

Graph Grammars for Knowledge Representation

Abstract

Two papers to be presented at the March 1990 GRAGRA meeting in
Bremen: the more general

“Representation of knowledge using graph grammars”

which argues for graphs as the universal KR formalism. The more specific

“The four musicians: analogies and expert systems - a graphic approach”

which demonstrates the use of graphics for type inheritance and analogical
reasoning.

1

Representation of knowledge

using graph grammars

Many ingenious ways of representing knowledge have been devised and
incorporated in "knowledge based" programs-for surveys see (Enc, Th ch.3).
However only some of these KR techniques have been formalised. Usually
logic is used for these formalisations, and the author has suggested
"institutions" as a universal formalism (Ma), but graphs seem to be an
attractive alternative. One of the attractions is that rules in graph grammars
can be more expressive than logical proof rules so that nonmonoticity and
other logical troubles are less apparent. The first two sections of this paper
demonstrate this expressiveness by surveying some of the ways graphs can
represent knowledge. Section 1 starts with a survey of various kinds of
graphs, and section 2 starts with a discussion of 'dynamic' graphs where the
vertices or edges represent actions, processes, procedures or productions.
Section 3 gives a solution to the tricky problem of "when can a graph
rewriting rule be applied to a graph?". Section 4 compares the graph and
logic approachs to knowledge representation. Section 5 is devoted to the
graph approach to uncertainty. Throughout the paper we use MapSee as the
running example because it was the running example in a recent paper(RM)
that argued for logic as a universal formalism.

r

c

c'

r4

c6

r3

c5

c1

c2

c3

c4

r1

r2

tee(c,c')

chi(c,c')

closed(c)

bounds(c,r)

interior(c,r)

exterior(c,r)
c

c

c

c

r

r

c

'
c'

f ig.1 Sketch map

MapSee is used to illustrate the representation of knowledge in data-
bases(#1.1), semantic nets(#1.2,#2.2), type inheritance(#1.3), conceptual
structures(#1.4), logical programs(#1.5), planning(#2.1), hypermedia(#2.3),
simulation(#2.4), and linguistic attribute grammars(#2.5).

#1 Representation of static knowledge

2

Let us start by trying to bring some order in the wide variety of mathematical

objects that have been called labelled graphs.Let us agree on the name index
for a pair of label sets <VL,EL>. EL and VL may be ordered sets and even
have operations. In our theory label morphisms from (VL,EL) to (VL',EL') will
play an important role, particularly the morphisms given by type assignments.

A label morphism is a pair of functions,

 la = <vla:VL->VL', ela:EL->EL'>

that satisfy various requirements. These requirements depend on what one
means by a graph G over index <VL,EL>. For any kind of labelled graph G one
has two functions

 lab: Vertex(G) -> VL edge: Edge(G) -> EL

where Vertex(G) is a set of vertices and Edge(G) is a set of edges. But what
is an edge? Possible answers are shown in figure 2.

(pair)

(set)

(multiset)

(transition

 system)

(set pair)

(sequence)

(Petri

 system)

(pomset)

fig2 various kinds of grap h edges

unordered pair of vertices

subset of Vertex

function from Vertex to N

ordered pair of vertices

two subsets of Vertex

two functions from Vertex to N

function from N to Vertex

partially ordered multiset
of vertices

f ig 2 Various kinds of graph edges

The most general notion of edge is given by (pomset) but the other
notions are much more convenient in practice. Each notion of edge
gives a natural notion of morphism from one unlabelled graph G to
another G' :

 functions ve:Vertex(G) -> Vertex(G'),ed:Edge(G) -> Edge(G')

3

such that for each edge e in G we have

 ed(e) is identical to the edge ve(e)

where ve(e) is the edge e after ve has renamed its vertices. Note that we
allow different edges in a graph to be identical as such edges may be given
different edge labels.
 For each notion of edge we have a natural category CC of unlabelled
graphs that is well-behaved - CC has all sums and pushouts. For each notion
of edge we also have a tempting notion of morphism from a labelled graph G
over (VL,EL) to a graph G' over (VL',EL'):

 label morphism (vla,ela) and graph morphism (ve,ed)

such that

 lab;vla = ve;lab' and edge;ela = ed;edge'

This definition works well for the examples in this section and the next, but it
gives a category which behaves so badly that there are grave implementation
problems. In section 3 the definition is modified so that the resulting
category is well behaved because it is the flattening of an indexed category.

In sections 1.4 and1.5 we will meet several examples of reflexive graph

grammars - static graph grammars where vertices and/or edges can
themselves be static graphs. More study should be devoted to this special
case of static graph grammars.

#1.1 Relational databases

In the conceptual design of a relational data base one devises a set of relation
names and one assigns attributes to each relation name. The conceptual
design is given by a signature ; for each subset M of attributes we have a
set (M) of relation names. This conceptual design can be represented by a
labelled hypergraph with a vertex for each attribute and a hyperedge for each
relation name. The label of a hyperedge is the corresponding relation name;
the label of a vertex is the corresponding attribute.

4

r i v e r road sho re wate r

land

loop
cross

join join

join join

cross

join

beside

inside

outside

f ig 3 Scene design graph SDG

At any time during the life of design the actual data base is a
collection of 'tuples',instances of relations. The actual database
can also be represented as a labelled hypergraph with an edge for
each tuple and a vertex for each attribute that occurs in a tuple.

sho re

wate r

sho re

land

r i v e rr i v e r

land

land

r i v e rroad

road

road

loop

loop

join

join

join

join

cross

5

3

6

4

2

1

4

 1

 2

3

f ig 4 Scene instance graph SIG

There is a graph morphism from the instance graph SIG to the design graph
SDG, and there is a label morphism from our design to an alternative design
'

5

cha in region

chi

tee

closed
bounds

interior

exterior

f ig 5 Image design graph IDG

The instance graph SIG is inferred from the "observed" instance graph IIG

cha in

cha in

reg ion

r i v e rcha in

reg ion

reg ion

r i v e rcha in

cha in

cha in

closed

closed

tee

tee

tee

tee

chi

5

3

6

4

2

1

4

 1

 2

reg ion
3

f ig 6 Image instance graph IIG

using graph productions like

6

=>River RiverRiver
l. l'. l'.

lcross cross

l

"Rivers do not cross"

"Rivers do not loop"

"Roads and rivers are beside land"

=>l.
River

loop loop

=>Road.
River Region Land

Road.
River

beside beside

f ig 7 Scene-Image graph productions

In (RM) these graph productions appear as logical formulas, but the graph
formalism is simpler because it incorporates contextual, situational and
semantic constraints.
 Our example of a label morphism from Scene to Image is unusual. It is
usual in databases to assign a type ty(a) to each attribute "a" so each
relation R:a1,a2,... is assigned a product type

 ty(a1)*ty(a2)*....

An actual database gives a map Val:Vertex -> Values such that

 Val(v) is a value of the type ty(lab(v)).

The lowest morphism in figure 8 gives an example.

 river road shore land water join cross loop beside inside outside
la1 chain chain chain region region tee chi closed bounds interior exterior
la2 I*I*N I*N I*N I*N I*N N*N N*N N N*N N*N N*N
la3 N N N N N N*N N*N N N*N N*N N*N

f ig 8 Three label morphisms from Scene

Many database designers follow the entity-relationship approach in which one
considers only unary and binary relations so our hypergraphs become
graphs.In relational data bases one usually insists on "no repetitions and flat
values" - Val is an injection and ty(a) is a basic type like Integers, Characters,
or Strings. There is no theoretical reason for these restrictions, and one gets
semantic nets if one relaxes them.

7

#1.2 Static semantic nets

Frames,schemes and many other popular AI methods of representing
knowledge are examples of semantic nets - objects connected together by
links. If there are no "actions or methods" associated with the objects, then
a net can be converted to a graph by

 • vertex for each object
 • vertices labelled by sets of attribute value pairs
 • edge for each link labelled by 'link' labels.

Example ctd: The semantic net in figure 9 becomes the scene design graph
SDG in figure 3.

Type River

length
flow

join

cross

beside

Type River

length
flow

join

cross

beside

Type Road

length

join

cross

beside

inside

outside

Type Shore

length

join

beside

inside

outside

Type Land

area

beside

inside

outside

Type Water

area

beside

inside

outside

f ig 9 Semantic net version of graph SDG

Several authors have formalised semantic nets by reducing them to
'unnormalised' relational databases. The idea is that objects are instances of
classes and classes are just relations. Links are special kinds of attributes
whose values are instances of relations. Databases with such attributes are
unnormalised.
 Semantic nets differ from relational databases in being object-oriented,
but capture databases by taking tuples as vertices not edges.The type

8

assignment ty:VL->Type can take vertex labels into product types; la2 and
la3 in figure 8 are examples. For the theory to go through we must also
assign types to edges.So far we have only used product types, but figure 9a
shows some of the other possibilities (the upper row shows the constructors
studied by type theorists,the lower row is borrowed from (GHS)).

