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Introduction 

This paper is concerned with deciding whether or not assertions are valid 
of a parallel process using methods which are directed by the way in 
which the process has been composed. The assertions are drawn from a 
modal logic with recursion, capable of expressing a great many properties 
of interest [EL]. The processes are described by a language inspired by 
Milner's CCS and Hoare's CSP, though with some modifications. The 
choice of constructors allows us to handle a range of synchronisation 
disciplines and ensures that the processes denoted are finite state. The 
operations are prefixing, a non-deterministic sum, product, restriction, 
relabelling and a looping construct. Arbitrary parallel compositions are 
obtained by using a combination of product, restriction and relabelling. 

We are interested in deciding whether or not an assertion A is valid of 
a process t. If it is valid, in the sense that every reachable state of t 
satisfies A, we write I= A : t .  Rather than perform the check [= A : t 
monolithically, on the whole transition system denoted by the term t ,  we 
would often rather break the verification down into parts, guided by the 
composition of t. For instance if t were a sum to + t l  we can ask what 
assertions A. and Al should be valid of to and tl  respectively to ensure 
that A is valid of to + tl. This amounts to requiring assertions Ao, Al 
such that 

\ = A : t o + t l i f f  ~ A o : t o a n d  + A l  : t l .  

Once the assertions A. and Al are found, a validity problem for to + t i  is 
reduced to a problem to do with to and another with t-\. Further, if the 
assertions can be found routinely only knowing the top-level operation, 
that e.g. the process is a sum, we are also told how to construct a process 
as a sum for which the assertion A is valid: first find components to and 
ti making A. and Al valid respectively. 



This paper investigates the extent to which the composition of t  can guide 
methods for deciding i= A : t. It formulates new compositional methods 
for deciding validity, and exposes some fundamental difficulties. Algo- 
rit hms are provided to reduce validity problems for prefixing, sum, rela- 
belling, restriction and looping to validity problems for their immediate 
components-all these reductions depend only on the top-level structure 
of terms. The existence of these reductions rests on being able to 'embed' 
the properties of a term in the properties, or products of properties, of 
its immediate subterms. Because there is not such a simple embedding 
for the product construction of terms, as might be expected, similar re- 
ductions become much more complicated for products; although there are 
general results, and the reductions can be simple in special cases, the gen- 
eral treatment for products meets with fundamental difficulties. Whereas 
reductions for products always exist for this finite state language, they 
demonstrably no longer just depend on the top-level (product structure) 
of the term; in particular, a simple assertion is exhibited for which the 
size of the reduction must be quadratic in the number of states of the pro- 
cess. An attempt is thus made to explain what makes product different 
from the other operations with respect to compositional reasoning, and 
to delimit the obstacles to automated compositional checking of validity 
on parallel processes. 

1 Transition systems and properties 

The syntax, presented formally in the next section, will consist of process 
terms and assertions. 

Process terms will denote labelled transition systems with distinguished 
initial states. A labelled transition system is a structure (S,i, L,tran) 
where S is a set of states containing a distinguished state i, L is a set 
of labels, and t ran S x L x S is a set of transitions; as normal, we 
often write s --% s' if ( s ,  a, s') E t ran.  A state of a labelled transition 
system is reachable iff it can be obtained as the end state of a sequence 
of transition beginning at the initial state. 

A closed assertion is to denote a property of a labelled transition system, 
i.e.a subset of its reachable states. We write P(T)  for the set of properties 



of a labelled transition system T .  

We construct labelled transition systems using the constructions of pre- 
fixing, sum, product, restriction, relabelling and looping starting from the 
nil process. These operations form the basis of our syntax for processes. 
We now describe these constructions. As has been stated, properties of a 
labelled transition system are identified with subsets of reachable states. 
The constructions in our language of transition systems are associated 
with maps. These prove useful in importing properties of immediate 
components of a term into a property of the term itself. Such mappings 
between properties are a key to compositional reasoning about processes. 
We introduce them alongside the constructions with which they are as- 
sociated. 

nil: The nil transition system is ({i} -, i, 0,0). 

Prefixing: For a label a and a labelled transition system T = (S, i, L, tran) 
the prefix aT is obtained by adjoining a new initial state and introducing 
an a-transition from it t o  the old initial state. More concretely: 

a T = (St, 0, L U {a} ,  trant) 

where St = {{s} 1 s 6 S} U {a}, and 

(s1,/3, si)  E tran' iff (sl = 0 & (3 = a & si = {i}) or 

s 1  = {s} & s\ = {st} & (s,/3, s') E t ran,  

for some s,  st 

There is map S -+ St taking s E S to  the corresponding state {s} E St .  
It extends to a map on properties P(T) -+ P(aT}. It is convenient to 
name this map on properties after the prefixing operation and we define 

by taking aV = {{s} 1 s â U} for U â P(T). 

Sum: Let To = (So, io, Lo, <rano) and TI = (Sl, Ã ˆ l  Ll,  t ranl)  be labelled 
transition systems. Our nondeterministic sum operation To + Tl is a 
little different from Milner's. It identifies disjoint copies of the transition 
systems at their initial states. We define 



where 
((s, ii), a, (s', il)) E tran' iff (s, a, s') E trano 

and 
((io, s), a, (io, s')) E tran' iff (s, a, sf) ? tranl. 

So, the sum construction is obtained by juxtaposing disjoint copies of 
the transition systems To,Tl but identified at their initial states. The 
difference with Milner's sum are illustrated by this example: 

In the sum it is possible t o  arbitrarily many a transitions from one com- 
ponent and then do a 0 transition; this is impossible for Milner's sum 
where once a transition occurs in one component of a sum then all future 
transitions must be from the same component. (The introduction of new 
states demanded by Milner's sum would complicate the reduction.) 

A sum To + TI is associated with two injection functions on states: 

with injo(s) = (s, i i} and injl  (s) = (io, s). They induce a map between 
properties: 

(- + -) : P(T0) x P(T1) -  ̂P(T0 + Tl) 

Product: Let To = (So, io, Lo, trano) and Ti = (Sl, il, Â£1 tranl) be la- 
belled transition systems. Their product To x Ti consists of states So x Sl 
with initial state (io, il), labels Lo X, Ll defined to be 

and transitions ((so, si),  (ao, al) ,  (so, 5;)) provided these satisfy: 



Intuitively, the product allows arbitrary synchronisations between pairs 
of transitions in two components, allowing too for the possibility of a 
transition in one component proceeding independently of the other. 

