
A Modal Characterisation of Distributed
Bisimulation

Søren Christensen∗

Computer Science Department
Aarhus University, Ny Munkegade 116

DK-8000 Aarhus C.
Denmark

Marts 1991

Abstract

In this paper we consider the distributed bisimulation equiualence
defined by Hennessy and Castellani in [HC88] and later developed by
Castellani in [Cas88]. We present a logic in the style of Hennessy-
Milner logic to characterise the equivalence, i.e. we seek a logic such
that whenever two processes are distributed bisimulation equivalent,
they satisfy the same set of formulae and vice versa.

Furthermore, for a small subset of CCS we provide a proof sys-
tem which is shown to be sound and complete. The proof system is
structural both in the structure of formulae and in the structure of
processes. For the case of parallel composition of processes we present
inference rules defined via a new combinator introduced. The combi-
nator in question is left merge, a special kind of parallel composition
in which the left operand has precedence over the other and must
perform the first action observed.

∗The author gratefully acknowledges financial support from the Danish Research
Academy.

1

1 Introduction

In [HC88, Cas88] Hennessy and Castellani define an equivalence on CCS pro-
cesses ba,sed on the well-known bisimulation technique [Mil89]. While ordi-
nary bisimulation models independent actions via interleaving their equiva-
lence, which is called distributed bisimulation, does not.

The distributed bisimulation is defined on a class of transition systems in
which states are augmented with information about the distribution of pro-
cesses in space. That is, in observing an event the resulting state will contain
process components representing distribution of the system.

The transition systems to be considered are called distributed transition sys-
tems. A transition has the form p

a→ 〈p′, p′′〉 where a is the atomic action
observed. The state 〈p′, p′′〉 is called the compound residual and it contains
information about the distribution of processes on observing the action a. In
[HC88], p′ is called the local residual and p′′ the global residual. Intuitively, p′

is the local process at which the action a took place whereas p′′ is the global
result after the action a has been observed. For instance, in the framework of
CCS we could have a.p|q a→ 〈p, p|q〉. In [Cas88] a different viewpoint is taken:
in the compound residual 〈p′, p′′〉, p′ is again the local residual but p′′ is now
called the concurrent residual. Intuitively, the concurrent residual is the part
of the global residual which behave independently of the local residual. For
instance, we could have a.p|q a→ 〈p, q〉. In [Cas88] it is shown that those
two interpretations of the compound residual leads to the same distributed
bisimulation equivalence. In this paper we consider the interpretation given
in [Cas88], i.e. the compound residual consists of a local and a concurrent
residual.

In [HC88] the main effort has been to give an algebraic characterisation of
the distributed bisimulation equivalence. In this paper we present a logic, in
the style of Hennessy-Milner logic [HM85], to characterise distributed bisim-
ulation equivalence. That is, whenever two processes are distributed bisim-
ulation equivalent they satisfy the same set of formulae and vise versa.

The new logic is based on the modality of necessity, often described by a box
([]), and on the modality of possibility, often described by a diamond (〈〉).
But the modalities will now be dyadic thus obtaining formulae both for the
local and the concurrent residual of a compound residual.

Furthermore, in this paper we consider a small subset of CCS; the combi-

2

nators are prefix, sum and parallel composition. Moreover, communication
between processes is not allowed. The behaviour of processes contained in
this language will be interpreted via distributed transition systems thus we
can use our logic as a specification language for the processes.

For this subset of CCS we have defined a sound and complete proof system
in the style of [Sti85]. The proof system is structural both in the struc-
ture of formulae and in the structure of processes. Concerning the parallel
combinator we have obtained simple inference rules via a new combinator
introduced. The combinator is left merge, denoted b. The combinator can
be considered as a special kind of parallel composition in which the left pro-
cess has precedence over the right process and must perform the first action
observed.

In section 2 we define the distributed transition systems and the distributed
bisimulation equivalence. The section is based on [Cas88]. In section 3 we
define the logic and show the characterisation theorem. In section 4 we
present the proof system which is shown to be complete in appendix A.
Finally we finish the paper with a conclusion summing up the results and
suggesting topics for future work.

2 Distributed Bisimulation

We begin by defining the transition systems to be considered in this paper and
which form the basis for defining the semantics of processes. The transition
systems we are interested in is based on the usual notion of transition systems.
But, as explained in the introduction, each transition gives rise to a compound
residual 〈p, q〉 consisting of the local residual p and the concurrent residual
q. Intuitively, p and q are two independent subprocesses which are placed
at different localities.1 Based on these ideas we introduce the notion of
distributed transition systems.

