
Transition system models for concurrency

Madhavan Mukund∗

Computer Science Department
Aarhus University

Ny Munkegade
DK-8000 Aarhus C, Denmark

E-mail: madhavan@daimi.aau.dk

June 1993

Abstract

Labelled transition systems can be extended to faithfully model
concurrency by permitting transitions between states to be labelled
by a collection of actions, denoting a concurrent step. We can charac-
terize a subclass of these step transition systems, called PN -transition
systems, which describe the behaviour of Petri nets. This correspon-
dence is formally described in terms of a coreflection between a cate-
gory of PN -transition systems and a category of Petri nets.

In this paper, we show that we can define subcategories of PN -
transition systems whose objects are safe PN-transition systems and
elementary PN-transition systems such that there is a coreflection
between these subcategories and subcategories of our category of Petri
nets corresponding to safe nets and elementary net systems.

We also prove that our category of elementary PN -transition sys-
tems is equivalent to the category of (sequential) elementary transition
systems defined by Nielsen, Rosenberg and Thiagarajan, thereby es-
tablishing that the concurrent behaviour of an elementary net system

∗On leave from the School of Mathematics, SPIC Science Foundation, 92, G.N. Chetty
Road, T. Nagar, Madras 600 017, India (E-mail: madhavan@ssf.ernet.in). The author’s
stay in Denmark is supported by a grant from the Danish Research Academy.

1

can be completely recovered from a description of its sequential be-
haviour.

Finally, we establish a coreflection between our category of safe
PN -transition systems and a subcategory of asynchronous transition
systems which has been shown by Winskel and Nielsen to be closely
linked to safe nets.

1 Introduction

Labelled transition systems provide a simple and convenient framework for
abstractly describing the behaviour of computing systems. Their main short-
coming from the point of view of describing concurrent systems is that they
are inherently sequential in nature.

We can overcome this limitation by adding some structure to transition
systems. One way of doing this is to permit transitions to be labelled by
steps, consisting of more than one action [5, 9]. This step transition relation
is intended to be read as describing how the system evolves from one state
to another by performing (multi)sets of concurrent actions.

In [9], we have shown a close correspondence between a class of step
transition systems, called PN -transition systems, and Petri nets [14]. The
relationship is described in terms of a coreflection between a category of
PN -transition systems, called PN ts, and a category of Petri nets, called
PN et, where the morphisms in the two categories correspond to a notion of
one system simulating another. This coreflection shows that we can regard
PN -transition systems as a model which captures precisely the class of con-
current behaviours described by Petri nets, while abstracting away from the
structural information associated with nets.

In this paper, we define subcategories of PN ts which correspond to some
interesting classes of behaviours and relate these subclasses of PN -transition
systems to other models of concurrent systems. In particular, we show that
we can identify natural subclasses of PN -transition systems which correspond
to two widely studied classes of nets, safe nets and elementary net systems.

The first observation we make in this paper is that the choice of using
sequential or step transition systems to describe Petri nets depends on how
detailed a description one wants of system behaviour. It turns out that we can

2

characterize in a precise way the sequential transition systems correponding
to Petri nets in terms of a coreflection between the full subcategory of PN ts
whose objects are sequential PN-transition systems and the category PN et
of Petri nets.

Next, we turn to the question of representing the behaviour of safe nets in
terms of step transition systems. Petri nets are a very general model for de-
scribing concurrent systems. To obtain a tractable theory of their behaviour,
one often looks at a restricted class of nets called safe nets. Safe nets are
very “well-behaved” and have given rise to a rich theory. In particular, we
note that there are strong connections between the theory of safe nets, trace
languages [7] and event structures [11, 17].

To identify a subcategory of PN ts corresponding to safe nets, we further
refine the concept of a region. Regions play a key role in establishing the
coreflection between PN ts and PN et They were originally defined in the
context of sequential transition systems by Ehrenfeucht and Rozenberg [3]
as a transition system counterpart of the notion of a condition in an elemen-
tary net system. Using regions, they characterized the class of sequential
transition systems which represent the behaviour of elementary net systems.
To define PN -transition systems, the notion of a region is generalized in [9] to
capture the transition system counterpart of a place of a Petri net. Here, we
show that we can “tune” the notion of a region to identify a full subcategory
SPN ts of safe PN-transition systems so that there is a coreflection between
SPN ts the full subcategory SN et of PN et whose objects are safe nets.

We then turn our attention to elementary net systems. In [12], Nielsen,
Rosenberg and Thiagarajan exploit the regions defined in [3] to establish a
coreflection between a class of sequential transition systems called elemen-
tary transition systems and elementary net systems. Here we show how to
describe a full subcategory of elementary PN -transition systems which is
equivalent to the category of elementary transition systems defined in [12].
This equivalence provides an alternative proof of the result, established by
Hoogeboom and Rosenberg [4], that for elementary net systems, no infor-
mation about concurrency is lost by restricting one’s attention to sequential
transition systems.

Enriching the transition relation to include steps as labels is not the only
way of introducing additional structure into transition systems to faithfully
describe concurrency. Another possibility is to retain a sequential transition

3

Sequential
PN -transition

systems
⇒ PN -transition

systems
⇒ Petri

nets

↑ ↑ ↑
Sequential

safe
PN -transition

systems

⇒
safe

PN -transition
systems

⇒ Safe
nets

↑ ↑ ↑
Elementary
transition
systems

∼=

Sequential
elementary

PN -transition
systems

∼=
Elementary

PN -transition
systems

⇒
Elementary

net
systems

Figure 1: Subclasses of PN -transition systems

relation, and add a relation which explicitly specifies which underlying events
in the system are independent of each other. This is the approach taken in
defining asynchronous transition systems [1, 15].

In [19], Winskel and Nielsen establish a coreflection between a category
Ats0 of asynchronous transition systems and a category of safe nets. From
this, it would appear that safe PN -transition systems are closely related to
asynchronous transition systems. In fact, we establish a coreflection between
our category of safe PN -transition systems and the subcategory Ats0 of
asynchronous transition systems defined in [19].

The reason this correspondence is a coreflection and not an equivalence is
to do with the role played by the independence relation in an asynchronous
transition system. It turns out that this relation also incorporates some
“structural” information about the system, in addition to information about
concurrency. So, in a sense, asynchronous transition systems are a more
abstract model than nets but a more concrete model than safe PN -transition
systems.

Another point concerning this correspondence between safe PN -transition
systems and asynchronous transition systems is that the category of safe nets
that we work with is slightly different from the category of safe nets that
Winskel and Nielsen work with. However, it turns out that we can establish

4

Safe
PN -transition

systems
⇒

Asynchronous
transition
systems

⇓ ⇓
Safe
nets

→⊥←↩

Safe nets
(Winskel and Nielsen)

Figure 2: The connection to asynchronous transition systems

an adjunction between these two categories of safe nets. This correspondence
can be strengthened when we restrict our attention to saturated nets, which
are those nets constructed out of transition systems using regions.

The main results of this paper are summarized in Figures 1 and 2. In the
diagrams, a double arrow ⇒ represents a coreflection. The arrow indicates
the direction of the left adjoint.

The first diagram describes the correspondence between subclasses of PN -
transition systems and subclasses of nets. The vertical arrows represent in-
clusions. For each pair of categories connected by a vertical arrow, the lower
category is a full subcategory of the category immediately above. In the bot-
tom row, we have indicated that the category of elementary PN -transition
systems is equivalent to both the subcategory of sequential elementary PN -
transition systems and to the category of elementary transition systems de-
fined in [12].

In the second diagram, we show the correspondence between safe PN -
transition systems and asynchronous transition systems. We also show the
adjunction between our category of safe nets and the category of safe nets
described in [19], where the right adjoint is the inclusion functor.

The paper is organized as follows. In the next two sections we briefly
review some terminology and basic results concerning the categories PN et
(of Petri nets) and PN ts (of PN -transition systems) defined in [9]. In Sec-
tion 4 we describe the coreflection between PN ts and PN et. In the next
section, we characterize the sequential behaviours of Petri nets. Section 6
describes the subcategory of PN ts corresponding to safe nets. In Section 7
we describe a subcategory of PN ts which is equivalent to the category of
elementary transition systems defined in [12]. We relate our category of safe
PN -transition systems to Winskel and Nielsen’s category of asynchronous

5

transition systems in Section 8. The next section describes the correspon-
dence between the two different categories of safe nets defined here and in
[19]. We conclude with a discussion of the results presented here.

A word about notation—the definition of PN transition systems uses mul-
tisets quite extensively. We describe the notation and terminology we use for
multisets in the Appendix.

2 Petri nets

We begin with a brief introduction to Place/Transition nets, which are often
simply called Petri nets. A more detailed discussion of this class of nets can
be found in [14].

Definition 2.1 A Petri net is a quadruple PN = (S, T, W, Min), where:

• S is set of places, T is a set of transitions and S∩T = ∅. T is assumed
to be countable.

• W : (S × T) ∪ (T × S) → N0 is the weight function such that ∀t ∈ T .
∃s ∈ S. W (s, t) > 0.

• Min : S → N0 is the initial marking.

For t ∈ T , let •t = {s ∈ S | W (s, t) > 0} and t• = {s ∈ S | W (t, s) > 0}.
Similarly, for s ∈ S, let •s = {t ∈ T | W (t, s) > 0} and s• = {t ∈ T |
W (s, t) > 0}. For x ∈ S ∪T , let •x• = •x∪ x•. Notice that we have insisted
that •t be nonempty for each t ∈ T .

The places of a Petri net intuitively correspond to local states of the
system. A global state, called a marking, is a multiset M : S → N0. If
M(s) = n, then s is said to be assigned n tokens by M .

A transition t can occur at a marking M if for all s ∈ S, M(s) ≥ W (s, t).
We say that t is enabled at M and denote this by M [t〉.

When a transition t occurs at a marking M , a new marking M ′ is gener-
ated according to the following rule:

∀s ∈ S. M ′(s) = M(s) − W (s, t) + W (t, s)

6

We denote the fact that M evolves to M ′ via t by M [t〉M ′.

Suppose t1 and t2 are two transitions and M is a marking such that ∀s ∈
S. M(s) ≥ W (s, t1) + W (s, t2). Then t1 and t2 can both occur independently
at M and are thus concurrently enabled. In such a situation, M can evolve
in a single step by the occurrence of both t1 and t2 to a marking M ′ where

∀s ∈ S. M ′(s) = M(s) − W (s, t1) − W (s, t2) + W (t1, s) + W (t2, s)

We can thus extend the transition relation associated with a Petri net to
permit steps of actions between a pair of markings. In general, such a step
will be a multiset over T rather than a subset of T because a transition may
be concurrent with itself (a phenomenon called autoconcurrency).

Let u ∈ MSfin(T). u is enabled at a marking M , denoted M [u〉, if for
all s ∈ S, M(s) ≥ ∑

t∈T u(t) · W (s, t). (Recall that u(t) denotes the number
of occurrences of t in u). When u occurs, M is transformed to M ′ (denoted
M [u〉M ′) where

∀s ∈ S. M ′(s) = M(s) +
∑
t∈T

u(t) · (W (t, s) − W (s, t))

If •t = ∅, it is clear that unboundedly large steps consisting of copies of
t will be enabled at any reachable marking. This is a fairly undesirable
phenomenon and prompts the restriction we have made that every transition
have an input place. This restriction was not present in the nets considered
in [9]. We shall say more on this in Section 4.

The set of all markings reachable from a marking M is denoted by [M〉.
[M〉 is the smallest set of markings such that

• M ∈ [M〉

• If M ′ ∈ [M〉 and ∃u ∈ MSfin(T). M [u〉M ′′ then M ′′ ∈ [M〉.

Given a Petri net PN = (S, T, W, Min), we can associate a transition
relation ⇒PN⊆ [Min〉 × MSfin(T) × [Min〉 with PN as follows.

