


 
 
 
 

Graph Grammars for Knowledge Representation 
 
 
 
 
Abstract 
 
Two papers to be presented at the March 1990 GRAGRA meeting in 
Bremen: the more general  
 

“Representation of knowledge using graph grammars” 
 
which argues for graphs as the universal KR formalism. The more specific 
 
“The four musicians: analogies and expert systems - a graphic approach” 
 
which demonstrates the use of graphics for type inheritance and analogical 
reasoning. 
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Representation of knowledge  

using graph grammars 
 
Many ingenious ways of representing knowledge have been devised and 
incorporated in "knowledge based" programs-for surveys see (Enc, Th ch.3). 
However only some of these KR techniques have been formalised. Usually 
logic is used for these formalisations, and the author has suggested 
"institutions" as a universal formalism (Ma), but graphs seem to be an 
attractive alternative. One of the attractions is that rules in graph grammars 
can be more expressive than logical proof rules so that nonmonoticity and 
other logical troubles are less apparent. The first two sections of this paper 
demonstrate this expressiveness by surveying some of the ways graphs can 
represent knowledge. Section 1 starts with a survey of various kinds of 
graphs, and section 2 starts with a discussion of 'dynamic' graphs where the 
vertices or edges represent actions, processes, procedures or productions. 
Section 3 gives a solution to the tricky problem of "when can a graph 
rewriting rule be applied to a graph?". Section 4 compares the graph and 
logic approachs to knowledge representation. Section 5 is devoted to the 
graph approach to uncertainty. Throughout the paper we use MapSee as the 
running example because it was the running example in a recent paper(RM) 
that argued for logic as a universal formalism.  
 

r

c

c'

r4

c6

r3

c5

c1

c2

c3

c4

r1

r2

tee(c,c')

chi(c,c')

closed(c)

bounds(c,r)

interior(c,r)

exterior(c,r)
c

c

c

c

r

r

c

'
c'

 
f ig.1 Sketch map 

 
MapSee is used to illustrate the representation of knowledge in data-
bases(#1.1), semantic nets(#1.2,#2.2), type inheritance(#1.3), conceptual 
structures(#1.4), logical programs(#1.5), planning(#2.1), hypermedia(#2.3), 
simulation(#2.4), and linguistic attribute grammars(#2.5). 
 
 

#1 Representation of static knowledge 
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Let us start by trying to bring some order in the wide variety of mathematical 

objects that have been called labelled graphs.Let us agree on the name index 
for a pair of label sets <VL,EL>. EL and VL may be ordered  sets and even 
have operations. In our theory label morphisms from (VL,EL) to (VL',EL') will 
play an important role, particularly the morphisms given by type assignments. 

A label morphism is a pair of functions, 

 la = <vla:VL->VL', ela:EL->EL'> 

that satisfy various requirements. These requirements depend on what one 
means by a graph G over index <VL,EL>. For any kind of labelled graph G one 
has two functions 

 lab: Vertex(G) -> VL   edge: Edge(G) -> EL 

where Vertex(G) is a set of vertices and Edge(G) is a set of edges. But what 
is an edge? Possible answers are shown in figure 2. 
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fig2         various kinds of grap h edges
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f ig 2 Various kinds of graph edges 
 

The most general notion of edge is given by (pomset) but the other 
notions are much more convenient in practice. Each notion of edge 
gives a natural notion of morphism from one unlabelled graph G to 
another G' :  

 functions ve:Vertex(G) -> Vertex(G'),ed:Edge(G) -> Edge(G') 
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such that for each edge e in G we have 

 ed(e) is identical to the edge ve(e)  

where ve(e) is the edge e after ve has renamed its vertices. Note that we 
allow different edges in a graph to be identical as such edges may be given 
different edge labels. 
 For each notion of edge we have a natural category CC of unlabelled 
graphs that is well-behaved - CC  has all sums and pushouts. For each notion 
of edge we also have a tempting notion of morphism from a labelled graph G 
over (VL,EL) to a graph G' over (VL',EL'): 

 label morphism (vla,ela) and graph morphism (ve,ed) 

such that 

 lab;vla = ve;lab' and edge;ela = ed;edge' 

This definition works well for the examples in this section and the next, but it 
gives a category which behaves so badly that there are grave implementation 
problems. In section 3 the definition is modified so that the resulting 
category is well behaved because it is the flattening of an indexed category. 

In sections 1.4 and1.5 we will meet several examples of reflexive graph 

grammars - static graph grammars where vertices and/or edges can 
themselves be static graphs. More study should be devoted to this special 
case of static graph grammars. 
 
 
#1.1 Relational databases  
 
In the conceptual design of a relational data base one devises a set of relation 
names and one assigns attributes to each relation name. The conceptual 
design is given by a signature  ; for each subset M of attributes we have a 
set (M) of relation names. This conceptual design can be represented by a 
labelled hypergraph with a vertex for each attribute and a hyperedge for each 
relation name. The label of a hyperedge is the corresponding relation name; 
the label of a vertex is the corresponding attribute. 
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f ig 3 Scene design graph SDG  
 
At any time during the life of design    the actual data base is a  
collection of 'tuples',instances of relations. The actual database  
can also be represented as a labelled hypergraph with an edge for  
each tuple and a vertex for each attribute that occurs in a tuple. 
 

sho re

wate r

sho re

land

r i v e rr i v e r

land

land

r i v e rroad

road

road

loop

loop

join

join

join

join

cross

5

3

6

4

2

1

4

 1

 2

3

 
f ig 4 Scene instance graph SIG  

 
There is a graph morphism from the instance graph SIG to the design graph 
SDG, and there is a label morphism from our design  to an alternative design  
' 
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f ig 5 Image design graph IDG  

 
The instance graph SIG is inferred from the "observed" instance graph IIG 
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f ig 6 Image instance graph IIG  

 
using graph productions like
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f ig 7 Scene-Image graph productions  
 
In (RM) these graph productions appear as logical formulas, but the graph 
formalism is simpler because it incorporates contextual, situational and 
semantic constraints. 
 Our example of a label morphism from Scene to Image is unusual. It is 
usual in databases to assign a type ty(a) to each attribute "a" so each 
relation R:a1,a2,... is assigned a product type 

 ty(a1)*ty(a2)*.... 

An actual database gives a map   Val:Vertex -> Values such that 

 Val(v) is a value of the type ty(lab(v)). 

The lowest morphism in figure 8 gives an example. 
 
 river road shore land water join cross loop beside inside outside 
la1  chain chain chain region region tee chi closed bounds interior exterior 
la2 I*I*N I*N I*N I*N I*N N*N N*N N N*N N*N N*N 
la3 N N N N N N*N N*N N N*N N*N N*N 

 
f ig 8 Three label morphisms from Scene  

 
Many database designers follow the entity-relationship approach in which one 
considers only unary and binary relations so our hypergraphs become 
graphs.In relational data bases one usually insists on "no repetitions and flat 
values" - Val is an injection and ty(a) is a basic type like Integers, Characters, 
or Strings. There is no theoretical reason for these restrictions, and one gets 
semantic nets if one relaxes them. 
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#1.2 Static semantic nets  
 
Frames,schemes and many other popular AI methods of representing 
knowledge are examples of semantic nets - objects connected together by 
links. If there are no "actions or methods" associated with the objects, then 
a net can be converted to a graph by 
 
 • vertex for each object 
 • vertices labelled by sets of attribute value pairs 
 • edge for each link labelled by 'link' labels. 
 
Example ctd: The semantic net in figure 9 becomes the scene design graph 
SDG in figure 3. 
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f ig 9  Semantic net version of graph SDG  

 
Several authors have formalised semantic nets by reducing them to 
'unnormalised' relational databases. The idea is that objects are instances of 
classes and classes are just relations. Links are special kinds of attributes  
whose values are instances of relations. Databases with such attributes are 
unnormalised. 
 Semantic nets differ from relational databases in being object-oriented, 
but capture databases by taking tuples as vertices not edges.The type 



8 

assignment ty:VL->Type can take vertex labels into product types; la2 and 
la3 in figure 8 are examples. For the theory to go through we must also 
assign types to edges.So far we have only used product types, but figure 9a 
shows some of the other possibilities (the upper row shows the constructors 
studied by type theorists,the lower row is borrowed from (GHS)). 
 

 +  

set sequence

A
record    arrayrelation atomicsymbol

 
f ig 9a Type constructors for structuring labels  

 
In section 4 we show how Type can be a family of sets of formulas, so the 
graph approach can be reduced to the logic approach. 
 
