
Strategies for Expression Evaluation Using
Sort-Merge Algorithms

Kim S. Larsen

Aarhus University

September 1992

Abstract

The sort-merge technique for evaluating relational algebra and cal-
culus expressions was advocated very early and is a very widely used
implementation technique. We present an algorithm for query analy-
sis prior to execution with the aim of determining sort orders for every
subexpression in such a way that resorting can be avoided during the
actual evaluation. We prove that our algorithm will find such a solu-
tion, if one exists. In that case, we get the additional benefit of perfect
pipelining, which implies that we do not have to save temporary re-
sults of evaluating subexpressions. The algorithm’s running time is
quadratic in the size of the expression.

In case no assignment of sort orders to subexpressions exists such
that resorting can be avoided entirely, the aim is to find a minimum
number of places to resort. We also consider this problem.

1 Introduction

Sort-merge algorithms have been used for a long time for evaluating relational
algebra and calculus expressions. The technique was advocated very early
[Mer83] and is quite dominant as an evaluation technique; partly due to its
simplicity. Many textbooks contain details and motivation; see [Des90], for

1

example. Before we give an account of the contents of this paper, we briefly
describe the sort-merge algorithms. More detailed descriptions can be found
in the textbooks, but it seems appropriate to include a short summary here.

So, how do we evaluate r1∪r2, say, using a sort-merge algorithm? The reason
for using an algorithm at all instead of simply concatenating the two sets of
tuples is that we want to avoid duplicates in the result. Much can be said
both for and against forbidding duplicates in relations, but when the decision
is made to avoid them, a sort-merge algorithm would often be used.

Assume that the schemas of r1 and r2 are R1 = R2 = {A, B, C}. We could
choose the sort order BCA, meaning that we intend to sort the relations
lexicographically with B being most significant, C second most significant,
and A lest significant. If we sort r1 and r2 separately according to this
ordering, we can afterwards merge them into the result. The point being, of
course, that if r1 and r2 contain the same tuple, then we will see these two
tuples at the same time during the merge, and we can eliminate one of them.
We also note that the result is automatically BCA-sorted.

What about the natural join of two relations, r1 ✶ r2? Here, the motivation
for using a sort-merge algorithm is not removal of duplicates, but efficiency
[Mer83]. If |r1| = |r2| = n, then |r1 ✶ r2| may be as much as n2, so this is the
best complexity we can hope for in general. However, if the size of the result
is an order of magnitude smaller than n2, then we can do better. If we first
sort r1 and r2 and then merge, we obtain a complexity of O(n · log(n)), if the
result is at most of size O(n · log(n)). The arguments have to be sorted such
that the attribute names in R1 ∩R2 are the most significant in the ordering.
Here is an example. If R1 = {A, B, C, D} and R2 = {A, B, E, F}, then one
possible choice is to sort r1 according to BACD and r2 according to BAFE,
i.e., both sequences start with the intersection of the schemas, {A, B}, and
in the same order. After sorting, we merge the two relations, exploiting the
fact that all the tuples from r1 and r2 which agree on A and B will come in
sequence, and we output the Cartesian product of the CD part of the tuples
from r1 and the FE part of the tuples from r2. We observe that without
any extra sorting, we can output this result in two different ways; either
according to BACDFE or according to BAFECD.

The remaining relational operators are either very similar to union or join, or
they are uninteresting because there are no requirements on the sort orders.

2

At this point, we want to emphasize that the collection of sort-merge algo-
rithms described above is just one choice among many. In a real implemen-
tations one would probably not sort a relation entirely. One would accept
that a relation is sorted on the first attribute name, or that there is an in-
dex for the first attribute name, or something similar. One would then take
care of the sorting on the remaining attributes during the merge. Also, one
might detect identical binary operators appearing next to each other and use
a k-way merge [Knu73]. There are a great variety of possible implementation
decisions and it is impossible to cover them all. In this paper, we choose one
of them in order to demonstrate the technique. The proofs and algorithms
presented can easily be adapted to other models.

We will now describe the sort-merge problem. Our objective is to avoid resort-
ing. This goal can be achieved if the sort-merge problem can be solved. We
can phrase the sort-merge problem as follows. Given à query, does there ex-
ist an assignment of sequences to all subexpressions such that the sort-merge
requirements are fulfilled for each operator and such that the sequence as-
signed to a subexpression can be produced by a sort-merge algorithm without
extra sorting; given that the arguments are already sorted according to their
assigned sequences. Furthermore, if the same relation name appears more
than once, then all occurrences have to be assigned the same sequence.

Consider the query q = (r1 × r2) − (δC←D,D←C(r3 ✶ r4)), where R1 = R4 =
{A, B, D}, R2 = {C}, and R3 = {A, B, C}. One solution to the sort-merge
problem for this query is listed below.

Subexpression Assigned sequence
r1 BAD
r2 C
r1 × r2 BADC
r3 BAC
r4 BAD
r3 ✶ r4 BACD
δC←D,D←C(r3 ✶ r4) BADC
q BADC

Notice that all the requirements are fulfilled. For instance, the sequences as-
signed to r3 and r4 agree on R3∩R4 and the two expressions in the difference
are assigned identical sequences (BADC). Also, we notice that sequences

3

assigned to subexpressions represent sort orders which can be obtained with-
out extra sorting, if the arguments are sorted according to their assignments.
For instance, if r1 is sorted according to BAD and r2 is sorted on C, then
we can output one of the orderings BADC or CBAD from r1 × r2 without
additional sorting (and BADC has been chosen here).

The consequences of the above query having a solution are that if we sort
the argument relations r1, r2, r3, and r4 according to their assigned sequences,
then no further sorting is necessary. ln addition, we can pipeline the tuples
from these argument relations through the whole expression a few at a time
such that no temporary relations are needed; we can simply write out the
result directly. If one or more of the argument relations are already sorted,
then it might be possible to take advantage of that depending on whether
these concrete orderings appear in any of the solutions. We can easily adjust
our results to take this into account.

The sort-merge problem has been considered before in [SC75]. They have
designed an algorithm which simply makes a pass up the syntax tree of a
query and a pass down the syntax tree, and sometimes it finds a solution.
In contrast, we always find a solution if one exists. In [SC75], Smith and
Chang concentrate on describing how to sort or create dictionaries, whereas
we work on a higher level of abstraction and instead put emphasis on finding
an exact solution.

The problem of finding a sort order assignment becomes more and more
difficult as the size of queries grow. Several occurrences of the same relation
name make queries particularly difficult to handle. Consider a query like
(πA(r1) × r2) − exp, for example, where R1 = {A, B}, R2 = {B}, and r1

appears in exp. In this query, the complication of two occurrences of the
same relation name implies that the top-most operator, difference, cannot be
dealt with by simply considering its immediate arguments, First, information
from r1 in the projection has to be propagated to the other occurrences of r1

in exp. Using the algorithm of [SC75], it is just as likely that the occurrences
of r1 in exp are sorted on B first as on A first.

In this paper, we present an algorithm which finds a solution if one exists (in
fact, we find all solutions and then select one). We do this by first generating
a system of inequalities, which constitutes the constraints that the operators
in the query impose on their arguments and limit the possible orderings they

4

can output.

Our algorithm operates on sets of permutations. If a subexpression has
schema {A, B, C}, then we begin by considering all the permutations of
this set (ABC, ACB, BAC, BCA, CAB, CBA) as candidates for solutions.
During the process, we gradually limit this set. Representing these sets of
permutations directly leads to an exponential-time algorithm, and though
queries and schemas are usually of a reasonable size, we would like to obtain
a polynomial time algorithm. If all subsets of permutations could appear as
values in our algorithm, then we would not have any hope of improvement
over the naive approach. Fortunately, this is not the case, and we develop a
considerable more compact notation for the possible subsets.

The outline of the paper is as follows. In section 2, we state the sort-merge
problem formally. In section 3, we answer the question of how to solve
inequality systems. In section 4, we develop a novel concept of permutation
expressions. In section 5, the solution to the sort-merge problem is presented
in the form of an algorithm, the complexity of which we analyze. In section
6, we present an algorithm which finds a minimum number of places to
resort, when no solution exists which avoid resorting entirely. In section 7,
we conclude.

2 The Sort-Merge Problem

In this section, we define the sort-merge problem formally. First, we need
some basic definitions on relational algebra and sequences of attribute names.

