
Submitted to the Proceedings of the Eighth Workshop on Mathematical Foun-
dations of Progmmming Semantics (MFPS VIII), Oxford, England, April
1992, which is to be published as a special issue of Theoretical Computer
Science, 1993.

If the paper gets accepted, it may appear in the Proceedings with the same
title but in a revised form, and subsequent citations should then refer only
to the Proceedings.

i

The Operational Semantics of Action Notation

Peter D. Mosses∗

September 1992
Submitted for the Proceedings of MFPS VIII

Abstract

Action notating is used in the action semantics framwork, for specify-
ing actions representing program behaviour. It is defies by a structural
operational semantics together with a bisimulation-bsed equivalence
that satisfies some simply algebraic laws.

1 Introduction

Action notation is used in action semantics, a recently-developed framework
for formal semantics [11, 15]. The primary aim of action semantics is to allow
useful semantic decriptions of realistic programming languages.

Action semantics combines formality with many good pragmatic features.
Regarding comprehensibility and accessibility, for instance, action semantic
descriptions compete with informal language descriptions. Action semantic
descriptions scale up smoothly from small example languages to full-blown
practical languages. The addition of new constructs to a described language
does not require reformulation of the already-given description. An action
semantic description of one language can make widespread reuse of that of
aother, related language. All these pragmatic features are highly desirable.
Action sematics is, however, so far the only semantic framework that enjoys
them!

∗Computer Science Department, Aarhus University, Ny Munkegade Bldg. 540, DK-
8000 Aarhus C, Denmark; E-mail: pdmosses@daimi.au.dk

1

Action semantics is compositional, like denotations semantics [9]. The
main difference between action semantics and denotations semantics concerns
the universe of semantic entities: action semantics uses entities called actions,
rather than the higher-order functions used with denotational semantics.
Actions are inherently more operational than functions: when performed,
actions process information gradually.

Primitive actions, and the various ways of combining actions, correspond
to fundamental concepts of information professing. Action semantis provides
a particular notation for expressing actions. The symbols of action notation
are suggestive words, rather than cryptic signs, which makes it possible to
get a broad impression of an action semantic description from a superficial
reading, even without previous experience of action semantics. The action
combinators, a notable feature of action notation, obey desirable algebraic
laws that can be used for reasoning about semantic equivalence.

See [11] for a comprehensive exposition of action semantics, which also
illustrates its claimed pragmatic qualities.

Here, we focus our attention on the formal definition of action notation.
The definition consists of a structural operational semantics [14, 4, 1], to-
gether with a bisimulation equivalence. A novel feature of the definition is
the use of Horn clauses instead of inference rules. Moreover, we exploit a
recently-developed unified meta-notation, based on the framework of uni-
fied algebras [7, 8] allowing functions that return proper sorts when applied
to individuals; this lets us represent transition relations as functions, with
nonde-terministic choices between conngurations being represented as proper
sorts. These new techniques allow us to deal with structural operational se-
mantics within a purely algebraic framework.

It is worth pointing out that the structural operational semantics of ac-
tion notation induces an operational semantics for all languages described
using action semantics. However, the induced semantics is not really struc-
tural in the usual sense, since configurations involve action terms rather than
program syntax. Note that a structural operational semantics for a program-
ming language usually involves repetitious patterns of rules for transitions,
for instance determining a sequential order of execution of the components
of various phrases; an action semantics for the language uses a single combi-
nator to express the fundamental concept of sequencing, and the structural
operational semantics of the combinator specifies the corresponding pattern
of transitions, once and for all. Thus action semantics can be regarded as a

2

technique for factorization of a conventional structural operational semantics.

Why isn’t action notation defined denotationally? That would have the
advantage of inducing denotational models for all languages with action se-
mantic descriptions, as well as making domain theory available for reasoning
about actions. The difficulty is that the full action notation involves con-
cepts, such as concurrency and unbounded nondeterminism, whose available
denotational models are not only very intricate but also not fully abstract
with respect to the intended operational semantics of actions. Such a deno-
tational ‘model’ would not satisfy all the desired algebraic laws. (See [10] for
an experiment with defining action notation as auxiliary notation in denota-
tional semantics.)

On the other hand, although our combination of structural operational
semantics and bisimulation does verify the essential algebraic laws, this does
not provide a sufficiently strong action theory for reasoning about nontrivial
progam equivalence. It is currently unclear how to develop a stronger action
theory, to avoid the need for direct and tedious a reasoning at the operational
level.

The plan of this paper is as follows. Section 2 gives an informal explana-
tion of the concept of action the use of the action used in action semantics.
It also provides a small example that illustrates subset of action notation
considered here. Section 3 defines the structural operational semantics of
our action notation. Section 4 defines a bisimulation equivalence on actions.
An Appendix summarizes the unified meta-notation used throughout. No
previous exposure to action semantics or unified algebraic specifications is
assumed, although a general familiarity with semantic descriptions and alge-
braic specifications may be helpful.

2 Action Notation

Just as the lambda-notation is used in denotational semantics for specifying
functions [9], so our action notation is used in action semantics for specifying
actions [11]. Action notation includes also notation for data and for auxiliary
entities called yielders.

Actions are essentially dynamic, computational entities. The performance
of an action directly represents information processing behavior and reflects
the gradual, step-wise nature of computation. Items of data are, in contrast,

3

essentially static, mathematical entities, representing pieces of information,
e.g., particular numbers. (Of course actions are ‘mathematical’ too, in the
sense that they are abstract, formally-defined entities, analogous to abstract
machines defined in automata theory.) A yielder represents an unevalu-
ated item of data, whose value depends on the current information, i.e., the
previously-computed and input values that are available to the performance
of the enclosing action. For example, a yielder might sways evaluate to the
datum currently stored in a particular cell, which could change during the
performance of an action.

2.1 Actions

A performance of an action, which may be part of an enclosing action, either:

• completes, corresponding to normal termination (the performance of
the enclosing action proceeds normally); or

• escapes, corresponding to exceptional termination (parts of the enclos-
ing action are skipped until the escape is trapped); or

• fails, corresponding to abandoning the performance of an action (the
enclosing action performs an alternative action, if there is one, other-
wise it fails too); or

• diverges, corresponing to nontermination (the enclosing action also di-
verges).

