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Abstract

Formal semantics is a topic of major importance in the study of pro-
gramming languages. Its applications include documenting language design,
establishing standards for implementations, reasoning about programs, and
generating compilers.

These notes introduce action semantics, a recently-developed framework
for formal semantics. The primary aim of action semantics is to allow useful
semantic descriptions of realistic programming languages.
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1 Introduction

Denotational Semantics [10] is a popular tool in theoretical studies of programming
languages. The main reasons for its popularity seem to be that (i) the abstract
mathematical nature of the higher-order functions used as denotations facilitates
proving facts about them, and (ii) λ-notation allows a very concise and direct spec-
ification of such denotations. Unfortunately, it also seems that these same features
have pragmatic consequences that make Denotational Semantics quite unsuitable
for defining the semantics of realistic programming languages.

Action Semantics [6, 13, 7, 11] is essentially just Denotational Semantics, but
denotations are taken to be so-called actions , rather than higher-order functions.
Actions are abstract entities that have a more computational essence than func-
tions: actions, when performed, process information gradually . Actions provide
straightforward representations for the denotations of a wide range of programming
constructs—including nondeterminism and concurrency, whose treatment in Deno-
tational Semantics can be problematic.

The standard notation for actions, called Action Notation, is quite different from
λ-notation. It enjoys simple algebraic laws, and has a clear operational interpreta-
tion. Its use ensures that action semantic descriptions have good modifiability , and
that they scale up smoothly from small, illustrative examples to full, realistic pro-
gramming languages. Moreover, the suggestiveness of the symbols used in Action
Notation provides good readability .



Action Notation can be regarded as a basic intermediate language, specially
designed for use in semantic descriptions. Then an action semantic description
determines a translation from a programming language into Action Notation. The
operational semantics of Action Notation induces an operational semantics for the
described programming language, and the laws of Action Notation allow reasoning
about semantic equivalence of programs, or parts of programs. The λ-notation used
in Denotational Semantics, in comparison with Action Notation, should be regarded
more as an abstract ‘machine code’ than as an intermediate language, although its
mathematical theory compensates to some extent for its low level.

In this introduction to Action Semantics we start with a brief (and somewhat
dry) presentation of a meta-notation for use in semantic descriptions. The meta-
notation is based on Unified Algebras [8], which is a rather unconventional framework
for algebraic specifications. We illustrate the use the meta-notation initially by spec-
ifying some standard abstract data types; then we see how to use it for presenting
semantic descriptions. After that we introduce the main constructs of Action Nota-
tion. Finally, we illustrate the action semantic description of various programming
constructs.

Please refer to [11] for a comprehensive presentation of Action Semantics, in-
cluding the action semantic description of a substantial sublanguage of Ada.

Pedagogical Remark: These notes are intended to support a series of five 45-
minute lectures, organized as follows:

1. Introduction.
Meta-Notation.
Data Notation (truth-values, numbers).

2. Data Notation (tuples, lists, trees).
Semantic Descriptions.

3. Action Notation (basic, functional).
Action Semantic Descriptions (expressions).

4. Action Notation (declarative, abstractions, imperative).
Action Semantic Descriptions (declarations, statements).

5. Action Notation (foundations, extensions).
Action Semantic Descriptions (procedures), if time available.
Conclusion.

Notice that the presentation of Action Notation is best interleaved with illustrations
of its use in lectures, although for ease of reference, its explanation in these notes is
kept separate. By the way, if you would like to get an impression of the appearance
of action semantic descriptions before we start on the preliminaries, you should look
at Section 6.1 and some of Section 6.3.

2 Meta-Notation

Meta-notation is for specifying formal notation: what symbols are used, how they
may be put together, and their intended interpretation.



Our meta-notation here supports a unified treatment of sorts and individuals:
an individual is treated as a special case of a sort. Thus operations can be applied to
sorts as well as individuals. A vacuous sort represents the lack of an individual, i.e.,
the ‘undefined’ result of a partial operation. Sorts may be related by inclusion, and
sort equality is just mutual inclusion. But a sort is not determined just by the set of
individuals that it includes, i.e., its ‘extension’: it also has an ‘intension’, stemming
from the way it is expressed. For example, the sort of those natural numbers that
are in the range of the successor operation has a different intension from the sort of
those that have a well-defined reciprocal, even though their sets of individuals are
the same.

The meta-notation provides Horn clauses and constraints—explained below—
for specifying the intended interpretation of symbols. Specifications may be divided
into mutually-dependent and nested modules, which may be presented incremen-
tally. Our meta-notation has been designed especially for unobtrusive use in action
semantic descriptions. Its merits relative to conventional specification languages
such as Obj3 are discussed in [9].

The vocabulary of the meta-notation consists of (constant and operation) sym-
bols, variables, titles, and special marks. Symbols are of two forms: quoted or
unquoted. Quoted symbols always stand for constants (characters or strings). In
unquoted symbols the character indicates argument positions. Unquoted symbols
are written here in this sans-serif font. An operation symbol is classified as an infix
when it both starts and ends with a , and as a prefix or postfix when it only ends,
respectively starts, with a . There are three built-in symbols: nothing, , and
& . Variables are sequences of letters, here written in this italic font , optionally

followed by primes ′ and/or a numerical subscript. Titles are sequences of words,
here Capitalized and written in This Bold Font.

A pair of grouping parentheses ( ) may be replaced by a vertical rule to the left of
the grouped material. Horizontal rules separate formal specification from informal
comments. Reference numbers for parts of specifications have no formal significance.

A sentence is essentially a Horn clause involving formulae that assert equality,
sort inclusion, or individual inclusion between the values of terms. The variables
occurring in the terms range over all values, not only over individuals.

Terms consist of constant symbols, variables, and applications of operation sym-
bols to subterms. We use mixfix notation, writing the application of a operation sym-
bol S0 . . . Sn to terms T1, . . . , Tn as S0T1 . . . TnSn. Infixes have weaker precedence
than prefixes, which themselves have weaker precedence than postfixes. Grouping
parentheses ( ) may be inserted for further disambiguation. Parentheses may also
be omitted when alternative ways of reinserting them lead to the same interpre-
tation. E.g., the operation is associative, so we may write x y z without
disambiguating the grouping.

The value of the constant nothing is a vacuous sort, included in all other sorts.
All operations map sorts to sorts, preserving sort inclusion. is sort union and
& is sort intersection; they are the join and meet of the sort lattice.

There are three kinds of basic formula: ‘T1 = T2’ asserts that the values of the
terms T1 and T2 are the same (individuals or sorts). ‘T1 ≤ T2’ asserts that the
value of the term T1 is a subsort of that of the term T2. Sort inclusion is a partial
order. ‘T1 : T2’ asserts that the value of the term T1 is an individual included in
the (sort) value of the term T2. Thus ‘T : T ’ merely asserts that the value of T is



an individual.
‘F1 ; . . . ; Fn’ is the conjunction of the formulae F1, . . . , Fn. A (generalized Horn)

clause ‘F1; . . . ; Fm ⇒ C1; . . . ; Cn’ asserts that whenever all the antecedent formulae
Fi hold, so do all the consequent clauses (or formulae) Cj. Note that clauses cannot
be nested to the left of ⇒ .

We may restrict the interpretation of a variable V to individuals of some sort T
in a clause C by specifying ‘V :T ⇒ C ’. Alternatively we may simply replace some
occurrence of V as an argument in C by ‘V :T ’. We restrict V to subsorts of T by
writing ‘V≤T ’ instead of ‘V :T ’.

The mark ✷ (read as ‘filled in later’) in a term abbreviates the other side of the
enclosing equation. Thus T2 = T1 ✷ specifies the same as T2 = T1 T2 (which is
equivalent to T2 ≥ T1). The mark disjoint following an equation T = T1 . . . Tn

abbreviates the equations Ti &Tj = nothing, for 1 ≤ i < j ≤ n. Similarly, the mark
individual abbreviates formulae asserting that the Ti are disjoint individuals.

A functionality clause ‘S :: T1, . . . , Tn → T ’ is an abbreviation1 which specifies
that the value of any application of S is included in T whenever the values of the
argument terms are included in the Ti. Note that it does not indicate whether the
value might be an individual, a proper sort, or a vacuous sort.

Such a functionality may be augmented by the following attributes (defined rig-
orously in [11, Appendix D]): strict : the value is nothing when any argument is
nothing; linear : the value on a union of two sorts is the union of the values on each
sort separately, and similarly for intersections; total : the value is an individual when
all arguments are individuals—moreover, S is strict and linear ; partial : as for total ,
except that the value is either an individual or a vacuous sort when the arguments
are individuals.

When S is binary, we may use the following attributes, following Obj3: asso-
ciative, commutative, idempotent , and unit is T ′. These attributes have a similar
meaning when S is unary and the argument sort is a tuple sort, such as T+ or (T1,
T2). (See Section 3 for the notation for tuples, which is not regarded as a part of
the meta-notation itself.)

In all cases, the attributes only apply when all arguments are included in the
sorts specified in the functionality. For instance, consider:

product ::
(number, number) → number (total , associative, commutative, unit is 1) ,
(matrix, matrix) → matrix (partial , associative)

which also illustrates how two or more functionalities for the same symbol can be
specified together.

It is straightforward to translate ordinary many-sorted algebraic specifications
into our meta-notation, using functionalities and attributes; similarly for order-
sorted specifications [2] written in Obj3 [4]. Sorted signatures translate to unsorted
signatures together with axioms; sorted axioms translate to conditional unsorted
axioms.

Let us now proceed to compound specifications. A modular specification S is of
the form ‘B M1 . . .Mn’, where B is a basic specification, and the Mi are modules.

1Not much of an abbreviation: it expands to ‘S (T1, . . . , Tn) ≤ T ’. The monotonicity of all
operations ensures the intended interpretation.



Either B or the Mi may be absent. B is inherited by all the Mi. Each symbol
in a specification stands for the same value or operation throughout—except for
symbols introduced ‘privately’. All the symbols (but not the variables) used in a
module have to be explicitly introduced: either in the module itself, or in an outer
basic specification, or in a referenced module.

A basic specification B may introduce symbols, assert sentences, and impose
constraints on subspecifications. The meta-notation for basic specifications is as
follows.

‘introduces: S1, . . . , Sn .’ introduces the indicated symbols, which stand for
constants and/or operations. Also the lesser-used ‘privately introduces: S1, . . . ,
Sn .’ introduces the indicated symbols, but here the enclosing module translates
them to ‘new’ symbols, so that they cannot clash with symbols specified in other
modules.

‘S .’ asserts that the sentence S holds for any assignment of values to the
variables that occur in it. ‘B1 . . . Bn’ is the union of the basic specifications B1, . . . ,
Bn.

