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Abstract

This thesis is about parallelizing the training phase of a feed-forward, arti-
ficial neural network. More specifically, we develop and analyze a number
of parallelizations of the widely used neural net learning algorithm called
back-propagation.

We describe two different strategies for parallelizing the back-propagation
algorithm. A number of parallelizations employing these strategies have been
implemented on a system of 48 transputers, permitting us to evaluate and
analyze their performances based on the results of actual runs. It should be
noted, that we have emphasized the qualitative aspect of the analyses, due to
belief that this should be sufficient to allow us to achieve a fair understanding
of the factors determining the behaviour of these parallel algorithms. Our
main interest is not the theoretical analysis and modeling of the algorithms.
Instead, we are more interested in discovering and deling with some of the
specific circumstances which have to be considered when a parallelized neural
net learning algorithm is to be implemented on a system of transputers. Part
of our purpose is to investigate whether it is possible to exploit the compu-
tational resources of a transputer system to a degree comparable to what is
achieved on other architectures. In this connection we discuss the problems
inherent in comparing different parallel neural net simulators, and criticize
the most commonly used measurement for evaluating the preformance of a
parallelization of the back-propagation algorithm.

It turns out to be very difficult (if not impossible) to give general rec-
ommendations as to which algorithm should be perferred. The appropriate
choice depends on the specific neural net problem in question.

In addition to the above, it is our intention that it should be possible
to use this thesis as a sort of Transputer User’s Guide to Parallelizing Feed-
Forward Artificial Neural Networks.

Throughout the thesis, we present our own results and to some extent
describe the results reported by others in the literature.
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Preface

Artificial Intelligence (AI) is a research field that covers various efforts of
modeling and/or recreating aspects of netural intelligence. One of the two
competing paradigms of the AI community is based on the idea of recreating
intelligent behaviour by imitating the architecture of a biological brain. Such
imitations are often referred to as artificial neural networks, and the programs
used to run them are called neural net simulators.

These networks are not programmed to perform some specific task. In-
stead they are supposed to be able to learn the given task by a trail-and-error
method in which a supervisor supplies the neural network with the correct
responses to all inputs. The most widely used learning rule is the so-called
back-propagation algorithm.

However, traning these artificial neural networks is a computationally
very intensive task, requiring millions of floating point multiplications even
for small networks and small problems. Moreover, neural nets require large
amounts of memory. These two facts make work on neural nets a very time
consuming business, putting an effective limit on the size of the problems
than can be undertaken.

There are several ways to try to compensate for this disadvantage of the
neural networks approach to AI.

One is to reduce the size of the problem by preprocessing the input data,
thereby reducing either the number of iterations necessary to train the net
or the size of the net itself. Sometimes such reduction of input can be done
using some form of decimation to reduce the number of input patterns, or
some projection or feature extraction algorithm can be employed to reduce
the dimension of individual input patterns. It must be noted, though, that
such reductions are almost always problem specific, so that this approach
cannot be generalized to cover all kinds of problems.

Another possibility is the attempt of improving the performance of the
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back-propagation learning rule, either by ad hoc modifications or by applying
results from numerical optimization theory. Work on the so-called conjugate
gradient methods [Johansson] belongs to the latter category.

A third approach is to make existing algorithms run faster either by
implementing them directly in hardware (using VLSI techniques [Tank] or
optics [Abu-Mostafa]) or by modifying them to run on some parallel architec-
ture of existing processors. It is this latter part of the third approach, that we
are going to deal with in this thesis: How to parallelize the back-propagation
learning algorithm.
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Chapter 1

An Introduction to Artificial
Neural Network

1.1 Motivation

For hundreds of millions of years living brains, brought into existence and
continually refined by the ever on-going evolutionary processes of natural
selsction, were the only devices capable of performing information processing
in general.

Then human beings invented the digital computer, an artificial informa-
tion processing device which introduced the prospect of performing arbitrary
computations outside biological nervous systems in human beings and other
animals. However, it soon became obvious that in some important respects
the properties of digital computers were quite different from those of living
brains.

There is a difference in structure: The digital computer (usually) has
only one processing unit which is, however, often quite powerful. Brains, on
the contrary, consist of densely interconnected neurons working in parallel,
each of which is a small and comparatively simple processing unit. With
respect to imfprmation processing capabilities, thougth, the structual differ-
ence is not the most important one because all computers possess the ablilty
of simulating other structures than their own.

More important is the difference in how the abililty to perform some
new function is acquired: Brains learn, whereas computers have to be pro-
grammed. In order to perform a given task, the digital computer needs
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software, programs implementing algorithms that explain in detail how that
task may be performed. A computer without a program cannot process in-
formation or carry out computations. Traditionally, some human being has
both to understand a given information processing function and to devise
an algroithm for implementing it before the computer can be programmed
to perform that function. There are, however, many tasks for which formal
algorithms do not yet exist, or for which it is virtually impossible to write
down a series of logical steps that will make the computer arrive at the cor-
rect answer. Such tasks usually involve obsering a large number of complex,
context dependent rules most of which are as of yet unknown. Examples of
such tasks are the complex pattern-recognition problems inherent in under-
standing continuous speech, indentifying handwritten character, recognizing
faces, or providing a spartial interpretation of two-dimensional images.

Often, though, it is possible to specify the task quite accurately by giv-
ing a very large set of examples showing how objects in some input space
should be associated with objects in some output space. Usually humans
are good at learning to perform such tasks because the brain of higer ani-
mals has evolved to generalize well when presented with a number of exam-
ples. This fact has lead to the development of Artificial Neural Networks
[Rosenblatt, Rumelhart], devices designed to model the workings of biolog-
ical neural networks at some level of detail in order to attain (some of) the
desirable capabilities of the human brain.1

Like the real thing, an artificial neural net is a massively parallel inter-
connected system of simple processing elements. In this respect, artificial
neural nets are based on our present understanding of biological nervous sys-
tems. It should be noted, thougt, that the human brain is more complex by
several magintudes than any artificial neural network currently existing. It
is estimated [Schwartz] that there are on the order of 1010 to 1011 neurons in
the human brain. Each of these neurons typically receives input from thou-
sands or even tens of thousands of synapses connection it to other neurons,
and the resulting activity of the neuron can be transmitted through other
thousands of synapses to impinging neurons, thereby influencing their future
activity.

Also, when speaking of the relation between artificial and biological

1Research into this subject (and related subjects) is also known as Connectionism
(because of the important role played by the connections in the net) or Parallel Distributed
Processing(PDP)[Rumelhart], although the name artificial neural nets apparently has an
appealing flavour to it, since this is a very widely used term.
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neural networks, it is worth noticing that for several reasons the current
level of detail in the modeling of individual neurons is quite coarse. One of
the reasons is the somewhat limited knowledge presently available about the
physiology of biological neurons. Another important reason is that not all
aspects of neuro-physiology may be relevant, if achieving the adaptability
of the brain is the primary goal rather than creating a system that models
nature as closely as possible.

Contrary to traditional computer systems an artificial neural network
is a non-programmed adaptive information processing system that learns
through experience. During the learning phase it is presented with a number
of examples of how it should behave on some input. Gradually, the neu-
ral network adapts itself to the given task through trial-and-error. Instead
of being given a sequence of instructions showing how to carry out some
function the network is able to generate its own internal rules governing the
association between input and output. Those rules are constructed and con-
tinually refined by comparing the results produced by the network with the
ones found in the examples.

Artificial neural networks consist of a set of simple processing elements
called units (sometimes also referred to as neurons because of the association
with biological nervous systems), and a set of links connecting these units.
Activity spreads through the net from units to units via the links, each of
which has a weight (or connection strength) associated with it. The weight,
which determines the amount of effect one unit has on another, is usually
represented by a real number. Depending on the sign of the weight the link
will be either an excitatory or an inhibitory connection, i.e. it will increase
or decrease the activity of the recipient unit. Input to each unit from the
net is formed by combining the output of all units feeding into this unit with
the weights of the corresponding connections. The activity of each unit is
then determined by applying an activation function on the input received
and, possibly, the current activity of the unit. Finally, the output function
maps the activity of the unit to an output signal, which is then propagated
through the links as input to other units. Often, though, as will be the case
for all the networks in this thesis, this output function is simply the identity
function, so that the output from a unit is equal to its activity.

Input from the environment can be impressed on the network by stim-
ulating special units designated for external input, the so-called input units
(or sensory units). Patterns of activity observed on a certain set of units,
the so-called output units (or motor units), are interpreted as the response
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of the network to the given input, i.e. the classification of the input pattern
proposed by the network.

As can be seen, the response of the network to a given input pattern
is determined by the weights of the connections between the units. The
function or association computed by the network can therefore be modified
by changing these weights. Therefore it is the pattern of connectivity that
constitutes what the system knows and determines how it will respond to
arbitrary input. But if knowledge resides in the strengths of the connections,
then learning must be a matter of finding suitable values for these weights.
It follows that a neural net learning rule can be formulated as a rule for
how weights should be modified in response to incorrect or partially correct
output produced by the network.

1.2 The Structure of a Unit

In general, each neural net unit is connected to a number of other units from
some of which it receives input. The unit calculates an activity value which
is sent to a number of other units in the net. Figure 1.1 is an illustration of
a unit with associated input links and output links.

Figure 1.1: A single unit in an artificial neural net

We denote the activity of unit j by aj, the net input to unit j by net j,
and the weights of the links feeding into unit j by wi→j. The net input to a
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unit is calculated in the following way:

net j =
∑

i

aiwi→j (1.1)

where the sum is over all the units i feeding into unit j. The activity of a
unit is calculated as:

aj = fj(net j) =
1

1 + exp(−net j + θj)
(1.2)

where f is the activation function, which is, as can be seen, a nonlinear
function. The function is sometimes called a squashing function since it
takes any real number and squashes it to the interval between 0 and 1. This
is illustrated in figure 1.2 which also shows the effect of θj as a displacement,
so that the function is no longer necessarily anti-symmetrical around zero.
By adding a displacement to the net input it is possible to control the degree
of activity in a unit that does not receive any input from the units feeding
into it. This displacement is usually modeled as an extra link (with weight θj)
feeding into each unit j from an always active, imaginary unit, the so-called
bias unit.

A complete discussion of why the activation function is calculated in
this way can be found in [Rumelhart, chapter 8]. For the sake of clarity we
will omit the displacement θj from all following equations.

Figure 1.2: The nonlinear threshold function

The dynamic behaviour of a single unit can be implemented as a process
in the programming language Occam (See appendix A for a discussion of
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Occam and transputers). The Occam code is given in figure 1.3. The
links feeding into a unit are implemented as Occam communication links,
called channels. The weights of the links are stored in the process. The
process receives the activity of the units feeding into it over the input.link

channels and sends the calculated activity over the output.link channels to
the units that this unit stimulates. The bias.weight value is equivalent to
the displacement θj, and BIAS.UNIT.ACTIVATION is equal to 1.

The unit process in figure 1.3 begins with some initialization, primarily
a setup of the weights, and the unit then receives in parallel the activities of
all units feeding into the unit. After all activities have been received the unit
is able to calculate its own activity, which is then sent to all the units it feeds
into. In a real net with a number of interconnected units, this propagation
of activity will be performed many times. The unit process in figure 1.3,
however, makes only one propagation.

Figure 1.3: A unit as an Occam process

1.3 Feed-Forward Nets

Many kinds of artificial neural networks exist, each characterized by the
choice of net topology, and the types of activation and learning rules used.
In this thesis we will focus on one class of networks only, namely the so-called
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layered feed-forward networks [Rumelhart], also sometimes called multi-layer
perceptrons.

These nets are characterized by the division of units into separate layers,
the first layer being an input layer followed by a number of hidden layers and
finally an output layer. Every unit in a layer receives input from all units in
the previous layer and sends output to all units in the following layer. These
are the only existing connections in the net. Even though a feed-forward net
in general has many hidden layers, only one is used in most applications.
Because this is the case, and the generalization to several hidden layers is
trivial, we will only discuss feed-forward nets with exactly one hidden layer.
Figure 1.4 is an illustration of the topology of a feed-forward net with one
hidden layer.

Figure 1.4: Feed-forward network with one hidden layer

It should be noted that, unlike all other units, the units in the input
layer (input units) are not computational units. Each of the input units
receives only one activity value which is simply spread out to the units that
the input unit feeds into, i.e. all the units in the hidden layer (hidden units).

A feed-forward net which has been trained, i.e. the weights have been
modified in some way to allow the whole net to respond correctly for a given
application, works in the following way: An input pattern is fed to the input
units in the form of a vector of activities, one activity value for each input
unit. The input units simply send these activities to all hidden units. The
hidden units calculate their activities as illustrated in figure 1.1 and send
these activities to all output units. The output units calculate their activities
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in exactly the same way as the hidden units, and the vector of output unit
activities is the response put forward by the net.

Let NI , NH , and NO denote the number of input, hidden and, output
units, respectively, in a feed-forward net. The propagation of activity is given
by the following two equations. For input pattern p the activity of hidden
unit j, aH

pj, is calculated as:

aH
pj = f(netH

pj) = f(
NI−1∑
i=0

aI
piw

H
i→j) (1.3)

where wH
i→j are weights feeding into the hidden layer. Similarly, the activity

of output unit k, aO
pk, is calculated as:

aO
pj = f(netO

pj) = f(
NH−1∑
j=0

aH
piw

O
i→j) (1.4)

where wO
i→j are weights feeding into the output layer.

The input pattern can be a vector of binary values, 0 or 1. This is the
case with NETtalk which we will describe in chapter 5. For other training
sets the input pattern can be a vector of real values, e.g. values between 0
and 1. In both cases the output unit activities will be real values between 0
and 1. These values can either be used directly as input to various external
devices or will have to be interpreted in some application dependent way.

1.4 Training a Feed-Forward Net

In the beginning of a training process the response of the net, when presented
with any input pattern, will be a completely random guess. The task of any
learning algorithm is to adjust the weights of the net in such a way that
the performance of the net reflects the desired function between input and
output as closely as possible. The rest of this chapter will be a more detailed
description of what “as closely as possible” means and a description of a
specific learning algorithm, the back-propagation algorithm [Rumelhart].

In this learning scheme (called supervised learning) the net very directly
is told what is right and what is wrong. This is done with target patterns. For
every input pattern, there is a matching target pattern for the output units.
When the input patterns are presented to the input units and propagated
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through the net to produce responses, the net is told the right answers, the
target patterns. The net is then supposed to use this information to respond
more correctly the next time the same input patterns are presented. To
measure how well the net responds to a given pattern, we define the error of
pattern p, Ep, in the following way:

Ep =
1

2

∑
k

(tpk − aO
pk)

2 (1.5)

where tpk is the target of output unit k for pattern p and aO
pk is the

activity of output unit k for pattern p. The sum is over all the output units.
The error of all patterns, E, is then defined as:

E =
∑

p

Ep (1.6)

It is now possible to describe in a precise way how the performance of a net
is measured. A net performs well when the overall measure of error is small.
When E gets smaller the performance gets better. Hence, the task of any
learning algorithm is to minimize the error function E.

For a given set of input/target patterns, E is only a function of the
weights (including the bias weights). Let N be the number of weights in a
net, i.e. N = (NI +1)∗NH +(NH +1)∗NO . Consider the N +1 dimensional
vectorspace given by the weights and the error function E (defined by the
weights). The values of the error function will describe a continuous differ-
entiable surface in this vectorspace. This is perhaps best explained by the
example in figure 1.5 where the error is only a function of two weights, giving
an error function describing an error surface in 3-dimensional vectorspace.

There is one set of weights, or maybe several, where E is as small as
possible and when such a set of weights is found, the net has learned the
task. However, there is no known way to calculate these weights directly, i.e.
given the input/target-patterns there is no equation that will produce the
right weights. All learning algorithms usually find only a sufficiently close
approximation of this set of weights by some iterative search through the N
dimensional weight space.

The process of learning begins with an initialization of the weights. They
are set to random values, e.g. between −0.5 and 0.5. Then E is calculated
given these initial weights and a point on the error surface is defined. By
changing the weights one can move around on the error surface. But, the
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Figure 1.5: Error surface

value of E alone (the height of the error surface in the point given by the
weights) gives no hint on how to change the weights. Additional knowledge
is required. This additional knowledge is the structure of the surface in a
local neighbourhood of the point. A Taylor expansion gives such knowledge;
the more terms calculated of the Taylor expansion the more detailed the
knowledge of the local structure is. When such knowledge is attained, the
algorithm can determine a direction in which to move on the surface and
thus find a new set of weights. This process is repeated until a set of weights
has been found such that E is sufficiently small.

12



1.5 Back-Propagation

Moving around on an error surface sounds easy enough, but it was not until
1986 a useful and efficient algorithm dealing with nets with hidden units2 was
found by Rumelhart et.al. [Rumelhart]. The algorithm is a gradient descent
method. When E is calculated given a set of weights, the gradient in that
point is calculated, i.e. only one term in the Taylor expansion is calculated
apart from E itself. The weights are changed in proportion to the negative
gradient. In this way the method in its simplest form becomes a steepest
descent algorithm.

A full discussion of the mathematical background can be found in
[Rumelhart] so we will just outline the ideas and give the results.

1.5.1 Calculating Gradients

In the following we will describe how the gradients are computed, since knowl-
edge og these equations is essential in order to be able to parallelize them.

For input pattern p let the change of a weight between arbitrary layers (l
and m), ∆wl→m, be proportional to the negated derivative of E with respect
to the weight wl→m:

∆wl→m ∝ − ∂E

∂wl→m

= −
∑

p

Ep

∂wl→m

(1.7)

where E and Ep are the error functions defined in equations 1.6 and 1.5,
respectively.

The application of the back-propagation learning rule involves two phas-
es: During the first phase the input, is presented and propagated forward
through the net to compute the output unit activity values. These values are
then compared with the targets, resulting in an error value eO

pk = tpk − aO
pk

for each output unit. This error value is then used in computing a so-called
delta value:

δO
pk = f ′(netO

pk)(tpk − aO
pk) = aO

pk(1 − aO
pk)(tpk − a0

pk) (1.8)

2Algorithms dealing with nets consisting of only an input and an output layer have
been known since 1959, but these nets are incapable of learning some complex tasks, e.g.
the XOR-problem. See [Minsky] for a discussion.
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used in the calculation of the gradient.
The second phase involves a backward pass through the net (analogous

to the forward pass) during which the delta values are propagated backwards
in the net. The units of the hidden layer calculate their delta values in the
following way, δH

pj being the delta value of hidden unit j:

δH
pj = f ′(netH

pj)
∑

k

δO
pkw

O
j→k = aH

pj(1 − aH
pj)

∑
k

δO
pkw

O
j→k (1.9)

where δO
pk is the delta value of output unit k and the sum is over all output

units.
Now it, is possible to compute the gradient. The derivative of Ep with

respect to a weight between the hidden and output layers, wO
j→k, is calculated

as:

∂Ep

∂wO
j→k

= −δO
pka

H
pj (1.10)

Similarly, the derivative of Ep with respect to a weight between the input
and hidden layers, wH

i→j, is calculated as: −δH
pja

I
pi.

1.5.2 Calculating Weight Changes

The weight changes can now be calculated. When equation 1.10 is combined
with equation 1.7 for the weights between the hidden and output layers we
get:

∆wO
j→k = −η

∑
p

∂Ep

∂wO
j→k

= η
∑

p

δO
pka

H
pj (1.11)

where η is a learning rate constant, defining the proportionality factor of
equation 1.7.

Normally this rule is extended t,o include a momentum term α, such
that:

∆wO
j→k(n + 1) = −η

∑
p

δO
pka

H
pj + α∆wO

j→k(n) (1.12)
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where n indicates the learning cycle, i.e. the number of times the weights have
been changed. In this way the weight change depends not only on the most
recently calculated gradient but, also on previous changes. This provides a
kind of momentum in weight space that effectively filters out high-frequency
variations of the error surface in the weight space. This turns out to reduce
the learning time.

Equations 1.11 and 1.12 are easily generalized to the weights between
the input and hidden layers.

The described method is known as the true gradient method [Bourrely]
and updating weights in this way is also called epoch updating. This is the
mathematically correct way of updating weights.

Another method exists, however, known as the stochastic gradient method
[Bourrely]. In this method the weights are changed after each presentation
of a single pattern. The expression pattern updating is used. The weights
between the hidden and output layers are now changed according to the
following equation:

∆pw
O
j→k = −η

∂Ep

∂wO
j→k

= ηδO
pka

H
pj (1.13)

This equation is normally also extended to include a momentum term such
that an equation similar to 1.12 emerges:

∆pw
O
j→k(n + 1) = −ηδO

pka
H
pj + α∆pw

O
j→k(n) (1.14)

If weights are changed according to equation 1.14 the direction of the move-
ment is the gradient direction of the error surface defined by Ep rather than
the gradient direction given by E. Obviously, different error functions Ep

define different error surfaces. Therefore updating the weights according to
equation 1.14 for some p will decrease the value of Ep but not necessarily
that of E.

The stochastic gradient method may seem strange because it is E we
want to minimize, and indeed the method is in no way mathematically cor-
rect. However, empirical studies made from the very beginning by Rumelhart
et.al. show that the stochastic gradient method outperforms the true gradient
method on most realistic applications.3

3Problems like the parity problem are learned faster with epoch updating than with
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The two methods are extremes. It is, of course, possible simply to update
the weights once some specific number of patterns have been presented. If
the sizes of these sub-sets of training patterns remain constant throughout all
learning cycles, one such sub-set is usually referred to as a batch of patterns,
and the number of patterns used in performing each weight update is called
the batch size. When this kind of updating is used we speak of using batch
updating of the weights.

The number of patterns used in each weight update may also be a vari-
able number depending on some property of the training patterns. This is
the case in the NETtalk application described in chapter 5. Weights are
updated each time a number of patterns corresponding to all the letters in
one word have been presented.

1.6 An OCCAM Implementation of Back-Prop-

agation

To illustrate how the back-propagation algorithm works, we will extend the
simple forward pass unit of figure 1.3 to a full scale unit including the back-
ward pass. Inspired by Welch [Welch], who has worked with a simulation of
logical circuits in Occam, we will feed the artificial neural net with input
patterns and target patterns from an external environment. This is illus-
trated in figure 1.6.

Figure 1.6: An environment controlling an artificial neural network

A net such as the one in figure 1.6 can be trained to solve the XOR-

pattern updating. However, these are generally not very interesting problems to teach an
artificial neural net.
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problem. There are two input units, two hidden units, and one output unit
which result in nine weights (six weights between the five units and three
bias weights feeding into the hidden and output units). The XOR-problem
consists of only the four patterns given in table 1.1.

Input Target
0 0 0
0 1 1
1 0 1
1 1 0

Table 1.1: Input/target patterns for the XOR-problem

The XOR-problem may seem very simple and indeed it is no problem at
all manually to find values for the nine weights of the net, such that it will
respond correctly to all four input patterns. For larger nets, however, there
was no general algorithm that could find useful weights, in a reasonable
amount of time, before the introduction of the back-propagation algorithm
in 1986.

The environment is a process running in parallel with a simulator process
managing the units (the expression neural net simulator is normally used in
connection with neural net implementations). The two processes are given
in figures 1.7 and 1.8, respectively.

Figure 1.7: The environment process

As can be seen in figure 1.7, the learning phase runs for a fixed number
of steps. Each time a new pair of input/target patterns is chosen. The
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Figure 1.8: The simulator process

input pattern is sent to the input units (via the input.link channels). The
net’s response is collected from the output units (via the response.link

channels). Finally, the correct target pattern is sent back to the output units
(via the target.link channels).

The feed-forward unit process of figure 1.3 can be extended to include
the backward pass. Since there is a difference in the way delta values are
calculated depending on the type of the unit, we have programmed three
different unit processes – an input unit process, a hidden unit process, and
an output unit process. These are given in figures 1.9, 1.10, and 1.11, respec-
tively. The units obey the pattern updating scheme.

The links for communicating internally between the unit processes are
placed in two-dimensional arrays called hidden.link and output.link. The
hidden links are the links feeding into the hidden units and the output links
feed into the output units.

Figure 1.9: An input unit
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Figure 1.10: A hidden unit

Figure 1.11: An output unit

Figure 1.12: Hidden unit activity propagation

Figures 1.12 and 1.13 are fold expansions of the corresponding folds
in figure 1.10. Note that the displacement of the activation function as
given in equation 1.2 is changed just as any other weight. The learning
rate and momentum terms are normally set to 0.2 and 0.9 respectively, see
[Rumelhart].
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Figure 1.13: Hidden unit weight change calculation

Like the environment process the unit processes now run for a fixed
number of iterations. The complete program can be found in appendix B.1.

Even though the overhead involved with process managing on the trans-
puter is very low, the program as sketched above with individual processes
for each unit in an artificial neural net is not very efficient. We have also pro-
grammed a standard implementation of the back-propagation algorithm, i.e.
a sequential, non-process oriented program, which can be found in appendix
B.2.

We have run both versions on the XOR-problem and nets of larger sizes.
In table 1.2 are the results.

Net size Standard Process oriented
implementation implementation

XOR-problem 0.24 sec 0.33 sec
10-10-10 3.32 sec 9.22 sec
20-20-20 12.70 sec 38.44 sec

Table 1.2: Comparison of standard and process oriented versions

The execution times in table 1.2 are for 1000 iterations and the pattern
updating scheme has been used. The net 10-10-10 is a net with 10 input
units, 10 hidden units, and 10 output units. Likewise for the 20-20-20 net.
The XOR-problem is a “real” problem and the net actually learns the XOR-
function. This is not the case with the other two nets. They are simply nets
of convenient sizes with pseudo learning tasks.

The process oriented version is only 40% slower than the standard im-
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plementation of the XOR-problem (a 2-2-1 net). However, it is three times
slower for the larger nets. This is easily explained, because the calculations
in the units are identical for the two versions, and the overhead for the pro-
cess oriented version is due to communication over the links. In the 2-2-1 net
there are 5 units and 6 links and in the 10-10-10 net there are 30 units and
200 links. The links/units ratio is much larger in nets with more units and
thus the time used to perform the link communications becomes essential.

Although the process oriented version is parallel by nature, we will not
use this version or extend it when we develop versions for running on several
transputers, due to its slowness.

1.6.1 Analysis of the Sequential Program

The back-propagation algorithm uses floating point operations to a very high
degree. We will now analyze how well our implementation of the algorithm
makes use of the transputer’s floating point capabilities. Table A. 1 in ap-
pendix A (page 130) gives the speed of the four basic floating point opera-
tions. We will use these in the following.

In the forward pass the calculations, as given by equations 1.3 and 1.4,
use 1 addition and 1 multiplication per weight in both layers. In addition,
33.5 µsec is used per unit in the hidden and output layers to calculate the
activation function. This high number mainly stems from the calculation of
the exponentiation function.

In the backward pass the calculations of delta values for output and
hidden units, as given by equations 1.8 and 1.9 use 2 subtractions and 2 mul-
tiplications per output unit, 1 subtraction and 2 multiplications per hidden
unit, and finally 1 addition and 1 multiplication per weight feeding into the
output layer.

When calculating the weight changes, as given by equation 1.14, the
algorithm uses 1 addition and 3 multiplications per weight in both layers.
The actual changing of the weights requires just 1 addition per weight in
both layers. All these numbers are summarized in table 1.3. The last column
gives the total times used per unit and weight.

To see how well we utilize the transputer’s floating point capabilities, we
examine the simulation of the 20-20-20 net. In this net there are 20 units in
each layer. There are 420 weights between the input and hidden layer (400
weights between the units of two layers and 20 bias weights feeding into the
hidden layer units). Likewise for the weights between the hidden and output
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Operation count +/− ∗ Total time
Per hidden unit 1 2 35.1 µsec
Per output unit 2 2 35.4 µsec
Per weight between input and hidden units 3 4 3.5 µsec
Per weight between hidden and output units 4 5 4.4 µsec

Table 1.3: Floating point operations used in pattern updating

layers, giving a total 840 weights in the net.
This results in a total of 3000 additions and 3860 multiplications. With

the extra 33.5 µsec used per unit in the hidden and output layers, a total of
0.0047 seconds is the theoretical lower bound on the calculation time for one
forward and one backward pass. The execution times of table 1.2 are for one
thousand iterations. With an execution time of 12.7 seconds our implemen-
tation utilizes 37% of the available floating point operations capacity. This is
not impressive but still a good utilization. Additionally, the implementation
consists of more than floating point operations. There are substantial index
calculations, all weights are copied for each iteration, and so forth.

For comparison, Christiansen and Tolbøl [Christiansen] have implement-
ed an algorithm for calculating the Mandelbrot set. Like neural network sim-
ulators this algorithm uses floating point operations to a very high degree.
Christiansen and Tolbøl were able to utilize 46% of the transputers’ floating
point capabilities. By optimizing critical parts of the algorithm, i.e. imple-
menting the parts directly in machine code, they were able to increase the
performance by 26% (from 46% to 58%).

For comparison of execution times, Petrowski et.al. [Petrowski] give the
execution time of their sequential back-propagation implementation on a
transputer. The transputers they are using are T800-20 (20 MHz) whereas
we are using T800-30 (30 MHz). When executed on nets of varying sizes, our
implementation is between 1.86 and 2.07 times faster. If we assume that the
T800-30 processor is 50% faster than the T800-20 then our implementation
is still faster (between 1.24 and 1.38 times).
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Chapter 2

Parallelizing Algorithms

2.1 Parallelization Strategies

Whenever one is trying to transform a sequential algorithm into a parallel
one, there are at least two possible strategies worth considering. In the neural
net context these two strategies are usually referred to as data partitioning
and net partitioning, respectively.

2.1.1 Data Partitioning

If the same algorithm is to be applied a large number of times on different
sets of data, then it is often very efficient to run these tasks concurrently
on different processors, provided that the tasks are truly independent, i.e.
the execution of one task does not depend on the results of the other tasks.
This parallelization strategy is sometimes referred to as job-level parallelism
[Forrest] or data partitioning [Pomerleau1].

If the weights in a neural network are only updated after the presentation
of several patterns, each of those pattern presentations are independent tasks
that may be carried out concurrently. Therefore if epoch or batch updating
of the weights are used during the training run of some neural network,
then the data partitioning approach is very easily applied: The training data
are simply distributed evenly among the available processors, all of which
simulate the entire network but on different sub-sets of training data. Once in
a while the results of presenting the various groups of patterns are combined
and a weight update is performed.

When applied to neural networks the data partitioning strategy is also
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referred to as training parallelism [Millán] for obvious reasons.
It is worth noting at this point, that data partitioning is not possible

if the weights are updated after each pattern has been presented. When
pattern updating is used the state of the network is changed as a result of each
pattern presentation. Therefore the result of presenting one pattern depends
on the results of all patterns presented earlier, which means that the tasks
of presenting individual patterns no longer can be considered independent.

We are going to describe and analyze the properties of a number of
parallelizations that exploit the data partitioning strategy in chapter 3.

2.1.2 Net Partitioning

Another way of employing parallelism is to use the so-called geometric [Forrest]
or spatial [Millán] parallelism. In this approach it is the execution of the al-
gorithm on one set of data which is parallelized. This is done by distributing
the data amongst the processors in such a way, that all data required by a
processor are stored in that processor or is easily accessible from one of the
neighbouring processors when needed.

When applied to neural networks this strategy is often called net parti-
tioning [Pomerleau1], since the processing of one pattern can be parallelized
by dividing up the network, letting each processor handle a small part of the
net.

A discussion of different ways of cutting up the network as well as a
detailed description of (the construction of) an implementation of the net
partitioning strategy for parallelizing neural networks can be found in chapter
4.

2.2 Analyzing Parallel Algorithms

We will now introduce some concepts that will be useful in analyzing the
performance of parallel neural network algorithms. The primary concern is
how well the resources of the extra processors are exploited. The degree of
exploitation is called the efficiency. When analyzing a parallel algorithm we
are interested in varying a number of parameters in order to find out how
the efficiency of the algorithm is influenced by those parameters. Examples
of such parameters are neural network specific parameters like the number of
units in each layer, the number of weights, the frequency with which weights
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are updated, and so on. There are also parameters which are related to the
parallelization itself, most notably the number of processors used in executing
the algorithm, and how those processors are configured, i.e. the pattern of
processor inter-connectivity.

In order to give the formal definition of efficiency it is necessary to know
a bound on how much faster we can expect a parallel algorithm with P pro-
cessors to perform. We will therefore introduce another often used concept,
namely that of speed-up [Fox1] before giving the formal definition of effi-
ciency. Since the primary goal of any parallelization is to reduce the running
time, a natural way of measuring the performance of a parallel algorithm is
to directly compare its execution time on some specific problem with that of
the corresponding sequential algorithm, so as to determine how much faster
the parallel algorithm is.

More formally, the speed-up of a parallel algorithm on a specific problem
is defined to be the ratio of the execution time Tseq of the sequential algorithm
to the execution time Tpar of the parallel algorithm when both algorithms
are applied to that problem:

S(P ) =def
Tseq

Tpar(P )
(2.1)

where P is the number of processors used in executing the parallel algorithm.
In general, the sequential algorithm used should be the fastest known. How-
ever, in order to be able to use this measure of speed-up in evaluating whether
we have been successful in parallelizing some specific algorithm, we will put
a number of further restrictions on how Tseq should be obtained. Thus, we
require that the sequential algorithm should be implemented in the same pro-
gramming language as the parallel version, and the processor running this
sequential algorithm should be identical to the processors used in executing
the parallel algorithm. Furthermore, the sequential and parallel algorithms
must be run on exactly the same data, and with identical neural net specific
parameters, including the frequency of weight updates.

Any parallelization of the back-propagation algorithm must contain all
the computations found in the sequential algorithm. Therefore, if the only
cause for the speed-up of a parallel neural net algorithm is the fact, that cal-
culations can now be performed concurrently, then obviously it follows that
the speed-up S(P ) of some parallel algorithm with P processors is bounded
by the value of P . With P times as many computational resources the best
we can hope to achieve is a reduction of the execution time by a factor of P .
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However, it should be noted that the execution time of a parallel algo-
rithm may sometimes be reduced by other circumstances related to hardware
specific properties of the processors used. One such example is the small and
fast on-chip memory found on each transputer (see appendix A.1). If the
on-chip memory is used to store part of the units or weights of the neu-
ral network and a net partitioning parallelization approach is used, then we
might observe a speed-up of more than P with P processors due to the fact,
that as more processors are used a still larger fraction of the neural net may
be stored in the faster on-chip memory.

To avoid any difficulties with phenomena like the above (and since the
effect of storing a fraction of the net or part of the program in on-chip memory
is relatively small) we have decided to make no use of the on-chip memory
in the transputers, i.e. we have explicitly filled the on-chip memory with
“garbage”, so that no part of the transputer system might try and use this
memory “behind our back”. Only exception is the runs made on the NETtalk
data set (see chapter 5), since those runs are not intended for analysis of the
parallel algorithm, but merely for comparison with the results obtained on
other parallel architectures. Whenever nothing specific is mentioned, on-chip
memory is not used.

With the above definitions, we are now able to express efficiency as the
ratio of observed to optimal speed-up. If we assume that speed-up is only
due to the effects of concurrent computations, i.e. that S(P ) is bounded by
P , we can give the following formal definition of efficiency:

E(P ) =def
S(P )

P
=

Tseq

Tpar(P )P
(2.2)

As can be seen the value of E(P ) is bounded by 0 and 1 (provided that
our assumption holds).

2.3 Main Objectives of a Parallelization

The most important reason for parallelizing an algorithm is usually the de-
sire to attain a reduction in the execution time of that algorithm. Such a
reduction in the time required to let the algorithm process some set of data
is desirable since it will not only allow more tasks of the same size to be un-
dertaken, it will also make practical the handling of computationally larger
tasks [Fox1].
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Also, larger tasks with respect to memory requirements (i.e. problems
with larger data sets) can be managed if the parallelization allows the data on
which the algorithm works to be distributed among the available processors,
thereby reducing the memory demands of individual processors. Therefore,
the total memory requirement of a parallel algorithm should preferably be
no larger than that of the sequential algorithm.

If an efficient parallelization of an algorithm can be devised it is an easy
and cheap way of speeding up the execution of the algorithm. Provided that
the efficiency of the parallel algorithm is preserved even when large numbers
of processors are used, a system of parallel processors will often be able to
out-perform one single powerful computer. Moreover, a parallel system is
usually easily extended, so that extra speed can be attained by adding a few
extra processors to the system.

However, parallelizing algorithms is generally not a trivial task. A num-
ber of circumstances have to be considered, including the properties of the
physical hardware available: If the algorithm is to run on a shared-memory
parallel computer, it is necessary to take into consideration whether concur-
rent read and write operations are allowed, and if so, at what cost. If, on the
other hand, the available computer is a distributed-memory multi-processor
machine (as the transputer system) in which each processor has its own
memory and no direct access to the memories of other processors, then it is
important to know how fast the inter-processor communication is, compared
to the computational capabilities of each individual processor. Especially so,
if (as is the case with the transputers) communication and calculation can
be performed concurrently, since this will allow communication to take place
at little cost as long as the time required is smaller than the computation
time (see appendix A.4).

Also, there will most likely be restrictions as to how the processors may
be configured, i.e. how they may be wired together. An easily extendable
processor configuration is preferable since this will allow extra processors to
be put to use as soon as they become available. Also, if the number of pro-
cessors can be chosen completely at will, it is often easier to distribute the
neural net problem in even shares to all processors. Therefore, in general,
architectures like a hypercube topology should be avoided unless there are
some other large advantages to be gained from using such a processor config-
uration. This is also the case with topologies like the two-dimensional torus
and mesh where the number of processors must be a multiple of two integers,
preferably two identical integers so that the two dimensions in the torus or
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mesh are of equal size.
The most dynamic of processor topologies is the ring configuration in

which the number of processors can be chosen arbitrarily. Also easily ex-
tendable is the topology in which processors are configured as a binary tree,
although such a tree cannot always be completely balanced.

