
On-line reevaluation of functions

Peter Bro Miltersen∗

Aarhus University, Computer Science Department
Ny Munkegade, DK 8000 Aarhus C.

pbmiltersen@daimi.aau.dk

January 1992

Abstract

Given a finite set S and a function f : Sn → Sm, we consider
the problem of making a data structure which maintains a value of
x ∈ Sn and allows us to efficiently change an arbitrary coordinate
of x and efficiently evaluate fi(x) for arbitrary i. We both examine
the problem for specific choices of f and relate the possibility of an
efficient solution to general properties of f : expressibility as a formula,
space complexity and time complexity.

1 Introduction

Let S be a finite set, and let f : Sn → Sm be a function, f(x) = (f1(x), f2(x),
. . . , fm(x)). In this paper we consider the problem of reevaluating f on-line
which is the implementation of a data structure with the following properties:
The data structure is supposed to maintain the value of a vector x ∈ Sn. We
are given a vector x = x1x2 . . . xn ∈ Sn and initialize the data structure to

∗Work partially supported by the ESPRIT II Basic Research Actions Program of the
EC under contract No. 3075 (project ALCOM).

1

reevaluation of f:
memory

x = (x1, x2, . . . , xn) ∈ Sn

operations

update(i, s), i ∈ 1, . . . , n, s ∈ S

xi ← s
query(j), j ∈ {1, . . . , m}
return yj, where (y1, . . . , ym) = f(x1, x2, . . . , xn)

Figure 1: On-line function reevaluation

this x. After that we are given a sequence of update- and query-instructions,
which we must serve on-line. An update(i, s)-instruction with 1 ≤ i ≤ n
and s ∈ S changes the value of xi to s. A query(i)-operation with 1 ≤
i ≤ m returns the value of fi(x) for the current value of x. Our goal is to
attain a speed-up over the naive method of simply storing the value of x and
evaluating f from scratch. Figure 1 summarizes the specification of the data
structure. If S = {0, 1} and m = 1 we get the important special case of
on-line rerecognition of a boolean language. Several natural problems in the
literature can be described as on-line reevaluation.

• Maintenance of the connected components of an undirected graph, con-
sidered by Frederickson [5], who also lists earlier papers. We are given
an undirected graph and are allowed to

– Insert edges.

– Delete edges.

– Ask whether two vertices are in the same connected component.

Clearly, this problem is equivalent to online reevaluation of f , where
f is the function which takes the adjacency matrix of an undirected
graph and returns the adjacency matrix of its transitive closure.

• Other dynamic graph or hypergraph problems, e.g. existence of paths,
transitive reduction and hypergraph connectivity [2, 11, 12, 15]. In
these cases, the solutions often only apply to restricted problems where
only either insertions of edges or deletions of edges are allowed. This

2

corresponds to restricting the update-operation in the reevaluation
problem so that only updating to certain values is allowed.

• Maintenance of partial sums of an array. In this case the xi’s are
member of some semigroup S and fj(x) =

∏j
i=1 xi. Lower bounds for

this problem in various models have been derived by Fredman [6], Yao
[22] and Fredman & Saks [7].

The concept of on-line reevaluation seems to be a natural way of looking at
these problems and a natural source for new data structure problems. In
this paper, we will examine the problem for both specific functions and for
classes of f defined by restricting the complexity of f in some conventional
complexity measure.

2 Models of computation

Since our interest is speed up in a sequential computation, the choice of a
model of computation seems significant. Several models have been considered
for the complexity of data structures.

• The RAC, defined by Angluin & Valiant [1]. This is a random access
machine with word size bounded by a function of the input size, usually
O(log n). The operations on each word can be performed in constant
time. The motivation of the model is to prevent unnatural operations
within a word, while preserving unit cost manipulation of small data.

• The Cell probe model, considered by Yao [21] and Fredman & Saks [7].
In this model the data structure is a collection of words. Reading a
word or changing a word is charged one unit, but computation is free.
The combinatorial flavor of this model and the fact that it focuses
on access of data makes it very appealing. Furthermore, a cell probe
machine with word size log n can simulate a RAC, so lower bounds
in the cell probe model carries over to the realistic RAC-model. The
cell probe model with word size 1 is obviously a canonical model for
the access complexity of data structures as it is independent of any
architectural considerations. We refer to this model as the bit probe
model.

3

• The pointer machine, by Tarjan [19] and others. In this model, the
data structure is a potentially unbounded collection of records with
a bounded number of fields which are pointers to other records. A
pointer can be traced in constant time. It is easy to see that without
restrictions on space or initialization time, this property makes it pos-
sible to reevaluate any computable function on n variables on-line in
time O(log n) by precomputing every value and organizing them in an
exponential size data structure. This approach is not possible in any
of the two other models, since a linear number of bits is required to
store a pointer in the data structure. In the RAC-model, exponential
initialization time only enables us to reevaluate in time O(n

log n
), as is

shown below.

