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Summary

In the papers surveyed in this thesis a number of simulation techniques are
presented together with their applications to several examples. The papers
improve upon existing techniques and introduce new techniques.

The improvement of existing techniques is motivated in programming method-
ology: It is demonstrated that existing techniques often introduce a double
proof burden whereas the improved techniques alleviate such a burden. One
application is to ensure delay insensitivity in a class of self-timed circuits.

A major part of the thesis is concerned with the deduction and use of two
simulation techniques to prove the correctness of translations from subsets
of occam-2 to transputer code.

The first technique is based on weak bisimulation. It is argued that Mil-
ner’s notion of observation equivalence must be modified to cope with non-
determinism and silent divergence as found in occam-2. In the resulting
technique a stronger, but asymmetric, simulation condition must be proved
and an additional index to the simulation relation must be shown to decrease
at certain computation steps. An application of the technique to a sequential
subset of occam-2 is successful but results in a large proof.

The second technique drastically reduces the size of the proof in the first
technique. It marks a major departure from traditional simulation ideas;
instead of simulating single transitions, only conveniently long sequences of
transitions are simulated. This idea turns out to remove the previous need
for indexing the simulation relation and gives more natural proofs.

Parallelism presents a slight problem to the second technique. Three differ-
ent proofs for the parallel construct are consequently carried out. The first
two build on generalizations of the technique to parallel processes; of these
generalizations the second employs a new notion of truly concurrent execu-
tions. The third uses a more abstract “external” semantics and the fact that
this semantics is compositional in the parallel construct.
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Dansk resumé

Nærværende licentiatafhandling er en sammenfatning af nedenst̊aende pub-
likationer, der alle omhandler udvikling og brug af simuleringsteknikker.

I A. Gammelgaard. Reuse of invariants in proofs of implementation.
DAIMI PB-360, Aarhus Universitet, 1991.

II A. Gammelgaard. Implementation Conditions for Delay Insensitive
Circuits. Proc. PARLE 1989, LNCS 365, Vol. 1, pp. 341–355.

III A. Gammelgaard og F. Nielson. Verification of a compiling specifica-
tion. DAIMI IR-105, Aarhus Universitet, 1991.

IV A. Gammelgaard. Constructing simulations chunk by chunk. DAIMI
IR-106, Aarhus Universitet, 1991.

V Kapitel tre og kapitel fire af en kommende monografi dokumenteret i
[19]:
A. Gammelgaard, H. H. Løvengreen (ed.), C. Ø. Rump og J. F.
Søgaard-Andersen. Volume 4: Base System Verification, ProCoS tek-
nisk rapport, ID/DTH HHL 4/1, Danmarks Tekniske Højskole, 1991.

Simuleringsteknikker har været kendt længe inden for teoretisk datalogi.
Teknikkerne kan bruges til at bevise, at et program opfylder en specifika-
tion. Teknikkerne bygger p̊a en operationel forst̊aelse af b̊ade programmer
og specifikationer: Den grundlæggende idé er, at hvert skridt i et program
modsvares af nul, et, eller flere skridt i specifikationen. S̊afremt dette krav,
samt eventuelle ekstra krav, er opfyldt, vil programmet opfylde specifikatio-
nen.

I I benyttes en simuleringsteknik til at vise sikkerhedsegenskaber for imple-
menterende programmer. Først vises en sikkerhedsegenskab for en specifika-
tion af det konkrete program, og derefter vises kravene i simuleringsteknikken
at være overholdt; de ønskede egenskaber f̊as derp̊a ved nedarvning fra speci-
fikation til implementation.

ii



Det p̊avises at eksisterende bevisteknikker, i den konkrete anvendelse, ofte
fører til dobbelte bevisbyrder; den nedarvede egenskab må genbevises som en
del af simuleringsbeviset. Derefter vises det, hvordan en eksisterende teknik
kan modificeres, s̊a den dobbelte bevisbyrde fjernes.

I II anvendes den modificerede teknik til at vise hastighedsuafhængighed i en
speciel type elektroniske kredse. I stedet for at vise hastighedsuafhængighed
direkte, i en model med ledninger, vises det, ved hjælp af den modificerede
teknik, at en række implementations-betingelser, i en model uden ledninger,
er tilstrækkelige. Disse betingelser udtrykker at kredsen er opbygget af fire-
fase logik.

Publikationerne III, IV og V behandler alle anvendelsen af simuleringstek-
nikker p̊a et specielt problem: Korrekthed af oversættelser. De betragtede
oversættelser g̊ar fra forskellige delmængder af programmeringssproget oc-
cam-2 til abstrakte versioner af assemblerkode for transputere.

I III tages der udgangspunkt i Milners svage bisimulation. Der argumenteres
for, at en serie af modifikationer er nødvendige for at opn̊a en teknik, der kan
bruges p̊a den valgte delmængde af occam-2. Vigtigst er svækkelsen af kravet
om en symmetrisk relation begrundet i behandlingen af non-determinisme og
tilføjelsen af et indeks til simuleringsrelationen, der gør det muligt at sikre,
at intern divergens simuleres af intern divergens.

Korrekthedsbeviset i afhandling III viser sig at være uforholdsmæssigt stort.
I IV føres størrelsen delvis tilbage til det faktum, at opbygningen af en
simulerende occam-beregning sker ved at sammenstykke delberegninger i oc-
cam, der svarer til enkeltskridt p̊a transputeren. Derfor foresl̊as en ny teknik,
hvor kun længere bidder af transputerberegninger simuleres i occam. Den re-
sulterende teknik giver væsentlig kortere korrekthedsbeviser for sekventielle
programmer i occam.

Parallelisme kan ikke behandles direkte med den nye teknik; problemet er, at
det er vanskeligt naturligt at opsplitte en flettet udførsel af et parallelt pro-
gram i bidder, s̊aledes at hver enkelt bid kun indeholder skridt fra en enkelt
af de parallelle processer. I afhandling IV foresl̊as der to generaliseringer af
teknikken.

I den første generalisering udnævnes et enkelt skridt i hver bid til at være
et “principal” skridt . En occam-simulering opbygges atter ved at sammen-
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stykke occam-delberegninger svarende til enkeltskridt p̊a transputeren, men
nu vil kun principale skridt blive simuleret af ikke-tomme sekvenser af skridt.
I stedet for at relatere globale konfigurationer relateres projektioner af kon-
figurationer p̊a enkeltprocesser i systemet. For at sikre at hvert skridt re-
sulterer i en konfiguration for hvilken alle projektioner kan relateres, er det
nødvendigt at indicere hver relation med en tæller, der måler afstanden til
næste principale skridt.

Den anden generalisering af teknikken er mere radikal. I stedet for at ændre
grundideen i teknikken ændres den underliggende model for beregning. Den
sædvanlige semantik for parallelle processer baseret p̊a fletningen af udførsler
af enkeltprocesser erstattes s̊aledes af begrebet en ikke-flettet udførsel. En
s̊adan udførsel er basalt set en graf og ikke en linær sekvens. Med ikke-
flettede udføersler kan bidder af udførsler af enkeltprocesser direkte bruges
til at finde bidder (delgrafer) af udførsler af parallelle programmer, og den
nye teknik er derfor relativt let at generalisere.

I IV tages en anden tilgangsvinkel til behandlingen af parallelisme. I stedet
for at prøve at generalisere simuleringsteknikken vises det, at korrekthed af
oversættelsen p̊a sekventielle processer er tilstrækkelig: Hvis hver process i
et program af parallelle processer implementeres korrekt, s̊a vil den parallelle
sammensætning af implementerende processer være en korrekt implementa-
tion af programmet. Rækkevidden af dette resultat illustreres ogs̊a af de
øvrige bidrag til [19], hvor det benyttes til at vise korrektheden af kerner,
der samarbejder om at afvikle transputerkode.
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Chapter 1

Introduction

This thesis consists of the present survey and the five papers below.

I A. Gammelgaard. Reuse of invariants in proofs of implemen-
tation.
DAIMI PB-360, Aarhus University, 1991.

II A. Gammelgaard. Implementation Conditions for Delay Insen-
sitive Circuits.
Proc. PARLE 1989, LNCS 365, Vol. 1, pp. 341–355.

III A. Gammelgaard and F. Nielson. Verification of a compiling
specification.
DAIMI IR-105, Aarhus University, 1991.

IV A. Gammelgaard. Constructing simulations chunk by chunk.
DAIMI IR-106, Aarhus University, 1991.

V Chapters three and four of a forthcoming monograph docu-
mented in [19]:
A. Gammelgaard, H. H. Løvengreen (ed.), C. Ø. Rump, and
J. F. Søgaard-Andersen.
Volume 4: Base System Verification, ProCoS technical report
ID/DTH HHL 411, 1991.
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The thesis is about simulation techniques. Simulation techniques are used to
establish that one program correctly implements another program or a speci-
fication. Such techniques are an important tool in the construction of correct
computing systems. The papers introduce various simulation techniques and
demonstrate how they can be applied at different stages in the development
of correct computing systems.

Computing systems are often described at different levels of abstraction.
A high-level description may abstract away many architecture dependent
details and may thus be easier to reason about than the corresponding low-
level description where these details are present. This observation is often
exploited to split up a correctness proof into a series of smaller subproofs:
First an abstract description of the program is given as a program in a high
level programming language; this program is either proven to meet some
specification in logic or is taken to be a specification in itself. Then the
program is refined through a series of steps ending with a description right
down at the hardware level. For each successive pair of descriptions one has to
carry out a proof that the more concrete description correctly implements the
more abstract description. If all these proofs can be successfully carried out,
then it has been proven that the most concrete description of the computing
system satisfies the original specification.

There are different views at the meaning of the phrase “description D′ im-
plements description D”. Here we shall follow a linear time view [32, 50]. In
this view D′ implements D if it is possible, for each execution of D′, to find
a simulating execution of D [1, 22, 28, 31, 38, 59]’1. A simulation technique
is a proof technique which reduces the obligation of finding simulations in D
for executions of D′ to simpler conditions relating individual transitions in
D and D′.

A number of simulation techniques have been proposed already [1, 22, 28, 31,
38, 48, 59]. This thesis modifies some of the known techniques, presents new
techniques, and gives a number of examples of their application. Furthermore
results are presented which ensure that double work in some of the techniques
can be avoided.

The concept of an implementation arises naturally at several places in the

1Descriptions are constructed such that they define non-empty sets of executions. Con-
sequently the trivial implementation having no executions is not feasible.
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development of computing systems. Starting from a specification we can
identify (at least) the following steps.

1. The initial design of the program is written in some high level program-
ming language. Transformations to the program are then made within
the language in order to cope with more and more implementation
specific details.

2. The final program is subsequently translated into machine code by a
compiler.

3. The machine code is interpreted by the hardware of the machine.

In all these steps it is necessary to prove that the lower level description
implements the higher level description. In the latter two steps we are really
interested in making one proof for a class of programs instead of making
individual proofs for each program.

The paper I presents a technique along with a number of examples of its use
for the first of the above steps. The paper II uses the same technique in
the third step to deal with a specific problem in hardware built of self-timed
four phase logic. Finally III, IV , and V present and apply two different
techniques for dealing with the second of the above steps. The techniques
used in IV and V are the same except for the treatment of parallelism.

Section 2 surveys the technique in I and describes its use on hardware verifi-
cation in II. Section 3 describes the technique from III and its application
to compiling verification. Section 4 describes how the technique of III can
be modified into the technique of IV and furthermore demonstrates how the
new technique can be applied to parallel languages. In Section 5 the alge-
braic approach to parallelism from V is described. Finally Section 6 surveys
the relevant literature and points out directions for future research.

1.1 Transition systems

Simulation techniques to deal with concurrency is a main thread through the
entire thesis. The first concern in all the papers consequently is to model con-
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current programs. Numerous models have been suggested in the literature.
In this thesis we will focus on models based on transition systems.