⇒PN= {(M, u, M ′) | M ∈ [Min〉 and [M〉M ′}

Using ⇒PN , we can associate with PN an obvious transition system TSPN

whose states are the reachable markings of PN and whose transition relation

7

is labelled by multisets. We shall formally define such step transition systems
in the next section.

Here, we proceed by constructing a category of Petri nets. To do so, we
have to define a suitable notion of morphism.

Definition 2.2 Let PNi = (Si, Ti, Wi, M
i
in), i = 1, 2, be two Petri nets. A

net morphism from PN1 to PN2 is a pair φ = (φS, φT) where:

(i) φS : S2 ⇀ S1 is a partial function. (Notice that φS is a map from
S2 to S1 end not from S1 to S2. Thus, in the “forward” direction,
φ−1

S ⊆ S1 × S2 is a relation. For X ⊆ S1, φ−1
S (X) denotes the set

{y ∈ S2 | φS(y) ∈ X}.)
(ii) φT : T1 ⇀ T2 is a partial function.

(iii) ∀s1 ∈ S1. ∀s2 ∈ S2. If s1 = φS(s2) then M1
in(s1) = M2

in(s2).

(iv) ∀t1 ∈ T1. If φT (t1) is undefined then φ−1
S (•t1) = φ−1

S (t1
•) = ∅.

(v) ∀t1 ∈ T1. If φT (t1) = t2 then:

• φ−1
S (•t1) = •t2 and φ−1

S (t1
•) = t2

• .

• ∀s ∈ •t2. W1(φS(s), t1) = W2(s, t2).

• ∀s ∈ t2
•. W1(t1, φS(s)) = W2(t2, s).

We shall denote both φS and φT by φ, unless it is unclear from the context
which component we are referring to. Thus, normally we shall write φ(s) for
φS(s) and φ(t) for φT (t).

Let PN et be the category whose objects are Petri nets and whose arrows
are net morphisms as defined above.

We conclude this section with a result showing that net morphisms pre-
serve concurrent behaviour in a strong way. The proof of this result is given
in [9].

Lemma 2.3 Let PNi = (Si, Ti, Wi, M
i
in), i = 1, 2, be two Petri nets and

let φ be a net morphism from PN1 to PN2. For each M ∈ [M1
in〉, define

Mφ : S2 → N0 as follows:

∀s ∈ S2. Mφ(s) =

{
M(φ(s)) if φ(s) exists
M2

in(s) otherwise

8

We then have the following:

(i) ∀M ∈ [M1
in〉. Mφ ∈ [M2

in〉.
(ii) Suppose that (M, u, M ′) ∈ ⇒PN1 . Then (Mφ, φ(u), M ′

φ) ∈ ⇒PN2 .

3 PN-transition systems

A labelled transition system is usually defined as a quadruple TS = (Q, Σ,→
, qin) where Q is a set of states and → ⊆ Q × Σ × Q is a (sequential)
transition relation which describes ham the system evolves from state to
state by performing actions from Σ, beginning with the initial state qin.

We enrich the transition relation by permitting one state to be trans-
formed to another in a single step consisting of a finite multiset of actions.
We can then define the class of PN -transition systems as a subclass of this
new class of transition systems which satisfies some simple axioms ensuring
that all the steps in the system are “consistent”.

Definition 3.1 A step transition system is a structure TS = (Q, E,→, qin),
where

• Q is a countable set of states, with qin ∈ Q as the initial state.

• E is a countable set of events.

• → ⊆ Q × MSfin(E) × Q is the transition relation.

We shall often write q
u→ q′ instead of (q, u, q′) ∈ →.

We can extend → to a relation →∗ over step sequences in the usual way.
Let ρ = u1u2 . . . un ∈ (MSfin(E))∗ be a sequence of steps. Then (q, ρ, q′) ∈
→∗ iff ∃q0, q1, . . . , qn. q0 = q, qn = q′ and qi−1

ui→ qi for 1 ≤ i ≤ n.

We put three basic restrictions on transition systems. First, we introduce
idling transitions, represented by the empty multiset, as self loops at each
state and demand that these special transitions occur only as self loops. We
also ensure that all states in a transition system are reachable from the initial
state. Finally, we insist that there be no unbounded autoconcurrency in the
system. Formally, we have the following basic axioms.

9

(A1) ∀q, q′ ∈ Q. q
0E−→ q′ iff q = q′ (where OE is the empty multiset over

E).

(A2) ∀q ∈ Q. ∃ρ ∈ (MSfin(E))∗. (qin, ρ, q) ∈ →∗.

(A3) ∀q ∈ Q. ∀e ∈ E. ∃k ∈ N0. (q, u, q′) ∈ → implies u(e) < k.

Henceforth, we shall assume that every step transition system we consider
satisfies axioms (A1), (A2) and (A3).

Notice that (A1) does not rule out the presence of non-trivial selfloops of
the form q

u→ q.

(A3) corresponds to the restriction we have placed on nets that each
transition have an input place. Notice that no global bound is placed on
autoconcurrency—all (A3) says is that autoconcurrency is locally bounded
at each state in the transition system.

To describe PN -transition systems, we need to introduce the notion of a
region. Regions were originally defined in the context of elementary transi-
tion systems in [3] and exploited to define a coreflection between elementary
transition systems and elementary net systems in [12]. Here we generalize
the regions of [3, 12] to describe the transition system counterpart of a place
of a Petri net.

Definition 3.2 Let TS = (Q, E,→, qin) be a step transition system. A
region is a pair of functions r = (rQ, rE) such that:

(i) rQ : Q → N0.

(ii) rE : E → N0 × N0.

For convenience, we denote the first component of rE(e) as re and
the second component of rE as er. In other words, if rE(e) = (n1,
n2), then re = n1 and er = n2.

(iii) ∀(q, u, q′) ∈ → . rQ(q) ≥ ∑
e∈E u(e) · re and

rQ(q′) = rQ(q) +
∑

e∈E u(e) · (er − re).

We shall denote both rQ and rE by r, unless it is unclear from the con-
text which component we are referring to. Thus, normally we shall write
r(q) for rQ(q) and r(e) for rE(e). If re > 0, we say that r is a preregion of e

10

and if er > 0, we say that r is a postregion of e.

So, a region r corresponds to a plate of the Petri net which we would
like to associate with a given step transition system. Recall that for a Petri
net PN , we can associate an “obvious” transition system TSPN , with states
corresponding to the reachable markings of PN , events to the transitions
of PN and the step transition relation defined by ⇒PN . We specify the
number of tokens on the “place” r at the “marking” q by r(q). For each
e ∈ E, r(e) specifies the “weights” W (r, e) and W (e, r). The last condition
in the definition of a region ensures that rQ is consistent with the overall
behaviour of the net — for every transition q

u→ q′ present in the system,
r(q) must have enough “tokens” to permit u to occur and r(q′) must contain
the correct number of “tokens” as specified by the normal firing rule of a
Petri net.

We disregard regions r which are “disconnected” from all the events —
i.e. r such that r(e) = (0, 0) for all e ∈ E. These trivial regions correspond
to isolated places in a Petri net and do not contribute in any way to charac-
terizing the behaviour of the system.

Definition 3.3 Let TS = (Q, E,→, qin) be a step transition system. A
region r is non-trivial iff for some e ∈ E, r(e) �= (0, 0). We denote the set
of non-trivial regions of TS by RTS.

Henceforth, whenever we make a statement referring to all regions, we as-
sume that we are only considering nontrivial regions (unless explicitly stated
otherwise).

PN -transition systems are characterized by two “regional” axioms in ad-
dition to the basic axioms (A1) and (A2):

(A4) Let q, q′ ∈ Q. q �= q′ ⇒ ∃r ∈ RTS. r(q) �= r(q′). (Separation)

(A5) ∀q ∈ Q.∀u ∈ MSfin(E). If there does not exist q′ ∈ Q such that

q
u→ q′, then ∃r ∈ RTS. r(q) <

∑
e∈E u(e) ·r e. (Enabling)

Axiom (A4) says that any pair of distinct states in Q will be distinguished by
at least one (non-trivial) region. Axiom (A5) captures the fundamental idea
underlying the dynamic behaviour of a Petri net. It says that if the system
cannot perform a step labelled by u at the state q then there must be some

11

region r which does not have enough “tokens” at q to permit u to occur. In
other words, whenever a multiset of actions u is enabled at a state q of the
system by all regions, it must be possible to perform u and reach some state
q′ in the system.

Definition 3.4 A PN -transition system is a step transition system TS =
(Q, E,→, qin) which satisfies axioms (A4) and (A5) (in addition to the basic
axioms (A1) to (A3)).

We now state a couple of useful properties of PN -transition systems which
are formally established in [9].

The first observation about PN -transition systems is that they are deter-
ministic. TS = (Q, E,→, qin) is said to be a deterministic step transition
system in case the following is true:

∀q ∈ Q. ∀u ∈ MSfin(E). (q, u, q′) ∈ → and (q, u, q′′) ∈ → implies q′ = q′′.

Proposition 3.5 Every PN-transition system is deterministic.

The second observation is that every step in a PN -transition system can
be broken up into substeps in a consistent way. This shows that steps do
indeed reflect concurrency in a natural way.

Proposition 3.6 Let TS = (Q, E,→, qin) be a PN-transition system and
let q

u→ q′ in TS. Then

∀v ⊆MS u. ∃qv ∈ Q. q
v→ qv and qv

u−v→ q′.

To construct a category of PN -transition systems, we now define mor-
phisms between PN -transition systems. These are standard transition sys-
tem morphisms as defined, say, in [12, 19], extended to respect steps.

Definition 3.7 Let TSi = (Qi, Ei,→i, q
i
in), i = 1, 2, be two PN-transition

systems. A transition system morphism f form TS1 to TS2 is a pair of func-
tions f = (fQ, fE) where:

(i) fQ : Q1 → Q2 is a total finction such that fQ(q1
in) = q2

in .

(ii) fE : E1 ⇀ E2 is a partial function.

(iii) If (q, u, q′) ∈ →1 then (fQ(q), fE(u), fQ(q′)) ∈ →2.

12

As with regions, we shall denote both fQ and fE by f , unless it is unclear
from the context which component we are referring to. Thus, normally we
shall write f(q) for fQ(q) and f(e) for fE(e).

Notice that the last clause ensures that if a step u is hidden by f then
every transition (q, u, q′) ∈ →1 results in q and q′ being mapped to the same
state in Q2; i.e. if for all e ∈ u, f(e) is undefined, then (q, u, q′) ∈ →1 implies
(f(q), 0E2 , f(q′)) ∈ →2, which by axiom (A1) forces f(q) = f(q′).

PN -transition systems with transition system morphisms forma category,
which we shall call PN ts.

4 Relating Petri nets and PN -transition sys-

tems

There is a natural way to define a functor NT from PN et to PN ts.

NT maps objects in the obvious way—each Petri net PN is mapped to
the transition system associated with its “step” marking diagram. Let PN =
(S, T, W, Min) be a Petri net. Then

NT(PN) = ([Min〉, T,⇒PN , Min)

where [Min〉 is the set of markings reachable from the initial marking Min ,
T is the set of transitions of PN and ⇒PN is the step transition relation for
Petri nets defined in Section 2.

Next we define how NT maps arrows. Let PN i = (Si, Ti, Wi, M
i
in), i = 1, 2,

be two Petri nets and let φ be a net morphism from PN 1 to PN 2. Then,
NT(φ) = fφ is defined as follows.

• ∀t ∈ T1. fφ(t) = φ(t).

• ∀M ∈ [M1
in〉. fφ(M) = Mφ (where Mφ is the map defined in Lemma

2.3).

The main result established in [9] is the existence of a left adjoint to this
functor.