Definition 2.1 A distributed transition system is a triple (P ,A,→) where

(i) P is a set of processes,

(ii) A is a set of actions, and

1We refer to [Cas88] for a more thorough explanation of the nature of the distribution
of processes in space.

3

(iii) → is a relation contained P ×A×P ×P called the transition relation.

If (p, a, p′, p′′) ∈ → we will write p
a→ 〈p′, p′′〉. When p

a→ 〈p′, p′′〉 it is
supposed to reflect that the process p can perform the action a and then
become the compound residual 〈p′, p′′〉. �

The language to be considered in this paper is a small subset of CCS [Mil89];
the combinators are prefix, sum and parallel composition. We presuppose a
set A of actions and let a, b, c, . . . with or without subscript range over A. We
assume no synchronisation between subprocesses, hence there is no structure
on A.

Definition 2.2 We let CCSS denote the set of processes. Suppose a ∈ A.
Then CCSS is the least set satisfying the following rules:

(i) nil ∈ CCSS, and

(ii) if p, q ∈ CCSS then a.p, p + q, p|q ∈ CCSS.

The operator (a.) is called prefix, the operator (+) is called sum and finally
the operator (|) is called parallel composition. We let p, q, r, . . . with or
without quotes and with or without subscript range over CCSS. �

We assume some rules in order to improve readability of processes. We
will often let ap be an abbreviation of the process a.p. Furthermore, nil is
omitted and prefix has precedence over parallel composition which in turn
has precedence over sum. Thus the process (a.nil)+((b.nil)|(c.nil)) is similar
to a + b|c.
Roughly, the interpretation of the combinators are as follows: a.p is the pro-
cess which can perform the action a and then behave as the process p; p + q
is the process which behaves either as p or as q; finally, p|q is the process
consisting of two independent processes, thus performing concurrently. But
moreover, in observing the behaviour of processes we wish to obtain informa-
tion about the distribution of processes in space. For instance, in observing
the action a at the process a.p|p we wish to know about the local process at
which the action a took place, i.e. at the process p, and we wish to know
about the possible processes independent of the process at which a took
place, i.e. the process q in our example. Related to the distributed transi-
tion systems this information could be contained in the compound residual
〈p, q〉.

4

Based on these ideas we give the formal definition of the semantics of pro-
cesses in CCSS.

Definition 2.3 The semantics of processes in CCSS is captured through
the distributed transition system (CCSS,A,→) where → is the least relation
obeying the following rules in which the relation below the line is to be
inferred from that above the line.

(i)

a.p
a→ 〈p, nil〉

(ii)

p
a→ 〈p′, p′′〉

p + q
a→ 〈p′, p′′〉

q
a→ 〈q′, q′′〉

p + q
a→ 〈q′, q′′〉

(iii)

p
a→ 〈p′, p′′〉

p|q a→ 〈p′, p′′|q〉
q

a→ 〈q′, q′′〉
p|q a→ 〈q′, p|q′′〉

The behaviour of a particular process p ∈ CCSS is captured in the transition
system (CCSS,A,→) by letting the start state be p itself. �

Rules (i), (ii) and (iii) define the behaviour of prefix, sum and parallel
composition respectively. Rule (i) states that the process a.p can perform
the action a. The result is 〈p, nil〉, i.e. there is nothing which can happen in
parallel with the action a. Rule (ii) is the usual interpretation of the sum
operator. Rule (iii) states the behaviour of the parallel process p|q. Note
the effect on the concurrent residual.

Although we have defined the behaviour of processes in CCSS via a dis-
tributed transition system it is not at all clear how a process computes; it
seems as if only the first step of processes can be observed. In order to be
able to define computations of processes we extend the transition relation by
adding the following rules for pairs 〈p, q〉 of processes.

(iv)

p
a→ 〈p′, p′′〉

〈p, q〉 a→ 〈p′, p′′|q〉
q

a→ 〈q′, q′′〉
〈p, q〉 a→ 〈q′, p|q′′〉

5

According to these rules, after each transition p
a→ 〈p′, p′′〉 the execution

resumes with the composition of the two residuals; the pair 〈p′, p′′〉 has exactly
the same behaviour as the process p′|p′′.
Given the transition rules for the compound residuals we can extend the
transition relation to sequences of actions. Let t = a1a2 . . . an ∈ A∗ be a

sequence of actions. Assume p, p′ and p′′ are CCSS processes. Then p
t→

〈p′, p′′〉 iff there exists processes p1, q1, . . . , pn−1, qn−1 ∈ CCSS such that p
a1→

〈p1, q1〉
a2→ · · · an−1→ 〈pn−1, qn−1〉

an→ 〈p′, p′′〉. If there is no transition from
〈p′, p′′〉 then t is called a computation. Finally, by p →∗ 〈p′, p′′〉 we denote

that there exists a sequence t of actions such that p
t→ 〈p′, p′′〉.