We consider two types of communication. In [I] and [II] communication is
performed through shared variables; in [III], [IV ], and [V ] communication is
through channels. To deal with the latter form of communication we will, as
usual, introduce transition labels, either of form ch : v where ch is a channel
and v is a communicated value, or of form τ where τ indicates an internal
(silent) step in a system. No such labelling is needed in order to deal with
communication through shared variables. Thus we end up with two different
types of transition systems, labelled and unlabelled.

Besides a set of configurations (or states) and a transition relation, transition
systems often include various other components [8, 49, 51]. Here we will only
include a set of initial states. By requiring this set to be non-empty it is
ensured that the behaviour of a transition system will be non-trivial.

An unlabelled transition system S is a triple (C, Init ,→) where

• C is a set of configurations (or states);

• Init ⊆ C is a non-empty set of initial configurations (states);

• →⊆ C × C is the transition relation.

A labelled transition system S is a 4-tuple (C, Init , L,→) where

• C is a set of configurations (or states);

• Init ⊆ C is a non-empty set of initial configurations (states);

• L is a set of labels;

• →⊆ C × L × C is the relation of labelled transitions.

An execution of an unlabelled transition system is a finite or infinite se-
quence of configurations such that the first configuration belongs to Init and
such that adjacent configurations belong to →. An execution of a labelled
transition system is likewise defined except that the label of the mediating
transition has to be inserted between each pair of adjecent configurations.
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1.2 Open and closed systems

When modelling concurrent systems another distinction than the labelled-
unlabelled one can be made—the distinction between open and closed sys-
tems.

An open system is a system with an interface to some external environment.
Values are communicated forth and back over this interface. In an unlabelled
transition system such communications are usually modelled by picking out
some part of the configuration (the shared interface variables) and letting
this part be under the control of both the system and its environment (e.g.
[1]). In a labelled transition system communications with the environment
are usually modelled by selecting some of the labels as being input/output
labels (e.g. [28, 31, 38]). The environment then communicates with the
system by executing transitions with input/output labels in cooperation with
the system.

A closed system is a system which does not communicate with any external
agent. Such systems explicitly describe both the program in question and
its environment (see e.g. [8] and [47]). In transition systems describing such
systems there is no partitioning of neither the individual configurations nor
the transition labels to reflect the distinction between the program and its
environment. When specifying and constructing such a system the designer
instead has to be fully aware of the actions which the program can control
and those which it cannot control.

In open systems one can compare two systems at their respective interfaces to
the environment. Executions of each system give rise to observations at the
interface2. If the two systems have the same interface—i.e. the same interface
variables or the same input/output labels—, then observations at the two
systems’ interfaces become simple to compare; as indicated earlier we say
that a concrete system implements an abstract system if all observations at
the concrete system’s interface are also possible observations at the abstract
system’s interface. The notion of one system implementing another system
can thus be expressed by an external criterion relating the two systems at
their interface.

2These observations need not merely be projected executions; in [IV ] and [V ] they also
contain information about refused interactions.
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In closed systems the situation is rather different because of the lack of inter-
faces at which two systems can be compared. Here it is up to the designer to
decide what the important properties of a system are and how to reformulate
them for the implementation. Since there is no interface to the environment,
the designer has to suggest some interpretation or some relation which shows
how to interpret properties of the high level as properties of the low level.
On the other hand this enables the designer to refine interfaces of a program:
Since there is no formal notion of an interface to the environment in closed
systems, the designer is free to substitute certain interface variables or in-
terface communications with others as long as he is able to reformulate and
retain the import ant properties of thy system; he is not bound to show that
all observations at a predefined interface of the lower level are also possible
observationsat a predefined interface at the higher level.

In both [I] and [II] we consider closed systems with communicatio between
parallel processes via shared variables. In [III] [IV ], and [V ] we consider
open systems with communication through channels. The lack of papers
combining closed systems with channel communication or open systems with
communication through shared variables is purely coincidental. We believe
that there is nothing which prevents such combinations of concurrency mod-
els from being exploited.
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Chapter 2

A simulation technique for
inheritance of safety properties

The first simulation technique is developed in [I] and builds on ideas of
Lamport [33, 34, 35]. In this overview we only describe a simple version of
the technique.

The technique is used to reduce the effort needed to prove that each state in
executions of some low level description of a program satisfy some property.
Such properties belong to the category of safety properties [2]. The reduction
is obtained by treating the low level description as an implementation of some
high level description.

2.1 Basic technique

We need some notation. Given an unlabelled transition system S = (C, Init ,
→), let the set of reachable states Reach be the minimal set such that

1. Init ⊆ Reach;

2. if c ∈ Reach and (c, c′) ∈→, then c′ ∈ Reach.

The importance of this definition is that all states occurring in executions of
S will belong to Reach. So to prove properties of these states we only need
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to prove properties of states in Reach.

To demonstrate that a system has a property we must express this property
as a set P ⊆ C and we must prove Reach ⊆ P . For instance the system could
describe an algorithm for achieving mutual exclusion between some number
of processes; the property P would then consist of all states in which at most
one process is in its critical section. We say that P is safe in S whenever
Reach ⊆ P .

Traditionally, to prove that a P is safe in S, one finds a property Inv ⊆ C
and proves

1. Init ⊆ Inv ;

2. if c ∈ Inv and (c, c′) ∈→, then c′ ∈ Inv ;

3. Inv ⊆ P .

The first two conditions obviously ensure Reach ⊆ Inv and the third condi-
tion then gives Reach ⊆ P . The property Inv is called an invariant whenever
it satisfies 1 and 2.

For systems describing simple algorithms the invariant Inv can often be cho-
sen to be equal to the property P . For systems describing more complicated
algorithms the invariant has to be strengthened such that Inv becomes a
proper subset of P and a proper superset of Reach.

In concrete systems containing a lot of architecture dependent details in-
variants can be difficult to find and to work with. In a realisation of the
mutual exclusion algorithm, for example, it could be necessary to imple-
ment some shared data structure by a whole set of low level data-structures;
the invariant then has to describe how manipulations change the lower level
data-structures along with the high level properties which enforce mutual
exclusion. This mixture of high and low level properties may make the in-
variant difficult to work with and consequently it may be difficult to establish
that P is safe in S by these methods.

We want instead to prove P safe in S in two steps; first we prove it safe for
an abstract description of the system; and next we prove that the concrete
system can be treated as an implementation of the abstract system. This
will enable us to inherit P from the abstract to the concrete level.
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So assume that we are given two transition systems S1 = (C1, Init1,→1)
and S2 = (C2, Init2,→2) which describe closed systems and for which S1 is
supposed to be an implementation of S2. Since S1 and S2 describe closed
systems we do not have a priori interfaces at which the systems can be
compared. Instead we have to explicitly relate the states of the two systems.
This must be done by defining a map α : C1 → C2. This map should be
thought of as abstracting away the implementation specific details in S1.

The next thing we must do is to prove that transitions in S1 are simulated
by transitions in S2. This is not always quite possible, however, because
the more refined data structures of S1 may require more operations than
the corresponding high level data structures of S2. Consequently we also
allow S1 transitions to be simulated by transitions which simply repeat the
configuration (called stuttering transitions in [1, 33, 35].)

Given two transition systems S1 and S2 and a map α : C1 → C2 the simula-
tion conditions then become

1. α(Init1) ⊆ Init2;

2. if (c, c′) ∈→1, then α(c) = α(c′) or (α(c), α(c′)) ∈→2.

If these conditions hold, then executions of S1 map into (possibly stuttered)
executions of S2. Thus for any property P2 which is safe in S2 we also have
that the inverse image α−1(P2) of P2 is safe in S1. So properties can be
inherited.

2.2 Extensions

Thus far the development has not been materially different from Lamport’s
original ideas. The subsequent extensions will be a deviation and are the
main contribution of the paper [I]. As will be discussed, the first extension
has a parallel in [38] whereas the second part is new.

After constructing the mapping α it often turns out that some transitions in
→1 do not map as desired (examples are given in both [I] and [II]). This
does not always detrude the technique since actually only the transitions
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(c, c′) ∈→1 with c ∈ Reach1 need to map as described above. Consequently
one may have to restrict somehow the set of S1-transitions which are inves-
tigated. This means that one has to find a property P1 which can be proven
safe in S1; and this may once again involve finding an invariant Inv 1 of S1

such that Inv 1 ⊆ P1.

The proof of safety of Inv 1 often turns out to be double work: Apparently,
to inherit a property we first have to prove the safety of another property
which is nothing but a sharpened version of the property that we want to
inherit. For instance, to prove that all low level transitions map as desired we
may have to exploit mutual exclusion between the processes. And if mutual
exclusion is the property that we want to inherit, then the technique does
not buy us anything; we anyway have to give a traditional proof of mutual
exclusion at the low level.

First extension

There is a quite easy remedy in many of the above situations. It turns
out that one can simply inherit the properties an use them as restrictions
to the set of investigated transitions; if the subsequent simulation proof goes
through, then, as proved in [I] page 13, it turns out that reachable transitions
are mapped as desired.

A similar result has been reported by Lynch and Tuttle in [38]. Their setup
is slightly different, however; formulated in our framework their result is
that if all transitions (c, c′) ∈→1 such that c ∈ Reach1 and α(c) ∈ Reach2

map as desired, then all properties of S2 can be inherited. The condition
α(c) ∈ Reach2 corresponds to our usage of α−1(Reach2) as an S1-property in
the “Characterisation Lemma 1” on page 13 in [I],

Second extension

Still there are examples for which the thus strengthened technique—and
hence also Lynch and Tuttle’s—will fail (again see [I] and [II]). It may
be necessary to further shrink down the set of considered transitions. In
mutual exclusion algorithms it may thus be necessary—in order to make the
simulation proof go through—to know more about the low level system than
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just the mutual exclusion property. The question then is whether inherited
properties can be used in proofs of additional low level properties. It turns
out that they can. The proof of such relative invariants can be incorporated
into the simulation technique (pages 16-17 in [I]). The conditions for inher-
iting properties then become that there should exist some Inv 1 ⊆ C1 such
that the following conditions hold

1. α(Init1) ⊆ Init2 and Init1 ⊆ Inv 1;

2. if (c, c′) ∈→1 and c ∈ Inv 1 ∩ α−1(Reach2), then c′ ∈ Inv 1;

3. if (c, c′) ∈→1 and c ∈ Inv 1 ∩ α−1(Reach2), then α(c) = α(c′) or
(α(c), α(c′)) ∈→2.

In [I] a number of examples are given on how to use this simulation technique
(it is called an inheritance technique in [I] page 17 because the above checks
allow one to inherit properties). It is also described how more general safety
properties than those expressible by a safe property can be inherited. E.g.
the paper considers properties of the form “process i cannot overtake process
j in queue q”.

Finally it is discussed in [I] what completeness of the simulation technique
means when dealing with closed systems. As mentioned previously it is not
possible to compare two closed systems independently of an interpretation
or relation between the two systems.

So a traditional completeness result saying that if S1 implements S2, then the
simulation technique can be applied is not adequate here. Since part of the
simulation technique in [I] is to construct the map α, the designer has full
control over this interpretation. We exploit this fact to state a different kind
of result which says that under very mild restrictions on S2 it is possible
to obtain any safety property of S1 as an inherited property. This is not
a traditional completeness result but it has, unfortunately, been called a
completeness result in [I].
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2.3 An application to delay insensitive cir-

cuits

In [II] the technique from [I] is used to facilitate the construction of delay
insensitive hardware.

A circuit is delay insensitive if it is robust to variations in delays of signals
through the wires of the components of the circuit [58, 63]. To model such
circuits one has to describe explicitly the possibility of delays in wires. In
a shared variable model this is done by introducing two bit-valued variables
w! and w? for each wire w. These two variables model the two endpoints of
the wire, and the delay is modelled by an assignment

w? := w!