Actions can be used to represent the semantics of programs: action perfor-
mances correspond to possible program behaviors. Furthermore, actions can
represent the (perhaps indirect) contribution that parts of programs, such as
statements and expressions, make to the semantics of entire programs.

An action may be nondeterministic, having different possible performances
for the see initial information. Nondeterminism represents implementation-
dependence, where the behaviour of a program (or the contribution of a part
of it) may vary between different implementations—or even between differ-
ent instants of time on the same implementation. Note that nondeterminism
does not imply actual randomness: each implementation of a nondetermin-
istic behaviour may be absolutely deterministic.

4

The information processed by action performance may be classified ac-
cording to how far it tends to be propagated, as follows:

• transient: tuples of data, corresponding to intermediate results;

• scoped: bindings of tokens to data, corresponding to symbol tables;

• stable: data stored in cells, corresponding to the values assigned to
variables;

• permanent: data communicated between distributed actions.

Transient information is made available to an action for immediate use.
Scoped information, in contrast, may generally be referred to throughout
an entire action, although it may also be hidden temporarily. Stable infor-
mation can be changed, but not hidden, in the action, and it persists until
explicitly destroyed. Permanent information cannot even be changed, merely
augmented.

When an action is performed, transient information is given only on com-
pletion or escape, and scoped information is produced only on completion. In
contrast, changes to stable information and extensions to permanent informa-
tion are made during action performance, and are unaffected by subsequent
divergence, failure, or escape.

The different kinds of information give rise to so-called facets of actions,
focusing on the processing of at most one kind of information at a time:

• the basic facet, processing independently of information (control flows);

• the functional facet, processing transient information (actions are given
and give data);

• the declarative facet, processing scoped information (actions receive
and produce bindings);

• the imperative facet, processing stable information (actions reserve and
unreserve cells of storage, and change the data stored in cells); and

• the communicative facet, processing permanent information (actions
send messages, receive messages in buffers, and offer contracts to agents).

5

These facets of actions are independent. For instance, changing the data
stored in a cell—or even unreserving the cell—does not affect any bind-
ings. There are, however, some directive actions, which process a mixture
of scoped and stable information, so as to provide finite representations of
self-referential bindings. There are also some hybrid primitive actions and
combinators, which involve more than one kind of information at once, such
as an action that both reserves a cell of storage and gives it as transient data.
In this paper, for simplicity, we ignore the communicative and directive facets
of actions; we also ignore escapes (exceptional termination).

The notation for specifying actions consists of action primitives, which
may involve yielders, and action combinators, which operate on one or two
subactions. Action notation provides also some notation for specifying sorts
of actions.

2.2 Yielders

Yielders are entities that can be evaluated to yield data during action per-
formance. The data yielded may depend on the current information, i.e., the
given transients, the received bindings, and the current state of the storage.
In fact action notation provides primitive yielders that evaluate to compound
data (tuples, maps, lists) representing entire slices of the current information,
such as the current state of storage. Evaluation cannot affect the current in-
formation.

Compound yielders can be formed by the application of data operations
to yielders. The data yielded by evaluating a compound yielder are the result
of applying the operation to the data yielded by evaluating the operands, For
instance, one can form the sum of two number yielders. Items of data are a
special case of data yielders, and always yield themselves when evaluated.

2.3 Data

The information processed by actions consists of items of data, organized in
stuctures that give access to the individual items. Data can include various
familiar mathematical entities, such as truth-values, numbers, characters,
stings, lists, sets, and maps. It can also include entities such as tokens
and cells, used for accessing other items. Actions themselves are not data,
but they can be incorporated in so-called abstractions, which are data, and

6

subsequently enacted back into actions. (Abstraction and enaction are a
specie cue of socalled reification and reflection.) New kinds of data can be
introduced ad hoc, for representing special pieces of information.

2.4 Notation

Consider the example of action notation given in Box 2.1. It illustrate the
use of the main primitive actions and combinators. The intended opera-
tional interpretation of the specified action corresponds to the semantic of
the statement

FOR i IN [1..10] DO s := s + i

which is supposed to have the effect of adding up the indicated values of i in
the variable s, in an unspecified order.

The symbols used in action notation are somewhat more verbose than
is usual in Semitic notation. Nevertheless, they are entirely formal! We
glow infix and ‘mixfix’ symbols, as well as prefix; infix symbols have weaker
precedence than prefix symbols. Vertical lines group the terms on their right,
providing a clear indication of overall term structure. (In fact quite a few of
the lines in the example could be eliminated without introducing ambiguity,
but then the term structure might be less obvious to readers who haven’t
seen action notation before.)

This is not the place for a full explanation of all the details of action
notation; the interested reader is referred to [11], where also the overall design
of action notation is motivated, and its use in action semantics is illustrated.
The following comments are merely intended to give a rough grasp of the
main primitive actions and combinators used in the example, prior to the
presentation of their formal operational semantics in the next section. We
consider the various kinds of information processing in turn.

Basic Control Flow

The basic combination A1 and then A2 combines the actions A1, A2 into
a compound action that represents their normal, left-to-right sequencing,
performing A2 only when A1 completes. complete is the unit for and then .

The action A1 or A2 represents implementation-dependent choice between
alternative actions, although if A1, A2 are such that one or the other of them

7

is always bound to fail, the choice is deterministic. A falure causes the al-
ternative currently being performed to be abandoned and, if possible, some
other alternative to be performed instead, i.e., back-tracking.

give 1
then
unfolding

check not (the given natural is greater than 10)
and then

store the sum of (it, the natural stored in the cell bound to “s”)
in the cell bound to “s”)

and
give the sucessor of it

then
unfold

or
check (the given natural is greater than 10)

and then
complete

Box 2.1 An example of action notation

The action A1 and A2 represents implementation-dependent order of per-
formance of the indivisible subactions of A1, A2. When these subactions can-
not ‘interfere’ with each other, it indicates that their order of performance is
simply irrelevant.