A product To x Tl is associated this map on properties: 

where Vo x Vl is the cartesian product {(so, sl)  1 SO E Vo, sl E Vl}. 

Restriction: Let T = (S,i, L, tran) be a labelled transition system. 
Given a subset of labels A we can restrict the transitions of T to those 
with labels in A. Define the restriction T \ A = (S, i, L n A, tran') where 
t r an l=  {(s,a,sl) E tran 1 a E A}. 

The reachable states of T \ A are cut-down from those of T. There is an 
associated map on properties: 

where V \ A = {s E V 1 s reachable in T A}. 

Relabelling: It is often useful to relabel the transitions of a labelled 
transition system. Let T = (S, i, L, tran). Let 5 be a relabelling function 
from L to labels. Define the relabelled transition system T { 3 }  to be 
(5, i, E L ,  tran') where where tran' = {(s, S(a), s) 1 (s, a, s') E tran}. 

Relabelling leaves the states unaffected. Consequently any property of T 
can be regarded as a property of T{S}. Define 

by taking V{S} = V. 

Looping: Let T = (S, i, L, tran) be a labelled transition system. Assume 
U denotes a property of T. Then by T/a, U we mean the transition sys- 
tem obtained from T by introducing a transition (s, a, i) for each s satis- 
fying the property U. More concretely T/a, U is the (S, i, L U {a}, tran') 
where tran' = t ran U {(s, a, i) 1 s E U}. 

Like relabelling, the looping construct also leaves the states unaffected. 
Define 

(-1% J) : P(T)  -+ P(T/a, J) 



by taking (V/a, J) = V. 

Parallel compositions: We can represent a variety of different parallel 
composition through a combined use of product, restriction and rela- 
belling. For example, assuming a distinguished atomic label r and a 
bijection a I-+ CK between non-r atomic labels such that a= a, we can 
represent the parallel composition of CCS: take it to be 

where the restricting set A consists of labels (a, *), (*, a), (a, a), (r, *), (*, r) 
where a ranges over all labels but for the distinguished label r ,  and the - - relabelling = acts so =(a,*) = =(*,a)  = a and S(r ,*)  = S(*,T) = - - 
a ( a , a )  = r.  

2 Languages 

2.1 Syntax 

Terms t denote labelled transition systems with distinguished initial states. 
Assertions A denote their properties. In fact an assertion A will only sen- 
sibly denote a property of t when a well-formedness judgement A : t holds. 
The "raw" syntax of terms and assertions, ignoring for the moment their 
well-formedness, is mutually dependent and given as follows: 

Terms: 

n i l  1 a t  1 t o + t i  1 t o x t l  I t 1A 1 t{3} 1 ( t /a ,A) 

where t is a term, a is a label, A is a subset of labels, S is a relabelling 
function, a is a label (possibly the 'idling' label *), and X is an assertion 



variable. It is convenient to assume assertion variables belong to unique 
terms and we write Var(t) for the countably infinite set of assertion vari- 
ables associated with the term t ;  so Var(t) and Var(tl) are disjoint if t 
and t' are distinct. Process terms t are associated with a set of labels 
Labels(t) defined by structural induction: 

Labels(ni1) = 0, Labels(at) = Labels(t) U {a}, 

Labels(to + t l )  = Labels(to) U Labels(tl), 

Labels(to x ti) = Labels(to) x. Labels(tl), 

Labels(t 1 A) = Labels(t) n A, Labels(t{S}) = ELabels(t), 

Labels(t/a, A) = Labelsft) U {a}. 

We use Labels,(t) to mean Labels(t) U {*}. 

The assertion language is essentially a modal v-calculus with recursion. 
There are 'forwards' and 'backwards' modalities-the latter are useful in 
obtaining reductions for the product. The assertion I will be used to 
refer to initial states; I : t will denote the property holding just at the 
initial state of the transition system denoted by the process term t. In 
addition, assertions include constructions on properties with meanings 
described in the last section; these are used to build properties of a term 
from properties of its immediate components. It has another unusual 
construction: a validity assertion (I- A : t) which will, in effect, be true 
or false according to whether or not A is valid in t ,  with respect to a 
particular interpretation of its free variables as properties. 

We shall employ some standard abbreviations, and write A. A Al for 
-.(-lAov-iA1), As -+ Al for -iAoVAl, A. * Al for (Ao -+ A l ) ~ ( A l  -+ Ao). 
The minimum fixed point pX.A stands for -ivX.-iA[-iX/X]. As regards 
substitution, we assume the usual renaming of bound variables to avoid 
the capture of free variables. In some reductions we use a nonstandard 
directed conditional 

B -  ̂AoIA1 

to abbreviate (B A Ao) V Ai. This is unusual; one would expect (B A 
Ao) V (7B A Ai). The nonstandard choice is taken to avoid problems with 
monotonicity in the bodies of recursive definitions. Besides the directed 
conditional is always used in a context where the right arm Al is logically 
stronger than the left Ao; then the directed conditional B -  ̂ AolAl is 
logically equivalent to  (B A Ao) V (75 A Al). 



The raw syntax allows assertions which are not sensible. For example, 
in the construct vX.A care must be taken that the body A determines a 
monotonic operator on sets of states. A sufficient condition for this is that 
all occurrences of the variable X are positive, i.e. under an even number 
of negations; otherwise the recursive assertion is not well-formed. The 
judgement A : t  says when an assertion A is well-formed as well as when 
it expresses a sensible property of a term t ,  once given properties for its 
free assertion variables. The well-formedness judgement is given by rules 
which are reminiscient of typing rules. This is consistent with the view 
that a process term is regarded as a type of properties. Well-formedness of 
assertions affects well-formedness of terms because the looping construct 
on terms ( t / a ,  A) involves an assertion which we insist is closed and such 
that A  : t. 