13

Theorem 4.1 There exists a functor TN : PN ts → PN et such that TN
is left adjoint to NT.

The unit of the adjunction in fact turns out to be a natural isomorphism,
so there is actually a coreflection between this pair of functors.

We shall not describe TN in any detail. The main idea is that a PN -
transition system can be transformed into a Petri net by regarding events as
the transitions of the net and regions as the places of the net.

A remark is in order at this point about the categories PN ts and PN et
and the coreflection that we have defined here. In the original formulation
of the coreflection between PN -transition systems and Petri nets in [9], no
assumption was made about transitions in a net having input places. Cor-
respondingly, the axiom (A3) that we have introduced for PN -transition
systems was not present.

It is quite clear that for any net PN = (S, T, W, Min), if every t ∈ T
has an input place, then TSPN will satisfy axiom (A3). It is not difficult
to prove the converse—if TS = (Q, E,→, qin) satisfies (A3), then for every
e ∈ E there exists an r ∈ RTS such that re > 0 and so TN(TS) will have an
input place for each transition.

The coreflection that is established in [9] continues to hold when we restrict
TN and NT to the categories we have defined here. The reason we have chosen
to work in this more restrictive framework is that here we will be dealing
mainly with special classes of nets, like safe nets, which do not exhibit any
autoconcurrency under “normal circumstances”. So, for these classes of nets,
it is reasonable to demand that we abolish the unbounded autoconcurrency
generated by transitions with no input places.

5 Sequential PN -transition systems

PN -transition systems faithfully record the concurrent behaviour of Petri
nets by means of transitions labelled with multisets of events.

However, it turns out that we can also characterize the transition systems
corresponding to the purely sequential behaviour of Petri nets.

For conveniences we shall define sequential transition systems as special
cases of step transition systems.

14

Definition 5.1 Let TS = (Q, E,→, qin) be a step transition system TS
is sequential iff TS satisfies axioms (A1) to (A3) and, further,

∀(q, u, q′) ∈ → · |u| ≤ 1.

In other words, a sequential transition system can have steps labelled ei-
ther by single events, or by OE2 , corresponding to the idling transition at
each state.

Definition 5.2 Let TS = (Q, E,→, qin) be a transition system. TS is a
sequential PN -transition system if it is sequential and, further, it satisfies
the two axioms (A4) and (A5) for PN-transition systems.

It is clear that any sequential PN -transition system is also a (normal)
PN -transition system. In fact, we can define a full subcategory SeqPN ts
whose objects are sequential PN -transition systems and whose arrows are
transition system morphisms.

It is not difficult to prove the following.

Theorem 5.3 SeqPN ts is a coreflective subcategory of PN ts

Proof To establish this, we have to show that the inclusion functor from
SeqPN ts to PN ts has a right adjoint. The right adjoint is the functor
which forgets concurrency.

More formally, define U : PN ts → SeqPN ts to be the functor which maps
a PN -transition system TS = (Q, E,→, qin) to a sequential PN -transition
system TS ′ = (Q, E,→′, qin), where

→′= {(q, u, q′) | q
u→ q′ and |u| ≤ 1}.

For each transition system morphism f : TS1 → TS2 in PN ts, U(f) :
U(TS1) → U(TS2) is the map such that U(f)Q = fQ and U(f)E = fE.

It is straightforward to verify that U is in fact right adjoint to the inclusion
functor. We omit the details. ✷

So, by composing the inclusion functor with the functor TN : PN ts →
PN et we obtain a functor which is left adjoint to the functor U ◦NT taking
nets to their sequential marking diagrams.

15

We can also characterize sequential PN -transition systems directly in
terms of regions.

Proposition 5.4 Let TS = (Q, E,→, qin) be a PN-transition system. TS
is sequential iff rseq ∈ RTS, where rseq is defined as follows:

∀q ∈ Q. rseq(q) = 1.

∀e ∈ E. rseq(e) = (1, 1).

Proof It is easy to see that if TS is sequential, rseq is in fact a region.
Conversely, if rseq is a region in RTS, clearly for each transition q

u→ q′ in
TS, |u| ≤ 1 and so TS is sequential. ✷

In the net TN(TS) corresponding to the sequential PN -transition system
TS, rseq will be a place marked at the initial marking and connected to all
transitions by self-loops, ensuring that the net exhibits no concurrency in its
behaviour.

6 Safe nets

Petri nets can exhibit very complex behaviours which are difficult to charac-
terize globally. To obtain a mathematically tractable theory, one often looks
at restricted classes of nets.

In this regard, one very important subclass of nets is the class of safe nets.
In general, a Petri net PN = (S, T, W, Min) is said to be k-safe if M(s) ≤ k
for every reachable marking M ∈ [Min〉. Call PN a safe net if it is 1-safe.

Thus, in a safe net, every reachable marking is a set, rather than a multiset
of places. Let PN = (S, T, W, Min) be a safe net. For any transition t ∈ T ,
if there is a place s ∈ •t such that W (s, t) > 1, then t will never be enabled.
Similarly, if there is a place s ∈ t• such that W (t, s) > 0, t can never occur
because after t occurs, s would be unsafe. So, it makes sense to restrict W
to values from {0, 1} instead of the entire range N0.

With this in mind, we define safe nets in terms of our general definition
of Petri nets as follows.

Definition 6.1 Let PN = (S, T, W, Min) be a Petri net. Then PN is a

16

safe net provided
(i) ∀s ∈ S. ∀t ∈ T. W (s, t) ≤ 1 and W (t, s) ≤ 1.

(ii) ∀M ∈ [Min〉. ∀s ∈ S. M(s) ≤ 1.

Let SN et be the full subcategory of PN et whose objects are safe nets.
We can restrict the functor NT to a functor SNT : SN et → PN ts.

We now want to identify a subcategory SPN ts of PN ts such that there is
a coreflection between STN : SPN ts → SN et and SNT : SN et → SPN ts.

For this, we define 0/1-regions.

Definition 6.2 Let TS = (Q, E,→, qin) be a step transition system. Then
r = (rQ, rE) is a 0/1-region of TS if r is a region and

∀q ∈ Q. rQ(q) ≤ 1.

∀e ∈ E. re ≤ 1 and er ≤ 1.

Let R0/1
TS = {r ∈ RTS | r is a 0/1−region}.

We can then modify the regional axioms (A4) and (A5) to refer only to
0/1-regions.

(A4’) Let q, q′ ∈ Q. q �= q′ ⇒ ∃r ∈ R0/1
TS . r(q) �= r(q′). (Separation)

(A5’) ∀q ∈ Q.∀u ∈ MSfin(E). If there does not exist q′ ∈ Q such that

q
u→ q′, then ∃r ∈ R0/1

TS . r(q) <
∑

e∈E u(e) ·r e. (Enabling)

Definition 6.3 A safe PN -transtion system is a step transition system TS =
(Q, E,→, qin), which satisfies axioms (A4’) and (A5’) (in addition to the
basic axioms (A1) to (A3)).

Let SPN ts be the full subcategory of PN ts whose objects are safe PN -
transition systems.

As we had mentioned in Section 2, in general we need to consider steps
labelled by multisets rather than sets in order to deal with autononcur-
rency. Clearly, a safe net cannot exhibit autoconcurrency. So, since safe
PN -transition systems are supposed to describe the behaviour of safe nets,

17

it is not surprising that we have the following.

Proposition 6.4 Let TS = (Q, E,→, qin) be a safe PN-transition system.
Then for every transition q

u→ q′ in TS, u is a set.

Proof Let e ∈ u. It suffices to show that there is a 0/1-region r such
that re = 1.

By (A3) we know that autoconcurrency is bounded. In other words,
at each state q, there is some k ∈ N0 such that the step consisting of k
occurrences of e is not enabled. By (A5’) there is a 0/1-region r such that
r(q) < k · re. It is clear that re must be 1, and so we are done. ✷

We now establish that the transition system TSPN associated with a safe
net PN is in fact a safe PN -transition system.

Lemma 6.5 Let PN = (S, T, W, Min) be a safe net. Then TSPN = ([Min〉, T,
⇒PN , Min) is a safe PN-transition system.

Proof It is straightforward to show that TSPN satisfies the three basic ax-
ioms (A1) to (A3) for step transition systems. So, what we have to show is
that axioms (A4’) and (A5’) are true as well.

For each s ∈ S, we can define a region rs in TSPN as follows.

∀M ∈ [Min〉. rs(M) = M(s).

∀t ∈ T. rs(t) = (W (s, t), W (t, s)).

It is not difficult to establish that rs is a region, and, in fact is a 0/1-region.
rs will be non-trivial provided s is not isolated in PN (i.e. there is some
t ∈ T such that s ∈ •t or s ∈ t•.)

It then immediately follows that TSPN satisfies (A4’). Given any M, M ′ ∈
[Min〉, if M �= M ′, there must be a non-isolated plate s ∈ S such that
M(s) �= M(s′). Then clearly rs is a non-trivial 0/1-region of TSPN separating
M from M ′.

Next consider (A5’). Suppose M ∈ [Min〉 and u ∈ MSfin(T), and there
is no M ′ such that M

u→ M ′. Then, at the marking M ∈ [Min〉, u is not
enabled. By the firing rule for Petri nets, this implies that there is some s ∈ S
such that M(s) <

∑
t∈u W (s, t). Clearly, rs is then a non-trivial 0/1-region

18

such that rs(M) <
∑

t∈u
rst and we are done. ✷

Given a pair of safe nets PNi = (Si, Ti, Wi, M
i
in), i = 1, 2, and a net

morphism φ : PN1 → PN2, for each M ∈ [M1
in〉 we can define a marking

Mφ ∈ [M2
in〉as in Lemma 2.3. That is

∀s ∈ S2.Mφ(s) =

{
M(φ(s)) if φ(s) exists
M2

in(s) otherwise

We can then define SNT : SN et → SPN ts as follows:

• Let PN = (S, T, W, Min) be a safe net. Then SNT(PN) = ([Min〉, T,
⇒PN , Min).

• Let PNi = (Si, Ti, Wi, M
i
in
), i = 1, 2, be a pair of safe nets and φ :

PN1 → PN2 a net morphism. Then SNT(φ) : SNT(PN1) → SNT(PN2)
is given by:

– ∀t ∈ T1. SNT(φ)(t) = φ(t).

– ∀M ∈ [M1
in〉. SNT(φ)(M) = Mφ

It is easy to check the following.

Proposition 6.6 SNT : SN et → SPN ts is a functor.

We can construct a functor STN : SPN ts → SN et which is left adjoint
to SNT. We first define STN0, a map on objects from SPN ts to SN et.

Let TS = (Q, E,→, qin) be a safe PN -transition system. Then

STN0(TS) = (R0/1
TS , E, WTS, MTS

in)

where WTS(r, e) = re and WTS(e, r) = er for each r ∈ R0/1
TS and e ∈ E, and

MTS
in (r) = r(qin) for each r ∈ R0/1

TS .

Theorem 6.7 STN0 extends to a functor STN : SPN ts → SN et such
that STN is left adjoint to SNT and the unit of the adjunction is a natural
isomorphism.

Proof We just sketch the main ideas. The details are similar to those used

19

to establish the coreflection between TN and NT and can be filled in from
[9].

We can first establish that for each safe PN -transition system TS, there
is a transition system isomorphism ηTS : TS → SNT ◦ STN0(TS). This map
will serve as the unit of the adjunction.

Suppose that TS ∈ SPN ts and PN ∈ SN et such that there is a tran-
sition system morphism f : TS → SNT(PN). Then, we can establish that
there is a unique morphism φ : STN0(TS) → PN such that f = SNT(φ)◦ηTS.