For the rest of the paper, we adopt the RAC-model with word size O(log n),
except where otherwise is explicitly stated, and we will say that a function
f can be reevaluated on-line in time t if t is a worst case time bound for an
update or query operation in a data structure for the reevaluation problem
in this model. Furthermore we will usually require that the initialization
time is polynomial. However, some observations on the bit probe model are
useful. Let B(f) be the worst case operation complexity of an optimal im-
plementation of a bit probe structure for reevaluating f : Sn → Sm. For
concreteness, assume S = {0, 1}. Since we are only charged for accessing the
data structure, the naive implementation, which simply keeps the value of x
stored and reads it to compute a value fi(x) when required, has bit probe
complexity n. Thus every f has B(f) ≤ n. We can actually do slightly
better than this.

Theorem 1 For all functions f : {0, 1}n → {0, 1}m,

B(f) ≤ n−
log2 log2 n�+ 2

Proof Let r =
log2 log2(n − 2log2 log2 n)�. We consider a data structure
for maintaining x ∈ {0, 1}n consisting of two parts.

• The first n− r bits of x.

• For each predicate p : {0, 1}r → {0, 1}, the value of p on the final r bits
of x.

4

In order to change one of the first n − r bits of x, we need only touch 1 bit
in the structure. In order to change one of the final r bits in x we read all
r bits, and recompute the value of every predicate on them. We thus have
to touch r + 22r ≤ n − log2 log2 n bits. In order to evaluate fj(x), we read
the first n − r bits of x, let these be the string x1. Let p be the predicate
defined by p(x2) = fj(x1x2). The value of p on the find r bits of x is the
value of fj(x). This value can be read directly in the data structure. Thus,
evaluation requires n− r + 1 probes.

✷

For most functions the upper bound can not be improved much, as the fol-
lowing theorem shows.

Theorem 2 Let f : {0, 1}n → {0, 1} be a random function. With proba-
bility at least 1− 2−2n−1

, it holds that B(f) > n− 2 log2 n− 5.

Proof We can without loss of generality assume that 0n is the only legal
initial value for x. Let us call a bit probe algorithm which clears its binary
memory to zero when initialized on input 0n for normal. Given a bit probe
algorithm A for f , we can convert it into an equivalent normal algorithm in
the following way. Suppose A initializes its memory to the binary vector y.
We then define the algorithm A′ which clears its memory when initialized to
0n. When A reads the memory location zi, A′ reads zi and computes zi⊕ yi,
where ⊕ denotes exclusive or. When A stores the value b in zi, A′ stores
b ⊕ yi. Since the values yi are constant, we are not charged for using them,
and A′ clearly has the same external behavior as A. So we can restrict our
attention to normal algorithms, which are completely specified by the imple-
mentation of the 2n + 1 possible operations, which in turn can be specified
by binary trees with three types of nodes:

• Binary read-nodes labeled with an address in the memory. When such
a node is encountered the address is read, and dependent on whether
the content is 0 or 1, the algorithm proceeds to the left or the right
son.

• Unary write-nodes labeled with an address and a binary value. When
such a node is encountered, the binary value is written at the address,
and the algorithm proceeds to the son of the node.

5

• Leaves, labeled with a binary answer in case the operation is query,
and not labeled otherwise.

A bit probe algorithm running in time at most t is described by 2n + 1 trees
of height at most t, one tree for each possible update operation and one for
the query operation. The total number of nodes in these trees is at most
(2n + 1)(2t+1 − 1) ≤ 6n2t. A node can be specified by an address and an
integer from 1 to 5, indicating whether it is a zero leaf, a one leaf, a read
node, a write zero node or a write one node. If we without loss of generality
assume the addresses are numbered 1, . . . , 6n2t, there are at most (30n2t)6n2t

bit probe algorithms running in time at most t. The number of bit probe
algorithms running in time at most n − 2 log2 n − 5 is thus at most 22n−1

.
There are, however, 22n

functions of n variables, so the probability that a
random function has bit probe complexity at most n−2 log2 n−5 is at most
22n−1

22n = 2−2n−1
.

✷

Corollary 1 Most functions f on n variables requite time Ω(n
log n

) to be
reevaluated on-line on a RAC, even when an arbitrary amount of initializa-
tion based on a table for f is allowed.

Proof A RAC-algorithm running in time t(n) can be simulated by a bit
probe algorithm running in time t(n) log n.

✷

By similar counting arguments we can also prove lower bounds for concrete
functions. Let f be a boolean function on a variable set X. A subfunction of
f on Y ⊆ X is a function obtained from f by setting the variables of X − Y
to constants [3].