A performance of A1 and A2 arbitrarily interleaves the steps of perfor-
mances of A1, A2 until both have completed, or until one of them escapes or
fails. When the performance diverges, it may be ‘unfair’, for instance letting
A1 make infinitely-many steps but only finitely-many of A2.

unfolding A performs A but whenever it reaches the dummy action unfold,
it performs A instead. One may prefer to regard unfolding A as an abbre-
viation for an action, generally infinite, formed by continually substituting
A for unfold in A. (To avoid syntactic ‘singularities’ in action terms such
as unfolding unfold, substitute complete and then A instead of just A.) The
action unfolding A is mostly used in the semantics of iterative constructs,

8

with unfold occurring exactly once in A, but it can also be used with several
occurrences of unfold.

Transient Information Processing

The primitive action give Y completes, giving the data yielded by evaluating
the yielder Y , provided that this is an individual; it fails when Y yields
nothing. The action check Y requires Y to yield a truth-value; it completes
when the value is true, otherwise it fails, without committing. It is used for
guarding alternatives. For instance, (check Y and then A1) or (check not Y
and then A2) expresses a deterministic choice between A1 and A2, depending
on the condition Y .

The functional action combination A1 then A2 represents ordinary func-
tional composition of A1 and A2: the transients given to the whole action are
propagated only to A1, the transients given by A1 on completion are given
only to A2, and only the transients given by A2 are given by the whole action.
Regarding control flow, A1 then A2 specifies normal sequencing, as in A1 and
then A2. When A1 doesn’t give any transients and A2 doesn’t refer to any
given transients, A1 then A2 may be used interchangeably with A1 and then
A2.

The basic action combination A1 and A2 passes given transients to both
the subactions, and concatenates the transients given by the subactions when
they both complete; similarly for A1 and then A2. Finally, each alternative of
A1 or A2, when performed, is given the same transients as the combination,
and of course the combination gives only the transients given by the non-
failing alternative performed, if any.

Whereas the data flow in A1 then A2 is analogous to that in ordinary
function composition g◦f (at least when the functions are strict) the data flow
in A1 and A2 is analogous to socalled target-tupling of functions, sometimes
written [f, g] and defined by [f, g](x) = (f(x), g(x)).

The yielder given Y yields all the data given to its evaluation, provided
that this is of the data sort Y . For instance the given truth-value (where
‘the’ is optional) yields true or false when the given data consists of that
single individual of sort truth-value. Otherwise it yields nothing. Similarly,
given Y #n yields the n’th individual component of a given tuple, for n > 0,
provided that this component is of sort Y (not illustrated in the example).
The yielder ‘it’ yields the same as the given datum, where datum is a sort that

9

can be specialized to include all sorts of data items.

It is primarily the presence of A1 then A2 in functional action notation
that causes the transience of transient data. This combinator does not auto-
matically make the given transients available to A2, so unless A1 propagates
them, they simply disappear.

Scoped Information Processing

The yielder the d bound to T evaluates to the current binding for the partic-
ular token T , provided that it is of data sort d, otherwise it yields nothing.
(The primitive actions and combinators provided in action notation for pro-
ducing bindings are not considered in this paper.)

Stable Information Processing

The imperative action store Y1 in Y2 changes the data stored in the cell yielded
by Y2 to the storable data yielded by Y1. The cell concerned must have been
previously reserved (using the primitive action revere Y) othewise the storing
action fails.

The yielder the d stored in Y yields the data currently stored in the cell
yielded by Y , provided that it is of the sort d. Otherwise it yields nothing.

Data Operations

Various commonly-used data types (truth-values, natural numbers, stings,
storage cells) are provided by a general data notation included in action no-
tation. All data operations extend naturally to yielders, yielding the result of
applying the operation concerned to the data items yielded by evaluating the
arguments. For added readability, the operations ‘the’ and ‘of’ are provided;
they denote the identity function on data.

Notice that we allow data operations to be applied to entire sorts of
data—not only to individuals. The formal basis for this is provided by the
framework of unified algebras [7], which is summarized in the Appendix of
this paper.

So much for an informal explanation of the illustrative subset of action
notation used in the example. Next we specify the intended interpretation
of the notation formally.

10

3 Operational Semantics

We use a variant of structural operations semantic [14, 1] to define a tran-
sition system. Sequences of transitions correspond to possible performances
of actions, representing program behaviours. In Section 4 we consider the
definition of action equivalence in terms of transition bisimulation.

The key idea is to use a transition function mapping individual configu-
rations to arbitrary sorts of configurations, rather than a transition relation
between configurations. It is notationally just as easy to specify a fiction as
a relation, and by allowing proper sorts (not merely individuals) as results
we can still cope with nondeterminism. Moreover, we can specify the result
to be a single individual when the transition from a particular configura-
tion is deterministic, rather than leaving determinism implicit; we can even
specify directly that a configuration is blocked, using a vacuous sort such
as nothing! (The formal basis for using sorts as arguments and results of
operations is provided by the framework of unified algebras [7], summarized
in the Appendix of this paper.)

A less significant point is that we use positive Horn clauses instead of
inference rules. The only drawback of this seems to be that meta-proofs
using induction on the length of inference become less immediate, because
one has to consider the inference rules for Horn clause logic, as demonstrated
in [12] (see also [13]). By considering the initial model of the Horn clauses
we obtain the effect of demanding the least transition relation satisfying the
corresponding inference rules.

Readers who are experienced in structural operational semantics may no-
tice below—once they have become accustomed to the notation used here—
some novel techniques that improve the modularity of our description. For
example, the function simplified x applies reductions to the syntactic part of
a configuration after each transition.

The structural operational semantics of the full action notation used in
action semantics is given in [11, Appendix C]; it is about 12 pages long. For
simplicity, we here ignore information not pertinent to the performance of
actions in our illustrative subset of action notation.

11

Abstract Syntax

Actions needs: Yielders, Data.
Yielders needs: Actions, Data.
Data .

Configurations includes: [11] / Data Notation,
[11] / Action Notation / ∗ /Data.

Actions needs: Abstract Syntax.
States needs: Acting.
Commitments .

Transitions needs: Abstract Syntax, Configurations.

Actions

Simple needs: Yielders, Data.
Compound needs: Actions/Simple, Data.