 +

set sequence

A
record arrayrelation atomicsymbol

f ig 9a Type constructors for structuring labels

In section 4 we show how Type can be a family of sets of formulas, so the
graph approach can be reduced to the logic approach.

#1.3 Type inheritance

Many ingenious graph representations have been devised by those interested
in 'multiple inheritance' problems,and it is surprising that noone seems to
have used graph productions to capture 'Type inheritance' reasoning. As we
do this in the companion paper(HM), we will only give an example here.The
essence of 'Type inheritance' is that there is an order on types(=concepts =
vertexlabels). This order may be part of the conceptual design or it may be
derived from a label morphism la = <vla:VL->VL', ela:EL->EL'>. This
morphism orders VL"=VL+VL' and EL"=EL+EL' by

 vl vl' iff vla(vl)=vl' el el' iff ela(el)=el'

In our example the order on VL" and EL" is

 river,road,shore < chain land,water < region
 join=tee,cross=chi,loop=closed, bounds=beside
 inside=interior,outside=exterior

and type inheritance can be given by graph productions like

9

l l.l' region land.water chain road.river.shore

tee join chi cross loop

bounds beside interior inside exterior outside

closed

f ig 10 Graph productions for type inheritance

Notice that all 4 graphs in section 1.1 are now over the same index
(VL",EL"). What happens to our assignment ty:VL->Type?All goes well
if Type has an order and vl< vl' implies ty(vl)< ty(vl'). In section 3 we
will see the advantage of making orders complete by introducing "top
and bottom" labels. Complete orders give meet or join as a 'gluing'
operation and all goes well with type assignment if Type has a 'gluing'
operation "." and

 vl" = vl.vl' implies ty(vl") =ty(vl).ty(vl').

Thus the typing assignment should be an order morphism or an
algebraic homomorphism.

#1.4 Conceptual structures

An extremely popular way of representing 'linguistic' knowledge is to use the
conceptual graphs invented by Sowa(So). In designing a family of conceptual
graphs for a 'knowledge domain' or even a 'language', one devises not only a
set of relation domains and an ordered set of attributes and types, but also
allows 'nesting'. Usually nesting in conceptual graphs is illustrated by
linguistic modalities as in " John believes that Mary knows...", but in our
example we will use nesting to capture: interior,exterior,closed,
bounds,inside,outside,beside and loop.

Example ctd: Consider the special role played by 'region' in the image
instance graph IIG in figure 6. This suggests the nested graph in figure 11
where we have a tree of regions and each region has a 'chain graph'. The
scene instance graph SIG in figure 4 also suggests the nested graph in the
figure 11 where the labels have been changed appropriately (water or land
label for each region in the tree); it suggests also that region2 should be
eliminated from our graphs.

10

region1

region3

region4 region2

r i v e rcha in r i v e rcha in

cha in

cha in

tee

tee

tee

tee

chi

2

1

4

3

cha in
5

3
reg ionreg ion3

reg ion2

where region2

region3

region4

is

is

is region4

cha in
6

3
reg ionreg ion4

region1 is

region2

and

reg ion2

f ig 11 A nested graph

Now that nesting has eliminated so many labels, we can give a concise graph
grammar for the historical developement of scenes.

11

tee

chain chain chain chain

chain chain chain chain

chain chain chain chain

 chi

tee

road. road road road

.river .river .river .river

join

road road road road

 .river .river

cross

shore road. shore road

.river .river

join

chain road.river

chain

 : r'

 : r'

: r

r

shore

 : water
 r'

 : land
 r'

: water
 r

r

shore

 : land
 r'

 : water
 r'

:land
 r

r

chain chain chain chain

 chi,tee chi,tee

 chi,tee

r r

road.
river

road.
river

road . road.
river river

join.cross join.cross

join.cross

r r

f ig 12 Historical graph productions

Note that we have captured the essential content of "shores always loop"
and "shores separate land and water".

12

#1.5 Logical programming

Logical programming languages can express most of the information in graph
representations of databases,semantic nets,type inheritance and conceptual
graphs. It is not difficult to express most of the graphs and graph
productions in this paper in a language such as Prolog. If a logical language is
sufficiently modular, it can capure nesting in conceptual graphs by using

'worlds' or viewpoints. Some logical languages, like Omega (ACDS), have an
implicit metalevel and they can capture most of the information in reflexive
graphs, in particular they can express combinations of viewpoints. In
conceptual graphs the nested graphs are rigid viewpoints, they cannot be
restructured by graph morphisms. Let us meet the Omega challenge by giving
an example of fluid viewpoints.
Example ctd: In the last section we gave the "history" productions for
the construction of scene graphs.

region r1

region region

=>

region r1

region

:r1

r2 r3 r4

 r2 r3
:r1

 r4

r4= r2+r3

land r1

water water

=>

land r1

water

:r1

r2 r3 r4

 r2 r3
:r1

 r4

r4= r2+r3

water r1

land land

=>

water r1

land

:r1

r2 r3 r4

 r2 r3
:r1

 r4

r4= r2+r3

Bremen

f ig 13 Fluid historic graph productions

#2 Representation of dynamic knowledge

It is often natural to represent knowledge by dynamic graphs where the
vertices or edges represent actions,processes, procedures or pro-
ductions.Much of the computer science literature on concurrency uses the
theory of transition systems and/or Petri nets. Transition systems are just
dynamic graphs whose edges are ordered pairs of vertices; Petri nets are just

13

dynamic graphs whose edges are ordered pairs of multisets of vertices. Both
kinds of dynamic graphs can be converted to graph grammars by:

 for each edge e we have the graph production L=>R
 where L is the "input" component
 and R is the "output" component of e .

Applying one of these productions to a dynamic graph G corresponds to a
"joint action by the processors carrying G".
 There is no objection to concurrent/parallel applications of
productions. In section 3 we will show that any two graphs have sums, so
one can consider the concurrent/parallel application of productions, L=>R
and L'=>R', as the application of the sum production L+L' => R+R'. Naturally
one can have "conflict"- productions, L=>R and L'=>R', can both be applied
to a graph G but the sum production cannot be applied to G.
 In dynamic graphs it is natural to assign States to vertices and State
functions or relations to edges. The category minded might prefer to assign
objects in a category C to vertices and morphisms to edges. We will see that
it is sometimes convenient to assign static graphs to vertices and
applications of graph productions to edges. This idea of 'graph productions
as actions' can be lifted to the label level to give metagraph grammars. In

sections 2.4 and 2.5 we will meet several examples of metagraph

grammars - dynamic graph grammars with static graphs as vertex labels and
applications of static graph productions as edge labels. More study should be
devoted to this special case of dynamic graph grammars.One approach is to
treat a metagraph grammar as a 2-category with static graphs as objects
and static graph productions as morphisms. The close connection between
"rewriting" and 2-categories is well-known.

#2.1 Planning

Plans are combinations of primitive actions. One has a repertoire of action
types and the actions in a plan are occurrences of these types.It is natural to
think of actions as edges and action types as edge labels, but what are the
vertices. Usually one assigns pre- and post-conditions to action types,and
one can take states or situations as vertices. A more sophisticated view
(SR,Ba) is that action types also have prevail- and keep-conditions that
constrain the 'joint actions' that can occur in a plan. In this view one should
take local(partial) states as vertices and give dynamic productions for
permitted joint actions.

Example ctd. We could consider the historical productions in figures 12 and
13 as action types(appropriate edge labels are given at the extreme left of
the figures), and a joint action could be the developement of an island at the
same time as the building of a road. Instead we give a more dynamic

14

example.Vertices are scene graphs with enlarged edge labels for shores and
places where roads and rivers meet. Edge labels - loop,join,cross- are
extended by triples < p,b,c> where

 p is a set of person names
 b is the number of available boats
 c is the number of available cars.

Figure 14 shows the three action types and a plan for a person to go from
'shore6' to 'road1'

=>

p_p'
b
c+1

p"
b"
c"

p
b
c

p'_p"
b"
c"+1

if road between X and Y & car at X then one can drive from X to Y & car at YDRIVE:

Road Road

=>

p_p'
b+1
c

p"
b"
c"

p
b
c

p'_p"
b"+1
c"

if river between X and Y & boat at X then one can row from X to Y & boat at YROW:

River River

=>

p_p'
b+1
c

p"
b"
c"

p
b
c

p'_p"
b"+1
c"

if X and Y are shores & boat at X
& X beside W & Y beside W then one can sail from X to Y & boat at Y

WaterShore Shore

SAIL:

Shore Water Shore

 at
shore6

 at
shore5

river 3
meets
 road 2

road 2
meets
road 1

SAIL: DRIVE:ROW:

PLAN:

f ig 14 Three action types and a plan

Note that this simple plan will be frustrated if there is no car available when
the boat trip is over, so one might prefer joint actions and the more elaborate
plan:

15

 "telephone to a friend on road1, so he drives to meet me"

 at
shore6

 at
shore5

river 3
meets
 road 2

road 2
meets
road 1

SAIL: DRIVE:ROW:

PLAN:

DRIVE:
friend on
road 1

f ig 15 Another plan

#2.2 Dynamic Semantic nets

Usually actions are represented in semantic nets as "methods"
attached to objects, but some more refined net representations
(e.g.LINCKS(Pa)) allow actions to be objects.