For wires the condition of delay insensitivity then says that w! may not
change value as long as w? �= w!, i. e. the circuitry may not attempt sending
a new value via w when the old value is still in progress.

The explicit modelling of delays in wires tends to complicate the correctness
arguments for delay insensitive circuits. The aim in [II] is to reduce this
complexity by allowing the designer to reason about a more abstract model.
In the more abstract model each wire w is simply represented by a single
variable. Instead of treating the delays explicitly the designer is requested to
verify a number of so-called implementation conditions. These implementa-
tion conditions are nothing but safe properties of the abstract model; they
express that the circuit should follow the rules for so-called self-timed four-
phase logic (see [58]). An application of the simulation technique from [I]
then formally proves the claim that four-phase logic is insensitive to delays
in wires.
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Chapter 3

A simulation technique for
compiling correctness

The second simulation technique is documented in [III].

The aim in [III] is to prove a compiling specification correct. The source
language of the compilation is called PL0 (see [15]) and is a subset of the
occam-2 programming language [26]. A PL0 program is a sequential process
prefixed with declarations. Declarations introduce integer valued variables.
The sequential process communicates with the environment via one input
and one output channel. Sequential processes are constructed front primitive
statements—input/output statements, the two processes SKIP and STOP—
and these processes are composed into compound sequential, conditional and
iterative processes.

Finiteness is an important aspect of PL0: integers are assumed to lie in the
interval [−2n, 2n−1] for some fixed n and the workspace needed by processes
for allocation of both permanent and temporary variables is assumed to be
bounded.

The target language of the compilation is called BAL0 (see [17]) and is a block
structured assembly language for the transputer [27]. The block structure is
used to avoid difficulties in generating unique jump labels. Input and output
is performed through the same two predefined channels as in PL0.

In [16, 17] the languages PL0 and BAL0 are given Plotkin style structural op-
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erational semantics [49]. Such a semantics defines for each of PL0 and BAL0 a
single global transition system which resembles, but is slightly different from
our labelled transition system. Instead of a set of initial configurations the
Plotkin style semantics works with a set of terminal configurations. The set
of terminal configurations is only used to define the transitions through an
inference system and we will ignore it for the present. Our set of initial con-
figurations is implicitly defined by any concrete program that we consider. In
the subsequent discussion we will consequently assume that for each program
in PL0 or BAL0 we have a labelled transition system as defined earlier.

The shape of PL0-configurations depend on the syntactic category under
consideration. For processes, e.g., they have shape 〈p, σ〉 where p is a process
term and σ is a store. In BAL0 the configurations have shape 〈[u, v], ms〉 here
u and v are BAL0 code sequences, where the comma indicates the position
of the program counter, and where ms is a machine state indicating the
contents of certain registers and the workspace.

The compiling specification is given as an ordinary, recursively defined, func-
tion t from PL0 to BAL0 (see [18]).

3.1 Definition of correctness

Let Sp, be the labelled transition system defined be the PL0 program p and let
St(p) be the labelled transition system defined by the corresponding compiled
program t(p). We will take t to be correct if St(p) correctly implements Sp

for each p. Since p and t(p) describe open systems with the same interface,
we require each observation of St(p) to be an observation of Sp.

This definition has not been formally stated in [III]. It has been used,
however, to give an informal argument for the shape of what we will call the
internal correctness predicate. Part of this argument will be repeated here.

The internal correctness predicate expresses correctness as a requirement on
individual transitions and simulations of these. Thus it highly resembles a
proof obligation in a simulation technique. It should be noted, however, that
the only purpose of the internal correctness predicate is to ensure that St(p)

implements Sp, for each p. It is another matter whether the internal cor-
rectness predicate can serve as induction hypothesis in a proof by induction.
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Quite in analogy with the need to consider an inv ⊂ P in the previous tech-
nique it turns out to be necessary to considerably strengthen the internal
correctness predicate in order to get a working induction hypothesis.

3.2 Towards an internal correctness predicate

The internal correctness predicate in [III] page 25 arose through a series of
modifications to a predicate taken from the literature. Our initial attempt
at expressing correctness of the compiling specification was to use the well-
known notion of observation equivalence from [42] page 108. For the present
we assume that both Initp and Init t(p) consist of just a single configuration.
Then we say that Sp and St(p) are observation equivalent if there exists a
relation R in Cp × Ct(p)

3 such that InitpRInitt(p) and such that

1. if cpRct(p) and cp
l−→ c′p, then there is a c′t(p) such that ct(p)

l̂
=⇒ c′t(p)

and c′pRc′t(p);

2. if cpRct(p) and ct(p)
l−→ c′t(p) then there is a c′p such that cp

l̂
=⇒ c′p and

c′pRc′t(p).

Here the expression l̂ yields the empty sequence ε if l = τ (the label indicating
an invisible step) and it yields the sequence consisting of just l otherwise.
The expression c

s
=⇒ c′ means that there is a sequence of transitions from c

to c′ such that the non-τ labelled transitions are labelled, in sequence, with
the labels in s.

It was soon realized that observation equivalence is not an adequate internal
correctness notion in the ProCoS project: In successive stages of the project
PL0 is extended with non-deterministic constructs. Non-determinism is then
treated as underspecification. This means that if p is non-deterministic, then
t(p) may be made deterministic by cutting off some of the internal choices
made by p.

3The two sets of configurations are swapped in [III].
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The treatment of non-determinism as underspecification makes it impossible
to meet requirement 1 above: If there is a sequence of high level transitions

cp
l−→ c′p

l′−→ c′′p . . .

then there is no guarantee that we have a low level simulation

ct(p)
l̂

=⇒ c′t(p)
l̂′

=⇒ c′′p . . .

as would be the case if requirement 1 were met. We weaken requirement 1
by removing the last condition

c′pRc′t(p)

So the simulation is not required to continue from the pair of configurations
(c′p, c

′
t(p)).

On the other hand we do not want to completely remove requirement 1 for
the remaining condition

ct(p)
l̂

=⇒ c′t(p)

ensures that external communication capabilities at the high level are re-
flected at the low level. We will state this condition differently, however,
since we want to use the mental picture of constructing high-level simulations
for low level executions. So we formulate the requirement contrapositively: if
the low level can refuse to participate in some external communication, then
so can the high level.

To express the modified requirement we only have to analyse the circum-
stances under which a communication can be refused.

If the program reaches a configuration ct(p) where execution has stopped, then
certainly no communication is possible. We will write that the execution has
stopped as

for all l : ct(p)
l−→/ .

In this case we require that if cpRct(p) holds, then it is possible from cp via
some number of τ -steps to reach a configuration where also p has stopped
execution.
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At both levels we have that if a configuration is reached where the program

is waiting for communication via channel ch (that is c
ch:v−→ c′ for some v and

c′), then it simultaneously refuses to communicate via any other channel.
But requirement 2 already ensures that low-level transitions are simulated
by high-level transitions with the same label so if the low level refuses some
communication by being ready to communicate via ch, then so does the high
level. We consequently do not need any extra condition to express that the
high level simulates this kind of low-level refusal.

Finally the low level can refuse to make any communication by diverging
internally. For the translation from PL0 to BAL0 it turns out that this only
happens when the high level also diverges internally. We want our correctness
predicate to express also this simulation of internal divergence by internal
divergence. It is not possible to use requirement 2 directly for this because
this requirement only states that each internal low level transition ct(p)

τ−→
c′t(p) be simulated by some, maybe empty, sequence of high-level transitions

cp
τ̂

=⇒ c′p. If all but finitely many of these sequences were empty, then an
internal divergence could be simulated by a finite sequence of transitions in
which the last configuration could be able to accept communication via some
channel. Consequently some low level refusals would not be simulated at the
high level.

To express that infinitely many of the simulations cp
τ̂

=⇒ c′p must be non-
empty we index the simulation relation R by elements w from a well-founded
order (W, <). Requirement 2 is then hanged to say that if cpRwct(p) holds

and ct(p)
l

=⇒ ct(p)′ , then there must be a configuration c′p such that cp
l̂

=⇒ c′p

and such that c′pRw′c′t(p) holds with w′ < w whenever cp
l̂−→ c′p is an empty

sequence; the index, then, is only allowed to increase when cp
l̂

=⇒ c′p is non-
empty. Since (W, <) is well-founded, this means that when constructing a
simulation of a divergent computation we occasionally have to choose non-
empty simulations of transitions and this forces the constructed simulating
computation to be infinite.

Two additional comments are necessary before we can present the resulting
correctness predicate.
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First, the sets Initp and Init t(p) of initial configurations do not consist of
just a single state each. E.g. the program p really defines a bunch of initial
configurations, one for each choice of initial value for the variables. We
consequently cannot require R to relate all of Initp with all of Init t(p). Since
we want to construct high level simulations of low level executions we instead
require that for each ct(p) ∈ Init t(p) there should exist a cp ∈ Initp such that
cpRwct(p) holds for some w.

Next, we have not yet taken into account the limited size of workspace and of
transputer words. This is taken into account by recursively defining a set of
functions which measure the words needed by each subpart of the program
and the necessary word-size for jumps within the program. A program is
then said to be compilable whenever the total workspace needed is less than
the available workspace and whenever all jumps can be implemented with
the available word-size.

The resulting correctness predicate can be summed up as follows. Let Sp be
the labelled transition system defined by p and let St(p) be the labelled tran-
sition system defined by t(p). We say that t is correct if for each compilable
program p there exists a family of relations Rw such that

1. if cpRwct(p) and ct(p)
l−→ c′t(p), then there is a c′p such that cp

l̂,m
=⇒ c′p

and c′pRw′c′t(p) where m = 0 implies w′ < w;

2. for each ct(p) ∈ Init t(p) there is a cp ∈ Initp and a w ∈ W such that
cpRwct(p);

3. If cpRwct(p) and for all l : ct(p)
l−→/, then there is a c′p such that cp

ε
=⇒ c′p

and for all l : c′p
l−→/.4

3.3 The correctness proof

We next turn to how the proof of this correctness predicate is conducted. We
are required, for each p, to define an appropriate family of relations Rp

w and

4In [III] page 25 the predicate is slightly stronger since we distinguish between proper
and improper termination. This is due to the view that it is possible to communicate with
the system after its termination to see how it terminated.
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to prove that it satisfies the three conditions. Basically we want to reuse the
corresponding families of Rq

w-relations defined for each subconstruct q of p
along with the properties enjoyed by them. This could be done by defining
the relations Rp

w by recursion on the structure of p. It turns out, however,
that for some p it is inconvenient to give a direct closed form definition of Rp

w

For instance the process WHILE(b, p) gets packed into a sequence SEQ[·] for
each iteration so that the process becomes SEQn[WHILE(b, p)] after n iterations
whereas the BAL0 program counter just cycles n times through the code; for
this process we rather want from

〈p, σ〉RWHILE(b,p)
w 〈[u, v], ms〉

to infer

〈SEQ[p], σ〉RWHILE(b,p)
w 〈[u, v], ms〉

This suggests to use inference systems for the definition of Rp
w for each p.

Since definition by inference systems encompasses definition by recursion in
p we have made the choice to give a simultaneous definition of all Rp

w by
means of an inference system. The proof that the three above requirements
are met is consequently conducted by induction on the inference trees of
relation instances cpR

p
u(ct(p).

As already mentioned the three requirements have to be strengthened in
order to serve as an induction hypothesis in the induction proof. Consider for
instance the process SEQ[p1, p2] where p1 translates into u and p2 translates
into v. When the process p1 has been executed, then one needs to relate
〈p2, σ〉 to 〈[u, v], ms〉. This is only possible if ms is a proper representation
of σ. And consequently it has to be explicitly expressed that if some BAL0

transition is simulated by some sequence of high level transitions, then the
final ms actually is a proper representation of σ.

Even though PL0 is just a small language, the proof in [III] is large; it runs
over more than 40 pages. It seems that there are (at least) three different
reasons for this.