In addition to the issue of extendability another issue worth considering
when choosing processor topology is the cost of non-local communication.
This issue turns out to be less important, since it is possible for us to con-
struct all algorithms (expect the algorithm discussed in section 3.3) so that,
when needed, data are always available in neighbouring processors without
requiring any extra communications.

2.4 Sources for Inefficiency in a Parallel Al-

gorithm

There are a number of reasons why a parallel algorithm may not utilize the
available computational resources as efficiently as the corresponding sequen-
tial algorithm. When a lack of efficiency is observed in some specific algo-
rithm it will most likely be the result of several of the causes for inefficiency
described below. We will discuss what causes apply to what algorithms in
the relevant sections on these algorithms.

2.4.1 Software Overhead

It may be necessary to introduce additional or more complex index calcu-
lations in each processor in order to handle data originating from various
other processors. Or the sequence of calculations may have to be altered
for some reason (see section 2.4.3), so that some temporary results perhaps
no longer are available when they are needed again and therefore have to be
re-calculated. Any such extra work will reduce the efficiency of the algorithm.

However, if software overhead constitutes a constant fraction of the work
performed in each processor regardless of how many processors are used, then
the total amount of work pertaining to software overhead is independent
of the number of processors. Since such work is necessarily performed in
parallel the efficiency of the parallel algorithm is always reduced by the same
constant factor, irrespective of the number of processors used in executing
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the algorithm:

E(P ) =
Tseq

Tpar(P )P
=

Tseq

Tseq+Tsoft

P
P

=
Tseq

Tseq + Tsoft

(2.3)

In the above equation we have assumed that software overhead independent
of the number of processors is the only cause for inefficiency in the parallel
algorithm. Tsoft is the time required for one processor to perform the work
associated with the total amount of software overhead.

Since efficiency is reduced by a constant factor, this kind of software
overhead cannot put a limit to the speed-up that can be achieved on some
given neural net problem. The presence of such software overhead merely
results in a fixed poorer utilization of each individual processor involved in
running a neural net simulation.

If, on the other hand, the software overhead in each processor is not
reduced as much as the number of processors is increased then software over-
head will constitute a growing fraction of the work performed, both in each
individual processor and in the system as a whole. In this case, efficiency
will deteriorate as the number of processors is increased.

2.4.2 Load Balancing

A system of concurrently working processors has not finished until all pro-
cessors have finished. Therefore it is important to ensure that the workload
is distributed evenly among the processors, so that each processor performs
the same amount of work. Moreover, the workload should be balanced evenly
among the processors at all times during the execution of the algorithm, since
otherwise the processors may simply alternate between working and waiting
in such a way, that even though all processors have handled equal shares of
the total workload they have not done so fully in parallel.

Load balancing problems may or may not become more pronounced as
the number of processors grows, depending on the processor configuration
used and the nature of the neural net problem.

2.4.3 Communication Overhead

Any time used for communication will reduce the efficiency of the algorithm,
since this is extra work as compared to the sequential algorithm. This means,
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that one should try to minimize the amount of inter-processor communica-
tion, at least if such communication cannot take place concurrently with
some of the computational work.

On the transputers, though, communication and computation may gen-
erally be interleaved so that the cost of communicating may become nearly
insignificant, provided that no computations have to wait for the communi-
cations to finish. Therefore an important consideration in the construction
of parallel algorithms for use on transputers is the rearrangement of the se-
quence of necessary computations in order to be able to achieve the highest
possible degree of concurrency in the performance of communications and
calculations. Sometimes, however, there may not be any computation left
that does not depend on the data being communicated at this point. Also,
it is worth noticing that although the cost of communication can be reduced
significantly by performing it concurrently with calculation, the cost never
becomes completely negligible. See appendix A.4 for a full discussion of this.

In several of our parallelizations the amount of data communicated by
each processor does not depend on how many other processors there are.
That is, the time used for communication in each processor is not reduced
when the number of processors is increased. Since each processor’s fraction of
a given neural net problem becomes smaller and smaller as more processors
are used in simulating the neural net, this means that a growing fraction of
the running time is spent on communication, leading to a steady decrease in
efficiency.

Let us for the sake of the argument assume that for some parallel algo-
rithm the only cause for less than optimal efficiency is the communication
overhead. That is, everything else but communication is perfectly paral-
lelized. Furthermore, let us assume that the time used in each processor for
communicating with other processors depends only on the size of the neural
net problem, i.e. that the time spent on communication in each individual
processor is independent of the total number of processors. We can now
express the speed-up of such an algorithm in the following way:

S(P ) =
Tseq

Tpar(P )
=

Tseq

Tseq

P
+ Tcomm

(2.4)

Note, that if Tcomm, the time spent in each processor on communication,
is zero then speed-up is optimal. On the other hand, if Tcomm is different
from zero communication overhead will effectively have put an upper limit,
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Tseq/Tcomm, to the speed-up that can be achieved using this algorithm on
some specific neural net problem, no matter how many processors are used.

In general, the considerations about the effects of software overhead
also apply to the issue of communication overhead. If the time used for
communication in each processor is not reduced as much as the number
of processors is increased then this communication overhead will cause the
efficiency to deteriorate as more processors are used.

2.4.4 Inherently Sequential Parts of the Algorithm

There may be inherently sequential parts of the algorithm, i.e. parts of the
algorithm that simply cannot be parallelized, e.g. because the execution of
each step in the algorithm depends on the completion of the previous step.
In a neural net context such inherently sequential parts may often be found
in the initial distribution of weights or training patterns, as well as in the
final collection of partial results from individual processors. Another example
may be the calculation of a global scalar product (as found in the conjugate
gradient [Johansson] learning algorithms for neural networks). It is worth
noticing that an inherently sequential part of the algorithm may sometimes be
parallelized in the sense that all processors carry out the same computations,
each processor performing the sequential part on its own, computing the
result all by itself. This does not, however, constitute a true parallelization,
since the running time required for obtaining the result is not reduced as
compared to the sequential algorithm. Though it may be a more elegant (and
efficient) solution than having one single processor perform the computations
since this would require a broadcast of the result to all other processors
afterwards.

If an algorithm contains inherently sequential parts, the time required for
executing these parts will form a limit to the speedup that can be attained,
no matter how many processors are used. This is usually known as Amdahl’s
law [Fox1]. It states that if some inherently sequential part of the algorithm
takes fraction 1/α of the running time when the algorithm is executed on
one processor, then it will not be possible to obtain a speed-up larger than
α. As more and more processors are used the time necessary for executing
the sequential part will take up a larger and larger part of the running time,
thereby reducing efficiency.
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2.4.5 Problem Specific Limitations

It is important to realize that as long as only one parallelizing strategy is
used, there is always a theoretical limit to the speed-up that can be achieved
on a problem of fixed size.

Any parallelization consists of dividing up the problem into a number of
sub-problems, that can be distributed among the available processors. Dif-
ferent parallelization strategies split the original problem in different ways,
along different dimensions, so to speak. For each dimension, each paralleliza-
tion strategy, there is a limit to the number of sub-problems into which the
original problem can be decomposed. This number of sub-problems forms
an upper bound on the number of processors that can be used profitably in
the parallel algorithm, since each processor should handle at least one single
sub-problem.

As an example, consider a simple implementation of the data partition-
ing strategy for parallelizing neural networks. In the context of such an
algorithm, the presentation of a pattern in the current batch of training pat-
terns represents one sub-problem which can be solved by a single processor.
However, in this case the original problem cannot be divided into more such
sub-problems than there are patterns in the batch, since each processor must
handle at least one pattern (or it will do nothing more than simply disturb
the processors that do have a part of the batch). In other words, using only
the data partitioning approach we can never expect a speed-up larger than
the batch size used.

Likewise, we may experience in an implementation of the net partitioning
approach that we are unable to apply more processors than there are units
in the neural net, this way limiting the speed-up that can be achieved to the
number of units in the net.

It should be noted that the above limitations are mostly theoretical,
since usually speed-up is bounded by the effects of a number of other reasons
for inefficiency, most notably software and communication overhead.

2.5 Neural Net Specific Considerations

Usually when parallelizing algorithms it goes without saying that the only
difference between the sequential and parallel algorithms should be the speed
with which they are executed. In other words, the two algorithms should be
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functionally identical, i.e. they should produce the same output.
In the neural net context this means that the quality of learning in terms

of generalizing ability and learning speed (measured in number of pattern
presentations) should be preserved by the parallelization of the algorithm.
However, strange as it may sound, this is actually not always the case for
parallelized neural net learning algorithms.

The problem occurs because of the varying frequency with which the
weights in the neural net are updated. The quality of learning is heavily
influenced by how many patterns are presented to the net between weight
updates (i.e. by the size of the batch of training patterns) as we shall see
in chapter 5. Of course the sequential back-propagation algorithm may use
whatever frequency of weight updating is suitable for the specific neural net
task undertaken. However, in parallelizations of back-propagation (especially
of the data partitioning kind) the weights are often not updated with the
frequency most suitable to the given neural net problem. Instead, the number
of pattern presentations between weight updates is chosen so as to suit the
parallelization. As a result of this, the size of the batch usually varies with
the number of processors used in executing the parallel algorithm.

Neural network learning algorithms are parallelized because of the desire
to achieve an increase in the speed (measured in absolute time) with which
the network can be trained to perform a given task to a certain degree of
perfection. Therefore, as a consequence of the described effect of varying the
batch size, the correct way of comparing different parallel algorithms is not
by measuring the number of patterns that each algorithm can present to the
net per second, because this does not take into account any differences in the
effect on learning of each pattern presentation. Ideally, parallel algorithms
should be compared by measuring how fast each algorithm could train a given
neural net to perform a certain task to some degree of perfection. However,
the effect of batch size on the quality of learning varies in different neural net
applications. Consequently, if the two parallel algorithms to be compared
use different batch sizes our evaluation of them will depend on what neural
net problem we use as a benchmark.

The conclusion to the above considerations is, that in order to really
perform a fair comparison of two parallel algorithms (whether running on
the same system of processors or not) they should be applied to the same
neural net problem, and all parameters should be identical, most notably the
size of the batch.
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2.6 Experiments for Performance Analysis

In general, we wish to enquire about the effect of all kinds of parameters on
the efficiency of the parallel algorithm, be it neural net specific parameters
like the size of the batch, or hardware specific parameters like the structure
of the processor configuration or the number of processors used in executing
the algorithm.

As we noted in section 2.3 there are two main reasons for parallelizing
an algorithm. One is to reduce the time required for applying the algorithm
to some specific problem. The other is to allow an increase in the size of the
problems that can be undertaken.

2.6.1 Fixed Problem Size

For a number of fixed problems we will show the effects of increasing the
number of processors used in executing the parallel algorithm on the problem
concerned. If the fraction of time wasted in each processor is proportional
to the number of sub-problems handled by that processor, then speed-up
graphs will be straight lines, i.e. speed-up will be linear in the number of
processors (as long as there are fewer processors than sub-problems), and the
efficiency graph will be a horizontal, straight line, indicating that efficiency
is independent of the number of processors used.

If, on the other hand, the fraction of time wasted in each processor
grows with the number of processors, then efficiency deteriorates as more
processors are used. This will make the speed-up graphs curve, making them
look similar to the graphs in figure 3.5 on page 47.

Whenever possible we will try to interpret the graphs in order to find out
which of the circumstances mentioned in section 2.4 plays the most important
role in reducing the efficiency of the algorithm in question.

2.6.2 Variable Problem Size

We would also like to examine the effects of scaling the size of the neural
net problem with the number of processors in order to determine how much
larger a problem can be handled (with same degree of efficiency) when more
processors are used. Ideally, it should be possible to use twice as many
processors when the size of the problem is doubled. However, as we shall see,
it is difficult to measure the size of a neural net problem.
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More precisely, the size of a problem is the amount of computational
work associated with solving the problem (using the sequential algorithm).
When speaking of neural net problems, solving the problem means training
the net until a certain degree of perfection is reached.

For this reason it is usually very difficult to compare the sizes of two
neural net problems, since the inclusion of extra units in the net or an increase
in the size of the batch may or may not change the number of learning cycles
needed to attain some pre-set level of perfection, depending on what learning
task the net is trained to perform.

For some specific learning task, we cannot simply assume that a net
containing twice as many hidden units represents a problem (nearly) twice
as large1 since both too few and too many hidden units may increase the
number of learning cycles required to obtain a given performance.

Similarly, increasing the batch size may lead to a poorer performance
of the net with respect to the number of learning cycles necessary to obtain
a given level of perfection (see chapter 5 about the NETtalk learning task).
That is, doubling the batch size may increase the computational size of the
problem by much more than a factor of two. Or it may, in some other
neural net application, actually lower the number of learning cycles required
to produce a solution, perhaps thereby even reducing the size of the problem.

Because of the difficulties described above we will refrain from trying to
measure how efficiency varies when problem size is scaled with the number
of processors. Instead, we will simply examine how efficiency is influenced
by varying parameters like net size and batch size.

2.6.2.1 Variable Number of Sub-Problems

Instead of worrying about how efficiency will vary when the size of the prob-
lem is scaled with the number of processors, we will examine to what degree
efficiency is preserved when the number of sub-problems is scaled with the
number of processors. In other words, we will examine if more processors can
be put to use without reducing efficiency, as long as each processor handles
the same number of sub-problems.

As we have stated, even if some new problem can be split into twice
as many sub-problems, the size of this problem is not necessarily twice as

1When the number of hidden units is doubled, so is the number of weights in the net.
However, since the number of output units is unchanged, the amount of computation in
each learning cycle will only nearly have doubled.
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large. In a net partitioning parallelization the number of sub-problems is
doubled by doubling the number of units (in each layer of the net). We
cannot know the effect on the size of the problem, since this depends on
the neural net application in question. But what we can and do know is
that doubling the number of units means increasing the number of weights
four-fold, causing the presentation of one pattern to be nearly found times
as demanding computationally (in large nets).

In a data partitioning parallelization a doubling of the number of sub-
problems is obtained by doubling the size of the batch. Again, the influence
on problem size depends on the actual neural net application. We may state,
however, that since the number of pattern presentations between weight up-
dates is doubled, the amount of computational work associated with one sin-
gle learning cycle will have doubled also (or rather, nearly have doubled, since
the work associated with the actual updating of the weights is unchanged).

In a sense, therefore, some new problem containing a larger number of
sub-problems is not so much a larger problem, as it is simply a different
problem with different properties – properties more suitable to the algorithm
in question.

For several different fixed numbers of sub-problems per processors we will
show the effects of increasing the number of processors. As in the experiments
with fixed problem size, we will try to interpret the resulting speed-up and
efficiency graphs. If the efficiency graphs are not straight, horizontal lines
then we may conclude, that the overhead found in each processor cannot be
independent of how many processors are used in executing the algorithm.

Whenever possible we will try to interpret the graphs in order to find out
which of the circumstances mentioned in section 2.4 plays the most important
role in reducing the efficiency of the algorithm in question.

2.6.2.2 Fixed Number of Sub-Problems

We are also interested in examining the effects of varying neural net specific
parameters that do not influence the number of sub-problems, since knowl-
edge of such effects are necessary if a neural net researcher is to choose the
most suitable parallelization for his or her application. Therefore we will also
examine what happens in the data partitioning parallelizations when the size
of the net is changed, and how efficiency is influenced by varying the batch
size in the net partitioning parallelization.
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2.6.3 Experimental Conditions

The distribution of patterns were excluded from all time measurements, since
we are interested in knowing only the raw time of actually training a neural
net. Also, the time needed for distributing patterns depends on what neural
net application is used. Furthermore, the fraction of total running time used
in distributing patterns depends on the number of learning cycles in the
following training session of the net.

In order to be able to vary the number of units and weights in the net
freely, we have chosen to run all algorithms on pseudo problems in which all
training patterns were generated by a random generator.

Because of the quite large number of experiments we have performed
and the literally thousands of results obtained from these experiments we
have chosen to present all results as graphs only.
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Chapter 3

Back-Propagation Using Data
Partitioning

As mentioned in chapter 2 an obvious and easy way of parallelizing an ar-
tificial neural network using epoch or batch updating of the weights is the
so-called data partitioning strategy in which the training data are distributed
evenly among the processors. All processors simulate the entire network but
on different sub-sets of the training data. During each learning cycle each
processor presents the patterns in its own share of the current batch.1 The
gradients calculated this way in the individual processors are called compo-
nent gradients, since each of them is the result of presenting only some part of
the batch to the network. Once all patterns in the batch have been presented
by the various processors, the resulting component gradients are combined
(summed) into one global gradient, which is then used to calculate how much
each weight should be changed. Following that, the weights are updated and
broadcast to all processors as the new set of weights that should be used in
the subsequent presentation of patterns during the next learning cycle.

This is the simplest form of the data partitioning approach to paralleliz-
ing artificial neural networks. Implementations of this form will be discussed
in the following section 3.1. In section 3.2 we are going to look at a variation
of the data partitioning approach in which each processor does not hold a
complete copy of the entire network. Finally, in section 3.3 we are going to

1In this section we will not discriminate between epoch and batch updating since, with
respect, to the parallelization of an algorithm, epoch updating may simply be viewed as a
special case of batch updating in which the batch is always the complete set, of training
patterns.
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describe a different way of parallelizing that still depends on a batch of input
patterns being presented concurrently.

3.1 A Simple Implementation of the Data Par-

titioning Strategy

The actual process of implementing the simple form of the data partitioning
strategy is quite straight-forward once the non-process oriented sequential
back-propagation algorithm has been developed (section 1.6). All we have to
do is put together a lot of processors, each of which should run the sequential
algorithm on its own, independently from the others. With P processors we
therefore have P identical copies of the entire network. During each learning
cycle, each processor q presents to the network the patterns in its part Bq of
the current batch B of training patterns. As a result the following component
gradient g<q> is calculated in processor q:

g<q> =
∑
p∈Bq

∂Ep

∂w
(3.1)

where m denotes the set of all weights.
Using equations 1.11 and 1.12 in chapter 1 the weight change ∆Bw

with respect to the patterns in batch B can now be expressed as a sum of
component gradients g<q>:

∆Bw(n + 1) = −η
∑
p∈B

∂Ep

∂w
+ α∆Bw(n) = −η

P−1∑
q=0

g<q> + α∆Bw(n) (3.2)

Therefore, only one modification is necessary as compared to the sequential
algorithm: A scheme for performing the collection and summation of all com-
ponent gradients g<q> and the distribution of updated weights (a broadcast)
in as effective a way as possible.

3.1.1 Communication Schemes

Different configurations of processors require different communication schemes,
depending on what patterns of connectivity are allowed.

Using a ring configuration of P processors it is quite easy to implement
the summation of component gradients in such a way that each processor
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after P − 1 steps will hold the total gradient. Initially each processor simply
communicates its own component gradient to its predecessor in the ring (fig-
ure 3.1). Then all processors add the component gradient just received to a
temporary sum of component gradients. At the same time the component
gradient is sent along to the predecessor concurrently with the receipt of a
new component gradient.

Figure 3.1: Summation of component gradients in a ring of processors

After P −1 steps each processor will have received component gradients from
all other processors. Thus it will now hold the sum of all component gra-
dients, and it will be able to update the weights as required. The Occam
implementation of this communication scheme can be found in appendix B.5.

A similar scheme for the GF11 computer is described in [Witbrock], and
apparently the same approach is used in [Bourrely] on the Hypercube.

An alternative and more efficient appi.tiach is also presented in [Witbrock].
The GF11 computer’s communication facilities allow a much more complex
inter-connectivity of processors than a ring. It is described how P processors
may collect and sum component gradients in O(log2 P ) steps when configured
in such a way that processor q is able to communicate with all processors
(q + 2i) mod P for i = 0, .., log2 P .

Due to the heavy processor inter-connectivity, this approach cannot be
applied to a system of transputers, each transputer having only four links by
which it may be connected to other transputers. However, it is still possible
to achieve the summing of component gradients in O(log2 P ) steps, since the
transputers may be configured as a binary tree.2

2Ideed one might use a trinary tree, thereby utilizing all four available links on a trans-
puter, yielding a time complexity of O(log3 P ). This would, however, merely reduce the
height of the processor tree by a (small) constant factor, yet it would lead to a much more
significant increase in memory size required for communicating the component gradients,
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Figure 3.2: Summation of component gradients in a binary tree of processors

After all patterns in the current batch have been presented, all processors
without successors in the tree structure send their accumulated component
gradients to their parent processor. This is illustrated in figure 3.2a. All other
processors collect the component gradients from their immediate successors,
add those to their own, and send the result further upwards in the tree
as shown in figure 3.2b. After �log2 P � steps the root processor will hold
the total gradient, which can then be used to calculate the weight changes.
Using the tree structure again, the root processor can broadcast the updated
weights to all other processors in �log2 P � steps.

The Occam implementation of the data partitioning approach using a
tree configuration of processors can be found in appendix B.4. The code
segment for communicating component gradients and weights in the tree can
be found in fold 29.

3.1.2 Comparison of Ring and Tree Configuration

P processors in a ring can update their weights in P − 1 steps, whereas it
takes 2�log2 P � steps to perform the weight update in a tree configuration
of P processors. This means, that when more than 5 processors are used
the tree configuration requires less steps than does the ring configuration.
So it seems obvious that a tree should be preferred when larger numbers of
processors are used. However, contrary to the tree configuration the ring

see section 3.1.2.1. For this reason we have used only the binary tree configuration of
processors.
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allows the summations of component gradients to be performed concurrently
with the sending and receiving of (other) component gradients. It should be
noted, though, that performing communication and computation in parallel
can at most save the time associated with the task requiring the smallest
amount of time. Anyhow, the P − 2 steps of the ring where concurrent
communication and summation is possible, must be smaller than each of
the first �log2 P � steps of the tree where communication and summation is
performed sequentially.

We have made a number of test runs to determine whether or not this
will mean that shorter updating times can be achieved with the ring config-
uration even when the number of processors exceeds 5.

Figure 3.3: Time consumption in updating weights on different processor
configurations

Figure 3.3a shows for different numbers of processors the time used for updat-
ing the weights in a 50-50-50 network using the ring and tree configurations.
Updating times in the tree were measured in leaf-processors. All times have
been normalized so that the time used for updating the weights in a tree of
two processors corresponds to 1 on the y-axis.

As can be seen, both graphs have the expected shape. Weight updating
times in the ring configuration increase in a roughly linear fashion with the
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number of processors, whereas the time used in the tree configuration grows in
a logarithmic manner. In the tree the updating time depends on the height
of the tree: As long as adding one more processor to the tree structure
does not increase the height of the tree, updating times are not increased
(significantly) either. Only when the addition of a new processor increases
the height of the tree, the updating time is increased somewhat.

The graphs show that, as expected, the ring configuration of processors
is indeed capable of performing a weight update a bit faster than the tree
configuration when the number of processors is 5 or below. For all larger
numbers of processors the tree configuration is superior. This indicates that
the time saved in summing the component gradients concurrently with com-
municating them must be relatively small. This is in accordance with the
information found in appendix A where it can be seen that the time re-
quired to add two REAL64 values is much smaller than the time required to
communicate one REAL64.

Figure 3.3b shows the updating times for small numbers of processors.
It can be seen that the constant contribution to the updating times observed
in both the ring and the tree configuration arises from the actual updating
of the weights after all component gradients have been collected. The time
required for this marked with a square in the figure.

3.1.2.1 Memory Requirements

The memory requirements are nearly the same for both processor configu-
rations. In both cases each processor needs to hold storage for two extra
REAL64 values for each weight in the net. These extra variables are necessary
in the communication of component gradients.

The one difference with respect to memory requirements between the
two algorithms is the following: In the ring configuration every processor
needs to store the old weight changes in addition to the weight changes being
calculated and the weights themselves. This is not necessary in the tree con-
figuration, since the new set of weights are calculated in the root processor.
Therefore only the root processor needs to store old weight changes. All other
processors need only have storage capacity for the weights, the component
gradients being calculated, and the two weight arrays for communication.

As each processor also keeps its own copy of all units in the network
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we arrive at the following memory requirement3 (measured in number of
REAL64s) for each processor (except the root):

2 · (NI + NH + NO) + 4 · ((NI + 1) · NH + (NH + 1) · NO)

This very large memory requirement puts a much stricter limit than neces-
sary on the size of neural networks that can be parallelized using the simple
implementation of the data partitioning strategy. There are different ways
of avoiding such large memory requirement. One is to avoid redundancy as
much as possible, another is to refrain from communicating all of the compo-
nent gradients at once. Both these strategies have been used in the algorithm
discussed in section 3.2.

3.1.3 Performance of the Algorithm

In this section we are going to analyze to performance of the algorithm when
run on nets of different size with varying batch sizes, using various numbers
of processors. Since we have demonstrated that the tree configuration of
processors is superior to the ring configuration whenever the number of pro-
cessors exceeds 5 we will concentrate the following discussion of the simple
implementation of the data partitioning strategy on the tree configuration.

It is worth noting at this point that between weight updates efficiency
must be 100% since in those periods all processors work independently of
each other, each processor running in exactly the same way as in the se-
quential neural net simulator. During weight updates, however, time may be
wasted (in a computational sense) as the collection of component gradients
and the distribution of the updated weights constitute extra work compared
to the sequential algorithm. Furthermore, the computation of new weight
values after all component gradients have been collected is not parallelized
at all, since the root processor is performing this task alone. The inefficiency
generated by this sequential computation of the weights increases with the
number of processors: The more processors used in executing the algorithm,
the more processors are inactive during the updating. It goes without saying
that this is a very unfortunate property for a parallel algorithm, although
the actual computation of the new weight values does not constitute a very
large fraction of the total amount of computational work, especially when a
large batch size is used.

3Only variables that scale with net size have been included.
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To summarize: Since between weight updates the algorithm executed
in each processor is exactly the same as the sequential algorithm we expect
any reduced efficiency that may be observed in the parallel algorithm to be
caused primarily by circumstances relating to the updating of the weights.

3.1.3.1 Effect of Varying the Batch Size

The above considerations suggest that efficiency will be low when a small
batch is used, and that efficiency will increase if the size of the batch is
increased.

Figure 3.4: Efficiency shown as a function of batch size

Figure 3.4 shows the result of running 15 processors on a 50-50-50 network
with varying batch size. The neural net simulator was run for 10 learning
cycles, i.e. the weights were updated the same number of times in all runs.
Note, that since the number of processors and the size of the net are fixed,
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the time necessary for performing one weight update is expected to remain
the same in all runs, independently of the batch size used.

The unfilled circles mark the results of ordinary executions of the algo-
rithm, that is, when the processors actually communicate with each other as
they should. The filled circles give the results of the same runs, only this time
no communication is performed. Each time the processors would normally
want to communicate they execute a SKIP command instead. By looking at
the difference between those two graphs we should be able to estimate the
importance of communication as a hindrance to optimal efficiency.
As expected, the efficiency of the ordinary algorithm is very low for a batch
size of 15, since each processor in this case presents only one single pattern
to the net between each weight update. In other words, the weights are up-
dated relatively often. As the size of the batch is increased, execution time
becomes more and more dominated by the time used for presenting patterns
and calculating component gradients, since the number of weight updates
is not increased. This way the time used for updating the weights becomes
a smaller and smaller part of the total execution time, hence efficiency in-
creases.

The second graph consisting of the filled circles confirms, that time spent
in actual communication during each weight update is partly responsible for
the less than optimal efficiency observed. Furthermore, absolute running
times show that time spent in communication is independent of the batch
size used, as expected.

However, the graphs also show that there must be other equally im-
portant sources for inefficiency. Some of this inefficiency may be generated
by the extra IF sentences checking the number of successors, extra summa-
tions of component gradients, as well as the creation and termination of new
processes handling communications.

Apparently, though, these are not the main reasons for the observed
inefficiency of the non-communicating algorithm. By comparing the results
of the parallel algorithm with those of the sequential algorithm (appendix
B.3), we can see that the running time of the parallel algorithm without
communication is less than 10% longer than that of the sequential algorithm,
when the sequential algorithm is executed using the same number of patterns
in the batch as the number of patterns handled by each of the processors
in the parallel algorithm.4 Therefore most of the observed inefficiency is

4In other words, the running time of the sequential algorithm using a batch size of b
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probably due to the fact that because the number of weight updates is fixed,
it does not take the sequential algorithm P times as long to handle P times as
large a batch. Even though each of the processors in the parallel algorithm,
between weight updates, runs like the sequential algorithm, it handles less
patterns than does the sequential algorithm. Obviously, the effects of this
phenomenon decreases as the number of patterns in the batch is increased.
But even with as large a batch as 600 patterns, the effects are visible: If the
parallel algorithm using 15 processors and a batch size of 600 were able to run
as fast as the sequential algorithm on a batch of 40 patterns (600/15 = 40),
it would only obtain an efficiency of 97.6%.

3.1.3.2 Effect of Varying the Number of Processors

We will now examine how well the algorithm performs when the problem is
fixed and the number of processors is increased. Since increasing the batch
size increases efficiency one would suspect that more processors can be used
on problems with large batch sizes. Thus, we have carried out three inde-
pendent experiment series using different fixed batch sizes.

Figure 3.5: Speed-up for various numbers of processors and three different
batch sizes

patterns is compared to the running time of the parallel algorithm using a batch size of
P · b patterns.
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Figure 3.5a shows how speed-up depends on the number of processors exe-
cuting the parallel algorithm. It can be seen that for all three batch sizes
(except, perhaps, the smallest batch size) speed-up has not yet reached its
maximum value even when using 40 processors. This means that using still
more processors would probably yield an even greater speed-up.

It can also be seen, though, that as more and more processors are used,
efficiency decreases (figure 3.5b). Using the results just obtained in the above
section 3.1.3.1 we can point out one reason for this: As the number of pro-
cessors is increased each processor handles a smaller and smaller part of the
batch. In other words, the batch size per processor is lowered, making the
processors run less efficiently as demonstrated in section 3.1.3.1. This effect
of batch size can also be seen by simply comparing the three graphs in figure
3.5.

However, there must be other reasons for the falling efficiency as well,
since efficiency depends not only on the batch size per processor, but on the
number of processors as well. This can be seen in figure 3.5b by comparing the
points on the three graphs that represent the same batch size per processor.
As an example, let us consider table 3.1 giving the efficiency of the three runs
where each processor presents 20 patterns between weight updates.

Numbers of Batch size Efficiency
processors Total Per Processor

10 200 20 78.8%
20 400 20 75.4%
40 800 20 70.4%

Table 3.1: Efficiency of three runs with 20 patterns per processor in the batch

The table shows that efficiency is reduced when more processors are used even
though the batch size per processor remains constant (see also the following
section 3.1.3.3). The source for this effect is probably the time needed for
collecting component gradients and distributing new weights, since this time
depends on the height of the processor tree. In fact, the reduction of efficiency
following an increase in the height of the tree can be seen in figure 3.5. For
batch size 200 and 400 a decrease in speed-up and efficiency is seen to be the
result of increasing the number of processors from 31 to 32. Also, for batch
size 200 a small reduction in efficiency is visible as the number of processors
is increased from 15 to 16. The effects of such imbalances in the processor
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tree should become less important as the batch size is increased (as is indeed
observed to be the case), since it is only during weight updates that the
imbalance influences the execution time.

Other small variations that can be observed in each of the graphs may
be due to delays arising from differences in how large a part of the batch size
each processor has got.

3.1.3.3 Scaling Batch Size with the Number of Processors

We will now examine the effects of scaling the size of the batch with the
number of processors used in executing the algorithm. In the terms of chapter
2 we will investigate whether an increase in the number of sub-problems
(patterns in the batch) will allow us to increase the number of processors
correspondingly without reducing efficiency.

Figure 3.6: Efficiency shown as a function of batch size per processor

In figure 3.6 the batch size per processor is fixed (in each of the four series
of experiments). That is, each processor presents a fixed number of patterns
between each weight update, independently of the number of processors.

Figure 3.6a shows that we can obtain a nearly linear speed-up when the
batch size per processor is fixed, However, it is clearly visible that speed-up is
momentarily reduced whenever the height of the processor tree is increased.
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Also, it seems that the rate with which speed-up grows becomes smaller as
a result of the increased height.

This effect is even more distinct in the efficiency graphs shown in figure
3.6b. Every increase in the height of the processor tree reduces the efficiency
of the algorithm. Notice, though, that as long as the height is unchanged,
efficiency is (nearly) independent of the number of processors used. For large
numbers of processors this means, that if increasing the batch size is possible
(and acceptable with respect to learning capabilities, see chapter 5), the num-
ber of processors applied to the problem can be increased correspondingly
without any significant loss of efficiency.

When compared to figure 3.3 it can be seen that the efficiency graphs in
figure 3.6b are very similar to the graph showing the weight updating times
in a tree configuration of processors. In fact, they are nearly identical in
shape if the graph of figure 3.3 is turned upside down. This confirms what
we have already stated several times, namely that it is mainly during weight
updates that efficiency is lost in this parallel algorithm.

We can also use these figures to determine whether it will pay to apply
extra processors to some fixed problem. In other words, for how long an
increase in speed-up can be obtained by adding more processors. Raising the
number of processors by some factor will only increase speed-up if efficiency
is reduced by less than that same factor, as a result of the extra processors.

It would be nice if one could formulate a rule as to how many processors
could be applied to some specific problem. Like, say, one should at most use a
number of processors corresponding to one fifth of the batch size. That is, as
long as each processor handles more than 5 patterns in the batch, adding more
processors will increase speed-up. In general, this is possible if the efficiency
of the parallel algorithm depends only on the batch size per processor, and
not on the number of processors itself (i.e. if the efficiency graphs in figure
3.6b were straight, horizontal lines). As can be seen, this is not the case
for this parallel algorithm, and indeed, the following considerations seem to
indicate that no such general rule can be formulated.

As an example, let us assume that we are dealing with a fixed problem
requiring the size of the batch to be 400. If we use 20 processors in simulating
this neural net, each processor will handle 20 patterns in the batch, yielding
a speed-up of about 15. We can also choose to use 40 processors, thereby
letting each processor handle only 10 patterns. In this case, as shown in the
figure, we get a speed-up of about 22. In other words, it pays to use the
extra processors (as we have also seen in figure 3.5).
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If 30 processors are used in dealing with a problem using batch size
600, each processor again has 20 patterns. But since we do not have 60
processors available, we cannot test whether letting each processor handle
only 10 patterns in the batch will lead to an increase in speed-up. However,
we have reasons to believe that the speed-up obtainable with 60 processors
would indeed by higher than that which can be achieved with 30 processors.
One reason is, that a speed-up similar to that achieved with 30 processors
on a batch of 600 patterns is already obtained for 40 processors when each
processor handles 10 patterns. And since the figure shows that speed-up
increases in a nearly linear fashion when each processors takes care of 10
patterns, we do have reason to expect, that an even higher speed-up will be
achieved with 60 processors and a total batch size of 600 patterns.

Now, the question is whether it will always pay to use as many proces-
sors as one tenth of the batch size. We saw, that with 40 processors, each
handling 10 patterns, a speed-up was achieved similar to that obtained with
30 processors and 20 patterns per processor. In other words, even though the
batch size per processor was halved, we only had to use 33% more processor
in order to get the same speed-up. Yet the necessary increase in the number
of processors is even smaller when we go from 20 to 10 patterns per processor,
if we start out, with only 20 processors. In that case, we only have to add 5
processors, or 25% more processors, to achieve the same speed-up.

These figures seem to indicate, that the necessary increase itself becomes
larger as more processors are used. In other words, the larger the number of
processors, the larger a relative increase is necessary for the same speed-up
to be achieved with half the batch size per processor.

If this tendency is extendable to larger numbers of processors, we will
eventually reach some number of processors, where the increase must be
more than 100%, if the same speed-up is to be achieved with 10 patterns
per processor, as with 20 patterns per processor. When this happens, using
only as many processors as one tenth of the batch size will be too many
processors, yielding no gain in speed-up.

Similarly, we may observe, that it does not pay to use 40 processors
(instead of 20) on a problem with batch size 40. Using 20 processors with each
processor handling 2 patterns yields a speed-up of 5, whereas 40 processors
with one pattern per processor yields only a speed-up of 4.5. In other words,
the effect of adding extra processors to the tree is merely to slow down the
whole system.

It is obviously a less desirable property of a parallel algorithm, that one
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cannot double speed-up with twice as many processors on a problem con-
taining twice as many subproblems. This is another reason behind the de-
velopment of the advanced implementation of the data partitioning strategy
described in section 3.2. By interleaving communication and computation
we hope to be able to construct an algorithm whose efficiency depends only
on the batch size per processor, and not on the number of processors itself.

3.1.3.4 Nets of Varying Size

It is very easy to determine whether efficiency will increase or decrease as a
result of varying the size of the net. All that is necessary is to observe how
the ratio between the number of weights and the amount of computation
associated with the net varies with the size of the net. If the amount of
computation does not grow as fast as the number of weights efficiency will
decrease, because the time wasted in updating the weights is proportional to
the number of weights.

The graphs on figure 3.7 are efficiency graphs showing the effects of
varying the number of input, hidden, and output units (thereby varying the
number of weights in the net). All runs were made using 15 transputers, and
the number of learning cycles as well as the batch size remained constant
throughout all simulations.

In figure 3.7a the effect of scaling up the entire net is shown. The
networks used are n-n-n networks, i.e. there are equally many input, hidden
and output units. Efficiency can be seen to decrease from 77.5% to 66.1%
when n is increased from 1 to 10.