 
#1.3 Type inheritance  
 
Many ingenious graph representations have been devised by those interested 
in 'multiple inheritance' problems,and it is surprising that noone seems to 
have used graph productions to capture 'Type inheritance' reasoning. As we 
do this in the companion paper(HM), we will only give an example here.The 
essence of  'Type inheritance' is that there is an order on types(=concepts = 
vertexlabels). This order may be part of the conceptual design or it may be 
derived from a label morphism la = <vla:VL->VL', ela:EL->EL'>. This 
morphism orders VL"=VL+VL' and EL"=EL+EL' by 

 vl  vl' iff vla(vl)=vl'       el  el' iff ela(el)=el' 

In our example the order on VL" and EL" is 
 
 river,road,shore < chain  land,water < region 
 join=tee,cross=chi,loop=closed, bounds=beside 
 inside=interior,outside=exterior 
 
and type inheritance can be given by graph productions like 
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l l.l' region land.water chain road.river.shore

tee  join chi  cross  loop

bounds  beside interior  inside exterior  outside

closed

 
f ig 10 Graph productions for type inheritance 

 
Notice that all 4 graphs in section 1.1 are now over the same index 
(VL",EL"). What happens to our assignment ty:VL->Type?All goes well 
if  Type has an order and vl< vl'  implies ty(vl)< ty(vl'). In section 3 we 
will see the advantage of making orders complete by introducing "top 
and bottom" labels. Complete orders give meet or join as a 'gluing' 
operation and all goes well with type assignment if Type has a 'gluing' 
operation "." and 

 vl" = vl.vl' implies ty(vl") =ty(vl).ty(vl'). 

Thus the typing assignment should be an order morphism or an 
algebraic homomorphism. 
 
 
#1.4 Conceptual structures  
 
An extremely popular way of representing 'linguistic' knowledge is to use the 
conceptual graphs invented by Sowa(So). In designing a family of conceptual 
graphs for a 'knowledge domain' or even a 'language', one devises not only a 
set of relation domains and an ordered set of attributes and types, but also 
allows 'nesting'. Usually nesting in conceptual graphs is illustrated by 
linguistic modalities as in " John believes that Mary knows...", but in our 
example we will use nesting to capture: interior,exterior,closed, 
bounds,inside,outside,beside and loop. 
 
Example ctd: Consider the special role played by 'region' in the image 
instance graph IIG in figure 6. This suggests the nested graph in figure 11 
where we have a tree of regions and each region has a 'chain graph'. The 
scene instance graph SIG in figure 4 also suggests the nested graph in the 
figure 11 where the labels have been changed appropriately (water or land 
label for each region in the tree); it suggests also that region2 should be 
eliminated from our graphs. 
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f ig 11 A nested graph 

 
Now that nesting has eliminated so many labels, we can give a concise graph 
grammar for the historical developement of scenes. 
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f ig 12 Historical graph productions  
 
Note that we have captured the essential content of "shores always loop" 
and "shores separate land and water". 
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#1.5 Logical programming 
 
Logical programming languages can express most of the information in graph 
representations of databases,semantic nets,type inheritance and conceptual 
graphs. It is not difficult to express most of the graphs and graph 
productions in this paper in a language such as  Prolog. If a logical language is 
sufficiently modular, it can capure nesting in conceptual graphs by using 

'worlds' or viewpoints. Some logical languages, like Omega (ACDS), have an 
implicit metalevel and they can capture most of the information in reflexive 
graphs, in particular they can express combinations of viewpoints. In 
conceptual graphs the nested graphs are rigid viewpoints, they cannot be 
restructured by graph morphisms. Let us meet the Omega challenge by giving 
an example of fluid viewpoints. 
Example ctd: In the last section we gave the "history" productions for 
the construction of scene graphs.  
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f ig 13 Fluid historic graph productions  

 
 

#2 Representation of dynamic knowledge 
 

It is often natural to represent knowledge by dynamic graphs where the 
vertices or edges represent actions,processes, procedures or pro-
ductions.Much of the computer science literature on concurrency uses the 
theory of transition systems and/or Petri nets. Transition systems are just 
dynamic graphs whose edges are ordered pairs of vertices; Petri nets are just 
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dynamic graphs whose edges are ordered pairs of multisets of vertices. Both 
kinds of dynamic graphs can be converted to graph grammars by: 
 
 for each edge e we have the graph production L=>R 
 where L is the "input" component  
 and  R is the "output" component of e . 
 
Applying one of these productions to a dynamic graph G corresponds to a 
"joint action by the processors carrying G".  
 There is no objection to concurrent/parallel applications of 
productions. In section 3 we will show that any two graphs have sums, so 
one can consider the concurrent/parallel application of productions, L=>R 
and L'=>R', as the application of the sum production L+L' => R+R'. Naturally 
one can have "conflict"- productions, L=>R and L'=>R', can both be applied 
to a graph G but the sum production cannot be applied to G. 
 In dynamic graphs it is natural to assign States to vertices and State 
functions or relations to edges. The category minded might prefer to assign 
objects in a category C to vertices and morphisms to edges. We will see that 
it is sometimes convenient to assign static graphs to vertices and 
applications of graph productions to edges. This idea of 'graph productions 
as actions' can be lifted to the label level to give metagraph grammars. In 

sections 2.4 and 2.5 we will meet several examples of metagraph 

grammars - dynamic graph grammars with static graphs as vertex labels and 
applications of static graph productions as edge labels. More study should be 
devoted to this special case of dynamic graph grammars.One approach is to 
treat a metagraph grammar as a 2-category with static graphs as objects 
and static graph productions as morphisms. The close connection between 
"rewriting" and 2-categories is well-known. 
 
 
#2.1  Planning 
 
Plans are combinations of primitive  actions. One has a repertoire of action 
types and the actions in a plan are occurrences of these types.It is natural to 
think of actions as edges and action types as edge labels, but what are the 
vertices. Usually one assigns pre- and post-conditions to action types,and 
one can take states or situations as vertices. A more sophisticated view 
(SR,Ba) is that action types also have prevail- and keep-conditions that 
constrain the 'joint actions' that can occur in a plan. In this view one should 
take local(partial) states as vertices and give dynamic productions for 
permitted joint actions. 
 
Example ctd. We could consider the historical productions in figures 12 and 
13 as action types(appropriate edge labels are given at the extreme left of 
the figures), and a joint action could be the developement of an island at the 
same time as the building of a road. Instead we give a more dynamic 
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example.Vertices are scene graphs with enlarged edge labels for shores and 
places where roads and rivers meet. Edge labels - loop,join,cross- are 
extended by triples < p,b,c> where 
 
 p is a set of person names 
 b is the number of available boats 
 c is the number of available cars. 
 
Figure 14 shows the three action types and a plan for a person to go from 
'shore6' to 'road1' 
 

=>

p_p'
b
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b"
c"

p
b
c

p'_p"
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c"+1
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c

p"
b"
c"
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River River
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p_p'
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p
b
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    at
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    at
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f ig 14 Three action types and a plan 

 
Note that this simple plan will be frustrated if there is no car available when 
the boat trip is over, so one might prefer joint actions and the more elaborate 
plan: 
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 "telephone to a friend on road1, so he drives to meet me" 
 

    at
shore6

    at
shore5

river 3
meets
 road 2

road 2
meets 
road 1

SAIL: DRIVE:ROW:

PLAN:

DRIVE:
friend on
road 1

 
 

f ig 15 Another plan  
 
 
#2.2 Dynamic Semantic nets 
 
Usually actions are represented in semantic nets as "methods" 
attached to objects, but some more refined net representations 
(e.g.LINCKS(Pa)) allow actions to be objects. 
 
Example ctd: The upper row in figure 16 shows the kind of objects 
which capture the edge information in the MapSee net.The lower row 
in figure 16 shows the kind of objects which capture the action 
information in the MapSee net. Using both kinds of objects one can 
build a net, that contains so much knowledge about scenes that it 
supports a realistic multimedia simulation. 
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f ig 16 Nodes for a dynamic semantic net 
 

Objects of action type , corresponding to hypermedia 'buttons', are attached 
to JOIN/CROSS/LOOP nodes. The code for the buttons might have the 
specification:(DRIVE) transfer persons and car following links that go via 
roads or shores (ROW) transfer persons and boat following links that go via 
rivers (SAIL) transfer persons and boat following links that go via water. 
Running these codes may cause appropriate animation to be displayed on a 
screen. 
 