Stepping .
Simplifying .
Unfolding .
Giving .

Yielders needs: Data.
Data .

Box 3.1 Modules

The entire specification below is formulated in the meta-notation provided
by the framework of unified algebras, summarized in the Appendix. Note
especially that x ≤ y holds when x denotes a sort included in the sort y,

12

whereas x : y also requires x to denote an individual value. The operations
x|||y and x & y provide sort union and intersection, respectively. For our use of
unified algebras in this paper, sorts can be regarded as sets, with individuals
corresponding to singletons.

The modular structure of the specification is given in Box 3.1 (the order
in which modules are presented has no formal significance).

3.1 Abstract Syntax

The grammar below specifies the abstract syntax of a kernel of our subset
of action notation. The nonterminal symbols of the gammar are capitalized,
and the terminal symbols are quoted, to avoid confusion between notation
for syntactic and semantic entities. Moreover, the brackets [[. . .]] denote
construction of nodes in trees.

The abstract site of notation for data is left open, so the user of action
notation may add nonstandard data notation. A uniform abstract syntax
is adopted for applications of unary and binary data operations (which may
concretely exploit mixfix notation). The operational semantics of action
notation does not depend on the details of notation for data, only on the
existence of its intended interpretation.

closed except Data.

grammar:

3.1.1 Actions

• Action = Simple-Action ||| [[“unfolding” Action]] |||
[[Action Action-Infix Action]] .

• Simple-Action = “complete” ||| “unfold” ||| [[“give” Yielder]] |||
[[“store” Yielder “in” Yielder]] .

• Action-Infix = “or” ||| “and” ||| “and then” ||| “then” .

13

3.1.2 Yielders

• Yielder = Data-Constant ||| [[Data-Unary “(|” Yielder “|)”]] |||
[[Data-Binary “(|” Yielder “,” Yielder “|)”]] |||
[[“given” Data]] |||
[[“the” Data “bound to” Yielder]] |||
[[“the” Data “stored in” Yielder]] .

3.1.3 Data

• Data = Data-Constant ||| [[DataUnary “(|” Data “|)”]] |||
[[Data Binary “(|” Data “,” Data “|)”]] ||| ✷ .

• Data-Constant = ✷ .

• Data-Unary = ✷ .

• Data-Binary = ✷ .

The ✷’s indicate productions left open.

The only bits of of our illustrative subset of action notation not covered
by the kernel are the primitive action check Y and the yielder it. These
are abbreviations determined by a function expand mapping trees to kernel
abstract syntax trees, defined as follows:

• expand [[“check” Y : Yielder]] =
[[[[“give” [[(expand Y) ” & ” “true”]]]] “then” “complete”]] .

• expand “it” = [[“given” “datum”]] .

(other sorts of nodes are left unchanged).

3.2 Configurations

The configurations used in operational semantics involve syntactic compo-
nents, representing what remains to be performed, as well as essentially se-
mantic entities, such as storage maps.

The specifications below use standard data notation for tuples, maps,
etc., defined algebraically in [11, Appendix E]. For convenience, they also

14

use the sort of data tuples, data, and special sorts of maps, bindings and
storage, which are specified in [11, Appendix B].

3.2.1 Acting

Acting is a generalization of Action. The new constructs include Terminated
entities, which stand for the outcome of the performance of a subaction, and
may contain transient data. They also include Action entities with attached
data.

grammar:

• Acting = Terminated ||| Intermediate .

• Terminated = Completed ||| Failed .

• Completed = 〈“completed” data 〉 .

• Failed = “failed” .

• Intermediate = Simple-Action |||. [[” unfolding” Acting]] |||
[[Acting Action-Infix Acting]] ||| 〈 Action data 〉 .

The data notation 〈 . . . 〉 denotes tuple concatenation, as does (,) below.

3.2.2 States

A state represents a point in the performance of an action. The local informa-
tion corresponds to the current scoped and stable information, the transient
data being incorporated in the acting component of the state. (We put bind-
ings together with storage here only because bindings cannot change in our
illustrative subset of action notation; in [11] they are treated analogously to
transient data.) Note that (Action, info) ≤ state, by the associativity of tuple
concatenation.

introduces: state , local-info , info .

(1) state = (Acting, local-info) .

15

(2) local-info (bindings, storage) .

(3) info = (data, local-info) .

3.2.3 Commitments

introduces: commitments , committed , uncommitted .

(1) commitments = committing ||| uncommitted (individual) .

3.3 Transition Functions

The factions specified below correspond to a structual operational semantics.
They are, in general, not compositional.

closed except Data.

3.3.1 Actions

run s is the sort of final outcomes obtained by repeatedly making transitions
from the intermediate state s. stepped s is the sort of intermediate or final
outcomes obtained by performing only the nrst transition from the interme-
diate state s.

introduces: run , stepped .

• run :: state → (Terminated, storage) .

(1) stepped (A, b, s) ≥ (A′ : intermediate,s′ : storage,c′ : commitment) ;
run (A′, b, s′) ≥ (A′′ : Terminated,s′′ : storage) ⇒
run (A:Acting, b:bindings, s:storage) ≥ (A′′, s′′) .

(2) stepped (A, l) ≥ (A′ : Terminated, s′ : storage, c′ : commitment) ⇒
run (A : Acting,l : local − info) ≥ (A′, s′) .

16

• stepped :: state → (Acting, storage, commitment) .

(3) stepped (A : Terminated, l : local − info) = nothing .

3.3.1.1 Simple

(1) i = (d : data, b : bindings, s : storage) ; evaluated (Y, i) =
evaluated (Y, i) = nothing ⇒
stepped ([[“give” Y :Yilder]], i : info) =
stepped ([[“store” Y :Yilder “in” Y2 : Yielder]], i : info) =
stepped ([[“store” Y1 :Yilder “in” Y : Yielder]], i : info) =

(“failed”, s, uncommitted) .

(2) stepped (“complete”, d :data, b :bindings, s :storage)
= (“completed”, (), s, uncommitted) .

(3) stepped (“unfold”, d :data, b :bindings, s:storage) = nothing .