First, the languages and the compiling specification have been defined inde-
pendently of the proof effort. This means that all the “fine-tuning” of the
definitions which usually precedes the publication of similar proofs has not
been possible here.
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Second, the bounded size of transputer words and of the available memory
makes it necessary to make a lot of extra checks. It has to be demonstrated
that references to words do not fall outside the workspace in use; and for each
arithmetic operation one has to distinguish between situations with normal
and abnormal outcomes.

Third, and most importantly, the proof technique itself seems to introduce
complications since it requires us to find simulations for every single tran-
sition at the low level. This means that we are often forced to relate quite
awkwardly. For instance a process like ch!x is translated to a BAL0 sequence
of seven instructions. So execution of the construct requires seven steps at
the low level but only a single step at the high level and the problem then is
to find out with what high level configuration the six intermediate configu-
rations of the low level should be related.
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Chapter 4

Chunk by chunk simulation

The third simulation technique is documented in [IV ]. The technique is
an attempt to cut down on the size of the proof for sequential processes in
[III]. Furthermore the paper gives two different ways to extend the third
simulation technique to deal with parallelism. The sequential part of the
technique and its use is also documented in [V ] and the presentation there
is a slight improvement over the presentation in [IV ].

The programming language PL in [IV ] page 7 is both an extension and a sim-
plification of PL0 from [15]. It contains parallelism at the outermost level, an
arbitrary number of channels can be used for communication, and a CHOICE-
construct introducing internal non-determinism has been included. On the
other hand the declarations have been removed (they were only present in
PL0 in order to make the statical semantics of PL0 non-trivial) and integers
may take on arbitrarily large values.

The assembly language AL is adjusted accordingly. Furthermore configura-
tions of a running AL program are made more low level as they now contain
an instruction pointer pointng into the code instead of the comma notation
in BAL0.
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4.1 In search for a better technique

The new simulation technique is an attempt to overcome two problems with
the previous simulation technique. We want to get rid of the indices w on
the simulation relation and we want to relax the strict demand of relating
high and low level configurations after each transition at the low level. It
will turn out that a single idea overcomes both problems.

The indices w were introduced to ensure that infinite sequences at the low
level are simulated by infinite sequences at the high level. We now try to
ensure this differently.

The first suggestion is to require that each transition be simulated by a
non-empty sequence of high level transitions. This of course forces infinite
executions to be simulated by infinite executions. But it also has the con-
sequence that high level executions must contain more transitions than the
low level executions which they simulate and this is clearly undesirable.

To avoid forcing the high level execution to contain more transitions we
suggest to find simulations only for chunks of low level executions and not
for individual transitions. So our requirement will be that if cpRct(p) holds
and ct(p) → c′t(p) is the first transition of a sufficiently long low level execution,
then it is possible to find a prefix ct(p) → c′t(p) ⇒ c′′t(p) of this execution and a
non-empty high level simulation cp ⇒ c′′p such that c′′pRc′′t(p) holds. This again
ensures that infinite low level executions are simulated by infinite high level
executions and now high level simulations are not forced to contain more
transitions than the low level executions.

The sketched idea is also appropriate for relaxing the requirement of relating
configurations after each low level step. Consider for instance the high level
process x := e and its translation eval(e); stl(x)5. They give rise to the
following executions.

high level 〈x := e, σ〉 τ−→ 〈terminated, σ ⊕ {x �→ e(σ)}〉
low level 〈0, reg , σ〉 τ−→ 〈1, e(σ), σ〉 τ−→ 〈2, e(σ), σ ⊕ {x �→ e(σ)}〉

In PL the value e(σ) of the expression e evaluated in store σ is saved in

5For simplicity we assume the existence of AL-instructions which evaluate expressions
in one step.
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variable x whereby the process becomes terminated. In AL the instruction
pointer first moves from 0 to 1 while e(σ) is loaded into the general purpose
register; next the instruction pointer moves from 1 to 2 while the value in
the general purpose register is stored in variable x.

The problem in the previous simulation technique is that the intermediate
configuration 〈1, e(σ), σ〉 is required to be related to some of the two high level
configurations and neither choice seems to be natural. The best would be
simply to avoid relating 〈1, e(σ), σ〉 to anything while relating only 〈0, reg , 0〉
to 〈x := e, σ〉 and 〈2, e(σ), σ⊕{x �→ e(σ)}〉 to 〈terminated, σ⊕{x �→ e(σ)}〉.
The seketched idea allows us to do just so by grouping the two low level
transitions into a chunk such that only the initial and the final configurations
need to be related to high level configurations.

Unfortunately the sketched idea does not directly work. There are both
pragmatic and theoretical reasons for this.

The sketched idea requires us to match non-empty low level sequences of
transitions with non-empty high level sequences. This is not always as natural
as we may hope for. Consider e.g. the process

p1 SEQ SKIP SEQ p2

The process SKIP just translates into the empty code sequence so the result
of translating the above process is the code sequence

t(p1); t(p2)

At the high level we get the execution

· · · 〈SKIP SEQ p2, σ〉 τ−→ 〈p2, σ〉 · · ·

So it takes one transition to remove the process SKIP. At the low level there
is no such transition

· · · 〈i, reg , σ〉 · · ·

The problem then is to what simulation the SKIP transition should belong;
it could belong either to the simulation of a chunk ending in 〈i, reg , σ〉 or
to the simulation of a chunk beginning in 〈i, reg , σ〉. Neither choice seems
attractive. Rather it seems desirable to have the ability of inserting an empty
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chunk between the chunks ending and beginning in 〈i, reg , σ〉 and to simulate
this empty chunk by the transition

〈SKIP SEQ p2, σ〉 −→ 〈p2, σ〉

The reverse effect can also be observed—that some low level transitions most
naturally are simulated by empty sequences of high level transitions. This
effect occurs e.g. when executing a loop WHILE(b, p). At the low level, after
executing the body of p, there is an explicit jump transition which leaves
control at the beginning of the loop. At the high level there is no such
transition, rather the last transition in the execution of p leads directly to a
configuration of form 〈WHILE(b, p), σ〉. Now it would be desirable to simulate
the non-empty chunk consisting of the jump transition by an empty high
level execution.

As we did in the previous simulation technique, we also want the chunk by
chunk technique to ensure that low level refusals are simulated by high level
refusals. This is the origin of the theoretical problem with the sketched idea.

To explain the problems consider first a finite low level execution for which a
simulating high level execution can be found. We can identify two necessary
requirements in the technique. To start the construction of the high level
execution we must require that the initial low level configuration and the
initial high level configuration are related.

Furthermore, to ensure that the two executions define the same set of refusals,
it must be the case that the two final configurations enable the same set
of communications. Since the two final configurations will be related, this
is ensured by requiring that related configurations enable the same set of
communications.

But now consider the process ch!e and its translation eval(e); out(ch) which
give rise to the following executions

high level 〈ch!e, σ〉 ch:e(σ)−→ 〈(terminated, σ〉
low level 〈0, reg , σ〉 τ−→ 〈1, e(σ), σ〉 ch:e(σ)−→ 〈2, e(σ), σ〉

It is easily seen that the two above requirements collide in this case: First we
are required to relate 〈ch!e, σ〉 with 〈0, reg , σ〉 and next we are required to
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show that the thus related configurations enable the same set of communi-
cations which is clearly not the case since 〈ch!e, σ〉 enables a communication
along ch whereas 〈0, reg , σ〉 does not. Again in this case it seems desirable to
simulate the first transition from 〈0, reg , σ〉 to 〈1, e(σ), σ〉 by an empty high
level execution such that 〈ch!e, σ〉 and 〈1, e(σ), σ〉 which enable the same
communications can subsequently be related. Furthermore the relation be-
tween the two initial configurations should be of another sort not requiring
the same set of communications to be enabled.

As hinted at both the pragmatic and the theoretical problems can be solved
by introducing two relations S and R with different requirements. If two con-
figurations are S-related, then they enable the same set of communications
and from any sufficiently long execution it is possible to cut out a non-empty
chunk which has a non-empty high level simulation such that the respective
final configurations are R-related. R-related configurations need not have
the same communication capabilities as SS-related. We only require that
if two configurations are R-related, then it is possible from any execution
originating in the low level configuration to cut out a chunk which has a high
level simulation such that the respective final configurations are S-related.

Figure 4.1: The chunk-by-chunk technique on infinite executions.

When using the R- and S-relations to construct simulations of low level
executions we end up with a picture like in figure 1 for infinite executions.
For finite executions a typical picture is given in figure 2. Notice that a finite
execution and its simulation must end in a pair of configurations which are
S-related.

To express the requirements on R- and S-related configurations formally we
have to express that an execution γ is sufficiently long. In [IV ] the approach
taken is to require γ to be complete which means that γ cannot be extended
with internal transitions (page 15).
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Figure 4.2: The chunk-by-chunk technique on finite executions.

In the following formalization we assume that γ is any complete execution.
The notation β � γ means that β is an initial chunk of γ, i.e. β is a prefix
of γ. The initial configuration of γ is denoted •γ. Finally the function enable
yields the set of enabled channels when applied to a PL configuration pc and
the (code-dependend) function enablet(p) yields the set of enabled channels
(in code t(p)) when applied to an AL configuration mc. We say that t is
correct if, for each p, it is possible to find Rp and Sp satisfying the below
requirements

1.
pcRmc ∧ b = •γ⇓
∃α, β : (α = pc

ε⇒ pc′) ∧ (β = mc
ε⇒ mc ′) ∧ (β � γ) ∧ pc ′Smc ′

2.
pcSmc ∧ γ = mc

l−→ · · ·⇓
∃α, β : (α = pc

l⇒ pc′) ∧ (β = mc
l⇒ mc ′) ∧ (β � γ) ∧ pc ′Rmc ′

3. pcSmc ⇒ (enable(pc) = enablet(p)(mc))

4.2 The correctness proof

As in the previous simulation technique we define the two relations Rp and
Sp by an inference system and the proof that the above requirements hold is
consequently performed by induction on the structure of inference trees.

Again it is necessary to strengthen the above predicate in order to get a work-
ing induction hypothesis. The strengthening is only very slight; condition 3
has to be strengthened into
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3′. pcSmc ⇒ (enable(pc) = enablet(p)(mc)) ∧ (pc ∈ TPL ⇔ mc ∈
T

t(p)
AL )

The stronger version 3′ is necessary to deal with the SEQ-construct, It ensures
that an S to R chunk inside a t(p1); t(p2)-execution corresponds to an S to R
chunk of a t(p1)-execution whenever the instruction pointer of the SSEQ[p1,p2]

-related configurations points to a location inside t(p1). And it enables us to
treat a special problem which arises, namely the problem that both the final
chunk of t(p1) and the initial chunk of t(p2) will be of the R to S type. If no
countermeasures were taken, this would lead to a violation of the principle
that the two types of chunks should strictly alternate. We will not go deeper
into the technical motivation for using 3′ but refer to [V ] page 65.

4.3 External semantics

In the discussion leading up to the internal correctness predicates in both
the previous and the present technique we used arguments which build on
our expectations to the externally observable behaviour of transition systems.
These expectations can be formalized. When this is done it becomes possible
to give an external definition of the relationship that one transition system
implements another. Furthermore it becomes possible to formally prove that
the simulation techniques establish that the transition system given by t(p)
implements the transition system given by p for each p.

As mentioned previously the external semantics is only used as an informal
guide in [III]. In [IV ] the external semantics is treated fully formally. There
are two definitions of external semantics, however, due to different treatments
of parallelism. Since these two definitions coincide for programs consisting
of just a single sequential process, we will take the opportunity to sketch
the external semantics of sequential processes. Furthermore we describe how
correctness of sequential processes can be expressed by this external seman-
tics and how the internal correctness predicate is correct with repsect to the
external notion of correctness.