 
#2.3 Hypermedia 
 
Graphs seem to be the preferred formalisation of hypermedia systems 
(SF,To). Conversely any dynamic graph can be implemented as a hypermedia 
system. Each vertex corresponds to a "window",which may or may not be 
displayed on the screen (Mac's Hypercard only displays one window at a 
time, other systems allow more). Each edge in a dynamic graph corresponds 
to "pressing a button". Each edge label in a dynamic graph corresponds to a 
"button" (static graph production). 
 
Example ctd:The dynamic graph described in the last section is suitable for a 
hypermedia presentation because it has a node for every 'join','cross',and 
'loop' edge in SIG,the scene instance graph in figure 4. . One can have a 

window for each such edge.If the person of interest me is at the edge, then 
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the window is displayed - appropriate scenery appears on the screen, sounds 
of boats and cars with an intensity proportional to their number... For each of 
the DRIVE, ROW or SAIL actions that are currently possible, there can be a 
button on the screen.When a button is chosen, then a car or boat appears on 
the scene, people climb aboard, scenery changes, people dismount, and the 
car or boat disappears. 
 It is an interesting exercise to make the slight changes in our graph 
representation, so that our hypermedia representation is more natural - one 
should not insist that everybody gets out of the car at every road junction! 
 
 
#2.4 Simulation 
 
Once we have described the possible actions by dynamic graph productions 
we can build a Petri net simulation. In our MapSee example scene edges 
labelled by 'join', 'cross' or 'loop' correspond to place-triples in a Petri net. 
Place triples are connected by transitions for possible 'DRIVE','ROW' or 'SAIL' 
actions. 
 

 SAIL  SAIL  ROW  ROW

 SAIL DRIVE

c6 c5 tee(c3,c5) tee(c3,c2) cross(c4,c2)

   tee(c4,c5)

DRIVE

   tee(c1,c2)boats

persons

cars cars

edge name

boats

 
f ig 17 Petri Net Simulation 

 
Dynamic graphs given by the rules 'DRIVE', 'ROW' or 'SAIL' correspond to 
occurrence nets - possible runs of the simulation Petri net. For a more 
realistic simulation example of dynamic graph grammars one can look at the 
generation of Forrester diagrams in (DT). 
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#2.5 Linguistic attribute grammars 
 
There is an interesting developement in linguistics (Jo), in which knowledge is 
represented by both static and dynamic graphs. A normal syntactic grammar 
for parsing sentences gives not only a 'derivation tree' but also a dynamic 
graph where the edges are applications of syntax rules. The vertices of this 
graph are not just  sets of attribute-value pairs; their labels are static graphs. 
 
Example ctd: Let us ignore linguistic reality and agree on the syntax:  

< conditional >   S ::= if P then P;< conjunction >    P ::=    S  and  S 

The derivation tree for "if road between X and Y & car at X, then one can 
drive from X to Y & car at Y" gives the dynamic tree at the bottom of figure 
18, and the static graphs for the tree nodes can be seen in the rest of the 
figure. These static graphs are the solution of the linguistic attribute 
equations. 
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=>

p_p' p"

c"

p p'_p"
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p_p'

c+1

p"

 road between X and Y & car at X  <P5>:

Road

=>

p_p' p" p p'_p"
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 road between X and Y   <S1>:

Road
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 car at X   <S2>:
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<P6>:

<P5>:
<S2>:

<S4>:

<S1>:

<S3>:

DRIVE:

Conjunction

Conditional

Conjunction

          
 

f ig 18 Linguistic synthesis of an action  
 
Clearly any attribute grammar can be represented as a dynamic graph - the 
syntax rules give dynamic edges and the corresponding semantic attribute 
functions are static graph morphisms. 
 
 

#3 Morphisms and the applicabil ity of productions 
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When can one apply a production L=>R to a graph G? The intuitive answer is - 
when there is an occurrence of the graph L in the graph G. This gives 
morphism requirements 
 
(1) the definition of graph morphisms should cover all "ocurrences of one 

graph in another" 
(2) if there is a graph morphism from L to G, then the result of applying any 

production L=>R to G should be well-defined. 
 
Intuitively the result of applying L=>R to a graph is given by replacing L by R 
in G. This suggests the morphism requirements: 
 
(3) if H is the result of applying L=>R to G, then there is a morphism from R 

to H 
(4) if the production L=>R is a morphism, then the result of applying L=>R 

to G is the pushout of L=>R and the occurrence of L in G. 
 
Do we want the definition of graph morphism to cover all possible graph 
productions? Intuitively one thinks of the application of L=>R to a graph is 
given by removing L, then inserting R. This suggests the flexible definition of 
a production as a pair of morphisms, < l: K->L, r: K->R >, and the 
requirements: 
 
(5) the production < l: K->L, r: K->R > can be applied to a graph G if there is 

an occurrence of K in a graph D such that G is the pushout of l: K->L and 
this occurrence. 

(6) the result of applying the production < l: K->L, r: K->R > to G is the 
pushout of r: K->R and the occurrence of K in D. 

 
There are two attitudes to the morphism requirements (1-6) and their 
demands for the existence of pushouts. The neat attitude is to require 
 
(7) the category of graphs has all pushouts; 
 
the scruffy attitude is to restrict the graph morphisms allowed in productions 
and occurrences, or even to force an implementation to check if a pushout 
exists. Any readers happy with the scruffy attitude can skip the rest of this 
section. 
      Are there any categories of graphs that satisfy requirements (1-7)? Yes, 
if we are prepared to modify "well-defined" in (2) to "well-defined for each 
pushout complement". In section 1 we saw many kinds of graphs could be 
associated with label sets (VL,EL). 
 If VL and EL are sets with a 'gluing' operation "."and we impose the 
continuity requirements: 

 vla (V li) = V vla(li)    ela (V ei) = V ela(ei) 
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on the functions in label morphisms, then all label pushouts exist. If we have a 
graph morphism from a graph G over (VL,EL) to an unlabelled graph G', then 

we have a fiber morphism: 
 
 lab" (v")  = V (lab(v)   ! ve(v) = v") 
 edge"(e") = V (edge(e) ! ed(e) = e") 
 
which takes G into a labelled graph G" over (VL,EL). Now we can give the 
correct definition of the morphism between labelled graphs. 
 

Definition1  A gluing morphism from a labelled graph G over (VL,EL) to a 
graph G' over (VL',EL') consists of : 
 
 continuous label morphism (vla,ela) and fiber morphism (ve,ed) 
 such that    lab' = lab";vla and ed' = ed";ela. 
 
Theorem  The category of labelled graphs, given by gluing morphisms, has 
all sums and pushouts. 
 
Proof  
This is given by a general theorem on indexed categories (TBG) but the 
argument for our particular case is instructive.  
 If one 'places' a labelled graph G over (VL,EL) 'beside' a graph G' over 
(VL',EL') , one gets a graph over (VL+VL',EL+EL') that is the sum G+G'. Now 
for the construction of the pushout of the graphic morphisms r: K => R and k: 
K => D. We have just constructed the  sum graphic R+D and we have to glue 
some of its vertices and edges together coherently. The graph pushout tells 
which vertices and edges must be glued together, and the label pushout tells 
what the labels of the glued vertices and edges must be. The continuity 
requirements on label and fiber morphisms ensure that this construction does 
give the pushout of r and k. 
 Where do the 'gluing' operations "." come from? The simplest case is 
when VL and EL are power sets and "." is set intersection or union. Another 
possibility is that VL and EL are families of closed sets and "." is given by  

 l.l' = closure of the union of l and l'. 

If G" is a graph over (VL",EL") and there is no obvious gluing operation on 
VL" and EL", then one can identify G" with a graph 
over (VL,EL) : 
 
 lab(v) = singleton (lab"  (v)) 
 edge(e) = singleton (edge"(e)) 
 
where VL is the power set of VL" and EL is the power set of EL". If there are 
natural preorders on VL" and EL" , then one can identify G" with a graph over 
(VL,EL) : 
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 lab(v)   = predecessor (lab"  (v)) 
 edge(e) = predecessor (edge"(e)) 
 
where VL is the ideal family of VL" and EL is the ideal family of EL". In both 
cases we get wellbehaved morphisms by attaching an index to a graph G, that 
is wider than its apparent index ( the vertex and edge labels that appear in 
G). 
 
 

#4 Logic, graphs and institutions 
 
One can reduce any kind of labelled graph G to sets of logical formulas. 