Example ctd: The upper row in figure 16 shows the kind of objects
which capture the edge information in the MapSee net.The lower row
in figure 16 shows the kind of objects which capture the action
information in the MapSee net. Using both kinds of objects one can
build a net, that contains so much knowledge about scenes that it
supports a realistic multimedia simulation.

16

Type CROSS

person
boat
cars

link

Type LOOP

person
boat
cars

link

Type JOIN

person
boat
cars

link

Type DRIVE

from

to

Type SAIL

from

to

Type ROW

from

to

f ig 16 Nodes for a dynamic semantic net

Objects of action type , corresponding to hypermedia 'buttons', are attached
to JOIN/CROSS/LOOP nodes. The code for the buttons might have the
specification:(DRIVE) transfer persons and car following links that go via
roads or shores (ROW) transfer persons and boat following links that go via
rivers (SAIL) transfer persons and boat following links that go via water.
Running these codes may cause appropriate animation to be displayed on a
screen.

#2.3 Hypermedia

Graphs seem to be the preferred formalisation of hypermedia systems
(SF,To). Conversely any dynamic graph can be implemented as a hypermedia
system. Each vertex corresponds to a "window",which may or may not be
displayed on the screen (Mac's Hypercard only displays one window at a
time, other systems allow more). Each edge in a dynamic graph corresponds
to "pressing a button". Each edge label in a dynamic graph corresponds to a
"button" (static graph production).

Example ctd:The dynamic graph described in the last section is suitable for a
hypermedia presentation because it has a node for every 'join','cross',and
'loop' edge in SIG,the scene instance graph in figure 4. . One can have a

window for each such edge.If the person of interest me is at the edge, then

17

the window is displayed - appropriate scenery appears on the screen, sounds
of boats and cars with an intensity proportional to their number... For each of
the DRIVE, ROW or SAIL actions that are currently possible, there can be a
button on the screen.When a button is chosen, then a car or boat appears on
the scene, people climb aboard, scenery changes, people dismount, and the
car or boat disappears.
 It is an interesting exercise to make the slight changes in our graph
representation, so that our hypermedia representation is more natural - one
should not insist that everybody gets out of the car at every road junction!

#2.4 Simulation

Once we have described the possible actions by dynamic graph productions
we can build a Petri net simulation. In our MapSee example scene edges
labelled by 'join', 'cross' or 'loop' correspond to place-triples in a Petri net.
Place triples are connected by transitions for possible 'DRIVE','ROW' or 'SAIL'
actions.

 SAIL SAIL ROW ROW

 SAIL DRIVE

c6 c5 tee(c3,c5) tee(c3,c2) cross(c4,c2)

 tee(c4,c5)

DRIVE

 tee(c1,c2)boats

persons

cars cars

edge name

boats

f ig 17 Petri Net Simulation

Dynamic graphs given by the rules 'DRIVE', 'ROW' or 'SAIL' correspond to
occurrence nets - possible runs of the simulation Petri net. For a more
realistic simulation example of dynamic graph grammars one can look at the
generation of Forrester diagrams in (DT).

18

#2.5 Linguistic attribute grammars

There is an interesting developement in linguistics (Jo), in which knowledge is
represented by both static and dynamic graphs. A normal syntactic grammar
for parsing sentences gives not only a 'derivation tree' but also a dynamic
graph where the edges are applications of syntax rules. The vertices of this
graph are not just sets of attribute-value pairs; their labels are static graphs.

Example ctd: Let us ignore linguistic reality and agree on the syntax:

< conditional > S ::= if P then P;< conjunction > P ::= S and S

The derivation tree for "if road between X and Y & car at X, then one can
drive from X to Y & car at Y" gives the dynamic tree at the bottom of figure
18, and the static graphs for the tree nodes can be seen in the rest of the
figure. These static graphs are the solution of the linguistic attribute
equations.

19

=>

p_p' p"

c"

p p'_p"

c"+1

 one can drive from X to Y & car at Y<P6>:

p_p'

c+1

p"

 road between X and Y & car at X <P5>:

Road

=>

p_p' p" p p'_p"

 one can drive from X to Y <S3>:

 road between X and Y <S1>:

Road
c+1

 car at X <S2>:

 car at Y <S4>:

<P6>:

<P5>:
<S2>:

<S4>:

<S1>:

<S3>:

DRIVE:

Conjunction

Conditional

Conjunction

f ig 18 Linguistic synthesis of an action

Clearly any attribute grammar can be represented as a dynamic graph - the
syntax rules give dynamic edges and the corresponding semantic attribute
functions are static graph morphisms.

#3 Morphisms and the applicabil ity of productions

20

When can one apply a production L=>R to a graph G? The intuitive answer is -
when there is an occurrence of the graph L in the graph G. This gives
morphism requirements

(1) the definition of graph morphisms should cover all "ocurrences of one

graph in another"
(2) if there is a graph morphism from L to G, then the result of applying any

production L=>R to G should be well-defined.

Intuitively the result of applying L=>R to a graph is given by replacing L by R
in G. This suggests the morphism requirements:

(3) if H is the result of applying L=>R to G, then there is a morphism from R

to H
(4) if the production L=>R is a morphism, then the result of applying L=>R

to G is the pushout of L=>R and the occurrence of L in G.

Do we want the definition of graph morphism to cover all possible graph
productions? Intuitively one thinks of the application of L=>R to a graph is
given by removing L, then inserting R. This suggests the flexible definition of
a production as a pair of morphisms, < l: K->L, r: K->R >, and the
requirements:

(5) the production < l: K->L, r: K->R > can be applied to a graph G if there is

an occurrence of K in a graph D such that G is the pushout of l: K->L and
this occurrence.

(6) the result of applying the production < l: K->L, r: K->R > to G is the
pushout of r: K->R and the occurrence of K in D.

There are two attitudes to the morphism requirements (1-6) and their
demands for the existence of pushouts. The neat attitude is to require

(7) the category of graphs has all pushouts;

the scruffy attitude is to restrict the graph morphisms allowed in productions
and occurrences, or even to force an implementation to check if a pushout
exists. Any readers happy with the scruffy attitude can skip the rest of this
section.
 Are there any categories of graphs that satisfy requirements (1-7)? Yes,
if we are prepared to modify "well-defined" in (2) to "well-defined for each
pushout complement". In section 1 we saw many kinds of graphs could be
associated with label sets (VL,EL).
 If VL and EL are sets with a 'gluing' operation "."and we impose the
continuity requirements:

 vla (V li) = V vla(li) ela (V ei) = V ela(ei)

21

on the functions in label morphisms, then all label pushouts exist. If we have a
graph morphism from a graph G over (VL,EL) to an unlabelled graph G', then

we have a fiber morphism:

 lab" (v") = V (lab(v) ! ve(v) = v")
 edge"(e") = V (edge(e) ! ed(e) = e")

which takes G into a labelled graph G" over (VL,EL). Now we can give the
correct definition of the morphism between labelled graphs.

Definition1 A gluing morphism from a labelled graph G over (VL,EL) to a
graph G' over (VL',EL') consists of :

 continuous label morphism (vla,ela) and fiber morphism (ve,ed)
 such that lab' = lab";vla and ed' = ed";ela.

Theorem The category of labelled graphs, given by gluing morphisms, has
all sums and pushouts.

Proof
This is given by a general theorem on indexed categories (TBG) but the
argument for our particular case is instructive.
 If one 'places' a labelled graph G over (VL,EL) 'beside' a graph G' over
(VL',EL') , one gets a graph over (VL+VL',EL+EL') that is the sum G+G'. Now
for the construction of the pushout of the graphic morphisms r: K => R and k:
K => D. We have just constructed the sum graphic R+D and we have to glue
some of its vertices and edges together coherently. The graph pushout tells
which vertices and edges must be glued together, and the label pushout tells
what the labels of the glued vertices and edges must be. The continuity
requirements on label and fiber morphisms ensure that this construction does
give the pushout of r and k.
 Where do the 'gluing' operations "." come from? The simplest case is
when VL and EL are power sets and "." is set intersection or union. Another
possibility is that VL and EL are families of closed sets and "." is given by

 l.l' = closure of the union of l and l'.

If G" is a graph over (VL",EL") and there is no obvious gluing operation on
VL" and EL", then one can identify G" with a graph
over (VL,EL) :

 lab(v) = singleton (lab" (v))
 edge(e) = singleton (edge"(e))

where VL is the power set of VL" and EL is the power set of EL". If there are
natural preorders on VL" and EL" , then one can identify G" with a graph over
(VL,EL) :

22

 lab(v) = predecessor (lab" (v))
 edge(e) = predecessor (edge"(e))

where VL is the ideal family of VL" and EL is the ideal family of EL". In both
cases we get wellbehaved morphisms by attaching an index to a graph G, that
is wider than its apparent index (the vertex and edge labels that appear in
G).

#4 Logic, graphs and institutions

One can reduce any kind of labelled graph G to sets of logical formulas.