Well-formedness rules: 

A  : t a E Labels,(t) A : t  a E Labels,(t) 
- 

( a )  A : t ( a )  A  : t  

A : t  A : t  A. : t  Al : t A1 is closed 

Validity assertions, of the form I- A  : t will play a transient, though 
important, role in the reductions. Although the reductions will often 
introduce validity assertions, they can be removed so that subsequent 
reductions work on assertions free of them. 

Definition: An assertion which does not contain any validity assertions 
will be called pure. 



2.2 Semantics 

From the previous section, we understand each of the constructions in 
our language of process terms and so the denotation of a process term 
by a labelled transition system; in the case of the looping we will need 
to rely on the semantics of closed assertions as properties, made precise 
shortly. 

Notation: In our subsequent work we will adopt the convention that a 
term t denotes a labelled transition system 

and write, for instance, s -a )̂ s' to signify a transition in the transition 
system denoted by t. We shall write P ( t )  for the set properties of (the 
transition system denoted by) t. 

We give semantics to assertions A accompanied by a judgement A : t. To 
cope with the possibility of free assertion variables in A, we use environ- 
ments. Together assertion variables form the set 

Var = U {Var(t) 1 t E Term}. 

An environment p is a function 

p :  Var -+ U{P(t) I t E Term} 

such that p(X) E P ( t )  for X E Var(t). Define Env to be the set of 
environments. The denotation of A : t will be [A : t] of type Env -+ P(t) .  
Define: 



= Ap.{it} 
= Ap.St 
= Ap.0 
= Ap.[Ao : t]p U [Al : t]p 
= Ap.(St \ [ A  : tip) 
= Ap.{s â St ] 3s'. s s' & s' E [ A  : t]p} 
= A P . P ( ~ )  
= Ap.(vU.[A : t]p[U/X]) 

the greatest fixed point of the function 
U I--+ [A  : tMU/X]  

[aA : at] = Ap.a([A : tlp} 
A0 + A1 : to + ti] = Ap.[Ao : to]p + [A1 : ti1,p 
[Ao x Al : t o  x t l ]  = Ap.[Ao : to]p x [Al : t l]p 
A r A : t  rA] = Ap.[A : t]pfA 
[A{S}  : t {S}]  = \p.([A : tlp){S} 
[Ao/a, A1 : ( t / a ,  Al)] = *.([A0 : tip/a, [AiJp) 
[(I- A : to)  : t ]  = Ap.([A:to]p=St,+St 10) 

Definition: (Validity) Let A : t be an assertion. Define 

[= A : t iff [A : t ] p  = St for all environments p. 

3 How to do reductions 

We first motivate the technique by considering the reduction for the loop- 
ing construct. Let t be a term, J : t a closed assertion. Then ( t / a ,  J )  
denotes a transition system like that of t but with extra a transitions 
from all the states satisfying J to the initial state. Suppose A is a closed 
assertion of the pure v-calculus (with no mention of validity assertions) 
so that A : ( ( / a ,  J ) .  We describe how to produce an assertion B : t such 
that 

F A : ( t / a , J ) i f f  + B : t  

and in this way reduce the validity problem for a term ( t / a ,  J )  to one for 
t .  The assertion B will be defined by structural induction on A. 

In the course of the structural induction we will generally encounter as- 
sertions which have free variables. To cope with this the reduction is 



done with respect to a substitution a transforming variables X : (t/cv, J) 
to assertions (Y/a, J) : ( t /a ,  J). In order not to introduce spurious de- 
pendencies it will be assumed that the free variables Y do not appear free 
in any assertion being reduced and that a yields distinct Y for distinct 
X. With respect to such a change of variables a, we will consider a few 
clauses of the reduction, and indicate how it can be proved that if A is 
pure with A : t /a ,  J then red(A : t / a ,  J; o) = B with B : t and 

\= A[a\ ++ B / a ,  J : ( t /a ,  J). 

This means that for all environments assigning properties to the free 
assertion variables, the assertions A and B/a, J denote the same property 
of </a, J. It follows that, whenever A : </a, J is closed, 

( ] = A :  (/a, J) iff (I= B : t). 

In this sense, a validity problem for a term t / a ,  J is reduced to one for t. 
We present a few clauses of the reduction: 

red((a)A:  t / a , J ; a )  = (I- I-+ B :  t) -+ (((dB) V J) \ (a)B 
where red(A : t / a ,  J; a )  = B 

red(X : t /a ,  J; a) = Y when a{X) = Y/a, J 
red(uX.A : t /a ,  J; a) = vY.red(A : t / a ,  J; a) where o ( X )  = Y/a, J. 

The second and third clauses express little more than a renaming of free 
variables. To understand the first reduction, assume inductively that 

and argue, for a state s of t / a ,  J and arbitrary environment p, that 

~ [ ( a ) A [ a l  : ((/a, J)Io 
3s1.s s' & s' [A[a] : ( t /a ,  J)]p 

Â 3s1.s s' & s' E [B : tip by induction 

directly from the looping construction, 

- {  
s ~ [ ( ( a ) B ) V J : t ] p  i f [ I - I - + B : t ] p = S i  

s E [(a}B : t]p if [I- I + B : t]p = 0 
-s  E [(I- I +  B : t )  -+ (((a)B)V J) I (a)B :t]p 



There remains however one hitch. The reduction, like that for the other 
term constructors, works on pure assertions-those which do not contain 
validity assertions. As is clear from some of the clauses above, reductions 
can sometimes yield assertions with validity assertions. If we are now to 
continue the reduction (using the structure of t) we must show how to 
prepare such validity assertions so they can be handled by these further 
reductions. 