Whatever the kind of edge,one can define a dart as the occurrence of a 
vertex in an edge. If one has constant symbols for each dart in G and unary 
predicates for each vertex and edge label, then G can be described 
completely by  {lab(v), edge(e) ! <v,e> is a dart in G} , a set of atomic 
formulas. For most kinds of graphs we also have the structure and frame 
reductions.The label sets EL and VL give a signature  with a  predicate 
symbol for every edge or vertex label. Any graph G over EL and VL becomes 
a  -algebra when the graph vertices are collected into the carrier domain. 
Thus labelled graphs can be reduced to structures in the institution of first 
order logic. If we extend the signature  by adding constant symbols for the 
vertices and G, then all information about G can be expressed as 
formulas(frames) in the first order logic for the extended signature. Thus 
labelled graphs can be reduced to theories in the institution of first order 
logic. 
 An idempotent gluing operation "." can be captured by the equivalence 

 vl1(x) or vl2(x) iff vl3(x) 

whenever vl1.vl2=vl3. For reflexive graphs it is natural to have an extra 
viewpoint parameter in each atomic formula. Once one has viewpoints, one 
can capture graph productions L=>R by using 'left' viewpoints for L and 
'right' viewpoints for R. Usually a graph production L=>R can also be captured 
by structure morphism from the structure for L to the structure for R. 
However structure morphisms correspond to equivalence classes on sums, 
and our viewpoint construction is more general. 
 
Example ctd: The structure representation of the scene instance graph SIG 
has the carrier domain {c1,c2,c3,c4,c5,c6,r1,r2,r3,r4} and predicates: 
 
 Shore{c5,c6}, River{c3}, Road{c1,c2,c4}, Land{r1,r2,r4}, Water{r4}, 
 Join{c1c2,c2c1,c2c3,c3c2,c3c5,c5c3}, Cross{c3c4,c4,c3},  
 Loop{c5,c6}, Inside{c5r3,c6r4}, Outside{c5r1,c5r2,c6r3}, 
 Beside{c1r1,c2r1,c3r1,c3r2,c4r1,c4r2,c5r2,c5r3,c6r3,c6r4}. 
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The frame representation is given by introducing constant symbols 
{c1,c2,c3,c4,c5,c6,r1,r2,r3,r4} and converting the structure representation 
into atomic formulas. The structure representation of the graph morphism 
from SIG to the image instance graph IIG is given by adding predicates: 
 
 Chain{c1,c2,c3,c4}, Region{r1,r2,r3,r4},  
 Tee{c1c2,c2c1,c2c3,c3c2,c3c5,c5c3}, Chi{c3c4,c4,c3}, 
 Closed{c5,c6}, Interior{c5r3,c6r4}, Exterior{c5r1,c5r2,c6r3}, 
 Bounds{c1r1,c2r1,c3r1,c3r2,c4r1,c4r2,c5r2,c5r3,c6r3,c6r4}. 
 
In this example SIG and IIG share no predicate, so viewpoints are not needed. 
 The above reduction is suitable for static graphs, but for dynamic 
graphs one may prefer a signature of function symbols. We will only describe 
the reduction when edges with the same label have the same number of input 
and output vertices. Then the signature  can have a set of function symbols 
for each edge label, one for each output. Any graph G over EL and VL 
becomes a -algebra when the graph vertices are collected into the carrier 
domain, which also has an 'undefined' vertex "?". Thus labelled graphs can be 
reduced to structures in the institution of equational logic. If we extend the 
signature  by adding constant symbols for the vertices of G, then all 
information about G can be expressed as equations in the first order logic for 
the extended signature. Thus labelled graphs can be reduced to theories in 
the institution of equational logic. 
 
Example ctd: The plan in figure 14 can be described by the equations 

 SAIL(v1) = v2     ROW(v2) = v3    DRIVE(v3) =v4   

and the theories for the viewpoints: v1= "at shore6", v2= "at shore5", v3= 
"where river3 meets road2", v4= "where road2 meets road1". These theories 
can be combined if edge labels have viewpoint parameters. 
 Conversely institutions can be converted to graphs, if we have a way of  
 
(1) converting structures to theories(diagramming models in logic) 
(2) representing theories as graphs 
 
In most institutions (1) is not a problem as one can extend the signature by 
adding symbols as we did above. If the theories given by (1) can be 
generated from finitely many "atomic formulas" and we have a natural way of 
decomposing a signature into edge and vertex components, then  we can 
achieve (2). In a discussion of the reduction of logic to graphs, we should 
mention the reduction of rule-based systems to Petri nets in such papers as 
(MZ,PM,Zi). 
 Where do graph morphisms and productions come from? In an 
institution we have structure morphisms and signature morphisms. The 
signature morphisms give theory morphisms and (2) converts these into 
graph morphisms. Usually (1) converts structure morphisms into theory 
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morphisms and (2) converts these into graph morphisms. Usually we have a 
domain theory which specifies which structures are possible models of the 
domain.  
 
Example ctd: Most of the domain constraints in [MR] are captured by the 
'type inheritance' graph productions in figure 9. The six remaining constraints 
are: 
 
(1) Rivers do not cross 
(2) Shores form closed loops 
(3) Rivers do not loop 
(4) Shores separate land from water 
(5) Roads and rivers are beside land 
(6) Rivers flow into other rivers or into shores. 
 
Constraints (1), (3) and (5) are captured both by the scene design graph in 
figure 3 and by the productions in figure 7. Constraints (2),(3) and (4) are 
captured by the historical productions in figure 12. A slight modification of 
these historical productions also captures constraint (6). 
 Many of the domain axioms can be converted to proof rules and thence 
to theory and graph morphisms, but what of those axioms that can not? Our 
attitude is that they are constraints that control the uncertainty of the 
knowledge represented in a structure, and they too can and should be 
captured in graph productions. 
 
 

#5 Uncertainty in graph representations 
 
So far we have not exploited the fact that orderings on an index <VL,EL> 
give a natural order on graphs over the index. One can define "G' is an 

extension of G" as the "weak fiber morphism" 
 
 lab' (v')   V (lab(v)   ! ve(v) = v')  
 edge'(e')   V (edge(e) ! ed(e) = e')  
 
Any graph G can have many extensions G' and we are uncertain about which 
extension is "the actual state of affairs". Intuitively a knowledge 
representation graph G is "the known/believed state of affairs", and we 
should reject the notorious "closed world assumption" (that we tell "all the 
truth,and nothing but the truth" - sworn by every witness to british jury 
trials). 
 
Example ctd: All MapSee images can be interpreted as scenes by "all regions 
are land and all chains are roads", but interpretations with water regions and 
chains, that are shores or rivers, are much to be preferred. Heuristic graph 
productions must be used to get the scene instance graph SIG from the 
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graph IIG in figure 6.With the productions in figures 7 and 19 one can only 
get the extension of SIG,in which c1,c2 and c4 are still labelled as chains. This 
extension is also an extension of the scene graph SRG, in which c1 and c2 are 
rivers, but there is no morphism between SRG and the extension.  
 There is an enormous literature on uncertainty .... and most of the 
ideas can be translated into graph ideas. One can have probabilities and 
uncertainty factors on graph productions, vertex labels, and edge labels. This 
corresponds to applying productions L=>R ,not to a graph G to get a new 
graph H, but to probability distributions over graphs to get new probability 
distributions. In calculating the new probability distribution one should pay 
due attention to the 'pushout complement' phenomenon that for there may 
be 0,1,or many choices for K-> D in the application of a production. This 
phenomenon can give many chaos and fractal effects, particularly if the our 
'probability' distributions are really Schaeffer-Dempster or fuzzy distributions. 
 In the last decade there has been a trend away from statistics towards 
circumscription, default logics, and truth maintenance. In (Sh), Shoham shows 
that most of these methods of handling uncertainty are captured by 
preference relations on structures. One can maintain that representing 
knowledge about a domain can also include the representation of preferences 
- and preferences can also be represented by graph productions. 
 
Example ctd: Heuristic variants of two domain constraints 
 
(2') Closed loops are usually shores 
(6') Chains joined to shores or rivers are usually rivers 
 
can be given by graph productions (notice that the graph SRG, introduced 
above, should be preferred to SIG) 
 

join join

loop loop

join join

region shore

chain shore river shore

riverchain river river

 
 

f ig 19 Heuristic graph productions  
 
What about the natural inclusion order on structures ,mentioned at the 
beginning of this section? It corresponds to Occam's Razor, and we may or 
may not want to make these preferences for simplicity explicit as graph 
productions. 
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 In a series of papers (Do) one of the truth maintenance pioneers has 
been arguing for "rationality" rather than "logic".  
 Several AI authors have distinguished two kinds of beliefs 
 
 - manifest = explicit=assertions=axioms=base beliefs 
 - constructive=implicit=theorems=derived=inheritable=inferable. 
 