Theorem 3 Let f : {0, 1}n → {0, 1} be a function so that f supports s
different subfunctions on a set of variables Y of size m. Then

B(f) ≥ log2 log2 s− log2 log2 log2 s− log2 m− log2 log2 m− 5

6

Proof If s ≤ 225
, there is nothing to prove, so we will assume s > 225

and thus
m ≥ 6. As in the previous proof, there are at most (30m2t)6m2t

different bit
probe algorithms running in time at most t for functions on m variables. Since
we can obtain bit probe algorithms for s different functions on m variables
by restricting the algorithm for f , we must have (30m2t)6m2t ≥ s, where
t = B(f). When m ≥ 6 this implies

t ≥ log2 log2 s− log2 log2 log2 s− log2 m− log2 log2 m− 5

✷

Let accessn : {0, 1}n+�log2 n� → {0, 1} be the function which takes as input a
bit vector x = x0x2 . . . xn−1 ∈ {0, 1}n and a binary number y ∈ {0, 1}�log2 n�

denoting an integer i and outputs xi. This function describes reading a ran-
dom access memory. An obvious upper bound on B(accessn) is log2 n. Let
disitinctn : {0, 1}2n log2 n → {0, 1} be the function which takes as input n
boolean strings of length 2 log2 n and outputs 1 if and only if all strings
are distinct. By using a nonstandard representation of the integers to repre-
sent the number of occurences of each possible string, it is possible to obtain
B(accessn) = 2 log2 n + o(log2 n). Theorem 3 provides good lower bounds
for these functions.

Corollary 2
B(accessn) ≥ log2 n− o(log n)

B(distinctn) ≥ log2 n− o(log n)

It is, however, easy to see that theorem 3 is unable to provide larger lower
bound on boolean functions on n variables than log2 n− o(log n). Fredman
& Saks gives a lower bound of Ω(log n/log log n) for the bit probe complex-
ity of another specific boolean function (described in section 3). We do not
know of a better lower bound than Ω(log n) for any easily computed function.

Theorem 2 gives us a function f ∈ SPACE (2nO(1)
) with B(fn) = n − o(n)

for every n (where fn is f restricted to {0, 1}n), because we can within these
space bounds store the decision trees of a linear time bit probe algorithm. We
can then find the lexicographically first optimal algorithm whose complexity
is at least n− 2 log2 n− 5 by existentially guessing such an algorithm, uni-
versally guessing a faster algorithm and existentially guessing a sequence of

7

operations which we simulate on the two algorithms and verify that they give
a different answer at some point. This eastablishes the optimality of the first
algorithm. We then universally guess a lexicographically smaller algorithm
of the same complexity and verify that this is not optimal. Finally we use the
first algorithm to evaluate f . Since alternating space with a bounded number
of alternations can be simulated with a polynomial overhead in deterministic
space, thy entire algorithm is in SPACE (2nO(1)

). It seems hard to arrive on
anything better, even if we move to the more restrictive RAC-model. Thus, a
situation similar to the one in boolean complexity theory arises: It is known
that most functions has maximal complexity, but it is hard to obtain large
lower bounds for any particular, simple to define function. Despite this dif-
ficulty, for many of the problems mentioned in the intruduction no sublinear
time data structure is known. It is therefore natural to conjecture that there
exists functions which are easy to evaluate but do not possess very efficient
data structures for on-line reevaluation. This conjecture is easily formalized.

Definition 1 Let L be a predicate on {0, 1}∗. Let Ln be the restriction
of L to {0, 1}n. If there exists a RAC-algorithm which initializes on input
n and x ∈ {0, 1}n in time polynomial in n and thereafter rerecognizes Ln

with a worst case operation time which is polylogarithmic in n, L is said to
be dynamic. The class of dynamic languages is denoted by D.

Conjecture 1 P is not included in D.

The restriction to polynomial time initialization is made to ensure that
D ⊆ P . Polylogarithmic worst case operation time is invariant under reason-
able changes of the model, and has been regarded as the criterion of fastness
in domains such as set maintenance and computational geometry. Observe
that if D = P , any problem in P can be solved in quasi-linear time on a
RAC if polynomial time preprocessing on the input size is allowed.

Since the conjecture seems difficult to solve we will, in analogy with com-
plexity theory, find a notion of reduction which makes it possible to state
completeness result. Let us consider the following concept of an oracle RAC.
Let f = f1, f2, . . . be a family of function such that the domain of fn is
{0, 1}n. A RAC using oracles for f is a RAC equipped with an unbounded
number of hardware (oracle) implementations of data structures for the on-
line reevaluation problem for fm, for all m ≤ p(n), where p(n) is a polynomial

8

in the input size n. The data structures for fm are all initialized to 0m when
the RAC starts initializing on some input x ∈ {0, 1}n. The operations on the
oracle data structures are, similarly to the other basic hardware operations
on the RAC, assumed to be carried out in constant time.

Hardware implementation of certain general useful data structures is a
quite natural model, given the current state of VLSI, Implementations of
dictionaries in special purpose architectures has been the object of much re-
search, see e.g. Ottman et al. [14]. The class of data stucture problems which
can be solved efficiently given a supposed fast hardware structure gives us a
measure of the usefulness of this structure.

Definition 2 Let g = g1, g2, . . . and f = f1, f2, . . . be families of functions. If
there exists a RAC-algorithm using oracles for g which initializes on input n
and x ∈ {0, 1}n in time polynomial in n and thereafter reevaluates fn with a
worst case operation time which is polylogarithmic in n, we say that g ≤D f .
If g ≤D f and f ≤D g, we say that g ≡D f .

