)
0 and λ′ is the restriction

of λ to the labels of T
(k)
0 .

This provides the appropriate definition of the family of functors (−)(k) : pTI
→ pTI with which to generalise the argument of part C.1. (This really is a
generalisation once we regard an ordinary transition system as having an empty
independence relation.)

174

Say an operation F on objects in pTI is definable if it acts on T so that

F (T) = pTI[[t]]ρ[T/x]

for some choice of process term t and variable x. Any such definable operation is
✂-continuous and can be extended to an endofunctor on the subcategory of pTI
in which morphisms are label-preserving. It will also satisfy

(F (T))(k) = (F (T (k)))(k), for k ∈ ω,

—just as in part C.1. As there,

(a(T))(k) = (a(T (k−1)))(k)

so that any operation F defined by a term in which the variable is guarded satisfies

(F (T))(k) = (F (T (k−1)))(k),

for k > 0. Given f : T → T ′ a morphism in TI, for k ∈ ω, the morphism
f (k) : T (k) → T ′(k) is the restriction of f to the states and labels of T (k). It follows
that a functor F definable by a process term satisfies

(F (f))(k) = (F (f (k)))(k),

on label-preserving morphisms f , for k ∈ ω, and when associated with a guarded
variable,

(F (f))(k) = (F (f (k−1)))(k).

We can now proceed as in part C.1, reading “pTI” and “object of pTI” in-
stead of “T” and “transition system”; the proofs of proposition 94 and lemma 9
are sufficiently abstract to apply equally well in the more general situation of pTI.
This furnishes a proof of the uniqueness property of guarded recursions in pTI:

Lemma 95 Suppose the variable x is guarded in t. Let T be an object of pTI
and ρ be an environment in pTI. If T ∼= R(pTI[[t]]ρ[T/x]), a label-preserving
isomorphism, then T ∼= R(pTI[[rec x.t]]ρ), a label-preserving isomorphism.

The next stage is to show:

Theorem 96 Let t be a closed process term. Then, for an arbitrary environment
ρ in pTI,

Op(t) ∼= R(pTI[[t]]ρ),

175

a label-preserving isomorphism.

Proof: The proof is by structural induction on terms t, with free variables x,
that for all closed terms s chosen as substitutions for the variables x,

Op(t[s/x]) ∼= R(pTI[[t]]ρ[O(s)/x]),

a label-preserving isomorphism. The operational rules have been chosen to make
the cases of the induction straightforward for all but that of recursive processes—
recourse is made to lemma 10 expressing acyclicity of the transition relation got
operationally. The verification of the case of recursion proceeds as in the proof of
theorem 11, relying on the uniqueness lemma 95 above. ✷

We now finally obtain theorem 87 as a corollary, because, as remarked, the
denotations pTI[[t]]ρ and TI[[t]]ρ coincide when t is closed.

176

Bibliography

[1] Abramsky, S., and Jagadeesan, R., Games and full completeness for
multiplicative linear logic. Technical Report DoC 92/24, Imperial Col-
lege, 1992.

[2] Advanced course on Petri nets, Springer LNCS 254, 255, 1987.

[3] Badouel, E. and Darondeau, P., Structural operational specifications
and trace automata, in Cleaveland, W.R. (ed.), Concur ’92, Springer
LNCS 630, pp. 302–316, 1992.

[4] Barr, M. and Wells, C., Category theory for Computer Science. Prentice
Hall, 1990.

[5] Bednarczyk, M.A., Categories of asynchronous systems, PhD thesis in
Computer Science, University of Sussex, report no.1/88, 1988.

[6] Bénabou, J., Fibred categories and the foundations of naive category
theory, JSL 50, pp. 10–37, 1985.

[7] Bergstra, J.A., and Klop, J.W., Process algebra for communication and
mutual exclusion. Revised version, Report CS-R8409, Centrum voor
Wiskunde en Informatica, Amsterdam, 1984.

[8] Berry, G., Modèles completement adéquats et stables des λ-calculs
typées, Thèse de Doctorat d’Etat, Université Paris VII, 1979.