(4) evaluated (Y, d, b, s) = d′ : data ⇒
stepped ([[“give” Y :Yielder]], d :data, b :bindings, s :storage) =

(“completed”, d′, s, uncommitted) .

(5) evaluated (Y1, d, b, s) = v : storable ;
evaluated (Y2, d, b, s) = c : cell ⇒

stepped ([[“store” Y1 “in” Y2]], d :data, b :bindings, s :storage) =
if c is in mapped-set of s
then (“completed”, (), overlay (map c to v, s), committed)
else (“failed”, s, uncommitted) .

3.3.1.2 Compound

introduces: simplified , unfolded , given .

17

Stepping

(1) stepped ([[“unfolding” A :Action]], d :data, b :bindings, s :storage) =
given (unfolded (A, [[“unfolding” A]]), d), s, uncommitted) .

(2) stepped (A1, l) ≥ (A′
1 :Acting, s′ :storage, c′ :commitment) ;

[[A1 O A2]] : [[Intermediate (“and then” ||| “then”) Intermediate]] |||
[[Intermediate “and” (Intermediate ||| Completed)]] ⇒

stepped([[A1 O A2]], l :local-info) ≥ (simplified [[A′
1 O A2]], s

′, c′) .

(3) stepped (A2, l) ≥ (A′
2 :Acting, s′ :storage, c′ :commitment) ;

[[A1 O A2]] : [[(Intermediate ||| Completed) “and” Intermediate]] ⇒
stepped([[A1 O A2]], l :local-info) ≥ (simplified [[A1 O A′

2]], s
′, c′) .

(4) stepped (A1, l) ≥ (A′
1 :Acting, s′ :storage, uncommitment) ;

[[A1 O A2]] : [[Intermediate “or” Intermediate]] ⇒
stepped([[A1 O A2]], l :local-info) ≥ (simplified [[A′

1 O A2]], s
′, uncommitted) .

(5) stepped (A2, l) ≥ (A′
2 :Acting, s′ :storage, uncommitment) ;

[[A1 O A2]] : [[Intermediate “or” Intermediate]] ⇒
stepped([[A1 O A2]], l :local-info) ≥ (simplified [[A1 O A′

2]], s
′, uncommitted) .

(6) stepped (A1, l) ≥ (A′
1 :Acting, s′ :storage, c :commitment) ;

[[A1 O A2]] : [[Intermediate “or” Intermediate]] ⇒
stepped([[A1 O A2]], l :local-info) ≥ (A′

1, s
′, c′) .

(7) stepped (A2, l) ≥ (A′
2 :Acting, s′ :storage, c :commitment) ;

[[A1 O A2]] : [[Intermediate “or” Intermediate]] ⇒
stepped([[A1 O A2]], l :local-info) ≥ (A′

2, s
′, c′) .

Simplifying

The function simplified is only applied to an intermediate compound acting A
where an immediate component of A is the acting part of the result of apply-
ing stepped. The result is an acting equivalent to A, simplified for instance
by propagating “failed”. The specification of simplified [[A1 O A2]] when both

18

A1 and A2 are terminated shows how the flow of transient information out
of actions is determined by the various combinators.

• simplified :: Acting → Acting .

(1) [[A′
1 O A2]] : [[Failed (“and then” ||| “then”) Intermediate]] |||

[[Failed (“and” (intermediate ||| completed]] |||
[[completed “or” Interdediate]] ⇒

simplified [[A′
1 O A2]] = A′

1 .

(2) [[A1 O A′
2]] : [[(Intermediate ||| Completed) “and” Failed]] |||

[[Intermediate “or” Completed]] ⇒
simplified [[A1 O A′

2]] = A′
2 .

(3) [[A′
1 O A′

2]] : [[(Intermediate Action-Infix Intermediate]] ⇒
simplified [[A′

1 O A′
2]] = [[A′

1 O A′
2]] .

(4) simplified [[“failed” “or” A2 : Intermediate]] = A2 .

(5) simplified [[A1 : Intermediate “or” “failed”]] = A1 .

(6) simplified [[“completed” d1 : data “and” “completed” d2 : data]] =
〈 “completed” (d1, d2)〉 .

(7) simplified [[A1 : Completed “and then” A2 :Intermediate]] = [[A1 “and” A2]] .

(8) simplified [[“completed” d1 : data “then” A2 : Intermediate]] =
given (A2, d1) .

Unfolding

unfolded (A, [[“unfolding” A]]) is used to replate free occurences of the dummy
action unfold by [[“unfolding” A]] before performing A. Each unfolding takes
a step, so performing [[“unfolding” “unfold”]] takes infinitely-many steps.

• unfolded :: (Action, Action) → Action .

(1) unfolded (A1 : Simple-Action, A0 : Action) =
If A1 “unfold” then [[“unfolding” A0]] else A1 .

19

(2) ([[unfolding A1 : Action]], A0) = [[“unfolding” A1]] .

(3) unfolded ([[A1 : Action O : Action-Infix A2 : Action]], A0 =
[[(unfolded (A1, A0) O (unfolded (A2, A0))]] .

Giving

given (A, d) is used to freeze the initial transient data d given to A. The
specification of given shows clearly how the flow of data into actions is de-
termined by the various combinators.

• given :: (Action, data) → Action .

(1) given (A : Terminated, d : data) = A .

(2) A : Simple-Action |||[[“unfolding” Action ⇒ .
given (A, d :data) = (A, d) .

(3) O : “or” ||| “and” ||| “and then” ⇒
given ([[A1 : Acting O A2 : Acting]], d : data) =

[[(given (A1, d)) O (given (A2, d))]] .

(4) given ([[A1 : Acting “then” A2 : Acting]], d :data) =
[[(given (A1, d)) “then” A2]] .

3.3.2 Yielders

The evaluation of yielders is compositional, but note that yielders occurring
in the action of an abstraction do not get evaluated.

introduces: evaluated .

• evaluated :: (Yielder, info) → data .