It is easily seen f and g are boolean predicates such that g ∈ D and f ≤D g,
then f ∈ D. As we shall see in section 6, this concept of reduction makes it
possible to state natural problems, equivalent to D �= P . For now, we will
show that the restriction to predicates in the definition of D is insignificant.

Proposition 1 Each polynomial time computable function f : {0, 1}n →
{0, 1}m is ≤D-reducible to a polynomial time computable predicate p.

Proof Let y be a binary string of length �log2 m� and define p(xy) = 1
if and only if fi(x) = 1, where y is the binary notation for i. Assume we
have a polylog-implementation of the rerecognition problem for p. We can
ask for the value of fi(x) for any i by changing y, which is only a logarithmic
number of changes, each taking polylogarithmic time.

✷

9

3 On-line reevaluation of formulae

In boolean complexity theory, an important complexity measure of a function
f is its formula size L(f) [16]. In this section, we prove that if a function is
definable by a formula where each variable does not appear too many times,
f can be reevaluated efficiently on-line.

Let S be a discrete set. A formula F of order d over S is a tree where
each node has a number of sons ≤ d, this number is called the arity of the
node. Each node of arity i contains a function Si → S, each leaf contains
an element in S. The value of a leaf is its content and the value of a node is
defined inductively in the usual way. Assume that the tree contains n leaves
and m nodes and let the contents of the nodes be fixed. The generalized eval-
uation function F̃ is the function Sn → Sm which takes as input the value
of each leaf and returns the value of each node. We consider the problem of
reevaluating F̃ on-line.

Figure 2: Tree contraction

Theorem 4 F̃ can be reevaluated in time c log n where c is a constant,
dependent on |S| and d.

10

Proof The data structure is based upon the well known parallel algorithm
for expression evaluation [8]. First we define the contraction F ′ of a formula
F . A node in F is called removable if it has arity 1 and its father is not
removable. F ′ is obtained from F by removing all leaves and all removable
nodes and modifying the content of the fathers of the removed leaves and
nodes as shown in figure 2 (Since S is finite, functions of bounded arity has
a bounded representation).

It is easy to see that if a node is not removed, its value in F is equal to
its value in F ′. To solve the on-line reevaluation problem, we maintain the
trees F, F ′, F ′′, . . . , F (i), where the size of F (i) is 1. It is easy to see that the
size of F ′ is at most about half the size of F , so i = O(log n). The structure
of . the trees does not change when the input is changed, so we only has
to maintain the content of each node. To do this, consider the more general
situation where we are also allowed to change the content of a node in F . If
the node is not removed in F ′, we recursively change the value of the same
node in F ′. If it is removed, we calculate the new content of its father in F ′

and recursively change the value of this node in F ′. Thus, the complexity
of changing the value of any node or leaf in F is O(log n). Next, consider
the problem of evaluating any node or leaf v in F . If v is a leaf, its value is
equal to its content. If v is a node which is not removed in F ′, we recursively
evaluate the corresponding node in F ′. If v is removed in F ′, its son is not,
so we recursively evaluate the son in F ′ and apply the content of v to the
computed value. Thus, the complexity of evaluating any node is O(log n).

✷

We might note that similarly to the parallel algorithm the technique extends
to on-line reevaluation of formulae over {+,−, ·, /} on an arithmetic RAM,
since the functions which arise have a finite representation. For details, see
Gibbons & Rytter [8]. Also, it has been brought to the author’s attention
that a more complex data structure for a much more general problem has
recently been constructed by Cohen & Tamassia [4].

Corollary 3 Regular languages are dynamic.

Proof If L ⊆ Σ∗ is recognized by a finite automaton with state set Q,

11

initial state s and transition function ◦ : Q×Σ→ Q, the membership prob-
lem x1x2x3 . . . xn ∈ L is reduced to evaluating (· · · ((s ◦ x1) ◦ x2) ◦ · · · ◦ xn)
and checking if the result is a final state.

✷

Corollary 4 The sum of two binary numbers can be reevaluated on-line in
time O(log n).

Proof The digits in the sum of two binary numbers can be computed by
a finite state machine which scans the input from right to left. The value
of each digit can thus be computed from a subresult of a formula, similarly
to the one in corollary 3. The algorithm is similar to the carry look ahead
addition algorithm in parallel computation.

✷

The problem of maintaining the partial sums of an array can be regarded
as on-line reevaluation of the partial results of the formula (· · · ((x1 ◦ x2) ◦
x3) ◦ · · · ◦ xn), where ◦ is the semigroup operation. If the semigroup is
exclusive or over the booleans, Fredman & Saks [7] show a lower bound of
Ω(log n log log n) in the O(log n)-word size cell probe model. Interestingly, if
exclusive or is replaced by inclusive or, an O(log log n)-implementation in the
RAC-model with word size O(log n) and hence also in the cell-probe model
becomes possible, by the priority queue of Van Emde Boas, Kaas & Zijlstra
[20]. If the bit probe model is used, the author know of no implementation
of either problem with better bounds than O(log n).