In correspondence with our general linear time view (see the Introduction)
we take the external semantics of a system to be a set of observations where
each observation is derived from an execution of the system. There are two
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things which can be observed in an execution. The first is the sequence of
communications with the environment—the trace [6]. The second is the set
of channels along which the system refuses to communicate—the refusal set
[6].

Although we follow the failure semantics of [6] in the structure of observations
we do not follow it in the interpretation of refusal sets and in the treatment
of diverging processes. In [6] a channel is only refused if the execution ends
in a stable configuration (a configuration not allowing internal transitions)
in which a communication labelled with the channel is not possible. In our
approach we take a channel to be refused if it is refused—under an assump-
tion of weak fairness—in the long run. More precisely, in addition to the
refusals in [6] we also regard a channel as being refused in an infinite execu-
tion if communication via the channel only occurs a finite number of times
and if communication along the channel is infinitely often disabled. The lat-
ter requirement says that we can only force the system to participate in a
communication if the system is continuously prepared to do so from some
point in the execution.

Notice that a system which diverges internally will refuse every channel. This
is in contrast with failure semantics where diverging processes are treated to
be equivalent with the chaotic process from the point where the divergence
starts. The chaotic process can exhibit any behaviour, also a behaviour where
no channel is refused.

It is now easy to express that transition system S ′ implements transition
system S. With the view that non-determinism in S is just a means of
underspecification we get that every observation made of S ′ should also be
a possible observation of S—in other words the observations of S ′ should
be included in the observations of S. If we let [[S]] and [[S ′]] denote the
external semantics of S and S ′ respectively, then the formal statement of S ′

implements S becomes

[[S ′]] ⊆ [[S]]6

6This inclusion property could be weakened slightly to correspond more closely with
our informal explanation. If some refusal set is observed in an execution at the low level,
then it is not necessary to require that the constructed high level simulation defines the
same refusal set as the low level execution; it is sufficient to require that the simulation
defines a larger refusal set since refusing a set also means refusing each of its subsets. This
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With this definition we say that translation t is correct on sequential pro-
cesses if, for each sequential p, transition system St(p) implements transition
system Sp. We call this kind of correctness predicate an external correctness
predicate since it relates the external semantics of the systems.

A simulation technique is said to be sound with respect to the external se-
mantics if its internal correctness predicate entails the external correctness
predicate. It is not directly proven in [IV ] that the chunk by chunk tech-
nique is sound for sequential processes. Instead, as will be described below, a
similar claim is proved with two different external semantics for parallel pro-
cesses, and the claim for sequential processes follow as an easy specialization
of both these results.

4.4 Treatment of parallelism

The major part of [IV ] is concerned with generalizations of the chunk by
chunk technique to deal with parallelism also.

A PL program is a parallel composition PAR[p1, . . . , pN ] of sequential pro-
cesses p1, . . . , pN . To describe the distribution of code on different processors
in AL we introduce the operator par where par(π1, . . . , πN) is interpreted as
the system consisting of N processors where code πi is executed of processor
i (in [IV ] we use ‖ instead of par, but we want to reserve ‖ for an operation
introduced in [V ]). Then the translation of parallel programs in PL simply
is

t(PAR[p1, . . . , pN ]) =‖ (t(p1), . . . , t(pN))

If we try to follow the chunk by chunk technique for parallel constructs also,
then we must break down each execution of par(t(p1), . . . , t(pN)) into smaller
chunks, simulate each chunk at the PL-level, and glue all these subsimulations
together to one simulating execution of PAR[p1, . . . , pN ]. In this approach we
of course want to reuse the chunks and simulations found for each of the
processes pi. But as the following example shows, this may be very difficult
to do directly.

leads to a weaker notion of implementation which is used in the next section.
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Assume that N = 2, that p1 is the process x1 := e1 and p2 the process x2 :=
e2. The translation of each of these processes is eval(ei); stl(xi) for i = 1, 2.
For each of i = 1, 2 this machine code executes in two transitions and these
two transitions are chosen to constitute a chunk when when using the chunk
by chunk technique. But when we execute the two pieces of machine code in
parallel, then the chunks may interleave very inconveniently as demonstrated
in figure 4.3. The chunks for the two processes get entangled in such a way
that we cannot directly use a chunk for t(pi) as a chunk for the entire program;
the chunk is mixed with transitions from other processes.

Figure 4.3: Inconvenient interleaving of two chunks.

The first idea to get around this problem is the idea of simulating principal
transitions instead of chunks [IV ] page 42. A principal transition is a transi-
tion in a chunk which is chosen to represent the entire chunk. In contrast to
the chunks which may be heavily interleaved and thus may be only partially
ordered, the principal transitions will be linearly ordered and it is thus pos-
sible to glue together a linear simulating execution from the subsimulations
found for each principal transition. So whereas it is quite possible that the
chunks are very entangled in the low level execution, in the constructed high
level execution the subsimulation will be nicely separated.

When refraining from breaking down the global low level executions into
chunks, we once again have to relate after each low level transition. The
only thing we want to express, however, is that if some process reaches a
principal transition, then this transition can be simulated from the current
high level configuration. This means that we do not relate the global low
level configuration to a global high level configuration, instead we relate
the projection of the low level configuration onto each of the processes to a
likewise projected high level configuration. For the sequential processes we
have only defined relations at the endpoints of chunks so we need to create
new relations for all the intermediate configurations. This is done by taking
the relation which holds at one endpoint and attaching a counter to it which
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simply counts the number of transitions in process t(pi) till the endpoint of
the chunk. Since it turns out to be convenient to place principal transitions
first in chunks, the counter also indicates the number of transitions to the
next principal transition.

The use of counters also proves helpful when it comes to the demonstration
that the constructed high level simulation is fair when the considered low level
execution is. When parallel processes are introduced an execution is called
fair if no continuously enabled internal transitions are postponed indefinitely.
In parallel systems internal transitions encompass both τ -labelled transitions
and transitions labelled with communications via internal channels in the
system. All non-principal transitions at the low level are τ -labelled so the
fairness condition at the low level ensures that these transitions are eventually
executed when enabled. This means that the counter for each process is
eventually decreased and since counters are natural numbers, each counter
eventually gets the value 0; so the principal transition is enabled eventually.
The fairness requirement then forces the principal transition to be taken if it
is an internal transition and this ensures that a subsimulation can be found
which extends the high level execution under construction. Consequently the
high level fairness constraint gets satisfied.

In [IV ] the sketched simulation technique is proved sound relative to an
external semantics (pages 55 to 58). This external semantics is a direct
generalization of the already described semantics. The meaning of a parallel
program is taken to be a set of observations where an observation consists
of a trace and a refusal set defined as before. The executions which are
considered must satisfy the above mentioned fairness constraint.

The basic structure in the proof of soundness is to construct a simulating
execution as a limit of approximations. The next approximation is obtained
by concatenating the current approximation with the subsimulation found
for the next transition in the considered low level execution.

The paper [IV ] also presents another way around the problem that chunks
may overlap very inconveniently when executions of individual processes are
interleaved. The crucial observation is that it is really the interleaving of the
sequential executions that causes the problem. So instead of sticking with the
traditional view that executions of parallel processes are just interleavings of
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sequential executions we introduce the notion of non-interleaved executions
(page 66 in [IV ]).

The basic observation which leads to non-interleaved executions is that an
execution of a sequential program can be viewed as labelled graph consisting
of a single path where vertices are labelled with configurations and edges
are labelled with transitions. The generalization to N sequential processes
then is a graph consisting of N paths. Because of communications it is not
possible to directly use the traditional concept of a graph; a communica-
tion is conceptually just a single transition, but it has two initial and two
final configurations. We consequently introduce the notion of a multi-graph
where edges are allowed to have more than one origin and more than one
destination.

Figure 4.4: Non-interleaved execution without communications.

With the concept of a non-interleaved execution the execution of

t(PAR[x1 := e1, x2 := e2])

will now be depicted as in figure 4.4. As is seen the two chunks found for
the respective two processes are kept completely separated. If the translated
program were instead, say, PAR[ch!e, ch?x], then the non-interleaved execu-
tion would give rise to a picture like in figure 4.5. Here the process t(ch!e)
first evaluates e; then the two processes communicate; finally process t(ch?x)
stores the communicated value in variable x.

Figure 4.5: Non-interleaved execution with a communication.
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Non-interleaved executions allow a simpler expression of our fairness condi-
tion. Now we can simply say that a non-interleaved execution is fair if it is
inextensible by internal transitions.

With non-interleaved executions it is possible to directly reuse the internal
correctness predicate for sequential processes: The non-interleaved low level
execution can be broken down into the chunks found for sequential processes,
their respective simulations can subsequently be glued together into a simu-
lating non-interleaved high level execution.

Non-interleaved executions could be used as a basis of extracting the already
described external semantics. They do, however, also open up for the defi-
nition of a more general external semantics based on pomsets [52]. In this
kind of external semantics we extract a pomset instead of a trace from the
execution. A pomset is a partially ordered multiset where the elements in the
multiset are labels of transitions and the partial order is the causal depen-
dencies between the labels. A non-interleaved execution identifies two labels
as being ordered if there is a path in the execution from the smaller label to
the larger label.

After the definition of the new kind of external semantics (page 71) the paper
is concerned with the soundness proof for the simulation technique built on
non-interleaved executions. As with interleaved executions the idea is to
construct a simulating execution as the limit of a sequence of approximations.
Now we have to face the problem, however, that the constructed simulation
may have more than one infinite path. So when we glue subsimulations
together we either have to do this in a carefully balanced way such that all
paths approach infinity simultaneously or we have to take more than one
turn, i.e. we have to make transfinite sequences (of length at most ωN where
ωN is the N ’th infinite limit ordinal, see [20] pages 76-77) of approximations
where one path is completed for every limit ordinal. In the paper the second
of these approaches is taken.
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Chapter 5

An algebraic approach to
parallelism

Parallelism is difficult to treat with the chunk-by-chunk technique. In [IV ]
two third of the entire document is devoted to generalizations of the technique
to deal with parallelism.

Also the more traditional simulation technique presented in [III] may cause
trouble when generalized to cope with parallelism. For instance, for an exe-
cution of a parallel system in which k processes diverge we must ensure that
k processes also diverge in the constructed simulation. And this may call for
the definition of a simulation relation indexed by a whole tuple of elements
from well-founded orders, one element for each process in the system.

The difficulties with the simulation techniques have led to the consideration
of using other techniques to deal with parallelism. The key observation in the
search for an alternative technique is that the parallel composition of N pro-
cesses simply compiles into the parallel composition of the corresponding N
instruction sequences. So if a compositional definition of the external seman-
tics of algebraic parallel processes can be found, then standard manipulations
should enable us to establish the correctness of the translation.

The algebraic approach to parallelism has been fully developed in submission
[V ] which is contained in the draft monograph [19]; in the monograph the
approach is also used in proofs of the correctness of a kernel. The monograph
shows that a combined use of simulation techniques and algebraic techniques
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is feasible for a certain class of languages.

5.1 The idea

The definitions of PL and its semantics are slightly different in [IV ] and
[19]. These differences will be treated in detail in the next subsection. For
the moment—to present the central idea in the algebraic approach—it is
sufficient to mention that the flat n-ary parallel composition of [IV ] has
been replaced in [19] with a binary parallel operator which can be nested
to arbitrary depth at the outermost level and that the fact that transition
system S is implemented by transition system S ′ now is expressed in the
external semantics by

[[S]] � [[S ′]]

The crucial observation is that, in both PL and ML, the external semantics
of the parallel composition of two programs only depends on the external
semantics of each of the two programs.