‘includes: R1, . . . , Rn .’ specifies the same as all the modules indicated by
the references Ri. ‘needs: R1, . . . , Rn .’ is similar to ‘includes: R1, . . . , Rn .’,
except that it is not transitive: symbols introduced in the modules referenced by
the Ri are not regarded as being automatically available for use in modules that
reference the enclosing module. ‘grammar: S ’ augments the basic specification S
with standard specifications of strings and trees from Data Notation, and with the
explicit introduction of each constant symbol that occurs as a nonterminal, i.e., as
the left-hand-side of an equation in S .

‘closed .’ specifies the constraint that the enclosing module is to have a ‘stan-
dard’ (i.e., initial) interpretation. This means that it must be possible, using the
specified symbols, to express every individual that is included in some expressible
sort (‘no junk’), and moreover that terms have equal/included/individual values
only when that logically follows from the specified axioms (‘no confusion’). ‘closed
except R1, . . . , Rn .’ specifies a similar constraint, but leaves the submodules
referenced by the Ri open, so that they may be specialized in extensions of the spec-
ification. ‘open .’ merely indicates that the module containing it has intentionally
not been closed.

A module M is of the form ‘T S ’, where T is a title (or a series of titles separated
by /) that identifies the specification S . Modules may be specified incrementally,
in any order. To show that a module is continuing an earlier specification with the
same identification, the mark (continued) is appended to its title. Modules may also
be nested, in which case an inner module inherits the basic specifications of all the
enclosing modules, together with the series of titles that identifies the immediately
enclosing module. Parameterization of modules is rather implicit: unconstrained
submodules, specified as ‘open .’, can always be specialized, which provides a simple
yet expressive form of instantiation.

A series of titles ‘T1/. . . /Tn’ refers to a module, together with all that its sub-
modules specify. ‘T (S ′

1 for S1, . . . , S ′
n for Sn)’ refers to the same module as the

titles T , but with all the symbols Si translated to S ′
i . Identity translations ‘Si for

Si’ may be abbreviated to Si, as in ‘T (S1, . . . , Sn)’ which merely indicates that the
module referenced by T specifies at least all the symbols S1, . . . , Sn.

In subsequent sections we see how to use this meta-notation for specifying data



notation (i.e., abstract data types), abstract syntax, semantic functions, and laws
of action notation. [11] provides further examples of use, as well as foundations.

3 Data Notation

Various sorts of data are needed for the semantics of general-purpose high-level
programming languages, not only ‘mathematical’ values such as numbers and lists,
but also abstract entities of computational origins such as variables, files, procedures,
objects, modules, and so on.

It would be futile to try to provide standard notation for all possible sorts of
data. Apart from the excessive amount of notation that would be needed, future
programming languages may involve sorts of data previously unconceived. Action
Semantics provides the following sorts of data, which—together with appropriate
operations—comprise our basic Data Notation:

Truth Values: the usual ‘Booleans’. Predicates are represented as total truth-
valued operations.

Numbers: unbounded exact rational numbers. Restriction to bounded numbers
can easily be expressed using sort intersection. A loosely-specified sort of ‘ap-
proximations’ can be specialized to represent the usual types of implemented
‘real’ numbers (fixed-point, floating-point).

Characters: an unspecified character set. The ASCII character set is provided too.

Lists: ordered, possibly nested, collections of arbitrary items.

Strings: unbounded lists of characters.

Trees: nested lists. Trees with characters as leaves are used as syntactic entities.

Sets: unordered, possibly nested, collections of arbitrary (but distinguishable) ele-
ments.

Maps: unordered collections of arbitrary items, indexed by distinguishable ele-
ments.

Tuples: ordered single-level collections of arbitrary components. Single components
are 1-tuples. We represent operations with varying numbers of arguments as
unary operations on tuples. For example, list of makes a list from a tuple of
items.

Lists, sets, maps and tuples are always finite, and their components are individu-
als (not vacuous or proper sorts). Infinite and ‘lazy’ data can be represented by
abstractions, which are explained in Section 5.

Apart from Data Notation, Action Semantics provides some further sorts of
data, such as storage cells and abstractions. These are part of Action Notation, and
described in Section 5. Any further sorts of data that are needed (for an action
semantic description of a particular programming language) have to be specified
algebraically, ad hoc.



[11, Appendix C] provides a complete (algebraic) specification of Data Notation.
Here, we only have space for a few illustrative excerpts. By the way, the symbols
of our notation are generally formed from highly suggestive, unabbreviated words,
exploiting the occasional punctuation mark.

Our first example of Data Notation provides ordinary truth-values. But some
of the operations are polymorphic! For instance, if true then x else y is always x ,
regardless of whether x is a truth-value or some other entity.

3.1 Truth-Values/Basics

introduces: truth-value , true , false .

(1) truth-value = true false (individual) .

closed .

The constraint closed ensures that true and false are the only individuals of sort
truth-value, and that they are not the same individual. This constraint must be
observed in every module that refers to Truth-Values/Basics.

3.2 Truth-Values/Specifics

introduces: if then else , when then , there is , not .

includes: Basics .

‘Basics’ is a relative reference, abbreviating ‘Truth-Values/Basics’.

(1) if then else :: truth-value, x , y → x y .

(2) when then :: truth-value, x → x (partial) .

(3) there is :: x → true (total) .

(4) not :: truth-value → truth-value (total) .

Now the details:

(5) (if t :truth-value then x else y) = when t then x when not t then y .

(6) (when true then x ) = x . (when false then x ) = nothing .

(7) (there is x :x ) = true . (there is nothing) = nothing .

(8) (not true) = false . (not not t :truth-value) = t .

Data Notation also provides conjunction all and disjunction any on tuples of
truth-values (as well as their restrictions to pairs: both and either ). We omit
their specification here, as we have not yet introduced our notation for tuples.

Notice that that Truth-Values/Specifics observes the constraint imposed by
Truth-Values/Basics: any individual of sort truth-value expressible using the in-
troduced operation symbols is equated to true or to false—but not to both of them!

Let us next consider the following specification of natural numbers. The intended
interpretation of the introduced symbols is fully specified, and corresponds closely
to the familiar standard model of natural numbers.



3.3 Numbers/Naturals/Basics

introduces: natural , positive-integer , successor , 0 , 1 , 2 .

(1) natural = 0 positive-integer (disjoint) .

(2) successor :: natural → positive-integer (total) .

(3) 0 : natural . 1 = successor 0 . 2 = successor 1 .

closed .

Please draw a (Hasse) diagram of the lattice formed by those sorts expressible by
terms in Naturals/Basics. Are the individuals all just above the value of nothing?
Is there any relation between the values of positive-integer and successor (natural)?
(See the appendix for answers to such questions.)

Further operations on natural numbers are specified later in this section, after
we specify tuples, which play a major rôle in Data Notation. Tupling is associative,
like string concatenation, so tuples cannot be nested directly.



3.4 Tuples

3.4.1 Generics

introduces: component .

open .

3.4.2 Basics

introduces: tuple , ( ) , ( , ) , ? , * , + .

The symbol ( , ) is unusual in that it incorporates its own parentheses. These
can be omitted when it is applied iteratively, because it is associative, as specified
below.

includes: Generics .

(1) tuple = ( ) component (component+, component+) (disjoint) .

(2) ( ) : tuple .

(3) ( , ) :: tuple, tuple → tuple (total , associative, unit is ( )) .

(4)
? , * , + :: tuple → tuple .

(5) x ? = ( ) x . x * = ( ) x+ . x+ = x (x+, x+) .

closed except Generics .

We have not specified any attributes at all for the iteration operator *. Clearly x *

is generally a proper sort, not an individual, and never vacuous, so we shouldn’t
specify strict , total , or partial . But how about linear?

The specification of tuples is generic, because the sort component has been left
open. There are two ways of instantiating tuples to allow, say, natural numbers as
components: syntactically, by including the translated specification Tuples (natural
for component, natural-tuple for tuple); or semantically, by including Tuples un-
changed and specifying natural ≤ component as an axiom. The semantic approach
is preferable, as it avoids the need for introducing new (sort) symbols. By the way,
( ) is the empty tuple of any sort. Here are some further operations on tuples:

3.4.3 Specifics

introduces: , count , component# , distinct .

includes: Basics.

(1) :: tuple, natural → tuple .

(2) count :: tuple → natural (total) .

(3) component# :: positive-integer, tuple → component (partial) .

(4) distinct :: (component+, component+) → truth-value (partial , commutative) .

(5) (1) x 0 = ( ) .

(2) x successor n:natural = (x , xn) .

(6) (1) count ( ) = 0 .

(2) count (c:component, t :tuple) = successor count t .



(7) (1) component#(i :positive-integer) ( ) = nothing .

(2) component#(1) (c:component, t :tuple) = c .

(3) component#(successor i :positive-integer) (c:component, t :tuple) =
component#(i) t .

(8) (1) distinct (x :component, y :component) = not (x is y) .

(2) distinct (x :component+, y :component, z :component+) =
all (distinct (x , y), distinct (x , z ), distinct (y , z )) .

Let us now continue our specification of natural numbers by specifying sums and
products, using tuples. The attribute associative for a unary operation f (on tuples)
specifies that f (x , y , z ) is equal to f (f (x , y), z ) and to f (x , f (y , z )). Similarly
unit is u equates
f (x , u) to x and f ( ) to u.

3.5 Numbers/Naturals/Specifics

introduces: sum , product .

includes: Basics .

needs: Tuples/Basics . natural ≤ component .

(1) sum :: natural* → natural (total , associative, commutative, unit is 0) .

(2) product :: natural* → natural (total , associative, commutative, unit is 1).

(3) sum (n:natural, 1) = successor n .

(4) product (n:natural, 0) = 0 .

(5) product (m:natural, successor n:natural) = sum (m, product (m, n)) .

In fact sum and product are fully defined on natural* by the above specification.
Can you see how to use the attributes, together with axiom (3), to convert any term
of the form sum (successorm 0, successorn 0) to the term successorm+n 0 ?

Although the above extension does not introduce any new individuals , it allows
plenty of new subsorts of sort natural to be expressed! Constraints only concern indi-
viduals, so our extension doesn’t conflict with the constraint on Naturals/Basics.
Extensions are also allowed to equate sorts that were previously unrelated in a con-
strained module—so long as this doesn’t affect individuals.

It is an amusing exercise to investigate which sorts of individuals are express-
ible by terms in Naturals/Basics and Naturals/Specifics. For instance, are all
cofinite sorts of natural numbers expressible? How about a sort including all even
numbers?

Our final example here is the entire specification of generic lists. The specifica-
tions of generic sets and maps would be similar.

3.6 Lists

3.6.1 Generics

introduces: nonlist-item .

open .



3.6.2 Basics

introduces: list , item , list of .

includes: Generics .

needs: Tuples/Basics . list ≤ component .

(1) list = list of item* .

(2) item = nonlist-item list (disjoint) .

(3) list of :: item* → list (total) .

closed except Generics .

3.6.3 Specifics

introduces: [ ] , items , head , tail , empty-list , concatenation .

includes: Basics .

needs: Tuples/Basics .

(1) [ ] :: item, list → list .