When trying to explain this decrease it is worth noting that (except for the
bias weights) the number of weights grows quadratically with the number
of units in an n-n-n net. This means that the amount of computation does
not grow as fast as the number of weights does, since there is a substantial
amount of work associated with calculating the activation function and its
derivative in hidden and output units (see section 1.6.1). This computational
work is only scaled up 10 times when scaling up the net from a 10-10-10 net
to a 100-100-100 net, whereas the number of weights is increased with a
factor of 100. Therefore the total amount of computational work associated
with the net is not increased as much as the size of the component gradients
communicated between processors during weight updates, which is why we
observe a reduced efficiency.
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Figure 3.7: Efficiency shown as a function of network size

This is also the reason why the biggest reduction in efficiency takes place
when rather small nets are scaled up a bit. When larger nets are scaled up the
computational work associated with the units no longer form any significant
part of the total amount of computation, which leads to a relatively smaller
reduction in efficiency.

Figure 3.7b shows the effect of varying only the number of input units
in the net. As can be seen the efficiency of the parallelization decreases when
more input units are included in the net. The reason for this is that there
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is no extra computation associated with the inclusion of extra input units
except the calculations associated with the new weights between input and
hidden units. And as can be seen in table 1.3 in section 1.6.1 the amount of
computational work associated with each weight between input and hidden
units is somewhat less than that associated with each weight between hidden
and output units.5 Therefore the size of the component gradients commu-
nicated is increased more than the computational work is, which leads to a
smaller efficiency.

Adding extra hidden units to a net also reduces the efficiency a bit (fig-
ure 3.7c). Whenever the number of hidden units is increased, the number
of weights in the net (and thereby the size of the component gradients com-
municated) is increased correspondingly. But the amount of computational
work does not increase as much. All work associated with the output units
(calculation of the activation function and its derivative) is unchanged, which
must be why the efficiency is reduced when the number of hidden units is
increased.

However, efficiency actually increases when extra output units are in-
cluded as can be seen on figure 3.7d. This must be due to the fact that only
the number of weights between hidden and output units is increased and,
as mentioned before, a larger amount of computational work is associated
with each of these weights than with each weight between input and hidden
units. Since all added weights are associated with more computational work
than the average weight the time necessary for computation is increased more
than the time needed for updating the weights, leading to a better efficiency.
Since there is no significant difference in how much computational work is
required in the simulation of a hidden unit and an output unit, the amount of
computational work associated with the units themselves is in reality scaled
up like the number of output units.

3.1.4 Conclusion

We have seen that it is possible to parallelize the back-propagation algorithm
in a very simple way using the data partitioning strategy. Furthermore, we
have not surprisingly found that efficiency increases with the size of the batch
of training patterns presented to the net between each update of the weights.

5This is true even if batch updating of the weights is used since updating the weights
require equally many operations for the two layers of weights.
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This means that if very large batch sizes can be used it is possible to gain a
substantial speed-up using this kind of parallelizing. As for how learning is
affected by large batch sizes, see chapter 5.

An important disadvantage of this algorithm is the somewhat excessive
memory requirements resulting from the fact that each processor has to store
a copy of the entire network. Such redundancy is not desirable in a parallel
algorithm, since this means that the parallelization does not allow an increase
in the size of the problems (with respect to memory requirements) that can
be undertaken.

3.2 An Advanced Implementation of the Data

Partitioning Strategy

In this section a less memory intensive implementation of the data partition-
ing strategy is described. Individual processors no longer keep their own copy
of the entire network. The weights are stored in one processor only (called
the administrator), and are circulated one by one between the processors
whenever they are needed.

The administrator holds no training patterns, and does not itself present
patterns to the neural network. This is done exclusively by the rest of the
processors (referred to as the slaves), among whom training patterns are
distributed evenly. The administrator controls the circulation of weights and
performs the weight updates.6

Since each slave does not hold permanently any of the weights itself, it
is essential that each weight when received is used in as many calculations as
possible, so as to avoid unnecessary communications of weights. During the
forward pass this means, that when weights connecting units in one layer to
units in the next layer are communicated, they should be used for propagating
the activity related to as many patterns as possible, i.e. processor q should
use the weights to propagate the activity of all patterns in its share Bq of the
current batch of patterns. In order to be able to do that, each slave processor
q has to have as many copies of all units in the net as there are patterns in
Bq.

6Actually, it turns out that the administrator should handle some patterns, although
fewer than the slaves. For the moment, though, assume that the administrator does not
present patterns to the net.
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As a result of the above considerations all patterns in Bq are propa-
gated forwards by processor q before any of the error values generated by
those patterns are propagated backwards in the net. This is contrary to the
algorithm described in section 3.1 in which one pattern was propagated for-
wards and backwards, and the resulting single pattern component gradient
was calculated, before the presentation of the next pattern was handled.

The development of this algorithm was based on a short description of a
similar algorithm constructed by Pomerleau et.al. [Pomerleau1] for the Warp
computer.

3.2.1 Processor Topology

All slave processors need to receive every weight in the net once during the
forward pass, starting with the weights between the input and the hidden
units. Configuring the processors as a ring turns out to be an ideal solution.
At first a ring structure may seem to be less than ideal, since the number of
communication steps necessary for sending a weight from the administrator
to some slave may be quite large. However, all slave processors need the same
weights, but they do not necessarily have to make use of the same weight
at the same time. Therefore the weights can simply be sent one by one
through the ring in a pipelined fashion. This way no processor will have to
wait for any weights except during the start-up and shut-down phases which
constitute a very small part of the total running time since the number of
weights is usually very much larger than the number of processors.

3.2.2 Handling Communication

Before describing in detail how the forward and backward passes are handled
in this algorithm one point is worth observing. A transputer communicates
via a set of four links. As stated in appendix A, there is associated with each
of these links a small on-chip link processor handling all communication on
the corresponding link, independently of the main processor. This means that
not only can the transputer communicate simultaneously on several links, it
can also to a very high degree perform computations using the main processor
in parallel with data being communicated on the links (see appendix A.4).

As mentioned in the previous section, the weights of the neural net are
circulated one by one through the ring of processors during the propagation
of activity. This means, that during the forward pass each processor both has
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to receive and send along each single weight in the entire neural network, i.e.
each processor has to participate in twice as many communications as there
are weights in the net. Associated with each of the weights communicated
is some amount of calculation. When using such an enormous amount of
communication, it is important to construct the algorithm so as to ensure
that this calculation can be performed concurrently with the receipt and
sending of weights. If, furthermore, the computation time is larger than the
communication time, the communication of weights can take place without
significantly slowing down the calculations performed by the slave.

Time otherwise wasted by the main processor while waiting for commu-
nication to finish has been put to good use.

3.2.3 The Forward Pass

During the propagation of activity the weights are circulated one by one
through the ring of processors by the administrator, as illustrated in figure
3.8.

Figure 3.8: Circulation of weights during the forward pass

Initially, weights between the input layer and the hidden layer are cir-
culated, thereby allowing the propagation of activity from the input units
to the hidden units. Then weights between the hidden units and the output
units are circulated, and the pattern of activity on the output units is cal-
culated. These two steps of forward propagating activity are performed the
same way, only difference being what weights are circulated and what units
are used in the calculations. In the following we will therefore only describe
in detail the propagation of activity from the input units to the hidden units.

57



Each time a slave processor q receives a weight wH
i→j connecting unit i

in the input layer to unit j in the hidden layer, it sends along the weight to
the next processor in the ring (processor q − 1). Concurrently with this, the
weight is used to calculate the contribution of unit i to the net input of unit
j for all patterns in this processor’s share Bq of the total batch B. That is,
for each pattern p in Bq the i’th part of the following sum is calculated upon
receipt of wH

i→j:

NI−1∑
i=0

aI
piw

H
i→j = netH

pj, ∀p ∈ Bq (3.3)

After all weights connecting the two layers have passed through the proces-
sors, each processor q contains for all units in the hidden layer the |Bq| net
inputs generated by the patterns in Bq. Each processor q then calculates for
each pattern p in Bq the activation of all those units:

aH
pj = f(netH

pj) , ∀p ∈ Bq , ∀j ∈ H (3.4)

Once the activity of the hidden units has been calculated it will be possible
to determine the pattern of activity on the output units, This is done in
exactly the same way as described above, except this time the administrator
circulates the weights between the hidden units and the output units through
the ring of processors.

The Occam implementation of the forward pass in the slaves can be
found in appendix B.7 fold number 11. Notice, that the activity of the units
in both the hidden and the output layer is calculated while the corresponding
bias weights are circulated. This is done in order to increase the amount of
calculation associated with the receipt of each bias weight, so that, hope-
fully, computation time will exceed communication time. Otherwise the only
computations associated with each bias weight would be the calculation of
the contribution of the bias unit to the net input of the recipient unit. Since
the bias unit is an always-active, imaginary unit this requires only one ad-
dition, probably much too little computational work to take up all the time
necessary for communicating the bias weights, at least when each processor
handles only a few patterns.

3.2.4 The Backward Pass

The backward propagation of delta values and the computation of component
gradients consist of 3 different steps.
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3.2.4.1 Step One

Initially, delta values of all output units have to be computed for each of the
patterns in the batch by the corresponding processors. For all patterns p in
Bq processor q calculates the delta value for each output unit:

δO
pk = aO

pk(1 − aO
pk)(tpk − aO

pk) , ∀p ∈ Bq , ∀k ∈ O (3.5)

As can be seen this step requires no circulation of weights and can be per-
formed independently by the various processors.

3.2.4.2 Step Two

The next step is the backward propagation of delta values to the hidden
units. This step requires that the weights between hidden and output units
are circulated again, in order to calculate the contribution of each output
unit to the error of each hidden unit. This is done in a way similar to that
described in 3.2.3 about the forward pass.

Each time slave processor q receives a weight wO
j→k connecting unit j in

the hidden layer and unit k in the output layer, it sends along the weight to
the next processor in the ring (processor q − 1). Concurrently with this, the
weight is used to calculate for all patterns in Bq the contribution of output
unit k to the error of hidden unit j. That is, for each pattern p in Bq the
k’th part of the following sum is calculated upon receipt of wO

j→k:

NO−1∑
k=0

δO
pkw

O
j→k = eH

pj, ∀p ∈ Bq (3.6)

After all weights connecting hidden and output units have passed through
the processors, processor q contains for all hidden units the |Bq| error val-
ues generated by the patterns in Bq. Each processor then calculates for all
patterns in Bq the corresponding delta values for all hidden units:

δH
pj = aH

pj(1 − aH
pj)e

H
pj , ∀p ∈ Bq , ∀j ∈ H (3.7)

3.2.4.3 Step Three

Step three is the calculation of the gradient resulting from the presentation
to the net of all patterns in B.
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The partial component gradients associated with the weights between
input and hidden units are calculated the following way. Using equation 3.2
we find that the weight change ∆BwH

i→j of weight wH
i→j with respect to the

patterns in batch B can be expressed as:

∆BwH
i→j(n + 1) = −η

∑
p∈B

∂Ep

∂wH
i→j

+ α∆BwH
i→j(n)

= −η
P−1∑
q=0

gH<q>
i→j + α∆BwH

i→j(n) (3.8)

In other words, in order to update the weight wH
i→j the administrator needs

to know the sum of the partial component gradients gH<q>
i→j of all slave pro-

cessors. By using equation 1.10 it can be seen that such a partial component
gradient can be calculated the following way:

gH<q>
i→j =

∑
p∈Bq

∂Ep

∂wH
i→j

= −
∑
p∈Bq

δH
pja

H
ip (3.9)

The calculation of each of those partial component gradients can be per-
formed by the corresponding processor, since we already know both delta
and activity values for all patterns p ∈ Bq of all units in the net. The sum-
mation of partial component gradients is performed in a manner similar to
the calculations of net inputs and hidden unit errors. In Stead of circulating
the weights, however, the partial component gradients being calculated are
circulated between the processors, as illustrated in figure 3.9.7

Initially, for each partial gradient gH
i→j to be calculated the administrator

sends out, the value 0 to processor P − 1 (figure 3.9a). Concurrently with
this communication processor P − 1 calculates its contribution gH<P−1>

i→j .
When the 0 arrives, the partial component gradient of processor P − 1 is
added to the 0, and then sent along to processor P − 2 (figure 3.9b). While
th is communication takes place, processor P − 2 calculates gH<P−2>

i→j , and,

upon receipt of gH<P−1>
i→j from processor P − 1, adds those two partial com-

ponent gradients, and sends the result gH<P−2,P−1>
i→j along to processor P − 3

(figure 3.9c).

7Actually, in the prog ram it is the negated partial component gradients that are
calculated and circulated through the ring. This way we avoid having to negate the
total partial gradient when calculating the weight changes.
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Figure 3.9: Computing partial gradients during the backward pass

In general, processor q calculates gH<q>
i→j while, at the same time, receiv-

ing gH<q+1,... ,P−1>
i→j from processor q + 1. The partial component gradient

calculated in processor q is added to this incoming partial component gradi-
ent and the result, gH<q,... ,P−1>

i→j , is sent to processor q − 1 concurrently with
the calculation of the next partial component, gradient (corresponding to the
weight after wH

i→j).
This way partial component gradients are summed across all slave pro-

cessors so that in the end (after P steps) the administrator will receive
gH<1,... ,P−1>

i→j = gH
i→j, i.e. the partial gradient resulting from the presenta-

tion of all patterns in B (figure 3.9d). The administrator will then use this
partial gradient to calculate the weight change ∆BwH

i→j of weight wH
i→j.

The partial component gradients gO
i→j associated with the weights be-

tween hidden and output units are calculated the same way.
When all partial gradients have been received and all weights updated,

the administrator can send out the first weight between the input units and
the hidden units, and the presentation of another batch of training patterns
can commence.
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The Occam implementation of the backward pass in the slaves can be
found in appendix B.7 fold number 16. There are several ways in which
the program is different from the algorithm described above. All of these
changes were made in order to increase the amount of calculation associated
with each communication.

• The calculation of error and delta values for the output units (step one)
and the calculation of the partial component gradients related to the
bias weights (part of step three) have been merged, so that when the
delta value of output unit j is calculated so is the partial component
gradient gO<q>

bias→j.

• Likewise, the calculation of hidden unit error values (first part of step
two) has been overlayed with the calculation of the partial component
gradients related to the weights between hidden and output units (part
of step three). This means that upon receipt of wO

j→k both the contri-
bution of output unit k to the error of hidden unit j and the partial
component gradient gO<q>

j→k are calculated.

• The second part of step two (the calculation of hidden unit delta val-
ues) has been merged with the calculation of the partial component
gradients related to the bias weights feeding into the hidden units.

It is not possible to merge the calculation of the partial component gradients
corresponding to the weights between input and hidden units with extra com-
putational work since the delta values of the hidden units are not propagated
backwards to the input units.

3.2.5 Supplying the Administrator with a Share of the
Batch

The administrator handles the circulation of weights, the collection of partial
gradients, and the updating of the weights. Only the last of those tasks has
any computational work associated with it. This means that during the
forward pass the administrator will be idle most of the time, always waiting
for the next weight to be sent or received. During the backward pass the
administrator will have a little more to do, updating the weights as the partial
gradients are received. However, there is one important difference between
the work done by the administrator and the work done in the slaves: The
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computational work in the slaves is proportional to the number of patterns
in each slave’s part of the current batch, whereas the computational work
associated with updating the weights in the administrator is always the same,
independently of the size of the batch.

The above considerations lead forth to the conclusion that time is proba-
bly wasted in the administrator when the batch per processor is large enough.
There is an easy solution to this problem: Simply give the administrator its
share of the batch – a number of patterns for it to present to the net concur-
rently with sending and receiving weights and partial gradients, and updating
the weights.

What is not so easy is to determine how large a share of the batch
the administrator should undertake. Obviously, the administrator should
handle less patterns in the batch than the slaves, or it would have no time
for the extra work it has to do. But giving patterns to the administrator
will only increase efficiency if it relieves some of the pressure on the slaves,
i.e. if it will make the slaves run faster. It will not help, though, simply to
reduce the workload of some of the slaves, since in a ring the period between
communications is determined by the processor communicating least often.
This means that what the administrator should try to do is to reduce the
workload of the slaves in such a way as to balance the workload evenly
between the slaves. That is, the administrator should handle a number of
patterns which will cause the slaves to have equally large shares of the batch,
so that no slaves will have to wait for other slaves to become ready for
communication.

On the other hand, if the administrator handles as many patterns as
each of the slaves do, it will not have time for updating the weights. Or,
rather, the administrator would delay all the slave processors, because they
would have to wait for the administrator to finish the update of the weight.
So therefore the administrator should always handle at least a few patterns
less than each of the slaves. Since the time required for updating a weight is
independent of the batch size, one would expect that the minimum difference
between the number of patterns for the administrator and the number of
patterns for each of the slaves should be some fixed number, corresponding
to the time needed for updating one weight. However, experiments have
shown that the administrator should at most handle about 96% or 97% of
the number of patterns handled by each slave. In other words, although
somewhat counter-intuitive the minimum difference between the size of the
administrator’s and the slaves’ part of the batch should apparently depend
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on how many patterns are actually handled by each slave. We have not
investigated this peculiarity further, since it has only a very small influence
on the efficiency of the algorithm, and mostly when the number of slaves is
small. Usually, what decides how many patterns the administrator should
handle is the considerations about all slaves handling equally large shares of
the batch.

Experiments have also shown that if it is not possible for the adminis-
trator to take a number of patterns satisfying the above constraints then it
should take no patterns at all.

3.2.6 Performance of the Algorithm

In this section we will describe the results of running the algorithm on dif-
ferent sets of parameters in order to determine the influence of various pa-
rameters on the efficiency of the algorithm.

3.2.6.1 Effect of Varying the Batch Size

Figure 3.10 shows the effect on efficiency of varying the size of the batch.
As in figure 3.4 the unfilled circles mark the results of ordinary executions of
the algorithm, that is, when the processors actually communicate with each
other as they should, communication being performed concurrently with cal-
culations. The filled circles give the results of the same runs, only this time
no communication is performed. Each time the processors would normally
want to communicate they execute a SKIP command instead. This means,
that all extra assignments and processes necessary for communicating have
not been removed. The filled squares show the efficiency obtained, if commu-
nication is not performed concurrently with computation, i.e. if calculations
begin only after all communication is finished.

The graphs look very similar to those in figure 3.4. Efficiency is low for small
batch sizes where each processor handles only a few patterns. The more pat-
terns per processor the higher efficiency obtained. The graph consisting of
the filled circles confirms, that communication time is partly responsible for
the less than optimal efficiency observed, although for large batch sizes there
is no large difference between the efficiency obtained when no actual com-
munication takes place and the efficiency obtainable when communication is
performed concurrently with calculations.
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Figure 3.10: Efficiency shown as a function of batch size

By comparing the graphs we can see, that for small batch sizes it is
actually a bit more efficient to perform communication and computation
sequentially. The reason for this is probably, that for small batch sizes there
is not enough computation to take up the time necessary for communicating
the weights. So performing communication and computation concurrently
does not save much time. Instead, time is wasted because of the extra work
necessary for handling parallel communication and computation. However,
the effect of performing communication and computation in parallel shows
for batch sizes above 11 or 12 patterns per processor.

The graphs also show that there must be other important sources of
inefficiency. Some of this inefficiency may be generated by extra assignments
necessary for communicating in parallel with calculations, extra summations
of component gradients, as well as the creation and termination of new pro-
cesses handling communications.
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3.2.6.2 Effect of Varying the Number of Processors

Figure 3.11 shows for three different batch sizes how speed-up varies with
the number of processors used. For all three batch sizes it can be seen
that speed-up apparently has not yet reached its maximum value even with
40 processors executing the algorithm. Adding more processors to the ring
should therefore further increase the speed-up.

Figure 3.11: Speed-up for various numbers of processors

It can be seen, though, that at least for the two smallest of the batch
sizes speed-up is not always increased by adding just one more processor.
This is especially so for the graph showing the speed-up obtained with a
batch of 200 patterns: No extra speed-up is gained in increasing the number
of processors from 34 to 40. Likewise, no extra speed-up is obtained from
increasing the number of processors from 29 to 33. But adding just one more
processor to the 33 already in the ring produces a significant rise in speed-up.
This confirms our claim in section 3.2.5 that in a ring the pace is set by the
slowest processor: When between 29 and 33 processors are used some of the
slaves in the ring have 7 patterns in their part of the batch, but with 34
processors the administrator can take 2 patterns for itself, thereby leaving
exactly 6 patterns for each of the slaves.

We therefore have reason to suspect that an increase would occur again
if 41 processors were available, since the 200 patterns could now become
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distributed in such a way that all slaves would have precisely 5 patterns in
their part of the batch. With 40 processors, 34 of the slaves have 5 patterns
and 5 have 6 patterns, and the administrator handles no patterns.

On the other hand, we also have to realize that when using a batch of
200 patterns we cannot expect speed-up to become much higher after that,
since speed-up can only jump four more times. Just after the last jump
each slave will have exactly one pattern in its part of the batch, making the
addition of more processors senseless. Naturally, as can be seen in the figure,
for larger batch sizes the phenomenon described above occurs later, that is,
for larger numbers of processors, since the relevant factor is the batch size
per processor.

If figure 3.11a is compared to figure 3.5a on page 47 it can be seen that
the advanced data partitioning parallelization is superior for the two smallest
of the three different batch sizes, whereas, by some curious coincidence, the
speed-up attained with 40 processors is identical in the two algorithms. Also,
it seems that the smaller the size of the batch the larger is the difference be-
tween the two algorithms. This indicates that the advanced implementation
should be used when relatively small batch sizes are preferred.

By comparing figure 3.11b with figure 3.5b we can see, that the efficiency
graphs of the advanced implementation are very different in shape from those
of the simple implementation of the data partitioning strategy. The efficiency
of this algorithm is lower for small numbers of processors, but higher for large
numbers of processors. Indeed, the shape of the graphs seem to suggest that
efficiency is not reduced because the inclusion of extra processors slows down
some part of the algorithm. The graph representing the results obtained with
batch size 800 is nearly a straight, horizontal line, indicating that as long as
the size of the batch is large enough, the addition of extra processors will
not reduce efficiency significantly. This is confirmed by looking at the one
point in each graph representing a batch size per processor of 20 patterns (see
table 3.2). Apparently, efficiency depends only on the number of patterns
per processor in the batch, not on the number of processors itself.

Efficiency is reduced because using more processors does not always reduce
the number of patterns in all slaves, and because even if it does, figure 3.10
shows that less patterns for each slave leads to a lower efficiency.
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Numbers of Batch size Efficiency
processors Total Per Processor

10 200 20 70.37%
20 400 20 70.44%
40 800 20 70.41%

Table 3.2: Efficiency of three runs with 20 patterns per processor in the batch

3.2.6.3 Scaling Batch Size with the Number of Processors

In this section we will further examine the effects of scaling the batch size
with the number of processors. Ideally, twice as large a speed-up should be
obtainable with twice as many processors on a problem containing twice as
many sub-problems.

Figure 3.12: Efficiency shown as a function of batch size per processor

In four of the experiment series shown in figure 3.12 the batch size per pro-
cessor is fixed. When batch size per processor is small, the administrator
cannot handle any patterns at all. For a batch size per processor equal to
one, this means that no matter how many processors are used, there will
always be one slave handling 2 patterns instead of one. This slave will com-
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municate with a frequency determined by how long time it takes to handle
two patterns, thereby slowing down all other slaves. To be able to examine
the effect of this, we have also made a couple of experiment series in which
batch size is scaled with the number of slaves.

Figure 3.12b shows that efficiency is independent of the number of pro-
cessors used in executing the algorithm, as long as the batch size per proces-
sor (or slave) is fixed. Therefore, in this case we are able to obtain a linear
speed-up in the number of processors, as shown in figure 3.12a.

By comparing the different graphs in figure 3.12b we can see, that ef-
ficiency depends only on how many patterns each processor presents to the
net during a learning cycle. The efficiency obtained with different numbers
of patterns in the batch per processor agrees with the results shown in figure
3.10. In other words, because the efficiency graphs in figure 3.12b are straight,
horizontal lines, figure 3.10 can be used as an indicator of the efficiency that
can be obtained with a certain batch size per processor, independently of
how many processors are used.

Also, since the efficiency graphs in figure 3.12 are straight, horizontal
lines we may conclude, that whenever the size of the batch can be increased
the number of processors may be increased correspondingly, without any loss
of efficiency.

By comparing the speed-up graphs representing runs with 1 (or 2) pat-
terns per processor with those with 1 (or 2) patterns per slave, it is obvious
that for some fixed batch size, there will be a large gain in adding one more
processor, so that instead of there being 1 (or 2) patterns per processor,
there will be 1 (or 2) patterns per slave in the batch. This way all slaves
will handle the same number of patterns, and no slave will slow down other
slaves. Going from 1 pattern per processor to 1 pattern per slave by adding
a processor will cause the last possible of the jumps in speed-up mentioned
in section 3.2.6.2.

Note, that the speed-up graphs confirm what we stated in section 3.2.6.2
about the slowest slave setting the pace in a ring of processors. With 21
processors, 2 patterns per slave (yielding a batch of 40 patterns) results in
a speed-up of 7.13, Using the same batch size and increasing the number of
processors to 40 will result in a speed-up of no more than 7.16, because there
is still one slave handling 2 patterns. In other words, the pace is set by the
slave having the largest workload.

Notice also, that the efficiency that can be obtained using a batch of
one pattern per slave is more than half the efficiency resulting from having
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two patterns per slave. Therefore, if we assume that efficiency is preserved
for arbitrary numbers of processors as long as the batch size per processor
remains fixed, then we are able to conclude, that for all batch sizes the max-
imum speed-up is obtained by running the algorithm on as many processors
(plus one, the administrator) as there are patterns in the batch. In other
words, with regard to speed it pays to use as many processors as possible,
until each slave processor handles only one pattern in the batch.

For some fixed size of the batch B, using P processors where 2(P −1) =
|B| will yield a speed-up of about 0.34 ·P , since efficiency with 2 patterns per
slave is 34.1%, as it can be seen in figure 3.12b. The figure also shows that
with one pattern per slave in the batch an efficiency of 21.6% can be obtained.
This means, that if 2 · P − 1 processors are used (so that P − 1 = |B|) this
will yield a speed-up of 0.216 · 2 · P = 0.432 + P , i.e. a larger speed-up than
with P processors.

Actually, by assuming that the efficiency graphs will continue to be
straight, horizontal lines for even larger numbers of processors than are avail-
able to us, we are able to estimate the maximum obtainable speed-up for
some arbitrary batch size. If the above considerations hold for as many
as 801 processor then we may expect to achieve a maximum speed-up of
0.216 · 801 = 173 for a batch size of 800 patterns.

3.2.6.4 Nets of Varying Size

We will now examine whether the efficiency of this parallelization is sensitive
to the size of the neural network simulated.

In section 3.1.3.4, we mentioned that the amount of computational work
does not grow as fast as the number of weights when an n-n-n net is scaled
up, since the work associated with calculating the activation function and its
derivative is proportional to the number of hidden and output units, whereas
the number of weights (excluding bias weights) grows quadratically with the
number of units in the net.

This suggests that efficiency might be reduced as a result of increasing
the size of the network, since the amount of computation is not increased
as much as the number of communications. This is not the case, though, as
illustrated in figure 3.13. Efficiency is seen to be nearly completely indepen-
dent of the size of the net.

It is worth observing, that in this particular algorithm the calculation of
the activation function and its derivative is associated with the bias weights
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of the net (see section 3.2.3). In this context, the fact that the amount of
computation is not increased as much as the number of communications does
not mean, that the amount of work associated with one communication is
lowered in general. It simply means, that in the 100-100-100 net there are
relatively fewer bias weights, and since each bias weight has associated more
computational work with it, than a weight connecting units in different layers
has, the total amount of computational work has not grown as much as the
number of weights.

In other words, there are simply more ordinary weights in the net,
weights with less computational work associated. This does not necessar-
ily lower the efficiency. If the time required for communicating one such
weight is shorter than the time required for performing the computations,
then performing these two tasks concurrently will make the cost of commu-
nicating insignificant. This is most likely the reason why efficiency is not
reduced notably when the size of the net is increased.

3.2.7 Memory Requirements

One of the reasons for designing this algorithm was the excessive memory re-
quirements of the algorithm described earlier in section 3.1. In that algorithm
each processor kept its own copy of the entire set of weights. The design of
the algorithm described in this section was based on the attempt of reducing
memory requirements by avoiding the redundancy introduced by having to
store P identical copies of all weights. In this algorithm only the adminis-
trator keeps the entire set of weights, whereas all other processors only need
the capacity to store two or three weights. However, each (slave) processor
needs to store several copies of all units in the network, since the complete
presentation of one pattern (including forward propagation of activity and
backward propagation of error) cannot be accomplished in one step (see the
introduction to section 3.2). Hopefully, this extra memory demand is not
nearly as large as the amount of memory saved by removing the redundant
set of weights in each processor.

In the following we will concentrate on the variables that scale with either
net size or batch size, i.e. we will exclude from consideration all variables that
are constant in size in all runs. The maximum number of patterns in one slave
processor’s part of a batch is B/(P − 1)�, since it may not be possible to
let the administrator participate in the presentation of patterns (see section
3.2.5). Therefore we get the following memory requirement for each slave
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Figure 3.13: Efficiency shown as a function of network size

processor (compare with section 3.1.2.1).

B/(P − 1)� · 2(NI + NH + NO)

The memory requirements of the slaves can be seen to be independent of
the number of weights in the network, contrary to what was the case with
the first data partitioning algorithm described. This is fortunate since the
number of weights in a network grow quadratically with the number of units
when the entire net is scaled up. Therefore the algorithm described in this
section will be less memory intensive when run on large nets, as expected.

Using the formulas it can be seen that even on a rather small net like a
20-20-20 net this algorithm will be more economic with respect to memory
as long as the batch size per processor is less than 28.

As long as the batch size is relatively small and the network is relatively
large this algorithm will not require as much storage capacity (in the slaves)
as the simple implementation of the data partitioning strategy. If there is too
little memory in the slaves one solution is simply to use more slaves. This will
most likely reduce efficiency a bit, though judging from the results of section
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3.2.6.2 not enough to actually increase the running time of the algorithm.
This is contrary to the simple implementation in which not much can be
done if the memory requirement of some application is too heavy, except, of
course, to change the algorithm so that only a part of the weights and the
partial component gradients are communicated at one time, i.e. to split the
weights and the partial component gradients into separate packets which can
be communicated one after another. This does not, however, change the fact
that in that algorithm there has to be a copy of the entire set of weights in
each processor.

On the whole, the advanced implementation is preferable with respect
to memory requirements, since the memory requirement of individual slaves
is reduced as more processors are used.

3.2.8 Conclusion

We have seen that, with respect to both memory requirements and running
time, this implementation allows larger problems (with respect to the number
of sub-problems) to be handled when more processors are used.

An important property of this algorithm is that efficiency depends only
on the number of sub-problems per processor, not on the number of pro-
cessors itself. This is contrary to the simple implementation of the data
partitioning strategy in which efficiency is reduced when more processors are
used, even though the number of sub-problems per processor is not reduced.

The fact that efficiency does not depend on the number of processors
in the advanced implementation means, that a problem containing twice as
many sub-problems can be solved using twice as many processors without
any reduction in efficiency. In other words, very large numbers of processors
can be utilized when large problems are handled.

We have seen that this algorithm is faster than the simple implementa-
tion on relatively small batch sizes like 200 and 400 patterns, and that the two
algorithms reach the same maximum speed-up on an 800 pattern batch. We
have also seen that within the limits of the number of processors available to
us, the highest speed-up is achieved when the maximum number of processors
is used, i.e. when each slave processor handles only one sub-problem. When
this is taken into consideration together with the apparent non-dependency
of efficiency on the number of processors, we have reason to suspect that
in terms of speed this algorithm would be able to out-perform the simple
implementation on any batch size, if enough processors were available.
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The above considerations lead forth to the conclusion, that this algo-
rithm should be preferred, if, compared to the batch size, a relatively large
number of processors is available. However, on problems where the batch size
per processor is very large (more than 50 patterns) the simple implementation
is probably going to achieve a higher speed-up.

3.3 An Implementation Using Matrix Oper-

ations

In this section a third parallelization of back-propagation will be described.
The algorithm is more or less a combination of the data partitioning strategy
and the net partitioning strategy. Even so, we have included the algorithm in
this chapter. We have done this because, in one very important aspect, the
algorithm is similar to the other two algorithms described in this chapter: It
has to use batch updating of the weights.

The main idea of this algorithm is the observation that the basic cal-
culations involved with back-propagation can easily be expressed as matrix
operations (matrix multiplications). As algorithms for matrix multiplica-
tions on distributed-memory processors (as the transputers) are in existence
already, one can simply use one of these algorithms and extend it with the
neural net specific calculations.

This approach has been investigated by Petrowski et.al. [Petrowski].
They have implemented an optimal matrix multiplication algorithm by Fox
et.al. [Fox2] on a system of 16 transputers. They use both torus and mesh
configurations. These configurations (each with an additional root processor)
are illustrated in figure 3.14.

The matrix multiplication parallelization does not observe one of the basic
demands for parallelizations which we put forward in section 2.3: The torus
and mesh configurations have to be squares, i.e. equally many processors in
the rows and columns. Hence, there are not very many numbers of processors
that can be used.

We have included this algorithm because the results reported in the
article suggest that the implementation by Petrowski et.al. is superior in
some aspects to the two implementations in sections 3.1 and 3.2. However,
as our own implementation of the matrix multiplication strategy will show,
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Figure 3.14: The torus and mesh configurations with additional root proces-
sor

this superiority probably relies on certain “tricks” which we have not used
in the other implementations.

Therefore, our analysis of this algorithm will not be as thorough as the
analysis of the other algorithms. We will mainly explain the idea of the
algorithm and compare our results with those obtained by Petrowski et.al.

3.3.1 The Use of Matrix Multiplications

In order to be able to describe this algorithm, we will have to extend our

notation a bit. By w
H

we denote the NH by NI matrix of input to hidden
unit weights:

w
H

=




wH
0→0 · · · wH

NI−1→0

wH
0→1 · · · wH

NI−1→1
...

. . .
...

wH
0→NH−1 · · · wH

NI−1→NH−1


 (3.10)

Likewise, the NO by NH matrix of weights between hidden and output units

is denoted w
O
.

The algorithm described in the following is a parallelization of the batch
updating algorithm. Hence, several patterns (the patterns of batch B) will
be presented to the net, simultaneously. The matrix of input unit, acCvit,ies

(input patterns) for a given batch, B, will be denoted by a
I
B. This is an NI
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by |B| matrix:

a
I
B =




aI
0,0 · · · aI

0,|B|−1

aI
1,0 · · · aI

1,|B|−1
...

. . .
...

aI
NI−1,0 · · · aI

NI−1,|B|−1


 (3.11)

The matrices of hidden and output unit activities are defined similarly. By

δ
H

B and δ
O

B we denote the matrices of hidden and output unit delta values,
respectively. These matrices have the same dimensions as the corresponding
activity matrices.

The propagation of activity can be expressed as a matrix multiplication.
The product, of the input to hidden unit weight matrix with the matrix of
input unit activities results in an NH by |B| matrix of hidden unit net input
values8 from which the matrix of hidden unit activities is easily calculated.
In short we can write:

a
H
B = f(w

H ∗ a
I
B) (3.12)

Notice, the activation function f is invoked on every individual entry in the
matrix.

The matrix of output, unit activities is calculated similarly. This matrix

is then used in the calculation of output unit delta values (the matrix δ
O

B).
No matrix operations are involved here. Please refer to equation 1.8 (page
13) for the exact computations needed. The matrix of hidden unit, error

values (used in the calculation of hidden unit delta values, δ
H

B is calculated
as follows:

e
H
B = tw

O ∗ δ
O

B) (3.13)

where the tw
O

is the transposed matrix of hidden to output unit weights.
Again, the delta values are easily computed when the error values have been
calculated (see equation 1.9 on page 14).

At this stage the activity and delta values of all units for all patterns
in the batch are known. It is then possible to calculate both the individual
component gradients arising from the patterns in the batch B and their sum

8Notice, that the contribution from the bias weights is temporarily ignored.
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in a single matrix multiplication. The part of the total gradient belonging
to the weights between hidden and output units is calculated as:

∑
p∈B

∂Ep

∂w
O

= δ
O

B ∗ ta
H
B (3.14)

where ta
H
B is the transposed matrix of hidden unit activities. The calculation

of the part of the total gradient for the input to hidden unit weights is
performed similarly.

When the total gradient has been calculated, the actual weight changes
are easily computed (see equation 1.12 on page 15).

3.3.2 The Parallelization

Three different types of matrix multiplications have been identified in the
back-propagation algorithm: The multiplication of equation 3.12 is used
twice, once when the calculation of hidden unit activities is performed and
once again in the calculation of output unit activities. Equation 3.13 is used
once in the calculation of hidden unit delta values. Finally equation 3.14 is
used twice when calculating the total gradient.

In some of these matrix multiplications, one of the matrices has to be
transposed. As all matrices are partitioned among the processors, this is
a very inefficient operation if the processors are not configured as a square
mesh or torus, i.e. the number of processors in a row and in a column are
the same. This effectively puts a limit to the number of processors that can
be used.

As mentioned, the weight, activity, and delta matrices are partitioned
evenly among the processors, i.e. each processor does not hold a copy of
everything. The partitioning is done as follows: If Q by Q processors are
used (Q is the square root of the number of processors) each matrix is divided
into Q2 sub-matrices and distributed to the right processors. E.g. the NH
by NI matrix of weights between input and hidden units is divided into
sub-matrices of size NH

Q
by NI

Q
. When 16 processors are used we have the
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following division of the matrix:

w
H

=




w
H
[0,0] w

H
[0,1] w

H
[0,2] w

H
[0,3]

w
H
[1,0] w

H
[1,1] w

H
[1,2] w

H
[1,3]

w
H
[2,0] w

H
[2,1] w

H
[2,2] w

H
[2,3]

w
H
[3,0] w

H
[3,1] w

H
[3,2] w

H
[3,3]




(3.15)

Processor (i, j) of the torus simply gets sub-matrix w
H
[i,j]. The activity and

delta matrices are divided among the processors in a similar way.
The details of the matrix multiplication algorithm by Fox et.al. will not

be discussed. Further information can be found in both [Petrowski] and
[Fox2].