In the logical approach the constructive beliefs of an agent are a subset of 
the deductive consequences of its manifest beliefs. In the rational approach 
the manifest beliefs of an agent are specifications of its constructive beliefs 
and it can choose rationally between various ways of interpreting(=construing 
- hence constructive) its specifications. Different rational choices give 
different sets of constructive beliefs. One can think of the use of graph 
grammars to represent knowledge as an example of the rational approach to 
uncertainty. The manifest beliefs of an agent can be captured by a graph G 
and constructive beliefs are given by all possible applications of graph 
productions in the grammar to G. 
 
Example ctd. One can consider  the image instance graph,IIG, as the manifest 
beliefs of an agent, and the scene instance graph,SIG, as one of several 
possible constructive beliefs. 
 
 
Conclusion 
 
In (Do) we find: "To paraphrase Hamming , the purpose or aim of thinking is 
to increase insight or understanding, to improve one's view,so that, for 
instance,answering the question of interest is easy, not difficult. This 
conception of reasoning is very different from incremental deduction of 
implications. Instead of seeking more conclusions, rationally guided reasoning 
seeks better ways of thinking, deciding, and acting. Rational reasoning does 
not preserve truth, but instead destroys and abandons old ways of thought 
to make possible invention and adoption of more productive ways of thought. 
Correspondingly, the purpose of representation is to offer the best 
conclusions to draw rather than all the logically possible conclusions, to guide 
the reasoner towards the the useful conclusions, whether sound or unsound, 
and away from the useless ones, whether true or false." 
 This can be taken as an intuitive argument that formalising steps of 
rational reasoning as graph productions is sometimes better than formalising 
steps of logical reasoning as logical rules or implications. One has also the 
pragmatic argument: graph productions can take account of contextual and 
default information. 
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The four musicians: 
 

analogies and expert systems - a graphic approach 
 
In their paper "Graph rewriting with unification and composition" in the last 
GraGra conference (PEM) Parisi-Presicce, Ehrig and Montanari suggested that 
graph grammars might be useful in rule based expert systems. The idea is 
that graphs capture the relationships between facts, while graph productions 
capture rules for deriving new facts. In this paper we develop this idea using 
"graphics" (HM) instead of the usual arc and node labelled graphs. Graphics 
have the advantage of incorporating variables directly (pointed out to one of 
the authors by Ehrig) but they seem to have the apparent disadvantage that 
arcs are neither directed nor labelled. 
 Section1 describes how graphics can capture the information in the 
labels on directed arcs, so familiar from the semantic nets, conceptual 
schemes and other knowledge representations in data bases and expert 
systems. Section 2 describes how graphic productions can capture "rule" 
information: in traditional IF-THEN rules, in Prolog rules with assert and 
retract, and in type reasoning in inheritance hierarchies. Section 3 shows how 
graphic productions can also capture reasoning by analogy, not just logical 
reasoning. The final section gives various technical results about 
substitutions, -algebra changes, and the pushout problems that plague 
both (PEM) and (HM). It also shows that graphic grammars are yet another 
example of the general theory of institutions and galleries. 
 
 

#1 Graphics & directed arc labels 
 
A graphic is a graph where all vertices get elements of a -algebra as extra 
labels. More precisely: 
 

Definition 1 A graphic G over a -algebra A  and set L consists of 4 
functions 
 

L * A

Ver t i ces

Edges

s t

lab*atr

         s,t: Edges => Vertices        

         lab: Vertices => L                

         atr: Vertices => A 

As an example of a graphic consider
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Old              Needy

Rooster               Donkey                   Dog                 Cat

<rooster is old> <donkey is old and needy,     <dog is old and needy      <cat is needy>

                            Bremen(donkey) >               Bremen(dog) >

<rooster,donkey and dog are old>          <donkey,dog and cat are needy>

 
 

f ig 1 Graphic D1 over SIGMA  
 

This represents a small database with a binary relation "is" and a unary 
relation "Bremen". In the style of (PEM) this database would be represented 
by the graph 
 

Old              Needy

Rooster      Donkey           Dog           Cat
 

 
f ig 2 SC-graph for D1  

 
where the arcs should be labelled "is" and there should be two loops labelled 
"Bremen". 
 This example illustrates our general method of converting label 
information on directed arcs to atomic formulas in attribute values: 
 

• each arc label becomes a predicate symbol 
• each node label becomes a constant symbol 
• each arc becomes an atomic fact 
• each atomic fact is attached to the nodes at the end of the 
 corresponding arc as part of their attribute value. 
 

For the sake of readability we use infix notation for binary predicates and 
obvious linguistic conventions, so 
 

<is(rooster,old),is(donkey,old),is(dog,old)> 
 

becomes  < rooster,donkey and dog are old>. 
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Remark 
As there is no reason why arc labels should be binary predicate symbols,our 
conversion method also works for directed hypergraphs. Some data base 
systems (Ge,Ul) use such hypergraphs for "representing conceptual 
knowledge". 
 We must show that our attribute values,sets of atomic formulas, are 
elements of a -algebra. Let ' be the signature of predicate and constant 
symbols given by the arc and node labels of a graph. Define  as the 
extension of  ' given by adding a sort atom , and operations 
 
 , : individual x individual => individual 
 • : atom  x atom  => atom . 
 
Attributes take values in the term algebra T( ,V) where V is a set of 
variables. 
 
In our examples the signature    will be : 
 
rooster,donkey,dog,cat,crow,hoof,teeth,claws, 
judge,monster,assassin,witch,judgement,club,knife,nails,  
old,needy,worried,creature,domestic,cottage,   : individual 
, :  individual x individual  =>  individual 
: individual => individual,Bremen : individual  =>  atom 

is,uses,Musician,attacks_with : individual x individual =>  atom 
                                                      :  atom   x  atom =>  atom 
• 

 
We will use three  -algebras: 
 

SIGMA the term algebra T( )   with no variables  
SIGVAR the term algebra T( ,{x,y}) with two individual variables  
ROBBER a term algebra we introduce in section 3. 

 
When we write that a graphic is over a  -algebra A, we also specify that its 
label set is A's carrier domain for "individual". We will often write "formula 
set" for the combination of terms using ".". 
 The kinds of graphs used in (PEM) for representing relationships 
between facts are the SC-graphs where one has preordered sets, CA and CN, 
and functions 
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  Nodes

 Arcs

s t

CN

C A
 arc_colour

node_colour

          s,t: Arcs => Nodes       

          arc_colour :  Arcs  => CA               

          node_colour: Nodes => CN

 
 
Any SC-graph can be converted into a graphic. One can take CN as L and 
define  as: an individual constant for each graph node, a predicate  
Ca: Node*Node -> atom for each arc colour in CA, and a conjunction operator 
".". As the  -algebra A one can take the term algebra T( ) .For each node n 
in the SC-graph, the attribute value is the formula set: 
 
 Ca(m,n) for each arc from m to n with colour Ca 
 Ca'(n,m) for each arc from n to m with colour Ca' 
 
and its label is its nodecolour. In the same way that we added "." earlier, we 
can convert the preorders in CA and CN  into equations 
 
 Cn = Cn,Cn'    for Cn'  Cn 
 Ca(m,n) =Ca(m,n).Ca'(m,n) for Ca  Ca'. 
 
Remark 
We use " " for both preorders (reflexive and transitive relations) and x~y for 
the "interchangeability" relation: x y and y x. When the preorders are trivial 
(x y iff x=y), we get the usual labelled graphs. If CN has only one element 
and CA has the trivial preorder, then we have the much studied labelled 
transition systems. When the preorders are flat (x y iff x=y or y=top) we get 
the partially coloured graphs with top as a new colour for 
"unknown","absent" or "transparent". The sets CA and CN can be 
lattices,unified algebras(Mo), or Boolean algebras. 
 In her work on type inheritance hierarchies (Pa) Lin Padgham has 
introduced an interesting kind of graph in which node labels have a lattice 
structure. These graphs, which she uses to clarify the traditional Clyde, 
Tweety and Nixon examples, can also be converted to graphics. Her graphs 
capture the distinctions made in earlier type inheritance hierarchies; in 
particular they capture Etherington's distinction in (Et) between "strict is a", 
"default is a", "strict is not a", "default is not a", and "exception" arcs. In 
(Pa) nodes are labelled by "sets of characteristics" and there are several 
kinds of nodes. There are two kinds of arcs: directed arcs for  in the label 
lattice (usually inclusion), and undirected arcs for "inconsistent labels". As an 
example consider 
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Old

Worried

Creature

Domestic

Donkey  
 

f ig 3 Type inheritance graph  
 

where circles represent "core nodes" and triangles represent "default 
nodes". Here the undirected arc represents 

 'Typical domestic creatures never worry' 

and the directed arcs represent such beliefs as 

 'Old creatures always worry' 
 'Creatures often worry' 
 
There are two ways of converting type inheritance hierarchies into graphics. 
One can introduce new predicate symbols in  so our example becomes the 
graphic 
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<donkey is old,

 old is creature

 old is worried>

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old>

 domestic is creature

<old is worried,

 creatures often worry,

 domestic seldom worries>

 creatures often worry>

 domestic seldom worries>

 
 

f ig 4 Graphic D2 over an extension of SIGMA 
 
Alternatively one can introduce a unary function symbol ' ' so our example 
becomes the graphic 
 

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old>

 domestic is creature

<donkey is old,

 old is creature

<old is worried,

 creature  is worried ,

 domestic  is not worried>

 old is worried>

 creature  is worried >

 domestic  is not worried>

 
 

f ig 5 Graphic D3 over SIGMA   
 

In the next section we show how graphic productions can capture type 
inheritance reasoning. 