(2) items :: list → item* (total) .

(3) head :: list → item (partial) .

(4) tail :: list → list (partial) .

(5) empty-list : list .

(6) concatenation :: list* → list (total , associative, unit is empty-list) .

(7) [ i≤item ] l≤list = l & list of i* .

(8) l = list of i ⇒ items l :list = i .

(9) head list of (i :item, i ′:item*) = i . tail list of (i :item, i ′:item*) = list of i ′ .

(10) empty-list = list of ( ) . concatenation (l1:list, l2:list) = list of (items l1, items l2)
.

We can instantiate generic lists in the same way as tuples. Notice that when natural
≤ component, we automatically get [positive-integer] list ≤ [natural] list, by mono-
tonicity.

The following module provides strings and syntax-trees:

3.7 Trees/Syntax

introduces: string , syntax-tree .

needs: Characters/Generics, Lists . character ≤ nonlist-item .

(1) string = [character] list .

(2) syntax-tree = string [syntax-tree] list .

Note that this only gives finite trees: the above axiom is not a domain equation,
and we demand only monotonicity, not continuity, from operations.

Data Notation introduces abbreviations [[ ]], [[ ]], . . . , for constructing nodes
of trees, such that [[ t1 . . . tn ]] is list of (t1, . . . , tn), for n > 0—where the ti may be
tuples of trees. Similarly, the abbreviations 〈 . . . 〉 allow the omission of commas
in tuples. The use of these abbreviations is illustrated in the next section.



4 Semantic Descriptions

This section explains how to specify abstract syntax and semantic functions using
our meta-notation. You are assumed to be familiar with the general idea of abstract
syntax, and its relation to concrete syntax (otherwise see, e.g., [10, 11]). You prob-
ably also know that a semantic function is a map that takes each abstract syntactic
entity to a semantic entity called its denotation, which represents its contribution to
program behaviour. The map is required to be compositional , in that the denotation
of each compound entity is determined by the denotations of its components—not
by their form.

Compositionality is the basic feature that distinguishes denotational (and ac-
tion) semantics from operational and axiomatic semantics. It can be formulated
algebraically [3]: abstract syntax is the initial Σ-algebra, and semantic functions are
the components of the unique Σ-homomorphism from abstract syntax to a target
Σ-algebra. Thus it is sufficient to define just the target algebra, leaving the semantic
functions implicit. In practice, however, the direct inductive definition of semantic
functions by semantic equations , as in ordinary Denotational Semantics, tends to
be more perspicuous than the definition of a target algebra.

We illustrate the specification of abstract syntax and semantic functions with
a simple language of binary numerals. Let the concrete syntax be given by the
following grammar, which is written in an extended BNF variant that is commonly
used in programming language reference manuals:

binary = “2” “#” bits “#” .

bits = bit { bit } .

bit = “0” “1” .

The terminal symbols are “0”, “1”, “2”, and “#”. The somewhat peculiar notation
‘{. . . }’ indicates zero or more repetitions of ‘. . . ’.

As semanticists, we may choose any abstract syntax that we like—provided that
we are prepared to explain how concrete derivation trees are supposed to be mapped
to abstract syntactic entities! Consider the following specification, written in our
meta-notation:

4.1 Abstract Syntax

grammar:

(1) Binary = [[ “2” “#” Bits “#” ]] .

(2) Bits = Bit [[ Bits Bit ]] .

(3) Bit = “0” “1” .

closed .

The meta-notation ‘grammar:’ merely has the effect of introducing the constant
symbols Binary, Bits, and Bit, together with standard Data Notation for strings
“. . . ” and trees [[. . . ]]. This makes the rest of the specification well-formed. By the
way, let us reserve Capitalized symbols for use with abstract syntax, and use lower
case elsewhere. This convention removes the danger of a clash between syntactic



constants (which should be closely related to the nonterminals of the given concrete
syntax, for the sake of perspicuity) and the symbols of the standard Action Notation.

Each equation above defines the value of a constant to be a sort of tree. The sort
[[ “2” “#” Bits “#” ]] includes just those individual trees that have the string “2” as
first component, “#” as second component, an arbitrary tree of sort Bits as third
component, and “#” again as fourth and last component. (The “#”s could just
as well have been dropped, but they do make the intended mapping from concrete
to abstract syntax more obvious.) Similarly the sort [[ Bits Bit ]] includes just trees
that have two components, the first a tree of sort Bits, the second a tree—actually
a string—of sort Bit. Thus Bits is the union of that sort with the sort Bit, which is
itself the union of the individual sorts “0” and “1”.

Apart from the presence of the tree constructors [[. . . ]], our specification looks
like an ordinary context-free grammar. But it is entirely algebraic! Each equation is
an algebraic axiom—thanks to our treatment of sorts as values. The specified sorts
of trees are undisturbed when terms are replaced by equals, for instance Bit can be
replaced by (“0” “1”) in the second equation above (making the third equation
redundant).

A further significant feature of our specification is that we have Bit ≤ Bits, so our
syntax is order-sorted . This turns out to be rather useful when specifying semantics.

We now specify the expected semantics of binary numerals. We treat semantic
functions as ordinary operations, writing the semantic equations that define them
as algebraic axioms in our meta-notation.

4.2 Semantic Functions

needs: Abstract Syntax, Semantic Entities .

introduces: the value of , the binary value of .

• the value of :: Binary → natural .

(1) the value of [[ “2” “#” B :Bits “#” ]] = the binary value of B .

The functionality of the semantic function merely provides a concise summary of
the sort of denotation to be defined for a particular sort of syntactic entity. The
semantic equation is actually an abbreviation for a clause with antecedent ‘B :Bits’.

• the binary value of :: Bits → natural .

(2) the binary value of “0” = 0 .

(3) the binary value of “1” = 1 .

(4) the binary value of [[ B :Bits B ′:Bit ]] =
sum (product (2, the binary value of B), the binary value of B ′) .

It is easy to check that these equations define the value of B to be the expected
natural number for every individual B of sort Binary. (The attribute total would
extend the definition strictly and linearly to all subsorts of Binary—as would partial .
But here we are only interested in applying semantic functions to individuals, so let’s
not bother with such details.) A formal proof relies on the constraint closed on



the abstract syntax, which restricts individual trees to being finite and prevents
different-looking trees or strings from being equal: ‘no junk’ and ‘no confusion’,
following the usual explanation of initiality.

Notice that the same symbol was used for the semantic functions on Bits and its
subsort Bit. Had two different symbols been used, we would have needed a rather
uninformative semantic equation to relate their values on Bit. On the other hand,
different symbols were used for the semantic functions on Binary and Bits. That
merely facilitates adding other kinds of numerals to the described language without
any change to the given semantic equations.

Our semantic description of binary numerals isn’t quite complete, as it refers to
a module Semantic Entities, which hasn’t yet been specified. But Data Notation
already provides natural numbers, so all we need to do is specify:

4.3 Semantic Entities

includes: Data Notation/Numbers/Naturals.

Let us conclude this section by reconsidering our choice of abstract syntax. You may
have noticed that our abstract syntax grammar for Bits used left recursion. Couldn’t
we have chosen right recursion—or even Bits = Bit [[ Bits Bits ]] instead? No, not
if we want the denotation of B of sort Bits to be the expected natural number! For
when B is more than just a single bit, the binary value of [[ “1” B ]] is determined
not only by the binary value of B , but also by its length! Thus a compositional
semantics for such an abstract syntax would require the denotation of B to be the
pair of its value and length. Quite often, choice of abstract syntax is not a trivial
matter, and one has to compromise between the conflicting aims of keeping close to
concrete syntax and allowing simple denotations.

In the case of binary numerals, there is another possibility: to use trees with
arbitrary (finite) branching. This involves the use of the notation for sorts of tuples,
as follows.

4.4 Lexical/Abstract Syntax

grammar:

(1) Binary = [[ ‘2’ ‘#’ Bit+ ‘#’ ]] .

(2) Bit = ‘0’ ‘1’ .

closed .

We take the opportunity to illustrate the use of characters, instead of strings, as
terminal symbols. A tree whose direct components are all characters is just a string,
for instance [[ ‘2’ ‘#’ ‘1’ ‘1’ ‘0’ ‘#’ ]] (of sort Binary here) is the same as “2#110#”.
Syntactic entities that correspond to lexemes (the result of concrete lexical analysis)
can generally be represented as strings and specified in this way.

The semantic functions are much as before, except that the inductiveness of the
definition now comes from the division of a tuple into a nonempty tuple of bits
and a single bit. In fact the use of tuples instead of nesting leaves it open whether



semantic functions are defined inductively from the left or from the right. That
flexibility would be useful here if we were to add binary fractions to our example.

4.5 Lexical/Semantic Functions

needs: Abstract Syntax, Semantic Entities .

introduces: the value of , the binary value of .

• the value of :: Binary → natural .

(1) the value of [[ ‘2’ ‘#’ B :Bit+ ‘#’ ]] = the binary value of B .

• the binary value of :: Bit+ → natural .

(2) the binary value of ‘0’ = 0 .

(3) the binary value of ‘1’ = 1 .

(4) the binary value of 〈 B :Bit+ B ′:Bit 〉 =
sum (product (2, the binary value of B), the binary value of B ′) .

By the way, also the Vdm approach to (denotational) semantics [1] advocates the
use of tuples in abstract syntax. Its basic notation for abstract syntax is, however,
rather less suggestive than that used here. An additional disadvantage is that it
allows sets and maps of components, and the resulting inherent lack of order of
branches makes it uncertain that semantic functions are well-defined.

5 Action Notation

Action Notation is used for expressing semantic entities that represent the implementation-
independent behaviour of programs, and the contributions that parts of programs
make to overall behaviour. There are three kinds of semantic entity: actions, data,
and dependent data. The main kind is, of course, actions; data and dependent data
are auxiliary. Let us first consider the general nature of these entities, before looking
at notational details.

Actions are essentially computational entities, directly representing information
processing behaviour and reflecting the gradual, step-wise nature of computation.
Actions can be performed so as to process information. A performance of an action,
which may be part of an enclosing action, either completes , corresponding to normal
termination (the performance of the enclosing action proceeds normally); or escapes ,
corresponding to exceptional termination (the enclosing action is skipped until the
escape is trapped); or fails , corresponding to abandoning the performance of an
action (the enclosing action performs an alternative action, if there is one, otherwise
it fails too); or diverges , corresponding to nontermination (the enclosing action also
diverges).

An action may be nondeterministic, having different possible performances for
the same initial information. Nondeterminism represents implementation-dependence,
where the behaviour of a program (or the contribution of a part of it) may vary be-
tween different implementations—even between different instants of time on the
same implementation.

The information processed by action performance may be classified as follows:
transient information consists of tuples of data, corresponding to intermediate re-



sults; scoped information is bindings of tokens to data, corresponding to symbol ta-
bles; stable information is data stored in cells, corresponding to the values assigned
to variables; and permanent information involves data irrevocably communicated
between distributed actions.