Whatever the kind of edge,one can define a dart as the occurrence of a
vertex in an edge. If one has constant symbols for each dart in G and unary
predicates for each vertex and edge label, then G can be described
completely by {lab(v), edge(e) ! <v,e> is a dart in G} , a set of atomic
formulas. For most kinds of graphs we also have the structure and frame
reductions.The label sets EL and VL give a signature with a predicate
symbol for every edge or vertex label. Any graph G over EL and VL becomes
a -algebra when the graph vertices are collected into the carrier domain.
Thus labelled graphs can be reduced to structures in the institution of first
order logic. If we extend the signature by adding constant symbols for the
vertices and G, then all information about G can be expressed as
formulas(frames) in the first order logic for the extended signature. Thus
labelled graphs can be reduced to theories in the institution of first order
logic.
 An idempotent gluing operation "." can be captured by the equivalence

 vl1(x) or vl2(x) iff vl3(x)

whenever vl1.vl2=vl3. For reflexive graphs it is natural to have an extra
viewpoint parameter in each atomic formula. Once one has viewpoints, one
can capture graph productions L=>R by using 'left' viewpoints for L and
'right' viewpoints for R. Usually a graph production L=>R can also be captured
by structure morphism from the structure for L to the structure for R.
However structure morphisms correspond to equivalence classes on sums,
and our viewpoint construction is more general.

Example ctd: The structure representation of the scene instance graph SIG
has the carrier domain {c1,c2,c3,c4,c5,c6,r1,r2,r3,r4} and predicates:

 Shore{c5,c6}, River{c3}, Road{c1,c2,c4}, Land{r1,r2,r4}, Water{r4},
 Join{c1c2,c2c1,c2c3,c3c2,c3c5,c5c3}, Cross{c3c4,c4,c3},
 Loop{c5,c6}, Inside{c5r3,c6r4}, Outside{c5r1,c5r2,c6r3},
 Beside{c1r1,c2r1,c3r1,c3r2,c4r1,c4r2,c5r2,c5r3,c6r3,c6r4}.

23

The frame representation is given by introducing constant symbols
{c1,c2,c3,c4,c5,c6,r1,r2,r3,r4} and converting the structure representation
into atomic formulas. The structure representation of the graph morphism
from SIG to the image instance graph IIG is given by adding predicates:

 Chain{c1,c2,c3,c4}, Region{r1,r2,r3,r4},
 Tee{c1c2,c2c1,c2c3,c3c2,c3c5,c5c3}, Chi{c3c4,c4,c3},
 Closed{c5,c6}, Interior{c5r3,c6r4}, Exterior{c5r1,c5r2,c6r3},
 Bounds{c1r1,c2r1,c3r1,c3r2,c4r1,c4r2,c5r2,c5r3,c6r3,c6r4}.

In this example SIG and IIG share no predicate, so viewpoints are not needed.
 The above reduction is suitable for static graphs, but for dynamic
graphs one may prefer a signature of function symbols. We will only describe
the reduction when edges with the same label have the same number of input
and output vertices. Then the signature can have a set of function symbols
for each edge label, one for each output. Any graph G over EL and VL
becomes a -algebra when the graph vertices are collected into the carrier
domain, which also has an 'undefined' vertex "?". Thus labelled graphs can be
reduced to structures in the institution of equational logic. If we extend the
signature by adding constant symbols for the vertices of G, then all
information about G can be expressed as equations in the first order logic for
the extended signature. Thus labelled graphs can be reduced to theories in
the institution of equational logic.

Example ctd: The plan in figure 14 can be described by the equations

 SAIL(v1) = v2 ROW(v2) = v3 DRIVE(v3) =v4

and the theories for the viewpoints: v1= "at shore6", v2= "at shore5", v3=
"where river3 meets road2", v4= "where road2 meets road1". These theories
can be combined if edge labels have viewpoint parameters.
 Conversely institutions can be converted to graphs, if we have a way of

(1) converting structures to theories(diagramming models in logic)
(2) representing theories as graphs

In most institutions (1) is not a problem as one can extend the signature by
adding symbols as we did above. If the theories given by (1) can be
generated from finitely many "atomic formulas" and we have a natural way of
decomposing a signature into edge and vertex components, then we can
achieve (2). In a discussion of the reduction of logic to graphs, we should
mention the reduction of rule-based systems to Petri nets in such papers as
(MZ,PM,Zi).
 Where do graph morphisms and productions come from? In an
institution we have structure morphisms and signature morphisms. The
signature morphisms give theory morphisms and (2) converts these into
graph morphisms. Usually (1) converts structure morphisms into theory

24

morphisms and (2) converts these into graph morphisms. Usually we have a
domain theory which specifies which structures are possible models of the
domain.

Example ctd: Most of the domain constraints in [MR] are captured by the
'type inheritance' graph productions in figure 9. The six remaining constraints
are:

(1) Rivers do not cross
(2) Shores form closed loops
(3) Rivers do not loop
(4) Shores separate land from water
(5) Roads and rivers are beside land
(6) Rivers flow into other rivers or into shores.

Constraints (1), (3) and (5) are captured both by the scene design graph in
figure 3 and by the productions in figure 7. Constraints (2),(3) and (4) are
captured by the historical productions in figure 12. A slight modification of
these historical productions also captures constraint (6).
 Many of the domain axioms can be converted to proof rules and thence
to theory and graph morphisms, but what of those axioms that can not? Our
attitude is that they are constraints that control the uncertainty of the
knowledge represented in a structure, and they too can and should be
captured in graph productions.

#5 Uncertainty in graph representations

So far we have not exploited the fact that orderings on an index <VL,EL>
give a natural order on graphs over the index. One can define "G' is an

extension of G" as the "weak fiber morphism"

 lab' (v') V (lab(v) ! ve(v) = v')
 edge'(e') V (edge(e) ! ed(e) = e')

Any graph G can have many extensions G' and we are uncertain about which
extension is "the actual state of affairs". Intuitively a knowledge
representation graph G is "the known/believed state of affairs", and we
should reject the notorious "closed world assumption" (that we tell "all the
truth,and nothing but the truth" - sworn by every witness to british jury
trials).

Example ctd: All MapSee images can be interpreted as scenes by "all regions
are land and all chains are roads", but interpretations with water regions and
chains, that are shores or rivers, are much to be preferred. Heuristic graph
productions must be used to get the scene instance graph SIG from the

25

graph IIG in figure 6.With the productions in figures 7 and 19 one can only
get the extension of SIG,in which c1,c2 and c4 are still labelled as chains. This
extension is also an extension of the scene graph SRG, in which c1 and c2 are
rivers, but there is no morphism between SRG and the extension.
 There is an enormous literature on uncertainty and most of the
ideas can be translated into graph ideas. One can have probabilities and
uncertainty factors on graph productions, vertex labels, and edge labels. This
corresponds to applying productions L=>R ,not to a graph G to get a new
graph H, but to probability distributions over graphs to get new probability
distributions. In calculating the new probability distribution one should pay
due attention to the 'pushout complement' phenomenon that for there may
be 0,1,or many choices for K-> D in the application of a production. This
phenomenon can give many chaos and fractal effects, particularly if the our
'probability' distributions are really Schaeffer-Dempster or fuzzy distributions.
 In the last decade there has been a trend away from statistics towards
circumscription, default logics, and truth maintenance. In (Sh), Shoham shows
that most of these methods of handling uncertainty are captured by
preference relations on structures. One can maintain that representing
knowledge about a domain can also include the representation of preferences
- and preferences can also be represented by graph productions.

Example ctd: Heuristic variants of two domain constraints

(2') Closed loops are usually shores
(6') Chains joined to shores or rivers are usually rivers

can be given by graph productions (notice that the graph SRG, introduced
above, should be preferred to SIG)

join join

loop loop

join join

region shore

chain shore river shore

riverchain river river

f ig 19 Heuristic graph productions

What about the natural inclusion order on structures ,mentioned at the
beginning of this section? It corresponds to Occam's Razor, and we may or
may not want to make these preferences for simplicity explicit as graph
productions.

26

 In a series of papers (Do) one of the truth maintenance pioneers has
been arguing for "rationality" rather than "logic".
 Several AI authors have distinguished two kinds of beliefs

 - manifest = explicit=assertions=axioms=base beliefs
 - constructive=implicit=theorems=derived=inheritable=inferable.

In the logical approach the constructive beliefs of an agent are a subset of
the deductive consequences of its manifest beliefs. In the rational approach
the manifest beliefs of an agent are specifications of its constructive beliefs
and it can choose rationally between various ways of interpreting(=construing
- hence constructive) its specifications. Different rational choices give
different sets of constructive beliefs. One can think of the use of graph
grammars to represent knowledge as an example of the rational approach to
uncertainty. The manifest beliefs of an agent can be captured by a graph G
and constructive beliefs are given by all possible applications of graph
productions in the grammar to G.

Example ctd. One can consider the image instance graph,IIG, as the manifest
beliefs of an agent, and the scene instance graph,SIG, as one of several
possible constructive beliefs.