Given this, if follows (according to [6]), that STN0 can be extended uniquely
to a functor STN : SPN ts → SN et which is left adjoint to SNT. ✷

7 Elementary transition systems

Next, we look at one of the basic models of net theory, elementary net sys-
tems. In [12], Nielsen, Rosenberg and Thiagarajan establish a coreflection
between a glass of transition systems galled elementary transition systems
and elementary net systems.

In many ways, that result is the starting point of the work reported here.
In this section, we define a subcategory of PN ts whose objects are elemen-
tary PN -transition systems, which corresponds to the category of elementary
transition systems of [12]—that is, there is an equivalence between these two
categories.

We begin by describing elementary net systems. This will motivate the
axioms we need to put on PN -transition systems to define elementary PN -
transition systems.

Rather than try and define elementary net systems in terms of general
Petri nets, we start from scratch and provide the standard definition (see,
for instance, [16]).

We begin with the definition of a net.

Definition 7.1 A net is a triple N = (S, T, F) where:

20

(i) S is a set of S-elements and T is a set of T -elements, such that
S ∩ T = ∅

(ii) F ⊆ (S × T) ∪ (T × S) is the flow relation such that ∀x ∈ S ∪ T .
∃y ∈ S ∪ T. [(x, y) ∈ F ∨ (y, x) ∈ F].

Thus a net specifies the underlying structure of a system. The flow relation
F corresponds to the {0, 1}-valued weight function we defined for safe nets.
We use •x, x• and •x• to denote the neighbourhood of x ∈ S ∪ T , as usual.

Normally, the S-elements are called conditions and denoted by B and the
T -elements are called events and denoted by E. Here, we shall stick to S
and T to remain consistent with the notation for nets used so far.

Definition 7.2 An elementary net system is a quadruple ENS = (S, T, F, cin)
where

(i) (S, T, F) is a net, called the underlying net of ENS.

(ii) cin ⊆ S is the initial case.

Thus, the initial case corresponds to an initial marking in a safe net. The
essential difference between an elementarv net svstem and a safe net is in the
firing rule. Let c, c′ ⊆ S be cases of an elementary net system and t ∈ T be
an event. Then

c
t→ c′

def
= c − c′ = •t ∧ c′ − c = t•

Thus, in an elementary net system, an event cannot occur at a case where its
postconditions are not empty. This means that an event which is connected
to a condition by a self-loop will be permanently disabled.

Given the transition relation defined above, we can define [cin〉 the set of
cases reachable from cin , in the same way that we defined [Min〉 for Petri
nets. We can then associate a sequential transition relation →ENS with an
elementary net system ENS = (S, T, F, cin) in the obvious way:

→ENS= {(c, t, c′) | c, c′ ∈ [cin〉 and c
t→ c′}

We can extend this sequential transition relation to a step transition re-
lation between cases. As in a safe net, a set of transitions is concurrently
enabled at a case provided each individual transition is enabled and the
neighbourhoods of the transitions are pairwise disjoint.

⇒ENS= {c, u, c′ | c, c′ ∈ [cin〉, u = {t1, t2, . . . , tn},

21

∃c1, c2, . . . , cn. ∀i ∈ {1, 2, . . . , n}. c
ti→ ci, and

∀i, j ∈ {1, 2, . . . , n}. i �= j implies •ti
• ∩ •tj

• = ∅}

So, given an elementary net system ENS = (S, T, F, cin), we can associate
with it a sequential transition system STSENS = ([cin〉, T,→ENS, cin) and a
step transition system TSENS = ([cin〉, T,⇒ENS, cin).

In [3], Ehrenfeucht and Rosenberg gave a characterization of the sequential
transition systems arising from elementary net systems. In [12], this charac-
terization was extended to a coreflection between these elementary transition
systems and elementary net systems.

Here we shall show how to characterize the step transition systems corre-
sponding to elementary net systems as a suitable subclass of PN -transition
systems. We shall then establish a categorical equivalence between our ele-
mentary PN -transition systems and elementary transition systems.

We begin by defining elementary regions.

Definition 7.3 Let TS = (Q, E,→, qin) be a step transition system. An
elementary region of TS is a pair of functions r = (rQ, rE) such that r is a
region of TS and, in addition:

∀q ∈ Q. r(q) ≤ 1.

∀e ∈ E. r(e) ∈ {(0, 1), (1, 0), (0, 0)}.

Let RE
TS denote the set of all non-trivial elementary regions of TS.

Thus an elementary region is a 0/1-region with the constraint that r(e) �=
(1, 1) for any event e. As before, we modify the regional axioms (A4) and
(A5) to refer only to elementary regions. We also explicitly add the condition
that every e ∈ E have an occurrence.

(A4”) Let q, q′ ∈ Q. q �= q′ ⇒ ∃r ∈ RE
TS. r(q) �= r(q′). (Separation)

(A5”) ∀q ∈ Q.∀u ∈ MSfin(E). If there does not exist q′ ∈ Q such that

q
u→ q′, then ∃r ∈ RE

TS. r(q) <
∑

e∈E u(e) ·r e. (Enabling)

(A6”) ∀e ∈ E.∃q
u→ q′. e ∈ u.

22

Definition 7.4 An elementary PN-transition system is a step transition
system TS = (Q, E,→, qin) which satisfies axioms (A4”) to (A6”) in addition
to the basic axioms (A1) to (A3).

Let EPN ts be the full subcategory of PN ts whose objects are elementary
PN -transition systems. As with safe PN -transition systems, it is easy to
show that all steps in an elementary transition system consist of sets of
events rather than multisets.

We want to establish a categorical equivalence between the subcategory
EPN ts and the category of elementary transition systems defined in [12]. In
order to do this, we first have to describe elementary transition systems.

Elementary transition systems are defined as a subclass of “conventional”
sequential transition systems (as opposed to the sequential versions of step
transition systems which we defined Definition 5.1).

Definition 7.5 A transition system is a quadruple STS = (Q, E,→, qin)
where

• Q is a set of states with qin ∈ Q as the initial state.

• E is a set of events.

• → ⊆ Q × E × Q is the transition relation.

The next thing to do is to define regions on these transition systems.

Definition 7.6 Let STS = (Q, E,→, qin) be a transition system. A sim-
ple region is a subset ρ ⊆ Q such that:

(i) q
t→ q′ ∧ q ∈ ρ ∧ q′ /∈ ρ ⇒ ∀q1

t→ q′1 in STS. [q1 ∈ ρ ∧ q′1 /∈ ρ]

(ii) q
t→ q′ ∧ q /∈ ρ ∧ q′ ∈ ρ ⇒ ∀q1

t→ q′1 in STS. [q1 /∈ ρ ∧ q′1 ∈ ρ]

ρ is non-trivial if it is not equal to Q or to ∅. Let RSTS denote the set of
non-trivial simple regions of STS.

For e ∈ E, define ρ ∈ •e if there is a transition q
e→ q′ in STS such

that q ∈ ρ and q′ /∈ ρ. Similarly, ρ ∈ e• if there is a transition q
e→ q′ in

STS such that q /∈ ρ and q′ ∈ ρ. As usual, •e = {ρ ∈ RSTS | ρ ∈• e},
e• = {ρ ∈ RSTS | ρ ∈ e•} and •e• = •e ∪ e•.

23

The class of elementary transition systems is then given by the following
axioms.

(EA1) ∀q
e→ q′. q �= q′.

(EA2) ∀e ∈ E. ∃q
e→ q′.

(EA3) ∀q ∈ Q. ∃σ ∈ E∗. (qin , σ, q) ∈ →∗.

(EA4) ∀q, q′ ∈ Q. q �= q′ ⇒ ∃ρ ∈ RSTS. q ∈ ρ ⇔ q′ /∈ ρ

(EA5) ∀q ∈ Q. ∀e ∈ E. If there does not exist q′ such that q
e→ q′ then

∃ρ ∈ •e. q /∈ ρ.

The first axiom rules out self loops in the transition system. The other axioms
correspond to restrictions we have encountered before. In the formulation of
elementary transition systems presented in [12], there is an additional axiom
preventing two different transitions between the same pair of states. This
amounts to requiring simplicity of the nets one is considering. In [9] we have
pointed out that the coreflection between elementary transition systems and
elementary net systems holds even without this restriction so we avoid this
additional axiom here.

A morphism between elementary transition systems is, as usual, a total
function on the states and a partial function on the events that preserves the
transition relation. The only complication is that we do not have idling tran-
sitions, so we have to be a bit careful in defining the simulation condition,
Once again, the definition we present here is slightly different from the one
presented in [12], but is equivalent to their formulation.

Definition 7.7 Let STSi = (Si, Ei,→i, q
i
in), i = 1, 2, be a pair of transition

systems. A morphism f from STS1 to STS2 is pair of maps f = (fQ, fE)
where:

(i) fQ : Q1 → Q2 is a total function such that fQ(q1
in) = q2

in .

(ii) fE : E1 ⇀ E2 is a partial function.

(iii) ∀q
e→1 q′. If fE(e) is defined, then fQ(q)

fE(e)→ 2 fQ(q′). Otherwise,
fQ(q) = fQ(q′).

Let ET S denote the category whose objects are elementary transition sys-

24

tems and whose arrows are transition system morphisms as defined above.

In an elementary transition system, every “diamond” represents concur-
rency. This is stated in a little more generality in the following proposition.

Proposition 7.8 Let STS = (Q, E,→, qin) be an elementary transition sys-
tem and {e1, e2, . . . , en} ⊆ E, n ≥ 2, be a subset of events in E. Then the
following statements are equivalent.

(i) For each i, j ∈ {1, 2, . . . , n}, i �= j implies •e• ∩ •e• = ∅
(ii) ∀q ∈ Q. If ∃q0, q1, . . . , qn. q = q0 and qi−1

ei−→ qi, 1 ≤ i ≤ n, then
for each permutation π : {1, 2, . . . , n} → {1, 2, . . . , n}. ∃q′0, q

′
1, . . . , q

′
n ∈

Q, where q0 = q′0, qn = q′n and q′i−1

eπ(i)−→ q′i, 1 ≤ i ≤ n.

Proof ((i) ⇒ (ii)) If the n events have pairwise disjoint neighbourhoods,
then they can occur independently. The result is then straightforward, by
appealing to axiom (EA5). The proof proceeds by induction on n, the num-
ber of pairwise independent events and we omit the details.

((ii) ⇒ (i)) Again, the proof is straightforward, by induction on n.

The base case is when n = 2. So, we have q, q1, q2, q
′ ∈ Q and e1, e2 ∈ E,

such that q
e1→ q1

e2→ q′ and q
e2→ q2

e1→ q′.

Consider any ρ ∈ RSTS. Suppose ρ ∈ •e1. Then, q ∈ ρ and q1 /∈ ρ, so,
by definition, ρ /∈ •e2. Similarly, we must have q2 ∈ ρ and q′ /∈ ρ, so ρ /∈ e2

•

either. By a similar argument, if ρ ∈ e1
•, ρ /∈ •e2

•. A symmetric argument
shows that ρ ∈ •e2

• implies ρ /∈ •e21
•.

The case n > 2 follows in a straightforward way from the induction hy-
pothesis. We omit the details. ✷

We now prove some useful properties of elementary PN -transition sys-
tems. The first observation is that elementary regions are completely char-
acterized by their value on states.

Proposition 7.9 Let TS = (Q, E,→, qin) be an elementary PN-transition
system and r, r′ ∈ RE

TS. Then rQ = r′Q implies r = r′.

Proof Consider any e ∈ E. Then, by axiom (A6”) and Proposition 3.6,

we know there is some transition q
{e}→ q′ in TS. From the definition of an

25

elementary region, it is easy to establish that

r(e) = r′(e) =

(1, 0) if r(q) = 1 and r(q′) = 0
(0, 1) if r(q) = 0 and r(q′) = 1
(0, 0) otherwise

✷

Next, we show that an elementary PN -tansition system is free of self-
loops labelled by singleton steps.