(1) evaluated (Y : Data-Constant, i : info) = entity Y .
(2) evaluated ([[O : Data-Unary “(|” Y : Yielder “|)′′]]i : info) =

unary-operation O (evaluated) (Y, i)) .
(3) evaluated ([[O : Data-Binary “(|” Y1 : Yielder “,” Y2 : Yielder“|)”]]i : info) =

binary-operation O (evaluated) (Y1, i)) (evaluated) (Y2, i)) .

20

(4) evaluated ([[“given” D : Data “#” n : natural]] d : data, b : bindings,
s : storage) = entity D & component#n of d .

(5) evaluated ([[“the” D : Data “bound to” Y : Yielder]] d : data, b : bindings,
s : storage) = entity D & (b at evaluated (Y, d, b, s) .

(6) evaluated ([[“the” D : Data “stored in” Y : Yielder]] d : data, b : bindings,
s : storage) = entity D & (s at evaluated (Y, d, b, s) .

3.3.3 Data

For a data term d with abstract syntax D, we expect entity D = d. Given
the full specification of Data, the corresponding semantic equations could be
generated automatically.

introduces: entity , unary-operation , binary-operation .

• entity :: Data → data .

(1) entity [[O : Data-Unary “(|” D : Data “|)”]] = unary-operation O (entity D) .
(1) entity [[O : Data-Binary “(|” D1 : Data “,” D2 : Data “|)”]] =

binary-operation O (entity D1) (entity D2).

• unary-operation :: Data-Unary, data → data → data .

• binary-operation :: Data-Binary, data → data , data → data.

4 Action Equivalence

The operational semantics of Action Notation determines the processing pos-
sibilities of each action. But this does not, by itself, provide a useful notion
of equivalence between actions. For if two compound actions have exactly
the same processing possibilities, it is easy to see that they must have the
same compositional structure.

From a user’s point of view, however, two actions may be considered
equivalent whenever there is no conclusive test that reveals the differences in
their processing possibilities. A test on an action may consist of performing
it in a particular action context, and checking that it completes; diverging

21

tests may be regarded as inconclusive. (In the full action notation, one could
also test the communication behaviour arising when an action is performed
by a distributed system of agents)

We expect the testing equivalence of actions to include various algebraic
laws, such as associativity of the action combinators Moreover, we expect it
to be a congruence, i.e., preserved by the combinators. Then the laws can
be used in algebraic reasoning to show that various compound actions are
equivalent, perhaps justifying a simple program transforation rule for some
language on the basis of its action semantics.

Unfortunately, it is difficult to verify directly that a testing equivalence
includes particular laws: one would have to consider all possible tests on the
actions involved in the laws! Instead, we define another, smiler equivalence
called bisimulation, which can more easily be shown to include the intended
laws. Here (in contrast to CCS [5]) bisimulation is actually a conguence, and
it follows easily that it is included in the contextual testing equivalence.

The techniques used here were developed by Park, Milner, de Nicola,
and Hennessy, mainly in connection with studies of the specification calculus
CCS. The notation and presentation below follow [6], although note that here
we have to deal with local information and commitments, as well as actions.

First we define transition relations on states:

Definition 4.1 For each c : commitment let
c−→⊆ state × state be the state

transition relation detemined by stepped as follows:

(A, b, s)
c→ (A′, b, s′) iff stepped (A, b, s) ≥ (A′, s′, c).

where A, A′ : Acting ; b : bindings ; s, s′ : storage ; c : commitment. When c
is uncommitted we write

·−→ instead of
c−→ (and then always s = s′).

Further, for each c : commitment let
c

=⇒ state × state be the observable
state transition relation defined by

c
=⇒=

·−→∗ c−→ ·−→∗

(whem R1R2 denotes the composition of relations R1, R2 and R∗ denotes the
reflexive transitive closure of R).

Now we insider relations on actions, i.e., elements of Action:

22

Definition 4.2 Let H be the function over binary relations R ⊆ Action ×
Action such that (A1, A2) ∈ H(R) iff, for all l :local-info,

• Whenever (A1, l)
c−→ (A′

1, l
′) then,

– (A2, l)
c

=⇒ (A′
1, l

′), if A′
1 : Terminated,

– for some A′
2 with (A′

1, A
′
2) ∈ R, (A2, l)

c
=⇒ (A′

2, l
′), otherwise;

• Whenever (A2, l)
c−→ (A′

2, l
′) then,

– (A1, l)
c

=⇒ (A′
2, l

′), if A′
2 : Terminated,

– for some A′
1 with (A′

1, A
′
2) ∈ R, (A1, l)

c
=⇒ (A′

1, l
′), otherwise.

Definition 4.3 R ⊆ Action × Action is a bisimulation if R ⊆ H(R).

Let ≈ =
⋃
{R | R is a bisimulation}. When A1 ≈ A2 we say that A1

and A2 are bisimilar.

Notice that two actions can only be bisimilar when they have similar
transitions for any particular binding and storage information. In practice,
this means that they must refer to exactly the same items of the current
information.

Proposition 4.1 ≈ is the largest bisimulation, the largest fixed point of H,
and an equivalence relation.

Proof: Using the monotonicity of H. See [6] for the details of a similar
proof. ✷

Proposition 4.2 ≈ is a congruence for the constructs of action notation.

Proof: From the definitions, and by constructing bisimulations containing
the compound actions when subactions are bisimilar. For example, con-
sider the combinator A′ then A : we have to show that whenever A1 ≈ A2

we get also (A1 then A) ≈ (A2 then A), and similarly for the other argu-
ment of then . It is enough to show that {(A1 then A, A2 then A) | A1 ≈
A2; A, A1, A2 : Action} is a bisimulation. For any l:local-info, and any transi-
tion (A1, l)

c→ (A′
1, l

′) to a terminated state, we have (A2, l)
c⇒ (A′

1, l
′) and the

result follows immediately. Similarly for transitions to intermediate states,

23

only now (A2, l)
c

=⇒ (A′
2, l

′) for some A2 with A′
1 ≈ A′

2. ✷

The associativity of all our binary action combinators, the idempotence of the
choice combinator ‘or’, and the unit properties of complete for both the basic
sequencing combinator ‘and then’ and for interleaving ‘and’, as well as vari-
ous other simple algebraic laws, can be shown just as easily. More usefully,
these same laws (and others) can also be shown to hold for the bisimulation
equivalence defined for the full action notation in [11].