Conclusion

In (Do) we find: "To paraphrase Hamming , the purpose or aim of thinking is
to increase insight or understanding, to improve one's view,so that, for
instance,answering the question of interest is easy, not difficult. This
conception of reasoning is very different from incremental deduction of
implications. Instead of seeking more conclusions, rationally guided reasoning
seeks better ways of thinking, deciding, and acting. Rational reasoning does
not preserve truth, but instead destroys and abandons old ways of thought
to make possible invention and adoption of more productive ways of thought.
Correspondingly, the purpose of representation is to offer the best
conclusions to draw rather than all the logically possible conclusions, to guide
the reasoner towards the the useful conclusions, whether sound or unsound,
and away from the useless ones, whether true or false."
 This can be taken as an intuitive argument that formalising steps of
rational reasoning as graph productions is sometimes better than formalising
steps of logical reasoning as logical rules or implications. One has also the
pragmatic argument: graph productions can take account of contextual and
default information.

References

27

(ACDS) G. Attardi, A. Corradini, S. Diomedi, M. Simi "Taxonomic reasoning",
in 'Advances in artificial intelligence 2' 1987 N. Holland.

(Ba) C. Backstrom "Arepresentation of coordinated actions" Proc. Scand.
Art. Int. (1988) 193-207 Tromsø.

(Do) J. Doyle "Constructive belief and rational representation" Comput.
intell 5 (1989)1-11

(DT) J.J. Dolado,F.J. Torrealdea "Formal manipulation of Forrester
diagrams by graph grammars", IEEE Trans. Sys. Man. Cyb. 18
(1988) 981-996.

(Enc) ed.St.C. Shapiro "Encyclopedia of artificial intelligence" Wiley 1987,
ISBN 0-471-80748-6

(GHS) A.M. Goodman,R.M. Haralick,L.G. Shapiro "Knowledge-based
Computer vision" IEEE Computer ??dec (1989) 43-52.

(HM) L. Hess,B.H. Mayoh "The four musicians:analogies and expert
systems - a graphic approach", this volume.

(Jo) M. Johnson "Attribute-value logic and the theory of grammar" CSLI
lecture notes16, ISBN 0-937073-36-9

(Ma) B.H. Mayoh "Unified theory of knowledge representation" in ed. W.
Bibel,B. Petkoff 'Artificial Intelligence methodology, systems,
applications', N. Holland 1985, ISBN0-4444-87743-6.

(MZ) T. Murata, D. Zhang "A predicate-transition net model for parallel
interpretation of logic programs",IEEE Trans. SE 14 (1988)4 81-
497.

(PM) G. Peterka, T. Murata "Proof procedure and answer extraction in
Petri net model of logic programs" IEEE Trans.SE15 (1989)....

(PR) L. Padgham, R. Ronnquist "LINCKS:an imperative object oriented
system" Proc. Hawaii Int. Conf. Sys. Sci.1987.

(RM) R. Reiter, A.K. Mackworth "A logical framework for depiction and
image interpretation", Art. Int. 41 (1989/90) 125-155.

(SR) E. Sandewall, R. Ronnquist "A representation of action structures"
Proc. AAAI-86, Philadelphia.

(SF) P. David Stotts, R. Futura "Petri-net-based hypertext: Document
structure with browsing semantics", ACM Trans. Inf. Sys. 7 (1989)
3-29

(Sh) Y. Shoham "Reasoning about change". MIT press1988,
ISBN 0-262-19269-1

(So) J. Sowa "Conceptual structures" Addison-Wesley 1983,
ISBN 0-201-14472-7

(TBG) A. Tarlecki, R. Burstall, J. Goguen "Indexed categories" LFCS report
88-60, Edinburgh Univ.

(Th) ed.A. Thayse "From standard logic to logic programming" ch.3,
Wiley 1988, ISBN 0-471-91838-5

(To) F.W. Tompa "A data model for flexible hypertext database
systems", ACM Trans. Inf. Sys. 7 (1989) 85-100.

(Zi) M.D. Zisman "Use of production systems for modelling asyn-
chronous concurrent processes" in 'Pattern directed inference

28

systems" ed. D.A. Watterman, F. Hayes-Roth, Academic Press
1978.

29

30

The four musicians:

analogies and expert systems - a graphic approach

In their paper "Graph rewriting with unification and composition" in the last
GraGra conference (PEM) Parisi-Presicce, Ehrig and Montanari suggested that
graph grammars might be useful in rule based expert systems. The idea is
that graphs capture the relationships between facts, while graph productions
capture rules for deriving new facts. In this paper we develop this idea using
"graphics" (HM) instead of the usual arc and node labelled graphs. Graphics
have the advantage of incorporating variables directly (pointed out to one of
the authors by Ehrig) but they seem to have the apparent disadvantage that
arcs are neither directed nor labelled.
 Section1 describes how graphics can capture the information in the
labels on directed arcs, so familiar from the semantic nets, conceptual
schemes and other knowledge representations in data bases and expert
systems. Section 2 describes how graphic productions can capture "rule"
information: in traditional IF-THEN rules, in Prolog rules with assert and
retract, and in type reasoning in inheritance hierarchies. Section 3 shows how
graphic productions can also capture reasoning by analogy, not just logical
reasoning. The final section gives various technical results about
substitutions, -algebra changes, and the pushout problems that plague
both (PEM) and (HM). It also shows that graphic grammars are yet another
example of the general theory of institutions and galleries.

#1 Graphics & directed arc labels

A graphic is a graph where all vertices get elements of a -algebra as extra
labels. More precisely:

Definition 1 A graphic G over a -algebra A and set L consists of 4
functions

L * A

Ver t i ces

Edges

s t

lab*atr

 s,t: Edges => Vertices

 lab: Vertices => L

 atr: Vertices => A

As an example of a graphic consider

31

Old Needy

Rooster Donkey Dog Cat

<rooster is old> <donkey is old and needy, <dog is old and needy <cat is needy>

 Bremen(donkey) > Bremen(dog) >

<rooster,donkey and dog are old> <donkey,dog and cat are needy>

f ig 1 Graphic D1 over SIGMA

This represents a small database with a binary relation "is" and a unary
relation "Bremen". In the style of (PEM) this database would be represented
by the graph

Old Needy

Rooster Donkey Dog Cat

f ig 2 SC-graph for D1

where the arcs should be labelled "is" and there should be two loops labelled
"Bremen".
 This example illustrates our general method of converting label
information on directed arcs to atomic formulas in attribute values:

• each arc label becomes a predicate symbol
• each node label becomes a constant symbol
• each arc becomes an atomic fact
• each atomic fact is attached to the nodes at the end of the
 corresponding arc as part of their attribute value.

For the sake of readability we use infix notation for binary predicates and
obvious linguistic conventions, so

<is(rooster,old),is(donkey,old),is(dog,old)>

becomes < rooster,donkey and dog are old>.

32

Remark
As there is no reason why arc labels should be binary predicate symbols,our
conversion method also works for directed hypergraphs. Some data base
systems (Ge,Ul) use such hypergraphs for "representing conceptual
knowledge".
 We must show that our attribute values,sets of atomic formulas, are
elements of a -algebra. Let ' be the signature of predicate and constant
symbols given by the arc and node labels of a graph. Define as the
extension of ' given by adding a sort atom , and operations

 , : individual x individual => individual
 • : atom x atom => atom .

Attributes take values in the term algebra T(,V) where V is a set of
variables.

In our examples the signature will be :

rooster,donkey,dog,cat,crow,hoof,teeth,claws,
judge,monster,assassin,witch,judgement,club,knife,nails,
old,needy,worried,creature,domestic,cottage, : individual
, : individual x individual => individual
: individual => individual,Bremen : individual => atom

is,uses,Musician,attacks_with : individual x individual => atom
 : atom x atom => atom
•

We will use three -algebras:

SIGMA the term algebra T() with no variables
SIGVAR the term algebra T(,{x,y}) with two individual variables
ROBBER a term algebra we introduce in section 3.

When we write that a graphic is over a -algebra A, we also specify that its
label set is A's carrier domain for "individual". We will often write "formula
set" for the combination of terms using ".".
 The kinds of graphs used in (PEM) for representing relationships
between facts are the SC-graphs where one has preordered sets, CA and CN,
and functions

33

 Nodes

 Arcs

s t

CN

C A
 arc_colour

node_colour

 s,t: Arcs => Nodes

 arc_colour : Arcs => CA

 node_colour: Nodes => CN

Any SC-graph can be converted into a graphic. One can take CN as L and
define as: an individual constant for each graph node, a predicate
Ca: Node*Node -> atom for each arc colour in CA, and a conjunction operator
".". As the -algebra A one can take the term algebra T() .For each node n
in the SC-graph, the attribute value is the formula set:

 Ca(m,n) for each arc from m to n with colour Ca
 Ca'(n,m) for each arc from n to m with colour Ca'

and its label is its nodecolour. In the same way that we added "." earlier, we
can convert the preorders in CA and CN into equations

 Cn = Cn,Cn' for Cn' Cn
 Ca(m,n) =Ca(m,n).Ca'(m,n) for Ca Ca'.