Proposition 7.10 Let TS = (Q, E,→, qin) be an elementary PN-transition

system. Then, there does not exist a transition of the form q
{e}→ q for any

q ∈ Q and e ∈ E.

Proof By appealing to axiom (A3) which locally bounds autoconcurrency,
we can deduce that for every e ∈ E, there is an elementary region r such that
re = 1. It then follows that er = 0, by the definition of elementary regions.

So r(q) cannot be defined consistently for any q such that q
{e}→ q and so no

such transition can exist in the system. ✷

We can now define functors Eseq : EPN ts → ET S and Estep : ET S →
EPN ts.

First, we describe Eseq.

• Let TS = (Q, E,→, qin) be an elementary PN -transition system. Then
Eseq(TS) = (Q, E,→′, qin) where

→′= {(q, e, q′) | q
{e}→ q′}.

• Let TSi = (Qi, Ei,→i, q
i
in), i = 1, 2, be a pair of elementary PN -

transition systems and f : TS1 → TS2 a morphism in EPN ts. Then
Eseq(f) = f̂ : Eseq(TS1) → Eseq(TS2) is given by:

– ∀q ∈ Q. f̂(q) = f(q).

– ∀e ∈ E. f̂(e) = f(e).

26

Definition 7.11 Let r ∈ RE
TS be a non-trivial elementary region of an el-

ementary PN-transition system TS = (Q, E,→, qin). Then ρr
def
= {q ∈ Q |

r(q) = 1}.

Proposition 7.12 Let TS = (Q, E,→, qin) be an elementary PN-transition
system. Then,

(i) ∀r ∈ RE
TS. ρr is an simple region of Eseq(TS).

(ii) ρr = ρr′ implies r = r′.

Proof Part (ii) follows from Proposition 7.9. The proof of part (i) is straight-
forward and we omit the details. ✷

Proposition 7.13 Eseq is a functor.

Proof Given an elementary PN -transition system TS = (Q, E,→, qin), we
have to check that Eseq(TS) is an elementary transition system. Axiom
(EA1) holds because of Proposition 7.10. (EA2) and (EA3) are satisfied
because TS satisfies (A6”) and (A2) respectively. Finally, we come to the
regional axioms (EA4) and (EA5). We know that we can find regions in
TS satisfying axioms (A4’) and (A5’). By Proposition 7.12, these regions
correspond uniquely to regions in Eseq(TS) which would enforce the regional
axioms (EA4) and (EA5) in Eseq(TS).

It is then trivial to check that the image of a morphism in EPN ts is in
fact a morphism in ET S, and we are done. ✷

To define the functor going the other way, from ET S to EPN ts, we
implicitly use the result proved in Proposition 7.8.

Let Estep :ET S → EPN ts be defined as follows:

• Let STS = (Q, E,→, qin) be an elementary transition system. Then
Estep(STS) = (Q, E,→′, cin) where

→′= {(q, u, q′) | u = {e1, e2, . . . , en} ⊆ E
and ∃q0, q1, . . . qn ∈ Q. q = q0, q = qn

such that ∀i ∈ {1, 2, . . . , n}. qi−1
ei→ qi,

where ∀i, j ∈ {1, 2, . . . , n}. i �= j ⇒
•ei

• ∩ •ej
• = ∅}

∪{(q, OE, q) | q ∈ Q}.

27

• Let STSi = (Si, Ei,→i, q
i
in = 1, 2, be a pair of elementary transition

systems and f : STS1 → STS2 a morphism in ET S. Then Estep(f) =
f̂ : Estep(STS1) → Estep(STS2) is given by:

– ∀q ∈ Q. f̂(q) = f(q).

– ∀e ∈ E. f̂(e) = f(e).

Definition 7.14 Let ρ ∈ RSTS be a non-trivial simple region of an elementary
transition system STS = (Q, E,→, qin). Then rρ = (rρQ, rρE), where rρQ :
Q → {0, 1} and rρE : E → {(0, 1), (1, 0), (1, 1)} is defined as follows.

∀q ∈ Q. rρQ(q) = 1 iff q ∈ ρ

∀e ∈ E. rρE(e) =

(0, 1) if ρ ∈ e•

(1, 0) if ρ ∈ •e
(0, 0) otherwise

Proposition 7.15 Let STS = (Q, E,→, qin) be an elementary transition
system. Then

(i) ∀ρ ∈ RSTS. rρ is an elementary region of Estep(STS).

(ii) rρ = rρ′ implies ρ = ρ′.

Proof The proof is straightforward and we omit the details. The main
condition we have to check for part (i) is that rρ permits all the steps we
have introduced, and this follows directly from Proposition 7.8. Part (ii)
follows from Proposition 7.9. ✷

Proposition 7.16 Estep is a functor.

Proof For an elementary transition system STS = (Q, E,→, qin), we have to
check that Estep(STS) is an elementary PN -transition system. Axioms (A1)
follows from the definition of →′. Axiom (A2) follows from the fact that STS
satisfies axiom (EA3). (A3) is trivially satisfied. (A6”) follows from the fact
that STS satisfies (EA2). Finally, every region in STS corresponds uniquely
to a region in Estep(STS), so we can deduce that Estep(STS) satisfies (A4’)
and (A5’) from the fact that STS satisfies (EA4) and (EA5).

Once again, it is trivial to check that the image of a morphism in ET S is
in fact a morphism in EPN ts. ✷

28

Theorem 7.17 The functors Eseq and Estep define a categorical equiva-
lence between EPN ts and ET S.

Proof We have to show that the functor Estep ◦ Eseq is naturally isomor-
phic to the identity functor idEPN ts and, correspondingly, that Eseq ◦ Estep
is naturally isomorphic to idET S .

In fact, we can prove something much stronger. Using the results we have
proved so far, it is easy to show that for all TS ∈ EPN ts, Estep◦Eseq(TS) =
TS and for all STS ∈ ET S, Eseq ◦ Estep(STS) = STS. So, these two
categories are not just equivalent, they are in fact isomorphic. ✷

So, we have established that the category of step transition systems de-
fined by elementary net systems is equivalent to the category of sequential
transition systems defined by them. This equivalence provides an alternate
proof of the result, established combinatorially by Hoogeboom and Rosenberg
in [4], that information about the concurrent behaviour of an elementary net
system can always be completely recovered from a description of its sequential
behaviour.

8 Asynchronous transition systems

Asynchronous transition systems were introduced by Bednarczyk [1] and
Shields [15]. These are sequential transition systems equipped with informa-
tion about concurrency in terms of an independence relation on the events.
These transition systems are closely related to safe nets. In fact, in [19],
Winskel and Nielsen establish a coreflection between a special class of asyn-
chronous transition systems and safe nets. We now show that there is a
coreflection between our category SPN ts of safe PN -transition systems and
the category of asynchronous transtion systems defined in [19].

We begin by defining asynchronous transition systems. (The particular
definition we use is adapted from [19]).

Definition 8.1 An asynchronous transition system is a structure ATS =
(Q, E,⇒, qin , I) such that

• (Q, E,⇒, qin) is a sequential transition system (in the sense of Defini-

29

tion 5.1).

• I ⊆ E × E is an irreflexive, symmetric, independence relation satisfy-
ing the following four conditions:

(i) e ∈ E implies ∃q, q′ ∈ Q. q
{e}
=⇒ q′.

(ii) q
u⇒ q′ and q

u⇒ q′′ implies q′ = q′′.

(iii) e1Ie2 and q
{e1}
=⇒ q1 and q

{e2}
=⇒ q2 implies

∃q′. q1
{e2}
=⇒ q′ and q2

{e1}
=⇒ q′.

(iv) e1Ie2 and q
{e1}
=⇒ q1 and q1

{e2}
=⇒ q′ implies

∃q2. q1
{e2}
=⇒ q2 and q2

{e1}
=⇒ q′.

Condition (i) in the definition above specifies that each event in E must
be “used” somewhere in the system. The second condition stipulates that
the system is deterministic. The third and fourth conditions capture the
fact that I specifies pairs of events which are independent of each other and
can thus occur concurrently if they are simultaneously enabled. Actually, the
independence relation specifies more than just concurrency—for instance, two
events may be independent without being enabled simultaneously anywhere
in the system. We shall return to this point later.

Since we are dealing with sequential transition systems, for convenience

we shall write q
e⇒ q′ instead of q

{e}
=⇒ q′, where e ∈ E. We shall typically

write q
u⇒ q′ to indicate that u could either correspond to {e} for some e ∈ E

or to the empty step OE.

Notice that the underlying sequential transition system is a step transition
system satisfying axioms (A1) to (A3). So, we have idling transitions at each
state and every state is reachable from the initial state. ((A3) is trivially
satisfied in a sequential transition system).

Asynchronous transition systems are closely connected to safe nets. In
[19], Winskel and Nielsen define a category A (which we shall call Ats) con-
sisting of synchronous transition systems equipped with transition system
morphisms which satisfy the additional requirement that the map on events
preserve the independence relation. They then establish a coreflection be-
tween a subcategory of asynchronous transition systems, denoted A0 (which
we shall call Ats0), and a category of safe Petri nets.

30

To identify the subcategory Ats0, they define a version of regions called
conditions, using which they define axioms exactly like the regional axioms
we impose on PN -transition systems.

Definition 8.2 Let ATS = (Q, E,⇒, qin, I) be an asynchronous transition
system. Its conditions are nonempty subsets b ⊆ ⇒ such that

(i) (q, e, q′) ∈ b implies (q, OE, q) ∈ b and (q′, OE, q′) ∈ b.

(ii) (a) (q1, e, q
′
1) ∈ •b and (q2, e, q

′
2) ∈ ⇒ implies (q2, e, q

′
2) ∈ •b

(b) (q1, e, q
′
1) ∈ b• and (q2, e, q

′
2) ∈⇒ implies (q2, e, q

′
2) ∈ b•

where for (q, e, q′) ∈⇒ we define

(q, e, q′) ∈ •b
def
= (q, e, q′) /∈ b and (q′, OE, q′) ∈ b,

(q, e, q′) ∈ b•
def
= (q, 0E, q′) ∈ b and (q′, OE, q′) /∈ b,

•b• = •b ∪ b•.

(iii) (q1, e1, q
′
1) ∈ •b• and (q2, e2, q

′
2) ∈ •b• implies ¬e1Ie2.

Let B be the set of conditions of ATS. For e ∈ E, define

•e = {b ∈ B | ∃q, q′. (q, e, q′) ∈ b•}
e• = {b ∈ B | ∃q, q′. (q, e, q′) ∈ •b}, and
•e• = •e ∪ e•.

Further, for q ∈ Q, define M(q) = {b ∈ B | (q, OE, q) ∈ b}.
Notice that a condition is really a subset of states and transitions. The

information about the states is coded up in terms of the idling transitions.

We shall establish that the notion of a condition is equivalent to a natural
notion of a region for this class of transition systems, defined as follows.

Definition 8.3 Let ATS = (Q, E,⇒, qin , I) be an asynchronous transition
system. A region of ATS is a pair of functions r = (rQ, rE) where

rQ : Q → {0, 1} and
rE : E → ({0, 1} × {0, 1}) such that

(i) ∀q
e⇒ q′. re = 1 implies rQ(q) = 1 and

rQ(q′) = rQ(q) + (er − re).

(ii) ∀e, e′ ∈ E. If eIe′ then (re = 1 or er = 1) implies re′ = e′r = 0.

31

So, regions for asynchronous transition systems are very similar to the
0/1-regions we define for safe PN -transition systems. The only additional
requirement is that independent events have disjoint sets of pre and postre-
gions. This reflects the intuition that two transitions in a safe net are inde-
pendent provided their neighbourhoods are disjoint.