Look at  one clause where validity assertions are introduced: 

red((a)A : t / a ,  J; 0) = (I- I -+ B : t)  -+ (((a)B) V J) 1 (a)B 

where red(A : t /a ,  J ;  a) = B. If B is closed there are no difficulties: we 
check for the smaller term t whether or not I -+ B is valid and if it is 
return the left, and otherwise the right branch of the conditional as the 
appropriate reduction. Validity assertions I- B : t cause no difficulties 
when B is closed. But in general B will contain free assertion variables. 
However, ultimately we are concerned with reducing a closed assertion, 
which will mean that all free variables in validity assertions are bound 
by an enclosing recursive definition. The following fact means that, for a 
closed assertion denoting a property of t, the internal validity assertions 
introduced by its reduction can be made closed, and so benign because 
they refer to proper subterms of t: 

Lemma 1 (The closure lemma) 
Let C[ ] be a context such that C[Y] : t and Y occurs positively in C[Y] : t )  
for any variable Y : to. Suppose B : to and [B : to]p = 0 or [B : to]p = 
Stn) for any environment p. Let X be a variable such that vX. C[B] : t .  
Then 

vX. C[B] ++ vX. C[B[vX. C[T]/X]] : t. 

As an illustration, consider the reduction of vX. ( a ) X  : t / a ,  J. This 
should yield an assertion of t true a t  those reachable states of t which 
become able to do arbitrarily many a-transitions once the loops of the 
construction t / a ,  J are introduced. Assume the change of variables takes 
X to Y/a, J. Then, following the reductions above, we get 

red(vX. (a)X : t / a ,  J;a) = uY. ((t- I -+ Y : t )  -+ (((a)Y) V J ) \ ( a ) Y ) .  



By the closure lemma we can close the validity assertion, to obtain the 
equivalent 

vY.(\- I -+ vY. (((a)Y)  V J)) : t) -+ ((a}Y) V J\(a)Y. 

Thus red(vX. (a)X : t / a ,  J ;o)  is equivalent to 

1. vY. (a)Y if \/ I -+ vY.(((a)Y) V J), and to 

2. vY. (((a)Y) V J) if I- I -+ vY. ( ( (a )Y)  V J ) .  

In other words, a state in t / a ,  J can do arbitrarily many a transitions 

1. if the corresponding state in t can, or 

2. it can reach a state in J through a-transitions and the initial state 
of t can either do unboundedly many a-transitions or itself reach a 
state in J via a-transitions. 

This is the kind of result one could write down informally, except one 
might forget a case in 2. The informal argument is helped enormously 
through there being a simple reading of the recursive assertion. The re- 
ductions work for all manner of recursive assertions. I hope this indicates 
how the reductions perform rather complicated inference steps. 

To illustrate more fully the issues involved in performing reductions we 
will consider the case of sums. Provided A. : to and Al : tl then An + Al : 
to +t i .  This sum constructor on assertions reflects the operation we have 
seen for obtaining a property of a sum from properties of its components. 
For a closed assertion A : to + tl  we are interested in how to produce 
assertions A. : to, Al : tl so that 

Provided we can ensure in addition that the pair A. : to, Al : ti  is balanced 
in the sense that 

, E [A0 : t01p iff i t ,  E [A1 : t ~ ] p ,  

for all environments p, then 

+ A : t o + t i  iff ( + A o  : t o a n d  )=Al  : t i ) .  

13 



(Without the additional requirement of the assertions being balanced the 
"only if" direction of the statement can fail because only one of A. and 
Al can be true at the initial state.) The method for producing Ao, Al 
will work by induction on the structure of A, in the course of which we 
cannot hope to always deal with closed assertions. In particular, how are 
we to reduce a variable X : to + tl? The answer rests on the fact that 
the reduction will take place relative to a change of variables, in which 
variables like X are replaced by Yo + Yl for distinct variables Yo : to,  
Yl : t l .  

To illustrate the mechanism of the reduction it is shown how, for a closed 
assertion uX.A : to + t i ,  a balanced pair of assertions Bo : to and Bl : tl 
can be found such that 

Of key importance are the maps between properties P(to+tl) and P(to)  x 
P(ti) .  The change of variables is associated with the map 

in : P(to) x P( t l )  -+ P(to + t i )  where in(Vo, Vl)  = Uo + Ul.  

On the other hand, the reduction is associated with a map out in the 
converse direction 

out : P(to + t i )  -+ P(to) x P(t l )  where out(U) = (outo(U), outl(U)) 

which projects a property U of to + ti to a pair of properties 

It is easy to see that the maps are monotonic with respect to inclusion 
and that out is anembedding of the properties P(to + t i )  in P(to)  x P(t l )  
in the sense that in  o out = lpi^+ti). These facts are important because 
they fit into a general pattern for transforming fixed points: 

Lemma 2 (The embedding lemma) 
Suppose D and E are complete lattices for which i n  : D --+ E and out : 
E -+ D are monotonic, with in o out = lE. Suppose d) : E -+ E is 
monotonic. Defining 

$J = out o d) o i n  

we obtain a monotonic function + : D 4 D for which vip = in(vip). 



An assertion A : to + ti  with a single free variable X : to + ti determines 
a function 4' : P(to  + ti) -+ P( to  + ti) from a property !7 of to + ti to a 
property [ A  : to + tl]p[U/X] of to + ti. Suppose we have already obtained 
a reduction of A to a balanced pair of assertions Ao, Al with respect to a 
change of variables taking X to Yo + Yl, i.e. 

Then, equivalently, we can see the reduction as giving a syntactic expres- 
sion of the embedding: 

for all VO ? P(to) ,  Vl E P(t l ) .  Now, defining $ by 

for Vo E P(to) ,  Vl E P(t l ) ,  we can see that $ = out o 4' o in. The well- 
formedness of assertions will ensure monotonicity of # and $ so we can 
apply the embedding lemma to obtain: 

By Bekic's theorem 

With an eye back to syntax, this means: 

We have thus succeeded in producing a pair of assertions Bo : to, Bl : tl 
such that 

]= vX.A ++ (Bo + Bl)  : to + ti. 
A small additional argument, based on the assumption that A. : to, A1 : tl 
are balanced, shows that Bo : to, Bl : tl form a balanced pair. Because 



Bo : to, Bl : t i  denote fixed points of $J we see, for an arbitrary environ- 
ment p, that 

[Bo : to]p = [A0 : to]pl and [Bl : t i lp = [Al : t1lp1 

where p' = p[[Bo : to]p/&, [Bl : tl]p/Y1]. Now we observe that because 
the pair A. : to, A1 : t l  is balanced, so is Bo : to, Bl : tl. 