Remark
We use " " for both preorders (reflexive and transitive relations) and x~y for
the "interchangeability" relation: x y and y x. When the preorders are trivial
(x y iff x=y), we get the usual labelled graphs. If CN has only one element
and CA has the trivial preorder, then we have the much studied labelled
transition systems. When the preorders are flat (x y iff x=y or y=top) we get
the partially coloured graphs with top as a new colour for
"unknown","absent" or "transparent". The sets CA and CN can be
lattices,unified algebras(Mo), or Boolean algebras.
 In her work on type inheritance hierarchies (Pa) Lin Padgham has
introduced an interesting kind of graph in which node labels have a lattice
structure. These graphs, which she uses to clarify the traditional Clyde,
Tweety and Nixon examples, can also be converted to graphics. Her graphs
capture the distinctions made in earlier type inheritance hierarchies; in
particular they capture Etherington's distinction in (Et) between "strict is a",
"default is a", "strict is not a", "default is not a", and "exception" arcs. In
(Pa) nodes are labelled by "sets of characteristics" and there are several
kinds of nodes. There are two kinds of arcs: directed arcs for in the label
lattice (usually inclusion), and undirected arcs for "inconsistent labels". As an
example consider

34

Old

Worried

Creature

Domestic

Donkey

f ig 3 Type inheritance graph

where circles represent "core nodes" and triangles represent "default
nodes". Here the undirected arc represents

 'Typical domestic creatures never worry'

and the directed arcs represent such beliefs as

 'Old creatures always worry'
 'Creatures often worry'

There are two ways of converting type inheritance hierarchies into graphics.
One can introduce new predicate symbols in so our example becomes the
graphic

35

<donkey is old,

 old is creature

 old is worried>

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old>

 domestic is creature

<old is worried,

 creatures often worry,

 domestic seldom worries>

 creatures often worry>

 domestic seldom worries>

f ig 4 Graphic D2 over an extension of SIGMA

Alternatively one can introduce a unary function symbol ' ' so our example
becomes the graphic

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old>

 domestic is creature

<donkey is old,

 old is creature

<old is worried,

 creature is worried ,

 domestic is not worried>

 old is worried>

 creature is worried >

 domestic is not worried>

f ig 5 Graphic D3 over SIGMA

In the next section we show how graphic productions can capture type
inheritance reasoning.

36

 From the logical programming viewpoint what we have done in this
section is very natural. A graphic can be built on any collection C of facts in
a logical programming language such as PROLOG. For each constant or
variable cv, there is a vertex in G with label cv. The attribute value of the
vertex cv is the set of facts in C that mention cv. There is an edge between
cv1 and cv2, whenever there is some fact in C that mentions both cv1 and
cv2. For an example the reader can take any graphic in this section as G,
and the union of the attribute values at its vertices as C. Note also that one
can have vertices in a graphic for Prolog predicate symbols. The attribute
value for such a vertex is the atomic formulas using the corresponding
predicate.We shall often use this option,our decision that Bremen' should be
a predicate and 'old' an individual was arbitrary.
 The approach in the last paragraph can be used for any
institution(GB) or gallery(Ma). Any finitely presented theory in any
institution or gallery can be represented as a graphic. However the approach
may give pretty weird graphics, if one does not keep our separation
between atomic formulas and the rules to drive more complicated formulas.
Such rules should be represented as graphic productions.

#2 Productions and rules

In this section we describe how graphic productions can capture "rule"
information: in traditional IF-THEN rules, in Prolog rules with assert and
retract, and in type reasoning in inheritance hierarchies. Consider a rule like
"if two old and needy creatures meet in Bremen, then they can form a
musical group". In (PEM) this rule would be represented as a graph
production

Old Needy

x musicians y

Old Needy

x y

=>

f ig 6 SC-graph production

and the partial ordering x Bremen, y Bremen. We will give a graphic
production for this rule,after we have defined what strict graphic morphisms
are.

Definition 2 A strict morphism from a graphic (s,t,lab,atr,L,A) to a graphic
(s',t',lab',atr',L',A') consists of a graph morphism (ve,ed) and

37

L * A

Ver t i ces

Edges

s t

lab*atr

L' * A'

Vert ices '

Edges'

t'

lab'*atr'

s'

 ed

 la*at

ve

la: L=> L'

at: A=>A'

such that

lab';ve = la;lab

atr';ve = at;atr

where at is a -algebra homomorphism. Strict graphic morphisms suffice for
all our examples, but technical problems force us to define a more general
notion of graphic morphism in the last section. Let us show that there is a
strict morphism from the graphic L1

Old Needy

x y

<x and y are old> <x and y are needy>

<Bremen(x),x is old and needy> <Bremen(y),y is old and needy>

f ig 7 Graphic L1 over SIGVAR

to the graphic R1

Old Needy

x y

<x and y are old> <x and y are needy>

<Bremen(x),x is old and needy, <Bremen(y),y is old and needy

 Musician(x,y)> Musician(x,y)>

f ig 8 Graphic R1 over SIGVAR

The obvious embedding as labelled graphs and the definition:

at(S) = if Bremen(x) or Bremen(y) in S then S U{Musician(x,y)} else S

38

give the required graphic morphism r1 from L1 to R1.Graphic morphisms can
do many things: (1) add or remove vertices, (2) add or remove edges, (3)
change vertex labels, (4) change attribute values.Our morphism r1: L1 =>
R1 illustrates only (2) and (4) and it is monotonic in that: it is an embedding
of labelled graphs and at(S) always contains S.

 There is an occurrence of L1 in our earlier graphic D1; if one
substitutes 'donkey' for x and 'dog' for y, one gets a graphic morphism d: L1
=> D1. The label part of the morphism is given by :

 la(cv) = if cv is x then donkey else if cv is y then dog else cv

and this substitution gives the attribute part :

 at(S) = the result of applying substitution la to S.

The pushout of this graphic morphism d with the 'rule' morphism
r1: L1 => R1 gives the graphic H1:

Old Needy

Rooster Donkey Dog Cat

<rooster is old> <donkey is old and needy, <dog is old and needy, <cat is needy>

 Bremen(donkey),Musician(donkey,dog)> Bremen(dog),Musician(donkey,dog)>

<rooster,donkey and dog are old> <donkey,dog and cat are needy>

f ig 9 Graphic H1 over SIGMA

Later we will show that the pushouts of graphic morphisms always exist, but
now we define graphic productions.

Definition 3 A graphic production is an ordered pair of graphic

morphisms l: K => L and r: K => R . It is simple if l is an identity.

It is logical if K,L,R are graphics over the same -algebra.

 The graphic production (l,r) can be applied when one has a graphic
morphism d: K => D and the pushout diagram

39

L K R

G D H

po po

l r

g h

g' h'

l rL K R

G D H g' h'

f ig 10 (normal) Application of a (logical) production

shows how the production transforms G to the graphic H. Sometimes the
application of graphic productions can give surprises (more on this in the
last section), and it might be wise for an expert system to keep to normal
applications.

Definition 4 The application of a logical graphic production (l,r) is normal if
the label and attribute parts of the pushout morphisms g: L=>G, h: R=>H
are the same as those in d: K=>D.

Our example showed a normal application of the simple graphic production
(id,r1:L1=>R1), but more general graphic productions are also useful in
expert systems; to quote (PEM):

"This allows for a uniform treatment of 'forward chaining' systems,
where changes in the working memory data produce a match for the
left hand side of a rule which can then be applied, and 'backwards
chaining' systems where rules are examined in search for a match with
a fixed goal".

We should note the 'applicability' problem with graphic productions: to
determine if a production (l:K=>L,r:K=>R) can be used to transform a
graphic G, one needs the morphism d:K=>D - it is not enough to find a
morphism g:L=>G. There may be zero,one or many morphisms d, whose
pushout with l is g. Nevertheless for all simple productions and most
productions, that arise in practice, there is a unique d for any g.
 Our example of a graphic production is close both to the
corresponding Prolog rule:

 Musicians(x,y) :- Bremen(x),Old(x),Needy(x),Bremen(y),Old(y),Needy(y).

and to the running example of a rule in (PEM):

"if two women have the same mother, then they are sisters".