This observation is formalized by defining a binary operator ‖ within the
external semantics and by proving that it reflects the parallel composition of
programs

[[Sp1 PAR p2 ]] = [[Sp1 ]] ‖ [[Sp2 ]] (5.1)

[[Sπ1 par π2 ]] = [[Sπ1 ]] ‖ [[Sπ2 ]] (5.2)

(5.3)

It turns out that the defined operator is monotonic in each of its two argu-
ments. Thus

[[S1]] � [[S ′
1]] and [[S2]] � [[S ′

2]] implies [[S1]] ‖ [[S2]] � [[S ′
1]] ‖ [[S ′

2]] (5.4)

These observations allow us to prove the following theorem by a simple cal-
culation
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Theorem: If [[Sp1 ]] � [[S ′
t(p1)]] and [[Sp2 ]] � [[S ′

t(p2)]] then [[Sp1 PAR p2 ]] � [[S ′
t(p1 PAR p2)]].

Proof

[[Sp1 PAR p2 ]] = [[Sp1 ]] ‖ [[Sp2 ]] (by 1)
� [[St(p1)]] ‖ [[St(p2)]] (by assumptions ad 3)
= [[St(p1) par t(p2)]] (by 2)
= [[St(p1 PAR p2 ]] (by definition of t)

(End of proof)

The theorem says that in order to demonstrate that t correctly compiles par-
allel programs it is sufficient to prove that sequential processes are compiled
correctly.

5.2 Treatment of alternations

The chunk-by-chunk technique is used in both [IV ] and [V ]—in [V ] only to
prove the correctness of t when applied to sequential processes. Neverthe-
less there are some differences between the formal details in the documents.
The most important differences comes from the inclusion of the alternation
construct in PL0 in [19].

An alternation ALT[gc1, . . . , gcn] where each guarded command gci has form
either bi & chi?xi → pi or bi & SKIP → pi, i. e. it consists of a guard and a
process where the guard may be a SKIP-guard. The alternation can execute
and become pi if bi holds true in the current configuration. If the guard in
gci is bi & chi?xi, then another process must be ready to output on channel
chi; if the guard is bi & SKIP, then no synchronization with the environment
is necessary.

The inclusion of the alternation construct forces us to give another definition
of the set of channels refused in an execution. In both [IV ] and [V ] we intu-
itively take an external channel to be refused in an execution if the process
that uses the channel either makes only finitely many steps and disables the
channel in the final state or makes an infinite number of steps among which
only finitely many are communications along the channel. The latter con-
dition says that if the process can continuously choose other actions, then
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communication along the channel need not occur.

The condition that infinite other activity leads to refusal of a channel has
been formalized in [IV ] by the condition that a channel is refused when
communications along the channel only occur a finite number of times and
are infinitely often disabled in the entire execution. This formalization is
possible because communication is blocking in [IV ]: If a process enables
a communication (input or output) in some state, then the process cannot
progress before the communication is married out. So if a process makes an
infinite number of other steps, then the communication must be infinitely
often disabled.

This situation changes when alternations are included in the language. An
alternation with both a SKIP-guard and an ordinary guard containing a com-
munication along a channel can enable the channel and nevertheless choose
the SKIP-guard. This gives problems if an optimizing compiler is used. Con-
sider e. g. the program

WHILE TRUE DO
ALT

TRUE & ch?x → p
TRUE & SKIP → SKIP

An optimizing compiler could recognize that the entry conditions in the loop
and the guarded commands are always true and thus it could skip evaluation
of these conditions. Furthermore it could recognize that the body in the
second guarded command is just the process SKIP so that a jump directly
back to the beginning of the ALT-construct could be generated. But then
we could have an infinite execution where channel ch is enabled in every
configuration of the execution but where the cllannel nevertheless is refused
because the second guarded command is continuously chosen Using the
formalisation from [IV ] page 39 and page 73 of the refusal set we would
incorrectly get that ch is not refused.

To find a formalization which can deal with alternations we need a more direct
way of expressing that a process executes one of its own actions. It should
be possible to identify the action of the process even when its execution is
interleaved with the execution of other cesses.
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The idea is to use labels of transitions to identify processes. A slight change
is necessary to use this idea. Previously we used τ as a common label on
arbitrary internal actions in any process. To distinguish between processes
we need to distinguish between τ -labels of different processes. This is done by
colouring the τ -actions by the relevant process identity in the definition of the
transition relation. Labels of form ch : z need not be coloured because each
ch is a point-to-point connection and thus directly identifies the processes
which participate in the action.

With the colouring of action labels it becomes possible to express that a
channel connected to some process is refused if the process makes a finite
number of communications along the channel and an infinite number of other
actions. We define a channel to be ready if it is enabled and the next action
executed, if any, is an action of another process. A channel then is refused
if it is taken a finite number of times and is not ready an infinite number of
times.

In [19] the colouring of actions has also been used to express fairness among
a set of executing processes. The fairness condition says that each enabled
internal action must eventually be taken if the process(es) participating in
the action perform(s) no other actions. This is formalized by extending
the predicate ready to τ -actions in the obvious way and by requiring that
no internal action be continuously ready from any point in any execution
(choosing the action makes the predicate ready momentarily false).

5.3 Redundant information in the external

semantics

In [IV ] a transition system S ′ is taken to refine transition system S whenever
[[S ′]] ⊆ [[S]] that is each observation of S ′ should also be an observation of
S. In [V ] this condition is weakened slightly; it is sufficient to require that
S refuses at least the channels refused by S ′ for if S refuses some set of
channels, then it also refuses each subset of this set. In [V ] the symbol �
is used for refinement, and to correspond with failure semantics it is used in
the opposite direction of the above set inclusion symbol. So S ′ refines S is
written [[S ′]] � [[S]].

38



The observation that refusal of some set of channels implies refusal of each
of its subsets also has consequences for the definition of external semantics
[[S]] of a transition system S. We want to make the external semantics of
transition systems fully abstract which means that if two transition systems
cannot be distinguished by any experiment, then they should have the same
external semantics. The external semantics of a transition system is just
the set of observations which can be made in executions of the systems. It
is possible to make transition systems enabling two observations which are
equal except that the refusal set of one of the observations is larger than the
refusal set of the other. Then the other observation is redundant; the first
already describes the traces and the refusals of the other. In the definition
of the mapping [[·]] from transition systems to external semantics in [V ] we
explicitly remove such redundant information.

5.4 Limitations and difficulties

The development in [V ] demonstrates that it is possible to verify the cor-
rectness of a translation by using a simulation technique combined with an
algebraic argument for parallelism. Such a combined use of techniques has
limited applicability, however.

The introduction of parallelism nested into other constructs, e.g. the sequen-
tial, presents a problem. We have used simulation to prove that the trans-
lation of sequential processes is correct and we would like to do the same
in a language extended with nested parallelism. But if a sequential process
contains a nested parallel process, then our combined technique only estab-
lishes that the external semantics of the nested parallel process is refined by
the external semantics of its translation; it gives no information about how
high- and low-level configurations could be related and how (sequences of)
low level transitions could be simulated by sequences of high level transitions.
A switch back to operational arguments consequently seems hopeless.

Instead one could try to shift to algebraic arguments like the one we have
given. But this is only feasible if the external semantics of the other con-
structs can also be defined compositionally. To give a compositional defini-
tion elements in the external semantics at least have to be extended with the
input/output behaviour of constructs. Such a compositional definition for a
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language like our PL has been given in a model based on failure semantics
[23], but as discussed earlier there is no notion of fairness in failure semantics
and furthermore chaos and divergence are not distinguished. It seems to be
difficult to make our semantics compositional; some indication of the way to
proceed has been given in [30], however.

One could also try to stick with operational arguments all the way through.
Then parallelism could be dealt with in one of the two ways suggested in
[IV ]. However, also in these approaches the generalized simulation tech-
nique differs from the technique applied to sequential processes. So it has
to be investigated whether the generalized technique can make the basis for
constructing simulations for translations of programs with nested parallel
processes.

In spite of the problems with nested parallelism the combined proof tech-
nique may turn out to be very useful as programs with parallelism only at
the outermost level are very common in practice. They arise whenever a
system is constructed as a network of cooperating machines, for instance as
a network connecting stand-alone computers with each other or a bus con-
necting different peripherals of a computer with each other. Parallelism only
at the outermost level is the rule rather than the exception.
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Chapter 6

Discussion

The work documented in this thesis has been centered around simulation
techniques. The aim has been to improve, invent, and apply simulation
techniques.

6.1 Summary of results

In [I] a simulation technique suggested by Lamport [33, 34, 35] is improved.
A couple of results shows that the size of the required simulation proof can
be reduced drastically. That part of the proofs which can be saved is seen to
amount to unnecessary repetition of invariance proofs. The modified tech-
nique is applied to a number of examples. A larger example is the new proof
in [II] which shows that self-timed four phase logic is insensitive to delays in
gates and wires.

In [III] a technique based on weak bisimulations [42] is used as stepping
stone for proving that a translation is correct. The notion of weak bisimula-
tion is changed as to cope with removal of non-determinism and simulation of
divergence. In the resulting technique a stronger, but only one-way, simula-
tion result must be proved; furthermore, an index on the simulation relation
is added and must be shown to decrease for each step simulated by an empty
sequence of steps. The technique is applied to a translation from a subset
of occam containing various sequential programming constructs to a block

41



structured assembly language. The application is successful but the resulting
proof is rather large.

In [IV ] the simulation technique from [III] is substantially changed and this
results in a much shorter proof. The central idea is to simulate only conve-
niently long sequences of transitions, chunks, instead of single transitions and
to simulate non-empty chunks by non-empty sequences of transitions. The
technique is applied to a translation from a language which extends the one
from [III] with parallelism. Parallel processes, however, cannot be directly
treated with the simplest version of the chunk-by-chunk technique so two
different generalizations are suggested and the corresponding proofs for the
parallel construct are carried out. A new feature in [IV ] is that correctness is
not expressed as the mere existence of a simulation relation with the required
properties. It is expressed instead in an abstract “external” semantics.

In [V ] a more pragmatic approach to parallelism is taken; since parallelism
only occurs at the outermost level in most applications, a hybrid proof tech-
nique can be used: For the parallel composition of sequential processes we
use an algebraic argument where only the external semantics of processes is
considered.

In addition to these improvements, inventions, and applications of simulation
techniques two by-products deserve a comment.

One method to deal with parallelism in the chunk-by-chunk technique is to
avoid inter-leaving of execution sequences. This led to the invention of non-
interleaved executions. Non-interleaved executions seem to be a natural way
of modelling executions of transition systems for true concurrency as those
suggested in the chemical abstract machine [5] and in the grape semantics
[10]. From non-interleaved executions one can also directly derive an external
semantics based on pomsets. Furthermore non-interleaved executions may
prove to be convenient in real-time computation models because the time be-
tween two configurations in such an execution is simply the sum of transition
durations along any path between the configurations.

To give a simple and abstract definition of correct implementation we in-
troduced the concept of external semantics in [IV ] and [V ]. This resembles
failure semantics, but also differs crucially. Our external semantics distin-
guishes between chaos and divergence and takes fairness between a pool of
processes into account. This accords well with intuitive expectations to au-
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tonomous computers working in cooperation. On the other hand external
semantics is not compositionally defined so it cannot be used for giving an
independent and self-contained definition of the semantics of each language
construct; this must instead be done via operational semantics.

6.2 The landscape of verification

The simulation techniques presented in this thesis only add a small piece to
the puzzle of proving implementations correct. A great variety of other tech-
niques exist already. These techniques are not directly comparable, however.
They use different formal frameworks and the aims in the techniques are not
completely the same.

One source of variety is the use of different models of computation. E. g.
communication between processes (if the computation model contains par-
allelism at all) can be modelled by asynchronous communication through
shared variables [8, 12, I] and queues [28, 33] or by synchronous communi-
cation through channels [26] and label matching [42].

Another source of variety is the different styles of defining the semantics of
systems. There are denotational semantics [6, 55, 61], operational semantics
[33, 42, 49], axiomatic semantics [24], Petri net semantics [53], and so on.
And there may even be variety between the semantics within a single style.
Thus, the denotational semantics for input/output programs [55, 61] and for
reactive systems [6] differ significantly.