The reductions for the other constructions follow similar lines. Reduc- 
tions will express embeddings of properties of a term in the properties, 
or products of properties, of its immediate components. They will be de- 
fined with respect to a change of variables associated with the left inverse 
to the embedding. 

4 Summary of results 

We now describe how to perform reductions for all the operations. As 
with the reduction for the looping construct, we shall need to change vari- 
ables, so as to transform properties of a term to corresponding proper- 
ties of its immediate subcomponents. We shall call such transformations 
changes of variables. All such transformations will be achieved through 
substitutions which introduce only fresh variables over properties. 

Definition: A substitution a is said to be fresh for an assertion A if it 
has the properties: 

(i) for all variables X at which 0 is defined the free variables in o(X) are 
disjoint from those in A, and 

(ii) for distinct variables X and XI, a t  which a is defined, the free variables 
in o(X) and friX1) are disjoint. 

Many of the reductions will introduce validity assertions. These are harm- 
less however. They will always be validity assertions with respect to a 
smaller term than that of immediate interest, and, through the use of the 
closure lemma, lemma 1, they can be made closed whenever they arise as 
the reduction of a closed assertion; as such they can be checked, replaced 
by T or F as appropriate, and hence eliminated. 



4.1 The reduction for nil 

Given a closed, pure assertion A : ni l ,  it is a simple matter to see whether 
or not it  is valid at nil.  The following function yields true in case it is 
valid, and false otherwise: 

red( I  : ni l )  - - true 
red(T : nil) = true 
red($' : nil)  = false 
red(Ao V Al : nil) = red(Ao : nil) or (red(Al  : ni l )  
red(-.A : ni l )  = not red (A  : ni l )  
red ((*) A : ni l )  - = red (A  : nil) 
red ( (* )A  : ni l )  = red (A  : ni l )  
red(vX.A  : ni l )  = r e d ( A [ T / X ]  : nil). 

Theorem 3 For A : nil a closed, pure assertion, r e d ( A  : nil) i f f  1= A : 
nil. 

4.2 Reduction for prefixing 

The reduction for prefixing is based on an embedding of P(at) into P ( t )  x 
P( t ) ,  for a term t ,  meeting the requirements of the embedding lemma 2. 
Define down : P ( a t )  -+ P(t)  by taking 

down(U) = { s  ? St 1 { s }  c U } .  

Define cont i  : P ( a t )  -+ P(t)  by taking 

contI (U)  = {it 1 id E U } .  

Now we take the embedding to be 

out = (down, cont i )  : P(at} --+ ~ ( t ) ~  

so that out(U) = (down(U),  contI (U)) .  The converse map arises by 
taking 

in : -> P ( a t )  



It is easy to check that both in and out are monotonic and inoout = lptat). 

The map in corresponds to a change of variables, with respect to which 
we'll define a reduction whose two components correspond to the two 
components of the embedding out. 

Definition: Assume A : a t .  A change of variables of A : a t  is a substi- 
tution a ,  with domain V a r ( a t ) ,  which is fresh for A ,  and such that for 
all variables X : a t  there are distinct variables Yo : t and Yl : t with 

v ( X )  = a(YO) V ((I- I -+ Yl : t )  A I ) .  

This change of variables expresses the map in: 

Proposition 4 Let X : at, Yo : t and Y1 : t be distinct variables. Suppose 

a ( X )  = a(Yo) V ((I- I ^ Yl : t )  A I ) .  

Let p be an environment. Then, for Vo,Vl 6 P( t )  

Given a pure assertion A : at and a a change of variables for it we define 
two functions 
redO(A : at; a )  and red l (A  : a t ;  a )  , such that 

[ r e d O ( ~  : a t ;  a )  : t ] p  = down([A[v]  : a t 1 4  

[ r e d l ( ~  : at; 0 )  : t i p  n {it} = cont I ( [A[v]  : a t ]p )  

for any environment p. 

By structural induction on A : ad, with respect to a change of variables 
for it ,  define 



redO(I : at; a )  - - 
redO(T : at; a )  - - 

r e d O ( ~  : at; a )  - - 
redO(AoVAl : at ;a)  = 
redO(-.A : at; a )  - - 
redO((a)A : at; a )  - - - 
redO((a)A : at; a )  - - - 
e d O ( ( a ) A  : at; a )  = 
redO(X : at; a )  - - 

redO(vX.A : at; a )  = 

redO(aA : at; a )  - - 

F 
T 
F 
redO(Ao : at; a )  V redO(Al : at; a )  
-.redO(A : at; a )  
(a)redO(A : at, a )  - 
(a)redO(A : at; 0) i f  a # a - 
(a)redO(A : at; a )  V (redl(A : at; 0 )  A I )  
YO where 
a ( X )  = &(Yo) V ( ( I -  I --+ Yl : t )  A I.) 
vYo. redO(A : at; a )  [vYl .red1 ( A  : at; a ) /Y l ] )  where 
a ( X )  = a(Yo) v ((I- I -+ Y1 : t )  A I )  
A 

redl(I : at; a )  = T 
redl(T : at; a} = T 
redl(F : at; a )  F 
redl(Ao V Al : at; a )  = redl(Ao : at; a )  V redl(Al : at; a} 
redl(-.A : at; a} = -.redl(A : at; a )  
redl((*)A : at; a )  = redl(A : at; a )  
redl((a)A: a t ;a)  = F if  a # * & a # a 
r e d l ( ( a ) ~  : at; a )  = r e d O ( ~  : at; a )  
r e d l ( m ~  - : a t ; ^ )  = redl(A : at, a) 
red l ( (a)A:a t ;a)  = F i f a # *  
redl(x  :  at;^) = Yl where a(X) = a(Yo) V ( ( I -  I -+ Yl : t )  A I )  
redl(vx.A : at; a )  = vYl.(redl(A : at; a} [v~~ . red" (A  : at; a)/Y,,}) 
redl(aA : at ;a)  F 

Theorem 5 Assume A : at with A pure. Suppose a is  a change of 
variables of A : at. Let redO(A : &;a)  = An and redl(A :  at;^) = Ai. 
T h e n  An : t and Al : t .  Moreover 

[A0 : t]p = down([A[(J} : atlp) and 

i t  â [Ai : tip iff id E [A[a] : atlp 

for any environment p. 
If A : at is  closed then (I= A : at) iff (I= A. A ( I  -+ Al) : t ) .  