The matrix multiplication parallelization performs best on a torus con-
figuration. However, it is not possible to configure a perfect torus when using
transputers. A transputer has only four links. Since one of the transputers
in a network uses a link for input/output with the host, an extra transputer
has to be inserted in one of the rings (see figure 3.14a).

Theoretically, the torus implementation of the matrix.multiplication ought
to be superior to any other configuration. However, due to the reduced com-
munication speed resulting from the inserted extra transputer, Petrowski
et.al. report that the algorithm for the mesh configuration (see figure 3.14b)
executes with approximately the same efficiency. The extra transputer shown
in figure 3.14 is actually not necessary with the mesh. For some reason, not
mentioned in their paper, Petrowski et.al. use it anyway.

3.3.3 Results and Comparisons

Petrowski et.al. simulate networks of different sizes. They achieve the best
results with a net of 64 input, 64 hidden, and 64 output units using a batch
size of 64, i.e. all matrices used in the multiplications are square 64 by 64
matrices. Petrowski et.al. use 16 transputers configured as a square torus
plus an additional transputer as explained earlier. They report a speed-
up of 13.6 out of a possible 16 which is equivalent to an efficiency of 85%.
However, as 17 transputers are used, an efficiency of 80% is a more correct
figure. Still, this is a higher efficiency than we have been able to attain
(using comparable network and batch sizes) with the two data partitioning
parallelizations described in sections 3.1 and 3.2.
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Hence, we wanted to see if we were able to obtain similar results with
the matrix multiplication strategy. Our implementation of back-propagation
using the matrix multiplication algorithm by Fox et.al. can be found in ap-
pendices B.8 and B.9. We will focus on the torus implementation.

We were not able to achieve the same performance as Petrowski et.al.,
however. We only got a speed-up of 10.7 equivalent to an efficiency of 67%
(or 63% out of 17 transputers). There may be several reasons for this. As
mentioned in section 1.6.1 our sequential implementation of back-propagation
is between 24% and 38% faster than the implementation of Petrowski et.al.
This may be one reason. Another possible reason will be described in the
following.

We have made some runs to determine why we got the poor performance.
In the first test we removed all communication from our implementation. The
speed-up of our own implementation can be found in table 3.3.

Program Speedup
Parallel 4 by 4 torus 10.7
Parallel without communication 11.8
Parallel with unfolded calculation, with communication 13.3
Parallel with unfolded calculation, no communication 14.6

Table 3.3: Simulation of a 64-64-64 net with 64 patterns in the batch

The communication overhead of our implementation only amounts to 9%.
This small number cannot explain the poor performance. The explanation
must then be found in some software overhead, i.e. extra index calculations
that have been introduced in the parallel implementation. Generally, it is
impossible (or at least difficult) to remove such overhead without introducing
other kinds of overhead. However, in this case it is possible to remove some
of the overhead without to much effort.

Consider the Occam code in figure 3.15. This is part of the code for
calculating hidden unit activity values. The SIZE variable is the size of the
rows/columns of the processor torus, i.e. in a Q by Q torus the value is Q.
As can be seen in the figure, the hidden.weight and input.activity are
3-dimensional arrays. Such arrays are apparently quite time consuming to
use.
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Figure 3.15: Part of hidden unit activity calculation

It is of course possible to rewrite this generally applicable piece of code.
If one always uses a 4 by 4 torus of transputers (as Petrowski et.al. do), then
the SIZE variable is always 4 and the SEQ d = 0 FOR SIZE loop of figure
3.15 can be unfolded: The hidden.weight and input.activity arrays are
each placed in four 2-dimensional arrays, thus reducing the amount of index
calculations. When similar code segments of our implementation also are
unfolded we see a considerable reduction in execution time (see table 3.3).
The speed-up of 13.3 is now comparable to the 13.6 obtained by Petrowski
et.al. As we only get a speed-up of 14.6 (unfolded an no communication)
there is still some software overhead.

The trick that we have just described is of course not generally prac-
ticable. If we want an implementation that can be used with any possible
number of processors it is not possible to do this. For each new application,
essential parts of the program has to be rewritten in order to utilize a spe-
cific configuration of processors. However, it shows that when using a specific
system it can indeed be worth while to try to optimize the implementation.

3.3.4 Varying the Number of Processors

As mentioned in section 3.3.2 the number of processors used in a simulation
has to be quadratic. Hence, the number of points in the speed-up and effi-
ciency graphs of figure 3.16 is very limited. We have used batch sizes of 15,
30, and 60. There is no gain in efficiency in using larger batch sizes than 60
(for the processor numbers in the graph).

This algorithm reaches maximum speed-up for relatively small batch
sizes. The two algorithms described in sections 3.1 and 3.2 need larger batch
sizes than this algorithm to obtain the same speed-up. However, those two
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Figure 3.16: Speedup and efficiency graphs when varying the number of
processors

algorithms can obtain a better speed-up when much larger batch sizes are
used. It seems that this algorithm is useful when small batch sizes are needed.

3.3.5 Varying the Batch and Net Sizes

The efficiency of the parallel matrix multiplication algorithm depends on the
size of the dimensions of the matrices involved. The larger the size of the
dimensions, the higher efficiency. There are two ways of increasing the size
of the dimensions of the involved matrices: One can either simulate a larger
neural net or increase the batch size. For a given task, i.e. a fixed net size,
there is only one way of increasing the efficiency then: Increase the batch
size. This way of increasing the efficiency is very similar to what we have
seen in the previous sections.

The graphs of figure 3.17 show the effect of varying the batch size as well
as the net size. In this algorithm, the effect of varying these two parameters
has almost the same effect. The reason for this is the following: The batch
size is the size of one dimension in the activity and delta matrices. The
number of input units determines the size of one dimension in the input
activity and input to hidden unit weight matrices. Likewise for the number
of hidden and output units. Hence, it is not surprising that the two graphs
of figure 3.17 are almost identical.
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Figure 3.17: Efficiency of 16 processors when varying the batch and net sizes

Neither the choice of batch size nor the number of units in the layers
have dramatic effects on the efficiency of the algorithm. If the batch size
or the number of units is chosen above 30 the efficiency is almost constant.
With respect to the batch size, this is an improvement on the algorithms
described in sections 3.1 and 3.2.

3.3.6 Conclusion

The implementation of the matrix multiplication strategy by Petrowski et.al.
seemed to yield better results than what we had been able to achieve in the
previous two sections. However, the improved performance was probably
accomplished through the use of some clever optimization of the implemen-
tation which we have not used with the other algorithms. Such clever opti-
mizations are always possible, but generally they are not very interesting.

There are several weaknesses with this third strategy. The matrix mul-
tiplication algorithm can only run when the torus or mesh configurations are
squares (equally many processors, Q, in the rows and columns), Hence, it is
far from possible to use an arbitrary number of processors. Second, in order
to attain a high efficiency, both the number of neurons in all layers as well
as the batch size have to be divisible by Q.
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Chapter 4

Back-Propagation Using Net
Partitioning

This chapter is devoted to the development and analysis of an algorithm
suited for the pattern updating scheme. This algorithm will include a parti-
tioning of the net among the individual processors.

4.1 Constructing the Parallel Algorithm

In this section we will describe the basis of the parallelization, how the net is
divided between the processors, the processor topology, and finally how the
actual parallelization of both the forward and backward passes is done. As
earlier we will limit our discussion to three-layer networks, that is an input
layer, only one hidden layer, and an output layer.

4.1.1 Dividing the Net

When the units and weights of a net are to be distributed among a number
of processors, there are not many different ways of doing this. One can slice
the net horizontally in three slices such that a single processor contains the
units of a particular layer. This is not a good idea because normally there
are very few layers in a net. Thus, it is not possible to use many processors.
Furthermore, if one insists on using a strict pattern updating scheme this
form of parallelization is not possible at all, since the forward and backward
passes are really sequential – only the units of one layer at a time make
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calculations.
The net can then be sliced vertically such that the units of a layer are

distributed equally among the processors. Each processor then contains units
from all layers. There are two obvious ways of distributing the weights:

1. All weights feeding into a unit are stored in the processor simulating
that unit.

2. All weights leaving a unit are stored in the processor simulating that
unit.

There is no real difference between the two strategies. If the first is chosen
the forward pass will be easy to parallelize while the backward pass is hard.
If the second strategy is chosen it will be the other way round. This will
be clear when we go through our parallelization. We have chosen the first
strategy.

All units are distributed equally among the processors such that all
processors contain the same number of input, hidden, and output units,
although the number of processors does not have to divide the number of
units in a layer. If the number of processors does not divide the number
of units it simply means that some of the processors will simulate one more
unit than others. In the following, however, we will assume that everything
divides nicely.

Figure 4.1: The distribution of neural units and weights

The weights of the network are distributed in the following way: All
weights feeding into an output or hidden unit are stored in the processor
simulating that unit. Naturally, this leads to an even partitioning of the
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weights. This is illustrated in figure 4.1 where the weights contained by
processor 1 are shown.

The process oriented version of back-propagation discussed in chapter 1
is parallel by nature. As such it would be easy to parallelize with the strategy
for unit distribution that we have chosen. Unit processes situated on the same
processor would still communicate as in the program of chapter 1. However,
there would be a huge number of links between unit processes situated on
separate processors. These links could be multiplexed1 to the limited number
of links of the transputers, but we fear that it would be very inefficient. In
chapter 1 we saw that the process oriented program was three times slower
than the non-process oriented program. With multiplexing on some topology
of transputers it can only become worse. We have not investigated the idea
of parallelizing the process oriented version further.

The net partitioning strategy for parallelization has been investigated
by a few researchers in the field. See [Ernoult], [Zhang], and [Millán] for
similar approaches to net partitioning.

4.1.2 The Processor Topology

The simplest possible way to connect a number of processors is with a ring.
A ring is easily extended to include more elements and a ring can consist
of any number of processors. Also, the ring is a natural topology when one
considers the weight partitioning of figure 4.1. Later we show that our use
of the ring is optimal, i.e. no time is wasted during communications in the
ring. Hence, we have not tried other topologies.

Figure 4.2: Ring of processors

The processors are connected in a ring as illustrated in figure 4.2. The
boxes represent processors and the numerals above the boxes are the proces-

1See [Welch] for a discussion of multiplexing.
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sors’ identifications which are needed in the computation. Such a numeral
will be referred to as the processor number. P is the number of processors
in the ring. Note the direction of the links. A processor sends data to its
predecessor in the numbering and receives data from its successor in the
numbering.

Even though all processors only simulate one part of the input and
hidden units, t,hey all have to have the capacity to store the activity of all
input and hidden units. This is done, because the activity of all input and
hidden units is necessary both in the forward pass and the backward pass
of the back-propagation algorithm. By storing all the activities we avoid
communicating them again.

Contrary to the data partitioning parallelizations described in the pre-
vious chapter, all processors run the same program in this parallelization.
The administrator process placed on the root processor differs only from the
slaves when it comes to external input/output operations.

4.1.3 Notation

Before we begin the discussion of the parallelization it is necessary to intro-
duce some not ation.

First some convenient abbreviations. As earlier we define P to be the
number of processors, NI , NH , and NO to be the number of input, hid-
den, and output units, respectively, in the network. Furthermore we de-
fine PI , PH , and PO to be the number of input, hidden, and output units
simulated by each processor. We let O be the set of output unit indices
(0, 1, . . . ,NO − 1). The sub-sets of indices for output units simulated by the
individual processors are then defined as:

O = { 0,1,... ,PO−1︸ ︷︷ ︸,PO ,... ,2·PO−1︸ ︷︷ ︸ ,... , (PO−1)·PO ,... ,P ·PO−1︸ ︷︷ ︸ }

O[0] O[1] O[P−1]

Processor 0 Processor 1 Processor P−1

(4.1)

The hidden and input unit indices are defined in a similar way.
By aH

j we denote the activity of the j’th hidden unit. The vector of
activities of all hidden units is denoted by aH , and aH

[p] is the sub-vector of
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hidden unit activities stored in processor p. This can be written as follows:

aH = ( aH
0 ,aH

1 ,... ,aH
PH−1,︸ ︷︷ ︸ aH

PH ,... ,aH
2·PH−1︸ ︷︷ ︸, ... , aH

(P−1)·PH
,... ,aH

P ·PH−1︸ ︷︷ ︸ )

aH
[0]

aH
[1]

aH
[P−1]

Processor 0 Processor 1 Processor P−1

(4.2)

The vectors of input and output unit activities, aI and aO, are defined in a
similar way. Likewise for the vectors of hidden and output unit delta values,

δ
H

and δ
O
. Finally, the net input to a unit in the hidden or output layer will

be denoted by netH
j or netO

k respectively.
Notice, the symbols for net input, activity, and delta do not have a p

subscript (for pattern). This is unnecessary as the algorithm we are about to
describe conforms to the stochastic gradient method. Patterns are presented
one at a time. All processors work on the same pattern.

The weights feeding into the output layer from hidden unit j to output
unit k will be denoted by wO

j→k. By wO
→k we denote the vector of weights

feeding into output unit k from all hidden units, and wO
j→ is the vector of

weights feeding into all output units from hidden unit j. As with activities
we will denote the sub-vector of weights feeding into output unit k from
the hidden units simulated by processor p by wO

[p]→k, and wO
j→[p] denotes the

sub-vector of weights feeding into the output units simulated by processor p
from hidden unit j. The weights from the input layer to the hidden layer are
expressed in a similar way.

4.1.4 The Parallelization

The parallelization consists of seven steps, two steps for the forward pass and
five steps for the backward pass.

4.1.4.1 Step One

The first step is the calculation of hidden unit activities. This actually con-
sists of two sub-steps, the first being the distribution of input unit activities
so that all processors have access to the activity of all input units, and the
second being the actual calculation of hidden unit activities.

The entire vector of input unit activities, aI , is distributed such that
processor p has the sub-vector aI

[p]. To broadcast all sub-vectors to all pro-
cessors is simple in a ring, and we do the following: Each processor sends
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its own sub-vector to the predecessor in the ring. Then all processors con-
currently receive and send sub-vectors calculated by other processors until
they all have the entire vector of input unit activities. This takes P (P − 1)
communications but all P processors communicate in parallel, so the total
time for the broadcast is the time it takes to make P − 1 communications.
The broadcast is illustrated in figure 4.3.

Figure 4.3: Broadcast of hidden unit activities

When the broadcast has finished, all processors have the entire vector
of input unit activities, aI . Processor p simulates the hidden units with
indices H[p] and all weights feeding into these units are contained by processor
p. Processor p can now calculate the net input to all the hidden units it
simulates:

netH
j = aI ∗ wH

→j =
NI−1∑
i=0

aI
i w

H
i→j, ∀j ∈ H[p] (4.3)

where the operator ∗ is vector multiplication.
With the net input given, the activity of the hidden units can be calcu-

lated as follows:

aH
j = f(netH

j ), ∀j ∈ H[p] (4.4)

where f is the nonlinear activation function. The calculations in equations
4.4 and 4.3 can be performed by all processors in parallel with no commu-
nication between them, because all the variables in the equations are stored
locally in the processors.

The communication part of step one cannot be avoided. However, the trans-
puters are capable of doing computations and communications over the ex-
ternal links in parallel. We exploit this feature by merging the two sub-steps
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of step one. If computation is done while communicating the input unit ac-
tivities and the computation time is larger than the communication time, the
massive communication needed in this step will be of no importance.

The calculation of the net input to a hidden unit, as given in equation
4.3, can be rewritten further in the following way:

netH
j =

NI−1∑
i=0

aI
i w

H
i→j =

P−1∑
q=0

aI
[q] ∗ wH

[q]→j, ∀j ∈ H[p] (4.5)

The last expression of the equation is a sum over all processors. Each aI
[q]

sub-vector in this sum is stored in a separate processor.
The merging of the two sub-steps begins with each processor sending

this sub-vector to the preceding processor in the ring as illustrated in fig-
ure 4.3. While these sub-vectors are being communicated on the external
channels, all processors calculate their local contribution to the hidden units
they simnulate. For all hidden units simulated by processor p the following
is computed:

aI
[p] ∗ wH

[p]→j, ∀j ∈ H[p] (4.6)

When this calculation has finished, the processor receives the sub-vector from
the succeeding processor and immediately sends this on to the preceding
processor. The sub-vector received in processor p is the input unit activities
of processor p + 1, and now processor p can calculate the terms:

aI
[p+1] ∗ wH

[p+1]→j, ∀j ∈ H[p] (4.7)

which are added to the terms calculated in equation 4.6.
This parallel communication and calculation is continued until the cal-

culation of netH
j for all j ∈ H[p] is completed. Then the activation function

is applied to obtain the hidden unit activities.
The input unit activities are needed again in step six when the weight

changes are calculated, so upon receiving the sub-vectors of input unit activ-
ities here in step one, the entire vector of input unit activities is stored for
later use.

The Occam implementation of step one can be found in appendix B.10
fold number 13.

89



4.1.4.2 Step Two

The second step is the calculation of output unit activities. This step is very
similar to the first step. The calculation of the net input to an output unit
can be rewritten in the following way:

netO
k =

NH−1∑
j=0

aH
j wO

j→k =
P−1∑
q=0

aH
[q] ∗ wO

[q]→k, ∀k ∈ O[p] (4.8)

As in step one, each aH
[q] sub-vector in this sum is stored in separate processors.

Again a broadcast is needed, this time of the hidden unit activities.
The Occam implementation of step two can be found in appendix B.10

fold number 14.

4.1.4.3 Step Three

The third step is the calculation of delta values for the output units and this
can be done with local data exclusively. The delta value of an output unit
simulated by processor p with index k is calculated as:

δO
k = (tk − aO

k )aO
k (1 − aO

k ), ∀k ∈ O[p] (4.9)

The Occam implementation of step three can be found in appendix B.10
fold number 16.

4.1.4.4 Step Four

The fourth step is the calculation of hidden unit delta values. The calculation
of a delta value of a hidden unit, δH

j , for processor p is performed as:

δH
j = aH

j (1 − aH
j )(δ

O ∗ wO
j→) = aH

j (1 − aH
j )

NO−1∑
k=0

δO
k wO

j→k, ∀j ∈ H[p] (4.10)

Step four resembles step two, because essentially it is a vector product. How-
ever, the weights are not stored in the right place here. When processor p
calculates a vector product it uses the weights wO

j→ for all j ∈ H[p]. But these
weights are not stored in processor p. They are partitioned equally between
all processors, and distributing the weights is far too time consuming.
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Equation 4.10 can be rewritten in order to get a sum over the processors.
This is done as:

δH
j = aH

j (1 − aH
j )

NO−1∑
k=0

δO
k wO

j→k = aH
j (1 − aH

j )
P−1∑
q=0

δ
O

[q] ∗ wO
j→[q], ∀j ∈ H[p]

(4.11)

The last expression is thus a sum over all processors. Each term in this sum
can only be calculated by the processor storing the weights and delta values.
Hence, if j ∈ H[p] is the index of a hidden unit simulated by processor a,

processor b is able to calculate the terms δ
O

[b] ∗ wO
j→[b] needed by processor a

in its calculation of δH
[a]. By a[b] we denote all these terms:

a[b] = {δO

[b] ∗ wO
j→[b]}∀j∈H[a]

(4.12)

Thus, a[b] is a package calculated by processor b, needed by processor a.
All processors need a package from all other processors. There are a

total of P (P − 1) packages. All these packages are different, so there is no
easy way to communicate them between the processors, i.e. it can not be
done in exactly the same way as in steps one and two.

There is a way, though, to allow the communications to be carried out
in a similar way to step two, We utilize the fact that the packages are not
totally independent of each other, they are all part of some summation. In
the following we will show that it is possible to communicate and sum the
packages in such a way that all communications can be carried out in only
P − 1 sequential steps (with P parallel communications in each step) just as
in steps one and two.

We generalize equation 4.12 to:

a[b,... ,c] = {δO

[b] ∗ wO
j→[b] + · · · + δ

O

[c] ∗ wO
j→[c]}∀j∈H[a]

(4.13)

In this equation a number of packages calculated by the processors from b to
c needed by processor a are summed. The sum is a part of the entire sum

used in the calculation of δ
H

[a].

Figure 4.4 is an illustration of what we do, The numerals above the thick
line are the pro- cessor numbers. Between two horizontal lines, some kind
of calculation or communication is performed by all processors in parallel.
These are the steps, each step is performed in parallel:

91



Figure 4.4: Calculation of hidden unit delta values

1. Processor 0 calculates its package to processor 1, denoted by 1[0]. Pro-
cessor 1 calculates its package to processor 2, denoted by 2[1], and so
forth.

2. Both calculations and communications are performed in parallel by the
processors. Processor 0 calculates 2[0] while sending 1[0] to processor
P − 1. Processor 1 calculates 3[1] while sending 2[1] to processor 0, and
so forth.

3. Processor 0 receives 2[1] and adds this to the package it just calculated,
2[0], and gets 2[0,1] which is the package sent next. Processor 1 receives
3[2] and adds this to the package it just calculated, 3[1], and gets 3[1,2].
The other processors perform similar tasks.

Now, steps similar to 2 and 3 are repeated until all processors have the entire
package needed by the processors themselves, i.e. processor p has the package

p[0,... ,P−1] =
P−1∑
q=0

δ
O

[q] ∗ wO
j→[q] , ∀j ∈ H[a] (4.14)

This is the exact sum of the last expression in equation 4.11 for processor p.
It is now possible for processor p to calculate δH

[p].
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The Occam implementation of step four can be found in appendix B.10
fold numbers 17 and 20. Please note that this step is merged in the appendix
with step five and step seven. The code for step five and seven are the internal
folds 18, 19, 21, 22, 23, and 24. See section 4.1.6 for an explanation of why
the steps are merged.

4.1.4.5 Step Five

The fifth step is the calculation of weight changes of the weights between the
hidden and output layer. The equation is:

∆wO
j→k(n + 1) = η δO

k aH
j + α∆wO

j→k(n) (4.15)

Because the hidden unit activities calculated in step two were stored, it is
possible for the processors to calculate all weight changes with local data
exclusively.

The Occam implementation of step five can be found in appendix B.10
fold numbers 18, 21, and 23.

4.1.4.6 Step Six

The sixth step is the same as step five, except that the weight changes are
for the weights between the input and hidden layer. The equation is:

∆wH
i→j(n + 1) = η δH

j aI
i + α∆wH

i→j(n) (4.16)

Again, as the input unit activities calculated in step one were stored, it is
possible for the processors to calculate all weight changes with local data
exclusively.

The Occam implementation of step six can be found in appendix B.10
fold number 25.

4.1.4.7 Step Seven

The seventh step is the actual changing of the weights. Again this can be
performed with local data solely, without any kind of communication, and
thus in parallel.

The Occam implementation of step seven can be found in appendix
B.10 fold numbers 19, 22, 24, and 26.
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4.1.5 Handling Input and Target Patterns

Depending on the size of the input/target-patterns, there are different strate-
gies for storing these data in the processors. If the entire set of input/target-
patterns is small, each patterns can be stored in its entirety in all processors
such that all processors have identical copies. This is the case with the
NETtalk data set discussed in chapter 5. In this case, step one of the algo-
rithm becomes very simple. As the input patterns (input unit activities) are
known to all processors, the processors do not have to broadcast them.

If the set of input/target-patterns is too large to be placed on all proces-
sors we distribute each pattern equally among the processors. As mentioned
in section 4.1.4, we actually distribute the input units equally among the
processors as we do with the hidden and output units, and then let each pro-
cessor contain exactly the part of every input pattern that is associated with
the input units the processor is simulating. Likewise for the target patterns.

4.1.6 Summary

If the communication time of step four is a problem, an obvious improvement
of this seven step algorithm is to merge step four and step five, because
the calculation of weight changes corresponding to the weights between the
hidden and the output layers in step five can be done already when step
three is over and thus in parallel with step four. The updating of the weights
between the hidden and the output layers (part of step seven) can also be
merged with step four.

In section 4.1.2 we claim that a ring of processors is optimal for our
purpose. This is easily realized. When the processors communicate in steps
one, two, and four, all processors communicate at the same time. Further-
more, and more importantly, no processor communicates any data that is not
needed by the processor itself, i.e. no processor is simply passing on data.

4.2 Analysis of the Algorithm

In this section we will run the parallelization on nets of different sizes with
varying numbers of processors in order to understand what factors determine
the behaviour of the algorithm. The nets are simply nets of convenient sizes;
they are not nets for real applications, i.e. no actual learning takes place.
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It is only in step one, two, and four of the seven step algorithm communi-
cation between the processors takes place. Apart from some overhead which
stem from process switching and some extra index calculations, it seems that
only the communication in those three steps can prevent a full exploitation
of an arbitrary number of processors and thus a maximum speed-up over a
sequential version.

As discussed in section 4.1.4 we tried to construct the algorithm so as to
perform a minimum amount of communication, preferably in parallel with the
calculations. In this section we will analyze to what degree this is achieved
and what the determining factors for high efficiency are.

4.2.1 Memory Requirements

One advantage of this algorithm is the low memory requirements. The
weights, activities, and delta values of the net are distributed uniformly
among the processors. However, the activity values of all input and hid-
den units are stored on all processors. This is done because these values are
used twice. The input unit activities are used both in step one and step six.
The hidden unit activities are used both in step two and five.

The memory requirement of each processor (measured in number of
REAL64s) for variables directly connected with the neural net is given as:

NI + NH + PH + 2PO + 2((NI + 1) · PH + (NH + 1) · PO)

When the simulated nets are large, the only really important contribution is
that of the weights.

4.2.2 The Forward Pass

The two steps of the forward pass are essentially alike, hence we will only
analyze one of these steps. As we thoroughly discussed the first step in sec-
tion 4.1.4 with extensive notation, this is the step we will analyze now. We
will show that the calculation time depends linearly on both the number of
hidden units simulated by each processor, PH , and the number of input units
simulated by each processor, PI . The communication time, however, only
depends linearly on PI . In other words, by increasing PH it is possible to in-
crease the calculation time without affecting the communication time. Thus,
by choosing PH large enough, the communication time becomes insignificant
compared to the calculation time.
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When processor p calculates the net input to one of the hidden units it
simulates, processor p has to do the following as in equation 4.5:

netH
j =

P−1∑
q=0

aI
[q] ∗ wH

[q]→j, ∀j ∈ H[p] (4.17)

This calculation is merged with the broadcast of input unit activities. The
relevant part of the Occam code for processor p is illustrated in figure 4.5.
The sending and receiving of data are executed with high priority. This is
done in order to get the link processors initiated as fast as possible. When
the link processors take over the communications, the main processor is free
to handle the low priority process, the calculation.

Figure 4.5: The calculation of hidden unit activities for processor p

In each iteration the calculation of aI
[q] ∗wH

[q]→j term uses PI multiplica-
tions and PI additions. Hence, the calculation time in each iteration depends
linearly on PI . Since the calculation is done for all hidden units simulated
by each processor, i.e. for all j ∈ H[p], the calculation time depends linearly
on PH as well.

We have measured the time taken to communicate aI
[q] terms of varying sizes.

PI is between 1 and 10. This is shown in figure 4.6. The time is for parallel
sending and receiving as illustrated in figure 4.5. The time for calculating a
aI

[q] ∗ wH
[q]→j term for a single hidden unit is also given.

It is obvious from the graphs of figure 4.6 that simulating a single hidden
unit per processor is insufficient in the forward pass if a maximum efficiency
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Figure 4.6: Communication and calculation times for aI
[q]

is expected. When PH is one, the calculation time is smaller than the com-
munication time for any PI . However, raising PH to 2 or 3 will raise the
calculation time by the same factor. In effect the calculation time will be
larger than the communication time for all values of PI and we can expect
a better efficiency.

The merging of calculation and communication in step two of the algo-
rithm is exactly the same as the one just described for step one. For step
two the calculation time depends linearly on both PH and PO while the
communication time only depends linearly on PH .

The conclusion to the above considerations is that the number of units
simulated by the individual processors, i.e. PI , PH , and PO determine how
well the simulation of a net is parallelized. If the number of units per pro-
cessor is large, the calculation time is larger than the communication time
in which case we have a good parallelization. If the number of units per
processor is small, the calculation is slowed down by communication. This
will be demonstrated in section 4.2.4.
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4.2.3 The Backward Pass

In step four we also merged the calculations and communications. Figure 4.7
is a part of the Occam code for this step.

Figure 4.7: The calculation of hidden unit delta values for processor p

The communicated packages are vectors of size PH . The calculation of pack-
age q[p] as given in equation 4.12 is:

q[p] = {δO

[p] ∗ wO
j→[p]}∀j∈H[q]

(4.18)

The calculation time of a δ
O

[p] ∗ wO
j→[p] term depends linearly on PO . There

is one such term for each hidden unit simulated by a processor. Thus, the
calculation time of the entire array depends linearly on both PO and PH .

As with steps one and two of our algorithm we see that the calculation
time depends linearly on two factors, the number of hidden units simulated by
each processor and the number of output units simulated by each processor.
Again, the communication time only depends linearly on one of these factors,
this time the number of output units simulated by each processor. Similarly,
we anticipate a better performance of the algorithm when the number of
units simulated by a processor is large.

4.2.4 Effect of Varying the Net Size

In all our executions we have merged the fourth, fifth, and part of the seventh
step of the algorithm as suggested in section 4.1.6. Also, we do not take
advantage of the on-chip memory of the transputers.
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Figure 4.8: Efficiency of 10 processors when varying the net size

The graphs of figure 4.8 are efficiency graphs using a 10 processor simulator.
Both the sequential and parallel simulators are executed on nets of exactly
the same sizes using pattern updating of the weights. In figure 4.8a the
nets are of sizes such that the number of units simulated by each of the 10
processors varies from 1 to 20, i.e. the nets contain 10 input, hidden, and
output units, 20 input, hidden, and output units, and so forth.

We see that when there is only one unit per processor in each of the three
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layers the parallel simulator is not very efficient, only 35%. When there are
two units per processor the efficiency is raised to 59%. With around seven
units per processor the efficiency stabilizes on a value of approximately 85%.
This is apparently the highest efficiency we can hope to attain.

One reason for the inability to attain a higher efficiency is probably the
following: In figure 4.5 the algorithm accesses the elements of the vector
aI

[q] concurrently in the PRI PAR statement. A link processor accesses the
elements when communicating the vector, and the main processor accesses
the elements when calculating a contribution to the net inputs. Since the link
processors and the main processor of a transputer are incapable of concurrent
read operations from the same address, the algorithm is slightly slowed down
at this stage. Alternatively, a copy could be made of the vector, thus avoiding
the concurrent read operations. However, this also takes time and turns out
to be even slower.

Another reason for the non-optimal efficiency is illustrated in figure 4.8a.
The filled black circles represent runs where the communications have been
removed (replaced by SKIP statements). The space between the two curves is
the communication overhead. The space between the curve with filled circles
and the dashed 100% efficiency line is then software overhead of some kind.
However, it is not due to incapability of concurrent read operations, as no
communication takes place.

We have also measured the importance of parallel calculation and com-
munication. This is done by explicitly performing the calculation and com-
munication parts of the implementation sequentially. We should of course
expect longer execution times. Surprisingly, we get the same execution times
as with parallel calculation and communication. Hence, it seems that the cal-
culation and communication parts are already performed sequentially in the
original implementation. The reason for this is a bit subtle. The transputers
are indeed capable of performing calculation and communication in parallel.
We have seen this in section 3.2 as well as in appendix A.4. Apparently, the
problem lies with the Occam compiler. Naturally, parallel processes are not
allowed to change the same variable. The compiler checks this by performing
a usage checking. In our implementation we have two processes accessing
separate parts of the same array. The current version of the compiler is un-
able to detect that it really is separate parts of the array and gives an error.
Thus, for the program to be able to be compiled, we have to switch off the
usage checking. Apparently, the compiler generates code such that the two
processes are executed sequentially. See [Inmos1, section 5.11] for further
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information.
It is possible to get round the problem by implementing the critical parts

of the algorithm in machine code. However, that is beyond the scope of this
thesis. Secondly, the gain by doing this is minimal. We can at most hope to
obtain the efficiency given by the filled circles in figure 4.8a, i.e. the efficiency
of the runs where no communication takes place at all.

In the other three graphs of figure 4.8 we lock the number of units per
layer in two of the layers while varying the number of units per layer in the
third layer. In figure 4.8b we set the number of hidden and output units to
100 and vary the number of input units from 10 to 100 in steps of 10, i.e. the
10 processor simulator has 10 units per processor in the hidden and output
layers and from 1 to 10 units per processor in the input layer. By doing this
we are able to see the effect of too few input units per processor. However,
there is not any noticeable effect. The efficiency is a bit smaller when there
is only one input unit per processor.

In figures 4.8c and 4.8d we vary the number of hidden and output units,
respectively. We see that when the number of hidden units per processor is
too small the efficiency drops a little but not much. The number of output
units per processor has no effect on the efficiency as long as enough units are
simulated in the other layers.

The conclusion must be: If the number of units per processor is small
in all the layers the efficiency is low, but if the processors are short of units
in only one of the layers it has almost no effect on the efficiency.

4.2.5 Effect of Varying the Number of Processors

The graphs in figure 4.9 are speed-up graphs for different net sizes with the
use of up to 40 processors. In the individual sub-figures the size of the net
is unchanged as the number of processors is varied. The sizes of the nets
are chosen such that the maximum number of processors (40) divides the
number of units in each layer.

In figure 4.9a the net has 40 input, hidden, and output units. A high
speed-up is observed with the use of 2 to 8 processors. With the use of 8
processors, all processors simulate exactly 5 units each in the three layers.
With the use of 9 processors, 7 of the processors simulate 4 units in the layers
but 2 processors still simulate 5 units. The 7 processors are simply idle while
the 2 processors do the extra work. There is no gain in using 9 processors
instead of 8 because some of the processors still simulate 5 units. Actually,

101



Figure 4.9: Speed-up graphs
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using 9 processors is slower than using 8 but only just noticeable. This is due
to the extra processor which makes the communication parts of the algorithm
take a little longer time. The reason for this is that all processors perform
an extra communication.

With the use of 10 up to 13 processors the largest number of units per
processor is 4, hence a similar decrease in speed-up as with the use of 8 and
9 processors is observed in the graph. With the use of 14 to 19 processors
the largest number of units per processor is 3. With the use of 20 to 39
processors the largest number of units per processor is 2. Finally with the
use of 40 processors, they all simulate exactly 1 unit in the layers.

In the other graphs of figure 4.9 we see the same pattern, except that
the number of units simulated by each processor is larger, hence the speed-
up graphs are better. In figure 4.9a the largest speed-up is 12.5. The best
speed-up is of course achieved in figure 4.9e where it is 34.8. Figure 4.9f is
the efficiency graph equivalent to figure 4.9e.

The speed-up in figure 4.9a for 40 processors simulating exactly 1 unit
in the layers each is only 12.5 which is equivalent to an efficiency of 31%. In
figure 4.8a we saw an efficiency of 35% with the use of 10 processors simulat-
ing exactly 1 unit in the layers. In figure 4.9b the efficiency of 40 processors
simulating exactly 2 units in each of the layers is 58%. The comparable value
for 10 processors in figure 4.8a is 59%. We see a similar pattern of correspon-
dence for the other graphs of figure 4.9. Thus, it seems that the number of
units per processor in the layers is the determining factor of the efficiency,
not the number of processors used. Hence, it should be possible to utilize
e.g. twice as many processors with the same efficiency if the number of units
in the layers is doubled. This is almost true as we will demonstrate in section
4.2.6.

Note that for the net of figure 4.9e with 400 units in all layers, it is not
possible to run the program for 1, 2, 3, or 4 processors on a real application.
This is due to the extreme demands of memory used to store the weights.
A net with 400 units in all layers uses around 5 Mbyte of memory. The
points in the speed-up graph for these processor numbers are based on a
modified program which reuses weights in order to save memory. Of course,
this modified program is not able to learn any task, it was simply constructed
to get the execution times in order to be able to calculate the points of the
graph.

However, this shows the advantage of distributing the weights among the
processors. With the net of figure 4.9e it is not possible to use a sequential
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program, unless the processor used is equipped with more memory or exten-
sive memory swapping on a disk is used. It is possible to run simulations of
very large nets when the number of processors is large.

4.2.6 Effect of Scaling the Net with the Number of
Processors

In this section we will determine to what degree it is possible to utilize more
processors as the size of the net is increased. Figure 4.10 shows efficiency
graphs with the use of 2 to 40 processors. The graph with the smallest effi-
ciency is produced in the following way: For each number of processors the
size of the net is chosen such that each processor simulates one unit in each
layer, i.e. when P processors are used a P -P -P net is simulated. The graph
with the second smallest efficiency is the result of simulations of 2P -2P -2P
nets with the use of P processors. And so forth with 3, 5, and 10 units per
processor.

Figure 4.10: Efficiency of scaling the net size with the number of processors

The graph with the smallest efficiency decreases considerably in the begin-
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ning. The reason for this is the following: When a small number of proces-
sors, P , simulate a P -P -P net, the net is evidently not very large. We have
seen earlier that for small nets, the time to calculate the activation function
amounts to a considerable part of the entire execution time. This part of the
algorithm is of course very well parallelized, hence the larger efficiency in the
beginning of the graphs.