From the above rules it follows that the concurrent residual in p →∗ 〈p′, p′′〉 is
a process of the form p1| · · · |pn where some of the processes pi equals nil and
have been inserted by using rule (i) while all the others have been introduced
by successive applications of rule (iii) and (iv).

Example 2.4 Consider the CCSS process ab+ba. The computation steps for
this process, given via the extended transition relation, are shown in figure
1 below.

Likewise, the computation steps of the CCSS process a|b are given in figure
2 below.

Note that, although the process ab + ba is based on non-determinism while
a|b is based on parallelism there is no observable difference between the two
processes when the observation is based on the associated transition systems.

�

6

We now move on to define a relation between processes of P . If p, q ∈ P , the
relation between p and q will be defined through the transition systems for p
and q. The technique for defining the relation is closely related to the bisimu-
lation technique [Mil89] but will be based on the information contained in the
individual residuals. Thus the bisimulation relates the local and concurrent
residuals separately.

Definition 2.5 The relation R ∈ P×P is a distributed bisimulation provided
for all (p, q) ∈ R the following is satisfied:

(i) p
a→ 〈p′, p′′〉 implies q

a→ 〈q, q′′〉 such that (p′, q′) ∈ R & (p′′, q′′) ∈ R, and

(ii) q
a→ 〈q′, q′′〉 implies p

a→ 〈p, p′′〉 such that (p′, q′) ∈ R & (p′′, q′′) ∈ R.

�

Definition 2.6 Let p, q ∈ P . Then p ∼d q iff there exists a distributed
bisimulation R such that (p, q) ∈ R. If p ∼d q we call p and q distributed
bisimulation equivalent. �

Example 2.7 We have ab+ha 6∼d a|b. If the two processes were distributed
bisimulation equivalent then according to the definition of ∼d and the tran-
sition rules for ab + ba and a|b we must relate nil |b and nil by a distributed
bisimulation. This is impossible as the former can do a b action which the
latter cannot. �

We refer to [Cas88] and [HC88] for a thorough investigation of the relation∼d.
In particular, the cited works contain a complete axiomatisation of ∼d and
a comparison with other notions of equivalences between processes including

7

the bisimulation ∼.2 The purpose of this paper is to define a logical language
in the framework of Hennessy-Milner logic [HM85]. The logical language is
required to characterise the distributed bisimulation just as Hennessy-Milner
logic characterises the bisimulation equivalence ∼. In the next section we
define the logic and subsequently show the characterisation theorem.

3 The Modal Characterisation

In [HM85] Hennessy and Milner define a modal logic providing a character-
isation of bisimulation on finitely branching transition systems. They show
that whenever two processes are bisimular they satisfy the same set of formu-
lae and vice versa. Basically, the logic contains two modalities: the necessity
modality, often described by a box ([]), and the possibility modality, often
described by a diamond (〈〉).
We aim to provide a logic in the style of Hennessy-Milner logic to characterise
the distributed bisimulation equivalence. It turns out that the new logic also
can be based on the necessity and possibility modalities. But whereas the
modalities of the ordinary Hennessy-Milner logic are monadic we now define
the modalities as dyadic operators thus obtaining formulae for the local and
concurrent residual of a compound residual.

We first present the syntax of the logic.

Definition 3.1 We let L denote the set of formulae to be considered. Assume
a ∈ A. Then L is defined as the least set satisfying the following rules:

(i) tt ∈ L,

(ii) ff ∈ L, and

(iii) if α, β ∈ L then α ∧ β, α ∨ β〈a〉(α, β), [a](α, β) ∈ L.

We let α, β, γ, . . . range over L. �

We proceed by defining the semantics of the logic.

Definition 3.2 Let p ∈ P and α ∈ L. Finally, let p |= α denote that p
satisfies α. The relation |= is defined by structural induction on the structure
of α.

2As perhaps indicated by the previous example ∼d is strongly contained in ∼.