Definition 2.1 Let Att be a set of attribute names and Dom a set of values.
A relation r is a pair consisting of a schema Sch(r), which is a finite subset
of Att, and a finite set of tuples, which are total functions from Sch(r) to
Dom.

The set of all relational algebra expressions is defined by the following gram-
mar:

e ::= r | e ∪ e | e− e | e ✶ e | σb(e) | πX(e) | δd(e)

where r can be any relation name, b is a boolean expression of the usual
restricted form, X is a list of attribute names, and d is a list of pairs of
attribute names each of which is of the form A ← B.

5

Schemas can be determined statically, so we can extend Sch to expressions.
We let R denote the schema of a relation r and E the schema of a relation
expression e. ✷

The definition of relational algebra is entirely standard. More details can be
found in any introductory textbook on the subject; see [Ull88], for example.

Definition 2.2 If S is a set, then Permute(S) is the set of all permutations
of S, i.e., all sequences of elements from S where each element in S appears
exactly once in each sequence. A dot, “·”, will denote concatenation of
sequences (and sets of sequences).

For example, if S = {A, B}, then Permute(S) = {AB, BA}. Also, {AB, BA}·
{CD, DC} = {ABCD, ABDC, BACD, BADC}.
If s is a sequence A1 · · ·Ak, then we let {s} denote the set {A1, . . . , Ak}, A
sequence can be renamed in exactly the same way as a relation. We use the
notation s[d] for this, where s is a sequence and d is a list of pairs of the
form A ← B as in the renaming of relations. Furthermore, s|X will denote
sequence projection. We also use s|{X} with exactly the same meaning as
s|X . ✷

For example, ABC[B ← D] = ADC and ABCD|AC = ABCD|{A,C} = AC.

All of these operators are extended to sets of sequences in the obvious way.

A query can contain identical subexpressions, though optimizers will usually
remove these. However, a query can certainly contain several identical rela-
tion names. Thus, a subexpression does not uniquely identify a position in
the query. For that reason, we have to associate a unique identifier with each
occurrence of a subexpression; we have chosen to use integers.

Definition 2.3 An enumeration of a relational algebra expression e is an
assignment of integers to all subexpressions of e, including relation names,
such that no two subexpressions are assigned the same number and such that
they are numbered from 1 through n for some n. The size of e, denoted |e|,
is n. If the same subexpression appears several times, then each occurrence
is assigned its own number.

We let SubExp(i) denote the subexpression with number i and let op(i)
denote the outermost operator of SubExp(i). Finally, let Args(i) denote

6

the set of numbers assigned to the subexpressions which are arguments to
op(i). ✷

Often, we will not explicitly mention enumerations; instead, we shall assume
that we have one given. In the following, we list the requirements for each
operator which sort-merge algorithms impose. These are exactly as discussed
in the introduction.

Definition 2.4 The operator requirements for each operator are listed below.
Assume that si, i = 1, 2, indicates how the output from ei is sorted.

Expression Requirement
r –
e1 ∪ e2 s1, s2 ∈ Permute(E1) and s1 = s2.
e1 − e2 Same as union.
e1 ✶ e2 ∃t, s′1, s′2 : t ∈ Permute(E1 ∩ E2), si = t · s′i, i = 1, 2.
σb(e1) –
πX(e1) ∃t, s′1 : t ∈ Permute(X) and s1 = t · s′1.
δd(e1) –

✷

As mentioned in the introduction, join can output two different orderings
without any extra sorting. This is captured formally in the following defini-
tion.

Definition 2.5 Let E1 and E2 be sets and let si ∈ Permute(Ei), i = 1, 2.
Now, ⊗ is defined as follows:

s1 ⊗ s2 =

{s1 · s′2, s2 · s′1}, if ∃t, s′1, s′2 : t ∈ Permute(E1 ∩ E2),

si = t · s′i, i = 1, 2
∅ otherwise

The definition is extended to sets in the natural way. ✷

Finally, we define the output sortings which can be obtained as output from
operations. This concludes the characterization of sort-merge algorithms as
we have chosen to present them. Let us emphasize again that this is just one
possible choice among many and that our results easily can be adapted to
other reasonable assumptions about sort-merge algorithms.

7

Definition 2.6 We assume that the requirements from definition 2.4 hold
and that si ∈ Permute(Ei), i = 1, 2. We now define the output sortings that
can be produced from the given input sortings without additional sorting.

Expression Ordering
r Permute(R).
e1 ∪ e2 {s1}.
e1 − e2 Same as union.
e1 ✶ e2 s1 ⊗ s2.
σb(e1) {s1}.
πX(e1) {s1|X}.
δd(e1) {s1[d]}.

✷

Notice that by definition a relation can produce any sequence over its schema.
This is because of our assumption that if a solution exists, then we sort the
argument relations to a query according to their assigned sequences, after
which no resorting is necessary during the actual evaluation of the query.
This is where information about presorted relations or relations with an
index could be incorporated. We can also benefit from information about
which relations are laid out as search trees. As search tree data will typically
cluster, this can sometimes give speed-up comparable to exploiting the fact
that a relation is stored in sorted order.

We can now formally list the properties an assignment of sequences to subex-
pressions in a query should have.

Definition 2.7 If e is a relational algebra expression of size n, then a sort
order assignment for e is a function

f : {1, . . . , n} →
⋃

i∈{1,...,n}
Permute(Sch(SubExp(i)))

such that for all i ∈ {1, . . . , n}, the following conditions hold, where we
assume that Args(i) = {i1, i2}, s1 = f(i1) and s2 = f(i2).

• definition 2.4 is fulfilled.

• f(i) can be produced from s1 and s2 according to definition 2.6.

8

• if SubExp(j) and SubExp(j′) are identical relation names, then f(j) =
f(j′).

✷

The sort-merge problem can now alternatively and more formally be formu-
lated as follows: given a query, does there exist a sort order assignment for
it?

Before we conclude this section notice that there is no difference in the treat-
ment of union and difference in the sort-merge problem. In fact, they are
both special cases of join. When join is simply an intersection, because
the schemas of the arguments are identical, the requirements and properties
are like the ones for union and difference. Finally, notice that selection is
completely uninteresting in this context, as it has no requirements and it
preserves the ordering of the input. Thus, before analyzing a query, we can
delete all selections and change all unions and differences to joins. This will
cut down on notation and cases in definitions and proofs to come. In sum-
mary: we only need to analyze queries containing the operators join, project,
and renaming.

3 Solving Systems of Inequalities

Before we move on, we need some theory on how to find maximal solutions to
systems of inequalities. Basically, we adapt Tarski’s work on fixed points for
functions defined on complete lattices to our concrete problem. We do not
find any need to comment much on the definitions and proofs in this section.

Definition 3.1 Let (U,�) be a complete lattice [Tar55] with greatest lower
bound � and least upper bound �. An inequality system on (U,�) consists
of a finite set of inequalities of the form

M0 � f(M1, . . . , Mk)

where the Mi’s are variables and f : Uk → U is monotonic. A solution L
assigns to each variable M some value L(M) ∈ U such that all the inequalities
hold. The system is satisfiable if a solution exists. ✷

9

Lemma 3.2 If an inequality system is satisfiable, then it has a unique largest
solution.

Proof Let {L1,L2, . . .} be the set of all solutions. Now, define L as follows:

∀M : L(M) = �iLi(M)

Then L is also a solution since

L(M0) = �iLi(M0), by definition
� �if(Li(M1), . . . ,Li(Mk)), since Li is a solution
� f(�iLi(M1), . . . ,�iLi(Mk)), since f is monotonic
= f(Li(M1), . . . ,Li(Mk)), by definition

As L belongs to the set of all solutions and, by definition, is at lest as large
as any other solution, it is the unique largest solution. ✷

Definition 3.3 Let S be an inequality system. We define Eq(S) to be the
set of equalities, where for each variable M in the system S, we include

M = H1 �H2 � . . . �Hk

The Hi’s are all the right-hand sides of inequalities in S with M on the left-
hand side. A solution L assigns to each variable M some value L(M) ∈ U
such that all the equalities holds. The system is satisfible if a solution exists.

✷

Proposition 3.4 If S is an inequality system, then Eq(S) is satisfiable and
has a unique largest solution.