[9] Bloom, B., and Kwiatkowska, M., Trade-offs in true concurrency: Pom-
sets and Mazurkiewicz traces, Brookes, S., Main, M., Melton, A., Mis-
love, M., and Schmidt, D., (eds), Mathematical Foundations of Pro-
gramming Semantics, Springer LNCS 598, pp. 350–375, 1992.

[10] Boudol, G., Atomic actions, note, Bulletin of the European Association
for Theoretical Computer Science, 38, pp. 136–144, 1989.

177

[11] Boudol, G., Flow event structures and flow nets, in I. Guessarian, (ed,),
Semantics of Systems of Concurrent Processes, Springer LNCS 469, pp.
62–95, 1990.

[12] Boudol, G. and Castellani, I., A non-interleaving semantics for CCS
based on proved transitions, Fundamenta Informaticae, XI, 4, pp. 433–
452, 1988.

[13] Boudol, G. and Castellani, I., Flow models of distributed computations:
three equivalent semantics for CCS, INRIA Research Report 1484, 1991.
To appear in Information and Computation.

[14] Brookes, S.D., On the relationship of CCS and CSP, in Diaz, J, (ed),
Icalp ’83, Springer LNCS 154, pp. 83–96, 1983.

[15] Brookes, S.D., On the axiomatic treatment of concurrency, in Brookes,
Roscoe, Winskel (eds.), Seminar on Concurrency, Springer LNCS 197,
pp. 1–34, 1985.

[16] Brookes, S.D., Roscoe, A.W., and Walker, D.J., An Operational Se-
mantics for CSP, submitted for publication.

[17] Brown, C. and Gurr, D., A linear specification language for Petri nets,
accepted for Mathematical Structures in Computer Science.

[18] Camilleri, J., An operational semantics for occam, International Journal
of Parallel Programming, 18(5), 1989.

[19] Campbell, R.H. and Habermann, A.N., The specification of process
synchroniation by path expressions, in Gelenbe, E. and Kaiser, C., Op-
erating Systems Springer LNCS 16, pp. 89–102, 1974.

[20] Castellani, I. and Zhang, G.Q., Parallel product of event structures,
Rapports de Recherche 1078, INRIA, 1989.

[21] Curien, P-L., Categorical combinators, sequential algorithms, and func-
tional programming, Birkhäuser, 1993.

[22] Degano, P., De Nicola, R. and Montanari, U., Observational equiva-
lences for concurrency models, in Wirsing, M. (ed.), Formal Descrip-
tion of Programming Concepts - III, IFIP, Elsevier Science Publishers
B.V., pp. 105–132, 1987.

178

[23] Degano, P., De Nicola, R. and Montanari, U., On the consistency of
‘truly concurrent’ operational and denotational semantics, extended ab-
stract, in IEEE Third Annual Symposium on Logic in Computer Sci-
ence, Computer Society Press, pp. 133–141, 1988.

[24] Droste, M., Event structures and domains, Theoretical Computer Sci-
ence, 68, pp. 37–47, 1989.

[25] Van Glabbeek, R.J., Comparative concurrency semantics and refine-
ment of actions, PhD thesis, CWI Amsterdam, 1990.

[26] Van Glabbeek, R. J., The linear time - branching time spectrum, in
Baeten, J. C. M. and Klop J. W. (eds.), Concur 90, Springer LNCS
458, pp. 278–297, 1990.

[27] Van Glabbeek, R.J., The linear time - branching time spectrum II, in
Best, E. (ed.), Concur 93, Springer LNCS 715, pp. 66–81, 1993.

[28] Gorrieri, R., A hierarchy of system descriptions via atomic linear refine-
ment, Fundamenta Informaticae, 16, pp. 289–336, 1992.

[29] Goubault, E. and Jensen, T.P., A homology of higher dimentional au-
tomata, in Cleaveland, W.R. (ed.), Concur 92, Springer LNCS 630, pp.
254–268, 1992.

[30] Grabowski, J., On partial languages, Fundamenta Informaticae, IV, 2,
pp. 427–498, 1981.

[31] Grothendieck, A., Catégories fibrées et descente, in Grothendieck, A.,
(ed), Revetement étales et groupe fondamental, (SGA 1), Exposé VI,
Springer Lecture Notes in Mathematics 224, 1971.