The different kinds of information give rise to so-called facets of actions, fo-
cusing on the processing of at most one kind of information at a time: the control
facet, processing independently of information; the functional facet, processing tran-
sient information (actions are given and give data); the declarative facet, processing
scoped information (actions receive and produce bindings); the imperative facet,
processing stable information (actions reserve and unreserve cells of storage, and
change the data stored in cells); and the communicative facet, processing perma-
nent information (actions send and receive messages, and offer contracts to agents).

The various facets of an action are independent. For instance, changing the data
stored in a cell—or even unreserving the cell—does not affect any bindings. There
are, however, some primitive hybrid actions, which provide finite representations of
self-referential bindings by processing a mixture of scoped and stable information.

Transient information is given only on completion or escape, and scoped infor-
mation is produced only on completion. In contrast, changes to stable information
and extensions to permanent information are made during action performance, and
are unaffected by subsequent divergence or failure.

Dependent data are entities that can be evaluated to yield data during action
performance. The data yielded may depend on the current information, i.e., the
given transients, the received bindings, and the current state of the storage and
buffer. Evaluation cannot affect the current information. Usually, evaluation yields
an individual, but it may also yield a proper sort, or a vacuous sort that represents
the undefined result of a partial operation.

Compound dependent data can be formed by the application of data operations
to dependent data. The data yielded by evaluating a compound dependent data is
the result of applying the operation to the data yielded by evaluating the operands.
Thus data is a special case of dependent data, and always yields itself when evalu-
ated.

The information processed by actions consists of items of data, organized in
structures that give access to the individual items. Data can include various famil-
iar mathematical entities, such as truth-values, numbers, characters, strings, lists,
sets, and maps. It can also include entities such as tokens, cells, and agents, used for
accessing other items, and some compound entities with data components, such as
messages and contracts. Actions themselves are not data, but they can be incorpo-
rated in so-called abstractions, which are data. New kinds of data can be introduced
ad hoc, for representing special pieces of information.

The rest of this section introduces various constructs of Action Notation. It
specifies the functionality of each symbol, and sketches its intended interpretation.
The level of detail should be sufficient for you to understand the examples of action
semantics shown in Section 6. But you would need to study a more comprehensive
exposition of Action Notation, including its formal operational semantics [11], be-
fore you could expect to be able write such examples yourself with full confidence.
(Section 5.7 gives an impression of the foundations of Action Notation, in case you
are curious about them.)

Action Notation consists mainly of action primitives and combinators . Each



primitive is concerned with one particular kind of information processing, and makes
no contribution to the other kinds. In general, all dependent data in a primitive
action is evaluated to data before performing the action. Each combinator, on
the other hand, expresses a particular mixture of control flow and various kinds
of information flow. Action Notation was designed to have sufficient primitives
and combinators for expressing most common patterns of information processing
straightforwardly, i.e., without simulating one kind of information processing by
another.

The standard symbols used in Action Notation are formed from ordinary English
words , written in lower case. In fact Action Notation mimics natural language: ex-
pressions standing for actions form imperative verb phrases involving conjunctions
and adverbs, e.g., check it and then escape; whereas expressions standing for data
form noun phrases, e.g., the items of the given list. Definite and indefinite articles can
be exploited appropriately, e.g., choose a cell then reserve the given cell. (There are
obvious similarities between the form of Action Notation and that of the program-
ming languages Cobol and HyperTalk, although the design of Action Notation
was not directly influenced by either.)

These simple principles give a reasonably grammatical fragment of English, mak-
ing sensibly-written specifications of actions quite readable—without sacrificing for-
mality! Indentation, emphasized by vertical rules, is used to disambiguate the group-
ing of combinators, which are written infix; parentheses may also be used.

Compared to other formalisms, such as the λ-notation, Action Notation may ap-
pear to lack conciseness: each symbol consists of several letters, rather than a single
sign. But the comparison should also take into account that each action combinator
corresponds, in general, to a complex pattern of applications and abstractions in
λ-notation. The increased length of each symbol seems to be far outweighed by its
increased perspicuity.

The informal appearance and suggestive words of Action Notation should en-
courage programmers to read it, at first, rather casually, in the same way that
they might read reference manuals. Having thus gained a broad impression of the
intended actions, they may go on to read the specification more carefully, paying
attention to the details. A more cryptic notation might discourage programmers
from reading it altogether.

Below, A, A1, A2 stand for arbitrary individual actions, i.e., individuals of sort
act, whereas D , D1, D2 stand either for arbitrary individuals of dependent data,
or for arbitrary subsorts of data. The combinators are generally total operations,
but we don’t bother to specify that. (Those who have read [7] should note that for
technical simplicity, we no longer consider performing general sorts of actions, only
individuals.)

5.1 Basic

(1) complete , escape , fail , commit , diverge , unfold : act .

(2) unfolding , indivisibly :: act → act .

(3) or :: act, act → act (associative, commutative, idempotent , unit is fail) .

(4) and :: act, act → act (associative, unit is complete) .

(5) and then :: act, act → act (associative, unit is complete) .



(6) trap :: act, act → act (associative, unit is escape) .

Basic action notation is primarily concerned with specifying flow of control. Perfor-
mance of the primitive action complete simply terminates normally, whereas that of
escape terminates abnormally, and that of fail aborts. Performance of diverge never
terminates. In fact diverge is an abbreviation for unfolding unfold, where unfolding A
performs A but whenever it reaches unfold, it performs A instead.

The combined action A1 or A2 represents implementation-dependent choice be-
tween alternative actions. When the performance of the chosen action fails, however,
the alternative is performed instead. Thus if A1, A2 are such that one or the other
of them is always bound to fail, the choice is deterministic—in particular, A1 or fail
is equivalent to A1. However, actions may commit their performance to the current
alternative, so that a subsequent failure cannot be ignored (as with cut in Prolog).

A1 and A2 represents implementation-dependent order of performance of the in-
divisible subactions of A1, A2. When these subactions cannot interfere with each
other, it represents that their order of performance is simply irrelevant. A per-
formance of A1 and A2 interleaves the steps of performances of A1, A2 (perhaps
unfairly) until both have completed, or until one of them escapes or fails. indivisibly
A makes an indivisible action out of any non-diverging action.

A1 and then A2 represents normal, left to right, sequencing. It performs A2

only when A1 completes. Similarly, A1 trap A2 represents abnormal sequencing,
performing A2 only when A1 escapes.

5.2 Functional

(1) give , choose :: dependent data → act .

(2) regive : act .

(3) check :: dependent truth-value → act .

(4) then :: act, act → act (associative, unit is regive) .

(5) given :: data → dependent data .

(6) given # :: datum, natural → dependent datum .

(7) it : dependent datum .

(8) them : dependent data .

(9) datum ≤ component .

(10) data = datum* .

(11) a , an , the , of :: data → data .

Functional actions are primarily concerned with processing transient information.
The sort of components of transient information is datum. It includes various sorts
from Data Notation, and it may be extended to include other sorts, as required for
particular purposes. data consists of tuples whose components are of sort datum.

The primitive action give D completes, giving the data yielded by evaluating
D , provided that this is an individual; it fails when D yields nothing. choose D
generalizes give D to make a choice between the individuals of a sort yielded by D .
For instance, choose a natural always terminates, giving an arbitrary individual of



the sort natural. The action check D requires D to yield a truth-value; it completes
when the value is true, otherwise it fails (without committing).

A1 then A2 represents normal functional composition of A1, A2. The data given
by A1 on completion are given to A2. Otherwise, A1 then A2 is like A1 and then A2.
The action regive propagates all the transient information that is given to it.

The dependent data given D yields all the data given to its evaluation, provided
that the entire tuple is of the data sort D . given D#n yields the n’th individual
component of a given tuple, n > 0. it and them both yield the given data, but it
insists that there should be only a single component. More generally, the dependent
data the D1 yielded by D2 yields the same individual as D2, when that is of sort D1,
otherwise nothing.

The dependent data ‘a D ’ is equivalent to D ; similarly for ‘an D ’, ‘the D ’ and
‘of D ’. This allows dependent data to be expressed rather naturally, if desired.
Note that ‘the’ and ‘of’ are obligatory parts of some of the other operation symbols
introduced below.

Also basic actions process transient information. The primitive actions complete
and commit give the null tuple, but escape is analogous to regive and gives any data
given to it. The combinators pass the given data on to their subactions, except
that A1 trap A2 is analogous to A1 then A2, in that A2 is given the data given (on
escape) by A1. The basic combinators and, and then collect up any data given by
their subactions, concatenating it in the given order. Note in particular that A1 and
A2 is not equivalent to A2 and A1 when both A1, A2 can complete giving non-null
data.

5.3 Declarative

(1) bind to :: dependent token, dependent bindable → act .

(2) rebind : act .

(3) furthermore :: act → act .

(4) hence :: act, act → act (associative, unit is rebind) .

(5) before :: act, act → act (associative, unit is complete) .

(6) current bindings : dependent bindings .

(7) the bound to :: bindable, dependent token → dependent bindable .

(8) bindings ≥ [token to bindable] map .

(9) token ≤ distinct-datum .

(10) bindable ≤ datum .

Declarative actions are concerned with scoped information, which consists of bindings
of tokens to data. The sorts token and bindable are open, to be specified by the user.
Usually, tokens are strings of a particular form.

The primitive action bind T to D produces the binding of the token T to the
bindable individual yielded by D . It does not reproduce any of the received bindings!
The action rebind, in contrast, merely reproduces all the received bindings, thereby
extending their scope.

A1 hence A2 lets the bindings produced by A1 be received by A2, which limits
their scope (unless they get reproduced by A2). Thus it is analogous to functional



composition. The action furthermore A produces the same bindings as A, together
with any received bindings that A doesn’t override. The compound combination
furthermore A1 hence A2 (recall that prefixes have higher precedence than infixes!)
corresponds to block structure, with A1 being the block head and A2 the block
body: received bindings are received by A2 unless they are overridden by bindings
produced by A1. The action A1 before A2 is somewhat similar, but here the bindings
produced by A1, as well as those produced by A2, are produced by the combination
(although failure occurs if the bound tokens clash). This is also how A1 and A2

and the other basic and functional combinations treat produced bindings, but they
all let the received bindings be received by their subactions without further ado—
analogously to how A1 and A2 gives the given data to A1, A2.

There are further declarative combinators, not needed here, which correspond to
hybrids of the above combinators with various basic and functional combinators. For
instance, thence is a hybrid of then and hence . Nevertheless, there may still
be mixtures of control, data, and binding flow that are difficult to express directly.
To remedy this, the dependent data current bindings and the action produce D are
provided, so that bindings can be manipulated as data and subsequently produced.

Finally, the dependent data the D bound to T yields the current binding for the
token T , provided that it is of sort D .

5.4 Abstractions

(1) enact :: dependent abstraction → act .

(2) application to :: dependent abstraction, dependent data → dependent abstraction .