Proof See [Tar55]. ✷

Lemma 3.5 Let S be an inequality system. Then the largest solution to
Eq(S) is also a solution to S; and it is the largest solution to S.

Proof Let L be a solution to S. If Hi = f(M ′
1, . . . , M

′
p), then we let

L(Hi) denote the value f(L(M ′
1), . . . ,L(M ′

p)). Now, assume that for some
Mq,L(Mq) ❁ �iL(Hi). Define L′ by

L′(M) =

{
L(M) if M �= Mq

�iL(Hi), if M = Mq

10

Clearly L′ is larger than L. It is also a solution (to S) as for all Hi′ ,

L′(Mq) = �iL(Hi), by assumption
� �iL′(Hi), as L′ is larger than L and � is monotonic
� L′(Hi′), property of �

and if Mj �= Mq, then for all Hi′ ,

L′(Mj) = L(Mj), by definition
� �iL(Hi), as L is a solution
� �iL′(Hi), as L′, is larger than L and � is monotonic
� L′(Hi′), property of �

By repetition of the above, the largest solution to S must have L(Mj) =
�iL(Hi) for all Mj’s and corresponding right-hand sides. Thus, the largest
solution to S is to be found among the solutions to Eq(S). The result now
follows from the trivial observation that any solution to Eq(S) is also a
solution to S. ✷

There is a standard technique for solving an equality system by iterating a
certain function until a fixed point is obtained.

Definition 3.6 Assume that F is a set of monotone functions, each of them
from Uh → U , for some h (we mean monotone in each argument). If for
i = 1, . . . , n we have equations

Mi = fji
(Mi1 , . . . , Mik)

where fji
∈ F , we can choose to consider the fj’s as functions of all the

variables, i.e.
Mi = fji

(M1, . . . , Mn)

and then define an iteration function by

(x1, . . . , xn) �→ (fj1(x1, . . . , xn), . . . , fjn(x1, . . . , xn))

Given an equality system, we call this the corresponding iteration function.

✷

11

Proposition 3.7 A function L is a solution to an equality system if and
only if it is a fixed point for the corresponding iteration function.

Proof Easy observation. ✷

Proposition 3.8 The iteration function defined above is monotone on Un.

Proof Trivial. ✷

Lemma 3.9 Let (U,�) be a complete lattice and f : U → U a monotone
function. Let v ∈ U and assume that f(v) � v. Then the largest fixed point
for f less than or equal to v can be found as fk(v), for some k ∈ IN .

Proof Let u = �{f i(v) | i ∈ IN}. From f(v) � v we can prove by simple
induction that for all i, f i+1(v) � f i(v), using the monotonicity of f . So,
we have for all i that �{v, f(v), . . . , f i(v)} = f i(v). We conclude that there
exists a k such that u = fk(v).

First, we prove that u is indeed a fixed point. By monotonicity of f , we
obtain that

f(u) = f(fk(v)) � fk(v) = u

and as u is a lower bound that

u � fk+1(v) = f(fk(v)) = f(u)

from which it follows that f(u) = u.

Now assume that u′ is a fixed point less than or equal to v. We obtain that
u′ = f(u′) � f(v) as f is monotonic. By inductions we see that u′ � fk(v).
But then u′ � u, so u is the largest fixed point less than or equal to v. ✷

Corollary 3.10 If (U,�) is a complete lattice with top element � = �U
and f : U → U is a monotone function, then the largest fixed point can be
found as fk(�), for some k ∈ IN .

Proof As � is the largest element, f(�) � �. Of course, the largest fixed
point is less than or equal to �, so the result follows. ✷

Proposition 3.11 The largest solution to an inequality system can be found
by iteration of a certain function a finite number of times until a fixed point
is reached.

Proof If U is a complete lattice, then Un is as well [Tar55]. Now combine
lemma 3.5, proposition 3.7, proposition 3.8, and corollary 3.10. ✷

12

Observation 3.12 In cumputing the largest fixed point in a complete lattice
by iteration, there are three costs to consider:

1. the number of iterations to find the fixed point

2. the cost of computing each element of the iteration

3. the cost of checking whether a fixed point has been reached or not
✷

4 Representing Sets of Permutations

A set of size k gives rise to k! permutations. In this paper, we are dealing
with sets of permutations and implementing algorithms which manipulate
these. Because of the potential size of a naive implementation, we have to
develop more sophisticated techniques to obtain a good runtime performance.
Fortunately, it turns out that we only need to be able to represent a limited
class of sets of permutations. The grammar below reflects this.

Definition 4.1 The set of all permutation expressions is generated by the
following grammar.

p ::= Nil | A | P({A1, . . . , Ak}) | C(p, . . . , p) | R(p, . . . , p)

where A, A1, . . . , Ak ∈ Att.

We shall use [[p]] to represent the set of permutations which p denotes.

[[Nil]] is the empty set of permutations, [[A]] is {A}, [[P({A1, . . . , Ak})]] is
the set of all permutations of the set {A1, . . . , Ak}. [[C(p1, . . . , pk)]] rep-
resents the concatenation of all permutations from the k expressions i.e.,
[[C(p1, . . . , pk)]] = [[p1]] · · · [[pk]]. Finally, [[R(p1, . . . , pk)]] is all the permu-
tations which C(p1, . . . , pk) denotes together with the permutations which
C(pk, . . . , p1) denotes, i.e., [[R(p1, . . . , pk)]] = [[C(p1, . . . , pk)]] ∪ [[C(pk, . . . , p1)]]
(R stands for reversed).

We let Att(p) denote the set of attribute names which are used in the
expression p. This is called the base set of p. ✷

13

Example 4.2 As an example,

[[R(A,R(B, C))]] = {ABC, ACB, BCA, CBA}

and

Att(R(A,R(B, C))) = {A, B, C}
✷

In order to avoid redundancy, we define a normal form for permutation ex-
pressions. When performing operations on permutation expressions, results
should always be brought in normal form.

In the following, we use P as short for a comma separated list of permutation
expressions, p1, . . . , pkp and P ′ as short for p2, . . . , pkp . Thus P can also be
written p1, P

′. When no confusion can arise, we shall often simply use k
instead of kp. Finally, we let P̃ stand for the reversed list pkp , . . . , p1. We
shall use Q, U, V , and T similarly.

Definition 4.3 A permutation expression p is in normal form if and only if

• each subexpression P(X) has |X| ≥ 3.

• each C- and R-construct has at least two arguments.

• no immediate argument of a C-construct is again a C-construct.

• if Nil is contained in p, then p = Nil.
✷

Proposition 4.4 If p an q are permutation expressions in normal form, then

p = q ⇔ [[p]] = [[q]]

Proof Easy. ✷

It is easy to put a permutation expression into normal form. P(∅) can be
replaced by Nil, P({A}) by A, and P({A, B}) by R(A, B). For C- and
R-constructs with only one argument, we can simply remove the C or the
R, i.e., C(P) is changed to P and R(P) to P . Furthermore, an expression

14

C(p1, . . . , C(Q), . . . , pk) can be replaced by C(p1, . . . , Q, . . . , pk). Finally, if a
Nil appears in an expression, then the whole expression is replayed by Nil.

In section 2, we used a number of functions on sets of permutations. These
were: ⊗, concatenation, projection, and renaming. Later, we will also use ∩.
As we will use permutation expressions in our algorithms instead of the actual
sets of permutations, which they represent, we have to define similar functions
on permutation expressions, e.g., we need a function � such that for any
permutation expressions p and q, where Att(p) = Att(q) : [[p�q]] = [[p]]∩[[q]].
It is especially hard to define ⊗ for permutation sequences and we shall do
this in several steps. First we define

PrefixX(M) = {s ∈M | ∃s′, s′′ : s′ ∈ Permute(X), s = s′ · s′′}
where M is a set of permutations (not a permutation expression) and X is a
set of attribute names.

This is the set of sequences from M which start with a permutation of the
elements from X. We want a similar function for permutation sequences.
This will be a help when the other operators are to be defined.

Definition 4.5 An ordered list of permutation expressions p1, . . . , pk is X-
initial for some set of attribute names X if ∃i : 1 ≤ i ≤ k such that

Att(p1, . . . , pi−1) ⊆ X, Att(pi) ∩X �= ∅, Att(pi+1 · · · pk) ∩X = ∅

This unique i is called the extent of X. ✷

Now we can define PF recursively in the structure of permutation expres-
sions, where PF is the function on permutation expressions which will cor-
respond to Prefix.