4 On-line reevaluation of space bounded com-

putations

Let T be a Turing machine with a read-only input tape, and a number of
work tapes. T may also be equipped with a write-only output tape. The in-
put x1x2 . . . xn are given on the input tape, surrounded by blanks. We adopt
the following absolute measure of the space s used by a computation: s is the

12

number of bits needed to describe the state of the finite control, the content
of each work tape with the input tape excluded and the position of each
work tape head with the input tape head excluded (if we furthermore allow
the Turing machine to be nonuniform, this is the nonuniform space measure
of Ibarra & Ravikumar [9]). Standard techniques give that an s(n)-space
bounded computations can be simulated from scratch on a RAC in time
O(n2s(n)), if the Turing machine is deterministic and in time O(n(2s(n))2) if
it is not. We consider in this section the problem of reevaluating a space
bounded computation on-line. Corollary 3 extends in the obvious way to
on-line space-bounded computations (where the input tape head is allowed
to move right only). In this section we shall prove results about off-line space
bounded computations (where the input tape head is allowed to move in both
directions).

Theorem 5 Let L be a language, accepted in space s(n) on a Turing ma-
chine M . If M is deterministic, L can be rerecognized on-line in time
O((log n)2s(n)) with initialization time O(n2s(n)). If M is nondeterminis-
tic, L can be rerecognized on-line in time 0((log n)2αs(n)) with initialization
time O(n2αs(n)), where α is a constant so that transitive closure of an n× n
boolean matrix can be found in time O(nα).

Proof Consider the computation of M on a fixed input x = x1x2 . . . xn.
As usual, the input is given on a read only input tape with a blank symbol
‘#’ at the beginning and the end. Put x0 = xn+1 = #. We can assume that
the head on the input tape does not leave the segment x0x1 . . . xn+1 during
the computation. Furthermore, by changing the finite control, we can assume
that M accepts by letting the head on the input tape leave the segment at
the end of the computation, and rejects by staying inside the segment. By a
semi-configuration of M we mean a description of the contents of each work
tape and the position of each work tape head, but with content and head po-
sition of the input tape omitted. Let S denote the set of semi-configurations
of M . Given a segment xi . . . xj of the input tape, consider the following
binary relation Ri,j on S × {l, r}, where l is a symbol denoting “left” and r
is a symbol denoting “right”:

• (u, l)Ri,j(v, r) iff when M is started with the input head in cell xi while
in semi-configuration u there is a computation where the input head
leaves the segment xi . . . xj by moving from xj to xj+1 while the machine

13

enters semi-configuration v.

• (u, r)Ri,j(v, l) iff when M is started with the input head in cell xj while
in semi-configuration u there is a computation where the input head
leaves the segment xi . . . xj by moving from xi to xi−1 while the machine
enters semi-configuration v.

• (u, l)Ri,j(v, l) iff when M is started with the input head in cell xi while
in semi-configuration u there is a computation where the input head
leaves the segment xi . . . xj by moving from xi to xi−1 while the machine
enters semi-configuration v.

• (u, r)Ri,j(v, r) iff when M is started with the input head in cell xj

while in semi-configuration u there is a computation where the input
head leaves the segment xi . . . xj by moving from xj to xj+1 while the
machine enters semi-configuration v.

Suppose we know Ri,k and R(k+1),j for some i < k < j and we want to
compute Ri,j. Let R1 = Ri,k and R2 = R(k+1),j. Consider the graph G =
(V, E) with nodes

V = S × {l, r1, l2, r}
and edges given by the following rules

(u, l)R1(v, l) ⇒ < (u, l), (v, l) >∈ E

(u, l)R1(v, r) ⇒ < (u, l), (v, l2) >∈ E

(u, r)R1(v, l) ⇒ < (u, r1), (v, l) >∈ E

(u, r)R1(v, r) ⇒ < (u, r1), (v, l2) >∈ E

(u, l)R2(v, l) ⇒ < (u, l2), (v, r1) >∈ E

(u, l)R2(v, r) ⇒ < (u, l2), (v, r) >∈ E

(u, r)R2(v, l) ⇒ < (u, r), (v, r1) >∈ E

(u, r)R2(v, r) ⇒ < (u, r), (v, r) >∈ E

Let R be the binary relation on S × {l, r} defined by taking the transitive
closure of G and restricting it to S×{l, r}. We refer to R as the concatenation
R1 ∗ R2 of R1 and R2. It is easily seen that if i < k < j then Ri,j =
Ri,k ∗R(k+1),j. Suppose |S| = n. Given adjacency matrices of R1 and R2, an

14

adjacency matrix for R1 ∗R2 can be computed in time O(nα). If R1 and R2

are functions, R1 ∗ R2 is a function too, and a table for R can be computed
from tables for R1 and R2 in time O(n). This suggests the following data
structure: Given a tape segment xi . . . xj, we maintain a representation of
the relation Ri,j by recursively maintaining Ri,k and Rk+1,j where k =
 i+j

2
�.