As we saw in section 4.2.4 the simulations of nets with few units per
processor result in low efficiencies. With the use of at least 5 units per
processor the efficiency is almost constant. Hence, it is possible to increase
the number of processors without loosing efficiency if the number of units
per processor is held constant (thus increasing the total number of units in
proportion with the number of processors), Notice, the number of weights in
a net increases almost quadratically when the number of units in the layers
is increased linearly. Hence, the amount of work is also increased almost
quadratically.

The curves of figure 4.10 are almost horizontal lines. If we assume that
the graphs continue this way for larger numbers of processors, we can deter-
mine whether it is possible to use more processors for a given task. If we have
a simulation where the processors simulate 10 units each in the layers with
an efficiency of 85.6%, it is possible to utilize twice as many processors (5
units per processor) with an efficiency of 80.2%. It is even preferable to use
one unit per processor instead of two. The added processors are not utilized
very well, however: One can use twice as many processors with an efficiency
of 31.5% instead of 58.2%. Thus, the increase in speed-up is very small.

4.2.7 Effect of Varying the Batch Size

Contrary to the data partitioning parallelizations of the previous chapter,
the net partitioning parallelization uses pattern updating of the weights. It
is of course possible to update the weights less frequently. With a small
modification of the program one can use a batch size of arbitrary size. The
modification is very simple: Instead of using the gradient to modify the
weights in every pattern presentation, the gradients of a batch are simply
summed before they are used in updating the weights. The modification has
one negative consequence though: The merging of steps four, five, and seven
of the algorithm is not possible any more.

Figure 4.11 shows the efficiency of runs with 10 processors when varying
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Figure 4.11: Efficiency of 10 processors when using batch updating

the batch size. Notice, for batch size 1, both the modified batch updating
(the black square) and the original pattern updating implementation (the
white square) is used. For all other batch sizes, the modified implementation
is of course used. The modified implementation appears to be faster than
the original implementation. This is not so, however. The two parallel
implementations are compared to two different sequential implementations.
The reason is that the pattern updating sequential implementation also runs
faster than the corresponding batch version for batch size 1. The execution
times for a 100-100-100 net with 10 learning cycles are given in table 4.1.

Figure 4.11 shows that the efficiency of the batch updating implementa-
tion decreases a small amount as larger batch sizes are used. This is because
the calculation of weight changes and the actual updating of the weights are
performed less frequently. The calculation of those parts are parallelized very
well as no communication is done concurrently with the calculation.
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10 processor parallel Sequential
Pattern updating version 0.49 set 4.2 set
Batch updating version 0.60 set 5.8 set

Table 4.1: Execution times of different pattern updating implementations

4.3 Conclusion

In this chapter a pattern updating parallel back-propagation simulator has
been developed. The algorithm uses a partitioning of the network. Further-
more, the communication has been reduced to a level which has little effect
on the algorithm.

The algorithm conforms to the pattern updating scheme, i.e. very fre-
quent weight updates can be used without influencing the efficiency of the
algorithm. However, a large number of processors can only be applied effi-
ciently when large neural networks are simulated.

These characteristics make this net partitioning parallelization very dif-
ferent from the simple and advanced data partitioning parallelizations dis-
cussed in chapter 3. The efficiency of these data partitioning algorithms
was almost independent of the size of the simulated network. Furthermore,
the batch size was a very determining factor for high efficiency of the data
partitioning algorithms.
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Chapter 5

NETtalk

In the previous chapters we have analyzed various parallelizations of neural
net simulators from a strictly efficiency viewpoint. The data partitioning
parallelizations appeared superior to the net partitioning parallelization be-
cause good efficiencies were obtained just as long as the batch size was chosen
large enough. However, such considerations are not sufficient in neural net
contexts. Changing the batch size of the back-propagation algorithm also
changes the actual learning process. In this chapter we will show the im-
portance of frequent weight updates, i.e. the bad influence on learning the
NETtalk task when a large batch size is used. Hence, the advantage of using
a data partitioning parallelization may vanish.

We have chosen to run our tests on a neural net application known as
NETtalk. The NETtalk training set will be introduced in section 5.1. In
section 5.2 we will describe how NETtalk is implemented on a feed-forward
neural net. The performance of NETtalk using various weight updating fre-
quencies will be illustrated in section 5.3. Specific weight updating frequen-
cies (batch sizes) are tested, because these have been tested by other people
on different parallel architectures. Finally in section 5.4 we will compare
the results obtained by these people with our own results using transputers.
The comparison will be a standard execution time comparison as well as a
comparison on the ability to learn.
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5.1 The NETtalk Data Set

In this section we will describe the NETtalk data set1 which was constructed
by Sejnowski and Rosenberg [Sejnowski] in 1986. Sejnowski and Rosenberg
trained a feed-forward neural net to learn the pronunciation of English words.
The data set is widely used as a benchmark by researchers in the field of
neural nets to test learning speed and generalization ability. By choosing to
run some of our tests on this data set, it will be possible to compare our
results with results obtained by other people.

The entire data set consists of 20,008 English words with corresponding
phoneme and stress information. However, the normal way to use the data
is to train on a sub-set of the entire data set only, this sub-set being the 1000
most common English words. The remaining words can then be used to test
the generalization ability of the net.

The data set is constructed in such a way that there is a one-to-one
correspondence between the letters in a word and the phonemes and stress
information. E.g. the word pronounce has a corresponding phonemic string
of the same length (prxnW-ns-) and a string of stress symbols (>>0>1<<<<).
Actually, the stress symbols consist of both stress and syllable information.
There are 52 different phonemes and 5 different stress symbols. See [Se-
jnowski] for an explanation of the phonemic and stress symbols.

The translation of a single letter in a word to the correct phoneme de-
pends on the surrounding letters in the word, hence Sejnowski and Rosenberg
use a “window” of 7 characters. The network is supposed to generate the
phoneme corresponding to the letter in the center of the window. The word
is scrolled through the window so that all the letters of the word are, one
after another, placed in the center of the 7 character window. The neural
net is each time presented with all the letters of the window. In this way
the network is able to generate all phonemes of a word. This is illustrated in
figure 5.1. In the figure the neural net is supposed to generate the phoneme
“x” which corresponds to the letter “o” (in the center of the window). To
be able to do this, the neural net is presented with all the characters of the
entire window, i.e. the letters “ pronou”.

The generation of stress information is performed in a similar way. If
there are not enough letters to fill the window the space character is used.

With a window size of 7 characters as used by Sejnowski and Rosenberg,

1See [Sejnowski] for an explanation on how to obtain this data set.
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Figure 5.1: The window presentation used by NETtalk

it is obvious that the neural net will not be able to pronounce all words
correctly. E.g. the neural net will at most be able to pronounce one of the
words finite and infinite correctly. When the neural net is presented with
the string “finite ” in the 7 character window in order to determine the
phoneme of the letter in center of the window, the network is unable to
tell whether the whole word is finite or infinite. The pronunciation of the
letter ’i’ (fin i te or infin i te) is different according to which of the two words
is presented. The same problem arises with words like though and thought
and other examples can be found. The problem is of course easily solved
with a larger window size. However, our goal is not to construct the neural
net performing best on the NETtalk data set but to be able to compare our
results with results obtained by others. Since a 7 letter window is the window
size used by all other people, this is the window size we will use.
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5.2 The Neural Network Implementation

An orthogonal representation2 with respect to each letter is used for the input
units, i.e. with 26 different letters in the alphabet and a window size of 7,
there are a total of 182 input units. This means that for each letter in the
window only one of the corresponding 26 input units is active. When a letter
in the window is a space character none of the corresponding 26 input units
are active.

Contrary to what is used with the input units, Sejnowski and Rosenberg
use a distributed representation2 for the output units. There are a total of
52 phonemes which are expressed in terms of 21 articulary features, such as
point of articulation, voicing, vowel height, and so on. The 5 stress symbols
are represented orthogonally, thus giving a total of 26 output units. When
comparisons with results of others are to be made, 60 units are normally used
in the hidden layer. It is possible, however, to achieve better performances
with respect to learning when more hidden units are used. Again, our goal
is not to increase the neural net performance, but the ability to compare
results.

The NETtalk data set, which consists of words, phonemes, and stress
symbols, is very small compared to training data of other neural net applica-
tions. The NETtalk data set only takes up 15 Kbyte for the 1000 word data
set.

The data requirements of NETtalk are so small that it is possible to
place a copy of the entire data set on all transputers. This is an advantage
for the net partitioning parallelization. In this way there will only be an
initial distribution of data. No data will need to be communicated during
the simulation. All processors have direct access to all patterns. As a result,
step one of the net partitioning parallelization will be simple as mentioned
in section 4.1.5.

Since a binary (and orthogonal) representation is used for the input
units, the calculation of hidden unit activities can be simplified. For a single
letter in the window only one of the corresponding 26 input units is active
(with activity l), the 25 other input units are inactive (with activity 0).

2When all pattern vectors are orthogonal, the representation is called orthogonal. If the
pattern vectors are compressed or coded in some way, the vectors might not be orthogonal.
This is called a distributed representation.
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Hence, in the formula:

aH
pj = f(netH

pj) = f(
NI−1∑
i=0

aI
piw

H
i→j) (5.1)

there is no need to perform all the multiplications. One can simply sum the
weights leading from the input units with activity 1. This is always possible
to do when a binary representation is used.

Notice, that contrary to the runs of the previous chapters, we do of course
utilize the on-chip memory of the transputers in the runs with NETtalk.

5.3 Simulations and Results

In this section we will show how the choice of batch size influences the learn-
ing capability, We have used several specific batch sizes because these have
been used by others in their parallelizations on various architectures. E.g.
Pomerleau et.al. [Pomerleau1] use batch sizes of 90 and 190 on the Warp
machines.3 Witbrock et.al. [Witbrock] use a batch size of 512 on the GF11
machine.4

All results presented in this section are obtained with transputer im-
plementations. The results agree with the results obtained by Sejnowski
and Rosenberg. For each execution we give both the learning rate as well
as the momentum value we have used. In this way the results should be
reproducible.

Sejnowski and Rosenberg use two measures of performance. The output
is considered a perfect match if the value of each output unit is within a range
of 0.1 of its target value.

The output is considered a best guess if the correct target vector is the
vector among all 52 possible target vectors which makes the smallest angle

3The main ingredient of the Warp architecture is a linear array of 10 individual proces-
sors with distributed memory (MIMD). Each processor has a peak arithmetic performance
of 10 Megaflops. The processors can communicate with their neighbours in the linear array
at an impressive speed of 80 Mbytes/set (32 times faster than the transputers). The cost
of a 10 processor Warp is $350.000. A 20 processor Warp is under construction.

4The IBM GF11 is an experimental distributed memory SIMD machine with 566 pro-
cessors and a total peak arithmetic performance of 11.4 Gigaflops. The processors are
connected via a programmable network. The communication speed of this network is not
given in the paper. Although the GF11 has 566 processors, Witbrock et.al. only use 512
of these.
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with the vector of actual output unit activities. I.e. all 52 possible target
vectors (each consisting of 26 values) are compared to the generated output
vector, and a best matching target vector is found. If this target vector is the
correct target vector, the output is a best guess. Consequently, the output
vector may be very different from the correct target vector when the best
guess criterion is used.

It is obvious that the best guess criterion gives the highest percentages of
correct responses (a perfect match is always a best guess but the converse is
not always true). However, using the best guess criterion is computationally
much more demanding than using the perfect match.

We trained the nets on the 1000 most commonly used English words.
After each presentation of 1000 words the nets were tested on the same
1000 words to measure the performance. The graphs of figure 5.2 show
the performance of the nets when trained using different weight updating
frequencies. In all training sessions the words were presented 50 times each.
The words were presented in random order. The momentum was set to the
normally used value 0.9.

The graphs are average graphs of several runs with different random
starting points in weight space. The difference in performance is hardly
noticeable between runs made from different starting points in the weight
space. This is not surprising when the relatively large number of weights
in the net (which amounts to 12566 including bias weights) is taken into
account.

Figures 5.2a and 5.2b are the results of using word updating, i.e. the
weights were only updated after all letters of a word had been presented.
This is the weight updating frequency used by Sejnowski and Rosenberg.
Notice that weights were updated very frequently but not regularly since
words differ in length (from 1 to 14 with an average of 5.4 in the set of 1000
words). A learning rate of 0.2 was used.

Figure 5.2a is the performance in percent measured both as best guess
and perfect match. We see that the best guess performance quickly rises to
around 90% and then only increases slightly after that, reaching 94.5% after
50000 word presentations.5 The perfect match performance exhibits a more
moderate increase. It reaches 64.7% but seems to be able to attain an even
higher percentage if the net was trained more.

5With 120 hidden units instead of 60, the performance reaches 98% after 50000 word
iterations.
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Figure 5.2: Performance of NETtalk after 50000 word presentations
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Figure 5.2b shows the corresponding standard measure of error as cal-
culated by:

E =
5438∑
p=1

26∑
j=1

(tpj − apj)
2 (5.2)

which is the squared sum over the 26 output units and all 5438 patterns
(which is the number of letters in the 1000 words). For comparison, the
average error of an untrained net is approximately 22600. The nets are
tested for the first time after 1000 word presentations. Evidently, the error
drops considerably during the first 1000 word presentations.

Figures 5.2c and 5.2d are the results of updating the weights after pre-
senting 90 letters (a batch size of 90). This is the weight updating frequency
used by Pomerleau et.al. [Pomerleau1] on the 10 processor Warp architecture.
A learning rate of 0.02 was used. Such a small learning rate was necessary in
order to prevent oscillation: As larger batch sizes are used more component
gradients are summed before updating the weights. Hence, a smaller learn-
ing rate is necessary if the magnitude of a weight change is to be kept on an
acceptable level. The result of too large weight changes is oscillation — no
learning at all takes place. See [Rumelhart] for more information on which
learning rate to use.

In figure 5.2c we see that the net attains a considerably lower perfor-
mance measured both as best guess and perfect match than with word updat-
ing. Also, the graphs are more irregular. Furthermore, with word updating
the error gets as low as 675, whereas the error only drops to 3045 after 50000
word presentations in figure 5.2d.

Figures 5.2e and 5.2f are the results of updating the weights after each
presentation of 190 letters. This is the weight updating frequency Pomerleau
et.al. [Pomerleau1] is expected to use with the 20 processor Warp architecture
under construction (if the batch size per processor is the same as with the
10 processor Warp). A learning rate as small as 0.01 was used, again to
prevent oscillation. The figures show an even poorer performance than with
the previous two weight updating frequencies. The error only drops to 4770
after 50000 word presentations.

The graphs for both 90 and 190 letter updating seem to suggest that
a prolonged training could increase the performance. Hence, we trained the
nets four times as long using both weight updating frequencies. The results
can be seen in figure 5.3. With the 90 letter weight updating frequency the
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Figure 5.3: Performance of NETtalk after 200000 word presentations

net was indeed able to perform better. With 190 letter updating, however,
we did not observe a similar improvement. It might take a huge number of
additional presentations to improve the performance.

Figure 5.4: Performance of NETtalk after 200000 word presentations

In section 5.4 we are going to compare NETtalk implementations on
different parallel architectures. Hence, we will finally give the performances
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of two other weight updating frequencies. Figure 5.4a shows the performance
when a batch size of 512 was used (the smallest batch size that can be used
by Witbrock et.al. with their 512 processor GF11).

Figure 5.4b is the result of an implementation using a batch size as
large as 800. Both have been run for 200 thousand word presentations with
learning rates of 0.002 and 0.001 respectively.

When the results of figures 5.2, 5.3, and 5.4 are compared it is obvious
that the performance deteriorates as the batch size is chosen larger and larger.
It is especially the perfect match criterion that gets degraded when large
batch sizes are used.

The previous observations lead to one conclusion: As the weights are
updated less frequently more pattern presentations are required to obtain
the same performance, if at all the same performance can be obtained. This
is also a conclusion found by Bourrely [Bourrely] who has parallelized back-
propagation on the Hypercube with up to 32 processors using data partition-
ing. Bourrely’s experiments are not performed with the NETtalk task. He
trains a net which is supposed to recognize handwritten numbers. Bourrely
writes:

Given that, in practice, the [stochastic gradient method] is the
only one which converges quickly, it is easy to understand the
decrease in learning speed when the algorithm used gets closer
to the [true gradient method]. For high values of [batch size]
or [number of processors], the parallelized algorithm diverges or
stagnates, This drawback of the parallelization totally eliminates
the positive effect on calculation time.

Witbrock et.al. have made similar observations with the 512 processor GF11
architecture using data partitioning with a batch size not less than 512. They
write [Witbrock]:

Since the NETtalk training set is suited to frequent updates,
our simulator would probably take more pattern presentations to
learn this task than the Warp (with fewer processors) or the Con-
nection Machine simulators (with a different form of parallelism).
It is even conceivable that our simulator might take longer to learn
NETtalk than one of these other simulators.

Although efficient parallelizations exist using data partitioning (with large
batch sizes), they may not be very useful. If the ability to learn deteriorates
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severely when a large batch size is used, the effect on learning speed of using
many processors may be lost.

Witbrock et.al. seem to suggest that the NETtalk data set is especially
suited to frequent weight updates (as the handwritten character recognition
task used by Bourrely apparently is), and that this is not necessarily the
case for all other neural net problems. I.e. there may exist data sets for other
neural net applications for which rare weight updates work just as well as or
even better than frequent updates. Vogl et.al. has reported [Vogl] that epoch
updating combined with a dynamically changing learning rate and momen-
tum factor may accelerate the convergence rate for some class of moderately
complex problems. If this is the case, data partitioning parallelizations may
indeed be applied successfully. However, we have not been able to find de-
scriptions of such data sets anywhere else in the literature.

5.4 Comparisons

In this section we will compare implementations of back-propagation on dif-
ferent parallel architectures. Normally, comparisons between different par-
allelizations are easy to make, because it is the same algorithm that has
been used in the different parallelizations. This is the problem with paral-
lelizations of back-propagation (see section 2.5). Some implementations are
parallel versions of the batch updating algorithm and exploit this. Some
implementations use the pattern updating algorithm. Since the two differ-
ent strategies for updating weights result in quite different performances (as
could be seen in the previous section) comparisons are not so easy. At the
risk of jumping to untenable conclusions we will give it a try, anyway.

When the performances of neural net simulators on different architec-
tures are compared, a measure known as connections per second (or CPS)
is often used. In [Witbrock] CPS is defined as: The number of connections
(including bias connections from the imaginary unit) times the number of
patterns presented divided by the total running time.

CPS is in no way a perfect measure. The measure does not account for
the frequency of weight updates, i.e. whether the net is able to learn anything
is irrelevant! Neither does the measure account for the fact that connections
from the input layer require less computation. In spite of these reservations,
the CPS measure is the only widely recognized measure and is still used. It
is obvious that the measure favours batch updating algorithms.
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We have made three runs with transputer implementations to obtain the
CPS measures. We used a 30 processor net partitioning implementation with
pattern updating, and a 40 processor data partitioning implementation (the
simple version of section 3.1) using batch sizes of 800 and 4096 (the batch
size of 4096 is only included to show that it is possible to obtain a very high
CPS count with 40 transputers. We do not recommend the use of such a high
batch size). The learning capability of runs with batch size 800 can be seen
in figure 5.4 of the previous section. We have not included a figure which
shows the learning capability of pattern updating and batch size 4096. The
performance of pattern updating is very similar to that of word updating.
Batch size 4096 is expected to yield an even worse performance than batch
size 800.

The 30 transputers used in the net partitioning implementation are not
applied efficiently. The units in each layer are divided equally between the
transputers of that algorithm. However, there are only 26 output units. With
the use of 30 transputers, 4 of the transputers do not simulate an output unit.
The number 30 divides the number of hidden units (60). This is why we have
used 30 transputers, no more and no less.

Tables 5.1 and 5.2 show the capabilities of back-propagation implemen-
tations on different machines measured in million CPS (MCPS). The numbers
are obtained from [Witbrock]. The machines of table 5.1 use implementa-
tions of the pattern updating algorithm. The machines of table 5.2 use the
batch updating algorithm. Notice, the estimation for the 20 processor Warp
in table 5.2 was made by Pomerleau et.al. themselves.

Machine MCPS
Sun 3/75 0.01
16384 processor CM-1 2.6
30 transputers, net partitioning 4.1
CRAY-2 7

Table 5.1: Performance of different architectures using pattern updating

The CPS count lists are peaked by GF11 with an impressive 180 MCPS
and similarly impressive figures for the Warp architectures. However, as
quoted from [Witbrock] in the previous section these high figures are not so
impressive when the learning capabilities are included in the evaluation. In
figure 5.4 we saw the performance when a batch size of 512 was used, which
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Machine MCPS Batch size
40 transputers, simple data partitioning 5.1 800
40 transputers, simple data partitioning 11.8 4096
10 processor Warp 17 90
20 processor Warp (estimated) 32 190
65536 processor CM-2 38 4096
512 mocessor GF11 180 512

Table 5.2: Performance of different architectures using batch updating

is the smallest batch size that can be used with the GF11 (when using 512
of the available processors).

The learning performances of the Warp architectures with 10 and 20
processors were shown in figures 5.2 and 5.3. When Pomerleau et.al. almost
double the CPS count with the use of a 20 processor Warp instead of the 10
processor version, this is not very impressive when the reduced learning is
taken into account. In order to exploit the 20 processors fully a batch size of
190 instead of 90 is necessary. The effect on learning is clear from figures 5.2
and 5.3. The figures suggest that at least twice as many word presentations
are required in order to obtain the same learning performance. Hence, the
effect of using twice as many processors is not that the task is learned twice
as fast. On the contrary, it may even take longer time to achieve a certain
degree of learning performance with the use of twice as many processors.

The 7 MCPS of a CRAY-2, the 2.6 MCPS of a Connection Machine6

or the 3.5 MCPS of 30 transputers using net partitioning are more genuine
since these figures are for algorithms using pattern updating.

It is possible to make learning time comparisons between e.g. the 10
processor Warp using a batch size of 90 and 30 transputers using word up-
dating. I.e. how much time is used by the two different implementations
before a certain performance is obtained. If the graphs of figure 5.2a are
compared to those of figure 5.3a, we see that approximately the same perfor-
mance is achieved with word updating after 50 thousand word presentations
and with 90 letter batch updating after 200 thousand word presentations
(measured as best guess). In other words: The 10 processor Warp imple-

6See [Blelloch] for a description of the 16384 processor Connection Machine and an
implementation of NETtalk on this.
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mentation uses approximately 4 times as many word presentations to obtain
the same performance as the 30 processor transputer implementation. It is
tempting to divide the Warp’s 17 MCPS performance by 4 and obtain a 4.3
MCPS performance which is then only slightly superior to the performance
of the transputers.

Such comparisons are not fair, however, or at least they cannot be gen-
eralized to other neural net applications. There may exist applications in
which the advantage of using frequent weight updates is not as large as the
advantage demonstrated for the NETtalk application. For such applications
the performance of the Warp will still be superior to that of the transputers.

5.5 Conclusion

Two different approaches to parallelizing the back-propagation algorithm
have been considered. The data partitioning approach of chapter 3 and the
net partitioning approach of chapter 4. When large batch sizes arc used the
data partitioning parallelizations can use many processors efficiently (almost)
independently of the neural network size. The net partitioning parallelization
works independently of the batch size (frequent weight updates are possible)
but needs a large neural network in order to utilize many processors.

With the NETtalk application we have seen that the data partitioning
parallelizations are superior to the net partitioning parallelization — as long
as the CPS measure is the only criterion. When other machine architectures
are considered, some of these perform a great deal better than the transputer
implementations (again when the CPS measure is the only criterion).

As stated earlier, the CPS measure is not very useful. E.g. with 40 trans-
puters we can achieve 11.8 MCPS with a batch size of 4096. The network,
however, is totally unable to learn anything within a reasonable time span
when the weights are updated this rarely.

The degradation in learning performance when large batch sizes are used
has been observed by several researchers. In section 5.3 we cited Witbrock
et.al. [Witbrock] and Bourrely [Bourrely] who criticized their own paralleliza-
tions. Singer [Singer] compares different Connection Machine implementa-
tions of back-propagation. In this comparison he uses expressions as “cre-
ative benchmarking” and he writes: In spite of the incomplete status of the
on-going eflorts to provide a standard set of tasks and measurement specifi-
cations for ANNs, the pressure to generate simple numerical scores by which
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artificial neural network programs can be judged is great; too great, in fact,
to resist.

Pomerleau finds, in [Pomerleau2], that: The traditional method of mea-
suring simulator performance in terms of raw connections per second is mis-
leading. Specifically, neural network implementations which simulate a large
number of patterns in parallel, and which therefore require the simulation of
many patterns before performing a weight update, may learn less quickly and
less robustly than implementations which update weights more frequently.

It is only possible to compare different implementations of back-propaga-
tion if the exact same parameters are used, i.e. training data, network size,
and weight updating frequency. NETtalk is an attempt to make a bench-
mark task such that this is possible. The NETtalk task is used in many
different ways, however. E.g. the normal number of hidden units to be used
in the network is 60. Zhang et.al. [Zhang] use 80 hidden units because their
parallelization on the Connection Machine works well with this number.

Because the NETtalk data set is used in many different ways, it is dif-
ficult to compare the performance of our transputer implementations to the
implementations on other architectures. In this chapter we have tried. We
believe we have shown that a transputer system is indeed worth considering
as the basis of a neural net simulator.
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Chapter 6

Conclusion

The subject of this thesis has been the parallelization of the back-propagation
neural net learning algorithm.

We have seen that both of the parallelization strategies introduced in
chapter 2 allow successful parallel transputer implementations to be devel-
oped. The question of which of the parallel neural net simulators should
be preferred cannot be answered in general. The choice must depend on
the specific neural net problem in concern, and the desired weight updating
frequency.

If a large batch of training patterns is preferred (for problem specific
reasons) one of the data partitioning parallelizations will probably allow a
larger number of processors to be used, and a higher speed-up to be obtained,
than the net partitioning parallelization will, at least if the size of the neural
net is relatively small. If the number of available processors means that the
batch size per processor will be relatively large, the simple implementation of
the data partitioning strategy will most likely produce the highest speed-up.
However, if the number of available processors is large compared to the size
of the batch, then the advanced implementation is expected to give the best
results, since it is able to run with a much higher efficiency for small batch
sizes per processor.

If frequent weight updates are desired, the net partitioning paralleliza-
tion should be used, since the efficiency of this algorithm does not depend on
the batch size being large. Furthermore, it is the only algorithm capable of
using pattern updating. However, for a high efficiency to be obtained each
processor must handle several units in each layer of the neural net. This
means that only a very limited number of processors can be applied to the
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simulation of small nets. But if both the neural net size and the size of
the batch are relatively small, simulating one learning cycle will not take up
much time even when using the sequential algorithm.

It should also be taken into consideration, when comparing algorithms,
that input patterns consisting of binary values allow the simple implementa-
tion of the data partitioning strategy and the net partitioning parallelization
to be speeded up. The reason for this is, that when input patterns consist of
binary values the amount of computations associated with the weights be-
tween the input and the hidden layer can be reduced, as described in section
5.2. In the advanced implementation of the data partitioning strategy and in
the algorithm using matrix multiplication, such a reduction will not always
reduce the work of all processors to the same degree. Thus, the result will
likely be that some processors will have to wait for other processors to finish,
thereby removing much of the benefit of the reduced amount of computation.

In connection with the choice of parallel neural net simulator it should
be noted, that the size of the batch should not be chosen large simply to
allow an efficient application of one of the data partitioning parallelizations,
since increasing the batch size may severely reduce the learning speed and
degrade the quality of the learning in terms of generalization ability. We have
described an example of this phenomenon in chapter 5 about the NETtalk
application. In this chapter we saw that even though the CPS count of the
net partitioning parallelization is much smaller than that of the simple imple-
mentation of the data partitioning parallelization, it clearly outperforms the
latter algorithm when the vastly improved learning performance of word or
pattern updating is taken into account. In fact, on the NETtalk problem our
implementation of the net partitioning strategy was seen to be comparable
in terms of learning speed to the performance achieved by Pomerleau et.al.
on the 10 processor Warp computer [Pomerleau1].

In the NETtalk chapter we stress the importance of this observation,
that one cannot evaluate the performance of a parallel neural net simulator
just by measuring the number of pattern presentations performed per second,
without taking into consideration whether any learning takes place in the
net. Only simulators that use exactly the same kind of learning method,
including the frequency of the weight updates, can be compared in a fair
way by looking at the number of pattern presentations per second, or some
similar measurement of speed.

Otherwise, different neural net simulators should be compared by mea-
suring the absolute execution time necessary to achieve a certain level of
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perfection on some specific neural net problem. This, however, is not a sat-
isfactory solution, either, since the influence of batch size on learning speed
and generalization ability varies from problem to problem. There may exist
problems where using epoch updating of the weights is superior to more fre-
quent weight updates in terms of both learning speed and quality. In other
words, it is probably not possible to give a general recommendation as to
which parallelization should be preferred. Different parallel neural net simu-
lators are simply suited to different kinds of neural net problems.

A point of natural concern is whether the parallelizations described in this
thesis are restricted to running the ordinary back-propagation algorithm, or
whether it is possible to use some or all of the considerations and techniques
described here when parallelizing other neural net learning algorithms. It
turns out, that the greater part of the computational work in a conjugate
gradient algorithm is associated with the calculation of the gradient of the
error function, as in standard back-propagation. This indicates that parallel
conjugate gradient algorithms can be constructed as extensions of the algo-
rithms we have described in this thesis. We have in fact performed a number
of preliminary experiments, and results not reported here suggest, that the
efficiency which can be achieved in these algorithms is comparable to that of
the standard back-propagation parallel algorithms.

We believe that we have demonstrated in this thesis that a transputer system
is an excellent choice for running neural net simulators. It is competitive in
performance and much cheaper than most of the alternatives.
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Appendix A

The Transputer

In this appendix we briefly explain the most important aspects of a trans-
puter. See [Inmos1] for more information. We have access to a MEiKO
transputer system with 48 transputers located in Odense. This will also be
discussed.

A.1 The Transputer Architecture

A transputer is a very complex VLSI-chip containing both a processor, a
small amount of memory, and links for communication with other transput-
ers. Several different types of transputers exist, the one we are using is the
INMOS IMS T800-30. Figure A.1 is a simple diagram showing the main parts
of the transputer. Apart from the processor (CPU), memory (RAM), and
links, the transputer contains an on-chip floating point unit (FPU). This FPU
has a peak performance of 2.25 MFLOFS. The memory interface is for adding
external memory, which is necessary since the on-chip memory amounts to
only 4 Kbyte. However, the on-chip memory is much faster (approximately
3 times) than any external memory.

There are four links for communication. Thus, a transputer is capable
of communicating directly with four other transputers or different kinds of
processors respecting the communication protocol. Each of these links con-
sists of a link-interface and two wires, one wire for receiving data and one for
sending data. A link-interface is an on-chip processor working independently
of the main processor. Furthermore, the link-interface has direct access to
the memory. The communication speed of the links is 20 Mbit per second.
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Figure A.1: Simple diagram of an IMS T800

The transputer can handle arbitrarily many processes, the only limita-
tion being the size of available memory. Process switching is very fast, less
than 1 µsec on average and not more than 3 µsec in worst case. Processes
can have one of two priorities. When high priority processes are active, no
low priority processes are allowed any processor time.

Communication between processes is handled through channels. These
are point to point, synchronized, and no buffers are used, i.e. communication
is carried out only when both processes are ready. A channel between two
processes situated on the same transputer is simply an address in memory.
A channel between two processes situated on separate transputers is the link
mentioned earlier.

Occam is a programming language which has been developed specifi-
cally for transputers. Occam is based on the CSP-model (communicating se-
quential processes), see [Hoare] for more information on CSP. Although many
traditional languages, like the C programming language, have been converted
to transputers, Occam is still the most natural language for transputers be-
cause it has facilities for communication and parallel process handling similar
to the transputer itself. Occam is the language we have used. The OCCAM
compiler generates very efficient code and optimizes to a high degree.

A.2 The MEiKO Transputer System

The MEiKO transputer system is a multi-user system with 48 transputers
using a SUN workstation front-end. Several users can simultaneously share
the 48 transputers, though a single transputer can only be used by one user.
Of the 48 transputers, 12 are equipped with 2 Mbyte of external memory
while the 36 others have 1 Mbyte of external memory. The MEiKO system
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itself occupies from 3 to 5 of the transputers, so it is never possible to allocate
more than 45 transputers at one time.

The transputers can be connected with each other in an almost arbitrary
way through a programmable switch-board. The interconnection is of course
limited by the fact that a transputer has four links only. This switch-board
does not significantly reduce the communication speed of the links.

We have not used all of the available 45 transputers, because we experi-
enced a number of curiosities. Figure A.2 is equivalent to figure 4.9 of section
4.2.5. Graphs a, b, and c seem almost as we would expect. Graphs d and
e, however, show that something is wrong when 42 or more transputers are
used. The error seems to get worse with an increased amount of computa-
tion. Hence, in figure A.2f we have set the number of units per processor in
each of the layers to 10, i.e. we make the calculation part of the simulation
so large that the communication part is insignificant. This is done in order
to test whether it is speed of calculation or the communication between the
transputers which is the problem.

This should result in a totally linear graph. And so it is with the use of
up to 41 processors, but then there is a significant jump in the graph. Our
only conclusion to this is: Four of the transputers are slower than the rest,
perhaps they are not T800-30 but T800-20. We have not been able to verify
this hypothesis. Due to this problem, we only use up to 40 transputers in
our simulations,

We experienced another curiosity. When we allocate one transputer and
run a sequential program on this transputer we obtain a certain running
time. When we allocate 2 or 3 transputers and run the same sequential
program again on just one of the transputers we naturally get the same
running time. However if we allocate more than 3 transputers and run the
very same sequential program again on one of these transputers, the program
now runs approximately 25% faster. Hence when we run sequential programs
we always allocate 4 transputers.

The two curiosities may be connected, though we have not been able
to determine such a connection. In all our runs we have simply avoided the
curiosities. Quite late in the project we learned that one of the boards (the
transputers are placed on boards containing 4 transputers each) has some
sort of fault. This is probably the reason for our troubles.
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Figure A.2: Speedup graphs
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A.3 Timings

Table A.1 is a summary of a table in an INMOS technical note [Inmos2]
giving the times of the four basic floating point operations. The times are
for double length arithmetic, i.e. REAL64.

Operation Time for T800-30
Addition 233 nSec
Substraction 233 nSec
Multiplication 700 nSec
Division 1133 nSec

Table A.1: Speed of double length floating point operations

We also need to know the times for communicating arrays of REAL64 on
the external links. We have measured the communication times for arrays of
varying sizes. The times are obtained in the following way: Both the sending
and receiving transputers measure the communication times (and find the
times identical). No calculation takes place concurrently with the commu-
nication. Furthermore, there is no software protocol for the communication.
In this way we should be able to measure the fastest possible communication
times.

The result is given in figure A.3. The figure shows that there is some
constant initial contribution to each communication.

A.4 Concurrent Communication and Calcu-

lation

In this section we will briefly describe the benefits of performing communi-
cations and computations in parallel. For this purpose we have made a small
parallel program, which is hopefully simple enough to allow us to understand
what determines the results produced by the program.

Since any time used on communication will reduce the efficiency of the
parallel algorithm, one can try to improve efficiency either by removing un-
necessary communications, or by making each communication delay the main
processor less. The latter can be achieved by inter-leaving the communica-
tions and calculations of the algorithm. This is possible, because of the

130



Figure A.3: Pure times for communicating REAL64 arrays

on-chip link interface associated with each of the four links of the transputer.
As mentioned in section A.1, each link interface is a small processor working
independently of the main processor, and with its own direct access to the
memory. Therefore, communications can be handled by the link interfaces
while, at the same time, some of the computations of the algorithm are per-
formed by the main processor, thereby reducing the cost of inter-processor
communication.

Obviously, in order to be able to perform computations concurrently
with communications, we will have to set up two parallel processes, one
performing the computations, and the other handling the communications.
But if we are to reduce running time, we must make sure that necessary
computations are performed while the communications take place. One way
to ensure this might be to give the communication process priority over the
computation process, so that the link interface is initialized as quickly as
possible. This way we expect the link interfaces to take over the handling of
the communications after a short period of time, so that the main processor
is left free to perform the computations.

In order to examine the effects of arranging the handling of communi-
cations and computations in different ways, we have made a number of runs
with the program outlined in figure A.4. Shown here is the program running
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on the root processor. The programs for the other processors are very similar
to this program. The token communications are necessary for measuring the
running time.

PROTOCOL Data.Protocol
CASE
Real; [COMM.SIZE]REAL64
Token

:
Proc Administrator(CHAN OF ANY screen, CHAN OF Data.Protocol In, Out)

. . . Variables
SEQ

. . . Initialize

Timer ? start.time

Out ! Token
In ? CASE Token

SEQ i = 0 FOR ITERATIONS
. . . Communication/computation task

Out ! Token
In ? CASE Token

Timer ? stop.time
write.full.string(screen, ‘‘Time used: ’’
writwe.real64(screen, TicksToSecs(stop.time MINUS start.time), 0, 0)
newline(screen)

:

Figure A.4: Program for testing different communication/computation ar-
rangements

All results in this appendix were produced by running this program on
6 processors configured as a ring. In the tests, arrays consisting of 10 REAL64

values are communicated (i.e. in the program COMM.SIZE is 10), and the
computation consists of 50 REAL64 multiplications and assignments (corre-
sponding to a CALC.SIZE of 50 in the program).

In table A.2 we have given the running times for a number of different
ways of handling communications and computations. The two first rows give
the time required for performing either the communications or the computa-
tions. For each arrangement, we have given a reference to the figure showing
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the associated piece of code. Note, that all times have been normalized after
the running time of the fastest way of performing both communications and
computations. As expected the fastest arrangement is to set up two paral-
lel processes, one for communication and one for computation, and to give
priority to the communication process.