(3) closure :: dependent abstraction → dependent abstraction .

(4) abstraction ≤ datum .

(5) abstraction of :: act → abstraction .

An abstraction is a datum that incorporates an action. In particular abstraction of
A incorporates the action A; but note that dependent data occurring in A does not
get evaluated when the abstraction is evaluated: it is left for evaluation during the
performance of the action.

enact D performs the action incorporated in the abstraction yielded by the de-
pendent datum D . The performance of the incorporated action is not given any
data, nor does it receive any bindings. However, data and/or bindings may have
already been supplied to the incorporated action. For suppose that D1 yields an
abstraction that incorporates an action A. Then evaluation of the dependent datum
application D1 to D2 yields an abstraction incorporating an action that gives the
data yielded by D2 to A. Similarly, the dependent datum closure D1 yields an ab-
straction incorporating an action that lets the current (at evaluation-time) bindings
be received by A.

The use of closure abstraction of A, instead of just abstraction of A, ensures
so-called static bindings for abstractions that incorporate the action A. Then en-
act given abstraction performs A, letting it receive the bindings that were current
when closure abstraction of A was evaluated. The pattern enact application (given
abstraction#1) to (rest given data) is useful for supplying parametric data to the ab-
straction, whereas enact closure (given abstraction) provides dynamic bindings (unless



static bindings were already supplied).

5.5 Imperative

(1) store in :: dependent storable, dependent cell → act .

(2) reserve , unreserve :: dependent cell → act .

(3) the stored in :: storable, dependent cell → dependent storable .

(4) storage = [cell to storable uninitialized] map .

(5) cell ≤ distinct-datum .

(6) storable ≤ data .

(7) uninitialized : distinct-datum .

Imperative actions are concerned with stable information, which consists of the
storage of data in cells. The sorts cell and storable are open. The organization of
storage is usually implementation-dependent, so cell is left loosely specified, whereas
storable is to be specified by the user.

The action store D1 in D2 changes the data stored in the cell yielded by D2 to
the storable datum yielded by D1. It also commits the performance to the current
alternative (otherwise implementations would have to be prepared to back-track to
some previous storage upon failure). However, the cell concerned must have been
previously reserved, using reserve D . There is usually no need to be specific about
which cell is used—in fact Action Notation provides no operations for identifying
particular cells! All one requires is a cell that is not currently reserved. This is
provided by allocate D , where D is a subsort of cell. It abbreviates a hybrid action:

indivisibly
choose a [not in the mapped-set of the current storage] D then

reserve it and give it

where [not in D1] D2 is the subsort of D2 that includes only those individuals that
are not in the (finite) set D1. Reserved cells can be made available for reuse by
unreserve D .

The dependent datum the D1 stored in D2 yields the datum currently stored
in the cell yielded by D2, provided that it is of the sort D1. It yields uninitialized
between reserving the cell and storing something in it.

It is useful to be able to summarize the common features of some actions in
terms of the various facets of their information processing. The following notation
allows us to express sorts of actions on this basis, in a reasonably suggestive way.

5.6 Sorts

(1) [ ] act , perhaps :: act → act .

(2) bind , store ≤ act .

(3) [perhaps using ] act :: dependent data → act .

(4) dependent :: data → dependent data .



(5) [perhaps using ] dependent :: dependent data, data → dependent data .

[A] act restricts the sort of all actions act to those actions which, whenever per-
formed, either fail or have an outcome in accordance with the action-sort A. Here,
an action-sort is generated from complete, escape, diverge, give D , bind, and store
using the combinators or , and , then , and perhaps , where perhaps A is
equivalent to A or complete. For instance, we can express the sort [give a value or
diverge] act, which excludes actions that complete without giving a value, escape,
affect the storage, etc. The sort [perhaps escape and perhaps diverge and perhaps
store] act allows arbitrary actions that neither give data nor produce bindings.

[perhaps using D ] act restricts act on the basis of a sort D of dependent data,
generated from given D ′, current bindings, and current storage using sort union .
Similarly [perhaps using D ] dependent D ′ restricts the sort dependent D ′ of dependent
data that always yield something included in the data sort D ′, on the basis of the
sort D .

5.7 Foundations

Lack of space precludes a detailed exposition of the the foundations of Action Nota-
tion. However, the following sketch may make it easier to understand the intended
interpretation of the main action primitives and combinators, since it indicates the
structure of the configurations, or states, of the operational semantics. For more
details, see [11].

The operational semantics of Action Notation is specified formally as a transition
system using the structural style advocated by Plotkin [14] and others. First we need
the abstract syntax of actions, which is specified as follows:

5.7.1 Action Notation/Abstract Syntax

(1) Act = Simple-Act [[ Prefix Act ]] [[ Act Infix Act ]] .

(2) Prefix = “unfolding” “indivisibly” ✷ .

(3) Infix = “or” “and” “and then” “then” “trap”
“moreover” “hence” “thence” ✷ .

(4) Simple-Act = “complete” “escape” “fail” “commit” “unfold”
[[ Simple-Prefix Dependent ]]
[[ “bind” Dependent “to” Dependent ]]
[[ “store” Dependent “in” Dependent ]] ✷ .

(5) Simple-Prefix = “give” “choose” “produce”
“reserve” “unreserve” “enact” ✷ .

(6) Dependent = ✷ .

Here is some of the specification of configurations, or states , written in our usual
meta-notation:

5.7.2 Semantic Entities

(1) state = ( Acting, storage ) .



(2) info = ( data, bindings, storage ) .

(3) Acting = 〈 “completed” data bindings 〉 〈 “escaped” data 〉 “failed”
[[ Prefix Acting ]] [[ Acting Infix Acting ]] 〈 Act data? bindings? 〉 ✷ .

The difference between Act and Acting is that the latter allows data and bindings to
be attached to subactions, for use when they get performed; moreover, Acting allows
components that represent the information provided by terminated performances of
subactions, which sometimes has to be combined with other information before being
propagated.

Rather than specify a transition relation, we exploit the expressiveness of our
usual meta-notation to specify a transition function, mapping each individual state
to the entire sort of possible next states. This has some pragmatic advantages, for
instance we can use an equation to specify that the sort of next states is a particular
individual, when the transition happens to be deterministic.

5.7.3 Semantic Functions

• evaluated :: (Dependent, info) → data .

• stepped :: state → (state, commitment) .

(1) commitment = committing uncommitted .

The commitment indicates whether a committing action has just been performed,
in which case the current alternatives should be removed.

(2) stepped (“complete”, d , b, s) =
(“completed”, ( ), empty-map, s , uncommitted).

The following examples indicate how we can specify transition dependencies, us-
ing Horn clauses instead of the conventional inference rules:

(3) evaluated (D , d , b, s) = d ′ : data ⇒
stepped ([[ “give” D :Dependent ]], d , b, s) =

(“completed”, d ′, empty-map, s , uncommitted) .

(4) evaluated (D , d , b, s) ≥ d ′ : data ⇒
stepped ([[ “choose” D :Dependent ]], d , b, s) ≥

(“completed”, d ′, empty-map, s , uncommitted) .

(5) stepped (A1, s) ≥ (“completed”, d , b, s ′, c) ⇒
stepped ([[ A1 “and” A2 ]], s) ≥ ([[ (“completed”, d , b) “and” A2 ]], s ′, c) .

(6) stepped (A1, s) ≥ (“failed”, s , uncommitted) ⇒
stepped ([[ A1 “or” A2 ]], s) ≥ (A2, s , uncommitted) .

(7) stepped (A1, s) ≥ (A′
1, s ′, c ′:committing) ⇒

stepped ([[ A1 “or” A2 ]], s) ≥ (A′
1, s ′, c ′) .

Of course, this is only a fragment of the complete specification given in [11], which
is about 12 pages long (not counting explanatory comments).



5.8 Extensions

This section has introduced about 2/3 of the entire Action Notation. The omitted
constructs are mainly concerned with asynchronously-communicating distributed
systems of agents, and with the finite representation of self-referential bindings.
They are introduced and exemplified in [11].

All that one has to do before using Action Notation in an action semantic de-
scription of a programming language is to specify the information that is to be
processed by actions. This may involve specializing Data Notation and extending
it with further data. The open sorts datum, token, bindable and storable should be
specified. In fact the differences between bindable, storable, and some other sorts of
data such as expression values are quite revealing about the essence of the language
being described [16].

Note that one may introduce formal abbreviations for commonly-occurring pat-
terns of notation that correspond to language-dependent concepts. For instance,
one may specify an action assign D1 to D2 as a generalization of store D1 in D2 to
arbitrary variables that may not be represented by single cells of storage.

The full Action Notation supports the specification of many important program-
ming concepts. But it does not claim to be universal—except in the sense of Turing-
completeness, of course. Unsupported concepts include (general) continuations, and
real time. Continuations are not supported because traps and escapes are adequate
to deal with the semantics of labels and goto’s (more or less as in Vdm [1]), and
because they would somewhat complicate the operational semantics of Action No-
tation. This unfortunately seems to preclude a simple action semantic description
of Scheme. Real time could be added without too much trouble regarding the op-
erational semantics, but this might invalidate some of the laws of Action Notation.
The precise limits of the applicability of Action Notation remain to be seen.

The next section gives some examples of the use of Action Notation.

6 Action Semantic Descriptions

The preceding sections introduced all that we need for specifying action semantic
descriptions of programming languages. We now have a convenient meta-notation
for specifying abstract syntax, semantic entities, and semantic functions; and we
have Action Notation, which provides semantic entities called actions that have a
rather straightforward operational interpretation—together with suggestive symbols
for them.

This section gives some examples of action semantic descriptions. The main
purpose of the examples is to show how fundamental concepts of programming lan-
guages (sequential computation, scope rules, local variables, etc.) are reflected by
the use of Action Notation. Our analysis of programming languages into fundamen-
tal concepts is essentially the same as that used in Denotational Semantics, following
the insight of Christopher Strachey and his colleagues [15].

The programming constructs dealt with in the examples below are, in general,
simplified versions of constructs to be found in conventional high-level program-
ming languages. The agglomeration of the exemplified constructs would not make a
particularly elegant and/or practical programming language. (In fact the examples
are essentially the same constructs as in [12], and a subset of those given in [10],



so as to facilitate comparison between Action Semantics and two different styles of
Denotational Semantics.)

Section 6.1 specifies denotations for arithmetical and Boolean expressions, using
basic and functional actions. Section 6.2 shows how to specify denotations for con-
stant declarations, including function abstractions, using declarative actions. Then
Section 6.3 deals with statements and variable declarations, using imperative ac-
tions. Finally, Section 6.4 describes procedures with various modes of parameter
evaluation. The abstract syntax chosen for the examples is easy to relate to the
constructs of high level programming languages such as Pascal and Standard
ML.