36 

 From the logical programming viewpoint what we have done in this 
section is very natural. A graphic can be built on any collection C of facts in 
a logical programming language such as PROLOG. For each constant or 
variable cv, there is a vertex in G with label cv. The attribute value of the 
vertex cv is the set of facts in C that mention cv. There is an edge between 
cv1 and cv2, whenever there is some fact in C that mentions both cv1 and 
cv2. For an example the reader can take any graphic in this section as G, 
and the union of the attribute values at its vertices as C. Note also that one 
can have vertices in a graphic for Prolog predicate symbols. The attribute 
value for such a vertex is the atomic formulas using the corresponding 
predicate.We shall often use this option,our decision that Bremen' should be 
a predicate and 'old' an individual was arbitrary. 
 The approach in the last paragraph can be used for any 
institution(GB) or gallery(Ma). Any finitely presented theory in any 
institution or gallery can be represented as a graphic. However the approach 
may give pretty weird graphics, if one does not keep our separation 
between atomic formulas and the rules to drive more complicated formulas. 
Such rules should be represented as graphic productions. 
 
 

#2 Productions and rules 

 
In this section we describe how graphic productions can capture "rule" 
information: in traditional IF-THEN rules, in Prolog rules with assert and 
retract, and in type reasoning in inheritance hierarchies. Consider a rule like 
"if two old and needy creatures meet in Bremen, then they can form a 
musical group". In (PEM) this rule would be represented as a graph 
production 
 

Old              Needy

x  musicians   y

Old              Needy

x                    y

=>

 
 

f ig 6 SC-graph production  
 
and the partial ordering x  Bremen, y  Bremen. We will give a graphic 
production for this rule,after we have defined what strict graphic morphisms 
are. 
 
Definition 2 A strict morphism from a graphic (s,t,lab,atr,L,A) to a graphic 
(s',t',lab',atr',L',A') consists of a graph morphism (ve,ed) and 
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L * A

Ver t i ces

Edges

s t

lab*atr

L' * A'

Vert ices '

Edges'

t'

lab'*atr'

s'

  ed

 la*at

ve

la: L=> L'

at: A=>A'

such that

lab';ve = la;lab

atr';ve = at;atr

 
 
where at is a -algebra homomorphism. Strict graphic morphisms  suffice for 
all our examples, but technical problems force us to define a more general 
notion of graphic morphism in the last section. Let us show that there is a 
strict morphism from the graphic L1 
 

Old              Needy

x                    y

<x and y are old> <x and y are needy>

<Bremen(x),x is old and needy>  <Bremen(y),y is old and needy>  
 

f ig 7 Graphic L1 over SIGVAR  
 
to the graphic R1 
 

Old              Needy

x                    y

<x and y are old> <x and y are needy>

<Bremen(x),x is old and needy,  <Bremen(y),y is old and needy

                   Musician(x,y)>                              Musician(x,y)>  
 

f ig 8 Graphic R1 over SIGVAR  
 
The obvious embedding as labelled graphs and the definition: 
 
at(S) = if Bremen(x) or Bremen(y) in S then S U{Musician(x,y)}   else S 
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give the required graphic morphism r1 from L1 to R1.Graphic morphisms can 
do many things: (1) add or remove vertices, (2) add or remove edges, (3) 
change vertex labels, (4) change attribute values.Our morphism r1: L1 => 
R1 illustrates only (2) and (4) and it is monotonic in that: it is an embedding 
of labelled graphs and  at(S) always contains S. 

 There is an occurrence of L1 in our earlier graphic D1; if one 
substitutes  'donkey' for x and 'dog' for y, one gets a graphic morphism d: L1 
=> D1. The label part of the morphism is given by :  

 la(cv) = if cv is x then donkey else if cv is y then dog else cv  

and  this substitution gives the attribute part :  

 at(S)  = the result of applying substitution la to S.  

The pushout of this graphic morphism d with the 'rule' morphism  
r1: L1 => R1 gives the graphic H1: 
 

Old              Needy

Rooster               Donkey                   Dog                 Cat

<rooster is old> <donkey is old and needy,       <dog is old and needy,         <cat is needy>

         Bremen(donkey),Musician(donkey,dog)>  Bremen(dog),Musician(donkey,dog)>

<rooster,donkey and dog are old>          <donkey,dog and cat are needy>

 
 

f ig 9 Graphic H1 over SIGMA  
 
Later we will show that the pushouts of graphic morphisms always exist, but 
now we define graphic productions. 
 

Definition 3 A graphic production is an ordered pair of graphic 

morphisms l: K => L and r: K => R . It is simple if l is an identity. 

It is logical if K,L,R are graphics over the same -algebra. 
 
 The graphic production (l,r) can be applied when one has a graphic 
morphism d: K => D and the pushout diagram 
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L      K      R

G      D      H 

po po

l         r

g h

g'        h'

l         rL      K      R

G      D      H g'        h'
 

 
f ig 10 (normal) Application of a (logical) production  

 
shows how the production transforms G to the graphic H. Sometimes the 
application of graphic productions can give surprises (more on this in the 
last section), and it might be wise for an expert system to keep to normal 
applications. 
 

Definition 4 The application of a logical graphic production (l,r) is normal if 
the label and attribute parts of the pushout morphisms  g: L=>G, h: R=>H  
are the same as those in d: K=>D. 
 
Our example showed a normal application of the simple graphic production 
(id,r1:L1=>R1), but more general graphic productions are also useful in 
expert systems; to quote (PEM): 
 

"This allows for a uniform treatment of 'forward chaining' systems, 
where changes in the working memory data produce a match for the 
left hand side of a rule which can then be applied, and 'backwards 
chaining' systems where rules are examined in search for a match with 
a fixed goal". 

 
We should note the 'applicability' problem with graphic productions: to 
determine if a production (l:K=>L,r:K=>R) can be used to transform a 
graphic G, one needs the morphism d:K=>D - it is not enough to find a 
morphism g:L=>G. There may be zero,one or many morphisms d, whose 
pushout with l is g. Nevertheless for all simple productions and most 
productions, that arise in practice, there is a unique d for any g. 
 Our example of a graphic production is close both to the 
corresponding Prolog rule: 
 
  Musicians(x,y) :- Bremen(x),Old(x),Needy(x),Bremen(y),Old(y),Needy(y). 
 
and to the running example of a rule in (PEM): 
 

"if two women have the same mother, then they are sisters". 
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From the discussion at the end of the last section, it is clear that any 'pure' 
Prolog rule gives a simple graphic production. If the rule also uses assert, 
the corresponding graphic production is still simple because assert can only 
add new edges and extend attribute values. Only when a rule uses retract 
do we have to go beyond simple productions and let the graphic morphism 
l:K=>L remove edges and reduce attribute values. Note however that assert 
and retract  have no influence on the unifier when a Prolog rule is applied. 
This corresponds to the fact that the substitution map is determined by the 
occurrence map d:K=>D when a graphic production is applied. 
 For another example of (PEM)'s "rules containing reasoning knowledge 
... represented by graph productions" let us look at type inheritance 
reasoning. Previous techniques for type reasoning(Et,Sa,To) are all captured 
in (Pa) where Padgham describes  her version of type reasoning in a way 
that we can translate into graphic productions. One of these productions is 
 
(INH)        x _________ y              =>     x ______________ y 
             < x is y>    <x is y,P(y)>            <x is y,P(x)>      <x is y,P(y)> 
 
Using this repeatedly on the graphic D3 gives 
 

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old creature,

  donkey  is not worried,

  donkey  is worried ,

  donkey is worried>

 domestic is creature

<donkey is old,

 old is creature

<old is worried,

 creature  is worried ,

 domestic  is not worried>

 old is worried,

 old  is worried >

 creature  is worried >

 domestic  is not worried

 domestic  is worried >

 
 

f ig 11 Graphic H2 over SIGMA  
 
Clearly we need productions like 
 
(DEL)         x__________________y     =>     x __________ y 
                <x is y,x  is not y>   <x.is y>         <x is y>      <x is y> 
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to remove 'default' information when it conflicts with 'core' information. 
Using this production we can delete the unwanted   
'donkey  is not worried' from the attribute of 'Donkey' in the graphic H2. 
 So far we have not seen graphic productions that create new vertices, 
so we give 
 
       y             =>       x __________ y 
      <>                     <x is y>      <x is y> 
 
Using this production one can add old roosters,cats and dogs to the 
graphic H2. For any symbol in the signature  we can introduce a 
production for introducing facts using the symbol into graphics. 
 