Likewise the notions of refinement or correct implementation may depend on
the intended usage of programs. Thus focus on branching aspects [50] gives
another notion of refinement [41] than does the one used when linear time
[50] is considered [IV , V ] . And also considering internal divergence to be
harmful [6] gives another refinement notion than ours [IV , V ].

Finally the aims can be different in the different techniques. One can strive
for complete proof techniques as in [31] or one can strive for techniques which
seem easy to use as in [33, 38, 59, I, V ]. One can also try to make the proofs
compositional as in [28, V ].

The systems studied in this thesis are assumed to be parallel, reactive sys-
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tems. The semantics of the systems are given operationally by means of
transition systems. Communication is through shared variables in [I, II] and
through channels in [III, IV , V ]. Only the linear-time aspects of the systems
are taken to be important and divergence is considered harmless. Refinement
is basically defined by a containment between sets of behaviours—in [I] with
the additional requirement that low level be behaviours must be interpreted.
The focus is on obtaining techniques which can be applied in practice.

6.3 Related work

Simulation techniques for proving safety

The simulation technique used in [I] was proposed by Lamport in [33, 34, 35].
Similar techniques have been used by many others [22, 28, 31, 38, 59].

These techniques mainly differ in the way high and low level states are related.
Lamport’s and our work use ordinary mappings from low level states to high
level states. In [22, 28, 59] the more general notion of a relation between
high and low level states is used; the equivalent notion of a multi-valued
(possibilities) mapping is introduced in [38]. Klarlund [31] uses the even
more general idea of a mapping into sets of sets of states (ND-measures).

The use of more complex ways of relating high and low level states make
the techniques applicable to a wider range of examples. Stark [59] gives an
example on which ordinary mappings do not work, but where relations do.
Klarlund [31] gives another example to the same effect and also gives an
example where even relations are not enough. On the other hand Klarlund
shows that mappings into sets of sets of states are sufficient to prove that
a transition system with bounded non-determinism is implemented by a so-
called complete transition system.

In [1] Abadi and Lamport present a sort of anti-dote to the apparent defi-
ciency of using their ordinary maps. Under similar restrictions as Klarlund’s
they prove that it is possible to transform the low level transition system in
such a way that its semantics is preserved and such that an ordinary map-
ping can be used in the implementation proof. This way their method also
becomes complete.
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In contrast to all the mentioned work our method [I] h as been developed for
verification of closed systems. As discussed in section 2 this gives full control
over the high level interpretation of low level states and thus the method can
be used to prove any safety property of the low level transition system if only
the high level system contains unreachable states.

Our method could easily be formulated for open systems also. Since the
proof obligation in our method encompass the obligations in [1] as a special
case, the result in [1] immediately yields a traditional completeness result for
our technique when applied to verification of open systems.

The main focus in [I] is on another aspect of the applicability issue than
completeness. We analyse the total amount of work needed when using sim-
ulation techniques to verify properties of low level transition systems. In
many cases it turns out that the existing techniques, despite their complete-
ness, forces proofs of high level properties to be repeated in the simulation
proofs The main contribution of [I] is a couple of sharpened proof obli-
gations which discard such double proof obligations. It should not be too
hard to incorporate these sharpened obligations into the esisting simulation
techniques.

Delay insensitive circuits

In [II] the voltage changes around gates in a circuit are presented by rules of
form c → x̄ := ē where c is a conditional expression and x̄ := ē is a multiple
assignment of the values in the sequence of expressions ē to the sequence of
variables x̄. This notation is heavily inspired by the Synchronized Transitions
notation suggested in [60] and it also resembles UNITY [8].

In the eighties the main part of the formal work on delay insensitive circuits
has been carried out in Eindhoven University of Technology [14, 29, 56, 57,
63]. In this work a quite different formal model is used, the model of directed
trace structures. Gates are modelled by sets of directed traces, where each
symbol in a trace corresponds to a transition from low to high or from high
to low voltage on a wire. The resulting formalization of delay insensitivity
seems to be less direct than the one found in [8, II, 60]. The main focus in
this work has been either on characterising delay insensitive circuits [57, 63]
or on ensuring delay insensitivity by selecting proper composition principles
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[14, 56]. In contrast our work is based on the idea of describing a system at
different levels of abstraction. Finally it should be mentioned that Udding
[63] has a classification of delay insensitive circuits in which the circuits
considered in [II] belong to the data communication class.

Recently a new formal approach to delay insensitivity has been undertaken
at the Technical University of Denmark [21]. The so-called duration calculus
is used to give a direct account of delays in wires. In this calculus a circuit
C with m gates and wires may be described by a formula [[C(δ1, . . . , δm)]]
where each δi is the delay of gate or wire i. The circuit is said to be de-
lay insensitive with respect to some circuit specification—a formula free of
delays—if [[C(δ1, . . . , δm)]] logically implies the specification for any choice of
δ1, . . . , δm. This formalisation of delay insensitivity seems to be even more
direct than ours. Furthermore the duration calculus allows one to express
additional assumptions on the relative size of delays, and this has not been
possible previously.

Correctness of translations

Quite a bit of work has been carried out on correctness of translations of
sequential programs with focus on their input/output behaviour (e. g. [11,
13, 40, 43, 46, 62]). The sequential programming constructs treated in these
techniques are often far more complex than those sequential constructs which
have (yet) been treated in techniques for parallel languages; e.g. higher order
functions and composite data-structures are considered. Having said this it
seems that the success of most techniques for sequential languages hinges on
the (relative) simplicity of the semantics of the considered programs—be it
denotational or operational. Furthermore the determinism of the languages
seems to make the correctness criterion self-evident for languages with onely
simple constructs: The source and target programs should compute the same
function (an exception to this is [11] where the possibility of non-determinism
gives rise to two proof obligations establishing a set-containment either way
between the results of executing the program and the results of executing its
translation). It is doubtful whether the techniques generalize to concurrent,
non-deterministic, and reactive systems as those considered in this thesis—at
any rate such a generalization has not yet been claimed to be feasible.
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It should be noted, however, that the structure of some of these proofs may
also be useful for more powerful languages—in particular the algebraic ap-
proach in [13, 43, 44, 62]. Here the source language is treated as an initial
(many-sorted) algebra with one operator for each construct in the language.
Correctness is ensured by initiality: Two homomorphisms from the initial
algebra to any other algebra over the same signature must be identical. The
work then consists in making the meanings of the target language into an
algebra (which is done by composing the translation with the map from the
target language to the target semantical domain) and in proving that the
map from the source semantical domain to the target semantical domain is
a homomorphism (the source semantical domain is treated as the algebra in-
duced by the map from the source language). This algebraic set-up is clearly
independent of the particular constructs in the language. It could, thus,
also serve as a basis for a proof of correctness for a language with reactive,
parallel, and non-deterministic programs.

The investigation of translation correctness for parallel languages has been
more sporadic [3, 4, 37, 39]. But several notions of refinement have been
developed for parallel languages. In addition to those notions already men-
tioned when discussing inheritance of safety properties, we would like to
mention the notions encountered in the treatments of CCS [42] and (T)CSP
[25]. Some of these notions form the basis for defining correctness of trans-
lations in [3, 4, 39]. A minor difference from these applications should be
noted, however, namely that the CCS and CSP notions all express refinement
between processes in a single language whereas the definitions of translation
correctness have to employ a notion of correctness between processes in two
different languages.

CSP has been given various gradually more discriminating semantics [6, 7, 25,
54]. All these semantics assign to a CSP process a set of observations where
an observation consists of a set of traces and various other sets according
to the strength of the semantics. Refinement is defined by set inclusion(s).
The intuition is that p refines q when p is more deterministic than q; removal
of non-determinism makes the sets of possible observations smaller. This is
much in correspondence with our definitions of correctness. The treatments
of internal divergence and fairness are quite different, however. These differ-
ences will be discussed in the subsequent description of Barrett’s thesis [4]
as Barrett takes his notion of correctness from the infinite traces model [54].
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Various preorders on the set of CCS terms have been suggested as a means
of expressing refinement. The main suggestions lie within the testing frame-
work [45] or the bisimulation framework [64]. In his thesis Millington [39]
uses both testing and bisimulation ideas. But whereas he directly uses the
testing preorders from [45] (see below), he only focuses on equivalence in his
bisimulation approach to correctness translations.

To our knowledge none of the preorders from [64] have been used for verifying
translations. Basically, the idea in all these preorders is that p � q holds
whenever p and q are weakly bisimilar and q is less divergent than p. More
specifically, q must be able to simulate each communication of p; and if q
is convergent, then so is p and in this case p must be able to simulate each
communication of q; as with ordinary bisimulations the resulting p and q
derivatives must be related by the preorders.

It should be noted that the use of the term “divergence” in [64] is quite
different from our use. In [64] a process is divergent if it can engage in an
infinite sequence of τ transitions or if it is, or can silently evolve into, and
underdefined process. The usage of underdefined processes plays a crucial
role in the use of these preorders (see e.g. [64] and [9]). They give the
designer the freedom of leaving parts of programs unimplemented when it
can be seen from the context that these program parts are unreachable.
But such processes are not included in traditional programming languages
and this may indicate the reason for the apparent absence of approaches to
compiling correctness based on the preorders from [64].

Another bisimulation concept needs to be mentioned. This is the 2
3
-bisimulation

employed by Larsen and Skou in [36]. Larsen and Skou focus on the symmet-
ric notion of 2

3
-bisimilarity, but to formalize that two processes p and q are

2
3
-bisimilar they require that both (p, q) and (q, p) belong to an asymmetric

relation. For two processes p and q to be in this relation q must be able to
simulate each p transition such that the resulting derivatives are related and
p must be able to simulate each q transition but in this case the derivatives
need not be related. This relation is very much like the relation that we have
put forward in [III] except that we use weak 2

3
-bisimulations and that we

have added an extra condition concerning an index on the relations.

We next give a more detailed account for the two PhD. theses by Millington
[39] and Barrett [4] which are most relevant to our work on correct nes of
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translations.

Millington’s thesis

Millington considers two translations from (a subset of) CSP to CCS. He
presents two definitions of correctness and for each definition he conducts the
corresponding correctness proof. The first definition is built on bisimulation
ideas [42] and the second exploits the notion of testing [45].

The first approach in [39] improves upon previous work by Wei Li [37] and
Astesiano and Zucca [3].

Li considers a translation from CSP to CCS. In his definition of correctness
he focuses on aspects of termination. In order for a translation to be correct
he requires that an execution of a translated program should be divergent
just in case an execution of the source program is, and in case of convergent
execution both should either end in a deadlocked or a terminal configura-
tion; furthermore the final configurations must correspond: The final source
configuration should “translate” into the final target configuration.

Astesiano and Zucca also consider a translation from CSP to CCS, but in ad-
dition to termination they also take communication behaviour into account.
This is done essentially by requiring that each pair consisting of a source
process and its translation should belong to some bisimulation. To express
correspondence between final configurations of source and target executions
they introduce auxiliary processes which communicate the process states just
before termination.

Millington also takes communication behaviour into account by requiring
that source processes and their translations should belong to a bisimula-
tion. But he has a more clean approach for ensuring that final configurations
correspond: For any relation P between source and target configurations he
introduces the notion of a P -bisimulation; this is a bisimulation which is con-
tained in P . By choosing a sufficiently narrow P he can express the desired
correspondence.

Millington goes on to prove correctness: There exists a P -bisimulation to
which each pair of configurations corresponding to source and target pro-
grams belongs. As in our [III] Millington builds up the desired P -bisimulation
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compositionally; for each process p he defines a relation R(p); and if p has
subconstructs, say, p1 and p2, then R(p) is defined by some operation upon
the relations R(p1) and R(p2). The desired relation is then the union of all
these relations. This approach is slightly less general than the use of infer-
ence systems in [III]. In particular we demonstrate in [III] the elegance of
using an inference rule for iteratively building up the relation for the WHILE-
construct. To deal with a similar problem Millington has to introduce a
special operator ITER which when applied to a process term generates an
infinite set of process terms. The proof that each R(p) is a P -bisimulation
is, of course, conducted by induction on the structure of p.