Since we keep a representation of R0,n+1 we can decide membership of L in
constant time. When a letter in the input xi is changed, we only have to
recompute each of the Rj,k in the data structure for which j ≤ i ≤ k, i.e.
log2 n ∗-computations on relations of size 2s(n). This can be done in time
O((log n)2s(n)) if the relations are functional, i.e. if the Turing Machine is
deterministic, and in time O((log n)2αs(n)) in the general case.

✷

In the deterministic case, we thus achieve a speedup of O(n
log n

) over the
direct simulation when reevaluating. In tne nondeterministic case we only
get a speedup when s(n) < 1

α−2
log n. Unfortunately, this does not imply

speedup results for the languages themselves, since the direct simulation of
the space bounded machine may be (and usual is) a non-optimal way of eval-
uating the function with respect to time. If we get sublinear time, we are
however usually certain of having achieved a speedup, and from a bit probe
perspective, the theorem is only interesting in this case. For languages com-
putable in space c log n for small constants c, we get on-line rerecognition in
time O(nβ) with β < 1. For languages accepted in sublogarithmic space we
get on-line rerecognition in time no(1). Unfortunately, interesting examples
of such languages are hard to come by. For general discussion on sublog
languages, see Ibarra & Ravikumar [9].

Corollary 5 If L is accepted by an off-line Turing machine with a one
dimensional input tape running within space O(log log n), L is dynamic.

The technique extends to a d-dimensional input tape. In the case d = 2,
if the input is given in a square, we may divide the square into 4 subsquares
and consider traffic between these subsquares. However, since the boundaries
of any segments we might divide the tape into are large, we get worse time
bounds.

Theorem 6 Let L be a language, accepted in space s(n) by a deterministic

15

Turing machine M with an input tape of dimension d on which the input is
given in a d-cube. L can be rerecognized on-line in time O((log n)n

d−1
d 2s(n)).

By using a different kind of a relations and a different notion of concatena-
tion, we can extend the theorem to hold with similar bounds for alternating
Turing machines with a bounded number of alternations. The details are
tedious, but not difficult.

Theorem 7 Let L be a language, accepted in space s(n) on an alternat-
ing Turing machine M with a bounded number of alternations. L can be
rerecognized on-line in time O((log n)2O(s(n))).

This is a nontrivial extension only in the case where s(n) = o(log n) since
space bounded computations with larger bounds are known to be closed un-
der complementation by the result of Immerman and Szelepcsényi [10, 18].
As a final extension, we consider evaluating fictions, rather than recognizing
languages.

Theorem 8 Let f be a function, computed in space s(n) on a determin-
istic Turing machine transducer M . f can be reevaluated on-line in time
O((log n)2s(n)).

Proof With definitions as in the proof of the previous theorem, define the
function fi,j : S × {L, R} → S × {L, R}× N by fi,j(u, D) = (v, E, t) if and
only if (u, D)Ri,j(v, E) and the output tape head is moved t cells to the right
during the computation. It is easy to extend the definition of concatenation
to such functions in such a way that fi,j = fi,k ∗f(k+1),j. We maintain a finite
representation of functions fi,j as in the previous proof. When we are asked
the value of a specific output cell, we use the stored functions to track the
place in the computation where the cell was written and what was written
there. ✷

5 On-line rerecognition of Dyck Languages

Let D1 be the language of matching parentheses over {(,)}, and let D2 be
the language of matching parentheses over {(, [,),]}. We shall consider rere-

16

cognizing these two languages on-line, and show that while D1 is dynamic,
D2 appears to be harder. This is interesting, since the two language are
of comparable difficulty from almost any perspective, sequential (both are
recognizable in linear time by deterministic pushdown automata) or parallel
(both are complete for TC0).

Theorem 9 D1 can be rerecognized on-line in time O(log n).

Proof Let x be a string over (and). Let l(x) denote the number of un-
matched left parentheses in x and let r(x) denote the number of unmatched
right parentheses in x. Suppose x = yz. We then have that

r(x) = r(y) + max(0, r(z)− l(y))

l(x) = l(z) + max(0, l(y)− r(z))

Since x ∈ D1 if and only if l(x) = r(x) = 0, the recursion immediately
suggests an O(log n) RAC-implementation of D1. The bit probe complexity
is O(log2 n).

✷

No such simple approach works for D2. We can, however, use the same
approach to reduce the problem to an apparently simpler one. Let x be a
string on {0, 1, #}. Define the string x/# to be x with #’s removed and
the rest of the characters kept in the origins order. Let L be the language
defined by

L = {xy||x| = |y| ∧ x/# = y/#}
The best algorithm the author is aware of for rerecognizing L is due to Sven
Skyum [17] and has worst case operation complexity O(n0.67). We conjecture
that L is not dynamic.