A notable feature of our examples is that the introduction of the later constructs
does not require changes to the already-given description of the earlier constructs.
This phenomenon, which we call extensibility , has often been observed during the
development of action semantic descriptions: one can start by describing a simple
sublanguage, without regard to the rest of the language, and retain its description
unchanged when extending to the full language.

It seems that this feature is unique to Action Semantics. It is due to the poly-
morphism of the combinators of Action Notation: the functional composition A1

then A2 remains a valid action when A1, A2 change the storage or communicate, for
instance. Extensibility is definitely not a feature of conventional Denotational Se-
mantics [10] where the use of the λ-notation makes semantic equations very sensitive
to the detailed representation of denotations as higher-order functions. Even the use
of monads in Denotational Semantics [5] does not provide extensibility approaching
that of Action Semantics, it seems.

One can make a compromise between Denotational and Action Semantics by
using action combinators in semantic equations, and defining them as functions
on domains [12]. When new constructs are added to the described language, the
original semantic equations generally remain valid, although the definitions of the
combinators may have to be rewritten. Essentially, this way one is providing deno-
tational models for increasing subsets of Action Notation, instead of exploiting the
operational semantics of the entire Action Notation [11] as in pure Action Seman-
tics. But it is difficult, if not impossible, to give a domain-based denotational model
for the full Action Notation, with semantic equivalence for actions satisfying all the
intended laws. This is because of features such as nondeterministic interleaving and
concurrency, whose treatment in Denotational Semantics is rather unsatisfactory.
(It uses so-called resumptions, which are essentially a representation of computa-
tion steps as functions).

By the way, we don’t bother here to divide our grammars and semantic equations
into submodules, because of the small scale of the example language. See [11]
for a medium-sized example (a substantial sublanguage of Ada) where the use of
submodules is advantageous.

6.1 Expressions

6.1.1 /Example/Abstract Syntax

grammar:

(1) Expression = Literal [[ Monadic-Operator Expression ]]



[[ Expression Dyadic-Operator Expression ]]
[[ “if” Expression “then” Expression “else” Expression” ]]

✷ .

(2) Literal = “true” “false” Numeric-Literal
Character-Literal String-Literal .

needs: Data Notation/Characters/Alphanumerics ( digit ).

(3) Numeric-Literal = [[ digit+ ]] .

(4) Character-Literal = ✷ .

(5) String-Literal = ✷ .

(6) Monadic-Operator = “¬” “−” .

(7) Dyadic-Operator = “∧” “∨” “+” “−” “∗” “=” .

The occurrences of ✷ above allow further constructs to be inserted in their place
later. We could get the same flexibility by using inclusions instead of equations—
then omitting the ✷s. Actually, we shall not bother to specify the details of
Character-Literal and String-Literal at all.

By the way, a / at the beginning of a module title prevents the module from
inheriting the titles of higher-level sections, i.e., the title is ‘absolute’ rather than
‘relative’.

6.1.2 /Example/Semantic Functions

needs: Abstract Syntax, Semantic Entities .

introduces: evaluate , the value of ,
the monadic-operation-result of , the dyadic-operation-result of .

• evaluate :: Expression →
[give a value] act & [perhaps using nothing] act .

The above functionality assertion is not formally necessary. It is actually a conse-
quence of the semantic equations below. But it does provide useful documentation
about the sort of semantic entity that expressions denote. In particular, it confirms
that expression evaluation cannot diverge or affect storage.

(1) evaluate L:Literal = give the value of L .

(2) evaluate [[ O :Monadic-Operator E :Expression ]] =
evaluate E then give the monadic-operation-result of O .

(3) evaluate [[ E1:Expression O :Dyadic-Operator E2:Expression ]] =
evaluate E1 and evaluate E2

then give the dyadic-operation-result of O .

The use of and indicates that the order of expression evaluation is implementation-
dependent. In the absence of side-effects (and abnormal termination) all orders lead
to the same result. Sometimes languages allow side-effects and insist on left-to-right
order of evaluation, which could be specified by using and then instead of and above.



(4) evaluate [[ “if” E :Expression “then” E1:Expression “else” E2:Expression ]] =
evaluate E then

check (it is true) then evaluate E1

or
check (it is false) then evaluate E2 .

The term ‘(it is true)’ could be replaced by ‘the given truth-value’, or by ‘there is given
true’. Notice that the enclosing action fails unless evaluate E gives a truth-value.
Thus some type-checking is implicit in the semantic equation. Full type-checking
could be specified separately in a static action semantics, such that the actions
given by the dynamic semantics specified here would be infallible for statically-
correct programs.

check D doesn’t give any data, and evaluate E doesn’t refer to given data, so it
doesn’t matter whether we combine them using then, or and then.

• the value of :: Literal → value .

(5) the value of “true” = true .

(6) the value of “false” = false .

(7) the value of [[ d :digit+ ]] = bounded decimal (string of d) .

Here, we take a short-cut, using the standard operation decimal :: string → nat-
ural, which is provided by Data Notation, rather than introducing a corresponding
semantic function. bounded is specified in Semantic Entities below. See [11] for
a loose specification of approximate real arithmetic.

• the value of :: Character-Literal → character .

• the value of :: String-Literal → string .

Both the syntax and semantics of character and string literals are left open.

• the monadic-operation-result of :: Monadic-Operator →
[perhaps using a given operand] dependent result .

(8) the monadic-operation-result of “¬” = not the given truth-value .

(9) the monadic-operation-result of “−” = the bounded negation of the given number
.

bounded is actually redundant here, as bounds on numbers are specified to be sym-
metric.

• the dyadic-operation-result of :: Dyadic-Operator →
[perhaps using a given (operand, operand)] dependent result .

(10) the dyadic-operation-result of “∧” =
both of (the given truth-value#1, the given truth-value#2) .

(11) the dyadic-operation-result of “∨” =
either of (the given truth-value#1, the given truth-value#2) .



Recall that the and of are identity on data.
Below, the application of bounded ensures that nothing is yielded when the result

would be out of bounds, i.e., not of sort number.

(12) the dyadic-operation-result of “+” =
the bounded sum of (the given number#1, the given number#2) .

(13) the dyadic-operation-result of “−” =
the bounded difference of (the given number#1, the given number#2) .

(14) the dyadic-operation-result of “∗” =
the bounded product of (the given number#1, the given number#2) .

(15) the dyadic-operation-result of “=” =
the given operand#1 is the given operand#2 .

6.1.3 /Example/Semantic Entities

includes: Action Notation [11, Appendix B] .

Action Notation includes general Data Notation (without any commitment to a
particular character set).

6.1.3.1 Sorts

needs: Values .

(1) datum = value ✷ .

6.1.3.2 Values

needs: Numbers .

(1) value = truth-value number character string ✷ .

(2) operand = truth-value number character .

(3) result = truth-value number .

The order and grouping of sort unions is immaterial. Contrast this flexibility with
the rigidity of domain sums in Denotational Semantics [10]!

The differences between characteristic sorts such as value, operand, and result
reveal quite a lot about the described language [16].

6.1.3.3 Numbers

introduces: number , bounded , ordinal , bound .

includes: Data Notation/Instant/Distinction ( number for s , is ) .

This translated specification requires is to be a partial equality operation on
number.



(1) bounded :: natural → number (partial) .

(2) ordinal :: number → natural (partial) .

(3) bound : natural .

(4) is :: number, number → truth-value (total) .

(5) number = [min negation of bound] [max bound] integer .

(6) bounded n:natural = n & a number .

(7) ordinal n:number = n & a natural .

open .

The above module must not be closed, because bound has been left as an unspecified
natural number.

We are exploiting the standard arithmetical operations provided by Data Nota-
tion, and using sort intersection to bound the results. Some programming languages
require several disjoint types of numbers, with various coercions between them. This
takes somewhat longer to specify, as illustrated in [11].



6.2 Declarations

6.2.1 /Example/Abstract Syntax (continued)

grammar:

(1) Constant-Declaration = [[ “val” Identifier “=” Expression ]] .

(2) Constant-Declarations = 〈 Constant-Declaration 〈 “;” Constant-Declaration 〉* 〉 .

Thus CD :Constant-Declarations is a tuple of Constant-Declaration trees, separated
by “;” components.

(3) Expression = ✷ Identifier
[[ “let” Constant-Declarations “in” Expression ]]
[[ “fun” “(” Parameter-Declaration “)” Expression ]]
[[ Expression “(” Expression “)” ]] .

Various programming languages allow functions to be declared , i.e., bound to iden-
tifiers. Often—but not in Ada, for example—functions may also be passed as argu-
ments to other functions. But only in a few languages (such as Standard ML) is
it possible to express functions directly, as here, without necessarily binding them
to identifiers.

(4) Parameter-Declaration = [[ “val” Identifier ]] ✷ .

Functions in programs resemble mathematical functions: they return values when
applied to arguments. In programs, however, the evaluation of arguments may di-
verge, so it is necessary to take into account not only the relation between argument
values and result values, but also the stage at which an argument expression is eval-
uated: straight away, or when (if) ever the value of the argument is required for
calculating the result of the application. This is generally indicated by the declara-
tion of the parameter, rather than by the call. For instance, “val” in a parameter
declaration above is supposed to indicate immediate evaluation, i.e., call-by-value.
Further forms of parameter declaration are introduced in connection with proce-
dures, in Section 6.4.

introduces: Identifier .

needs: Data Notation/Characters/Alphanumerics ( letter , digit ) .

(5) Word = [[ letter (letter digit)* ]] .

(6) Word = Reserved-Word Identifier (disjoint) .

(7) Reserved-Word = “if” “then” “else” “true” “false”
“let” “in” “fun” “val” ✷ .

The use of the attribute disjoint above essentially specifies Identifier to be the dif-
ference between Word and Reserved-Word. (Sort difference is not monotonic, so it
cannot be specified as an operation in our meta-notation.)



6.2.2 /Example/Semantic Functions (continued)

introduces: declare , pass , the token of .

• declare :: Constant-Declarations →
[bind] act & [perhaps using current bindings] act .

(1) declare [[ “val” I :Identifier “=” E :Expression ]] =
evaluate E then bind the token of I to the given value .

E is not in the scope of the binding produced for I . The specification of self-
and mutually-referential bindings is not illustrated here. It involves hybrid informa-
tion processing, as explained in [11].

(2) declare 〈 CD1:Constant-Declaration “;” CD2:Constant-Declarations 〉 =
declare CD1 before declare CD2 .

The use of before allows CD2 to refer to bindings produced by CD1. We would
specify so-called simultaneous declarations by using and instead.

• evaluate :: Expression →
[give a value or diverge] act & [perhaps using current bindings] act .

Note that we have had to change our assertion about the sort of expression de-
notations, to accommodate the new constructs. But we don’t need to change any
of our previously-specified semantic equations for expressions.

(3) evaluate I :Identifier = give the value bound to the token of I .

(4) evaluate [[ “let” CD :Constant-Declarations “in” E :Expression ]] =
furthermore declare CD hence evaluate E .

furthermore allows E to refer to nonlocal bindings that are not overridden by CD .
Remember that prefix combinators have higher precedence than infix ones.