Definition 4.6 If for some permutation expression p we have Att(p) = X,
then we define PFX(p) = p. Also, PF∅(p) = p. Otherwise, we refer to the
table below. If none of those possibilities apply, then we define PFX(p) =
Nil.

p Condition PFX(p)

P(Y) X ⊂ Y C(P(X),P(Y \X))
C(P) P is X-initial (extent i) C(p1, . . . , pi−1,PFX′(pi, pi+1, . . . , pk)
R(P) P is X-initial PFX(C(P))

R(P) P̃ is X-initial PFX(C(P̃))

15

where X ′ = X\(⋃j∈{1,...,i−1} Att(pj)). ✷

Proposition 4.7 PF is well-defined and implements Prefix correctly, i.e.,

∀p : PrefixX([[p]]) = [[PFX(p)]]

Proof As there is always the “otherwise” option, PF defines some action
for all p. Furthermore, recursive use of PF is always carried out on strictly
smaller arguments, in the sense that the semantic set an expression denotes
(the function [[·]]) becones smaller. Finally, we observe from definition 4.5
that if P is X-initial, then R(P) is not, unless Att(P) = Att(R(P)) = X,
in which case we would not use the table. We have argued that PF is well-
defined.

It is farly easy to check that PF implements Prefix correctly. The crucial
observation is that if P is not X-initial, then PrefixX([[C(P)]]) = ∅. ✷

Now we turn our attention to the intersection which will be defined using
PF and the following property of PF.

Proposition 4.8 If ∅ �= X ⊂ Att(p) and PFX(p) �= Nil, then PFX(p) is
of the form C(p1, . . . , pk) and ∃i : 1 ≤ i < k, X = Att(p1, . . . , pi).

Proof Easy proof by induction in the structure of p following the definition
of PF. ✷

We need the following concept.

Definition 4.9 Two permutation wcpressions C(P) and C(Q) are comma
equalized if they have the same number of arguments and ∀i ∈ {1, . . . , k} :
Att(pi) = Att(qi), where k is the number of arguments. ✷

Given two permutation expressions C(P) and C(Q), we need to be able to
find a C(U) and a C(V), if they exist, such that C(U) and C(V) are comma
equalized and such that [[C(U) ∩ [[C(V)]] = [[C(P)]] ∩ [[C(Q)]]. This will be a
first step towards defining intersection.

The following proposition will be a help in gradually finding two such comma
equalized expressions, if they exist.

Proposition 4.10 Let C(P) and C(Q) be permutation expressions and as-
sume that they contain the same attribute names, i.e., Att(C(P)) = Att(C(Q)).

16

Assume that a k ∈ IN exists such that k < kp, k < kq and ∀i ∈ {1, . . . , k} :
Att(pi) = Att(qi). The following holds

1. if Att(pk+1)\ Att(qk+1) �= ∅ and, Att(qk+1)\ Att(pk+1) �= ∅ then
[[C(P)]] ∩ [[C(Q)]] = ∅

2. if Att(pk+1) ⊂ Att(qk+1), then either PFAtt(pk+1)(qk+1) is Nil, in
which case [[C(P)]] ∩ [[C(Q)]] = ∅, or PFAtt(pk+1)(qk+1) is of the form
C(T) in which case

[[C(P)]] ∩ [[C(Q)]] = [[C(P)]] ∩ [[C(q1, . . . , qk, t1, . . . , tkt , qk+2, . . . , qkq)]]

3. if Att(qk+1) ⊂ Att(pk+1) then the symmetric to 2) holds.

Proof We prove the three results separately.

1. Let s1 · · · skp and t1 · · · tkq be two sequences such that ∀i : si ∈ [[pi]] and
∀i : ti ∈ [[qi]]. For s1 · · · skp and t1 · · · tkq to be identical, the s1 · · · sk and
t1 · · · tk would have to be identical and one of the sequences sk+1 and
tk+1 would have to be a prefix of the other. This is not possible because
then one of the sets Att(pk+1) and Att(qk+1) would be contained in
the other.

2. The form of PFAtt(pk+1)
(qk+1) was stated in proposition 4.8. Reusing

notation from the proof of 1), sk+1 has to be a prefix of tk+1 in order for
s1 · · · skp and t1 · · · tkq to be identical, so if PFAtt(pk+1)(qk+1) = Nil, or
equivalently, PrefixAtt(pk+1)([[qk+1]]) = ∅, then no sequences from [[C(P)]]
and [[C(Q)]] can be identical.

From the above it follows that only sequences in PrefixAtt(pk+1)([[qk+1]])
can match sequences in [[C(P)]]. Again, by using proposition 4.7, we ob-
tain PrefixAtt(pk+1)([[qk+1]]) = PFAtt(pk+1)(qk+1) = [[C(T)]], from which
the result follows by definition of [[·]].

3. Symmetric to 2).
✷

Because of the nature of proposition 4.10, it seems most natural to proceed
by defining a comma equalization function using an algorithmic approach.

17

Also, this is the only proposition which does not translate directly into an
algorithm, and we feel the need to convince the reader that an algorithm can
be defined bred on this. The algorithm is, of course, based on the cases listed
in proposition 4.10.

Algorithm: Comma Equalize

Input: C(P) and C(Q) such that Att(P) = Att(Q)

Output: comma equalized C(U) and C(V), if they exists, such that
[[C(P)]] ∩ [[C(Q)]] = [[C(U)]] ∩ [[C(V)]]

Method:
let expp, expq, k be C(P), C(Q), 0
while k < kq do

if Att(pk+1) = Att(qk+1) then
k := k + 1

else
if (Att(pk+1)\Att(qk+1) �= ∅) ∧ (Att(qk+1)\Att(pk+1) �= ∅) then

abort “Empty intersection”
else

rename if necessary such that Att(pk+1) ⊂ Att(qk+1)
let exp be PFAtt(pk+1)(qk+1)
if exp is Nil then

abort “Empty intersection”
else

comment exp is of the form C(T), and expq is C(V)
let expq be C(q1, . . . , qk, T, qk+2, . . . , qkq)

endif
endif

endif
endwhile
output expp, expq

Lemma 4.11 Algorithm Comma Equalize solves the problem stated in its
specification.

Proof By definition of permutation expressions, each qi must contain at
least one attribute name, and for i �= j, we have Att(qi)∩ Att(qj) = ∅.
This limits the length of expq, which is kq. The last “else” case cannot be

18

chosen more than a constant number of times as the constant number of
attribute names available are divided up into more qi’s each time this ease
is chosen. So, after a constant number of visits to this “else” case, we must
choose another case and either abort or increase k. We have proven that the
algorithm terminates.

With respect to correctness, we assume the induction hypothesis that for
all 1 ≤ i ≤ k : Att(pi) = Att(qi), where C(P) and C(Q) are the current
values of expp and expq, respectively. Clearly, when k = kq the algorithm
terminates and we have obtained what we want. Of course, the algorithm
might terminate earlier with an “Empty intersection”, if justified according
to proposition 4.10.

Now, if Att(pk +1) = Att(qk +1) then we immediately obtain the induction
hypothesis for k+1. The last “else” can only be chosen a constant number of
times as already argued. And as proved in proposition 4.10, this “else” case
preserves the intersection property, i.e., [[expp]] ∩ [[expp]] = [[exp ′p]] ∩ [[exp ′q]],
where expp and expq are the values before execution of the “else” case and
exp ′p, and exp ′q are the values afterwards. So, eventually, we will make
progress by increasing k or we will halt as we observe that [[expp]]∩[[expq]] = ∅.

✷

Because of the reverse operator, R, on permutation sequences, we have to
prove that comma equalization is symmetric, i.e., that we could start at the
other end of the two expressions C(P) and C(Q) and obtain the same result.

Proposition 4.12 If algorithm Comma Equalize applied to C(P) and C(Q)
gives C(U1) and C(U2) and applied to C(P̃) and C(Q̃) gives C(V1) and C(V2)
then U1 = Ṽ1 and U2 = Ṽ2.

Proof First notice that if for some i and j we have that Att(p1, . . . , pi) =
Att(q1, . . . , qj), then the comma equalization is found for the expressions
C(p1, . . . , pi) and C(q1, . . . , qj) and for the expressions C(pi+1, . . . , pki

) and
C(qj+1, . . . , qkq), independently.