Theorem 10
L ≡D D2

Proof

• L ≤D D2: Suppose we want to decide membership of xy in L, |x| = |y|.
We transform this to an instance of D2 in the following way: Let x̃ be

17

defined by replacing all occurrences of 0 in x by ((, all occurrences of 1
by [[and all occurrences of # by (). Let ỹ be defined by replacing all
occurrences of 0 in y by)), all occurrences of 1 by]] and all occurrences
of # by (). Let ỹR be the string ỹ reversed. Now xy ∈ L if and only
if x̃(ỹR) ∈ D2. Furthermore, if we change a letter in x or y, we change
only 2 letters in x̃(ỹR). Therefore, given an oracle implementation
of the on-line rerecognition problem for D2, we get a polylog time
implementation for L.

• D2 ≤D L: By using the same data structure as for D1, we can decide
if the string would match correctly if any left parenthesis could match
any right parenthesis. We then only need to recognize the language
D′ which consists of strings where parentheses which are matched by
some other parenthesis is matched by the correct kind. Let x be a
string with the two kinds of parentheses, and let x = yz. We may
divide the parentheses in y into 3 classes,

1. The ones which are matched by a parenthesis in y, correctly or
incorrectly.

2. The ones which are matched by a parenthesis in z, correctly or
incorrectly.

3. The ones which are not matched by any parenthesis in x.

Similarly for the parentheses in z. Let ỹ be the string where each (
of type 2 in y has been replaced by a 0, each [of type 2 has been
replaced by a 1 and each parenthesis in y which is not of type 2 has
been replaced by a #. Let z̃ be the string where each) of type 2 in z
has been replaced by a 0, each] of type 2 has been replaced by a 1 and
each parenthesis in y which is not of type 2 has been replaced by a #.
We now see that x ∈ D′ if and only if y ∈ D′, z ∈ D′ and ỹ(z̃R) ∈ L.
By using oracle implementations of L the problem is then solved, if we
are able to maintain x̃ for each string x in the tree. But this is easily
seen to be possible if we maintain the positions of each of the 3 types
of parentheses of x in three balanced binary search trees.

✷

18

6 On-line rerecognition of languages in P

As mentioned in the introduction, the question of whether all polynomial
time computable problem admits fast reevaluation seems important. Here
we discuss a complete problem for this class which has been considered in
the literature as a data structure problem in its own right. Consider the
problem of maintaining the closure of a directed hypergraph. The following
definitions are taken from [2], where data structures and algorithms for this
problems are given.

Definition 3 A directed hypergraph H is a pair (V, E) where V is a set
of nodes and E is a set of hyperedges. Each hyperedge is an ordered pair
(X, i) from an arbitrary nonempty set X ∈ P (V) (source set) to a single
node i ∈ V (target node).

Definition 4 Given a hypergraph H = (V, E), a nonempty subset of nodes
X ⊆ V and a node i ∈ V , there is a (directed) hypeypath from X to i, if one
of the following conditions holds:

1. i ∈ X (extended reflexivity), or

2. there is a hyperedge (Y, i) ∈ E and for each node j ∈ Y there exkts a
hyperpath from X to j (extended transitivity).

Let us restrict ourselves to hypergraphs with bounded edge size where
|x| ≤ d for each (X, i) ∈ E. A hypergraph with bounded edge size can be
represented by a polynomial size adjacency matrix, since less than |V |d+1

hyperedges are possible.

Definition 5 Given a hypergraph H = (V, E) with an edge size bound d,
we define the hypergraph H∗ = (V, E∗) where (X, i) ∈ E∗ iff |X| ≤ d and
there is a hyperpath from X to i in H. H∗ is called the restricted transitive
closure of H.

Note that the case d = 1 corresponds to transitive closure of an ordinary, di-
rected graph. Let hclosed

n be the function which given the adjacency matrix
of a hypergraph H with |V | = n returns the adjacency matrix of H∗, and
let us consider the problem of reevaluating hclosed

n on-line. Algorithms and

19

data structures for restrictions of this problem are given by Ausiello et al. [2].

Theorem 11 hclosed
n is ≤D-hard for P for d ≥ 2.

Proof The proof follow the proof of completeness for P of Generability with
respect to logspace-reduction by Jones & Laaser [13]. Let L be a boolean
language in P , and let Cn be a polynomial size straight line program for
deciding instances of L of size n with input variables x = x1 . . . xn and in-
ternal variables v1, . . . , vm, where vm is the output variable. Given an input
yi ∈ {0, 1}n, consider the following hypergraph:

V =
m⋃

i=1

{(vi, 0), (vi, 1)} ∪
n⋃

i=1

{(xi, 0), (xi, 1)} ∪ {s}

E =
⋃

vi←vj∗vk,y,z

{({(vj, y), (vk, z)}, (vi, y ∗ z))} ∪
⋃

i

{(s, (xi, v(xi))}

where v(xi) is the value of xi in the current assignment of x. Clearly, there
is a hyperpath from {s} to (vm, 1) if and only if x ∈ L. Furthermore, if
the input changes on one bit, only one edge has to be removed and one has
to be inserted in the hypergraph. Thus, Ln can be reevaluated on-line in
polylogarithmic time, given oracle implementations of hclose2m+n+1.