Definition 8.4 Let ATS = (Q, E,⇒, qin , I) be an asynchronous transition
system. Let B denote the set of conditions of ATS and let R denote the set
of regions of ATS. We define two functions, r̂ : B → R and b̂ : R → B.

First, let r̂ : B → R be defined as follows.

∀b ∈ B. ∀q ∈ Q. r̂(b)(q) =

{
1 if (q, OE, q) ∈ b
0 otherwise

∀b ∈ B. ∀e ∈ E. r̂(b)(e) =

(1, 0) if b ∈ •e e•

(0, 1) if b ∈ e• •e
(1, 1) if b ∈ •e•

(0, 0) otherwise

Next, let b̂ : R → B be defined as follows.

∀r ∈ R. b̂(r) = {(q, u, q′) | u = OE, q = q′ and r(q) = 1, or
u = {e}, r(e) = (0, 0) and r(q) = r(q′) = 1}

It is not hard to show the following result.

Proposition 8.5 Let ATS be an asynchronous transition system, with B
as its set of conditions and R as its set of regions.

(i) ∀b ∈ B. b̂(r̂(b)) = b.

(ii) ∀r ∈ R. r̂(b̂(r)) = r.

We can now describe the subcategory Ats0 defined in [19]. Let ATS =
(Q, E,⇒, qin , I) be an asynchronous transition system. Then ATS ∈ Ats0 if
it satisfies the following two axioms, stated in terms of its set of conditions
B:

Axiom ATS1 M(q) = M(q′) implies q = q′.

Axiom ATS2 •e ⊆ M(q) implies ∃q′. q
e⇒ q′, for all q ∈ Q, e ∈ E.

32

Clearly M(q) is equivalent to the set of regions {r ∈ R | r(q) = 1}. And,
•e ⊆ M(q) is equivalent to saying r(q) ≥ re for all r ∈ R. So we can reformu-
late these two axioms in terms of regions and observe that they correspond
to the axioms of separation and enabling for PN -transition systems (stated
in the contrapositive form).

Axiom ATS1’ (∀r ∈ R. r(q) = r(q′)) implies q = q′.

Axiom ATS2’ (∀r ∈ R. r(q) ≥ re implies ∃q′. q
e⇒ q′, for all q ∈ Q, e ∈ E.

Actually, when defining the category Ats of all asynchronous transition
systems in [19], Winskel and Nielsen do not assume that every state is reach-
able (as we have done here by requiring the underlying sequential transition
system to satisfy axiom (A2)). The axiom for reachability is then intro-
duced in [19] as a third axiom that an asynchronous transition system must
satisfy to be in the subcategory Ats0. Since we are only interested in the
subcategory Ats0 here, our presentation is equivalent to the one in [19].

The morphisms in Ats0 are transition system morphisms that preserve the
independence relation. In other words, given two asynchronous transition
systems ATSi = (Qi, Ei,⇒i, q

i
in , Ii), i = 1, 2, a morphism f : ATS1 → ATS2

is a pair (fQ, fE) where:

• fQ : Q1 → Q2 is a total function such that fQ(q1
in) = q2

in .

• fE : E1 ⇀ E2 is a partial function.

• q
e⇒1 q′ implies fQ(q)

fE(e)
=⇒2 fQ(q′).

• If e1Ie′1 and fE(e1), fE(e′1) are both defined, then fE(e1)I2fE(e′1), for
all e1, e

′
1 ∈ E1.

We want to establish a relationship between our category of safe PN -
transition systems SPN ts and the category Ats0. Actually, to describe the
result we are after we have to make a slight restriction to our notion of a safe
PN -transition system. Henceforth, we assume that if TS = (Q, E,→, qin)
is a safe transition system, for every event e ∈ E there is some transition
q

u→ q′ in TS with e ∈ u—that is, every event has an occurrence. We shall
discuss the need for this restriction at the end of this section.

33

We first prove a standard result which describes how the independence re-
lation I in an asynchronous transition system specifies concurrency. It says
that a sequence of actions which are pairwise independent corresponds to a
concurrent step consisting of those actions. So, if such a sequence is enabled
at a state in the system, all permutations of that sequence must also be en-
abled at that system and, furthermore, they should all lead to the same state
as the original sequence.

Lemma 8.6 Let ATS = (Q, E,⇒, qin , I) be an asynchronous transition sys-
tem and {e1, e2, . . . , en} ⊆ E, n ≥ 2, be a pairwise independent subset of
ewents in E—in other words, eiIej for all 1 ≤ i, j ≤ n, i �= j.

If q
e1⇒ q1

e2⇒ · · · en−1
=⇒ qn−1

en⇒ q′′ then for all permutations π : {1, 2, . . . , n} →
{1, 2, . . . , n}, there exists states {q′1, q′2, . . . , q′n−1} such that q

eπ(1)
=⇒ q′1

eπ(2)
=⇒

· · · eπ(n−1)
=⇒ q′n−1

eπ(n)
=⇒ q′′.

Proof The proof is straightforward, by induction on n, the number of pair-
wise independent events. The base case n = 2 corresponds to condition (iv)
in the definition of an asynchronous transition system. We omit the details.

✷

We can now describe a functor AS : Ats0 → SPN ts. Given an asyn-
chronous transition system ATS = (Q, E,⇒, qin , I), AS(ATS) = (Q, E,→,
qin), where

→ = {(q, u, q′) | u = {e1, e2, . . . , en} ⊆ E, such that
eiIej for all 1 ≤ i, j ≤ n, i �= j and

∃q1, q2, . . . , qn−1. q
e1⇒ q1

e2⇒ · · · en−1
=⇒ qn−1

en⇒ q′ in ATS}

Let ATSi = (Qi, Ei,⇒i, q
i
in , Ii), i = 1, 2, be a pair of asynchronous tran-

sition systems and let f : ATS1 → ATS2 be a morphism in Ats0. Then
the corresponding morphism AS(f) : AS(ATS1) → AS(ATS2) is given by
AS(f)Q = fQ and AS(f)E = fE.

Lemma 8.7 AS is a functor.

Proof Let ATS = (Q, E,⇒, qin , I) be an asynchronous transition system

34

in Ats0. To check that AS(ATS) is a safe PN -transition system, we just
observe that every region of ATS is also a 0/1-region of AS(ATS). It then
follows that AS(ATS) must satisfy the regional axioms (A4’) and (A5’) be-
cause ATS satisfies Axioms ATS1’ and ATS2’.

Given a morphism f : ATS1 → ATS2, where ATSi = (Qi, Ei,⇒i, q
i
in , Ii),

i = 1, 2, and AS(ATSi) = (Qi, Ei,→i, q
i
in), i = 1, 2, we have to check that

f̂ = AS(f) satisfies condition (iii) in Definition 3.7.

In other words, if q
u→1 q′, we have to ensure that f̂(q)

f̂(u)−→2 f̂(q′). Let
u = {e1, e2, . . . , en}. By the definition of →1, there must exist a sequence

of actions q
e1⇒1 q1

e2⇒1 · · · en−1
=⇒1 qn−1

en⇒1 q′. Since f is a transition system
morphism, it then follows that the f -image of this sequence exists in ATS2.

That is there is a sequence f(q)
f(e1)
=⇒2 f(q1)

f(e2)
=⇒2 · · · f(en−1)

=⇒ 2 f(qn−1)
f(en)
=⇒2

f(q′). Since we know that the events in u are pairwise independent and f
preserves independence, the events in f(u) must be pairwise independent as

well. It then follows, by the definition of →2, that f(q)
f(u)−→2 f(q′). ✷

We now construct a functor SA which is left adjoint to the functor AS.
Let TS = (Q, E,→, qin) be a safe PN -transition system. Define SA(TS) =
(Q, E,⇒, qin , I) where

• ⇒= {(q, u, q′) | q
u→ q′ and |u| ≤ 1}

• I = {(e1, e2), (e2, e1) | ∃q ∈ Q. q
{e1,e2}−→ q′}

Let TSi = (Qi, Ei,→i, qin), i = 1, 2, be a pair of safe PN -transition
systems and f : TS1 → TS2 be a morphism in SPN ts. Then SA(f) :
SA(TS1) → SA(TS2) is given by SA(f)Q = fQ and SA(f)E = fE.

Before proving that SA is a functor, it will be useful to prove a small result
about 0/1-regions.

Proposition 8.8 Let TS = (Q, E,→, qin) be a safe PN-transition system.

Suppose that e1, e2 ∈ E such that there exists a step q
{e1,e2}−→ q′ in TS. Then,

for all r ∈ R0/1
TS , if re1 = 1 or er

1 = 1 then re2 = er
2 = 0.

Proof Suppose that r ∈ R0/1
TS such that re1 = 1. Then, since r(q) ≤ 1, re2

must be 0, otherwise the step {e1, e2} would not be enabled at q. e2
r must be

35

0 as well. For, consider the state q2 reached by the transition q
{e2}−→ q2. (Such

a transition must exist by Proposition 3.6). We have r(q2) = r(q)+(e2
r−re2).

But r(q) = 1, since re1 = 1 and e1 is enabled at q. We also know that re2 = 0.
So, if e2

r were 1, we would have r(q2) = 2, which is not possible.

On the other hand, if e1
r = 1, we must have r(q) = 0. Then, we cannot

have re2 = 1, or e2 would not be enabled at q. We cannot have e2
r = 1 either

because then r(q′) = 2, which is not possible. ✷

Lemma 8.9 SA is a functor.

Proof Let TS = (Q, E,→, qin) be a safe PN -transition system. We have to
first check that SA(TS) is an asynchronous transition system. We basically
have to check that conditions (i) to (iv) of Definition 8.1 hold.

Condition (i) holds because we have restricted the objects in SPN ts
appropriately. Condition (ii) follows from Proposition 3.5 which says that
PN -transition systems are deterministic.

Conditions (iii) and (iv) pertain to the independence relation. Condition
(iii) says that e1Ie2 and q

e1=⇒ q1 and q
e2=⇒ q2 implies ∃q′. q1

e2=⇒ q′ and

q2
e1=⇒ q′. Since e1Ie2, we know that q′′

{e1,e2}−→ q′′′ somewhere in TS. By the
previous proposition, the pre and postregions of e1 and e2 are disjoint, so
if both e1 and e2 are enabled at a state q, then (by axiom (A5’)) the step
{e1, e2} must be enabled as well. The result then follows from Proposition
3.6, which asserts that all steps in a PN -transition system can be broken
up into substeps in a consistent way. Condition (iv) follows by a similar
argument.

To verify that SA(TS) satisfies axioms ATS1’ and ATS2’, notice that by

the previous proposition, any region r ∈ R0/1
TS would correspond to a region

in SA(TS). Since TS satisfies axioms (A4’) and (A5’) with respect to regions

in R0/1
TS , it follows that the corresponding regions in SA(TS) are sufficient to

satisfy axioms ATS1’ and ATS2’.

We then have to verify that for any morphism f : TS1 → ST2, i = 1, 2,
SA(f) = f̂ is a morphism from SA(TS1) to SA(TS2), where SA(TSi) =
(Qi, Ei,⇒i, q

i
in , Ii), i = 1, 2. We basically have to verify that if e1I1e2 and

both f̂(e1) and f̂(e2) are defined, then f̂(e1)I1f̂(e2) where f̂(e1) = f(e1)
and f̂(e2) = f(e2). If e1I1e2, then, by the definition of I1, we know that

36

q
{e1,e2}−→ 1 q′ somewhere in TS1. This implies that f(q)

{f(e1),f(e2)}−→ 2 f(q′) in
TS2. So, if f(e1) and f(e2) are both defined, then, by the definition of I2,
we have f(e1)I2f(e2) and we are done. ✷

Theorem 8.10 The functor SA is left adjoint to the functor AS. The unit
of the adjunction is a natural isomorphism.