We have two cases to consider, as we are not interested in the output “Empty
intersection”. We proceed by induction in the number of attribute names in
the involved expressions.

The case Att(p1) = Att(q1) is easy as we can apply the induction hypothesis
directly to C(p2, . . . , pkp) and C(q2, . . . , qkq).

19

Assume that Att(p1) ⊂ Att(q1). We could then use PFAtt(p2)(q1), which
we will assume gives C(T) and proceed with C(P) and C(T, q2, . . . , qkq). By
proposition 4.8, for some i, Att(t1, . . . , ti) = Att(p1) So, we will get inde-
pendent results for p1 and C(t1, . . . , ti) and for the remaining parts, C(P ′)
and C(ti+1, . . . , tkt , q2, . . . , qkq).

Now, look at C(P̃) and C(Q̃) (we use the same indices). As Att(p1) ⊂
Att(q1) we must at some point use PFAtt(p2)(q1). This will create a similar
situation, isolating p1 and t1, . . . , ti—except that here a major part of the
result has already been calculated. The important fact, however, is that we
now obtain the same division into independent parts. The result follows by
applying the induction hypothesis. ✷

With the help of comma equalization, we can now define intersection.

Definition 4.13 We define the intersection� of two permutation expressions
as listed below. If none of the cases apply, then we define the result to be Nil.
The intersection is only defined when the two arguments are permutation
expressions over the same base set. The operation is symmetric in its two
arguments, so we will only list one of each of these symmetric cases.

p q Condition p� q

A A A
p P(X) p
C(P) R(Q) C(P)�PFAtt(p1)(R(Q))
R(P) R(Q) ∃ T : C(P)�R(Q) = C(T) R(T)
C(P) C(Q) ∃ C(U), C(V): see below C(u1 � v1, . . . , uku � vkv)

In the last condition, C(U) and C(V) are the outputs from algorithm Comma
Equalize, i.e., [[C(P)]] ∩ [[C(Q)]] = [[C(U)]] ∩ [[C(V)]]. ✷

Proposition 4.14 The intersection of permutation expressions is welldefined
and implements ∩ correctly, i.e., ∀p, q : [[p� q]] = [[p]] ∩ [[q]].

Proof We argue that the process eventually terminates. It is only when the
last three cases of the table is used that it does not terminate immediately.
Let us consider an expression p � q and the value |[[p]]| + |[[q]]|. Clearly,
|[[PFAtt(p1)(R(Q))]]| < |[[R(Q)]]| as ∅ ⊂ Att(p1) ⊂ Att(Q), so in two of the
cases listed, this semantic size of the two arguments decrease. For the final

20

case, C(P)�C(Q) this value remains constant, but then the size of the base
set decreases. We have argued that � is well-defined.

We shall now prove that � implements ∩ correctly. It is obvious that p�
P(X) should equal p, as P(X) represents all possible sequences. Recall that
Att(P(X)) has to equal Att(p), so for the case P(X) � P(Y), we must
have X = Y .

Using an induction argument, it is obvious in the light of lemma 4.11 that
the last case gives rise to correct transformations. As already discussed, we
can use induction in the lexicographical order of first the semantic size of the
arguments, and second, the size of the base set.

The correctness of C(P)�C(Q) = C(P)�PFAtt(p1)(R(Q)) is obvious since
all sequences from [[C(P)]] must start with a sequence from [[p1]].

For R(P)�R(Q) observe that semantically this is

([[C(P)]]∩ [[C(Q)]])∪ ([[C(P)]]∩ [[C(Q̃)]])∪ ([[C(P̃)]]∩ [[C(Q)]])∪ ([[C(P̃)]]∩ [[C(Q̃)]])

To justify the transformation, we need to observe that

• if [[C(P)]] ∩ [[C(Q)]] �= ∅, then [[C(P)]] ∩ [[C(Q̃)]] = ∅, and vice versa

• if C(P)� C(Q) = C(T), then C(P̃)� C(Q̃) = C(T̃)

The first observation follows easily from the definition of [[·]], and the second
from proposition 4.12 and the definition of � on arguments of the form C(P)
and C(Q). ✷

Finally, the most complicated operation on permutation sequences can be
defined from what we already have: prefix and intersection. We just give the
most difficult case here. There are separate cases for Att(p) ⊂ Att(q), etc.

Proposition 4.15 Let p and q be permutation expressions and let X =
Att(p)∩ Att(q). Assume that X ⊂ Att(p) and X ⊂ Att(q). If PFX =
C(P), PFX(q) = C(Q) and i and j are such that X = Att(p1, . . . , pi) =
Att(q1, . . . , qj), then

[[p]]⊗ [[q]]

= [[C(C(p1, . . . , pi)� C(p1, . . . , pi),R(C(pi+1, . . . , pkp), C(C(qj+1, . . . , qkq)))]]

21

Proof If there exists a t ∈ Permute(X) such that we have sp ∈ [[p]] and
sq ∈ [[q]] with sp = t · s′p and sq = t · s′q for some s′p and s′q, then t · s′p · s′q and
t · s′q · s′p belong [[p]] ⊗ [[q]]. But by proposition 4.7, [[PFX(p)]] and [[PFX(q)]]
are exactly the subsets of [[p]] and [[q]], respectively, for which such a t will
exist. From proposition 4.14, it follows that [[C(p1, . . . , pi)� C(q1, . . . , qi)]] is
exactly the set of sequences, t, which are prefixes of both sets. The result
follows frum the definitiun of [[·]]. ✷

We shall use $ as the operation on permutation expressions which is equiv-
alent to ⊗ as it can be defined from the result above, i.e., ∀p, q, : [[p $ q]] =
[[p]]⊗ [[q]].

The remaining operations: concatenation, projection, and renaming are eas-
ier to define. Concatenation is defined by simply surrounding the arguments
with a C-construct, projection is defined by deleting the attribute names not
contained in the projection set and then putting the expression in normal
form, and finally, renaming is defined by renaming the individual attribute
names in the expression. We shall use ·%X to denote projection of permuta-
tion expressions, and ·&d% to denote renaming.

5 When a Solution Exists

In this section, we formulate the constraints which each relational algebra
operator imposes. These will be inequalities (contained in) and we can apply
the techniques of section 3 to solve the resulting inequality system. In doing
so, we design an algorithm which solves the sort-merge problem and we
analyze its complexity.

In this section, we will occasionally talk about the syntax tree of an expres-
sion. This is a standard definition and we will only illustrate it with an
example.

Example 5.1 The expression (r1 ✶ δC←B(r2)) ✶ πAB(r1) has the syntax tree

22

✷

When talking about a node, this will also refer to the syntax tree.

5.1 Finding Solutions by Fixed Point Iteration

The inequalities presented in the following definition are based on the idea of
ruling out sequences which cannot possibly be part of a sort order assignment.
Consider (in definition 5.2) the inequality for πX-up applied to πX(e) (the
labels “up” and “down” are only intended to improve readability; they refer
to the syntax-tree of the expression). Assume that the possible sequences
which could be used for e has been limited to the set Mi1 . This can be
used to limit the set of sequences, Mi, which can be used for πX(e). First, a
sequence assigned to e has to start with the attribute names in X; otherwise
we have to resort at this place during the actual evaluation. This is captured
by intersecting Mi1 with Permute(X)· Permute(Ei1\X). Furthermore, if we
consider a specific sequence and no sequence in Mi1 starts with this (meaning
that it cannot be used in any sort order assignment), then this sequence
cannot be used at Mi either.

The construction is based directly on definition 2.4 and 2.6, though this is
more apparent in proposition 5.4.

Recall that we only have to consider join, projection, and renaming.

Definition 5.2 Let e be a relational algebra expression and fix an enumera-
tion for e. In the following, we generate a finite set of inequalities (contained
in) over the variables M1, . . . M|e|. We refer to this system as InEq(e). For

23

each i ∈ {1, . . . , |e|}, the inequalities generated depend on op(i). In the
following, Args(i) = {i1, i2} and Ej is the schema of SubExp(j).