 

#3 Analogies 
 
There is a large literature on reasoning by analogy (Pr), and some of it 
is concerned with whether an analogy is a map of a situation G into a 
situation H  or whether G and H must have a common structure or 
pattern D. This dispute is related to whether analogies should be 
modelled by simple graphic productions or whether we need 
productions that are not simple. Although we do not take sides in this 
dispute, we simplify this section by only using simple graphic 
productions. 
 Frequently situations can be described by graphics and a map 
from situation G into situation H can be described by a graphic 
morphism. We maintain that the interesting  'analogy' graphic 
morphisms are pushouts of simple graphic productions. 
 

Definition 5  A graphic production (l:K=>L, r:K=>R) is analogical if L 
and R are over different -algebras. 
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Rooster

<rooster uses crow>

Cat

<cat uses claws>

Donkey

<donkey uses hoof>

Dog

<dog uses teeth>

                 Crow

<rooster uses crow>

                 Hoof

<donkey uses hoof>

Teeth

<dog uses teeth>

Claws

<cat uses claws>

                    Judge

<judge attacks_with

          judgement>

                Judgement

<judge attacks_with

                judgement>

Witch

<witch attacks_

   with nails>

            Monster

<monster attacks_

  with club>

Assasin

<assasin attacks_

  with knife>

                    Club

<monster attacks_with

                     club>

Knife

<assasin attacks_with

 knife>

Nails

<witch attacks_with

nails>  
f ig 12 Analogical graphic production from L4 to R4  

 
In this example the signature  is that given in section1, the graph part 
of the morphism is trivial and the other parts are given by the -
algebra homomorphism at: SIGMA => ROBBER 
 
 rooster -> judge crow  -> judgement 
 donkey -> monster hoof  -> club 
 dog  -> assassin teeth -> knife 
 cat  -> witch nails  -> claws 
 uses  -> attacks_with. 
 
The domain of the morphism is the -term algebra SIGMA, the 
codomain ROBBER is also a 'linguistic' -algebra with 'words' (formula 
sets) as elements of the carrier for 'individual' ( atom) The 
homomorphism at is a "quotient" and ROBBER is the result of dropping 
all terms with "rooster, donkey, dog, cat, uses, crow, hoof, teeth, 
nails" from SIGMA. Applying this production to the graphic 
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Cottage <rooster,donkey,dog and cat in cottage>

Rooster

<rooster in cottage,

 rooster uses crow>

Cat

<cat in cottage,

  cat uses claws>

Donkey

<donkey in cottage,

  donkey uses hoof>

Dog

<dog in cottage,

  dog uses teeth>

                 Crow

<rooster uses crow>

                 Hoof

<donkey uses hoof>

Teeth

<dog uses teeth>

Claws

<cat uses claws>  
f ig 13 Graphic D4 over ROBBER  

 
gives the graphic 
 

                    Judge

<judge in cottage,

 judge attacks_with

          judgement>

                Judgement

<judge attacks_with

                judgement>

Cottage <judge,monster,assasin and witch in cottage>

Witch

<witch in cottage,

  witch attacks_

   with nails>

            Monster

<monster in cottage,

  monster attacks_

  with club>

Assasin

<assasin in cottage,

  assasin attacks_

  with knife>

                    Club

<monster attacks_with

                     club>

Knife

<assasin attacks_with

 knife>

Nails

<witch attacks_with

nails>

  
fig 14 Graphic H4 over ROBBER  

 
This example shows no surprises  because it illustrates a normal application 
of an analogical graphic production. 
 
Definition 6 The application of an analogical graphic production (l,r) is 

normal if the label and attribute parts of the pushout morphisms 
 
 g': D=>G, h': D=>H 
 
are the same as those in l: K=>L, r: K=>R respectively. 
 
Our approach to analogies assumes that 'situations' can be described by 
graphics. Whenever situations can be described by terms in a -algebra, and  
a map from situation G into situation H can be described by a -algebra 
homomorphism, this assumption is reasonable. The discussion at the end of 
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section 1 about graphics for collections of logical facts in Prolog - indeed 
any logical programming language, institution or gallery - shows that the 
assumption is highly reasonable. 
 
 

#4 Technicalities 
 
In this section we define the precise notion of graphic morphism in such a 
way that pushouts of graphics always exist. The underlying idea is that 
graphic morphisms must be continuous in operations for 'gluing' labels and 
attributes. 
 Presentations of a graphic only reveal part of the label set L and the 
underlying -algebra A ; the range of 'lab' is only a subset of L, the range of 
'atr' is only part of A and some of the -symbols may not be mentioned. 
Presentations of graphics must be supplemented with a specification of L 
with its gluing operation "," and A with its gluing operations ".". 
Presentations of a graphic morphism only reveal part of the underlying 
labelling function 'la' and -algebra homomorphism 'at'. 
 We will assume that each label set L has a binary operation "," and 
each -algebra A has a binary operation ".". We assume these binary 
operations are associative and commutative. We will write 
 
 , S for l1.l2.l3 when S = (l1,l2,l3,..)  is a subset of L 
 . S for a1,a2,a3 when S = (a1,a2,a3...) is a subset of A 
 la: L => L' for la: L => L'  such that la(l1,l2) = la(l1),la(l2) 
 at: A => A' for at:A => A' such that at(a1.a2)  = at(a1),.at(a2). 
 
There is no loss of generality with our assumptions, because one can always 
replace L and each carrier domain of A by their power sets, so union is 
available for "." and ",". 
 
Definition 7 A morphism from a graphic (s,t,lab,atr,L,A) to a graphic 
(s',t',lab',atr',L',A') consists of a graph morphism (ve,ed) and 
 
 la: L => L'  such that lab';ve = la;lab  
 at:A => A'  such that atr';ve = at;atr 
 
where at is a -algebra homomorphism,  

lab(v) is ,{lab(v)! ver(v') = ver(v)} and atr(v) is .{atr(v')! ver(v') = ver(v)}.  

Our earlier definition of strict graphic morphisms corresponds to the case 
when lab = lab and atr = atr. All of our examples have also had 'la' and 'at' 
generated from a total map on 'singletons', but partial maps also generate 
strict graphic morphisms. 
 
Example  
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Let A and A' be SIGVAR,the term algebra when variables are allowed. Let L 
and L' be the carrier domain for individual in SIGVAR. Any substitution sub: 
Var -> L gives : 
 
 la: L => L'  where at(l) is result of applying sub to l 
 at:A => A'  where at(a) is result of applying sub to a. 
 
Any graph morphism (ve,ed) gives a graphic morphism (ve,ed,la,at). Such 
graphic morphisms are called 'graphic substitutions'. 
 Any graphic morphism can be split into a graph morphism, a label 
function la and a -algebra homomorphism 'at'. Each graphic morphism r = 
<rve,red,rla,rat> from K to R is the composition of two graphic morphisms:   
 
 <rve,red,id,id>,     <id,id,rla,rat> 
 

L * A

Ver t i ces

Edges

s t

Vert ices '

Edges'

t'

lab'*atr'

s'

  ed

id*id

ve

L A A'L' *
*

*lab atrlab*atr

 la*at
L A*

*lab atr

 
 

f ig 15 Decomposition of a graphic morphism  
 

in either order. In (PEM, lemma 3.7) there is a similar splitting of 'SC-graph 
morphisms' into first 'g-substitutions' then 'colour preserving graph 
morphisms',but this order matters because 'g-substitutions' may not be 
continuous. 
 