Communication/Computation Task Figure Running Time

Pure communication A.6 0.617
Pure computation A.7 0.815
Communication priority A.8 1.000
Sequential communication and computation A.9 1.365
Computation priority A.10 1.392
No priority A.11 1.405

Table A.2: Running times for different communication/computation tasks

As shown in the table performing the communications and the computa-
tions sequentially is more than 36% slower than performing them in parallel
with communications handled by a high-priority process and computations
by a low-priority process. Note, that giving priority to the computation
process actually produces a longer running time than performing communi-
cations and computations in sequence. The reason for this is probably, that
because of the high-priority computation process, the communications are
delayed until all computations have finished. So that, in reality, communica-
tions and computations are also performed sequentially in this case, but in
addition to this we have the costs of creating extra parallel processes.

Obviously, performing communications and computations in parallel can
at most save the time associated with the task requiring the smallest amount
of time. However, by examining the table we can see that even though the 50
REAL64 multiplications take longer time to perform than the communication
does, the time required to perform the two tasks in parallel is more than 20%
longer than the pure computation time.

It seems, therefore, that the cost of communicating cannot be removed
altogether. In order to further investigate to what extent this is true, we
made a number of experiments with varying communication and computa-
tion loads. Figure A.5 shows the results obtained. Figure a shows the results
of a fixed amount of computation and a varying length of the arrays commu-
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nicated. Figure b shows the results of keeping the length of the arrays fixed,
and varying the amount of computation. In both figures the highlighted
points represent runs with an array length of 10 REAL64s and a computation
size of 50 REAL64 multiplications (as in table A.2). Note, that in the figures
concurrent communication and computation means that the two tasks were
performed in parallel, and that the communication process was given priority
over the computation process.

Figure A.5: Effects of concurrent communication and computation

The figures also show that when the pure computation time is smaller
than the pure communication time the time required to perform the two tasks
in parallel is determined by the communication time. In fact, the graphs show
that in this case the computations do not slow down the communications at
all.

Both figures show that even when the pure computation time is much
longer than the pure communication time, performing the communications
and the computations is parallel does not remove the cost of communicating
entirely. However, if we look at figure b, we may observe that the difference
between the time used by the concurrently performed communications and
computations and the time used in pure computation constitutes a constant
amount of absolute time. Therefore, the fraction of time used by commu-
nication becomes smaller and smaller when the amount of computation is
increased, thus reducing the influence of communication on the efficiency of
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the algorithm.
The main result of this appendix is that the cost of communication

cannot be removed entirely, but it can be reduced significantly by performing
the communications and the computations in parallel.

A.4.1 Communication/computation tasks

In this sub-section we show the different contents of the Communication/com-
putation task folder of figure A.4 used in table A.2 and figure A.5. Both
comm.input and comm.output are defined as [COMM.SIZE] REAL64 arrays.

{{{ Communication/computation task
PAR
In ? CASE Real; comm.input
Out ! Real; comm.output

}}}

Figure A.6: Only communications (no computation)

{{{ Communication/computation task
SEQ c = 0 FOR CALC.SIZE
calc.var.1 := calc.var.2 ∗ calc.var.3

}}}

Figure A.7: Only computation (no communications)

{{{ Communication/computation task
PRI PAR
PAR
In ? CASE Real; comm.input
Out ! Real; comm.output

SEQ c = 0 FOR CALC.SIZE
calc.var.1 := calc.var.2 ∗ calc.var.3

}}}

Figure A.8: Parallel communications and computations (Communication pri-
ority)
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{{{ Communication/computation task
SEQ
PAR
In ? CASE Real; comm.input
Out ! Real; comm.output

SEQ c = 0 FOR CALC.SIZE
calc.var.1 := calc.var.2 ∗ calc.var.3

}}}

Figure A.9: Sequential communications and computations

{{{ Communication/computation task
PRI PAR
SEQ c = 0 FOR CALC.SIZE
calc.var.1 := calc.var.2 ∗ calc.var.3

PAR
In ? CASE Real; comm.input
Out ! Real; comm.output

}}}

Figure A.10: Parallel communications and computations (computation pri-
ority)

{{{ Communication/computation task
PAR

In ? CASE Real; comm.input
Out ! Real; comm.output

SEQ c = 0 FOR CALC.SIZE
calc.var.1 := calc.var.2 ∗ calc.var.3

}}}

Figure A.11: Parallel communications and computations (no priority)
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Appendix B

Program Listings

In this appendix the program listings are given. During the development
of the programs we have used the fold -mechanism of the OPS-system in
Odense. By means of this fold-mechanism is it possible to put a structure
on the programs, such that it is easier to read them.

As can be seen in the programs on the following pages, a fold is repre-
sented as three dots followed by a character string. This character string is
the name of the fold. Furthermore, it is the intention that the string should
be an explanation of the contents of the fold. The fold can contain arbitrarily
many other folds together with normal Occam code. An Occam program
can then be regarded as a tree of folds, where each node is a named fold
which can be succeeded by arbitrarily many sons. Each son is then a new
fold.

We will present our programs by means of these folds. A fold is a
framed box. The number in the top left corner is the number of the fold.
The character string to the right of this number is the name of the fold.
The number in the top right corner is the number of this fold’s father in
the fold-tree. When other folds exist inside a fold, the names of these folds
will be succeeded by a number in brackets. The numbering of these folds is
equivalent to a depth-first numbering of the fold-tree.

There are not many comments in the program listings. The reason for
this is that a sensible structure of folds and the naming of these folds ought
be explanation enough to understand a program.
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B.1 Process Oriented Back-Propagation

1 Process Oriented Back-Propagation 0
. . . Libraries (2)
. . . Constants (3)
. . . Variables (4)
. . . PROC Environment(input.link, response.link, target.link) (5)
. . . Simulator(input.link, response.link, target.link) (8)
. . . Configure system (24)

2 Libraries 1
#Use linkaddr
#Use dblmath
#Use userio
#Use time

3 Constants 1
VAL learning.rate IS 0.2(REAL64) :
VAL momentum IS 0.9(REAL64) :
VAL low.weight IS -0.3(REAL64) :
VAL high.weight IS 0.3(REAL64) :
VAL BIAS.UNIT.ACTIVITY IS 0.1(REAL64) :

VAL INPUT.UNITS IS 2:
VAL HIDDEN.UNITSIS 2:
VAL OUTPUT.UNITSIS 1:

VAL VAL NUMBER.OF.ITERATIONS IS 1000:
VAL VAL NUMBER.OF.PATTERNS IS 4:

4 Variables 1
[INPUT.UNITS]CHAN OF REAL64 input.link:
[OUTPUT.UNITS]CHAN OF REAL64 response.link:
[OUTPUT.UNITS]CHAN OF REAL64 target.link:
TIMER Timer:
INT Start, Stop:
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5 PROC Environment(input.link,responce.link,target.link) 1
PROC Environment([CHAN OF REAL64 input.link,resonse.link,target.link)

. . . Variables (6)
SEQ

. . . Initialize (7)
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ
pattern := i REM NUMBER.OF.PATTERNS
PAR n = 0 FOR INPUT.UNITS
input.link[n] ! input.pattern[pattern][n]

PAR n = 0 FOR OUTPUT.UNITS
response.link[n] ? guess.activation[n]

PAR n = 0 FOR OUTPUT.UNITS
target.link[n] ! target.pattern[pattern][n]

:

6 Variables 5
[NUMBER.OF.PATTERNS][INPUT.UNITS]REAL64 input.pattern:
[NUMBER.OF.PATTERNS][OUTPUT.UNITS]REAL64 target.pattern:
[OUTPUT.UNITS]REAL64 guess.activity, error:
INT pattern:

7 Initialize 5
input.pattern[0][0] := 0.0(REAL64)
input.pattern[0][1] := 0.0(REAL64)
input.pattern[1][0] := 0.0(REAL64)
input.pattern[1][1] := 1.0(REAL64)
input.pattern[2][0] := 1.0(REAL64)
input.pattern[2][1] := 0.0(REAL64)
input.pattern[3][0] := 1.0(REAL64)
input.pattern[3][1] := 1.0(REAL64)

target.pattern[0][0] := 0.1(REAL64)
target.pattern[1][0] := 0.9(RRAL64)
target.pattern[2][0] := 0.9(REAL64)
target.pattern[3][0] := 0.1(REAL64)
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8 PROC Simulator(input.link, response.link, target.link) 1
PROC Simulator([]CHAN OF REAL64 input.link,response.link, target.link)

. . . Variables (9)

. . . FUNCTION calculate.activity(net.input) (10)

. . . PROC input.neuron (number) (11)

. . . PROC hidden.neuron (number) (12)

. . . PROC output.neuron (number) (18)

PAR
PAR i = 0 FOR INPUT.UNITS
input.neuron(i)

PAR i = 0 FOR HIDDEN.UNITS
hidden.neuron(i)

PAR i = 0 FOR OUTPUT.UNITS
output.neuron(i)

:

9 Variables 8
[INPUT.UNITS][HIDDEN.UNITS]CHAN OF RRAL64 hidden.link:
[HIDDEN.UNITS][OUTPUT.UNITS]CHAN OF REAL64 output.link:

10 FUNCTION calculate.activity(net.input) 8
REAL64 FUNCTION caloulate.activity(VAL REAL64 net.input)
REAL64 result:
VALOF
result := 1.0 (REAL64) / (1.0(REAL64) + DEXP(−net.input))
RESULT result

:

11 PROC input.neuron(number) 8
PROC input.neuron(VAL INT number)
REAL64 activity:
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ
input.link[number] ? activity
PAR j = 0 FOR HIDDEN.UNITS
hidden.link[nmber][j] ! activity

:
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12 PROC hidden.neuron(number) 8
PROC hidden.neuron(VAL INT number)

. . . Variables (13)
SEQ

. . . Initialize (14)
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ

. . . Propagate activity (15)

. . . Calculate weight changes (16)

. . . Change weights (17)
:

13 Variables 12
REAL64 activity, total.delta, delta, net.input, bias.weight, bias.change:
[INPUT.UNITS]REAL64 input.activity, weight, weight.change:
[OUTPUT.UNITS]REAL64 weighted.delta:

14 Initialize 12
INT64 seed:
REAL64 ran:
SEQ
seed := (INT64 number)
SEQ i = 0 FOR INPUT.UNITS
SEQ
ran, seed := DRAN(seed)
weight[i] := low.weight + (ran ∗ (high.weight − low.weight))
weight.change[i] := 0.0(REAL64)

ran, seed := DRAN(seed)
bias.weight := low.weight + (ran ∗ (high.weight − low.weight))
bias.change := 0.0(REAL64)
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15 Propagate activity 12
PAR j = 0 FOR INPUT.UNITS
hidden.link[j][number] ? input.activity[j]

net.input := bias.weight ∗ BIAS.UNIT.ACTIVITY
SEQ j = 0 FOR INPUT.UNITS
net.input := net.input + (weight[j] ∗ input.activity[j])

activity := calculate.activation(net.input)
PAR j = 0 FOR OUTPUT.UNITS
output.link [number][j] ! activity

16 Calculate weight changes 12
PAR j = 0 FOR OUTPUT.UNITS
output.link[number][j] ? weighted.delta[j]

total.delta := 0.0(REAL64)
SEQ j = 0 FOR OUTPUT.UNITS
total.delta := total.delta + weighted.delta[j]

delta := (total.delta ∗ activity) ∗ (1.0(REAL64) − activation)
SEQ j = 0 FOR INPUT.UNITS
weight.change[j] := (momentum ∗ weight.change[j]) +

(learning.rate ∗ (delta ∗ input.activity[j]))
bias.change := (momentum ∗ bias.change) +

(learning.rate ∗ (delta ∗ BIAS.UNIT.ACTIVITY))

17 Change weights 12
SEQ j = 0 FOR INPUT.UNITS

weight[j] := weight[j] + weight.change[j]
bias.weight := bias.weight + bias.change

18 PROC output.neuron(number) 8
PROC output.neuron(VAL INT number)

. . . Variables (19)
SEQ

. . . Initialize (20)
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ

. . . Propagate activity (21)

. . . Calculate weight changes (22)

. . . Change weights (23)
:
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19 Variables 18
REAL64 activity, net.input, bias.weight, bias.change, delta, target:
[INPUT.UNITS]REAL64 input.activity, weight, weight.ohange:
[HIDDEN.UNITS]REAL64 hidden.activity, hidden.error, weight, weight.change:

20 Initialize 18
INT64 seed:
REAL64 ran:
SEQ
seed := (INT64 number)
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
ran, seed := DRAN(seed)
weight[i] := low.weight + (ran ∗ (high.weight − low.weight))
weight.change[i] := 0.0(REAL64)

ran, seed := DRAN(seed)
bias.weight := low.weight + (ran ∗ (high.weight − low.weight))
bias.change := 0.0(REAL64)

21 Initialize 18
PAR j = 0 FOR OUTPUT.UNITS
output.link[number][j] ? hidden.activity[j]

net.input := bias.weight ∗ BIAS.UNIT.ACTIVITY
SEQ j = 0 FOR HIDDEN.UNITS
net.input := net.input + (weight[j] ∗ hidden.activity[j])

activity := calaulate.activation(net.input)
response.link[number] ! activation
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22 Calculate weight changes 18
target.link [number] ? target
delta := (target − activity) ∗

(activity ∗ (1.0(REAL64) - activation))
PAR j = 0 FOR HIDDEN.UNITS
SEQ
hidden.error[j] := delta ∗ weight[j]
output.link[j][number] ! hidden.error[j]

SEQ j = 0 FOR HIDDEN.UNITS
weight.change[j] := (momentum ∗ weight.change[j]) +

(learning.rate ∗ (delta ∗ input.activity[j]))
bias.change := (momentum ∗ bias.change) +

(learning.rate ∗ (delta ∗ BIAS.UNIT.ACTIVITY))

23 Change weights 18
SEQ j = 0 FOR HIDDEN.UNITS
weight[j] := weight[j] + weight.change[j]

bias.weight := bias.weight + bias.change

24 Configure system 1
SEQ
Timer ? start

PAR
Environment(input.link, response.link, target.link)
Simulator(input.link, response.link, target.link)

Timer ? stop
write.full.string(screen, "Time used: ")
write.real64(screen, TicksToSecs(stop MINUS start), 0, 0)
newline(screen)

INT n:
read.char(keyboard, n)
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B.2 Sequential Back-Propagation - Pattern

Updating

1 Standard Implementation of Back-Propagation 0
. . . Libraries (2)
. . . Constants (3)
. . . Variables (4)
. . . PROC Backprop() (5)
. . . Configure system (26)

2 Libraries 1
#Use linkaddr
#Use dblmath
#Use userio
#Use time

3 Constants 1
VAL learning.rate IS 0.2(REAL64) :
VAL momentum IS 0.9(REAL64) :
VAL low.weight IS -0.3(REAL64) :
VAL high.weight IS 0.3(REAL64) :
VAL BIAS.UNIT.ACTIVITY IS 0.1(REAL64) :

VAL INPUT.UNITS IS 2:
VAL HIDDEN.UNITSIS 2:
VAL OUTPUT.UNITSIS 1:

VAL VAL NUMBER.OF.ITERATIONS IS 1000:
VAL VAL NUMBER.OF.PATTERNS IS 4:

4 Variables 1
TIMER timer
INT start, stop:
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5 PROC Backprop () 1
PROC Backprop ()

. . . Variables (6)

. . . FUNCTION calculate.activity (net.input) (11)
SEQ

. . . Initialize (12)

. . . Create net (13)
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ
pattern := i REM NUMBER.OF.PATTERNS
. . . Propagate activity (16)
. . . Calculate weight change (20)
. . . Change weight (23)

:

6 Variables 5
. . . Units (2)
. . . Links (7)
. . . Bias (9)
. . . Patterns (10)

REAL64 net.input:
INT Pattern:

7 Units 6
[INPUT.UNITS]REAL64 input.unit.activity:
[HIDDEN.UNITS]REAL64 hidden.unit.activity:
[HIDDEN.UNITS]REAL64 hidden.unit.delta:
[OUTPUT.UNITS]REAL64 output.unit.activity:
[OUTPUT.UNITS]REAL64 output.unit.delta:

8 Links 6
[INPUT.UNITS][HIDDEN.UNITS]REAL64 hidden.link.weight:
[INPUT.UNITS][HIDDEN.UNITS]REAL64 hidden.link.change:
[HIDDEN.UNITS][OUTPUT.UNITS]REAL64 output.link.weight:
[HIDDEN.UNITS][OUTPUT.UNITS]REAL64 output.link.change:
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9 Bias 6
[HIDDEN.UNITS]REAL64 hidden.bias.weight:
[HIDDEN.UNITS]REAL64 hidden.bias.change:
[OUTPUT.UNITS]REAL64 output.bias.weight:
[OUTPUT.UNITS]REAL64 output.bias.change:

10 Patterns 6
[NUMBER.OF.PATTERNS][INPUT.UNITS]REAL64 input.pattern :
[NUMBER.OF.PATTERNS][OUTPUT.UNITS]REAL64 target.pattern :

11 FUNCTION calculate.activity(net.input) 5
REAL64 FUNCTION calculate.activity(VAL REAL64 net.input)
REAL64 result:
VALOF
result := 1.0 (REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:

12 Initialize 5
input.pattern[0][0] := 0.0 (REAL64)
input.pattern[0][1] := 0.0 (REAL64)
input.pattern[1][0] := 0.0 (REAL64)
input.pattern[1][1] := 1.0 (REAL64)
input.pattern[2][0] := 1.0 (REAL64)
input,pattern[2][1] := 0.0 (REAL64)
input.pattern[3][0] := 1.0 (REAL64)
input.pattern[3][1] := 1.0 (REAL64)

target.pattern[0][0] := 0.1 (REAL64)
target.pattern[1][0] := 0.9 (REAL64)
target.pattern[2][0] := 0.9 (REAL64)
target.pattern[3][0] := 0.1 (REAL64)

147



13 Create net 5
INT64 seed:
REAL64 ran:
SEQ
seed := 0 (INT64)
. . . Initialize weights between input and hidden layer (14)
. . . Initialize weights between hidden and output layer (15)

14 Initialize weights between input and hidden layer 13
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
ran, seed := DRAN(seed)
hidden.bias.weight[j] := low.weight +

(ran ∗ (high.weight − low.weight))
hidden.bias.change[j] := 0.0 (REAL64)
SEQ i = 0 FOR INPUT.UNITS
SEQ
ran, seed := DRAN(seed)
hidden.link.weight[i][j] := low.weight + (ran ∗

(high.weight − low.weight))
hidden.link.change[i][j] := 0.0 (REAL64)

15 Initialize weights between hidden and output layer 13
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
ran, seed := DRAN(seed)
output.bias.weight[j] := low.weight +

(ran ∗ (high.weight − low.weight))
output.bias.change[j] := 0.0 (REAL64)
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
ran, seed := DRAN(seed)
output.link.weight[i][j] := low.weight +

(ran ∗ (high.weight − low.weight))
output.link.change[i][j] := 0.0 (REAL64)
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16 Propagate activity 5
. . . Set input activity (17)
. . . Calculate activity of hidden units (18)
. . . Calculate activity of output units (19)

17 Set input activity 16
SEQ i = 0 FOR INPUT.UNITS
input.unit.activity[i] := input.pattern[pattern][i]

18 Calculate activity of hidden units 16
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
net.input := hidden.bias.weight[j] ∗ BIAS.UNIT.ACTIVITY
SEQ i = 0 FOR HIDDEN.UNITS
net.input := net.input +

(input.unit.activity[i] ∗ hidden.link.weight[i][j])
hidden.unit.activity[j] := calculate.activation(net.input)

19 Calculate activity of output units 16
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
net.input := output.bias.weight[j] ∗ BIAS.UNIT.ACTIVITY
SEQ i = 0 FOR HIDDEN.UNITS
net.input := net.input +

(hidden.unit.activity[i] ∗ output.link.weight[i][j])
output.unit.activity[j] := calculate.activation(net.input)

20 Calculate weight changes 5
. . . Calaulate weight changes between hidden and output units (21)
. . . Calculate weight changes between input and hidden units (22)
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21 Calculate weight changes between hidden and output units20
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
output.unit.delta[j] :=

target.pattern[pattern][j] − output.unit.activity[j]) ∗
(output.unit.activity[j] ∗ (1.0(RRAL64) − output.unit.activation[j]))

output.bias.change[j] := (momnentum ∗ output.bias.change[j]) +
(learning.rate ∗ (output.unit.delta[j] ∗ BIAS.UNIT.ACTIVITY))

SEQ i = 0 FOR HIDDEN.UNITS
output.link.change[i][j] := (momentum ∗ output.link.change[i][j]) +

(learning.rate ∗ (output.unit.delta[j] ∗ hidden.unit.activity[i]))

22 Calculate weight changes between input and hidden units20
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
hidden.unit.delta[i] := 0.0 (REAL64)
SEQ j = 0 FOR OUTPUT.UNITS
hidden.unit.delta[i] := hidden.unit.delta[i]) +

(output.unit.delta[i] ∗ output.link.weight[i][j])
hidden.unit.delta[i] := (hidden.unit.delta[i] ∗

hidden.unit.activity[i]) ∗ (1.0 (REAL64) - hidden.unit.activation[i])

(hidden.bias.change[i] := (momentum ∗ hidden.bias.change[i]) +
learning.rate ∗ (hidden.unit.delta[i] ∗ BIAS.UNIT.ACTIVITY))

SEQ h = 0 FOR INPUT.UNITS
hidden.link.change[h][i] := (momentum ∗ hidden.link.change[h][j])

+ (learning.rate ∗ (hidden.unit.delta[i]
∗ input.unit.activity[h]))

23 Propagate activity 5
. . . Change weights between hidden and output units (24)
. . . Change weights between input and hidden units (25)
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24 Change weights between hidden and output units 23
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
SEQ i = 0 FOR HIDDEN.UNITS
output.link.weight[i][j] := output.link.weight[i][j] +

output.link.change[i][j])
output.bias.weight[j] := output.bias.weight[j] +

output.bias.change[j]

25 Change weights between input and hidden units 23
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
SEQ i = 0 FOR INPUT.UNITS
hidden.link.weight[i][j] := hidden.link.weight[i][j] +

hidden.link.change[i][j])
hidden.bias.weight[j] := hidden.bias.weight[j] + hidden.bias.change[j]

26 Configure system 1
SEQ
Timer ? start

Backprop ()

Timer ? stop
write.full.string(screen, "Time used: ")
write.real64(screen, TicksToSecs(stop MINUS start), 0, 0)
newline (screen)

INT n:
read.char(keyboard, n)
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B.3 Sequential Back-Propagation - Batch Ver-

sion

1 Standard Implementation of Back-Propagation 0
. . . Libraries (2)
. . . Constants (3)
. . . Variables (4)
. . . PROC Backprop() (5)
. . . Configure system (25)

2 Libraries 1
#Use linkaddr
#Use dblmath
#Use userio
#Use time

3 Constants 1
VAL learning.rate IS 0.2(REAL64) :
VAL momentum IS 0.9(REAL64) :
VAL low.weight IS -0.3(REAL64) :
VAL high.weight IS 0.3(REAL64) :

VAL INPUT.UNITS IS 2:
VAL HIDDEN.UNITSIS 2:
VAL OUTPUT.UNITSIS 1:

VAL VAL NUMBER.OF.ITERATIONS IS 100:
VAL VAL NUMBER.OF.PATTERNS IS 10:
VAL VAL NUMBER.OF.ITERATIONS IS 10 ∗ BATCH.SIZE:

4 Variables 1
TIMER timer
INT start, stop, n
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5 PROC Backprop () 1
PROC Backprop ()

. . . Variables (6)

. . . FUNCTION calculate.activity (net.input) (10)
SEQ

. . . COMMENT Load patterns

. . . Create net (11)
SEQ i = 0 FOR NUMBER.OF.ITERATIONS
SEQ
pattern := i REM NUMBER.OF.PATTERNS
. . . Propagate activity (14)
. . . Calculate weight change (17)
IF

(i REM BATCH.SIZE) = 0
. . . Update weights (22)
TRUE
SKIP

:

6 Variables 5
. . . Units (7)
. . . Links (8)
. . . Patterns (9)

TIMER Timer:
INT start, stop, pattern:

7 Units 6
[HIDDEN.UNITS]REAL64 input.unit.activation:
[HIDDEN.UNITS]REAL64 hidden.unit.delta:
[HIDDEN.UNITS]REAL64 hidden.unit.error:

[OUTPUT.UNITS]REAL64 output.unit.activation:
[OUTPUT.UNITS]REAL64 output.unit.delta:
[OUTPUT.UNITS]REAL64 output.unit.error:
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8 Links 6
[INPUT.UNITS+1][HIDDEN.UNITS]REAL64 hidden.link.weight:
[INPUT.UNITS+1][HIDDEN.UNITS]REAL64 hidden.link.change:
[INPUT.UNITS+1][HIDDEN.UNITS]REAL64 old.hidden.link.change:
[HIDDEN.UNITS+1][OUTPUT.UNITS]REAL64 output.link.weight:
[HIDDEN.UNITS+1][OUTPUT.UNITS]REAL64 output.link.change:
[HIDDEN.UNITS+1][OUTPUT.UNITS]REAL64 old.output.link.change:

9 Patterns 6
[NUMBER.OF.PATTERNS][INPUT.UNITS]REAL64 input.pattern:
[NUMBER.OF.PATTERNS][OUTPUT.UNITS]REAL64 target.pattern:

10 FUNCTION calculate.activity(net.input) 5
REAL64 FUNCTION calculate.activation(VAL REAL64 net.input)
REAL 64 result:
VALOF
result := 1.0 (REAL64) \ (1.0(REAL64) + DEXP(-net.input))
RESULT result

:

11 Create net 5
INT64 seed:
REAL64 ran:
SEQ
seed := 0 (INT64 1)
. . . Initialize weights between input and hidden layer (12)
. . . Initialize weights between hidden and output layer (13)

12 Initialize weights between input and hidden layer 11
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ

ran, seed := DRAN(seed)
hidden.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight − low.weight))
hidden.link.change[i][j] := 0.0 (REAL64)
old.hidden.link.change[i][j] := 0.0 (REAL64)
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13 Initialize weights between hidden and output layer 11
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
ran, seed := DRAN(seed)
output.bias.weight[j] := low.weight +

low.weight + (ran ∗ (high.weight − low.weight))
output.link.change[j] := 0.0 (REAL64)
old.output.link.change[i][j] := 0.0 (REAL64)

14 Propagate activity 5
REAL64 net:
SEQ

. . . Calculate output from of hidden units (15)

. . . Calculate output from of output units (16)

15 Calculate output from hidden units 14
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
net := hidden.link.weight[INPUT.UNITS][j]
SEQ i = 0 FOR INPUT.UNITS
net := net + (hidden.link.weight[i][j] ∗ input.pattern[pattern][i])

hidden.unit.activation[j] := calculate.activation(net)

16 Calculate output from output units 14
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
net := output.link.weight[HIDDEN.UNITS][j]
SEQ i = 0 FOR HIDDEN.UNITS
net := net + (hidden.unit.activation[i] ∗ output.link.weight[i][j])

output.unit.activation[j] := calculate.activation(net)

17 Calculate weight changes 5
SEQ
. . . Calculate error on output units (18)
. . . Calculate error on hidden units (19)
. . . Calculate weight changes between hidden and output units (20)
. . . Calculate weight changes between input and hidden units (21)
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18 Calculate error on output units 17
SEQ i = 0 FOR OUTPUT.UNITS
SEQ
output.unit.error[i] := target.pattern[pattern][i] -

output.uint.activation[i]
output.unit.delta[i] :=(output.unit.error[i] ∗

output.unit.activation[i]) ∗
(1.0 (REAL64) - output.unit.activation[i])

19 Calculate error on hidden units 11
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
hidden.unit.error[i] := 0.0 (REAL64)
SEQ j = 0 FOR OUTPUT.UNITS
hidden.unit.error[i] := hidden.unit.error[i] +

(output.unit.delta[j] ∗
output.link.weight[i][j]))

hidden.unit.delta[i] := (hidden.unit.error[i] ∗
hidden.unit.activation[i]) ∗
(1.0 (REAL64) - hidden.unit.activation[i])

20 Calculate weight changes between hidden and output units17
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
SEQ i = 0 FOR HIDDEN.UNITS
output.link.change[i][j] := output.link.change[i][j] +

(output.unit.delta[j] ∗ hidden.unit.activation[i])
output.link.change[HIDDEN.UNITS][j] :=

output.link.change[HIDDEN.UNITS][j] + output.unit.delta[j]

21 Calculate weight changes between input and hidden units17
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
SEQ i = 0 FOR OUTPUT.UNITS
hidden.link.change[i][j] := hidden.link.change[i][j] +

(hidden.unit.delta[j] ∗ output.pattern[pattern][i])
hidden.link.change[INPUT.UNITS][j] :=

hidden.link.change[INPUT.UNITS][j] + hidden.unit.delta[j]
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22 Update weights 5
SEQ

. . . Change weights between hidden and output units (23)

. . . Change weights between input and hidden units (24)

23 Change weights between hidden and output units 22
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] := (momentum ∗ old.output.link.change[i][j])

+ (learning.rate ∗ output.link.change[i][j])
output.link.weight[i][j] :=

output.link.weight[i][j] + output.link.change[i][j]
old.output.link.change := output.link.change
SEQ j = = FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
output.link.change[i][j] := 0.0 (REAL64)

24 Change weights between input and hidden units 22
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] := (momentum ∗ old.hidden.link.change[i][j])

+ (learning.rate ∗ hidden.link.change[i][j])
hidden.link.weight[i][j] :=

hidden.link.weight[i][j] + hidden.link.change[i][j]
old.hidden.link.change := hidden.link.change
SEQ j = = FOR HIDDEN.UNITS
SEQ i = 0 FOR OUTPUT.UNITS + 1
hidden.link.change[i][j] := 0.0 (REAL64)
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25 Configur system 1
SEQ

Timer ? start

Backprop ()

Timer ? stop
write.full.string(screen, "Time used: ")
write.real64(screen, TicksToSecs(stop MINUS start), 0, 0)
newline(screen)

read.char(keyboard, n)
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B.4 Simple Data Partitioning Parallelization

Using a Tree

The program given in the following is the program for the administrator (the
program running on transputer 0). For this algorithm the program for the
slaves is almost identical to that of the administrator, hence we do not give
the entire program for the slaves. The only differences are within the folds
Initialize (27) and Simulate (28). The modified folds for the slaves are given
on page 170. Folds 27 and 28 should be replaced with folds 2 and 6 on page
170.

1 Simple data partitioning parallelization using a tree - administrator0
. . . Libraries (2)
. . . Constants (3)
. . . Protocol (4)
. . . PROC Administrator(Left.out, Left.In, Right.Out, Right.In) (5)
. . . Configure transputer 0 (32)

2 Libraries 1
#Use time
#Use linkaddr
#Use userio
#Use dblmath
#Use interf
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3 Constants 1
VAL BATCH.SIZE IS 15:

VAL VAL NUMBER.OF.PROCESSORS IS 15

VAL VAL NUMBER.OF.BATH.ITER IS 10:
VAL VAL NUMBER.OF.PATTERNS IS 15:

VAL learning.rate IS 0.1(REAL64) :
VAL momentum IS 0.9(REAL64) :
VAL low.weight IS - 0.5(REAL64) :
VAL high.weight IS 0.5(REAL64) :

VAL INPUT.UNITS IS 50:
VAL HIDDEN.UNITSIS 50:
VAL OUTPUT.UNITSIS 50:

VAL PATTERNS.PR.PROCESSOR IS
NUMBER.OF.PATTERNS + NUMBER.OF.PROCESSORS - 1)) / NUMBER.OF.PROCESSORS:

VAL PATTERN.COUNT IS PATTERNS.PR.PROCESSOR:
BATCH.PR.PROCESSOR IS
(BATCH.SIZE + (NUMBER.OF.PROCESSORS - 1)) / NUMBER.OF.PROCESSORS:

VAL BATCH.COUNT IS BATCH.PR.PROCESSOR:

4 Protocol 1
PROTOCOL Data.Protocol

CASE
Weights; [INPUT.UNITS + 1][HIDDEN.UNITS]REAL64;

[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64;
Time; INT

:
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5 PROC Administrator(Left.Out, Left.In, Right.Out, Right.In)1
PROC Administrator(CHAN OF Data.Protocol Left.Out, Left.In, Right.Out)

Right.In, Right.Out, Right.In)
. . . Variables (6)
. . . Functions and procedures (10)

SEQ
write.text.line(screen, "Conventional Back-Propagation")
write.text.line(screen, "Back Parallel Version (TREE)")
write.text.line(screen, "Last modification: 7/8 1991")
. . . Initialize (26)

- - load.patterns ()
Create.net ()
. . . Simulate (27)

:

6 Variables 5
[4096]BYTE Garbage:
PLACE Garbage IN WORKSPACE:

. . . Units (7)

. . . Links (8)

. . . Patterns (9)

INT batch.start, pattern, number.of.successors:
REAL64 net:

TIMER Timer:
INT start.time, stop.time:

7 Units 6
[HIDDEN.UNITS]REAL64 hidden.unit.activation:
[HIDDEN.UNITS]REAL64 hidden.unit.delta:
[HIDDEN.UNITS]REAL64 hidden.unit.error:

[OUTPUT.UNITS]REAL64 output.unit.activation:
[OUTPUT.UNITS]REAL64 output.unit.delta:
[OUTPUT.UNITS]REAL64 output.unit.error:
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8 Links 6
[INPUT.UNITS + 1][HIDDEN.UNITS]REAL64 hidden.link.weight:
[INPUT.UNITS + 1][HIDDEN.UNITS]REAL64 hidden.link.change:
[INPUT.UNITS + 1][HIDDEN.UNITS]REAL64 old.hidden.link.change:
[INPUT.UNITS + 1][HIDDEN.UNITS]REAL64 hidden.link.left:
[INPUT.UNITS + 1][HIDDEN.UNITS]REAL64 hidden.link.right:
[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64 output.link.weight:
[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64 output.link.change:
[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64 old.output.link.change:
[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64 output.link.left:
[HIDDEN.UNITS + 1][OUTPUT.UNITS]REAL64 output.link.right:

9 Patterns 6
[NUMBER.OF.PATTERNS][INPUT.UNITS]REAL64 input.pattern:
[NUMBER.OF.PATTERNS][OUTPUT.UNITS]REAL64 target.pattern:

10 Functions and procedures 5
-- PROC load.patterns()
. . . PROC create.net() (11)
. . . FUNCTION calculate.activation(net.input) (14)
. . . PROC propagate.activation(pattern) (15)
. . . PROC calculate.weight.changes(pattern) (18)
. . . PROC update.weights() (23)

11 PROC create.net() 10
PROC create.net()
INT64 seed:
REAL64 ran;
SEQ

. . . Initialize weights between input and hidden layer (12)

. . . Initialize weights between hidden and output layer (13)
:
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12 Initialize weights between input and hidden layer 11
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
seed := (INT64 (j + 1) )
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
ran, seed := DRAN(seed)
hidden.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight - low.weight))
hidden.link.change[i][j] := 0.0(REAL64)
old.hidden.link.change[i][j] := 0.0(REAL64)

13 Initialize weights between hidden and output layer 11
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
seed := (INT64 (j + 1) )
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
ran, seed := DRAN(seed)
output.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight - low.weight))
output.link.change[i][j] := 0.0(REAL64)
old.output.link.change[i][j] := 0.0(REAL64)

14 FUNCTION calculate.activation(net.input) 10
REAL64 FUNCTION calculate.activation(VAL REAL64 net.input)
REAL 64 result:
VALOF
result := 1.0 (REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:

15 PROC propagate.activation(pattern) 10
PROC create.net()
PROC propagate.activation(VAL INT pattern)
REAL64 net:
SEQ

. . . Calculate output from hidden units (16)

. . . Calculate output from output units (17)
:
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16 Calculate output from hidden units 15
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
net := hidden.link.weight[INPUT.UNITS][j]
SEQ i = 0 FOR INPUT.UNITS
net := net + (hidden.link.weight[i][j] ∗ input.pattern[pattern][i])

hidden.unit.activation[j] := calculate.activation(net)

17 Calculate output from output units 15
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
net := hidden.link.weight[HIDDEN.UNITS][j]
SEQ i = 0 FOR HIDDEN.UNITS
net := net + (hidden.unit.activation[i] ∗ output.link.weight[i][j])

output.unit.activation[j] := calculate.activation(net)

18 PROC calculate.weight.changes(pattern) 10
PROC calculate.weight.changes(VAL INT pattern)
SEQ

. . . Calculate error on output units (19)

. . . Calculate error on hidden units (20)

. . . Calculate weight changes between hidden and output units (21)

. . . Calculate weight changes between input and hidden units (22)
:

19 Calculate error on output units 18
SEQ i = 0 FOR OUTPUT.UNITS
SEQ
output.unit.error[i] := target.pattern[pattern][i] -

output.unit.activation[i]
output.unit.delta[i] := (output.unit.error[i] ∗

output.unit.activation[i]) ∗
(1.0 (REAL64) - output.unit.activation[i])
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20 Calculate error on hidden units 18
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
hidden.unit.error[i] := 0.0 (REAL64)
SEQ j = 0 FOR OUTPUT.UNITS
hidden.unit.error[i] := hidden.unit.error[i] + (output.unit.delta[j]

∗ output.link.weight[i][j]))
hidden.unit.delta[i] := (hidden.unit.error[i] ∗

hidden.unit.activation[i]) ∗
(1.0 (REAL64) - hidden.unit.activation[i])