✶ down Mi1 ⊆ (Mi ∩ Permute(Ei1)⊗ Permute(Ei2)))|Ei1

Mi2 ⊆ (Mi ∩ Permute(Ei1)⊗ Permute(Ei2)))|Ei2

up Mi ⊆Mi1 ⊗Mi2

πX dowm Mi1 ⊆Mi · Permute(Ei1\X)

up Mi ⊆ (Mi1 ∩ (Permute(X) · Permute(Ei1\X)))|X
δd dowm Mi1 ⊆Mi[d

−1]

up Mi ⊆Mi1 [d]

In addition, for all pairs of identical relation names, SubExp(i) and SubExp(j),
include

Mi ⊆Mj and Mj ⊆Mi
✷

Of course, we can now use the technique developed in section 3 to find the
largest solution to this system of inequalities.

Proposition 5.3 The system in definition 5.2 is an inequality system in the
sense of suction 3.

Proof Let E1, . . . , En be sets of attribute names. Then the set

{(x1, . . . , xn) | ∀i : xi ⊆ Permute(Ei)}

with the ordering pairwise inclusion, i.e.,

(x1, . . . , xn) � (x′1, . . . , x
′
n) ⇐⇒ ∀i : xi ⊆ x′i

and pairwise intersection and union as greatest lower bound and least upper
bound, respectively, forms a complete lattice.

It is an easy observation that all the functions used in definition 5.2 are
monotonic. ✷

A simpler system than the one from definition 5.2 can by used after the first
iteration (in the process of finding a fixed point). This will give a slight

24

constant speed-up to use this system in the algorithm we present, but our
main reason for including it here is that it is more intuitive. The next result
is based on definition 3.3 and definition 3.6.

Proposition 5.4 After one iteration in the equality system defined from
the inequality system of definition 5.2, we can continue the iteration using a
system build from the simpler inequality system listed below.

✶ down Mi1 ⊆Mi|Ei1

Mi2 ⊆Mi|Ei1

up Mi ⊆Mi1 ⊗Mi2

πX dowm Mi1 ⊆Mi · Permute(Ei1\X)

up Mi ⊆Mi1|X
δd dowm Mi1 ⊆Mi[d

−1]

up Mi ⊆Mi1 [d]

In additions for all pairs of identical relation names, SubExp(i) and SubExp(j),
include

Mi ⊆Mj and Mj ⊆Mi

Proof Let US look at the πX-inequalities. Because of Mi1 ⊆Mi·Permute(Ei1\
X), sequences outside Permute(X) · Permute(Ei1\X) will be removed from
Mi1 in the first iteration. Because of monotonicity, Mi1 can only become
smaller, so the “check” in

Mi ⊆ (Mi1 ∩ (Permute(X) · Permute(Ei1\X)))|X

will not have any effect and we can use Mi ⊆Mi1 |X instead.

The argument is similar for the other inequalities. ✷

We now present the algorithm. The algorithm is based on the inequality sys-
tem just presented, except that we work on permutation expressions instead
of sets of sequences, i.e., each operator in the inequality system is replaced
by its permutation expression counterpart.

25

A solution is trivial in this context if some variable is assigned Nil, i.e., if
∃Mi : L(Mi) = Nil. The method of finding the largest solution to the
inequality system which characterizes a query gives us all possible sort order
assignments, so we gradually select one afterwards. Right after the algorithm
is presented, we give an example of how it works. Then we prove it correct
and analyze its complexity.

Algorithm: Find Sort Order
Input: n expression e
Output: a sort order assignment if one exists
Method:

let S be the system InEq(e)
let L be the largest solution to InEq(e)
while (∀Mi : |[[L(Mi)]]| ≥ 1) ∧ (∃Mi : |[[L(Mi)]]| > 1) do

choose Mi such that |[[L(Mi)]]| > 1
comment L(Mi) contains a P(X) or an R-construct
if L(Mi) contains P(X) then

let p be L(Mi) with P(X) replaced by any other expression
over base set X

else
choose an inner-most R(P) in L(Mi)

let p be L(Mi) with R(P) replaced by C(P) or C(P̃)
endif
let S be S with the addition of the inequality Mi ⊆ p
let L be the largest solution to InEq(S)

endwhile
if L is trivial then

output “No solution exists.”
else

comment We now have ∀Mi : |[[L(Mi)]]| = 1
let f(i) = s if and only if [[L(Mi)]] = {s}
output “f”

endif

To keep things down to a re onable size, we have to give a rather small
example.

26

Example 5.5 Consider the expression r1 ✶ πAB(r2) where R1 = {B, D} and
R2 = {A, B, C}. First we need an enumeration. We choose: r1 is 1, r2 is
2, πAB(r2) is 3, and r1 ✶ πAB(r2) is 4. Then we list the inequalities from
definition 5.2. We abbreviate Permute by P .

M2 ⊆ M3 · P ({C})
M3 ⊆ (M2 ∩ (P ({A, B}) · P ({C})))|AB

M1 ⊆ (M4 ∩ (P ({B, D})⊗ P ({A, B})))|BD

M3 ⊆ (M4 ∩ (P ({B, D})⊗ P ({A, B})))|AB

M4 ⊆ M1 ⊗M3

where the first two inequalities are from projection and the last three from
join. From this, we form a system of equations along the lines of definition
3.3.

M1 = (M4 ∩ (P ({B, D})⊗ P ({A, B})))|BD

M2 = M3 · P ({C})
M3 = (M2 ∩ (P ({A, B}) · P ({C})))|AB∩

(M4 ∩ (P ({B, D})⊗ P ({A, B})))|AB

M4 = M1 ⊗M3

However, in the algorithm we use permutation expressions. If the operators
in the above system are replaced by the permutation expression equivalents
and then normalized (definition 4.3), then we obtain

M1 = (M4 � (R({B, D})$R({A, B})))%BD

M2 = C(M3, C)
M3 = (M2 � C(R({A, B}), C))%AB�

(M4 � (R(B, D)$R(A, B)))%AB

M4 = M1 $M3

Now we find the largest fixed point for the function which takes the four
variables into their right-hand sides. We iterate from the top element in the
lattice which is

〈R(B, D),P({A, B, C}),R(A, B),P({A, B, D})〉

27

One iteration gives us

〈C(B, D), C(R(A, B), C), C(B, A), C(B,R(A, D))〉

and after the next iteration we have

〈C(B, D), C(B, A, C), C(B, A), C(B,R(A, D))〉

which is a fixed point. Now this does not directly provide us with a sort order
assignment, though we are pretty close in this example. The only variable
which is assigned a set that is not a singleton is M4, i.e., [[L(M4)]] > 1. As
L(M4) does not contain any P(X)-constructs, the option we have in the
algorithm is to replace R(A, D) by either C(A, D) or C(D, A). We choose
to include the inequality M4 ⊆ C(B, C(D, A)), which, in normal form, is
M4 ⊆ C(B, D, A). Now, we obtain a solution where all entries represent
singleton sets. The sort order assignment is then f(1) = BD, f(2) = BAC,
f(3) = BA, and f(4) = BDA. ✷

We now comment further on the algorithm. We observed in the example
above that if |[[L(Mi)]]| > 1 for some Mi and the original solution L, then
this could mean that there are several sort order assignments to choose from.
So, instead of simply letting the algorithm above choose a p or choose between
C(P) or C(P̃) in the while-loop, we can choose interactively or have another
algorithm choose. The database designer might have a preference in the
example above, for instance, to have the output stored sorted according to
BAD rather than according to BDA. If so, then this information could
be stored in a file or programmed into an algorithm and we could use that
information when we have the freedom to choose.

We shall now prove this algorithm correct. The correctness is far from trivial
and the rest of this section is devoted to the proof. First a simple definition.

Definition 5.6 Let e be a relational algebra expression. A sort order assign-
ment f is contained in a solution L if and only if ∀i ∈ {1, . . . , |e|} : f(i) ∈
L(Mi). ✷

In the algorithm, we add more and more inequalities to the initial inequality
system. In the following, we prove that only sort orders which are explicitly
ruled out by these inequalities will actually disappear from the maximal
solution. We prove this lemma using sets instead of permutation expressions
as has been justified by section 4.