4.3 Reduction for sum 

The reduction will be based on an embedding of P(to +ti) in P(to) x P( t l ) ,  
for terms to ,  t l .  Define 

by taking outo(U) = { s  6 St, 1 i n j o ( s )  6 U }  and outl(U) = { s  6 St, 1 
injl ( s )  ? U }  for all U 6 P(to + t i ) .  Define the embedding 

out : P(to + t i )  -> Pit,) x P( t l )  

by taking out ( U )  = (outo ( U ) ,  outl ( U ) )  for all U â P(to + t i ) .  Define its 
left-inverse 

in : P(to) x P(t l )  --+ P(to + t i )  

by taking in(Vo, V l )  = Vo + Vl. Both in and out are monotonic, and it is 
easily seen that in o out = lP(to+tl). 

The map in accompanies a change of variables: 

Definition: Let A : to + t l .  A change of variables of A : to + t1 is a 
substitution o- with domain Var(to + t i ) ,  which is fresh for A, and such 
that for any variable X : to + tl we have o ( X )  = Yo + Yl for distinct 
variables Yo : to and Yl : t l .  

Proposition 6 Let X : to + t l )  YO : to and Y1 : ti be distinct variables. 
Suppose ff^X) = Yo +Yi. Let p be an environment. Then, for VQ 6 P(to))  
Vi ? P(t1) 

in(V0, Vl) = [ o ( X )  : atWVo/Y,, Vl/Vi]. 

With respect to a change of variables o, we can transform an assertion 
A : to + ti to the sum of a pair of assertions A. : to and Al : ti which 
realise the components of the embedding out, i.e. 

for any environment p. 



The reduction is carried out by the pair of functions redO(A : to + t i ;  a ) )  
red1 ( A  : to + t i;  0 ) )  acting on an assertion A for which A : to + ti and a 
change of variables for it. They are defined by the following structural 
induction (we omit the clauses for red1 as they reflect those for red0):  

redO(I : to + t i ;  0 )  

redO(T : to + t l ;  a )  
redO(F : to + ti; 0 )  

redO(AV B : to +  ti;^) 

redO(-.A : to + ti; 0 )  

e d O ( ( * ) A  : to + t i;  0 )  

redO((a)A : to + ti; 0 )  

r e d O ( ( * ) ~  : to + t i;  0 )  - 
e d O ( ( a ) A  : to + ti; 0) 

redO(X : to + ti; a )  
redO(vX.A : to + ti; 0 )  

= I 
= T 
= F 
= A. v Bo 

where A. = redO(A : to + t~ o) and 
BO = redO(B : to + ti; a )  

= -iredO(A : to + t i ;  a )  
= redO(A : to + t i ;  0 )  

= ( I -  I  -+ (a)Al : t i )  -+ ((&)Ao) V I  \ (a)Ao where 
redO(A : to + t i ;  0 )  = A. and 
redl(A : to + t i;  a )  = Ai) 
i f a # *  

= redO(A : to + ti; a)  - - - 
= ( ( I -  I -  ̂(&)A1 : t i )  -  ̂((a}AÃ̂  V I \ (a)Ao where 

redO(A : to + t i ;  a )  = A0 and 
redl(A : to + t i;  a )  = Ai) 
i f @ # *  

= (I- I -+ Yl : t i )  -+ Yo v IlYo where a ( X )  = YO + Y ,  
= vYo.Ao[vYl.Al/Yl] where 

A. = redO(A : to + t i ;  a ) ,  
A1 = redl(A : to + t i ;  a )  
and a ( X }  = Yo + Yl 

> ,  

redO(Ao + Al : to + t l ;  0) = (l- .T + Ai : t i)  -+ (Ao V I)lAo 

Theorem 7 Let A : to + tl be pure. Let A. = redO(A : to + t i ;  a )  and 
Al = redl(A : to + t i ;  a ) ,  for 0 a change of variables for A. Then 

for any environment p. 
If A : ta+tl is closed then (I= A : to+tl) iff [(I= An : to)  and (I= A1 : t i ) ] .  



4.4 Reduction for looping. 

The properties P(t/a,  J )  and P(t) are the same, and this time the embed- 
ding and its inverse with respect to which the reduction is performed are 
both the identity map. The inverse is realised by a change of variables, 
which essentially just renames them: 

Definition: Assume A : t / a ,  J with A pure. A change of variables of 
A : t /a ,  J is a substitution a, with domain Var(t/a, J ) ,  which is fresh 
for A, and of the form o-fX) = Y / a ,  J for variables X : t / a ,  J and Y : t .  

The effort goes into finding an assertion to an assertion red(A : t / a ,  J ;  a )  , 
such that for a pure A : ( t /a ,  J )  and a change of variables a for it, 

The reduction of a pure assertion A : t /a ,  J ,  with respect to a change of 
variables for it, is defined by structural induction: 

I 
T 
F 
red(Ao : t /a ,  J ;  a)  V red(Al : t /a ,  J ;  0 )  

-.red(A : t /a ,  J ;  a )  
(b)red(A : t /a ,  J ;  a )  if b # a 
( I -  I --+ B : t )  -  ̂( ( ( a )  B)  V J )  1 (a )  B  
where red(A : t /a ,  J ;  cr} = B 

where red(A : t /a ,  J ;  a)  = B 
Y when a ( X )  = Y/a ,  J 
vY.red(A : t /a ,  J ;  a)  where a ( X )  = Y/a ,  J 
A. 

Theorem 8 Let A  be pure with A : t /a ,  J .  Let a be a change of 
variables of A : t / a ,  J .  Let red(A : t / a ,  J ;o )  = B. Then B  : t and 
moreover 

A[a] w B/a ,  J : t /a ,  J. 

If A : t / a ,  J is closed then (k A : t / a ,  J )  iff (+ B : t ) .  