21 Calculate weight changes between hidden and output units18
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
SEQ i = 0 FOR HIDDEN.UNITS
output.link.change[i][j] := output.link.change[i][j] +

(output.unit.delta[j] ∗ hidden.unit.activation[i])
output.link.change[HIDDEN.UNITS][j] :=

output.link.change[HIDDEN.UNITS][j] + output.unit.delta[j]

22 Calculate weight changes between input and hidden units18
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
SEQ i = 0 FOR INPUT.UNITS
hidden.link.change[i][j] := hidden.link.change[i][j] +

(hidden.unit.delta[j] ∗ input.pattern[pattern][i])
hidden.link.change[INPUT.UNITS][j] :=
hidden.link.change[INPUT.UNITS][j] + hidden.unit.delta[j]

23 PROC update weights() 10
PROC update.weights()
SEQ

. . . Change weights between hidden and output units (24)

. . . Change weights between input and hidden units (25)
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24 Change weights between hidden and output units 23
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] := (momentum ∗ old.output.link.change[i][j]) +

(learning.rate ∗ output.link.change[i][j])
output.link.weight[i][j] :=

output.link.weight[i][j] + output.link.change[i][j]
old.output.link.change := output.link.change
SEQ j = = FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
output.link.change[i][j] := 0.0 (REAL64)

25 Change weights between input and hidden units 23
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] := (momentum ∗ old.hidden.link.change[i][j]) +

(learning.rate ∗ hidden.link.change[i][j])
hidden.link.weight[i][j] :=

hidden.link.weight[i][j] + hidden.link.change[i][j]
old.hidden.link.change := hidden.link.change
SEQ j = = FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
hidden.link.change[i][j] := 0.0 (REAL64)

26 Initialize 10
IF

NUMBER.OF.PROCESSORS > 2
number.of.successors := 2

NUMBER.OF.PROCESSORS = 2
number.of.successors := 1

TRUE
number.of.successors := 0
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27 Simulate 5
Timer ? start.time

batch.start := 0
SEQ batch.iter = 1 FOR NUMBER.OF.BATCH.ITER
SEQ

. . . Distribute new weights (28)
SEQ b = batch.start FOR BATCH.COUNT
SEQ
pattern := b REM PATTERN.COUNT
propagate.activation(pattern)
calculate.weight.changes(pattern)

batch.start := (batch.start + BATCH.COUNT) REM PATTERN.COUNT
. . . Collect partial gradients and update weights (29)

Timer ? stop.time
write.full.string(screen, ”Time used: ”)
write.real64(screen, TicksToSecs(stop.time MINUS start.time), 0, 0)
newline(screen)
newline(screen)

28 Distribute new weights 27
IF
number.of.successors = 2
PAR
Left.Out ! Weights; hidden.link.weight; output.link.weight
Right.Out ! Weights; hidden.link.weight; output.link.weight

number.of.successors = 1
Left.Out ! Weights; hidden.link.weight; output.link.weight

TRUE
SKIP
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29 Collect partial gradients and update weights 27
IF
number.of.successors = 2
SEQ
PAR
Left.In ? CASE Weights; hidden.link.left; output.link.left
Right.In ? CASE Weights; hidden.link.right; output.link.right

. . . change := change + (left + right) (30)
number.of.successors = 1
SEQ
Left.In ? CASE Weights; hidden.link.left; output.link.left
. . . change := change + left (31)

TRUE
SKIP

update.weights()

30 change := change + (left + right) 29
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] := output.link.change[i][j] +

output.link.left[i][j] + output.link.right[i][j]
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] := hidden.link.change[i][j] +

(hidden.link.left[i][j] + hidden.link.right[i][j])

31 change := change + left 29
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] :=

output.link.change[i][j] + output.link.left[i][j]
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] :=

(hidden.link.change[i][j] + hidden.link.left[i][j])
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32 Configure transputer 0 1
CHAN OF Data.Protocol Left.Out, Left.In, Right.Out, Right.In:
PLACE Left.Out AT Link1out:
PLACE Left.In AT Link1in:
PLACE Right.Out AT Link3out:
PLACE Right.In AT Link3in:
Addnistrator(Left.Out, Left.In, Right.Out, Right.In)
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1 Simple data partitioning parallelization using a tree - slave0
. . . Initialize (2)
. . . Simulate (6)

2 Initialize 1
. . . Calculate number of successors (3)
. . . Calculate number of patterns for this prooessor (4)
. . . Calculate batch size for this processor (5)

3 Calculate number of successors 2
IF
((2 ∗ node .number) + 1) <= NUMBER.OF.PROCRSSORS
number.of.successors := 2

(2 ∗ node.number) <= NUMRER.OF.PROCESSORS
number.of.successors := 1

TRUE
number.of.successors := 0

4 Calculate number of patterns for this processor 2
IF
(NUMBER.OF.PATTERNS REM NUMBER.OF.PROCESSORS) = 0
PATTERN.COUNT := PATTERNS.PR.PROCESSOR

(NUMBER.OF.PATTERNS RRM NUMBER.OF.PROCESSORS) > (node.number - 1)
PATTERN.COUNT := PATTERNS.PR.PROCESSOR

TRUE
PATTERN.COUNT := PATTERNS.PR.PROCESSOR - 1

5 Calculate batch size for this processor 2
IF
(BATCH.SIZE REM NUMBER.OF.PROCESSORS) = 0
PATTERN.COUNT := BATCH.PR.PROCESSOR

(BATCH.SIZE RRM NUMBER.OF.PROCESSORS) > (node.number - 1)
BATCH.COUNT := BATCH.PR.PROCESSOR

TRUE
BATCH.COUNT := BATCH.PR.PROCESSOR - 1
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6 Simulate 1
batch.start := 0
SEQ batch.iter = 1 FOR NUMBER.OF.BATCH.ITER
SEQ

. . . Reset change (7)

. . . Receive and distribute new weights (8)
SEQ b = batch.start FOR BATCH.COUNT
SEQ
pattern := b REM PATTERN.COUNT
propagate.activation(pattern)
calculate.weight.changes(pattern)

batch.start := (batch.start + BATCH.COUNT) REM PATTERN.COUNT
. . . Collect partial gradients (10)

7 Reset change 6
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
output.link.change[i][j] := 0.0 (Real64)

SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
hidden.link.change[i][j] := 0.0 (REAL64)

8 Receive and distribute new weights 6
Parent.In ? CASE
Weights; hidden.link.weight; output.link.weight
SEQ

. . . Distribute weights (9)

9 Distribute weights 8
IF
number.of.successors = 2
PAR
Left.Out ! Weights; hidden.link.weight; output.link.weight
Right.Out ! Weights; hidden.link.weight; output.link.weight

number.of.successors = 1
Left.Out ! Weights; hidden.link.weight; output.link.weight

TRUE
SKIP
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10 Collect partial gradients 6
IF
number.of.successors = 2
SEQ
PAR
Left.In ? CASE Weights; hidden.link.left; output.link.left
Right.In ? CASE Weights; hidden.link.right; output.link.right

. . . change := change + (left + right) (11)
number.of.successors = 1
SEQ
Left.In ? CASE Weights; hidden.link.left; output.link.left

. . . change := change + left (12)
TRUE
SKIP

Parent.Out ! Weights; hidden.link.change; output.link.change

11 change := change + (left + right) 10
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] := output.link.change[i][j] +

output.link.left[i][j] + output.link.right[i][j]
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] := hidden.link.change[i][j] +

(hidden.link.left[i][j] + hidden.link.right[i][j])

12 change := change + left 10
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] :=

output.link.change[i][j] + output.link.left[i][j])
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] :=

(hidden.link.change[i][j] + hidden.link.left[i][j])
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B.5 Simple Data Partitioning Parallelization

Using a Ring

The program for the ring implementation is almost identical to that of the
tree implementation (see B.4). The only difference is within the fold Collect
and sum partial gradients. This fold is given on page 174.

1 Simple data partitioning parallelization using a ring 0
. . . Collect and mm partial gradients (2)

2 Initialize weights between input and hidden layer 1
INT in, work:
SEQ
work =: 0
in =: 1
PAR
In ? CASE Weights: hidden.link[work]: output.link[work]
Out ! Weights; hidden.link.change; output.link.change

SEQ p = 0 FOR NUMBER.OF.PROCESSORS - 2
SEQ)
PRI PAR
PAR
In ? CASE Weights; hidden.link[in]; output.link[in]
Out ! Weights; hidden.link[work]; output.link[work]

SEQ
. . . change := change + work (3)

work := 1 - work
in := 1 - in

. . . change := change + work (3)
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3 change := change + work 2
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
output.link.change[i][j] :=

output.link.change[i][j] + output.link[work][i][j]
SEQ j = 0 FOR HIDDEN.UNITS + 1
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ
hidden.link.change[i][j] :=

hidden.link.change[i][j] + hidden.link[work][i][j]
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B.6 An Advanced Batch Updating Implemen-

tation — Administrator

1 An Advanced Implementation of the Data Partitioning Strategy - Administrator0
. . . Libraries (2)
. . . Constants (3)
. . . Variables (4)
. . . PROC Administrator(In, Out) (5)
. . . Configure transputer 0 (35)

2 Libraries 1
#Use time
#Use linkaddr
#Use userio
#Use dblmath

3 Constants 1
VAL learning.rate IS 0.1 (REAL64)
VAL momentum IS 0.9 (REAL64)
VAL low.weight IS - 0.5 (REAL64)
VAL high.weight IS 0.5 (REAL64)

VAL VAL INPUT.UNITS IS 50:
VAL VAL HIDDEN.UNITS IS 50:
VAL VAL OUTPUT.UNITS IS 50:

VAL NUMBER.OF.PROCESSORS IS 40:
VAL BATCH.SIZE IS 800:
VAL NUMBER.OF.PATTERNS IS 800:
VAL NUMBER.OF.BATCH.ITER IS 50:
VAL NUMBER.OF.SLAVES IS NUMBER.OF.PROCESSORS - 1:
VAL BATCH.DELTA IS 50:
VAL MAX.BATCH.COUNT IS BATCH.SIZE / NUMBER.OF.PROCESSORS:
VAL MAX.PATTERN.COUNT IS NUMBER.OF.PATTERNS / NUMBER.OF.PROCESSORS:
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4 Protocol 1
PROTOCOL Data.Protocol
CASE
Weight; REAL64;
Change; REAL64;
Weight.n.Change; REAL64; REAL64

:

5 PROC Administrator(In, Out) 1
PROC Administrator(CHAN OF Data.Protocol In, Out))

. . . Variables (6)

. . . Functions and procedures (10)
SEQ

. . . Initialize (15)
write.text.line(screen, "Conventional Back-Propagation")
write.text.line(screen, "Pomerleau Parallel Version")
write.text.line(screen, "Last modification: 25/7 1991")
-- load.patterns ()
create.net ()
. . . Simulate (16)

:

6 Variables 5
[4096]BYTE Garbage:
PLACE Garbage IN WORKSPACE:

. . . Units (7)

. . . Links (8)

. . . Patterns (9)

REAL64 dummy, change, weight, zero.value:
REAL64 weight.output, change.work, change.output:
INT batch.start, pattern:

TIMER Timer:
INT start.time, stop.time:
INT MAX.BATCH.FOR.ADMIN, BATCH.PR.SLAVE, BATCH.FOR.ADMIN, BATCH.COUNT:
INT PATTERNS.FOR.ADMIN, PATTERN.COUNT
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7 Units 6
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.net:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.activity:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.error:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.delta:

[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.net:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.activity:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.error:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.delta:

8 Links 6
[INPUT.UNITS+1][HIDDEN.UNITS]REAL64 hidden.link.weight:
[INPUT.UNITS+1][HIDDEN.UNITS]REAL64 old.hidden.link.change:
[HIDDEN.UNITS+1][OUTPUT.UNITS]REAL64 output.link.weight:
[HIDDEN.UNITS+1][OUTPUT.UNITS]REAL64 old.output.link.change:

9 Patterns 6
[MAX.PATTERNS.COUNT][INPUT.UNITS]REAL64 input.pattern:
[MAX.PATTERNS.COUNT][OUTPUT.UNITS]REAL64 target.pattern:

10 Functions and procedures 5
-- PROC load.patterns()
. . . PROC create.net() (11)
. . . FUNCTION calculate.activation(net.input) (14)

11 PROC create.net() 10
PROC create.net()
INT64 seed:
REAL64 ran;
SEQ
seed := (INT64 1)
. . . Initialize weights between input and hidden layer (12)
. . . Initialize weights between hidden and output layer (13)

:
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12 Initialize weights between input and hidden layer 11
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS
SEQ
ran, seed := DRAN(seed)
hidden.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight - low.weight))
old.hidden.link.change[i][j] := 0.0(REAL64)

13 Initialize weights between hidden and output layer 11
SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS + 1
SEQ
ran, seed := DRAN(seed)
output.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight - low.weight))
old.output.link.change[i][j] := 0.0(REAL64)

14 FUNCTION calculate.activation(net.input) 10
REAL64 FUNCTION calculate.activation(VAL REAL64 net.input)
REAL 64 result:
VALOF
result := 1.0 (REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:
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15 Initialize 5
MAX.BATCH.FOR.ADMIN := (100 ∗ BATCH.SIZE) /
((BATCH.DELTA ∗ NUMBER.OF.SLAVES) + 100)

BATCH.PR.SLAVE :=
((BATCH.SIZE - MAX.BATCH.FOR.ADMIN) i (NUMBER.OF.SLAVES - 1)) /
NUMBER.OF.SLAVES

BATCH.FOR.ADMIN := BATCH.SIZE - (NUMBER.OF.SLAVES ∗ BATCH.PR.SLAVE)

IF
(BATCH.FOR.ADMIN < 0)
SEQ
BATCH.FOR.ADMIN := 0
BATCH.PR.SLAVE :=

(BATCH.SIZE + (NUMBER.OF.SLAVES - 1)) / NUMBER.OF.SLAVES
TRUE
SKIP

PATTERNS.FOR.ADMIN := (NUMBER.OF.PATTERNS ∗ BATCH.FOR.ADMIN) / BATCH.SIZE

BATCH.COUNT := BATCH.FOR.ADMIN
PATTERN.COUNT := PATTERNS.FOR.ADMIN

16 Simulate 5
zero.value := 0.0 (REAL64)
Timer ? start.time

SEQ batch.iter = 1 FOR NUMBER.OF.BATCH.ITER
PAR

. . . Sender (17)

. . . Receiver (30)

Timer ? stop.time)
write.full.string(screen, "Time used: "
write.real64(screen, TicksToSecs(stop.time MINUS start.time), 0, 0)
newline(screen)

17 Sender 16
SEQ

. . . Forward pass (18)

. . . Backward pass (23)
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18 Forward pass 17
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
hidden.unit.net[p][j] := 0.0(REAL64)

SEQ i = 0 FOR INPUT.UNITS
. . . Calculate net input to hidden units (19)

SEQ j = 0 FOR HIDDEN.UNITS
. . . Calculate bias input and activity of hidden units (20)

SEQ j = 0 FOR OUTPUT.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
output.unit.net[p][j] := 0.0(REAL64)

SEQ i = 0 FOR HIDDEN.UNITS
. . . Calculate net input to output units (21)

SEQ j = 0 FOR OUTPUT.UNITS
. . . Calculate bias input and activity of output units (22)

Out ! Weight; zero.value -- dummy

19 Calculate net input to hidden units 18
SEQ
weight.output := hidden.link.weight[i][j]
PRI PAR
OUT ! Weight; weight.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
hidden.unit.net[p][j] := hidden.unit.net[p][j] +

(input.pattern[pattern][i] ∗ hidden.link.weight[i][j])

20 Calculate bias input and activity of hidden units 18
SEQ
weight.output := hidden.link.weight[INPUT.UNITS][j]
PRI PAR
OUT ! Weight; weight.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
hidden.unit.net[p][j] :=

hidden.unit.net[p][j] + hidden.link.weight[INPUT.UNITS][j]
hidden.unit.activity[p][j] :=

(calculate.activity(hidden.unit.net[p][j])
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21 Calculate net input to output units 18
SEQ
weight.output := output.link.weight[i][j]
PRI PAR
OUT ! Weight; weight.output
SEQ p = 0 FOR BATCH.COUNT
output.unit.net[p][j] := output.unit.net[p][j] +

(hidden.unit.activity[p][i] ∗ output.link.weight[i][j])

22 Calculate bias input and activity of output units 18
SEQ
weight.output := output.link.weight[HIDDEN.UNITS][j]
PRI PAR
OUT ! Weight; weight.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
output.unit.net[p][j] :=

output.unit.net[p][j] + output.link.weight[HIDDEN.UNITS][j]
(output.unit.activity[p][i] :=

calculate.activity(output.unit.net[p][j])

23 Backward pass 17
. . . Send weights between hidden and output units (24)
. . . Send initial weight changes for hidden links (27)

24 Send weights between hidden and output units 23
change.work := 0.0 (REAL64) -- dummy value
SEQ j = 0 FOR OUTPUT.UNITS

. . . Calculate error on output units and bias weight changes (25)
Out ! Change; change.work

change.work := 0.0(REAL64) -- dummy value
SEQ i = 0 FOR HIDDEN.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
hidden.unit.error[p][i] := 0.0(REAL64)

SEQ i = 0 FOR OUTPUT.UNITS
. . . Calculate weight changes and hidden errors (26)

Out ! Weight.n.Change; zero.value; change.work -- dummy weight
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25 Calculate error on output units and bias weight changes24
SEQ
change.output := change.work
change.work := 0.0 (REAL64)
PRI PAR
OUT ! Change; change.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
output.unit.error[p][j] :=

(target.pattern[pattern][j] + output.unit.activity[p][j])
output.unit.delta[p][j] :=

(output.unit.error[p][j] ∗ output.unit.activity[p][j]) ∗
(1.0 (REAL64) - output.unit.activity[p][j])

change.work := change.work + output.unit.delta[p][j]

26 Calculate weight changes and hidden errors 24
SEQ
weight.output := output.link.weight[i][j]
change.output := change.work
change.work := 0.0 (REAL64)
PRI PAR
Out ! Weight.n.Change; weight.output; change.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
hidden.unit.error[p][i] := hidden.unit.error[p][i] +

(output.unit.delta[p][j] ∗ output.unit.weight[i][j])
(1.0 (REAL64) - output.unit.activity[p][j])

change.work := change.work +
(output.unit.delta[p][j] ∗ hidden.unit.activity[p][i])

27 Send initial weight changes for hidden links 23
change.work := 0.0 (REAL) -- dummy value
SEQ j = 0 FOR HIDDEN.UNITS
SEQ

. . . Calculate deltas on hidden units (28)
SEQ i = 0 FOR INPUT.UNITS

. . . calculate weight changes (29)
Out ! Change; change.work
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28 Calculate deltas on hidden units 24
change.output := change.work
change.work := 0.0(REAL64)
PRI PAR
Out ! Change; change.output
SEQ p = 0 FOR BATCH.COUNT
SEQ

hidden.unit.delta[p][j] :=
(hidden.unit.error[p][i] ∗ hidden.unit.activity[p][j]) ∗
(1.0 (REAL64) - hidden.unit.activity[p][j])

change.work := change.work + hidden.unit.delta[p][j])

29 Calculate weight changes 24
SEQ
change.output := change.work
change.work := 0.0 (REAL64)
PRI PAR
Out ! Change; change.output
SEQ p = 0 FOR BATCH.COUNT
SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
change.work := change.work +

(hidden.unit.delta[p][j] ∗ input.pattern[pattern][i])

30 Receiver 16
SEQ

. . . Forward pass (31)

. . . Backward pass (32)
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31 Forward pass 30
SEQ j = 0 FOR HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS
In ? CASE Weight; weight

SEQ j = 0 FOR HIDDEN.UNITS
In ? CASE Weight; weight

SEQ j = 0 FOR OUTPUT.UNITS
SEQ i = 0 FOR HIDDEN.UNITS
In ? CASE Weight; weight

SEQ j = 0 FOR OUTPUT.UNITS
In ? CASE Weight; weight

In ? CASE Weight; weight -- dummy

32 Backward pass 30
. . . Calculate new weights between hidden and output units (33)
. . . Calculate new weights between input and hidden units (34)

33 Calculate new weights between hidden and output units32
In ? CASE Change; change -- dummy
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
In ? CASE Change; change
change := (momentum ∗ old.output.link.change[HIDDEN.UNITS] [j]) +
(learning.rate ∗ change)

output.link.weight[HIDDEN.UNITS][j] :=
output.link.weight[HIDDEN.UNITS][j] + change

old.output.link.change[HIDDEN.UNITS][j] := change
In ? CASE Weight.n.Change; weight; change -- dummy
SEQ i = 0 FOR HIDDEN.UNITS
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
In ? CASE Weight.n.Change; weight; change
change := (momentum ∗ old.output.link.change[i][j]) +
(learning.rate ∗ change)

output.link.weight[i] [j] :=
output.link.weight[i][j] + change

old.output.link.change[i][j] := change
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34 Calculate new weights between input and hidden units 32
In ? CASE Change; change -- dummy
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
In ? CASE Change; change
change := (momentum ∗ old.hidden.link.change[INPUT.UNITS] [j]) +

(learning.rate ∗ change)
hidden.link.weight[INPUT.UNITS][j] :=

hidden.link.weight[INPUT.UNITS][j] + change
old.hidden.link.change[INPUT.UNITS][j] := change
SEQ i = 0 FOR INPUT.UNITS
SEQ
In ? CASE Change; change
change := (momentum ∗ old.hidden.link.change[i][j]) +

(learning.rate ∗ change)
hidden.link.weight[i] [j] :=

hidden.link.weight[i][j] + change
old.hidden.link.change[i][j] := change

35 Configure transputer 0 1
CHAN OF Data.Protocol In, Out:
PLACE In AT Link1in:
PLACE Out AT Link3out:
Administrator(In, Out)
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B.7 An Advanced Batch Updating Implemen-

tation — Slaves

1 An Advanced Implementation of the Data Partitioning Strategy - Slaves 0
. . . Libraries (2)
. . . Constants (3)
. . . Protocol (4)
. . . PROC Slave(In, Out) (5)

2 Libraries 1
#USE dblmath

3 Constants 1
VAL learning.rate IS 0.1 (REAL64)
VAL momentum IS 0.9 (REAL64
VAL low.weight IS -0.5 (REAL64)
VAL high.weight IS 0.5 (REAL64)

VAL VAL INPUT.UNITS IS 50:
VAL VAL HIDDEN.UNITS IS 50:
VAL VAL OUTPUT.UNITS IS 50:

VAL NUMBER.OF.PROCESSORS IS 40:
VAL BATCH.SIZE IS 800:
VAL NUMBER.OF.PATTERNS IS 800:
VAL NUMBER.OF.BATCH.ITER IS 10:
VAL NUMBER.OF.SLAVES IS NUMBER.OF.PROCESSORS - 1:
VAL BATCH.DELTA IS 103:
VAL MAX.BATCH.COUNT IS

(BATCH.SIZE + (NUMBER.OF.SLAVES - 1)) / NUMBER.OF.SLAVES:
VAL MAX.PATTERN.COUNT IS

(NUMBER.OF.PATTERNS + (NUMBER.OF.SLAVES - 1)) / NUMBER.OF.SLAVES:
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4 Protocol 1
PROTOCOL Data.Protocol
CASE
Weight; REAL64;
Change; REAL64;
Weight.n.Change; REAL64; REAL64

:

5 PROC Slave(In, Out) 1
PROC Slave(CHAN OF Data.Protocol In, Out, VAL INT processor.number)

. . . Variables (6)

. . . Functions and procedures (9)
SEQ

-- load.patterns ()
. . . Initialize (22)
. . . Simulate (25)

:

6 Variables 5
[4096]BYTE Garbage:
PLACE Garbage IN WORKSPACE:

. . . Units (7)

. . . Patterns (8)

REAL64 dummy:
INT batch.start:
INT MAX.BATCH.FOR.ADMIN, BATCH.PR.SLAVE, BATCH.FOR.ADMIN:
INT PATTERNS.FOR.ADMIN, PATTERN.FOR.SLAVES
INT BATCH.COUNT, PATTERN.COUNT:
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7 Units 6
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.net:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.activity:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.error:
[MAX.BATCH.COUNT][HIDDEN.UNITS]REAL64 hidden.unit.delta:

[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.net:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.activity:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.error:
[MAX.BATCH.COUNT][OUTPUT.UNITS]REAL64 output.unit.delta:

8 Patterns 6
[MAX.PATTERN.COUNT][INPUT.UNITS]REAL64 input.pattern:
[MAX.PATTERN.COUNT][OUTPUT.UNITS]REAL64 target.pattern:

9 Functions and procedures 6
-- PROC load.patterns()
. . . FUNCTION calculate.activity(net.input) (10)
. . . PROC propagate.activity(batch.start) (11)
. . . PROC calculate.weight.changes(batch.start) (16)

10 FUNCTION calculate.activity(net.input) 9
REAL64 FUNCTION calculate.activity(VAL REAL64 net.input)
REAL64 result:
VALOF
result := 1.0 (REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:
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11 PROC propagate.activity(batch.start) 9
PROC propagate.activity(VAL INT batch.start)
REAL64 weight.input, weight.work, weight.output:
INT pattern:
SEQ
In ? CASE Weight; weight.input
SEQ j = 0 FOR HIDDEN.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
hidden.unit.net[Ip][j] := 0.0 (REAL64)

SEQ i = 0 FOR INPUT.UNITS
. . . Calculate net inputs to hidden units (12)

SEQ j = 0 FOR HIDDEN.UNITS
SEQ

. . . Calculate bias input and activity of hidden units (13)
SEQ j = 0 FOR OUTPUT.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
output.unit.net[p][j] := 0.0 (REAL64)

SEQ i = 0 FOR HIDDEN.COUNT
. . . Calculate net inputs to output units (14)

SEQ j = 0 FOR OUTPUT.UNITS
SEQ

. . . Calculate bias input and activity of output units (15)
out ! Weight; weight.input -- dummy

:

12 Calculate net inputs to hidden units 11
SEQ
weight.work := weight.input
weight.output := weight.input
PRI PAR
PAR
Out ! Weight; weight.output
In ? CASE Weight; weight.input

SEQ p = 0 FOR BATCH.COUNT
SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
hidden.unit.net[p][j] := hidden.unit.net[p][j] +

input.pattern[pattern][i] ∗ weight.work
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13 Calculate bias inputs and activity of hidden units 11
weight.work := weight.input
weight.output := weight.input
PRI PAR
PAR
Out ! Weight; weight.output
In ? CASE Weight; weight.input

SEQ p = 0 FOR BATCH.COUNT
SEQ
hidden.unit.net[p][j] := hidden.unit.net[p][j] + weight.work
hidden.unit.activity[p][j] :=

calculate.activity(hidden.unit.net[p][j])

14 Calculate net inputs and output units 11
SEQ
weight.work := weight.input
weight.output := weight.input
PRI PAR
PAR
Out ! Weight; weight.output
In ? CASE Weight; weight.input

SEQ p = 0 FOR BATCH.COUNT
output.unit.net[p][j] := output.unit.net[p][j] +

(hidden.unit.activity[p][j] ∗ weight.work)

15 Calculate bias inputs and activity of output units 11
weight.work := weight.input
weight.output := weight.input
PRI PAR
PAR
Out ! Weight; weight.output
In ? CASE Weight; weight.input

SEQ p = 0 FOR BATCH.COUNT
SEQ
output.unit.net[p][j] := output.unit.net[p][j] + weight.work
output.unit.activity[p][j] :=

calculate.activity(output.unit.net[p][j])
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16 PROC calculate.weight.changes(batch.start) 9
PROC caluclate.weight.changes(VAL INT batch.start)

. . . Variables (17)
SEQ
In ? CASE Change; change.input -- dummy
change.work := 0.0 (REAL64) -- dummy value
SEQ j = 0 FOR OUTPUT.UNITS

. . . calculate error on output units and bias weight changes (18)
change.output := change.work + change.input
PAR
Out ! Change; change.output
In ? CASE Weight.n.Change; weight.input; change.input

-- change = dummy
SEQ i = 0 FOR INPUT.UNITS
SEQ
SEQ p = 0 FOR BATCH.COUNT
hidden.unit.error[p][i] := 0.0 (REAL64)

SEQ j = 0 FOR OUTPUT.UNITS
. . . Calculate weight changes and hidden errors (19)

weight.output := weight.input
change.output := change.work + change.input
PAR
Out ! Weight.n.Change; weight.output; change.output
In ? CASE Change; change.input -- dummy

change.work := 0.0 (REAL64) -- dummy value
SEQ j = 0 FOR HIDDEN.UNITS
SEQ

. . . Calculate deltas on hidden units (20)
SEQ i = 0 FOR INPUT.UNITS
SEQ

. . . Calculate weight changes (21)
out ! Change; change.output

:

17 Variables 16
REAL64 weight.input, weight.work, weight.output:
REAL64 change.input, change.work, change.output:
INT pattern:
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18 Calculate error on output units and bias weight changes16
SEQ
change.output := change.work + change.input
PRI PAR
PAR
Out ! Change; change.output
In ? CASE Change; change.input

SEQ
change.work := 0.0 (REAL64)
SEQ p = 0 FOR BATCH.COUNT
SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
output.unit.error[p][j] :=

(target.pattern[pattern][j] - output.unit.activity[p][j])
output.unit.delta[p][j] :=

(output.unit.error[p][j] ∗ output.unit.activity[p][j]) ∗
(1.0 (REAL64) − output.unit.activity[p][j])

change.work := change.work + output.unit.delta[p][j]

19 Calculate weight changes and hidden errors 16
SEQ
weight.work := weight.input
weight.output := weight.input
change.output := change.work + change.input
PRI PAR
PAR
Out ! Weight.n.Change; weight.output; change.output
In ? CASE Weight.n.Change; weight.input; change.input

SEQ
change.work := 0.0 (REAL64)
SEQ p = 0 FOR BATCH.COUNT

SEQ
hidden.unit.error [p][i] := hidden.unit.error[p][i] +

(output.unit.delta[p][j] ∗ weight.work)
change.work := change.work +

(output.unit.delta[p][j] ∗ hidden.unit.activity[p][i])
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20 Calculate deltas on hidden units 16
change.output := change.work + change.input
PRI PAR
PAR
Out ! Change; change.output
In ? CASE Change; change.input

SEQ
change.work := 0.0 (REAL64)
SEQ p = 0 FOR BATCH.COUNT

SEQ
hidden.unit.delta [p][j] :=

(hidden.unit.error[p][j] ∗ hidden.unit.activity[p][j]) ∗
(1.0 (REAL64) - hidden.unit.activity[p][j])

(change.work := change.work + hidden.unit.delta[p][j]

21 Calculate weight changes 16
SEQ
change.output := change.work + change.input
PRI PAR
PAR
Out ! Change; change.output
In ? CASE Change; change.input

SEQ
change.work := 0.0 (REAL64)
SEQ p = 0 FOR BATCH.COUNT

SEQ
pattern := (p + batch.start) REM PATTERN.COUNT
change.work := change.work +

(hidden.unit.delta[p][j] ∗ input.pattern[pattern][i])

22 Initialize 5
. . . Calculate batch size for this processor (23)
. . . Calculate number of patterns for this processor (24)
batch.start := 0
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23 Calculate batch size for this processor 22
MAX.BATCH.FOR.ADMIN := (100 ∗ BATCH.SIZE) /
((BATCH.DELTA ∗ NUMBER.OF.SLAVES) + 100)

BATCH.PR.SLAVE :=
((BATCH.SIZE - MAX.BATCH.FOR.ADMIN) + (NUMBER.OF.SLAVES - 1)) /
NUMBER.OF.SLAVES

BATCH.FOR.ADMIN := BATCH.SIZE - (NUMBER.OF.SLAVES ∗ BATCH.PR.SLAVE)

IF
(BATCH.FOR.ADMIN < 0)
SEQ
BATCH.FOR.ADMIN := 0
BATCH.PR.SLAVE :=
(BATCH.SIZE + (NUMBER.OF.SLAVES - 1)) / NUMBER.OF.SLAVES

TRUE
SKIP

IF
((BATCH.SIZE - BATCH.FOR.ADMIN) REM NUMBER.OF.SLAVES) = 0

BATCH.COUNT := BATCH.PR.SLAVE
((BATCH.SIZE - BATCH.FOR.ADMIN) REM NUMBER.OF.SLAVES) < processor.number

BATCH.COUNT := BATCH.PR.SLAVE - 1
TRUE

BATCH.COUNT := BATCH.PR.SLAVE

24 Calculate number of patterns for this processor 22
PATTERNS.FOR.ADMIN := (NUMBER.OF.PATTERNS ∗ BATCH.FOR.ADMIN) / BATCH.SIZE
PATTERNS.FOR.SLAVES := NUMBER.OF.PATTERNS - PATTERNS.FOR.ADMIN

(PATTERN.COUNT :=
(PATTERNS.FOR.SLAVES + (NUMBER.OF.SLAVES - 1)) / NUMBER.OF.SLAVES

IF
(PATTERNS.FOR.SLAVES REM NUMBER.OF.SLAVES) = 0
SKIP

(PATTERNS.FOR.SLAVES REM NUMBER.OF.SLAVES) < processor.number
PATTERN.COUNT := PATTERN.COUNT - 1

TRUE
SKIP
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25 Simulate 5
SEQ batch.iter = 1 FOR NUMBER.OF.BATCH.ITER
SEQ
propagate.activity(batch.start)
calculate.weight.changes(batch.start)
batch.start := (batch.start + BATCH.COUNT) REM PATTERN.COUNT
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B.8 Matrix Multiplication Algorithm — Ad-

ministrator

The program given in the following is the program for the administrator
(transputer 0). The administrator is very simple. It just sends along what it
receives. The faster the better.