5 Conclusion

We have seen how a unified metanotation can be used to define a structural
operational semantics for a simple subset of action notation. A straightfor-
ward definition of bisimulation equivalence provides some essential algebraic
laws for action equivalence. The extension to the full action notation, in-
cluding concurrent action performance with asynchronous message-passing
and process creation, can be found in [11], as can a fuller description of the
unified metanotation.

The author welcomes comments on this work, and suggestions for how
best to increase the strength of action theory.

Acknowledgments David Watt collaborated on the development of action
notation. The work reported here has been partially funded by the Danish
Science Research Council project DART (5.21.08.03).

Appendix: A Unified Meta-Notation

The metanotation summarized below is a subset of that used in [11].

Metanotation is for specifying formal notation: what symbols are used,
how they may be put together, and their intended interpretation.

Our metanotation here supports a unified treatment of sorts and indi-
viduals (i.e., types and objects): an individual is treated as a special case
of a sort. Thus operations can be applied to sorts as well as individuals. A
vacuous sort represents the lack of an individual, in particular the undefined
result of a partial operation. Sorts may be related by inclusion; sort equality

24

is just mutual inclusion. But a sort is not determined just by the set of
individuals that it includes: it has an intension, stemming from the way it
is expressed. For example, the sort of those natural numbers that are in the
range of the successor operation may be distinct from the sort of those that
have a well-defined reciprocal, even though their sets of individuals are the
same.

The meta-notation provides (positive) Horn clauses and (initial) constra-
ints—explained below—for speciffying the intended interpretation of sym-
bols. Specifications may be divided into mutually-dependent and nested
modules, presented incrementally in any order.

A model of a specification consists of a distributive lattice of sorts with
a bottom, a distinguished subset of individuals, and a monotonic function
on the lattice for each operation, such that all the specified clauses and
constraints are satisfied. See [7] for the formal details.

Vocabulary

The vocabulary of the meta-notation consists of constant and operation sym-
bols, variables, titles, and special marks.

Symbols are of two forms: quoted or unquoted. Quoted symbols always
stand for constants. In unquoted symbols the underline character indicates
the positions of arguments. Symbols without always stand for constants.
Symbols are written here in this saris-serif font. An operation symbol is
classified as an infix when it both starts and ends with a , and as a postfix
or postfix when it only ends, respectively starts, with a . It is called an
outfix when only occurs internally.

There is one built-in constant symbol, nothing, and there are two built-in
infix operation symbols, ||| , & .

Variables are sequences of letters, here written in this italic font, option-
ally followed by primes ′ and/or a numerical subscript or suffix.

Titles are sequences of words, here capitalized and written in This Bold
Font.

A pair of grouping parentheses () may be replaced by a vertical line to
the left of the grouped material. Reference numbers for parts of specifications
have no formal significance.

25

Sentences

A sentence is essentially a Horn clause involving formulae that assert equality,
sort inclusion, or individual inclusion between the values of terms. The vari-
ables occurring in the terms range over all values, not only over individuals.
The universal quantification is left implicit.

Terms

Terms consist essentially of constant symbols, variables, and applications of
operation symbols to subterms. We use mixfix notation, writing the applica-
tion of an operation symbol S0 . . . Sn to terms T1, . . . , Tn as S0T1 . . . TnSn.
Infixes have weaker precedence than prefixes, which themselves have weaker
precedence than postties. Moreover, infixes are grouped to the left, so we
may write x ||| y ||| z without parentheses. Grouping parentheses () may be
freely inserted for further disambiguation.

The value of a term is determined by the interpretation of the variables
that occur in it. Such a value may be an individual (which is regarded as
a special kind of sort), a vacuous sort, or a proper sort that includes some
individuals.

The value of the constant nothing is a vacuous sort, included in all other
sorts. Operations map sorts to sorts, preserving sort inclusion. ||| is sort
union and & is sort intersection; they are the join and meet, respectively, of
the sort lattice, and enjoy the usual properties of set union and intersection:
associativity, commutativity, idempotency, and distribution over each other
(De Morgan’s laws). Moreover, nothing is the unit for ||| . There is no point
in having a unit for & , as it would be a sort that includes everything.

Formulae

T1 = T2 asserts that the values of the terms T1 and T2 are the same (individ-
uals or sorts).

T1 ≤ T2 asserts that the value of the term T1 is a subsort of that of the
term T2; so does T2 ≥ T1. Sort inclusion is the partial order of the sort
lattice.

T1 : T2 asserts that the value of the term T1 is an individual included in

26

the (sort) value of the term T2.

The mark ✷ (read as ‘filled in later’) in a term abbreviates the other side
of the enclosing equation. Thus T2 = T1 ||| ✷ specifies the same as T2 = T1 ||| T2

(which is equivalent to T2 ≥ T).

The mark disjoint following an equation or inclusion T = T1 ||| . . . ||| Tn

abbreviates equations asserting vacuity of the pairwise intersections of the
Ti. The mark individual abbreviates equations asserting that each Ti is an
individual, as well as their disjointness.

F1; . . . ; Fn is the conjunction of the formulae F1, . . . , Fn. Conjunctions
with a common term may be abbreviated, e.g., x, y : x abbreviates x : z ; y : z
and x : y = z abbreviates x : y ; y = z.

Clauses

A (generalized positive Horn) clause F1; . . . ; Fm ⇒ C1; . . . ; Cn, where m, n ≥
1, asserts that whenever all the antecedent formulae Fi hold, so do all the
consequent clauses (or formulae) Cj. Note that clauses cannot be nested to
the left of ⇒ , so F1 ⇒ F2 ⇒ F3 is unambiguously grouped as F1 ⇒ (F2 ⇒
F3).

We restrict the interpretation of a variable V to individuals of some sort
T in a clause C by specifying V : T ⇒ C. Alternatively we may simply
replace some occurrence of V as an argument in C by V : T . We restrict V
to subsorts of T by writing V ≤ T instead of V : T .

Functionalities

A functionality clause S :: T1, . . . , Tn → T specifies that the value of any
application of the operation S is included in T whenever the values of the
argument terms are included in the Ti. It does not by itself indicate whether
the value might be an individual, a proper sort, or a vacuous sort.