4.5 Reduction for restriction 

Any property of a restriction t  1 A can be regarded as a property of the 
component t ;  define 

out : P(t  1 A) -  ̂Pit )  

by taking out(U) = U. The inverse map takes account of the fact that 
properties of t  1 A consist of states which are reachable via transitions 
within A. It is 

i n  : Pit )  -+ P(t 1 A) 

defined by i n ( V )  = V II &^-note this means i n ( V )  = V \ A. Both maps 
are monotonic and together satisfy i n  o out = lp(irA). 

As usual the inverse map is associated with a change of variables: 

Definition: Assume A : t  1 A. A change of variables of A : t  1 A is a 
substitution a ,  with domain Var( t  1 A),  which is fresh for A, and of the 
form a ( X )  = Y \ A for variables X : t  1 A with Y : t  a variable. 

With respect to a change of variables a we define a reduction of pure 
assertions A : t  \ A to assertions red(A : t  1 A; 0 )  : t  such that 

The reduction is related to the embedding out in the sense that 

It is defined on pure assertion A for which A : t  1 A and reductions o, on 
variables of them by the following structural induction: 



. , 

i f a @ ' A  
r e d ( ( a ) A  : t 1 A; a )  

= { i ) r e d ( A  : t  1 A ; a )  if a E A  

e d ( ( a ) A :  t 1 A ; o )  i f a @ ' A  
(a)(RA A red (A  : t  1 A; 0 ) )  if a E A  

where RA = pX.I V wPeA(/3)X 
red(X : t  \ A; a )  = Y where a(X} = Y 1 A  
red (vX .A  : t 1 A; a )  = vY.red(A : t \ A; a )  where a ( X )  = Y 1 A 
r e d ( A  \ A :  t 1 A ; a )  = A. 

Theorem 9 Let A be a  pure assertion such that A : t  t A,  for which a 
i s  a  change of variables. Let red(A  : t \K; a )  = B.  Then B : t  and 

If A : t t A  i s  closed then (k A : t1A) iff (\= RA -+ B : t ) .  

4.6 Reduction for relabelling 

Because the properties P ( t )  and P ( t { S } )  are the same, the reductions 
and change of variables correspond to the identity map and are relatively 
straightforward. 

Definition: Assume A : t {E} .  A change of variables of A : t { 2 }  is a 
substitution o, with domain V a r ( t { Z } ) ,  which is fresh for A, and of the 
form a(X} = Y { S }  for variables X : t { Z }  and Y : t .  

With respect to a change of variables a, we define a reduction of a pure 
assertion A : t { S }  to an assertion red (A  : t {Z} ;  a )  b y  structural induc- 
tion: 



red(I : t {S} ;  a )  = I  
red(T : t {S};  a )  = T 
red(F : ({=};a)  F  
red(A0 V A1 : t{E}; a )  = red(Ao : t {S};  a )  v red(Ai : t {S} ;  a )  
red(-iA : t {S};  a )  = -.red(A : t {S} ;  a )  
red((*)A : t {S} ;  a )  = red(A : t {S};a}  
red((a)A : t {S};  a )  = w s e s - 4 r e d ( A  : t {S};  a )  
red((f)A : t {S} ;  a )  = red(A : t { S } ; a )  - 
r e d ( ( ~ ) A  : t {S} ;  a )  = ~ ~ ~ - ~ ~ ( p ) r e d ( A  : t{E}; 0) 
red(X : t {S};  a )  = Y where a ( X )  = Y{S.} 
red(uX.A:t{E};a) = uY.red(A:t{S};cr)whereo(X)=Y{E} 
red(A{S}: t {E};a)  = A. 

Theorem 10 Le t  A  be a pure assert ion for such  tha t  A  : t {S}  for which  
a  i s  a change of variables. Le t  red(A : t { 3 } ; u )  = B.  T h e n  B : t and  

If A : t {S}  i s  closed t h e n  (k A : t {S} )  iff (k B : t ) .  

4.7 Reduction for product 

Looking back at the constructions so far, we see they share a common 
property, the presence of an embedding from properties of a constructed 
term to properties of its immediate components which are realised by 
the reductions on assertions of that term. Indeed, this reduction can be 
performed without looking at the composition of the immediate compo- 
nents; for instance, the reduction for to + ti proceeds independently of 
the composition of to and ti. 

The difficulty in obtaining analogous reductions for parallel compositions 
stems from there not being such an embedding from properties of prod- 
ucts to properties of their components. While there is the map 

There is no 1-1 map in the converse direction if one of to ,  t l  has more than 
one and the other more than two reachable states-a little arithmetic 



shows that  then the set P ( t o  x ti) has more states than P ( to )  x P ( t l ) .  
Reduction for assertions of a product, in general, cannot follow the same 
scheme as that  of the other constructions. We are obliged to  look for 
a different method of embedding and reduction, or a t  special kinds of 
properties in P ( t o  x t i )  such as those which can embed in P ( to )  x P ( t l ) .  

Properties having the shape VoxVl, a cartesian product of Vo â P( to) ,  Vl 6 
P( t l ) ,  are in correspondence with, and so embed in, properties P( to)  x 
P( t l ) .  By cutting down the properties of a product to  those denoted by 
the following assertions, we can obtain a reduction: 

A ::= I1 T 1 B x C  I ((a, b))A ] ((a, b))A \ ((a,  b))A \ ((a, b))A \ AAA' 1 X \ v X .  A 
- - 

where we use (a) A to  abbreviate [a] A A (a)T and ( a )  A for [ a l ~  A (a)T.  
Any closed assertion A in this class, for which A : to x t i ,  has the property 
that  