Comment 
Now we can be more precise about what can be done by a graphic 
morphism r: K => R 
 
(1') r can add vertices - ve need not be a surjection 
(1'') r can glue vertices - ve need not be an injection 
(2') r can add edges  - ed need not be a surjection 
(2'') r can glue edges  - ed need not be an injection 
(3) r can change labels - even if la is identity, 
   the label of glued vertices may change 
(4) r can change attributes - even if at is identity, 
   the attribute of glued vertices may change. 
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When a graphic production (l: K => L, r: K => R) is applied to a graphic G, it 
may remove vertices and edges because the morphism l can add vertices 
and edges. 
 Suppose we have another graphic morphism k = <kve,ked,kla,kat> 
from K to D. As graphs, sets and -algebras have pushouts, one can form 
the pushout of our graphic morphisms. One might expect trouble with the 
vertices in R+D that must be glued together.However the morphism 
requirements: 
 
 Rlab;rve = rla;Klab  Ratr;rve = rat;Katr   
 Dlab;kve = kla;Klab Ratr;kve = kat;Katr   
 
show that glued together vertices get the label la''(Klab(v)) and attribute 
at''(Katr(v)), where la'' is the pushout of rla and kla, and at'' is the pushout 
of rat and kat. Thus pushouts of graphic morphisms always exist and the 
problems of (PEM) were caused by the fact that their 'g-substitutions' do 
not always have pushouts. Note also that their 'g-substitutions' are 
somewhat more general than our graphic substitutions, because they do not 
insist on our 'vertex-independent functions', la and at. 
 

Definition 8 A C-surprise is a  pair (k,r) of graphic morphisms in the class C 
whose pushout is not in C. 
 

 A surprise is a pair (k,r) of graphic morphisms whose label and 
attribute parts satisfy neither k= r;f nor r= k;f for any morphism f. 
 
Usually C-surprises are also surprises, because k = r;f gives the pushout k;id 
= r;f, r=k;f gives the pushout r;id = k;f, and C is a full subcategory of 
graphics. 
 For C we can take the class of graphic substitutions. Since 
substitutions do not usually commute, the pushout of two substitutions is 
rarely a substitution. As the pushout of two substitutions, s1 and s2, is s3( 
x) = ( s1(x).s2(x), s2(x).s1(x)), we get a graphic substitution surprise, 
when d and r are graphic substitutions that do not commute. We are 
surprised to find that vertex labels and attributes are complex terms with 
gluing operations. In logical graphic productions for "logical reasoning in 
expert systems" one usually has identity substitutions in the algebraic part 
and there will be no overlap with any substitution in K=>D. Pushouts will be 
substitutions,and there will be no surprises. 
 Let us continue our search for natural classes of graphic morphisms 
that rarely give surprises.Remember our 2-way splitting of graphic 
morphisms. It gives a 2-way splitting of pushouts 
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GD GH LD LH AD AH
dve,ded dla dat

GK GR LK LR AK AR
rve,red rla rat

kve,ked hve,hed kla hla kat hat

K        R

D        H

r

d
k h

 
 

fig 16 Decomposition of pushouts  
 
The graph pushout just tells about "gluing", it never gives surprises. The 
label pushout does not give surprises if we have either   LK = LR   LD = LH   
kla =hla     or  LK = LD LR = LH  rla = dla. The attribute pushout does not give 
surprises, if we have either   AK = AR   AD = AH   kat =hat     or  AK = AD AR 
= AH  rat = dat. This analysis shows why normal applications of both logical 
and analogical productions do not give surprises.  
 Graphics and their morphisms form a category GGraphic which has 
several interesting subcategories. Many of the graphics and graphic 
morphisms in this paper have four common properties; they are algebraic, 
proper, powered and linguistic. 
 

Definition 9 A graphic over A is algebraic if its label set L is a subset of A. 
A graphic morphism r: K =>R is algebraic if rla is the restriction of rat to the 
label set of K. AAgraphic  is the category of algebraic graphics and 
morphisms. 
 
This category is attractive because one does not have to treat labels and 
attributes separately. All the graphics in this paper are algebraic; we have 
followed the convention: the label set L for A is its carrier domain for 
'individual'. 
 

Definition 10 A graphic over A is powered if its attribute values are 
sets. A graphic morphism r: K =>R is powered if rat is  a monotonic function 
on sets. 22graphic  is the category of powered graphics and morphisms. 
This category is attractive because unions and intersections of sets are 
natural interpretations of our gluing operations. All the graphics in this 
paper are isomorphic to powered graphics; one can replace terms like d by 
the singleton {d} and terms like d1.d2.d3 by the set {d1,d2,d3}. In all our 
figures we have made this replacement. 
 

Definition 11 A graphic over A is linguistic if A is given by a signature 
morphism from  . A graphic morphism r: K =>R is linguistic if la and at are 
given by a signature morphism. LLgraphic is the category of linguistic 
graphics and morphisms. 
 
A signature morphism from  to ' is a function from the symbols and 
variables of  to the symbols and variables of '. Every signature 
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'corresponds to a context-free grammar by : constants map into 
terminals, sorts map into non-terminals, and for each operation op:s1.s2...-> 
s0 one has both a terminal 'op' and a grammar production 

 s0 ::= 'op(' s1 ',' s2 .... ')' 

The language generated by this grammar is exactly the term algebra T( '), 
and it is a   -algebra when one has a signature morphism from  to 
'.When  is the signature in section 1, the identity signature morphism on 
 gives SIGMA, the embedding of   in   U {x,y}  gives SIGVAR, and the 

signature morphism in section 3 gives ROBBER. Each of these signature 
morphisms gives a linguistic morphism. 
 

Definition 12 A graphic over A is reachable if its labelling and attribute 
functions can be factored through the term algebra. A graphic morphism r: 
K =>R is reachable if it can be factored through the term algebra. RRgraphic  

is the category of reachable graphics and morphisms. 
 
This category is attractive because all vertices of a reachable graphic have 
"names" and two vertices with the same name have the same label and 
attribute values. Almost all of the graphics in this paper are reachable 
because their vertices have different " -individuals" as labels. For more on 
categories of reachable objects and the connection to the theory of 
institutions and algebraic specifications, one can consult (AT). 
 It is instructive to make the category RRgraphic into a gallery RRG. The 
signatures of RRG are the usual signatures of first order logic. The structures 
of RRG are the usual   - algebras, supplemented by a labelset.The frames of 
RG are the  graphics over the term    - algebras. The valuation function of 
RG is given by  
 
 val(A,L,e) = the graphic with the same graph as e but 
    atr is the A-interpretation of the e-attribute  
    lab is the L-interpretation of the e-labels 
 

One gets interesting subgalleries of RRG, if one places restrictions on the 
structures. One can restrict to the algebraic structures (A,L) where L is a 
designated subset of A and structure morphisms (at,la) have la as the 
restriction of at to L. One can restrict to the powered structures (A,L), 
where all terms interpreted as sets. One can restrict to the linguistic 
structures (A,L) , where all terms are interpreted as sentences in a 
grammar. 
 Let us close this paper by describing "the passage to the metalevel". 
Once we have RRG  or any of its subgalleries we can apply the construction 
at the end of section1 to get "metagraphics". Thus we can define C as the 
collection of graphics in this paper, we can introduce "metavertices" for 
each vertex label, "metaedges" between metavertices whose attributes 
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overlap - i.e. metavertices that occur together in some graphic in this 
paper-and then build a large metagraphic: 
 
 metavertexlabel  metavertexattribute 

 Rooster     H1,D1,D4,L4 
 Dog    H1,D1,D4,L4 
 Cat    H1,D1,D4,L4 
 Donkey   H1,H2,D1,D2,D3,D4,L4 
 Creature   H2,D2,D3 
 Worried   H2,D2,D3 
 Domestic   H2,D2,D3 
 Old    H2,D1,D2,D3,L1,R1,H1 
 Needy   L1,R1,H1,D1 
 x    L1,R1 
 y    L1,R1 
 Crow   L4,D4 
 Hoof    L4,D4 
 Claws   L4,D4 
 Teeth   L4,D4 
 Cottage   L4,D4,H4 
 Judge   R4,D4,H4 
 Monster   R4,D4,H4 
 Assassin   R4,D4,H4 
 Witch    R4,D4,H4 
 Judgement   R4,D4,H4 
 Club    R4,D4,H4 
 Knife   R4,D4,H4 
 Nails    R4,D4,H4 
 
Our way of constructing metagraphics seems to mirror quite precisely  the 
widespread use of metafacts and metarules in practical expert systems. 
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