✷

Corollary 6 hclosej ≡D hclose i for any i, j ≥ 2.

Proof hclosed is a polynomial time computable function.

✷

Efficient data structures for the on-line reevaluation of the transitive closure
of dynamic hypergraphs are thus of universal interest, but the completeness
result makes it unlikely that an algorithm with an operation complexity of
no(1) exists. Several other problems which are P -complete with respect to
some usual reduction, e.g. logspace-reduction, remains so with respect to≤D-
reductions. This is so because in most P -completeness proofs the reduction
function f does not expand the input significantly and the Hamming distance

20

between f(x) and f(y) is small when the Hamming distance between x and
y is small. Unfortunately, this is usually not the case for problems complete
for smaller classes, e.g. NLOG, so we do not know if on-line reevaluation of
the transitive closure of an ordinary directed graph is ≤D complete for any
interesting class of problems. This weakness of the reductions is probably a
major obstacle for the development of a structural theory of dynamic prob-
lems. However, we still think that this notion reducibility deserves father
study.

Acknowledgment

I sincerely thank Gudmund S. Frandsen, Erik Meineche Schmidt and Sven
Skyum for many helpful discussions, comments and suggestions.

References

[1] D. Angluin, L. G. Valiant: Fast Probabilistic Algorithms for Hamiltonian
Circuits and Matchings, J. Comp. Sys. Sci. 18 (1979) pp. 155–193.

[2] G. Ausiello, U. Nanni, G. F. Italiano: Dynamic Maintenance of Directed
Hypergraphs, Theoretical Computer Science 72 (1990) pp. 97–117.

[3] R. B. Boppana, M. Sipser: The Complexity of Finite Functions, Hand-
book of Theoretical Computer Science, Elsevier Science Publishers B.V.
(1990), pp. 757–804.

[4] R. F. Cohen, R. Tamassia: Dynamic Expression Trees and their Applica-
tions, Proc. 2nd Annual ACM-siam Symposium on Discrete Algorithms,
San Francisco (1991), pp. 52–61.

[5] G. N. Frederickson, Data Structures for On-Line Updating of Minimum
Spanning Trees, with Applications, Siam J. Comp. 14 (1985), pp. 781–
798.

[6] M. L. Fredman: The Complexity of Maintaining an Array and Comput-
ing its Partial Sums, JACM 29 (1982), 250–260.

21

[7] M. L. Fredman, M. E. Saks: The Cell Probe Complexity of Dynamic
Data Structures, Proc. 21st Annual ACM Symposium on Theory of
Computing, Seattle (1989), pp. 345–354.

[8] A. Gibbons, W. Rytter: Efficient Parallel Algorithms, Cambridge Uni-
versity Press, Cambridge (1988).

[9] O. H. Ibarra, B. Ravikumar: Sublogarithmic-space Turing Machines,
Nonuniform Space Complexity, and Closure Properties, Math. Systems
Theory 21 (1988), pp. 1–17.

[10] N. Immerman: Nondeterministic Space is Closed Under Complementa-
tion, Siam J. Comput. 17 (1988) pp. 935–938.

[11] G. F. Italiano: Amortized Eficiency of a Path Retrieval Data Structure,
Theoretical Computer Science 48 (1986), pp. 273–281.

[12] G. F. Italiano: Finding Paths and Deleting Edges in Directed Acyclic
Graphs, Inf. Proc. Lett. 28 (1988) pp. 5–11.

[13] N. D. Jones, W, T. Laaser: Complete Problems for Deterministic Poly-
nomial Time, Theoretical Computer Science 3 (1976) pp. 105–117

[14] T. A. Ottman, A. L. Rosenberg, L. J. Stockmeyer: A dictionary machine
(for VLSI), IEEE Transactions on Computers, Vol. C-31 (1982), pp.
892–897.

[15] J. A. La Poutré, J. van Leeuwen: Maintenance of Transitive Closures
and Transitive Reductions of Graphs, in Graph-Theoretic Concepts in
Computer Science International Workshop WG’87, Lecture Notes in
Computer Science vol. 314 (1988), pp. 106–120.

[16] J. E. Savage: The Complexity of Computing, J. Wiley, New York (1976).

[17] S. Skyum, Personal Communication.

[18] R. Szelepcsényi: The Method of Forcing for Nondeterministic Automata,
Bull. European Association Theor. Comp. Sci. (Oct. 1987), pp. 96–100.

[19] R. E. Tarjan: A Class of Algorithms which Require Nonlinear Time to
Maintain Disjoint Sets, J. Comp. Sys. Sci. 18 (1979), pp. 110–127.

22

[20] P. Van Emde Boas, R. Kaas, E. Ziljstra: Design and implementation of
an efficient priority queue, Math. Systems Theory 10 (1977), pp. 99–127.

[21] A. C. Yao: Should tables be sorted?, JACM 28 (1981), pp. 615–628.

[22] A. C. Yao: On the complexity of maintaining partial sums, SIAM J.
Comput. 14 (1985), pp. 277–289.

23