(5) evaluate [[ “fun” “(” PD :Parameter-Declaration “)” E :Expression ]] =
give a function of the closure of an abstraction of

furthermore pass PD hence
evaluate E then give the result yielded by it .

The use of closure here ensures static bindings for the identifiers in E . By mov-
ing it to the following equation, we would specify dynamic scopes. By leaving it out
altogether, we would specify that references to identifiers are local to functions.

(6) evaluate [[ E1:Expression “(” E2:Expression “)” ]] =
evaluate E1 and evaluate E2

then enact the application of the function-abstraction of the given function#1
to the given argument#2 .



We see that the parameter of the function is evaluated before passing it to the
enaction of the function-abstraction. This is often referred to as ‘call-by-value’, at
least in connection with functional programming languages. An alternative would be
to delay evaluation until the parameter is used , which is referred to as call-by-name.
The main difference it makes to the semantics of expressions is that an evaluation
which doesn’t terminate here might then terminate; the values given on termination
are the same.

Only a few programming languages (e.g., Algol60) provide call-by-name pa-
rameters. Much the same effect, however, can be achieved by passing a (parameter-
less) function as a parameter, and applying it (to no parameters) wherever its value
is required. In fact that corresponds closely to how we would specify call-by-name
in an action semantic description: pass an abstraction incorporating the parameter
evaluation, and enact it whenever the formal parameter is evaluated. You might
like to work out the details for yourself. (Omit call-by-value for now. We illustrate
a technique for dealing with several parameter passing modes simultaneously later,
in Section 6.4.)

Another possible mode of parameter passing is to memorize the value of the
parameter the first time it is evaluated, if ever. This is referred to as call-by-need.
There is no implementation-independent semantic difference between call-by-need
and call-by-name, although careful use of Action Notation can make the intended
implementation technique apparent.

• pass :: Parameter-Declaration →
[bind] act & [perhaps using a given argument current bindings] act .

(7) pass [[ “val” I :Identifier ]] = bind the token of I to the given argument .

• the token of :: Identifier → token .

(8) the token of I :Identifier = I .

A common alternative semantics for identifiers is to ignore case differences between
them, by mapping all letters in I to (say) upper-case.

6.2.3 /Example/Semantic Entities (continued)

6.2.3.1 Sorts (continued)

(1) bindable = value ✷ .

(2) token = string of (letter, (letter digit)*) .

6.2.3.2 Values (continued)

needs: Functions .

(1) value = ✷ function ✷ .



6.2.3.3 Functions

needs: Arguments .

introduces: function , function of , function-abstraction .

(1) function of :: abstraction → function (partial) .

(2) function-abstraction :: function → abstraction (total) .

(3) A : [give a result and perhaps diverge] act ;
A : [perhaps using a given argument current storage] act ⇒
a function of an abstraction of A : function .

(4) f = a function of a:abstraction ⇒
the function-abstraction of f :function = a .

The primary effect of function of is to make a tagged copy of an abstraction, where
the tag ensures that functions do not overlap with other sorts of data (such as
procedures). Together with function-abstraction it provides an interface that hides
the representation of functions from other modules.

6.2.3.4 Arguments

needs: Values .

(1) argument = value ✷ .

The characteristic sort argument is extended in Section 6.4. Its relation to the sort
bindable indicates how closely parameter declarations might correspond to ordinary
declarations.

The next section extends our example language with familiar statements and
variable declarations.

6.3 Statements

6.3.1 /Example/Abstract Syntax (continued)

grammar:

(1) Statement = “skip” [[ Name “:=” Expression ]]
[[ “if” Expression “then” Statement ]]
[[ “while” Expression “do” Statement ]] [[ “stop” ]]
[[ “begin” 〈 Variable-Declarations “;” 〉? Statements “end”

]]
✷ .

(2) Statements = 〈 Statement 〈 “;” Statement 〉* 〉 .

(3) Variable-Declaration = [[ “var” Identifier “:” Type ]] .

(4) Variable-Declarations = 〈 Variable-Declaration 〈 “,” Variable-Declaration 〉* 〉 .

(5) Type = “bool” “num” [[ Type “[” Numeric-Literal “]” ]] .

(6) Name = Identifier [[ Name “[” Expression “]” ]] .



(7) Expression = ✷ [[ Expression “[” Expression “]” ]] .

The types allow nested arrays, for instance “num[10][20]”. Similarly, expressions
allow iterated indexing, for instance “a[3][7]”. Notice that Name is a subsort of
Expression.



6.3.2 /Example/Semantic Functions (continued)

introduces: execute , establish , relinquish , the type of , access .

• execute :: Statements →
[complete or escape or diverge] act &
[perhaps using current bindings current storage] act .

(1) execute “skip” = complete .

(2) execute [[ N :Name “:=” E :Expression ]] =
access N and evaluate E

then assign the given value#2 to the given variable#1 .

assign to is specified in Semantic Entities/Variables below.

(3) execute [[ “if” E :Expression “then” S :Statement ]] =
evaluate E then

check (it is true) then execute S
or check (it is false) .

(4) execute [[ “while” E :Expression “do” S :Statement ]] =
unfolding

evaluate E then
check (it is true) then execute S then unfold

or check (it is false) .

When S is “stop” above, the escape causes the remaining unfolding to be ignored—
and, in the absence of any traps, terminates the entire program. Different kinds of
escape can be distinguished by giving them some data.

(5) execute “stop” = escape .

(6) execute [[ “begin” S :Statements “end” ]] = execute S .

(7) execute [[ “begin” VD :Variable-Declarations “;” S :Statements “end” ]] =
furthermore establish VD hence

execute S and then relinquish VD .

The relinquishing of local variables only affects semantics when the supply of cells
is finite. But it doesn’t hurt to specify it, when the intention is for local variables
to be reusable.

(8) execute 〈 S1:Statement “;” S2:Statements 〉 = execute S1 and then execute S2 .

• establish :: Variable-Declarations →
[bind and store] act & [perhaps using current storage] act .

(9) establish [[ “var” I :Identifier “:” T :Type ]] =
allocate a variable for the type of T then
bind the token of I to it .

allocate for is specified in Semantic Entities/Variables below.



(10) establish 〈 VD1:Variable-Declaration “,” VD2:Variable-Declarations 〉 =
establish VD1 and establish VD2 .

• relinquish :: Variable-Declarations →
[store] act & [perhaps using current bindings current storage] act .

(11) relinquish [[ “var” I :Identifier “:” T :Type ]] =
dispose of the variable bound to the token of I .

(12) relinquish 〈 VD1:Variable-Declaration “,” VD2:Variable-Declarations 〉 =
relinquish VD1 and relinquish VD2 .

• the type of :: Type → type .

(13) the type of T :(“bool” “num”) = simple-type .

(14) the type of [[ T :Type “[” N :Numeric-Literal “]” ]] =
array-type of (the type of T , the value of N ) .

If we were to let types be declared, we would have to change their semantics from
data to dependent data.

• access :: Name →
[give a variable or diverge] act &
[perhaps using current bindings current storage] act .

(15) access I :Identifier = give the variable bound to the token of I .

(16) access [[ N :Name “[” E :Expression “]” ]] =
access N and evaluate E

then give the component (the given array-variable#1, the given index-value#2) .

• evaluate :: Expression →
[give a value or diverge] act &
[perhaps using current bindings current storage] act .

(17) evaluate I :Identifier =
give the value bound to the token of I or
give the value assigned to the variable bound to I .

The above equation replaces a previously-specified one! The change, though, is
merely adding an alternative action, which is almost as easy as adding a fresh se-
mantic equation. What is really remarkable is that no other changes to the semantic
equations were needed at all when adding variables and statements to a functional
language. The contrast between Action Semantics and conventional Denotational
Semantics in this respect could hardly be more vivid.

(18) evaluate [[ E1:Expression “[” E2:Expression “]” ]] =
evaluate E1 and evaluate E2

then give the component (the given array-value#1, the given index-value#2) .

We expect evaluate N :Name to be equivalent to access N then give the value assigned
to the given variable. We do not specify this as a semantic equation, though, because
it would overlap with the above equation, and thereby cast doubt on the well-
definedness of the semantic functions.



6.3.3 /Example/Semantic Entities (continued)

6.3.3.1 Sorts (continued)

needs: Variables .

(1) datum = ✷ variable .

(2) storable = truth-value number .

6.3.3.2 Values (continued)

needs: Arrays .

(1) value = ✷ array-value ✷ .

6.3.3.3 Variables

needs: Arrays, Types .

introduces: variable , assign to , the assigned to , allocate for , dispose of .

(1) variable = cell array-variable .

(2) assign to :: dependent value, dependent variable →
[perhaps store] act .

(3) the assigned to :: value, dependent variable →
[perhaps using current storage] dependent value .

(4) allocate for :: variable, dependent type →
[give a variable and perhaps store] act .

(5) dispose of :: dependent variable → [perhaps store] act .

(6) assign (d1:dependent value) to (d2:dependent variable) =
store the storable yielded by d1 in the cell yielded by d2 or
assign the array-value yielded by d1 to the array-variable yielded by d2 .

(7) the (v≤value) assigned to (d :dependent variable) =
the (v & storable) stored in the cell yielded by d
the (v & array-value) assigned to the array-variable yielded by d .

(8) allocate (v≤variable) for (d :dependent type) =
check there is the simple-type yielded by d and then
allocate a cell or

allocate a (v & array-variable) for the array-type yielded by d .

(9) dispose of (d :dependent variable) =
unreserve the cell yielded by d or
dispose of the array-variable yielded by d .



6.3.3.4 Types

needs: Arrays .

(1) type = simple-type array-type .

(2) simple-type : type .

closed .

6.3.3.5 Arrays

introduces: array , index-value , array-value , array-variable ,
array of , component , array-type , array-type of ,
upper index-value , component-type .

needs: Values , Variables , Types , Numbers .

(1) array = array-value array-variable .

(2) index-value ≤ number .

(3) array of :: value* → array-value (total) ,
variable* → array-variable (total) .

(4) component :: (array-value, index-value) → value (partial) ,
(array-variable, index-value) → variable (partial) .

(5) array-type of :: (type, index-value) → array-type (total) .

(6) upper index-value :: array-type → index-value (total) .

(7) component-type :: array-type → type (total) .

(8) a = array of v ⇒
component (a:array, i :index-value) = component#(ordinal i) of v .

(9) t = array-type of (t ′, n) ⇒
component-type t :array-type = t ′ ; upper index-value t :array-type = n .

You should skip the details below on a first reading, as they are a bit tedious.
See [11] for arrays with offsets (i.e., lower index bounds other than 1) and for a
similar treatment of record variables. Such specifications can easily be reused in the
semantic descriptions of other languages that involve structured variables, although
minor variations in the operations may be required.

privately introduces: components , respectively assign to ,
the values respectively assigned to ,
allocate component-variables for up to , dispose of all .