There are two major differences between the P -bisimulation approach of
Millington and our approach in [III].

First non-determinism is treated differently. In our approach non-determi-
nism can be used as a means of underspecification which is not the case in
Millington’s approach. Consequently we have to give up the idea of estab-
lishing a symmetric simulation relation between source and target code. We
can only hope for simulating each low level step by some (sequence of) high
level step(s).

Next our correctness notion is stronger in that it ensures that silent diver-
gence is simulated by silent divergence. As previously mentioned Li’s and
Millington’s approaches ensure that if execution of the source code is diver-
gent, then so is execution of the target code, and vice versa. But divergence
here means engaging in an infinite sequence of communications. Thus silent
(or internal) divergence is not treated as divergence, it is instead equated
with the terminated process Nil. Millington does point out, however, that
P -bisimulations could also be used to deal with divergence if the relation P
is chosen such that related pairs are either both convergent or both have the
possibility of internally diverging.

Millington also presents another, very interesting, approach to translation
correctness build on the notion of testing [45]. The basic idea in testing is that
the observable behaviour of a process p can be characterized by the possible
outcomes of experiments test par p where test is a tester communicating with
the process; the process may pass or fail a test (indicated by the experiments
having outcome � or ⊥) or it may be capable of doing both.

Millington notes that if the tester is expressed as a process in the source
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language, then the translation can also be applied to the tester. As a con-
sequence it becomes possible to speak meaningfully about correctness of a
translation even if communication interfaces are refined during the transla-
tion: Instead of requiring that source and target code have same communi-
cation capabilities it is possible to require just that they behave the same
when exposed to corresponding tests.

To demonstrate the applicability of this idea Millington considers a trans-
lation from a small subset of CSP (with only unguarded communication,
assignments, and one-level parallelism) to a slightly different language where
communication is based on shared variables instead of handshaking. He ar-
gues that the correctness of this translation cannot be expressed by means
of bisimulations—both because of the interface refinement and because the
amount of non-determinism may be different in the source and target code.
Instead he expresses the correctness by the requirement that for each exper-
iment test par p it is the case that t(test par p) “completely-implements”
test par p. That experiment f completely-implements experiment e means
that f and e have the same set of possible outcomes.

The main idea in the proof of correctness is for each execution of f(test par
p) to construct an execution of test par p having the same outcome. Milling-
ton reduces this obligation to the obligation of proving four conditions. The
most important condition says that if the low level experiment f(test par p)
can evolve in a number of steps into a configuration of a special kind, then
this configuration can also be obtained by first taking a number of steps from
the high level experiment, then translating the result, and finally taking a
few number of low level steps. The condition is proved by induction on the
length of low level executions: First the notion of a “consistent” low level
configuration is introduced; consistent low level configurations can be seen as
natural images of high level configurations, so it is possible to define an in-
verse translation on these configurations. Then it is demonstrated that each
low level step preserves consistency and that each low level step between
consistent configurations can be simulated by some number of steps between
their inverse images. It is worth noting that the last demonstration resem-
bles the demonstrations required in [I]. It even suggests that Millington’s
proof could be simplified: The preservation of consistency could instead be
obtained as an inherited property.

Much work has yet to be done to improve the testing approach. Most im-
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portantly the source language has to be extended. In particular it should be
considered how iterative or recursive constructs would be treated; in Milling-
ton’s proof it is essential that there are no infinite executions. To deal with
infinite executions Millington puts forward a fifth condition. He only suggests
how it would be proved, however. Interestingly his suggestion employs the
same idea as in [IV , V ]—namely that sufficiently long low level executions
can be matched with non-empty high level executions.

Barrett’s thesis

In [4] Barrett presents “a rigorous, although not formal, proof of imple-
mentation of occam”. Barrett concentrates on the treatment of parallelism,
communications and priority. So his subset of occam is almost orthogonal
to the subset PL0 in [IV ] which includes variables, declarations, expressions,
and traditional sequential language constructs. As a result his “implemen-
tation of occam” contains more characteristics of a kernel development than
of a translation; the development steps are concerned with the introduction
of certain run-time data structures for representing running, waiting, and
terminated processes etc. Nevertheless he employs a proof method which is
very close to the method we use in [III]. And some of the other ideas he
presents resemble ideas used in [IV ] and [V ].

Barrett’s implementation of his occam-subset proceeds in three stages. In
the first stage (the scheduler) a data structure for representing the paral-
lel and sequential composition of processes is introduced. In the next (the
synchronizer) the implementation of alternations by sequences of transputer
instructions is introduced. Finally the third stage (the transputer) introduces
explicit instructions for process creation and process destruction.

As in [IV , V ] the overall goal for Barrett is to establish that the “external”
semantics of the implementation is a refinement of the “external” seman-
tics of the source program. As external semantics Barrett uses the infinite
traces model of Roscoe [54]. The main difference between the infinite traces
model and our external semantics is the treatment of internal divergence and
fairness. In the infinite traces model internal divergence is considered to be
disastrous and an internally divergent process nested in most larger process
makes the larger processes divergent too. In our external semantics we have a
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notion of fairness which ensures that a divergent process in parallel with some
other process does not destroy the other process’ behaviour. Consequently
we have a less pessimistic view at internal divergence.

Also as in [IV , V ] Barrett ensures “external” refinement by finding imple-
mentation conditions based on simulation techniques and by proving that
these implementation conditions imply “external” refinement. Of course, to
do this he has to give each stage an operational semantics and this is done by
structural operational semantics. At the later stages this semantics contains
mostly axioms because the occam structure of process terms is represented
in specific data structures.

Barrett employs different simulation techniques for each of the three imple-
mentation stages. The aim is to give an accurate description of how the next
stage implements the former. So each implementation condition is strictly
stronger than what is needed to a ensure refinement.

The implementation condition for the first stage is very strong. It essentially
expresses that the source occam program and its implementation are strongly
bisimilar in the sense of Milner [42]. Such a strong implementation condition
is possible because the stage merely changes one, syntactic, representation of
composite processes into another based on explicit data structures.

The implementation condition for the next two stages are quite similar. They
both require the existence of a simulation relation with properties almost
identical to those put forward in [III]. As in our approach Barrett uses
a natural number as index to the simulation relations (the index is called
a variant in [4]). The reason for these indites are a bit different, however.
In our approach they are required to ensure that low level divergence is
simulated by high level divergence; the underlying problem is that there
need not be a one-one correspondence between high and low level transitions.
In [4] there is a one-one correspondence between the high level transitions
and a subset of the low level transitions; but instead completely new, book-
keeping, transitions are introduced. The aim then is to ensure that no infinite
sequence of these new transitions can ever occur. In the requirements to the
simulation relations Barrett explicitly distinguishes between new and old
transitions which is not possible for our translation. in [III].

To define simulation relations satisfying the implementation conditions Bar-
rett introduces a number of quite complicated maps between sets of config-
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urations at the different stages. Then, essentially, each relation consists of
all pairs 〈c, c̄〉 where ·̄ is one of the maps. As in Millington’s work Barrett
conducts the proof that the implementation conditions hold by induction on
the structure of c. Barrett has a recursive construct, but—in contrast to
the WHILE-construct in [III]—the operational semantics he gives to this con-
struct does not call for our more general technique of defining the simulation
relation by a deduction system and proving the implementation condition by
induction on the structure of deductions.

Another similarity between the approaches in [4] and [V ] should be pointed
out. Although the infinite traces model does not take fairness into account,
Barrett does work with a notion of fairness in his description of the oper-
ational semantics of occam. To express that transitions from different pro-
cesses in a parallel construct should be fairly interleaved Barrett needs to
distinguish between labels of different processes. To do this he introduces
a tree address as subscript to transition labels—exactly as it is done in [V ]
(in [V ] we only have to subscript τ labels, however, because communication
labels uniquely identify the participating processes in our approach).

Apparently Barrett only uses the restriction to fair processes at the top-level
of his development, the chosen subset of occam. For this level he gives a proof
of congruence between the infinite traces semantics and the operational se-
mantics: He defines a mapping Φ from occam constructs to elements in the
infinite traces model by deriving the needed observations from fair executions
of the constructs, and then he proves that M(c) � Φ(c) holds for each con-
struct where M(c) is the (compositionally defined) infinite traces semantics
and � denotes refinement in the infinite traces semantics.

At the levels below Barrett hints at how similar maps Φi can be defined and
he sketches the proof that if (c1, c2) is contained in one of his simulation
relations, then Φi(c1) � Φ2(c2). It is not clear, however, which role fairness
plays at these levels, if any; Barrett does not mention it. And our experience
in [IV , V ] is that it is not trivial to establish that a constructed high level
simulation is fair when the simulated low level execution is.

(A more detailed account of Barrett’s work is given in [III].)
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6.4 Future investigations

It is difficult to support a claim that some technique is easy or natural to
use. To support such a claim one has to apply the technique to a substantial
number of examples. Although the techniques in this thesis have already
been successfully applied to many examples, there are still many interesting
left.

The technique in [I] could be applied to the problem in [III, IV , V ] and
vice versa. Here one should note, however, that the technique in [I] has been
specifically designed to allow inheritance of properties, whereas the tech-
niques in [III, IV , V ] have been designed to verify compiling specifications.

The languages in [III, IV , V ] could be extended with additional constructs.
The experience from [IV , V ] seems to indicate that the chunk-by-chunk
technique will also be successful for other traditional sequential program-
ming constructs. As explained in the previous section the inclusion of nested
parallelism will be very difficult to treat with the hybrid technique in [V ]; it
remains to be seen whether the generalizations of the chunk-by-chunk tech-
nique suggested in [IV ] can form the basis of a proof for nested parallelism.

Figure 6.1: Two concurrent timed actions

Inclusion of constructs for real time presents a challenge to any verification
method. Already the task of finding an adequate semantic model of real
time presents a problem. To this end the concept of non-interleaved exe-
cutions may prove useful. When using ordinary interleaved executions it is
tempting to assume that actions are instantaneous. But consider e. g. the
two concurrent actions a and b in figure 6.1. In an interleaving either a or
b must come first. If a comes first, then the completion of a precedes the
entire action b and this is clearly not the case if the actions have the duration
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indicated in figure 6.1. If b comes first, then the beginning of a will succeed
the entire action b, again in contrast to the real case. With non-interleaved
executions there is no need for forcing a and b to occur in some order so the
problem vanishes. This shows that non-interleaved executions may be useful
in modelling actions which have duration.

One issue which has been carefully avoided in [V ] is interface refinement.
In [V ] the ALT-construct is translated into an instruction sequence where a
single machine instruction, alt, can perform each of the initial communi-
cations of the high level construct. In the real transputer the ALT-construct
is implemented through the use of the instructions enbc, disc, and altwt

each of which are capable of performing communications. So a single com-
munication in occam is carried out through a sequence of communications
on the transputer. Even worse, it seems that a shift in computational model
is necessary to give a faithful description of the transputer; its functioning is
most easily described by a shared variable model as in [27].

When interfaces are refined it becomes necessary to supply an interpretation
of low level communications or variable assignments. These actions must
be grouped and defined to correspond to distinct high-level communications.
The paper [I] hints at how to use abstraction functions for this purpose,
even though the computational model in [I] is a shared variable model for
both the high and the low level. As pointed out in the discussion of [I] the
use of interpretations makes “correct implementation” a relative concept:
Each interpretation gives a particular definition of correctness. Whether
the interpretation has to satisfy some restrictions to be sensible is an open
question. One candidate for a necessary restriction could be that no high
level communication corresponds to an infinite number of low level actions.
Another restriction can be derived from the testng approach as suggested by
Millington [39]: Experiments and their translation should have the same set
of possible outcomes.
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