40

From the discussion at the end of the last section, it is clear that any 'pure'
Prolog rule gives a simple graphic production. If the rule also uses assert,
the corresponding graphic production is still simple because assert can only
add new edges and extend attribute values. Only when a rule uses retract
do we have to go beyond simple productions and let the graphic morphism
l:K=>L remove edges and reduce attribute values. Note however that assert
and retract have no influence on the unifier when a Prolog rule is applied.
This corresponds to the fact that the substitution map is determined by the
occurrence map d:K=>D when a graphic production is applied.
 For another example of (PEM)'s "rules containing reasoning knowledge
... represented by graph productions" let us look at type inheritance
reasoning. Previous techniques for type reasoning(Et,Sa,To) are all captured
in (Pa) where Padgham describes her version of type reasoning in a way
that we can translate into graphic productions. One of these productions is

(INH) x _________ y => x ______________ y
 < x is y> <x is y,P(y)> <x is y,P(x)> <x is y,P(y)>

Using this repeatedly on the graphic D3 gives

Worried

Creature

Domestic

Donkey

Old

<donkey is domestic,

<domestic and old are creatures,

<donkey is domestic and old creature,

 donkey is not worried,

 donkey is worried ,

 donkey is worried>

 domestic is creature

<donkey is old,

 old is creature

<old is worried,

 creature is worried ,

 domestic is not worried>

 old is worried,

 old is worried >

 creature is worried >

 domestic is not worried

 domestic is worried >

f ig 11 Graphic H2 over SIGMA

Clearly we need productions like

(DEL) x__________________y => x __________ y
 <x is y,x is not y> <x.is y> <x is y> <x is y>

41

to remove 'default' information when it conflicts with 'core' information.
Using this production we can delete the unwanted
'donkey is not worried' from the attribute of 'Donkey' in the graphic H2.
 So far we have not seen graphic productions that create new vertices,
so we give

 y => x __________ y
 <> <x is y> <x is y>

Using this production one can add old roosters,cats and dogs to the
graphic H2. For any symbol in the signature we can introduce a
production for introducing facts using the symbol into graphics.

#3 Analogies

There is a large literature on reasoning by analogy (Pr), and some of it
is concerned with whether an analogy is a map of a situation G into a
situation H or whether G and H must have a common structure or
pattern D. This dispute is related to whether analogies should be
modelled by simple graphic productions or whether we need
productions that are not simple. Although we do not take sides in this
dispute, we simplify this section by only using simple graphic
productions.
 Frequently situations can be described by graphics and a map
from situation G into situation H can be described by a graphic
morphism. We maintain that the interesting 'analogy' graphic
morphisms are pushouts of simple graphic productions.

Definition 5 A graphic production (l:K=>L, r:K=>R) is analogical if L
and R are over different -algebras.

42

Rooster

<rooster uses crow>

Cat

<cat uses claws>

Donkey

<donkey uses hoof>

Dog

<dog uses teeth>

 Crow

<rooster uses crow>

 Hoof

<donkey uses hoof>

Teeth

<dog uses teeth>

Claws

<cat uses claws>

 Judge

<judge attacks_with

 judgement>

 Judgement

<judge attacks_with

 judgement>

Witch

<witch attacks_

 with nails>

 Monster

<monster attacks_

 with club>

Assasin

<assasin attacks_

 with knife>

 Club

<monster attacks_with

 club>

Knife

<assasin attacks_with

 knife>

Nails

<witch attacks_with

nails>
f ig 12 Analogical graphic production from L4 to R4

In this example the signature is that given in section1, the graph part
of the morphism is trivial and the other parts are given by the -
algebra homomorphism at: SIGMA => ROBBER

 rooster -> judge crow -> judgement
 donkey -> monster hoof -> club
 dog -> assassin teeth -> knife
 cat -> witch nails -> claws
 uses -> attacks_with.

The domain of the morphism is the -term algebra SIGMA, the
codomain ROBBER is also a 'linguistic' -algebra with 'words' (formula
sets) as elements of the carrier for 'individual' (atom) The
homomorphism at is a "quotient" and ROBBER is the result of dropping
all terms with "rooster, donkey, dog, cat, uses, crow, hoof, teeth,
nails" from SIGMA. Applying this production to the graphic

43

Cottage <rooster,donkey,dog and cat in cottage>

Rooster

<rooster in cottage,

 rooster uses crow>

Cat

<cat in cottage,

 cat uses claws>

Donkey

<donkey in cottage,

 donkey uses hoof>

Dog

<dog in cottage,

 dog uses teeth>

 Crow

<rooster uses crow>

 Hoof

<donkey uses hoof>

Teeth

<dog uses teeth>

Claws

<cat uses claws>
f ig 13 Graphic D4 over ROBBER

gives the graphic

 Judge

<judge in cottage,

 judge attacks_with

 judgement>

 Judgement

<judge attacks_with

 judgement>

Cottage <judge,monster,assasin and witch in cottage>

Witch

<witch in cottage,

 witch attacks_

 with nails>

 Monster

<monster in cottage,

 monster attacks_

 with club>

Assasin

<assasin in cottage,

 assasin attacks_

 with knife>

 Club

<monster attacks_with

 club>

Knife

<assasin attacks_with

 knife>

Nails

<witch attacks_with

nails>

fig 14 Graphic H4 over ROBBER

This example shows no surprises because it illustrates a normal application
of an analogical graphic production.

Definition 6 The application of an analogical graphic production (l,r) is

normal if the label and attribute parts of the pushout morphisms

 g': D=>G, h': D=>H

are the same as those in l: K=>L, r: K=>R respectively.

Our approach to analogies assumes that 'situations' can be described by
graphics. Whenever situations can be described by terms in a -algebra, and
a map from situation G into situation H can be described by a -algebra
homomorphism, this assumption is reasonable. The discussion at the end of

44

section 1 about graphics for collections of logical facts in Prolog - indeed
any logical programming language, institution or gallery - shows that the
assumption is highly reasonable.

#4 Technicalities

In this section we define the precise notion of graphic morphism in such a
way that pushouts of graphics always exist. The underlying idea is that
graphic morphisms must be continuous in operations for 'gluing' labels and
attributes.
 Presentations of a graphic only reveal part of the label set L and the
underlying -algebra A ; the range of 'lab' is only a subset of L, the range of
'atr' is only part of A and some of the -symbols may not be mentioned.
Presentations of graphics must be supplemented with a specification of L
with its gluing operation "," and A with its gluing operations ".".
Presentations of a graphic morphism only reveal part of the underlying
labelling function 'la' and -algebra homomorphism 'at'.
 We will assume that each label set L has a binary operation "," and
each -algebra A has a binary operation ".". We assume these binary
operations are associative and commutative. We will write

 , S for l1.l2.l3 when S = (l1,l2,l3,..) is a subset of L
 . S for a1,a2,a3 when S = (a1,a2,a3...) is a subset of A
 la: L => L' for la: L => L' such that la(l1,l2) = la(l1),la(l2)
 at: A => A' for at:A => A' such that at(a1.a2) = at(a1),.at(a2).

There is no loss of generality with our assumptions, because one can always
replace L and each carrier domain of A by their power sets, so union is
available for "." and ",".

Definition 7 A morphism from a graphic (s,t,lab,atr,L,A) to a graphic
(s',t',lab',atr',L',A') consists of a graph morphism (ve,ed) and

 la: L => L' such that lab';ve = la;lab
 at:A => A' such that atr';ve = at;atr

where at is a -algebra homomorphism,

lab(v) is ,{lab(v)! ver(v') = ver(v)} and atr(v) is .{atr(v')! ver(v') = ver(v)}.

Our earlier definition of strict graphic morphisms corresponds to the case
when lab = lab and atr = atr. All of our examples have also had 'la' and 'at'
generated from a total map on 'singletons', but partial maps also generate
strict graphic morphisms.

Example

45

Let A and A' be SIGVAR,the term algebra when variables are allowed. Let L
and L' be the carrier domain for individual in SIGVAR. Any substitution sub:
Var -> L gives :

 la: L => L' where at(l) is result of applying sub to l
 at:A => A' where at(a) is result of applying sub to a.

Any graph morphism (ve,ed) gives a graphic morphism (ve,ed,la,at). Such
graphic morphisms are called 'graphic substitutions'.
 Any graphic morphism can be split into a graph morphism, a label
function la and a -algebra homomorphism 'at'. Each graphic morphism r =
<rve,red,rla,rat> from K to R is the composition of two graphic morphisms:

 <rve,red,id,id>, <id,id,rla,rat>

L * A

Ver t i ces

Edges

s t

Vert ices '

Edges'

t'

lab'*atr'

s'

 ed

id*id

ve

L A A'L' *
*

*lab atrlab*atr

 la*at
L A*

*lab atr

f ig 15 Decomposition of a graphic morphism

in either order. In (PEM, lemma 3.7) there is a similar splitting of 'SC-graph
morphisms' into first 'g-substitutions' then 'colour preserving graph
morphisms',but this order matters because 'g-substitutions' may not be
continuous.

Comment
Now we can be more precise about what can be done by a graphic
morphism r: K => R

(1') r can add vertices - ve need not be a surjection
(1'') r can glue vertices - ve need not be an injection
(2') r can add edges - ed need not be a surjection
(2'') r can glue edges - ed need not be an injection
(3) r can change labels - even if la is identity,
 the label of glued vertices may change
(4) r can change attributes - even if at is identity,
 the attribute of glued vertices may change.