28

Lemma 5.7 Let S be the system InEq(e) with the addition of the following
p inequalities:

Mq1 ⊆ S1, Mq2 ⊆ S2, . . . , Mqp ⊆ Sp

where the Sj’s are sets and the Mqj
’s are variables (not necessarily distinct)

from InEq(e). Let LS be the largest solution to Eq(S). Then for all sort
order assignments f , the following holds:

(∀j ∈ {1, . . . , p} : f(qj) ∈ Sj) ⇒ f is contained in LS

Proof Define L(Mi) = {f(i)} for all i ∈ {1, . . . , |e|}. Then L is a solution to
S. This is an easy observation: compare definition 5.2 with the properties of
a sort order assignment as defined in definition 2.7. The only inequalities that
do not hold with equality are ✶-up, πX-down, and possibly the inequalities
from above.

From lemma 3.5, we know that L(Mi) ⊆ LS(Mi). As L(Mi) = {f(i)}, clearly
f(i) ∈ L(Mi) from which it follows that f(i) ∈ LS(Mi). ✷

Corollary 5.8 Let f be a sort order assignment for e and let L be the largest
solution to Eq(InEq(e)). Then ∀i : f(i) ∈ L(Mi).

Proof From the above with p = 0, i.e., no extra inequalities, so S is simply
InEq(e). ✷

Not surprisingly, it turns out to be important to be able to talk about two at-
tribute names in different subexpressions being semantically identical. Con-
sidering the expression πX(r), it is obvious that an A ∈ Sch(πX(r)) = X is
the same attribute as the A belonging to Sch(r) = R. However, when there
are renamings in an expression or multiple occurrences of the same relation
name, it is less clear which attribute names carry the same meaning. As this
is crucial to the correctness proof, we feel that a precise definition is in order.

Definition 5.9 Let e be a relational algebra expression and assume that we
have given an enumeration for e. First, we define the relation immediately
visible.

Assume that A ∈ Sch(SubExp(i))∩ Sch(SubExp(j)). If SubExp(i) and
SubExp(j) are identical relation names, or j ∈ Args(i) and op(i) is either
a join or a project, then

29

A at i is immediately visible from A at j
A at j is immediately visible from A at i

If op(i) is δd, j ∈ Args(i), and A ∈ Sch(SubExp(j)), then

d(A) at i is immediately visible from A at j
A at j is immediately visible from d(A) at i

The relation visible is now defined as the reflexive and transitive closure of
the relation immediately visible, i.e.,

A at i is visible from A at i

if C at k is visible from A at i
and B at j is immediately visible from C at k
then B at j is visible from A at i

Obviously, attribute names are visible through paths in the syntax tree. We
shall refer to these paths as visibility paths.

The definition extends in the natural way to sets and sequences of attribute
names. ✷

From knowledge about the structure of a permutation expression L(Mi), we
can infer knowledge about the structure of other permutation expressions
L(Mj) if attribute names from Sch(SubExp(i)) are visible at j.

Lemma 5.10 Let e be a relational algebra expression and let L be the
maximal solution to EQ(S), where S contains InEq(e).

1. Assume that L(Mi) contains P(X) as a subexpression. If Y at j is
visible from X at i, then P(Y) is a subexpression of L(Mj).

2. Assume that L(Mi) contains R(U) as a subexpression. Let X =
Att(U). If Y at j is visible from X at i, then R(V), Att(V) = Y , is
a subexpression of L(Mi). Furthermore, ku = kv.

Proof We prove each statement separately.

30

1. By induction in the length of the visibility path through which Y is
visible from X. For the base case, the length being zero, there is noth-
ing to show as the premise reduces to X at i being visible from X at i.
For the induction step, assume that P(Y) is a subexpression of L(Mj′),
where op(j′) is πZ and Args(j′) = {j}. We want to argue that P(Y) is
a subexpression of L(Mj). But according to the inequalities of propo-
sition 5.4, Mj′ ⊆Mj|Z and Mj ⊆Mj′ · Permute(Sch(SubExp)(j)\Z).
As, the latter implies that Mj|Z ⊆ Mj′ , we have that Mj′ = Mj|Z . As
Y ⊆ Z, by definition of sequence projection, P(Y) is a subexpression of
L(Mj). The above also proves the reverse that if P(Y) is a subexpres-
sion of L(Mj′) and Y is visible at j′, then P(Y) is also a subexpression
of L(Mj′). The argument for join is very similar. The fact that the
induction step also goes through for renaming is trivial.

2. Very similar to 1). ✷

The main result in the correctness proof is the following lemma. One could
fear that even if the expression e had a sort order assignment and it was
contained in L, then maybe adding an extra inequality to the system by
replacing a P(X) or a R(P) by another permutation expression would have
the effect of ruling out all remaining sort orders, in the sense that no sort
order would be contained in the new maximal solution. We prove that this
is not the case. We shall use the notation x[y/z] to denote x with z replaced
by y.

Lemma 5.11 Let e be a relational algebra expression and let L be the
maximal solution to S, where S contains InEq(e). Assume that there exists
a sort order assignment f , which is contained in L.

1. Assume that for some i, P(X) is a subexpression of L(Mi). Let S ′ be
as S, but with the addition of Mi ⊆ L(Mi)[p/P(X)], where p is any
permutation expression over X. If L′ is the maximal solution to S,
then there exists at least one sort order assignment contained in L′.

2. Assume that for some i, R(Q) is a subexpression of L(Mi) such that
Q does not contain any R-constructs. Let S ′ be the set of inequalities
S with the addition of Mi ⊆ L(Mi)[C(Q)/R(Q)] and let S ′′ be S with

31

the addition of Mi ⊆ L(Mi)[C(Q̃)/R(Q)]. If L′ and L′′ are the maxi-
mal solutions to S ′ and S ′′, then at lest one sort order assignment is
contained in each of L′ and L′′.

Proof We prove each statement separately.

1. Let s be the subsequence of f(i) which belongs to [[P(X)]] and let t be
any other sequence over X. Define the sort order assignment g by

g(j) = f(j)[t′1/s
′
1, . . . , t

′
k/s
′
k]

where for all h, s′h and t′h at j are visible from s and t at i through the
same visibility path.

We prove that g is a sort order assignment contained in L′.
From lemma 5.10, it follows that Y1, . . . , Yk exist such that P(Yh) is
a subexpression of L(Mj) for all h. Therefore, each two sets have
to be identical or disjoint. It also follows that sh, th ∈ Permute(Yh)
for all h. This means that g is well-defined in the sense that g(j) ∈
Permute(Sch(SubExp(j))).

We now argue that g is a sort order assignment. If SubExp(j) and
SubExp(j′) are identical relation names, then, by definition, exactly
the same sequences are visible at the two nodes, so g(j) = g(j′). As-
sume that op(j) is πZ and that Args(j) = {j′}. If some sequences
s′h and t′h are visible at j′, then P(Yh) is a subexpression of L(Mj′),
by lemma 5.10. From definition 5.2, it is obvious that only sequences
which are Z-prefixed can belong to L(Mj′). Thus, either Yh ⊆ Z or
Yh ⊆ Sch(SubExp(j′))\Z, so no substitution “crosses” this “border-
line”. The result now follows from the definition of visibility. The
argument for join is very similar to the argument just given. Renaming
is trivial.

The fact that g is contained in L′ follows from lemma 5.7.

2. As [[R(Q)]] = [[C(Q)]] ∪ [[C(Q̃)]] and as F is contained in L, the subse-
quence of f(i), s, which belongs to R(Q), must belong to either C(Q)
or C(Q̃). The sequence s is of the form s1 · s2 · · · skq , where sh belongs
to qh for all h. Let t be the sequence skq · · · s2 · s1 (which belongs to

C(Q̃)).

32

We can now proceed using s and t as we did in 1). The sort order
assignment g is defined in exactly the same way and the proof of g being
well-defined is very similar. Now we consider the proof of g being a sort
order assignment. Join is the more difficult case, so assume that op(j)
is a join and let Ej1 = Sch(SubExp(j1)) and Ej2 = Sch(SubExp(j2)),
where Args(j) = {j1, j2}. If R(U) is a subexpression of L(Mj), where
Att(U) at j is visible from Att(Q) at i, then there are the following
cases: Att(U) ⊆ Ej1\Ej2 , Att(U) ⊆ Ej2\Ej1 , or Att(U) ⊆ Ej1 ∩Ej2 .
These cases are similar to the ones from 1).