(10) assign (d1:dependent array-value) to (d2:dependent array-variable) =
respectively assign the components of d1 to the components of d2 .

(11) the (v≤array-value) assigned to (d :dependent array-variable) =
the v yielded by array of

the values respectively assigned to the components of d .

(12) allocate (v≤array-variable) for (d :dependent array-type) =
allocate component-variables for the component-type of d

to the ordinal of the upper index-value of d
then give array of the given variable(s)? .



(13) dispose of (d :dependent array-variable) = dispose of all the components of d .

(14) a = array of v ⇒ components of a:array = v .

(15) respectively assign (d1:dependent value*) to (d2:dependent variable*) =
check (d1 is ( )) and check (d2 is ( ))

or
assign the first of d1 to the first of d2 and
respectively assign the rest of d1 to the rest of d2 .

(16) the values respectively assigned to (d :dependent variable*) =
when d is ( ) then ( )
(the value assigned to the first of d ,
the values respectively assigned to the rest of d) .

(17) allocate component-variables for (d1:dependent type) to (d2:dependent natural) =
check (d2 is 0) and then give ( )

or
check not (d2 is 0) and then

allocate component-variables for d1 to the predecessor of d2

and allocate a variable for d1 .

(18) dispose of all (d :dependent variable*) =
check (d is ( )) or

dispose of the first of d and
dispose of all the rest of d .

Let us conclude our example by adding procedure abstractions, with various modes
of parameter-passing. The technique used below is of general use.

6.4 Procedures

6.4.1 /Example/Abstract Syntax (continued)

grammar:

(1) Expression = ✷ [[ “proc” “(” Parameter-Declaration “)” Statement
]] .

(2) Parameter-Declaration = ✷ [[ “var”? Identifier “:” Type ]] .

(3) Statement = ✷ [[ Expression “(” Expression “)” ]] .

Procedure abstractions are much like function abstractions. The only differences
are that the body of the abstraction is now a statement, rather than an expression,
and that there are some new modes of parameter passing.

By the way, many programming languages do not allow a function to be expressed
(or declared) directly: a procedure must be used instead, and the body of the
procedure includes a special statement that determines the value to be returned.
In Algol60 and Pascal, this statement looks like an assignment to the function
identifier! When such a function is applied in an expression, side-effects may occur:
the evaluation of the expression changes storage, as well as giving a value.

As with functions, we only consider procedures with a single parameter, for
simplicity. The new modes of parameter passing are call-by-reference, indicated by



the symbol “var”, and call-by-copy (usually referred to, somewhat ambiguously, as
call-by-value), indicated by the absence of “var”.

The execution of a procedure body may have an effect on the state, by assignment
to a nonlocal variable. With call-by-reference, moreover, assignment to the formal
parameter changes the value of the nonlocal actual parameter variable (its alias)
whereas with call-by-copy such an assignment merely modifies a local variable.

6.4.2 /Example/Semantic Functions (continued)

introduces: moderate , the mode of , relinquish .

(1) evaluate [[ “proc” “(” PD :Parameter-Declaration “)” S :Statement ]] =
give a procedure of (the mode of PD ,

the closure of an abstraction of
furthermore pass PD hence

execute S and then relinquish PD ) .

(2) execute [[ E1:Expression “(” E2:Expression “)” ]] =
evaluate E1 then

give the procedure-abstraction of the given procedure and
give the passing-mode of the given procedure then
moderate E2 then give the argument yielded by it

then enact the application of the given procedure-abstraction#1
to the given argument#2 .

Compare the above action with the one previously given for function application.
The action moderate E2 is defined below to either access or evaluate E2, depending
on the given mode. Clearly we now have to evaluate E1 before E2, in order to obtain
the parameter passing mode.

• pass :: Parameter-Declaration →
[bind and perhaps store] act & [perhaps using a given argument] act .

(3) pass [[ “var” I :Identifier “:” T :Type ]] =
bind the token of I to the given variable .

(4) pass [[ I :Identifier “:” T :Type ]] =
give the given value and
allocate a variable for the type of T

then
bind the token of I to the given variable#2 and
assign the given value#1 to the given variable#2 .

(5) pass [[ “val” I :Identifier ]] =
bind the token of I to the given value .

• relinquish :: Parameter-Declaration →
[perhaps store] act & [perhaps using current bindings] act .

(6) relinquish [[ “var” I :Identifier “:” T :Type ]] = complete .

(7) relinquish [[ I :Identifier “:” T :Type ]] =
dispose of the variable bound to the token of I .

(8) relinquish [[ “val” I :Identifier ]] = complete .

• the mode of :: Parameter-Declaration → mode .



(9) the mode of [[ “var” I :Identifier “:” T :Type ]] = reference-mode .

(10) the mode of [[ I :Identifier “:” T :Type ]] = copy-mode .

(11) the mode of [[ “val” I :Identifier ]] = constant-mode .

• moderate :: Expression →
[give an argument or diverge] act &
[perhaps using a given mode current bindings current storage] act .

(12) moderate E :Expression =
check (the given mode is reference-mode) then access E

or
check either (it is copy-mode, it is constant-mode) then evaluate E .

What should happen if a procedure whose parameter is to be passed by reference
gets called with an actual parameter expression other than a name? A static se-
mantics for our example language would presumably reject programs containing
such constructs. But the restriction is not context-free, so we cannot represent it in
our abstract syntax (without abandoning a simple relation to context-free concrete
syntax, that is). Instead, we extend access from Name to Expression, as follows.

• access :: Expression →
[give a variable or diverge] act &
[perhaps using current bindings current storage] act .

(13) E & Name = nothing ⇒ access E = fail .

The semantic entities specified below are a simple generalization of those used before
to represent function abstractions.

6.4.3 /Example/Semantic Entities (continued)

6.4.3.1 Values (continued)

needs: Procedures .

(1) value = ✷ procedure .

6.4.3.2 Procedures

needs: Arguments .

introduces: procedure , procedure of , passing-mode , procedure-abstraction .

(1) procedure of :: (mode, abstraction) → procedure (partial) .

(2) procedure-abstraction :: procedure → abstraction (total) .

(3) passing-mode :: procedure → mode (total) .

(4) m : mode ;
A : [perhaps store and perhaps escape and perhaps diverge] act ;
A : [perhaps using a given argument current storage] act ⇒
procedure of (m, an abstraction of A) : procedure .



(5) p = procedure of (m:mode, a:abstraction) ⇒
the passing-mode of p:procedure = m ;
the procedure-abstraction of p:procedure = a .

6.4.3.3 Arguments (continued)

needs: Variables .

(1) argument = ✷ variable .

(2) mode = reference-mode copy-mode constant-mode (individual) .

(3) disjoint (reference-mode, copy-mode, constant-mode) = true .

So much for the examples.

7 Conclusion

This introduction to Action Semantics explained meta-notation, Data Notation, and
Action Notation. It also gave some basic examples of action semantic descriptions.
Let us conclude with a critical assessment of the success of the approach.

First of all, there is the question of its universality : can Action Semantics cope—
easily—with all kinds of programming language? Previous experiments (in various
versions of Action Notation) indicate that there is no problem with conventional,
Pascal-like languages,2 nor with eager functional languages like Standard ML.
At present, though, we have no nice way of describing languages with explicit ma-
nipulation of continuations, such as Scheme. Lazy functional languages have not
been tried yet, but should yield to the technique sketched for call-by-need in the pre-
vious section. Languages with synchronous communication, such as occam2 and
CCS, require asynchronous action protocols that reveal how synchronicity between
distributed processes can be achieved—in fact it can’t, in general, unless one intro-
duces some extraneous arbiters, or breaks symmetry some other way! The sharing of
storage between distributed agents is not supported directly by Action Notation, but
can be represented by separate processes—as can communication channels. There is
no support for real-time either. Object-oriented languages tend to have rather com-
plicated scope rules, but otherwise pose no special problems, it seems. How about
logic programming languages? Action Semantics is for explicating the intended op-
erational understanding of a language; preliminary studies indicate that it is possible
to give an action semantic description of the usual procedural semantics of Prolog
(leaving out “assert” and “retract”, which are inherently non-compositional). But
it doesn’t support a description of the declarative semantics of logic programming
languages.

Anyway, if major inadequacies of Action Notation are discovered, it may be
possible to embellish actions with new facets of information processing without
disturbing the old ones, and without undermining the overall approach.

Another aspect of the success of Action Semantics is the question of its accept-
ability , both to theoretical computer scientists and to practical programmers. From

2A showcase action semantics for ISO Standard Pascal is currently being prepared for
publication.



a theoretical point of view, the foundations of Action Notation have indeed been
established—by an operational semantics and derived equivalences—but the theory
of actions is still quite underdeveloped and intractable, especially compared to the
theory of continuous functions that has been provided for Denotational Semantics.
All contributions to developing the theory of actions are most welcome!

It remains to be seen whether practical programmers (such as language designers,
implementors, and standardizers) will abandon informal descriptions of program-
ming languages, and if so, whether action semantic descriptions will win their favour.
Surely the unique extensibility, modifiability, and readability of action semantic
descriptions—obtained without sacrificing formality or compositionality—indicate
that this approach does provide a viable alternative to informal descriptions. By
the way, action semantic descriptions have already been found useful in studies of
semantics-based compiler generation. Tools for the input, browsing, checking, and
interpretation of descriptions are currently being developed.
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Appendix

The following comments provide answers to most of the questions posed about Data
Notation in Section 3.

Numbers/Naturals/Basics:
The individual natural numbers 0, successor 0, . . . , are all just above nothing,
i.e., atoms of the sort lattice. This is because the attribute total includes both
strict and linear , and the only way of expressing a value between an individual
and nothing is by use of intersection & of individuals. For instance we have:

nothing ≤
1 & 2 =
successor 0 & successor 1 =
successor (0 & 1) ≤
successor (0 & successor natural) ≤
successor (0 & positive-integer) =
successor nothing = nothing .

Hence 1 & 2 = nothing, and similarly for all other pairs of individual natu-
ral numbers. The only expressible vacuous sort is the bottom of the lattice,
nothing.

We have only successor natural ≤ positive-integer; the reverse inclusion is not
a consequence of the specification. Since these sorts have the same extension,
they could be equated, if desired.

Tuples/Basics:
We have (0,1) : (0 1)*, but not (0,1) : (0*) (1*). Hence the operation *

cannot be linear .

Numbers/Naturals/Specifics:
Any term of the form sum (successorm 0, successorn 0) can be converted to the
term successorm+n 0 by first using axiom (3) from right to left to eliminate
successor in favour of sum, and then using the associativity of sum to regroup
the summation, before finally using axiom (3) from left to right.

Any cofinite sort of natural numbers can be expressed in Basics by using a
term of the form s successornnatural, where s is a finite union of individual
natural numbers. The sort of even natural numbers isn’t directly expressible
in Basics. It can be expressed in Specifics as product (2, natural).
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