46

When a graphic production (l: K => L, r: K => R) is applied to a graphic G, it
may remove vertices and edges because the morphism l can add vertices
and edges.
 Suppose we have another graphic morphism k = <kve,ked,kla,kat>
from K to D. As graphs, sets and -algebras have pushouts, one can form
the pushout of our graphic morphisms. One might expect trouble with the
vertices in R+D that must be glued together.However the morphism
requirements:

 Rlab;rve = rla;Klab Ratr;rve = rat;Katr
 Dlab;kve = kla;Klab Ratr;kve = kat;Katr

show that glued together vertices get the label la''(Klab(v)) and attribute
at''(Katr(v)), where la'' is the pushout of rla and kla, and at'' is the pushout
of rat and kat. Thus pushouts of graphic morphisms always exist and the
problems of (PEM) were caused by the fact that their 'g-substitutions' do
not always have pushouts. Note also that their 'g-substitutions' are
somewhat more general than our graphic substitutions, because they do not
insist on our 'vertex-independent functions', la and at.

Definition 8 A C-surprise is a pair (k,r) of graphic morphisms in the class C
whose pushout is not in C.

 A surprise is a pair (k,r) of graphic morphisms whose label and
attribute parts satisfy neither k= r;f nor r= k;f for any morphism f.

Usually C-surprises are also surprises, because k = r;f gives the pushout k;id
= r;f, r=k;f gives the pushout r;id = k;f, and C is a full subcategory of
graphics.
 For C we can take the class of graphic substitutions. Since
substitutions do not usually commute, the pushout of two substitutions is
rarely a substitution. As the pushout of two substitutions, s1 and s2, is s3(
x) = (s1(x).s2(x), s2(x).s1(x)), we get a graphic substitution surprise,
when d and r are graphic substitutions that do not commute. We are
surprised to find that vertex labels and attributes are complex terms with
gluing operations. In logical graphic productions for "logical reasoning in
expert systems" one usually has identity substitutions in the algebraic part
and there will be no overlap with any substitution in K=>D. Pushouts will be
substitutions,and there will be no surprises.
 Let us continue our search for natural classes of graphic morphisms
that rarely give surprises.Remember our 2-way splitting of graphic
morphisms. It gives a 2-way splitting of pushouts

47

GD GH LD LH AD AH
dve,ded dla dat

GK GR LK LR AK AR
rve,red rla rat

kve,ked hve,hed kla hla kat hat

K R

D H

r

d
k h

fig 16 Decomposition of pushouts

The graph pushout just tells about "gluing", it never gives surprises. The
label pushout does not give surprises if we have either LK = LR LD = LH
kla =hla or LK = LD LR = LH rla = dla. The attribute pushout does not give
surprises, if we have either AK = AR AD = AH kat =hat or AK = AD AR
= AH rat = dat. This analysis shows why normal applications of both logical
and analogical productions do not give surprises.
 Graphics and their morphisms form a category GGraphic which has
several interesting subcategories. Many of the graphics and graphic
morphisms in this paper have four common properties; they are algebraic,
proper, powered and linguistic.

Definition 9 A graphic over A is algebraic if its label set L is a subset of A.
A graphic morphism r: K =>R is algebraic if rla is the restriction of rat to the
label set of K. AAgraphic is the category of algebraic graphics and
morphisms.

This category is attractive because one does not have to treat labels and
attributes separately. All the graphics in this paper are algebraic; we have
followed the convention: the label set L for A is its carrier domain for
'individual'.

Definition 10 A graphic over A is powered if its attribute values are
sets. A graphic morphism r: K =>R is powered if rat is a monotonic function
on sets. 22graphic is the category of powered graphics and morphisms.
This category is attractive because unions and intersections of sets are
natural interpretations of our gluing operations. All the graphics in this
paper are isomorphic to powered graphics; one can replace terms like d by
the singleton {d} and terms like d1.d2.d3 by the set {d1,d2,d3}. In all our
figures we have made this replacement.

Definition 11 A graphic over A is linguistic if A is given by a signature
morphism from . A graphic morphism r: K =>R is linguistic if la and at are
given by a signature morphism. LLgraphic is the category of linguistic
graphics and morphisms.

A signature morphism from to ' is a function from the symbols and
variables of to the symbols and variables of '. Every signature

48

'corresponds to a context-free grammar by : constants map into
terminals, sorts map into non-terminals, and for each operation op:s1.s2...->
s0 one has both a terminal 'op' and a grammar production

 s0 ::= 'op(' s1 ',' s2 ')'

The language generated by this grammar is exactly the term algebra T('),
and it is a -algebra when one has a signature morphism from to
'.When is the signature in section 1, the identity signature morphism on
 gives SIGMA, the embedding of in U {x,y} gives SIGVAR, and the

signature morphism in section 3 gives ROBBER. Each of these signature
morphisms gives a linguistic morphism.

Definition 12 A graphic over A is reachable if its labelling and attribute
functions can be factored through the term algebra. A graphic morphism r:
K =>R is reachable if it can be factored through the term algebra. RRgraphic

is the category of reachable graphics and morphisms.

This category is attractive because all vertices of a reachable graphic have
"names" and two vertices with the same name have the same label and
attribute values. Almost all of the graphics in this paper are reachable
because their vertices have different " -individuals" as labels. For more on
categories of reachable objects and the connection to the theory of
institutions and algebraic specifications, one can consult (AT).
 It is instructive to make the category RRgraphic into a gallery RRG. The
signatures of RRG are the usual signatures of first order logic. The structures
of RRG are the usual - algebras, supplemented by a labelset.The frames of
RG are the graphics over the term - algebras. The valuation function of
RG is given by

 val(A,L,e) = the graphic with the same graph as e but
 atr is the A-interpretation of the e-attribute
 lab is the L-interpretation of the e-labels

One gets interesting subgalleries of RRG, if one places restrictions on the
structures. One can restrict to the algebraic structures (A,L) where L is a
designated subset of A and structure morphisms (at,la) have la as the
restriction of at to L. One can restrict to the powered structures (A,L),
where all terms interpreted as sets. One can restrict to the linguistic
structures (A,L) , where all terms are interpreted as sentences in a
grammar.
 Let us close this paper by describing "the passage to the metalevel".
Once we have RRG or any of its subgalleries we can apply the construction
at the end of section1 to get "metagraphics". Thus we can define C as the
collection of graphics in this paper, we can introduce "metavertices" for
each vertex label, "metaedges" between metavertices whose attributes

49

overlap - i.e. metavertices that occur together in some graphic in this
paper-and then build a large metagraphic:

 metavertexlabel metavertexattribute

 Rooster H1,D1,D4,L4
 Dog H1,D1,D4,L4
 Cat H1,D1,D4,L4
 Donkey H1,H2,D1,D2,D3,D4,L4
 Creature H2,D2,D3
 Worried H2,D2,D3
 Domestic H2,D2,D3
 Old H2,D1,D2,D3,L1,R1,H1
 Needy L1,R1,H1,D1
 x L1,R1
 y L1,R1
 Crow L4,D4
 Hoof L4,D4
 Claws L4,D4
 Teeth L4,D4
 Cottage L4,D4,H4
 Judge R4,D4,H4
 Monster R4,D4,H4
 Assassin R4,D4,H4
 Witch R4,D4,H4
 Judgement R4,D4,H4
 Club R4,D4,H4
 Knife R4,D4,H4
 Nails R4,D4,H4

Our way of constructing metagraphics seems to mirror quite precisely the
widespread use of metafacts and metarules in practical expert systems.

50

References
(BP) W. Bibel, B. Petkoff "Artificial Intelligence methodology, systems,

applications",N.Holland 1985,ISBN 0-4444-87743-6
(ENRL) H. Ehrig, M. Nagl, G. Rozenberg, A. Rosenfeld "Graph grammars and

their application to computer science" Springer LNCS 291.
(Et) D.W. Etherington "Formalizing nonmonotonic reasoning systems"

Art.Int 31 (1987) 41-85 .
(GB) J.A. Goguen, R.M. Burstall "Introducing institutions" Springer LNCS

164 pp 221-256.
(Ge) I. Georgescu "The hypernets method for representing knowledge"

pp 47-58 in (BP).
(HM) L. Hess, B.H. Mayoh "Graphics and their grammars" pp 232-249 in

(ENRL).
(Ma) B.H. Mayoh "Unified theory of knowledge representation" pp 35-

46 in (BP).
(Mo) P.D. Mosses "Unified algebras and institutions" LICS89, Fourth

Ann. Symp. Logic in Comp. Sci.
(Pa) L. Padgham "A model and representation for type information and

its use in reasoning with defaults" Proc. AAAI88 (1988) 409-414.
(PEM) F. Parisi-Presicce, H. Ehrig, U. Montanari "Graph Rewriting with

unification and composition" pp 496-514 in (ENRL).
(Pr) A. Prieditis(ed) "Analogica" ISBN0-273-8780-0 Pitman1983.
(Sa) E. Sandewall "Non-monotonic inference rules for multiple

inheritance with exceptions" Proc. IEEE 74(1986)1345-1353.
(ST) D. Sannella, A. Tarlecki "On observational equivalence and algebraic

specification" J. Comp. Sys. Sci 34 (1987) 150-178.
(To) D.S. Touretzky "The mathematics of inheritance systems"

M. Kaufmann Pub. 1986.
(Ul) J.D. Ullman "Principles of database systems" ISBN0-7167-8069-0

Comp. Sci Pr. 1982.