Such a functionality may be augmented by the some attributes, for ex-
ample ‘total’ which abbreviates a clause asserting that the operation is a
natural extension of an ordinary total operation on individuals to proper
(and vacuous) sorts. It is straightforward to translate ordinary many-sorted
algebraic specifications into our metanotation using functionalities and at-
tributes; similarly for order-sorted specifications [2] written in obj3 [3].

27

Specifications

A modular specification S is of the form B M1 . . . Mn, where B is a basic
specification, and the Mi are modules. Either B or the Mi (but not both)
may be absent. B is inherited by all the Mi.

Each symbol stands for the same value or operation throughout a specification—
except for symbols introduced privately. All the symbols (but not the vari-
ables) used in a module have to be explicitly introduced: either in the module
itself, or in an outer basic specification, or in a referenced module.

Basic Specifications

A basic specification B may introduce symbols, assert sentences, and im-
pose (initial) constraints on subspecifications. The metanotation for basic
specifications is as follows.

introduces: O1, . . . , On. introduces the indicated symbols, which stand
for constants and/or operations. Also privately introduces: O1, . . . , On.
introduces the indicated symbols, but here the enclosing module translates
them to new symbols, so that they cannot clash with symbols specified in
other modules.

C . asserts the clause C as an axiom, to hold for any assignment of values
to the variables that occur in it. Omitting C gives the empty specification,
made visible by a period.

B1, . . . , Bn specifies all that the basic specifications B1, . . . , Bn. specify,
i.e., it is their union. The order of the Bi is irrelevant, so symbols may be
used before they are introduced.

includes: R1, . . . , Rn. specifies the same as all the modules indicated by
the references Ri. needs: R1, . . . , Rn. is similar to includes: R1, . . . , Rn. ,
except that it is not transitive: symbols introduced in the modules referenced
by the Ri are not regarded as being automatically available for use in modules
that reference the enclosing module.

grammar: S augments the basic specification S with standard specifi-
cations of strings and syntax trees (from [11, Appendix E]), and with the
introduction of each constant symbol that occurs as the left hand side of an
equation in S. Similarly when S is a series of modules.

closed . specifies the constraint that the enclosing module is to have

28

a standard (i.e., initial) interpretation. This means that it must be pos-
sible, using the specified symbols, to express every individual that is in-
cluded in some expressible sort (no junk), and moreover that terms have
equal/included/individual values only when that logically follows from the
specified axioms (no confusion). closed except R1, . . . , Rn . specifies a
similar constraint, but leaves the (sub)modules referenced by the Ri open,
so that they may be specialized in extensions of the specification. open .
merely indicates that the enclosing module is not to be closed.

Modules

A module M is of the form I S, where I is a title that identifies the specifi-
cation S.

Modules may also be nested, in which case an inner module inherits the
basic specifications of all the enclosing modules, and the series of titles that
identifies the immediately enclosing module.

Parameterization of modules is rather implicit: unconstrained submod-
ules, specified as open . , can always be specialized.

A series of titles I1/ . . . /In refers to a module (together with all its sub-
modules). A common prefix of the titles of the enclosing module and of the
referenced module may be omitted. In particular, sibling modules in a nest
can be referenced using single titles. R/∗ refers to all submodules of R.

References

[1] E. Astesiano. Inductive and operational semantics. In E. J. Neuhold and
M. Paul, editors, Formal Description of Programming Concepts, IFIP
State-of-the-Art Report, pages 51–136. Springer-Verlag, 1991.

[2] J. A. Goguen and J. Meseguer. Order-sorted algebra: Algebraic theory of
polymorphism. Journal of Symbolic Logic, 51:844–845, 1986. Abstract.

[3] J. A. Goguen and T. Winkler. Introducing OBJ3. Technical Report SRI-
CSL-88-9, Computer Science Lab., SRI International, 1988.

29

[4] G. Kahn. Natural semantics. In STACS’87, Proc. Symp. on Theoretical
Aspects of Computer Science, number 247 in Lecture Notes in Computer
Science. Springer-Verlag, 1987.

[5] R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[6] R. Milner. Operational and algebraic semantics of concurrent processes.
In J. van Leeuwen, A. Meyer, M. Nivat, M. Paterson, and D. Perrin,
editors, Handbook of Theoretical Computer Science, volume B, chapter
19. Elsevier Science Publishers, Amsterdam; and MIT Press, 1990.

[7] P. D. Mosses. Unified algebras and institutions. In LICS’89, Proc. 4th
Ann. Symp. on Logic in Computer Science, pages 304–312. IEEE, 1989.

[8] P. D. Mosses. Unified algebra and modules. In POPL’89, Proc. 16th
Ann. ACM Symp. on Principles of Progamming Languages, pages 329–
343. ACM, 1989.

[9] P. D. Mosses. Denotational semantics. In J. van Leeuwen, A. Meyer,
M. Nivat, M. Paterson, and D. Perrin, editors, Handbook of Theoretical
Computer Science, volume B, chapter 11. Elsevier Science Publishers,
Amsterdam; and MIT Press, 1990.

[10] P. D. Mosses. A practical introduction to denotational semantics. In E.
J. Neuhold and M. Paul, editors, Formal Description of Programming
Concepts, IFIP Stater-of-the-art Report, pages 1–49. Springer-Verlag,
1991.

[11] P. D. Mosses. Action Semantics. Number 26 in Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1992.

[12] J. Palsberg. Provably Correct Compiler Generation. PhD thesis, Aarhus
University, 1992.

[13] J. Palsberg. A provably correct compiler generator. In ESOP’92, Proc.
European Symposium on Programming, Rennes, number 582 in Lecture
Notes in Computer Science, pages 418–434. SpringerVerlag, 1992.

[14] G. D. Plotkin. A structural approach to operational semantics. Lecture
Notes DAIMI FN–19, Computer Science Dept., Aarhus University, 1981.
Now available only from University of Edinburgh.

30

[15] D. A. Watt. Programming Language Syntax and Semantics. Prentice-
Hall, 1991.

31