8

(i) ∀p ∈ P : p |= tt,

(ii) ∀p ∈ P : p 6|= ff ,

(iii) p |= α ∧ β iff p |= α & p |= β,

(iv) p |= α ∨ β iff p |= α or p |= β,

(v) p |= 〈a〉(α, β) iff ∃p′, p′′ : p
a→ 〈p′, p′′〉 & p′ |= α & p′′ |= β, and

(vi) p |= [a](α, β) iff ∀p′, p′′ : p
a→ 〈p′, p′′〉 implies p′ |= α or p′′ |= β.

�

Rule (i) and (ii) state the interpretation of the atomic formulae tt and ff .
The formula tt stands for true and every process satisfies true, whereas the
formula ff stands for false and no process satisfies false. Rule (iii) and
(iv) state the usual interpretation of the logical connectives ∨ and ∧. Rule
(v) states the interpretation of the possibility modality. The relationship
p |= 〈a〉(α, β) expresses intuitively that it is possible for the process p to do
an a action whereupon the local residual will satisfy α and the concurrent
residual will satisfy β. Finally, rule (vi) states the interpretation of the
necessity modality. The relationship p |= [a](α, β) expresses intuitively that
whenever the process p performs an a action the local residual will satisfy α
or the concurrent residual will satisfy β.

Note that we have avoided negation as a logical connective in our logic. This
is because the proof system, to be developed in the next section, can be
defined without referring to any negative deduction if negation is avoided
as a logical connective; there are no use of rules indicating when a process
will not satisfy a particular formula. If negation was available as a logical
connective we could have defined either tt by ff or vice versa, we could have
defined either ∨ by ∧ or vice versa, and finally we could have defined one of
the modalities as the dual of the other.3 Thus, in order to rule out negation
as a connective we have to introduce three new symbols into our logic if
expressiveness shall be preserved. But we are willing to pay this price in
order to support the development of the proof system.

3If ∼ denotes negation with the obvious semant,ical definit,ion then by duality we
mean that 〈α〉(α, β) can be defined as ∼ [a](∼ α,∼ β) or that [a](α, β) can be defined as
∼ 〈a〉(∼ α,∼ β).

9

Observe that by the semantical definition of the possibility modality, i.e.
definition 3.2 (v), we require that the local residual satisfies α and that the
concurrent residual satisfies β. On the other hand, according to the seman-
tical definition of the necessity modality, i.e. definition 3.2 (vi), we only
require that the local residual satisfies a or that the concurrent residual sat-
isfies β. Because of the duality we want to obtain between the possibility
and necessity modality we are required to have ‘and’ at one of the modalities
and ‘or’ at the other.4 But what will happen if we exchange the two interpre-
tations, i.e. what happens if we have ‘or’ in connection with the possibility
modality and ’and’ in connection with the necessity modality? The answer
is that by this interpretation we get a logic which is weaker, viz. there exist
processes which are not distributed bisimulation equivalent but cannot be
distinguished by formulae of the logic. In appendix B we discuss this inter-
pretation of the two modalities; in particular we show that this new logic is
weaker that the logic L discussed here.

Example 3.3 By the relationship a|b |= 〈a〉(tt, 〈b〉(tt, tt)) we specify that the
process a|b is capable of performing an a action whereupon the concurrent
residual can do a b action. Note that the relationship is satisfied as can be
checked by the definition of |= and the transition rules for a|b shown in figure
2. Also note that ab+ba |= 〈a〉(tt, 〈b〉(tt, tt)) is not satisfied because whenever
ab + ba performs an a action there is no concurrent residual which can do a
b action (see figure 1). �

As observed by the last example we could distinguish between the two non
distributed bisimulation equivalent processes a|b and ab + ba by a formula
of our logic. An interesting question is whether non distributed bisimulation
equivalent processes can be distinguished by formulae of L and vice versa.
Before we answer this question we define a function on formulae which trans-
forms a formula to its dual formula.

Definition 3.4 Let D : L → L be a transformation on formulae defined as
follows:

(i) D(tt) = ff ,

(ii) D(ff) = tt,

4The duality between the two modalities is needed in the proof of the characterisation
theorem.

10

(iii) D(α ∧ β) = D(α) ∨D(β),

(iv) D(α ∨ β) = D(α) ∧D(β),

(v) D(〈a〉(α, β)) = [a](D(α), D(β)) and

(vi) D([a](α, β)) = 〈a〉(D(α), D(β)).