Proof Let TS ∈ SPN ts and ATS ∈ Ats0. Suppose that f : TS →
AS(ATS) is a morphism. Then, since TS and SA(TS) have the same un-
derlying sets of states and events and AS(ATS) and ATS have the same
underlying sets of states and events, it is fairly straightforward to see that
f̂ : SA(TS) → ATS is also a morphism, where f̂Q = fq and f̂E = fE. Con-
versely, if g : SA(TS) → ATS is a morphism, we can show that ḡ : TS →
AS(ATS) is also a morphism, where ḡQ = gQ and ḡE = gE. Further,

¯̂
f = f

and ˆ̄g = g for all morphisms f ∈ SPN ts and g ∈ Ats0. This establishes a
bijection between Hom(TS, AS(ATS)) and Hom(AS(TS), ATS). It is not
difficult to show that this bijection is natural in both SPN ts and Ats0,
thereby establishing the adjunction.

It is also not difficult to show that the unit ηTS : TS → AS ◦ SA(TS) is
an isomorphism for all TS ∈ SPN ts. ✷

So we have established a coreflection between our category of safe PN -
transition systems and the category of asynchronous transition systems Ats0

defined by Winskel and Nielsen in [19].

The reason that this correspondence is a coreflection and not a categorical
equivalence has to do with the nature of the independence relation. In an
asynchronous transition system two events can be independent without ever
being enabled simultaneously to give rise to a concurent step. When repre-
senting an asynchronous transition system as a safe PN -transition system,
we lose information about these “unused” independences. These “unused”
independences can be regarded as providing some “structural” information
about the system which may not be directly detectable in its concurrent
behaviour. For example, two events being independent of each other could
denote the fact that they occur at different locations and do not interfere
with each other. Under such an interpretation, one comes across very natu-
ral examples of asynchronous transition systems in which independent events
are never simultaneously enabled (see, for instance, [10]).

37

It is not difficult to show that our category of safe PN -transition systems
is equivalent to a subcategory of Ats0 whose objects satisfy the additional
constraint that for every pair (e1, e2) ∈ I, there is a state q where both e1

and e2 are enabled.

We also pointed out a mismatch between the definition of safe PN -
transition systems we use in this section and the one we proposed in the
Section 6. The additional assumption we have made here is that every event
in E have an occurrence. This is required because asynchronous transition
systems in the category Ats0 satisfy this restriction.

However, this restriction on asynchronous transition systems is a conse-
quence of how conditions are defined. For an asynchronous transtition system
ATS = (Q, E,⇒, qin , I), it is easy to see that one cannot define a condition
b ∈ •e for any e ∈ E which does not occur in ATS. This is because conditions
are defined as subsets of transitions which are present in the system. Since
we cannot find any b ∈ •e for an event e which does not occur, Axiom ATS2
would then require e to be enabled at every state in the system, which is a
contradiction. So, for asynchronous transition systems in Ats0, condition (i)
in Definition 8.1 is implied by Axiom ATS2.

However, in the generalized set up of regions, it is possible to define “dis-
abling regions” which take the value 0 at all states but which are the prere-
gion of some event e, thereby ensuring that e is never enabled. The regional
version of the second axiom, Axiom ATS2’, would clearly permit such per-
manently disabled events to be part of the specification of the system.

It is not difficult to generalize Definition 8.1 by dropping condition (i) and
building a slightly larger category Ats′0 satisfying Axioms ATS1’ and ATS2’.
It then turns out that the coreflection we have described here goes through
between the category SPN ts as originally defined in the previous section
and the more generous category Ats′0.

9 Safe nets revisited

We showed in Section 6 that there is a coreflection between SPN ts, the
category of safe PN -transition systems and SN et, our category of safe nets.
Then, we showed that there is also a coreflection between SPN ts and Ats0,
where Ats0 is a subcategory of the Ats, the category of asynchronous tran-

38

sition systems. In [19], Winskel and Nielsen have established a coreflection
between Ats0 and a category of safe nets which we shall call WN et.

Unfortunately, the category WN et is not the same as the category SN et
we have defined here. However, we show now that there is an adjunction be-
tween these two categories. Further, we can establish a coreflection between
the subcategories of SN et and WN et consisting of only saturated nets, where
saturated nets are those nets which arise out of the regional construction in
going from transition systems to nets.

The only difference between WN et and SN et is that the morphisms of
WN et are slightly stricter than those of SN et.

Let us briefly recall the definition of the category SN et. The objects
of SN et are safe nets, as given by Definition 6.1. Morphisms between safe
nets are the same as those between general nets, as given in Definition 2.2.
However, since the definition of a morphism becomes slightly simpler when
restricted to safe nets, we pause to spell it out in detail.

Let PNi = (Si, Ti, Wi, M
i
in), i = 1, 2, be a pair of safe nets. An SN et-

morphism φ : PN1 → PN2 is a pair φ = (φS, φT) where:

(i) φS : S2 ⇀ S1 is a partial function.

(ii) φT : T1 ⇀ T2 is a partial function.

(iii) ∀s1 ∈ S1. ∀s2 ∈ S2. If s1 = φS(s2) then M1
in(s1) = M2

in(s2).

(iv) ∀t1 ∈ T1. If φT (t1) is undefined then φ−1
S (•t1) = φ−1

S (t1
•) = ∅.

(v) ∀t1 ∈ T1. If φT (t1) = t2 then φ−1
S (•t1) = •t2 and φ−1

S (t1
•) = t2

•.

The category WN et also has as its objects safe nets, like SN et. However,
the morphisms are slightly stricter than those of SN et. φ : PN1 → PN2 is a
morphism in WN et if φ is an SN et-morphism, and, in addition, φ−1

S (M1
in) =

M2
in (where, abusing notation, M i

in , i = 1, 2 denote the subsets of S1 and S2

which are marked initially in PN1 and PN2 respectively).

So, the essential difference between a WN et-morphism and an SN et-
morphism is that in a WN et-morphism φS is a total function when restricted
to those places marked initially in the second net.

Clearly, every WN et-morphism is also an SN et-morphism. So WN et is
a subcategory of SN et, though not a full subcategory.

It turns out that we can construct a left adjoint to the inclusion functor

39

from WN et to SN et (though this will not constitute a reflection because
WN et is not a full subcategory of SN et [6]).

In going from SN et to WN et, we have, in general, to make an SN et-
morphism into a WN et-morphism. In other words, we have to convert the
map on the initial marking from a partial function to a total function A
standard way to convert a partial function to a total function is to augment
the range of the function with a special “undefined” value. Similarly, here we
augment the net that is the source of the morphism with an isolated marked
place.

Formally, define a functor SNWN : SN et → WN et as follows.

• For PN = (S, T, W, Min) ∈ SN et, SNWN(PN) = (S({s̆}, T, W ′, Min
′),

where:

– s̆ /∈ S (we use s̆ to denote disjoint union).

– ∀s ∈ S ({s̆}. ∀t ∈ T . W ′(s, t) =

{
W (s, t) if s ∈ S
0 otherwise

– ∀s ∈ S ({s̆}. ∀t ∈ T . W ′(s, t) =

{
W (t, s) if s ∈ S
0 otherwise

– M ′
in(s̆) = 1 and ∀s ∈ S. Min

′(s) = Min(s).

• Let φ : PN1 → PN2 be a morphism between PN1 and PN2, where
PNi = (Si, Ti, Wi, M

i
in), i = 1, 2. Then, SNWN(φ) = φ′ : SNWN(PN1)

→ SNWN(PN2) is given as follows, where SNWN(PNi) = (Si ({s̆i},
Ti, W

′
i , M

i
in

′
), i = 1, 2.

– ∀t ∈ T1. φ′(t) = φ(t).

– ∀s ∈ S2({s̆2}. φ′(s) =

s̆1 if (s = s̆2) or

(s ∈ S2, M
2
in

′
(s) = 1 and

φ(s) is undefined)
φ(s) otherwise

Theorem 9.1 SNWN : SN et → WN et is left adjoint to the inclusion func-
tor.

Proof Let PN1 = (S1, T1, W1, M
1
in) and PN2 = (S2, T2, W2, M

2
in) be two

40

safe nets. We shall establish a bijection between Hom(PN1, PN2) and
Hom(SNWN(PN1), PN2), where SNWN(PN1) = (S1 (s̆1, T1, W

′
1, M

1
in

′
).

We first define a map λ : Hom(PN1, PN2) → Hom(SNWN(PN1), PN2).
Suppose that φ : PN1 → PN2 ∈Hom(PN1, PN2). Define λ(φ) : SNWN(PN1) →
PN2 as follows.

• ∀t ∈ T1. λ(φ)(t) = φ(t).

• ∀s ∈ S2. λ(φ)(s) =

{
s̆1 if M2

in(s) = 1 and φ(s) undefined
φ(s) otherwise

Next we define a map µ : Hom(SNWN(PN1), PN2) → Hom(PN1, PN2).
Let ψ : SNWN(PN1) → PN2. Then µ(ψ) : PN1 → PN2 is given as follows.

• ∀t ∈ T1. µ(ψ)(t) = ψ(t).

• ∀s ∈ S2. µ(ψ)(s) =

{
undefined if ψ(s) = s̆1

ψ(s) otherwise

It is straightforward to show that µ(λ(φ)) = φ and λ(µ(ψ)) for all φ ∈
Hom(PN1, PN2) and ψ ∈ Hom(SNWN(PN1), PN2). It is not difficult to
show that this bijection is natural in SN et and WN et, and we are done. ✷

As we mentioned at the beginning of this section, we can establish a
slightly stronger result when we look at the safe nets actually arising out of
the regional construction from transition systems.

In Section 6, we have described a functor STN which associates a net
STN(TS) with each safe PN -transition system TS. Following [12], we can
call such a net saturated, because it contains all possible places which are
consistent with the behaviour described by TS. A crucial feature of the
construction is that these saturated nets have no isolated places because we
only use non-trivial regions in the construction of the saturated net.

In [19], Winskel and Nielsen describe a similar functor, which we can
call AWN, going from Ats0 to WN et. Once again, given an asynchronous
transition system ATS, AWN(ATS) will be a saturated net. Here, saturation
is with respect to the underlying sequential behaviour of ATS as well as the
independence relation I specified by ATS. An important difference between

41

the construction described in [19] and the construction we describe in Section
6 is that the construction in [19] adds trivial regions as well.

The reason why the construction in [19] also includes trivial regions is to
do with the stricter notion of a net morphism in the category WN et. Notice
that it is always possible to define a trivial morphism between two transition
systems in which the map on events is empty. Corresponding to this, in the
category SN et it is always possible to define a trivial morphism between
two nets where the map on places and the map on transitions are both
empty. However, in the category WN et, such trivial maps do not always
exist, because of the strong condition on how the initial markings have to be
related. If the net that is the source of a morphism has an isolated marked
place, however, such a trivial map can also be defined in WN et. Hence, to
transport the trivial maps between asynchronous transition systems in Ats0

faithfully to trivial maps between the associated nets in WN et, it is essential
that the functor AWN create isolated places.

Let SatSN et be the subcategory of SN et where for every net PN ∈
SatSN et, there is a safe PN -transition system TS ∈ SPN ts such that PN
is isomorphic to STN(TS). Similarly, let SatWN et be the subcategory of
WN et such that for every net PN ∈ SatWN et, there is an asynchronous
transition system ATS ∈ Ats0 such that PN is isomorphic to AWN(ATS).

The functor SNWN : SPN et → WN et restricts to a functor from SatSN et
to SatWN et, which we shall again call SNWN, for convenience.

Going in the opposite direction, starting with a net PN ∈ SatWN et, we
can first apply the functor WNA, which is the right adjoint of AWN, to obtain
an asynchronous transition system corresponding to PN . Then by applying
AS and STN we obtain a net in SatSN et.