The remaining case is Att(U) = (Ej1 ∪Ej2)\(Ej1 ∩Ej2). In any other
case, the permutation expression would necessarily contain sequences
not in Ej1 ⊗ Ej2 , which is impossible; see proposition 5.4. So, we
can now assume that R(U) is of the form R(u1, . . . , up, . . . , uk), where
Att(u1, . . . , up) = Ej1 \Ej2 and Att(up+1, . . . , uk) = Ej2 \Ej1 . The
u1, . . . , up in L(Mj) are not immediately surrounded by an R-construct
because then L(Mj) would also contain that R-construct and the one
we are currently looking at would not be an inner-most one. This
follows from lemma 5.10. Furthermore, in this case, we must have
k = 2. Otherwise at least two of the ul’s would also appear in L(Mj1)
or L(Mj2). As they are not surrounded by an R-construct, the order
of the two ul’s would be fixed. But then the ordering of these two
permutation expressions would also be fixed in L(Mj1) ⊗ L(Mj2). As
L(Mj) ⊆ L(Mj1) ⊗ L(Mj2), we get a contradiction, so k = 2. This
means that the s′ that we are changing when defining g from f is of
the form s′1 ·s′2 and it is replaced by s′2 ·s′1. This means that it is correct
not to make any changes in g (compared to f) in (Ej1∪Ej2)\(Ej1∩Ej2).

✷

Theorem 5.12 Algorithm Find Sort Order solves the problem stated in its
specification.

Proof If we find a solution L to the system S in the algorithm such that
∀Mi : |[[L(Mi)]]| = 1, then the sequences in L clearly form a sort order
assignment.

From corollary 5.8, it follows that L, the largest solution to Eq(InEq(e)),
contains every sort order assignment for e. Furthermore, lemma 5.11 proves
that if the largest solution to S contains a sort order assignment for e, then

33

so does the largest solution to S with the inequality Mi ⊆ p added. Thus,
either no sort order assignment exists for e or the algorithm will find one. ✷

5.2 Complexity of Fixed Point Iteration

The algorithm we have developed runs very fast. We have not yet come
across an example of size n which required more than n iterations to find
a fixed point. In the following, we give a fairly loose, formal bound on the
time-complexity. The costs of finding a fixed point are listed in observation
3.12.

If a permutation expression contains k attribute names, then it has size at
most O(k · log(k)). This is an obvious consequence of insisting that per-
mutation expressions be kept in normal form. When we perform operations
on permutation expressions, we also operate on the sets, i.e., the X’s in
P(X). To do that efficiently, they need to be sorted, but this can be done
in O(k · log(k)). Going through the structure of permutation expressions, as
we do when we perform operations on them, takes linear time in their sizes,
i.e., again O(k · log(k)). The total time to compute the next iteration is then
O(n · k · log(k)), where we now let k be the maximum number of attribute
names in any permutation expression. This k will be at most twice the size
of the largest schema size of the involved relations.

To check for having reached the fixed point, we can simply compare the ith
and the (i−1)th iteration before continuing. Again, this will take time O(k ·
log(k)) for each entry, as we can check identity of permutation expressions in
time the size of the expressions. This is because the representation is unique
when normal form is used. In total, we obtain O(n · k · log(k)) once again.

Finally, it is easy to check that whenever we perform one of our operations on
a permutation expression, the semantic size of the result will be at most half
the semantic size of the argument. The height of each (component) lattice
is bounded by k! (the number of different permutations of a set of size k),
so the number of iterations is bounded by O(n · log(k!)). As k! ∈ O(kk), we
have that log(k!) ∈ O(k · log(k)). We get a total of O(n ·k · log(k)) iterations.

In summary, we iterate at most O(n · k · log(k)) times performing at most
O(n · k · log(k)) work each time around. This gives a total complexity of

34

O(n2 · k2 · log2(k)) to find one fixed point.

In the algorithm, we find a new fixed point for each iteration of the while-
loop. However, if we calculate the new fixed point from the old one, we can
obtain O(n2 · k2 · log2(k)) as the total complexity of our algorithm.

When we find a fixed point 〈x1, . . . , xn〉, which does not yet consist of sin-
gleton sets, we choose a variable Mi and include an extra inequality Mi ⊆ x,
where x ⊆ xi (actually, [[x]] ⊆ [[xi]], as we represent our sets using permutation
expressions).

We now perform an analysis to find out what happens when we continue by
iterating from χ = 〈x1, . . . , xi−1, x, xi+1, . . . , xn〉. Let 〈y1, . . . , yn〉 be the next
value. As 〈x1, . . . , xn〉 is a fixed point, the yj’s which do not depend on Mi

will not have changed. Because of monotonicity, the yj’s which depend on
Mi can only become smaller than the corresponding xj’s. Finally, as we have
included Mi ⊆ x in our iteration function, yi ⊆ x ⊆ xi. We have shown that
〈y1, . . . , yn〉 � χ. From lemma 3.9, it follows that the largest fixed point less
than or equal to χ can be found by iterating from χ.

As the semantic size of x is at most half the semantic size of xi, we can apply
exactly the same argument again, and we obtain that the total number of
iterations in the while-loop as a whole is bounded by O(n · k · log(k)), and
we get a total complexity of O(n2 · k2 · log2(k)).

As the number of attribute names in the schemas are usually fixed (and
small), a more reasonable measure of the algorithm’s complexity is O(n2),
i.e., quadratic in the size of the query.

6 When No Solution Exists

We will briefly discuss what to do when no solution exists, i.e., when no sort
order assignment exists for an expression. In that case, we have to resort
somewhere in the expression during the evaluation, and, obviously, we want
to find the (a) minimum number of places to do this resorting. We conjecture
that this problem is NP-hard [GJ79] and we are working on a proof of this,
which we hope to include in a later version of the paper.

By systematically checking all possibilities, we can use the algorithm Find

35

Sort Order to find a minimum number of places to resort. Of course, this
process will have exponential time complexity. However, for any fixed con-
stant p, if we know that the minimum number of places to resort is less than
p, or if we are only interested in solutions, where the number of the places
to resort is less than p, then the algorithm runs in polynomial time.

First, we need to be able to reflect in the inequality system that we resort at
a certain node.

Definition 6.1 Let e be a relational algebra expression equipped with an
enumeration. We modify InEq(e) to obtain a slightly different inequality
system. Define free S on Mi by the following:

• substitute Mi with a new variable name in the single up-inequality in
which Mi appears.

• if SubExp(i) is a relation name, then delete all of the inequalities
which relates Mi to other expressions, SubExp(j), where the expres-
sions SubExp(i) and SubExp(j) are identical relation names.

✷

The algorithm can now be defined as follows.

Algorithm: Minimum Resort
Input: an expression e
Output: a minimum number of places to resort
Method:

for k := 1 to n do
forall k-tuples (i1, . . . , ik) do

let S be free InEq(e) on Mi1 , . . . , Mik

let L be the maximal solution to S
if L is nontrivial then

use the technique from algorithm Find Sort Order to find
a sort order assignment f contained in L
output “f” and i1, , ik
halt

endif
endforall

endfor

36

7 Conclusion

By inventing a compact notation for certain sets of permutations, we have
designed a very fast algorithm which analyzes a relational algebra query and
finds a sort order assignment for it if one exists. Then we avoid resorting
and we can save additional time (and temporary space) by pipelining.

When no sort order assignment exists, we want to find the (a) minimum
number of places to resort. We have conjectured that this problem is NP-
hard, but no proof of this exists yet. We have presented an exponential time
algorithm for this problem. However, if the minimum number of places to
resort is bounded by a fixed constant, then this algorithm is of polynomial
time complexity.

It would be interesting to find heuristics for choosing k-tuples (i1, . . . , ik) in
algorithm Minimum Resort. We believe that this could result in fast and
good approximation algorithms for this problem.

References

[Des90] Bipin C. Desai. An Introduction to Database Systems. West Publish-
ing Company, 1990.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity. W. H. Freeman, 1979.

[Knu73] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley, 1973.

[Mer83] T. H. Merrett. Why Sort-Merge Gives the Best Implementation of
the Natural Join. SIGMOD Record, 13(2):39–51, 1983.

[SC75] John Miles Smith and Philip Yen-Tang Chang. Optimizing the Per-
formance of a Relational Algebra Database Interface. Comm. ACM,
18(10):568–579, 1975.

[Tar55] Alfred Tarski. A Lattice-Theoretical Fixpoint Theorem and its Ap-
plications. Pacific J. Math, 5:285–309, 1955.

37

[Ull88] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume 1. Computer Science Press, 1988.

38