~ = A H A ~ x A ~ : ~ ~ x ~ ~  

for simply found A. : to,  Al : t i .  These assertions for the components 
are obtained with respect to  a change of variables for to x t i  which is 
a substitution, fresh for A, sending variables X : to x ti  to  Yo x Yl, for 
distinct variables Yo : to,  Yl : ti,. Define: 

r ed ( I  : to x t i ;  0) = (I, I) 
r e d ( T :  to x t l ; o )  = (T,  T) 

red(((a,  b))A : to x t i ;  0) = ((a)Ao, (b)Ai) 

red(((a, b))A : to x t i ;  0) = ( ( a ) ~ o ,  (MAI) 
red(((a, b))A : to x t i ;  0) = ((a)Ao, (b)Ai) 
red(((a, b))A : to x ti ;  0) = (~^)Ao,  (6)Ai) where red(A : to x f i ; ~ )  = (Ao, Ai) 

red(A A A' : to x t i ;  0) = ((Ao A A!,), (Ai A A;)) where 
red(A : to x t l ; o )  = (Ao, Ai), red(A1 : to x ti?) = (A!,, A;) 

red(X : to x t r i o )  = (Yo, Yi) where o ( X )  =YO x Yi 

red(vX. A : to x tl ;  0) =  YO. Ao), (vYi- Ai)) 
where o (X)  = Yo x Yl and red(A : to x  ti;^) = (Ao, Ai) 

While this reduction works for a nontrivial class of assertions the class 
is limited. In particular, it does not include the 'reachability' assertions 
RA = pX.I V wfleA(/3)X, true of those states which are reachable from 



the initial state purely by transitions with labels in A. However, in the 
special case where 

we have that 
RA +-+ Ri0 x HA, : t o  x ti 

where A. = {Ao 1 3A1. (Ao,  Al)  E A}, Al = {Al 1 3Ao. (Ao,  Al )  E A}. As we 
shall see, this has implications for reductions with respect to the parallel 
composition of Milner 's CCS . 
Any recursion-free assertion of a product can be routinely transformed 
into a finite disjunction Wie1Bix Ci (though conjunctions cause a quadratic 
'blow-up' in size and negations an exponential 'blow-up'). As we have 
seen, there are special cases of recursive assertions where this can be 
achieved too. Once we have a property of a product to x ti  expressed in 
such a form, the following result provides a method for reducing its valid- 
ity to validities in the components to, tl. Note the result is independent 
of the composition of to and t i .  

Proposition 11 Suppose W i E ~  Bi x Ci : to x ti i s  a finite disjunction. 

iff 
(k  W ~ E J  Bj : to) o r ( k  W ~ G K  Ck : tl) 

for all partitions JuK = I .  

It is useful to generalise the above proposition a little, so we can establish 
a property of a product relative to assumptions on the states of each 
component. This paper has concentrated on 'backwards proof7; given a 
goal for a compound term it has addressed how to reduce this to subgoals 
for its immediate components. One use of the following proposition is 
when asking the converse: if 'F B : to and C : t i  does it follow that 
[= A : to x ti? The proposition provides a partial answer-it depends on 
A having been expressed as a finite disjunction WiE1 5, x Ci : to x ti. 
Then: 



Proposition 12 Suppose Wicl Bi x Ci : to x t i  i s  a finite disjunction. 
Let B : to, C : t i .  Then 

for all partitions JuK = I. 

As a corollary of this proposition, we obtain reduction results for certain 
parallel compositions, including that of CCS. A parallel composition of 
to, t l  has the form 

to 1 1  (1 = ((to X (1) tA){S} 

A problem \= A : to \\ tl reduces to 

where A' is obtained by carrying out the reductions for relabelling, then 
restriction. (Note the reduction for restriction, as expressed by theorem 9, 
introduces the reachability assertion RA.) Now, in the case of toltl, for 
CCS, the appropriate restriction is with respect to a subset A satisfying 
(+). It follows that 

for reachability assertions RAo and RAl. Hence if A' can be expressed as a 
manageable disjunction WiEI Bi x Ci we have a reductive way of checking + A : tolti: 

I= A : toIt1 

iff 

(\= R~~ -  ̂Wj67 Bj : to) or(+ RA1 -  ̂W ~ E K  Ck : t l)  

for all partitions JUK = I. Certainly, A' can be so decomposed when the 
original assertion A contains no variables. Note that even for assertions 
A without recursion, the statement 1= A : to x t i ,  being one of validity, 
can express a nontrivial invariant of to x tl .  It is emphasised that again 
this reduction does not depend on the structure of to and ti .  

Unfortunately, the important use of restriction in CCS to internalise com- 
munication along a channel does not use a restricting set satisfying (+). 



The problem with checking validity for terms which force internal 
munication along a channel centres on the difficulty of expressing 

com- 

R{(.,b)} = ̂ . ( I  v ( ( a ,  f>))X), 

true of those states in a product which are reachable from the initial 
state via a sequence of ( a ,  b)-transitions, as a finite, and manageable, 
disjunction Wiez Bi x (7, : to x t i .  Of course, once we know the size of the 
transition system to x t1 to be k, we have 

With luck, the recursion might become stationary at an earlier point, 
but to be a valid equivalence for all transition systems of size k all the 
k disjuncts have to be included. This reduction is thus quadratic in the 
size of the transition system. Certainly in this case the reduction can no 
longer be independent of to, t i ,  with the assertion language as it stands 
presently. 

Conclusion 

General methods have been provided for reasoning compositionally with 
a modal v-calculus. These methods are presently being implemented by 
Henrik Andersen at Aarhus. Henrik has also extended the reductions to 
cope with a more traditional recursive definition of processes, which could 
be used in place of looping. The introduction of process variables which 
this entails could be useful for other reasons. Because all the reductions 
are directed only by the top-level operation on terms they might well be 
helpful in synthesising a process satisfying a specification, using process 
variables to  leave parts of terms unspecified. 

There remain important properties of products which do not seem di- 
rectly amenable to the techniques outlined here. It is notable though 
that some nontrivial assertions have reductions which are independent 
of the structure of the components of a product. It is hoped that the 
techniques and limitations exposed here will help guide the search for 
methods of reasoning about parallel processes. Promising leads may be 
found in [CLM] and [LX]. 



The approach here can be understood as running the compositional proof 
system of [W] backwards, and relates to the more modest compositional 
proof systems of [St] and [Wl], and more superficially to [GS]. The re- 
ductions however have a fuller treatment of assertion variables than the 
proof system of [W]; the latter should be redone so that it supports the 
reasoning given by the reductions in a forwards direction and makes plain 
the sense in which the reductions correspond to running the proof system 
backwards. 
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