[32] Gunawardena, J., Causal Automata, Theoretical Computer Science,
101, pp. 265–288, 1992.

[33] Hoare, C.A.R., A model for communicating sequential processes, Tech-
nical Report PRG-22, Programming Research Group, University of Ox-
ford Computing Lab., 1981.

[34] Hoare, C.A.R., Brookes, S.D. and Roscoe, A.W., A Theory of Commu-
nicating Processes, JACM 31,3, pp. 560–599, 1984.

[35] Hennessy, M., Algebraic theory of processes, MIT Press, 1988.

179

[36] Hyland,J.M.E., and Ong, C-H.L., Fair Games and Full Completeness for
Multiplicative Linear Logic without the MIX-rule. Working draft to ap-
pear as a report of the Computer Laboratory, University of Cambridge,
1993.

[37] Jacobs, B.P.F., Categorical type theory, PhD thesis in Mathematics,
University of Nijmegen, 1991.

[38] Johnstone, P., Fibred categories. Lecture notes, Cambridge University,
1983.

[39] Joyal, A., Nielsen, M. and Winskel, G., Bisimulation and open maps,
Proc. of LICS 93, pp. 418–427, 1993.

[40] Kahn, G. and Plotkin, G., Structures de donées concrètes, IRIA-Laboria
Report 336, 1979.

[41] Katz, S. and Peled, D., An efficient verification method for parallel and
distributed programs, in de Bakker, de Roever and Rosenberg (eds.),
Linear Time, Branching Time and Partial Orders in Logics and Models
for Concurrency, Springer LNCS 354, pp. 489–507, 1989.

[42] Keller, R.M., Formal verification of parallel programs, Communications
of the ACM, no.19, vol.7, pp. 371–384, 1976.

[43] Kwiatkowska, M., Categories of Asynchronous Systems, PhD thesis,
University of Leicester, 1989.

[44] Labella, A. and Petterossi, A., Categorical models of process coopera-
tion, in Pitt, Abramsky, Poigné and Rydeheard (eds.), Category Theory
and Computer Programming, Springer LNCS 240, pp. 282–298, 1985.

[45] Lamarche, F., Sequentiality, games and linear logic, Proceedings of
CLICS Workshop–Part I & II, Aarhus, March 1992 DAIMI PB 398,
Aarhus University, 1992.

[46] Lamport, L., Time, clocks and the ordering of events in a distributed
system, CACM, 21, pp. 558–565, 1978.

[47] Larsen, K. and Skou, A., Bisimulation through probabilistic testing, in
Principles of Programming Languages, pp. 344–351, 1989.

[48] Lauer, P. and Campbell, R.H., Formal semantics for a class of high level
primitives for coordinating concurrent processes, Acta Informatica, 5,
pp. 297–332, 1975.

180

[49] Langerak, R., Bundle event structures: A non-interleaving semantics of
LOTOS, Memoranda Informatica 91–60, University of Twente, 1991.

[50] MacLane, S., Categories for the Working Mathematician, Graduate
Texts in Mathematics, Springer, 1971.

[51] Manna, Z. and Pnueli, A., The temporal Logic of Reactive and Concur-
rent Systems, Springer Verlag, 1991.

[52] Martin-Löf, P., The domain interpretation of type theory, Lecture notes,
Göteborg, 1983.

[53] Meseguer, J., and Montanari, U., Petri nets are monoids: a new alge-
braic foundation for net theory, Proc. of LICS 88, pp. 155–164, 1988.

[54] Milner, A.R.G., Calculus of communicating systems, Springer LNCS
92, 1980.

[55] Milner, A.R.G., Communication and concurrency, Prentice Hall, 1989.

[56] Milner, A.R.G., Calculi for synchrony and asynchrony, Theoretical Com-
puter Science, 25, pp. 267–310, 1983.

[57] Mukund, M., A transition system characterization of Petri nets, Report
TCS-91-2, School of Mathematics, SPIC Science Foundation, 1990.

[58] Mukund, M. and Thiagarajan, P.S., An axiomatization of event struc-
tures, in Veni Madhavan, CE. (ed), FST & TCS 89, Springer LNCS
405, pp. 143–160, 1989.