1 Matrix Multiplication Algorithm - Administrator 0
. . . Libraries (2)
. . . Constants (3)
. . . Protocol (4)
. . . PROC Administrator (Out, In) (5)
. . . Configure transputer 0 (14)

2 Libraries 1
#USE time
#USE linkaddr
#USE userio
#USE dblmath
#USE interf

3 Constants 1
VAL PATTERNS.PR.PROCESSOR IS 15:
VAL SIZE IS 4:
VAL INPUT.PR.PROCESSOR IS 15:
VAL HIDDEN.PR.PROCESSOR IS 15:
VAL OUTPUT.PR.PROCESSOR IS 15:
VAL INPUT.UNITS IS INPUT.PR.PROCESSOR ∗ SIZE:
VAL VAL HIDDEN.UNITS IS HIDDEN.PR.PROCESSOR ∗ SIZE:
VAL OUTPUT.UNITS IS OUTPUT.PR.PROCESSOR ∗ SIZE:
VAL NUMBER.OF.PATTERNS IS PATTERNS.PR.PROCESSOR ∗ SIZE:
VAL NUMBER.OF.ITERATIONS IS 10:
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4 Protocol 1
PROTOCOL Protocol
CASE
Input.Activity; [INPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Hidden.Activity; [HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Hidden.Weight; [HIDDEN.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64
Output.Weight; [OUTPUT.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64
Hidden.Dalta; [HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Output.Delta; [OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Time

:

5 PROC Administrator(Out, In) 1
PROC Administrator(CHAN Op Protocol Out, In)

. . . Variables (6)
SEQ

. . . Initialize torus (7)

write.full.string (screen, "Number of prooessors: ")
write.int(screen, SIZE ∗ SIZE, 0)
newline(screen)

Timer ? start
. . . Simulate (8)
In ? CASE Time
Timer ? stop

write.full.string(screen, "Time used: ")
write.real64(screen, TicksToSecs(stop MINUS start), 0, 0)
INT n:
read.char(keyboard, n)

:
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6 Variables 5
[HIDDEN.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64 hidden.weight:
[OUTPUT.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64 output.weight:
[INPUT.PR.PROCESSOR] [PATTERNS.PR.PROCESSOR]REAL64 input.activity0:
[INPUT.PR.PROCRSSOR][PATTERNS.PR.PROCESSOR]REAL64 input.activity1:
[HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 hidden.activity0:
[HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 hidden.activity1:
[HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 net.input:
[OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 output.delta:

TIMER Timer
INT start, stop:

7 Initialize torus 5
PAR
In ? CASE Input.Activity; input.activity0
Out ! Input.Activity; input.activity1

8 Simulate 5
[SEQ iteration = 0 FOR NUMBER.OF.ITERATIONS
SEQ

. . . Calculate hidden unit activity (9)

. . . Calaulate output unit activity (10)

. . . Calculate hidden unit delta values (11)

. . . Calculate output weight changes (12)

. . . Calculate hidden weight changes (13)

9 Calculate hidden unit activity 8
SEQ 1 = 0 FOR SIZE - 1
SEQ
In ? CASE Input.Activity; input.activity0
Out ! Input.Activity; input.activity0

10 Calculate output unit activity 8
SEQ i = 0 FOR SIZE - 1
SEQ
In ? CASE Hidden.Activity; hidden.activity0
Out ! Hidden.Activity; hidden.activity0
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11 Calculate hidden unit delta values 8
SEQ d = 0 FOR SIZE - 1
SEQ
In ? CASE Output.Weight: output.weight
Out ! Output.Weight; output.weight
In ? CASE Output.Delta; output.delta
Out ! Output.Delta: output.delta

12 Calculate net inputs to hidden units 11
In ? CASE Hidden.Activity; hidden.activity0
SEQ i = 0 FOR SIZE - 1
IF
(i REM 2) = 0
PAR
In ? CASE Hidden.Activity; hidden.activity1
Out ! Hidden.Activity; hidden.activity0

TRUE
PAR
In ? CASE Hidden.Activity; hidden.activity0
Out ! Hidden.Activity; hidden.activity1

IF
(SIZEREM 2) = 0
Out ! Hidden.Activity; hidden.activity1

TRUE
Out ! Hidden.Activity; hidden.activity0
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13 Calculate hidden weights changes 8
In ? CASE Input.Activity; input.aativity0
SEQ i = 0 FOR SIZE - 1
IF
(i REM 2) = 0
PAR
In ? CASE Input.Aativity; input.activity1
Out ! Input.Aativity; input.activity0

TRUE
PAR
In ? CASE Input.Aativity; input.activity0
Out ! Input.Aativity; input.activity1

IF
(SIZE REM 2) = 0
Out ! Input.Aativity; input.activity1

TRUE
Out ! Input.Aativity; input.activity0

14 Configure transputer 0 1
CHAN OF Protocol In, Qut:
PLACE In AT Link1in:
PLACE Out AT Link3out:
Administrator(Out, In)
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B.9 Matrix Multiplication Algorithm — Slaves

1 Matrix Multiplication Algorithm - Slave 0
. . . Libraries (2)
. . . Constants (3)
. . . Protocol (4)
. . . PROC Slave(Up, Down, Right, Left, processor.number) (5)

2 Libraries 1
#USE dblmath

3 Constants 1
VAL learning.rate IS 0.3(REAL64):
VAL momentum IS 0.9(REAL64):
VAL low.weight IS -0.3(REAL64):
VAL heigh.weight IS 0.3(REAL64):

VAL PATTERNS.PR.PROCESSOR IS 15:
VAL SIZE IS 4:
VAL INPUT.PR.PROCESSOR IS 15:
VAL HIDDEN.PR.PROCESSOR IS 15:
VAL OUTPUT.PR.PROCESSOR IS 15:
VAL INPUT.UNITS IS INPUT.PR.PROCESSOR ∗ SIZE:
VAL VAL HIDDEN.UNITS IS HIDDEN.PR.PROCESSOR ∗ SIZE:
VAL OUTPUT.UNITS IS OUTPUT.PR.PROCESSOR ∗ SIZE:
VAL NUMBER.OF.PATTERNS IS PATTERNS.PR.PROCESSOR ∗ SIZE:
VAL NUMBER.OF.ITERATIONS IS 10:

4 Protocol 1
PROTOCOL Protocol
CASE
Input.Activity; [INPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Hidden.Activity; [HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Hidden.Weight; [HIDDEN.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64
Output.Weight; [OUTPUT.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64
Hidden.Dalta; [HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Output.Delta; [OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64
Time

:
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5 Slave(Up, Down, Right, Left, processor.number) 1
PROC Slave(CHAN OF Protocol Up, Down, Right, Left,

VAL INT prooessor.number)
. . . Variables (6)
. . . Procedures and functions (7)
SEQ

. . . Initialize (12)
-- load.patterns ()
create.net ()
. . . Initialize torus (13)

. . . Simulate (14)

. . . Terminate (40)
:
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6 Variables 5
[4096]BYTE garbage:
PLACE garbage IN WORKSPACE:

[SIZE][HIDDEN.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64 hidden.weight:
[HIDDEN.PR.PROCESSOR][INPUT.PR.PROCESSOR]REAL64 hidden.change:
[HIDDEN.PR.PROCRSSOR][INPUT.PR.PROCESSOR]REAL64 old.hidden.change:
[HIDDEN.PR.PROCESSOR]REAL64 hidden.bias:
[HIDDEN.PR.PROCESSOR]REAL64 hidden.bias.change:
[HIDDEN.PR.PROCESSOR]REAL64 old.hidden.bias.change:

[SIZE][OUTPUT.PR.PROCESSOR][HIDDEN.PR.PROCESSOR]REAL64 output.weight:
[OUTPUT.PR.PROCESSOR][HIDDEN.PR.PROCESSOR]REAL64 output.change:
[OUTPUT.PR.PROCESSOR][HIDDEN.PR.PROCESSOR]REAL64 old.output.change:
[OUTPUT.PR.PROCESSOR]REAL64 output.bias:
[OUTPUT.PR.PROCESSOR]REAL64 output.bias.change:
[OUTPUT.PR.PROCESSOR]RRAL64 old.output.bias.change

[SIZE][INPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 input.activity:
[SIZE][HIDDEN.PR.PROCESSOR] [PATTERNS.PR.PROCESSOR]REAL64 hidden.activity:
[SIZE][OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 output.activity:

[HIDDEN.PR.PROCESSOR][PATTRENS.PR.PROCESSOR]REAL64 hidden.net:
[OUTPUT.PR.PROCPSSOR][PATTERNS.PR.PRCCESSOR]REAL64 output.net:

[OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 target.pattern:

[SIZE][HIDDEN.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 hidden.delta:
[SIZE][OUTPUT.PR.PROCESSOR][PATTERNS.PR.PROCESSOR]REAL64 output.delta:

INT x, y

7 Procedures and functions 5
-- PROC load.patterns()
. . . FUNCTION calculate.activity(net.input) (8)
. . . PROC create.net() (9)
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8 FUNCTION calculate.activity(net.input) 7
REAL64 FUNCTION calculate.activity(VAL REAL64 net.input)

REAL64 result:
VALOF

result := 1.0(REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:

9 PROC create.net() 7
PROC create.net()
REAL64 ran:
INT64 seed:
SEQ d = 0 FOR SIZE
SEQ

. . . Initialize weights between input and hidden layer (10)

. . . Initialize weights between hidden and output layer (11)
:

10 Initialize weights between input and hidden layer 9
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ seed := (INT64 ((processor.number + i) + 1))
ran, seed := DRAN(seed)
hidden.bias[i] := ran
hidden.bias.change[i] := 0.0(REAL64)
SEQ j = 0 FOR INPUT.PR.PROCESSOR
SEQ
ran, seed := DRAN(seed)
hidden.weight[d][i][j] :=

low.weight + (ran ∗ (high.weight − low.weight))
hidden.change[i][j] := 0.0(REAL64)
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11 Initialize weights between hidden and out layer 9
SEQ i = 0 FOR OUTPUT.RR.PROCESSOR
SEQ
seed := (INT64 ((processor.number + i) + 1))
ran, seed := DRAN(seed)
output.bias[i] := ran
output.bias.changa[i] := 0.0(REAL64)
SEQ j = 0 FOR INPUT.PR.PROCESSOR
SEQ
ran, seed := DRAN(seed)
output.weight[d][i][j] :=

low.weight + (ran ∗ (high.weight − low.weight))
output.change[i][j] := 0.0(REAL64)

12 Initialize 5
x := (processor.nunber - 1) REM SIZE
y := (processor.number - 1) / SIZE

13 Initialize torus 5
PAR
Up ! Input.Activity; input.activity[0]
Down ? CASE Input.Activity; input.activity[1]

PAR
Right ! Hidden.Weight; hidden.weight[0]
Left ? CASE Hidden.Weight; hidden.weight[1]

14 Simulate 5
SEQ iteration = 0 FOR NUMBER.OF.ITERATIONS
SEQ

. . . Propagate input unit activity (15)

. . . Propagate hidden unit activity (18)

. . . Calculate output unit delta values (21)

. . . Calculate hidden unit delta values (22)

. . . Calculate output weight changes (30)

. . . Calculate hidden weight changes (35)
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15 Propagate input unit activity 14
. . . Distribute hidden weights and input unit activities (16)
. . . Calculate hidden unit activities (17)

16 Distribute hidden weights and input unit activities 15
SEQ i = 0 FOR SIZE - 1
PAR
PAR
Right ! Hidden.Weight; hidden.weight[((x + SIZE) - i) REM SIZE]
Left ? CASEHidden.Weight;

hidden.weight[(((x + SIZE) - i) - 1) REM SIZE]
PAR

Up ! Input.Activity; input.activity[(y t i) REM SIZE]
Down ? CASE Input.Activity;

input.activity[((y + i) + 1) REM SIZE]

17 Calculate hidden unit activities 15
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
hidden.net[i][j] := hidden.bias[i]

SEQ d = 0 FOR SIZE
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
SEQ k = 0 FOR INPUT.PR.PROCESSOR
hidden.net[i][j] := hidden.net[i][j] +
(hidden.weight[d][i][k] ∗ input.activity[d][k][j])

SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
hidden.activity[y][i][j] := calculate.activity(hidden.net[i][j])

18 Propagate hidden unit activity 14
. . . Distribute output weights and hidden unit activities (19)
. . . Calculate output unit net inputs (20)
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19 Distribute output weights and hidden unit activities 15
SEQ i = 0 FOR SIZE - 1
PAR
PAR
Right ! Output.Weight; output.weight[((x + SIZE) - i) REM SIZE]
Left ? CASE Output.Weight;

output.weight[(((x + SIZE) - i) - 1) REM SIZE]
PAR

Up ! Hidden.Activity; hidden.activity[(y t i) REM SIZE]
Down ? CASE Hidden.Activity;

hidden.activity[((y + i) + 1) REM SIZE]

20 Calculate output unit net inputs 18
SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
output.net[i][j] := output.bias[i]

SEQ d = 0 FOR SIZE
SEQ i = 0 FOR OUTPUT.RR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
SEQ k = 0 FOR HIDDEN.PR.PROCESSOR
output.net[i][j] := output.net[i][j] +

(output.weight[d][i][k] ∗ hidden.activity[d][k][j])

SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
output.activity[y][i][j] := calculate.activity(output.net[i][j])

21 Calculate output unit delta values 14
SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
output.delta[y][i][j] := (target.pattern[i][j]

- output.activity[y][i][j]) ∗ (output.activity[y][i][j] ∗
(1.0(REAL64) - output.activity[y][i][j]))
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22 Calculate hidden unit delta values 14
. . . Initialize (23)
. . . Distribute weights (24)
SEQ d = 0 FOR SIZE - 1
PAR

. . . Calaulate hidden unit error values (25)
SEQ

. . . Send up output weights (26)
PAR

. . . Distribute weights (27)

. . . Send up output delta values (28)
. . . Calculate hidden unit error values (23)
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
hidden.delta[y][i][j] := hidden.delta[y][i][j] ∗

(hidden.activity[y][i][j] ∗ (1.0(REAL64)
- hidden.activity[y][i][j]))

23 Initialize 22
SEQ i = 0 POR HIDDEN.PR.PRCCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
hidden.delta[y][i][j] := 0.0(REAL64)

24 Distribute weights 22
IF
x = y
Right ! Output.Weight; output.weight[y]

x = (((y - 1) + SIZE) REM SIZE)
Left ? CASE Output.Weight; output.weight[y]

TRUE
SEQ
Left ? CASE Output.Weight; output.weight[y]
Right ! Output.Weight; output.weight[y]
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25 Calculate hidden unit error values 22
INT t:
SEQ
t := (y + d) REM SIZE
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
SEQ k = 0 FOR OUTPUT.PR.PROCESSOR
hidden.delta[y][i][j] := hidden.delta[y][i][j] +

(output.weight[t][k][i] ∗ output.delta[t][k][j])

26 Send up output weights 22
PAR
Down ? CASE Output.Weight: output.weight[((x + d) + 1) REM SIZE]
Up ! Output.Weight; output.weight[(x + d) REM SIZE]

27 Distribute weights 22
IF
x = y
Right ! Output.Weight; output.weight[((y + d) + 1) REM SIZE]

x = (((y - 1) + SIZE) REM SIZE)
Left ? CASE Output.Weight; output.weight[((y + d) + 1) REM SIZE]

TRUE
SEQ
Left ? CASE Output.Weight; output.weight[((y + d) + 1) REM SIZE]
Right ! Output.Weight: output.weight[((y + d) + 1) REM SIZE]

28 Send up output delta values 22
PAR
Down ? CASE Output.Delta: output.delta[((y + d) + 1) REM SIZE]
Up ! Output.Delta; output.delta[(y + d) REM SIZE]
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29 Calculate hidden unit error values 22
INT t:
SEQ
t := ((y - 1) + SIZE) REM SIZE
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR PATTERNS.PR.PROCESSOR
SEQ k = 0 FOR OUTPUT.PR.PROCESSOR
hidden.delta[y][i][j] := hidden.delta[y][i][j] +

(output.weight[t][k][i] ∗ output.delta[t][k][j])

30 Propagate input unit activity 14
. . . Distribute output unit delta values (31)
. . . Distribute hidden unit activities (32)
. . . Calculate gradients (33)
. . . Change output weights (34)

31 Distribute output unit delta values 30
IF
x = y
SKIP

TRUE
output.delta[x] := output.delta[y]

SEQ d = 0 FOR SIZE - 1
PAR
Left ? CASE Output.Delta; output.delta[(((x - d) + SIZE) - 1) REM

SIZE]
Right ! Output.Delta; output.delta[((x - d) + SIZE) REM SIZE]
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32 Distribute hidden unit activities 30
IF
x = y
SKIP

TRUE
hidden.activity[x] := hidden.activity[y]

IF
x = y
SEQ d = 0 FOR SIZE - 1
Left ? CASE Hidden.Activity;

hidden.activity[(((y - 1) - d) + SIZE) REM SIZE]
TRUE
SEQ
SEQ SEQ d = 0 FOR ((((x - y) + SIZE) - 1) REM SIZE)
PAR

Left ? CASE Hidden.Activity;
hidden.activity[((y + 1) + d) REM SIZE]

Right ! Hidden.Activity;
hidden.activity[(y + d) REM SIZE]

Right ! Hidden.Activity; hidden.activity[((x - 1) + SIZE) REM SIZE]

IF
x = y
SEQ d = 0 FOR SIZE - 1
Up ! Hidden.Activity: hidden.activity[d]

((x + 1) REM SIZE) = y
SEQ d = 0 FOR SIZE - 1
Down ? CASE Hidden.Activity; hidden.activity[d]

TRUE
SEQ
Down ? CASE Hidden.Activity; hidden.activity[0]
SEQ d = 0 FOR SIZE - 1
PAR
Down ? CASE Hidden.Activity: hidden.activity[d + 1]
Up ! Hidden.Activity: hidden.activity[d]

Up ! Hidden.Activity; hidden.activity[SIZE - 1]
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33 Calculate gradients 30
SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ j = 0 FOR HIDDEN.PR.PROCESSOR
output.change[i][j] := 0.0(REAL64)

SEQ d = 0 FOR SIZE
SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ j = 0 FOR HIDDEN.PR.PROCESSOR
SEQ k = 0 FOR PATTERNS.PR.PROCESSOR
output.change[i][j] := output.change[i][j] +

(output.delta[d][i][k] ∗ hidden.activity[d][j][k])

34 Change output weights 30
SEQ i = 0 FOR OUTPUT.PR.PROSSOR
SEQ
output.bias.change[i] :- (learning.rate ∗ output.bias.change[i]) +

(momentum ∗ old.output.bias.change[i])
SEQ j = 0 FOR HIDDEN.PR.PROCESSOR
output.change[i][j] := (learning. rate ∗ output.change[i][j]) +

(momentum ∗ old.output.change[i][j])

SEQ i = 0 FOR OUTPUT.PR.PROCESSOR
SEQ
output.bias[i] := output.bias[i] + output.bias.change[i]
SEQ j = 0 FOR HIDDEN.PR.PROCESSOR
output.weight[x][i][j] := output.weight[x][i][j]

+ output.change[i][j]

old.output.change := output.change
old.output.bias.change := output.bias.change

35 Propagate input unit activity 14
. . . Distribute hidden unit delta values (36)
. . . Distribute input unit activities (37)
. . . Calculate gradients (38)
. . . Change hidden weights (39)
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36 Change output weights 35
IF
x = y
SKIP

TRUE
hidden.delta[x] := hidden.delta[y]

SEQ d = 0 FOR SIZE - 1
PAR
Left ? CASE Hidden.Delta; hidden.delta[(((x - d) + SIZE) - 1) REM

SIZE]
Right ! Hidden.Delta; hidden.delta(((x - d) + SIZE) REM SIZE]
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37 Distribute input unit activities 35
IF
x = y
SKIP

TRUE
input.activity[x] := input.activity[y]

IF
x = y
SEQ d = 0 FOR SIZE - 1
Left ? CASE Input.Activity;

input.activity[(((y - 1) - d) + SIZE) REM SIZE]
TRUE
SEQ
SEQ SEQ d = 0 FOR ((((x - y) + SIZE) - 1) REM SIZE)
PAR
Left ? CASE Input.Activity;

input.activity[((y + 1) + d) REM SIZE]
Right ! Input.Activity;

input.activity[(y + d) REM SIZE]
Right ! Input.Activity; input.activity[((x - 1) + SIZE) REM SIZE]

IF
x = y
SEQ d = 0 FOR SIZE - 1
Up ! Input.Activity: input.activity[d]

((x + 1) REM SIZE) = y
SEQ d = 0 FOR SIZE - 1
Down ? CASE Input.Activity; input.activity[d]

TRUE
SEQ
Down ? CASE Input.Activity; input.activity[0]
SEQ d = 0 FOR SIZE - 1
PAR
Down ? CASE Input.Activity: input.activity[d + 1]
Up ! Input.Activity: input.activity[d]

Up ! Input.Activity; input.activity[SIZE - 1]
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38 Calculate gradients 35
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR INPUT.PR.PROCESSOR
hidden.change[i][j] := 0.0(REAL64)

SEQ d = 0 FOR SIZE
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ j = 0 FOR INPUT.PR.PROCESSOR
SEQ k = 0 FOR PATTERNS.PR.PROCESSOR
hidden.change[i][j] := hidden.change[i][j] +

(hidden.delta[d][i][k] ∗ input.activity[d][j][k])

39 Change hidden weights 30
SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ
hidden.bias.change[i] := (learning.rate ∗ hidden.bias.change[i])

+ (momentum ∗ old.hidden.bias.change[i])
SEQ j = 0 FOR INPUT.PR.PROCESSOR

hidden.change[i][j] : = (learning. rate ∗ hidden.change[i][j])
+ (momentum ∗ old.hidden.ehange[i][j])

SEQ i = 0 FOR HIDDEN.PR.PROCESSOR
SEQ

hidden.bias[i] := hidden.bias[i] + hidden.bias.change[i]
SEQ j = 0 FOR INPUT.PR.PROCESSOR

hidden.weight[x][i][j] := hidden.weight[x][i][j]
+ hidden.change[i][j]

old.hidden.change := hidden.change
old.hidden.bias.change := hidden.bias.change

40 Terminate 5
IF
processor.number = 1
Up ! Time

TRUE
SKIP
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B.10 Net Partitioning Back-Propagation

The program given in the following is the program for the administrator (the
program running on transputer 0). For the net partitioning algorithm the
program used for the transputers is exactly alike (apart from the variable
‘processor.number’), hence we do show the program used by the slaves.

The merging of step four and five of the algorithm as suggested in sec-
tion 4.1.6 is done. This can be seen in fold number 17 and 18.

1 Net partitioning algorithm 0
. . . Libraries (2)
. . . Constants (3)
. . . Protocol (4)
. . . PROC Administrator(In, Out) (5)
. . . Configure transputer 0 (32)

2 Libraries 1
#USE time
#USE linkaddr
#USE userio
#USE dblmath
#USE snglmath
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3 Constants 1
VAL learning.rate IS 0.2(REAL64):
VAL momentum IS 0.9(REAL64):
VAL low.weight IS -0.3(REAL64):
VAL heigh.weight IS 0.3(REAL64):

VAL NUMBER.OF.PROCESSORS IS 40:
VAL NUMBER.OF.ITERATIONS IS 100:
VAL NUMBER.OF.PATTERNS IS 10:
VAL INPUT.UNITS IS 40:
VAL HIDDEN.UNITS IS 40:
VAL OUTPUT.UNITS IS 40:
VAL INPUT.UNITS.PR.PROCESSOR IS (INPUT.UNITS + (NUMBER.OF.PROCESSORS

- 1)) / NUMBER.OF.PROCESSORS:
VAL INPUT.UNITS.PR.PROCESSOR IS (HIDDEN.UNITS + (NUMBER.OF.PROCESSORS

- 1)) / NUMBER.OF.PROCESSORS:
VAL OUTPUT.UNITS.PR.PROCESSOR IS (OUTPUT.UNITS + (NUMBER.OF.PROCESSORS

- 1)) / NUMBER.OF.PROCESSORS:

VAL processor.number IS 0: -- Administrator

4 Protocol 1
PROTOCOL Data.Protocol
CASE
Input.Data; [INPUT.UNITS.PR.PROCESSOR]REAL64
Hidden.Data; [HIDDEN.UNITS.PR.PROCESSOR]REAL64

:
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5 PROC Administrator(In, Out) 1
PROC Administrator(CHAN OF Data.Protocol In, Out)

. . . Variables (6)

. . . Procedures and functions (7)
SEQ

. . . Initialize (27)
-- load.patterns ()
create.net ()

Timer ? start

. . . Pattern update (31)

Timer ? stop

write.full.string(screen, "Number of processors: ")
write.int(screen, NUMBER.OF.PROCESSORS, 0))
write.full.string(screen, "∗c∗nTime used: ")
write.real64(screen, TicksToSecs (stop MINUS start), 0, 0))
newline(screen)

:
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6 Variables 5
[NUMBER.OF.PROCESSORS][INPUT.UNITS.PR.PROCESSOR]REAL64 input.unit.activity:
[NUMBER.OF.PROCESSORS][HIDDEN.UNITS.PR.PROCRSSOR]REAL64 hidden.unit.activity:
[HIDDEN.UNITS.PR.PROCESSOR]REAL64 hidden.unit.delta:
[OUTPUT.UNITS.PR.PROCESSOR]RRAL64 output.unit.activity:
[OUTPUT.UNITS.PR.PROCESSOR]REAL64 output.unit.delta:

[INPUT.UNITS+1][HIDDEN.UNITS.PR.RROCESSOR]REAL64 hidden.link.weight:
[INPUT.UNITS+1] [HIDDEN.UNITS.PR.PROCESSOR]REAL64 hidden.link.change:
[HIDDEN.UNITS+1][OUTPUT.UNITS.PR.PROCESSOR]REAL64 output.link.weight:
[HIDDEN.UNITS+1][OUTPUT.UNITS.PR.PROCESSOR]REAL64 output.link.change:

[NUMBER.OF.PATTERNS][INPUT.UNITS.PR.PROCESSOR]REAL64 input.pattern:
[NUMBER.OF.PATTERNS] [OUTPUT.UNITS.PR.PROCESSOR]REAL64 target.pattern:

INT LOCAL.INPUT.UNITS, LOCAL.HIDDEN.UNITS, LCCAL.OUTPUT.UNITS:
INT processor, start.index:
[NUMBER.OF.PROCESSORS]INT input.unit.index, input.unit.count:
[NUMBER.OF.PROCESSORS]INT hidden.unit.index, hidden.unit.count:
[NUMBER.OF.PROCESSORS]INT output.unit.index, output.unit.count:
TIMER Timer:
INT start, stop:

7 Procedures and functions 5
-- PROC load.patterns()
. . . PROC create.net() (8)
. . . FUNCTION calculate.activity(net.input) (11)
. . . PROC propagate.activity(pattern) (12)
. . . PROC calculate.weight.changes(pattern) (15)

8 PROC create.net() 7
PROC create.net()
REAL64 ran:
INT64 seed:
SEQ

. . . Initialize weights between input and hidden layer (9)

. . . Initialize weights between hidden and output layer (10)
:
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9 Initialize weighs between input and hidden layer 8
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
SEQ
seed := (INT64 ((hidden.unit.index[processor.number] + j) + 1))
SEQ i = 0 FOR INPUT.UNITS + 1
SEQ

ran, seed := DRAN(seed)
hidden.link.weight[i][j] :=
low.weight + (ran ∗ (high.weight - low.weight))

hidden.link.change[i][j] := 0.0(REAL64)

10 Initialize weights between hidden and output layer 8
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ
seed := (INT64 ((output.unit.index[processor.number] + j) + 1))
SEQ j = 0 FOR HIDDEN.UNITS + 1
SEQ
ran, seed := DRAN(seed)
output.link.weight[i][j] :=

low.weight + (ran ∗ (high.weight − low.weight))
output.link.change[i][j] := 0.0(REAL64)

11 FUNCTION calculate.activity(net.input) 7
REAL64 FUNCTION calculate.activity(VAL REAL64 net.input)
REAL64 result:
VALOF
result := 1.0(REAL64) / (1.0(REAL64) + DEXP(-net.input))
RESULT result

:

12 PROC propagate.activity(pattern) 7
PROC propagate.activity(VAL INT pattern)
SEQ

. . . Calculate output from hidden units (13)

. . . Calculate output from output units (14)
:
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13 Calculate output from hidden units 12
[HIDDEN.UNITS.PR.PROCESSOR]REAL64 hidden.net:
SEQ
input.unit.activity[processor.number] := input.pattern[pattern]
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
hidden.net[j] := hidden.link.weight[INPUT.UNITS][j]

SEQ p = processor.number FOR NUMBER.OF.PROCESSORS - 1
SEQ
processor := p REM NUMBER.OF.PROCESSORS
PRI PAR
PAR
Out ! Input.Data; input.unit.activity[processor]
In ? CASE Input.Data; input.unit.activity[(processor + 1) REM

NUMBER.OF.PROCESSORS]
SEQ
start.index := input.unit.index[processor]
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
SEQ i = 0 FOR input.unit.count [processor]
hidden.net[j] := hidden.net[j] +

(input.unit.activity[processor][i] ∗
hidden.link.weight[start.i.ndex + i][j])

prooessor := (processor.number + (NUMBER.OF.PROCESSORS - 1)) REM
NUMBER.OF.PROCESSORS

start.index := input.unit.index[prooessor]
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
SEQ
SEQ i = 0 FOR input.unit.count[processor]
hidden.net[j] := hidden.net[j] +

(input.unit.activity[processor][i] ∗
hidden.link.weight[start.index + i][j])

hidden.unit.activity[processor.number][j] :=
calculate.activity(hidden.net[j])
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14 Calculate output from output units 12
[OUTPUT.UNITS.PR.PROCESSOR]REAL64 output.net:
SEQ
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
output.net[j] := output.link.weight[HIDDEN.UNITS][j]

SEQ p = processor.number FOR NUMBER.OF.PROCESSORS - 1
SEQ
processor := p REM NUMBER.OF.PROCESSORS
PRI PAR
PAR

Out ! Hidden.Data; hidden.unit.activity[processor]
In ? CASE Hidden.Data; hidden.unit.activity[(processor + 1)

REM NUMBER.OF.PROCESSORS]
SEQ

start.index := hidden.unit.index[processor]
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ i = 0 FOR hidden.unit.count [processor]
output.net[j] :=

output.net[j] +
(hidden.unit.activity[processor][i]
∗ output.link.weight[start.i.ndex + i][j])

processor := (proaessor.number + (NUMBER.OF.PROCESSORS - 1)) REM
NUMBER.OF.PROCESSORS

start.index := hidden.unit.index[processor]
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ
SEQ i = 0 FOR hidden.unit.count[processor]
output.net[j] := output.net[j] + (hidden.unit.activity[processor][i]

∗ output.link.weight[start.index + i][j])
output.unit.activity[j] := calculate.activity(output.net[j])

15 PROC calculate.weight.changes(pattern) 7
PROC calculate.weight.changes(VAL INT pattern)
SEQ

. . . Calculate output unit delta values (15)

. . . Calculate hidden unit deltas and weight changes to output units (17)

. . . Calculate changes of input to hidden unit weights (25)

. . . Change input to hidden unit weights (26)
:
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16 Calculate output unit delta values 15
SEQ i = 0 FOR LOCAL.OUTPUT.UNITS)
output.unit.delta[i] :=

(target.pattern[pattern] [i] - output.unit.activity[i]) ∗
(output.unit.activity[i] ∗ (1.0(REAL64) - output.unit.activity[i]))

17 Calculate hidden unit deltas and weight changes to output units 15
[HIDDEN.UNITS.PR.PROCESSOR]REAL64 in.data, out.data:
SEQ
processor := (processor.number + 1) REM NUMBER.OF.PROCESSORS
start.index := hidden.unit.index[prooessor]
SEQ i = 0 FOR hidden.unit.count[prooessor]
SEQ
out.data[i] := 0.0(REAL64)
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ
out.Data[i] := out.data[i] +
(output.unit.delta[j] ∗ output.link.weight[start.index + i][j])

. . . Calaulate changes of hidden to output unit weights (18)

. . . Change hidden to output unit weights (13)
. . . Loop (20)
SEQ i = 0 FOR LOCAL.HIDDEN.UNITS
hidden.unit.delta[i] := out.data[i] ∗

(hidden.unit.activity[processor.number][i] ∗
(1.0(REAL64) - hidden.unit.activity[processor.number][i]))

SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ

. . . Calculate changes of hidden to output unit weights (23)

. . . Change hidden to output unit weights (24)

18 Calculate changes of hidden to output unit weights 17
output.link.change[start.index + i][j] := (learning.rate ∗

(output.unit.delta[j] ∗ hidden.unit.activity[processor][i])) +
(momentum ∗ output.link.change[start.index + i][j])

19 Change hidden to output unit weights 17
output.link.weight[start.index + i][j] :=
output.link.weight[start.index + i][j] +
output.link.change[start.index + i][j]
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20 Loop 17
SEQ p = (processor.number + 2) FOR NUMBER.OF.PROCESSORS - 1
SEQ
PRI PAR
PAR
Out ! Hidden.Data; out.data]
In ? CASE Hidden.Data;in.data

SEQ
processor := p REM NUMBER.OF.PROCESSORS
start.index := hidden.unit.index[processor]
SEQ i = 0 FOR hidden.unit.oount[proaessor]
SEQ
hidden.unit.delta[i] := 0.0(REAL64)
SEQ j = 0 FOR LOCAL.OUTPUT.UNITS
SEQ
hidden.unit.delta[i] := hidden.unit.delta[i] +
(output.unit.delta[j] ∗
output.link.weight[start.index + i][j])

. . . Calculate changes of hidden to output unit weights (21)

. . . Change hidden to output unit weights (22)
SEQ i = 0 FOR hidden.unit.count[processor]

out.data[i] := in.data[i] + hidden.unit.delta[i]

21 Calculate changes of hidden to output unit weights 20
output.link.change[start.index + i][j] := (learning.rate ∗

(output.unit.delta[j] ∗ hidden.unit.activity[processor][i])) +
(momentum ∗ output.link.change[start.index + i][j])

22 Change hidden to output unit weights 20
output.link.weight[start.index + i][j] :=

output.link.weight[start.index + i][j] +
output.link.change[start.index + i][j]

23 Calculate changes of hidden to output unit weights 17
output.link.change[HIDDEN.UNITS][j] :=

(learning.rate ∗ output.unit.delta[j]) +
(momentum ∗ output.link.change[HIDDEN.UNITS][j])
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24 Change hidden to output unit weights 17
output.link.weight[HIDDEN.UNITS][j] :=

output.link.weight[HIDDEN.UNITS][j] +
output.link.change[HIDDEN.UNITS][j]

25 Calculate changes of input to hidden unit weights 15
SEQ p = 0 FOR NUMBER.OF.PROCESSORS
SEQ
start.index : = input.unit.index[p]
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
SEQ i = 0 FOR input.unit.count[p]
hidden.link.ehange[start.index + i][j] := (learning.rate ∗

(hidden.unit.delta[j] ∗ input.unit.activity[p][i])) +
(momentum ∗ hidden.link.change[start.index + i][j])

SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
hidden.link.change[INPUT.UNITS][j] :=

(learning.rate ∗ hidden.unit.delta[j]) +
(momentum ∗ hidden.link.change[INPUT.UNITS][j])

26 Change input to hidden unit weights 15
SEQ j = 0 FOR LOCAL.HIDDEN.UNITS
SEQ i = 0 FOR INPUT.UNITS + 1
hidden.link.weight[i][j] :=

hidden.link.weight[i][j] + hidden.link.change[i][j]

27 Initialize 5
. . . Calculate input-unit index and length data for all processors (28)
LOCAL.INPUT.UNITS := input.unit.count[processor.number]
. . . Calculate hidden-unit index and length data for all processors (29)
LOCAL.HIDDEN.UNITS := hidden.unit.count[processor.number]
. . . Calculate output-unit index and length data for all processors (30)
LOCAL.OUTPUT.UNITS := output.unit.count[processor.number]
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28 Calculate input-unit index and length data for all processors27
input.unit.index[0] := 0
input.unit.count[0] := INPUT.UNITS.PR.PROCRSSOR
SEQ i = 1 FOR NUMBER.OF.PROCESSORS - 1
SEQ
input.unit.index[i] := input.unit.index[i - 1] +

input.unit.count[i - 1]
IF
(INPUT.UNITS REM NUMBER.OF.PROCESSORS) = 0

input.unit.count[i] := INPUT.UNITS.PR.PROCRSSOR
(INPUT.UNITS REM NUMBER.OF.PROCESSORS) > i

input.unit.count[i] := INPUT.UNITS.PR.PROCRSSOR
TRUE

input.unit.count[i] := INPUT.UNITS.PR.PROCESSOR - 1

29 Calculate hidden-unit index and length data for all processors27
hidden.unit.index[0] := 0
hidden.unit.count[0] := HIDDEN.UNITS.PR.PROCRSSOR
SEQ i = 1 FOR NUMBER.OF.PROCESSORS - 1
SEQ
hidden.unit.index[i] := hidden.unit.index[i - 1] +

hidden.unit.count[i - 1]
IF
(HIDDEN.UNITS REM NUMBER.OF.PROCESSORS) = 0
hidden.unit.count[i] := HIDDEN.UNITS.PR.PROCRSSOR

(HIDDEN.UNITS REM NUMBER.OF.PROCESSORS) > i
hidden.unit.count[i] := HIDDEN.UNITS.PR.PROCRSSOR

TRUE
hidden.unit.count[i] := HIDDEN.UNITS.PR.PROCESSOR - 1
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30 Calculate output-unit index and length data for all processors27
output.unit.index[0] := 0
output.unit.count[0] := OUTPUT.UNITS.PR.PROCRSSOR
SEQ i = 1 FOR NUMBER.OF.PROCESSORS - 1
SEQ
output.unit.index[i] := output.unit.index[i - 1] +

output.unit.count[i - 1]
IF
(OUTPUT.UNITS REM NUMBER.OF.PROCESSORS) = 0
output.unit.count[i] := OUTPUT.UNITS.PR.PROCRSSOR

(OUTPUT.UNITS REM NUMBER.OF.PROCESSORS) > i
output.unit.count[i] := OUTPUT.UNITS.PR.PROCRSSOR

TRUE
output.unit.count[i] := OUTPUT.UNITS.PR.PROCESSOR - 1

31 Pattern update 5
INT pattern:
INT32 seed:
REAL32 ran:
SEQ
seed := 1(INT32)]
SEQ iteration = 0 POR NUMBER.OF.ITERATIONS
SEQ
ran, seed := RAN(seed)
IF
seed < 0 (INT32)
seed := -seed

TRUE
SKIP

pattern := (INT seed)
propagate.activity(pattern)
caloulate.weight.changes(pattern)

32 Configure transputer 1
CHAN 0F Data.Protocol In, Out:
PLACE In AT Link1in:
PLACE Out AT Link3out:
Administrator(In, Out)
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Verjus (Editors), Elsvier Science Publishers B. V. (North-
Holland), 1989

[Pomerleau1] Dean, A. Pomerleau, George L. Gusciora, David S. Touret-
zky, H. T. Kung Neural Network simulation at Warp Speed:
How We Got 17 Million Connections Per Second

229



IEEE International Conference on Neural Networks, Vol. 2,
1988

[Pomerleau2] Dean A. Pomerleau Understanding Neural Network Simula-
tor Performance
Neural Network Review, Vol. 4, No. 1, 1990

[Rosenblatt] F. Rosenblatt Principles of Neurodynamics
New York: Spartan, 1962

[Rumelhart] David E. Rumelhart, James L. McClelland, and the PDP Re-
search Group Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Volume 1: Foundations
The MIT Press, Cambridge, Massachusetts, 1986

[Schwartz] Jacob T. Schwartz The New Connectionism: Developing Re-
lationships Between Neuroscience and Artificial Intelligence
Dædalus, 1988, Proceeding of the American Academy og
Arts and Sciences, Vol. 117, No. 1, p. 123–141

[Sejnowski] Terrence J. Sejnowski, Charles R. Rosenberg NETtalk: a par-
allel network that learns to read aloud
The Johns Hopkins University Electrical Engineering and
Computer Science Technical Report JHU/EECS-86/01
Retrieving the NETtalk data set: The data set is available
by anonymous FTP from the cs.cmu.edu site in the directory
/ags/cs.cmu.edu/project/connect/bench.

[Singer] Alexander Singer Implementations of Artificail Neural Net-
works on the Connection Machine
Parallel Computing, Vol. 14, No. 3, August 1990

[Tank] David E. Tank, John J. Hopfield Collective Computation in
Neuronlike Circuits
Scientific American, December 1987

[Vogl] T. P. Vogl, J. K. Mangis, A. K. Rigler, W. T. Zink, D. L.
Alkon Accelerating the Convergence of the Back-Propagation
Method
Biological Cybernetics, Vol. 59, p. 257–263

230



[Welch] P. H. Welch Emulating Digital Logic using Transputer
Networks
PARLE, Parallel Architectures and Languages Europe, Vol-
ume 1: Parallel Architectures, Eindhoven, The Netherlands,
June 15–19, 1987, Proceedings

[Witbrock] Michael Witbrock, Marco Zagha An Implementation of
Backpropagation Learning on GF11, a Large SIMD Paral-
lel Computer
Parallel Computing, Vol. 14, No 3, August 1990

[Zhang] Xiru Zhang, Michael McKenna, Jill P. Mesirow, David L.
Waltz The Backpropagation algorithm on Grid and Hyper-
cube Architectures
Parallel Computing, Vol. 14, No. 3, August 1990

231