Theorem 9.2 The functor SNWN : SatSN et → SatWN et is left adjoint
to the functor STN ◦ AS ◦ WNA : SatWN et → SatSN et. The unit of the
adjunction is a natural isomorphism.

Proof The proof is tedious but straightforward, based on several results
we have proved already, so we omit the details. ✷

So, even at the level of saturated nets, we only get a coreflection and not
a categorical equivalence between SatSN et and SatWN et. This is because
a safe net that is saturated with respect its description as an asynchronous

42

transition system need not be saturated with respect to its description as
a safe PN -transition system. So, the “obvious” functor from SatWN et to
SatSN et which just removes the isolated places will not, in general, yield a
net in SatSN et at all.

Figure 3:

Consider, for example, the simple transition system TS in Figure 3. If we
view this as a safe PN -transition system, the corresponding saturated net
STN(TS) would have a place s such that s ∈ e1

• and s ∈ •e3.

However, we can make TS into an asynchronous transition system in
more than one way. The obvious asynchronous transition system version of
TS has the empty independence relation. But, we can also specify that e1

and e3 are independent. This would mean that in the net AWN(TS), the
neighbourhoods of e1 and e3 would be disjoint, hence ruling out the place s
connecting e1 to e3 which is present in STN(TS).

Another way of comparing the categories SN et and WN et is to exam-
ine subcategories of SN et and WN et where we saturate the nets in both
subcategories with respect to the same class of transition systems.

First, we can relate SPN ts and WN et by functors STWN : SPN ts →
WN et and SWNT : WN et → SPN ts in much the same way as we re-
lated SPN ts and SN et by STN and SNT, except that STWN constructs
places corresponding to both trivial and non-trivial regions. It is then easy
to establish a coreflection between STWN and SWNT. We can then look
at the category SatWN et′, consisting of safe nets which are isomorphic to
STWN(TS) for some TS ∈ SPN ts. It is not difficult to show that SatSN et
and SatWN et′ are categorically equivalent, where the functor from SatSN et
to SatWN et′ is SNWN as before and the functor in the opposite direction is
the one which strips off isolated places from a net.

In a similar way, we can define a coreflection between Ats0 and SN et
in terms of functors AN : Ats0 → SN et and NA : SN et → Ats0, where
AN constructs places corresponding to only non-trivial regions. We can then
look at the category SatSN et′ consisting of safe nets which are isomorphic to

43

AN(ATS) for some ATS ∈ Ats0. It turns out that SatSN et′ and SatWN et
are categorically equivalent.

So, provided we use the same notion of saturation in both SN et and
WN et, we end up with equivalent subcategories of saturated nets.

10 Discussion

In this paper we have shown how to define subcategories of PN -transition
systems which describe the behaviour of safe nets and elementary net sys-
tems. This is achieved by “tuning” the notion of a region appropriately. It
then turns out that the coreflection established between the categories PN ts
and PN et in [9] can be restricted to coreflections between the corresponding
subcategories of these two categories.

We have examined the relationship between sequential and step transi-
tion systems in the setting of PN -transition systems. In general, there is
a coreflection between sequential PN -transition systems and “normal” PN -
transition systems with steps. However, when we restrict our attention to
transition systems describing the behaviour of elementary net systems, the
subcategories of sequential and step transition systems are equivalent. This
shows that for elementary net systems, all information about concurrency
can be recovered by examining the sequential behaviour of the system.

We have also established a coreflection between safe PN -transition system
and asynchronous transition systems. This result shows that asynchronous
transition systems are, in a sense, a more concrete model of behaviour than
step transition systems because the independence relation can provide “struc-
tural” information about a system which cannot be inferred directly from an
examination of its behaviour.

A brief remark is in order about the way we have described the correspon-
dence between step transition systems and Petri nets. We have chosen to
present the relationship between step transition systems and different classes
of Petri nets directly in terms of coreflections, by identifying special cate-
gories of step transition systems corresponding to each class of nets. Instead,
we could have followed the approach adopted by Winskel and Nielsen in [19]
and first established the existence of left adjoints for the natural functors
from nets to step transition systems and then “cut down” the adjunctions to

44

coreflections by restricting the class of step transition systems under consid-
eration.

In a sense, it would have been more uniform to follow the approach of
[19], because the right adjoints in all the coreflections we establish between
transition systems and nets correspond to the same functor—the one taking
a net to its “step” marking diagram. We have chosen to directly present
the results in terms of coreflections because these coreflections denote, in our
opinion, stronger and more relevant relationships between the two classes of
models than those represented by simple adjunctions. An adjunction between
step transition systems and a particular class of nets describes the minimal
way of “massaging” a given step transition system so that it represents the
behaviour of some net from the class of nets under consideration. On the
other hand, if we have a coreflection between a class of step transition systems
and a class of nets, we are guaranteed that the class of transition systems we
are considering captures precisely the behaviours describable by the class of
nets we are interested in.

It is natural to ask what we achieve by establishing these formal relation-
ships between different models of concurrency. One motivation for establish-
ing such relationships is that they provide a basis for translating results from
one model to another. This gives us the freedom to work within whichever
framework is most convenient and “automatically” obtain connections to
other approaches.

For instance, to obtain a non-interleaved model for a process calculus such
as CCS [8], it is intuitively easier to enrich the standard interleaved transi-
tion system semantics to obtain a more faithful representation of concurrency,
rather than providing a semantics directly in terms of nets [2, 13] or event
structures [18]. Thus, using a very simple extension of the standard opera-
tional semantics for CCS, we can provide a non-interleaved semantics for a
rich subclass of the language in terms of asynchronous transtition systems
from the subcategory Ats0 [10]. This implies, by the results connecting Ats0

and WN et that we automatically obtain a net semantics for this language.

The other natural question that one may ask is why we work within the
framework of category theory. One reason is that it provides a convenient
mathematical language to phrase the kinds of correspondences we would like
to describe. For instance, coreflections succintly capture the idea of one
model being embedded in another.

45

The other advantage of working with categories is that many interesting
operations that one defines on these models can be captured as universal
categorical constructions. For instance, parallel composition corresponds to a
notion of categorical product, while nondeterministic choice can be described
in terms of coproducts. Thus, by relating categories of models, we can also
compare how these constructions behave in different models. This issue is
discussed in some detail in [19], where a number of relationships between
models for concurrency are established in a categorical setting, spanning
the spectrum of linear-time, branching-time and partial-order approaches to
modelling the behaviour of concurrent systems.

We conclude by pointing out a major issue which we have ignored in our
study—that of labelling. In the theory of Petri nets, abstraction is achieved
by adding a set of labels which can be associated with the underlying events
of the system. This is crucial for using nets to provide, say, a semantics for
CCS-like langages. In [19], labelling is introduced into the categorical treat-
ment of different models of concurrency by means of fibrations and cofibra-
tions. Though they point out some problems in defining these constructions
over categories of nets, it does not seem to prevent the coreflection between
unlabelled transition systems and unlabelled nets from being extended to the
corresponding labelled categories. So, while we have not explicitly handled
labelling in our frameworks we are confident that we can follow the route set
out in [19] without too much difficulty.

Acknowledgment We thank Mogens Nielsen for helpful comments.

A Appendix

We fix some terminology and notation regarding multisets.

Definition A.1 Let A be a set.

• A multiset u over A is a function u : A → N0, where N0 is the set of
natural numbers {0, 1, 2, . . .}. The set of all multisets over A is denoted
by MS(A).

• For u ∈ MS(A), let |u|, the size of u, be given by
∑

a∈A u(a). u is

46

finite iff |u| is finite. The set of all finite multisets over A is denoted
by MSfin(A).

• The empty multiset over A is the unique function OA : A → N0 such
that ∀a ∈ A. OA(a) = 0.

• Let u, v ∈ MS(A). Then u is a submultiset of v, written u ⊆MS v, in
case u(a) ≤ v(a) for all a ∈ A.

Thus, if u is a multiset over A, for each a ∈ A, u(a) is the number of
occurrences of a in u. Abusing notation, we shall write a ∈ u to signify that
u(a) ≥ 1. For simplicity, we shall usually write out multisets as sets with
multiplicities — for instance, if a, b ∈ A, then {a, a, b} denotes the multiset
u over A which assigns u(a) = 2, u(b) = 1 and u(c) = 0 for all c ∈ A such
that c �= a and c �= b.

Multisets can be added and subtracted pointwise — if u and v are two
multisets over A, then u + v and u − v are defined as follows:

• ∀a ∈ A. (u + v)(a) = u(a) + v(a).

• If v ⊆MS u then ∀a ∈ A. (u − v)(a) = u(a) − v(a).

Given a partial function f : A ⇀ B between sets, f can be extended in a
natural way to a (total) function f̂ : MSfin(A) → MSfin(B) as follows:

∀u ∈ MSfin(A). ∀b ∈ B. f̂(u)(b) =
∑

{a∈A|f(a)=b}
u(a)

By convention, f̂(u) = OB in case f(a) is undefined for all a ∈ u.

For convenience, we shall denote both f and its extension f to multisets
by f .

References

[1] M.A. Bednarczyk: Categories of asynchronous systems, PhD Thesis,
Report 1/88, Computer Science, University of Sussex (1988).

47

[2] P. Degano, R. de Nicola, U. Montanari: A distributed operational se-
mantics for CCS based on condition/event systems, Acta Informatica,
26, 59–91 (1988).

[3] A. Ehrenfeucht, G. Rosenberg: Partial 2-structures; Part II: State spaces
of concurrent systems, Acta Informatica, 27, 348–368 (1990).

[4] H.J. Hoogeboom, G. Rosenberg: Diamond properties of elementary net
systems, Fundamenta Informaticae, XIV, 287–300 (1991).

[5] K. Lodaya, R. Ramanujam, P.S. Thiagarajan: A logic for distributed
transition systems, Springer Lecture Notes in Computer Science, 354,
508–522 (1989).

[6] S. Mac Lane: Categories for the working mathematician, Springer-
Verlag, New York/Berlin (1971).

[7] A. Mazurkiewicz: Basic notions of trace theory, Springer Lecture Notes
in Computer Science, 354, 285–363 (1989)

[8] R. Milner: Communication and Concurrency, Prentice-Hall, London
(1989).

[9] M. Mukund: A transition system characterization of Petri nets, Report
TCS-91-2, School of Mathematics, SPIC Science Foundation, Madras,
India (1991).

[10] M. Mukund, M. Nielsen: CCS, locations and asynchronous transi-
tion systems, Report DAIMI-PB-395, Computer Science Department,
Aarhus Univeristy, Aarhus, Denmark (1992).

[11] M. Nielsen, G. Plotkin, G. Winskel: Petri nets, event structures and
domains, part I, Theoretical Computer Science, 13, 45–57 (1981).

[12] M. Nielsen, G. Rosenberg, P.S. Thiagarajan: Elementary transition sys-
tems, Theoretical Computer Science, 96, 1, 3–33 (1992).

[13] E.-R. Olderog: Nets, Terms and Formulas, Cambridge University Press,
Cambridge (1991).

[14] W. Reisig: Petri nets, Springer-Verlag, Berlin (1985).

48

[15] M.W. Shields: Concurrent machines, Computer Journal, 28, 449–465
(1985).

[16] P.S. Thiagarajan: Elementary nets systems, Springer Lecture Notes in
Computer Science, 254, 60–94 (1987).

[17] G. Winskel: Event structures, Springer Lecture Notes in Computer Sci-
ence, 255, 325–392 (1987).

[18] G. Winskel: Event structure semantics of CCS and related languages,
Springer Lecture Notes in Computer Science, 140, 561–577 (1982).

[19] M. Nielsen, G. Winskel: Models for concurrency, (to appear in S. Abram-
sky, D.M. Gabbay, T.S.E. Maibaum eds. Handbook of Logic in Computer
Science).

49