[59] Mukund, M. and Thiagarajan, P.S., An axiomatization of well branch-
ing prime event structures, Report TCS-90-2, School of Mathematics,
SPIC Science Foundation, 1990.

[60] Mukund, M. and Nielsen, M., CCS, locations and asynchronous tran-
sition systems, in Shyamasundar, R. (ed.), FST & TCS 92, Springer
LNCS 652, pp. 328–341, 1992.

[61] Mazurkiewicz, A., Concurrent program schemes and their interpre-
tations, DAIM PB-78, Computer Science Department, University of
Aarhus, 1977.

[62] Mazurkiewicz, A., Basic notions of trace theory, in de Bakker, de Roever
and Rosenberg (eds.), Linear Time, Branching Time and Partial Orders
in Logics and Models for Concurrency, Springer LNCS 354, pp. 285–
363, 1988.

181

[63] Nicollin, X. and Sifakis, J., An overview and synthesis on timed process
algebras, Springer LNCS 575, pp. 376–398, 1992.

[64] Nielsen, M., Plotkin, G. and Winskel, G., Petri nets, Event structures
and Domains, part 1, Theoretical Computer Science, vol. 13, pp. 85–
108, 1981.

[65] Nielsen, M., Rosenberg, G. and Thiagarajan, P.S., Elementary transis-
tion systems, Theoretical Computer Science 96, pp. 3–33, 1992.

[66] Ochmanski, E., Regular behaviour of concurrent systems, Bulletin of
the European Association for Theoretical Computer Science (EATCS),
27, pp. 56–67, 1985.

[67] Olderog, E. and Hoare, C.A.R., Specification oriented semantics for
communicating processes, Diaz, J. (ed.), Icalp ’83, Springer LNCS 154,
pp. 561–572, 1983.

[68] Olderog, E.-R., Nets, Terms and Formulas. Three views of Concurrent
Processes and Their Relationships, Cambridge University Press, 1991.

[69] Peirce, B.C., Category theory for computer scientists, in the Founda-
tions of Computing Series, The MIT Press, 1991.

[70] Penczek, W., A temporal logic for event structures, Fundamenta Infor-
maticae, XI pp. 297–326, 1988.

[71] Petri, C.A., Non-sequential processes, GMD-ISF Report ISF-77-05,
1977.

[72] Pinna, G.M. and Poigné, A., On the nature of Events, in Havel, I.M.
and Koubek, V. (eds.), Mathematical Foundations of Computer Science
1992, Springer LNCS 629, pp. 430–441, 1992.

[73] Pinter, S. and Wolper, P., A temporal logic for reasoning about partially
ordered computations, Proc. 3rd ACM POLC, pp. 24–37, 1984.

[74] Plotkin, G.D., Structural operational semantics, Lecture Notes, DAIMI
FN-19, Computer Science Department, University of Aarhus, 1981
(reprinted 1991).

[75] Poigné, A., Category theory and logic, in Pitt, Abramsky, Poigné
and Rydeheard (eds.), Category Theory and Computer Programming,
Springer LNCS 240, pp. 252–265, 1985.

182

[76] Pratt, V.R., Modelling in concurrency with partial orders, International
Journal of Parallel Programming, 15,1, pp. 33–71, 1986.

[77] Pratt, V.R., Modelling in concurrency with geometry, in Proc. 18th
Ann. ACM on Principles of Programming Languages, pp. 311–322,
1991.

[78] Rabinovich, A. and Trakhtenbrot, B.A., Behaviour Structure and Nets,
Fundamenta Informaticae, XI, 4 pp. 357–404, 1988.

[79] Rensink, A., Models and Methods for Action Refinement, PhD thesis
University of Twente, 1993.

[80] Rozoy, B. and Thiagarajan, P.S., Event structures and trace monoids,
Theoretical Computer Science, 91, 2, pp. 285–313, 1991.

[81] Sassone, V., Nielsen, M. and Winskel, G., A classification of models for
concurrency, in Best, E. (ed.), Concur ’93, Springer LNCS 715, pp.
82–96, 1993.

[82] Sassone, V., Nielsen, M. and Winskel, G., Deterministic behavioural
models for concurrency, in Borzyszkowski, A.M., and Sokolowski, S.,
(eds), MFCS 93, Springer LNCS 711, pp. 682–692, 1993.

[83] Scott, D.A., Domains for denotational semantics, in Nielsen, M.
and Schmidt, E.M. (eds.): Automata, Languages and Programming,
Springer LNCS 140, pp. 577–613, 1982.

[84] Shields, M.W., Concurrent machines, Computer Journal, vol. 28, pp.
449–465, 1985.

[85] Stark, E.W., Concurrent Transition Systems, Theoretical Computer Sci-
ence, 64, pp. 221–269, 1989.

[86] Stirling, C., Modal and temporal logics, in Handbook of Logic in Com-
puter Science, vol. I,, edited by Abramsky, S., Gabbay D. and Maibaum,
T., Oxford University Press, 1992.

[87] Taylor, P., Recursive domains, indexed category theory and polymor-
phism, PhD thesis, Cambridge University, 1987.

[88] Thiagarajan, P.S., Elementary net systems, in Brauer, Reissig and
Rosenberg (eds.), Petri Nets: Central models and their properties,
Springer LNCS 254, pp. 26–59, 1987.

183

[89] Thomas, W., On logical definability of trace languages, in V. Diekert,
ed., Proceedings of a workshop of the ESPRIT Basic Research Action
no 3166: Algebraic and Syntactic Methods in Computer Science (AS-
MICS), Kochel am See, Bavaria, FRG, Report TUM 19002, Technical
University of Munich, pp. 172–182, 1990.

[90] Vogler, W., Bisimulation and action refinement, Theoretical Computer
Science, 114, pp. 173–200, 1993.

[91] Winskel, G., Events in Computation. PhD thesis, University of Edin-
burgh, available as a Camp. Sc. report, 1980.

[92] Winskel, G., Event structure semantics of CCS and related languages,
in Nielsen, M. and Schmidt, E.M. (eds), Icalp ’82, Springer LNCS 140,
pp. 561–576, 1982. A full version with proofs appears as DAIMI PB-159,
Computer Science Department, University of Aarhus, 1983.

[93] Winskel, G., A representation of completely distributive algebraic lat-
tices, Report of the Computer Science Department, Carnegie-Mellon
University, 1983.

[94] Winskel, G., Synchronisation trees, Theoretical Computer Science, 34,
pp. 33–82, 1985.

[95] Winskel, G., Categories of Models for Concurrency, in Brookes, Roscoe
and Winskel (eds.), Seminar on Concurrency, Springer LNCS 197, pp.
246–267, 1984.

[96] Winskel, G., Petri nets, algebras, morphisms and compositionality, In-
formation and Computation, 72, pp. 197–238, 1987.

[97] Winskel, G., Event structures, in Brauer, Reissig and Rosenberg (eds.),
Petri Nets: Applications and relationships to other models of concur-
rency, Springer LNCS 255, pp. 325–392, 1987.

[98] Winskel, G., An introduction to event structures, in de Bakker, de
Roever and Rosenberg (eds.), Linear Time, Branching Time and Partial
Orders in Logics and Models for Concurrency, Springer LNCS 354, pp.
364–397, 1988.

[99] Winskel, G., A category of labelled Petri nets and compositional proof
system, Proc. of LICS 88, pp. 142–154, 1988.

184

[100] Winskel, G., A compositional proof system on a category of labelled
transition systems, Information and Computation, vol. 87, pp. 2–57,
1990.

[101] Winskel, G., The Formal Semantics of Programming Languages. An
Introduction, The MIT Press, 1993.

[102] Wolper, P. and Godefroid, P., Partial-order methods for temporal verifi-
cation, in Best, E. (ed.), Concur ’93, Springer LNCS 715, pp. 233–246,
1993.

[103] Zielonka, W., Safe executions of recognizable trace languages by asyn-
chronous automata, in Mayer, A.R. et al. (eds.), Proc. Symposium on
Logical Foundations of Computer Science, Logic at Botik ’89, Pereslavl-
Zalessky (USSR), Springer LNCS 363, pp. 278–289, 1989.

185