Lemma 3.5 The transformation D satisfies the principle of duality, i.e.:

∀α ∈ L,∀p ∈ P : p |= α ⇔ p 6|= D(α)

Proof The proof proceeds by structural induction on the structure of for-
mulae. We omit the details. �

We now prove that distributed bisimulation equivalent processes from P
satisfy the same set of formulae from L and vice versa under the condition
that we restrict our class of processes to so-called finitely branching processes,
i.e. processes which have only finitely many a derivatives for each action a.

Theorem 3.6 Assume p, q ∈ P such that p and q are finitely branching
processes. Then

p ∼d q ⇔ (∀α ∈ L : p |= α ⇔ q |= α)

Proof (⇒): Assume p ∼d q. By induction on the structure of α we show
p |= α ⇔ q |= α.

(i) α = tt. By definition of |= we have p |= tt iff q |= tt.

(ii) α = ff . Once again the required result follows from the definition of |=.

(iii) α = β ∧ γ. We have p |= α iff p |= β and p |= γ. By the induction
hypothesis this is the case iff q |= β and q |= γ, hence iff q |= α.

(iv) α = β ∨ γ. Once again the required result follows from the induction
hypothesis.

(v) α = 〈a〉(β, γ). By definition of |=, p |= 〈a〉(β, γ) implies that there exists
p′, p′′ such that p

a→ 〈p′, p′′〉, p′ |= β and p′′ |= γ. As p ∼d q we
conclude that there exists q′, q′′ such that q

a→ 〈q′, q′′〉, q′ ∼d p′ and
q′′ ∼d p′′. By structural induction we have q′ |= β and q′′ |= γ, hence
q |= 〈a〉(β, γ). By similar arguments it can be shown that q |= 〈a〉(β, γ)
implies p |= 〈a〉(β, γ).

11

(vi) α = [a](β, γ). By definition of |=, p |= [a](β, γ) implies for all p and p′′,
if p

a→ 〈p′, p′′〉 then p′ |= β or p′′ |= γ. Now suppose q
a→ 〈q′, q′′〉. As

p ∼d q we conclude that there exists p′, p′′ such that p
a→ 〈p′, p′′〉, and

moreover p′ ∼d q′ and p′′ ∼d q′′, thus by the induction hypothesis we
conclude that q′ |= β or q′′ |= γ. Since this argument holds for any q′, q′′

such that q
a→ 〈q′, q′′〉 we have q |= [a](β, γ). By similar arguments it

can be shown that q |= [a](β, γ) implies p |= [a](β, γ).

(⇐): Let ∼∗
d= {(p, q)| ∀α ∈ L : p |= α ⇔ q |= α}. We show that ∼∗

d is a

distributed bisimulation. Suppose (p, q) ∈ ∼∗
d such that p

a→ 〈p′, p′′〉 but for

all q′, q′′ such that q
a→ 〈q′, q′′〉 we have p′ 6∼∗

d q′ or p′′ 6∼∗
d q′′. As q is assumed

to be finitely branching let 〈q′1, q′′1〉, . . . , 〈q′n, q′′n〉 be the possible a derivatives
of q. By definition of ∼∗

d and lemma 3.5 we have for all i = 1, . . . , n that
there exists α′

i such that p′ |= α′
i and q′i 6|= α′

i or that there exists α′′
i such that

p′′ |= α′′
i and q′′i 6|= α′′

i . Let αh(1), . . . , αh(j1) be those formulae coming from the
property p′ 6∼∗

d q′i, i.e. for all k ∈ {1, . . . , j1} we have p′ |= αh(k), and if p′ 6∼∗
d q′i

then there exists k ∈ {1, . . . , j1} such that q′i 6|= αh(k). Let αm(1), . . . , αm(j2) be
those formulae coming from the property p′′ 6∼∗

d q′′i , i.e. for all k ∈ {1, . . . , j2}
we have p′′ |= αm(k), and if p′′ 6∼∗

d q′′i then there exists k ∈ {1, . . . , j2} such
that q′′i 6|= αm(k). Let Γ = αh(1) ∧ . . . ∧ αh(j1) and Φ = αm(1) ∧ . . . ∧ αm(j2).
Then we have p |= 〈a〉(Γ, Φ) and q 6|= 〈a〉(Γ, Φ) contradicting the assumption
(p, q) ∈ ∼∗

d. �

According to the second half of the proof, if infinite conjunction was available
the theorem would be true for infinite branching processes as well.

We end this section by defining some derived modalities which could be of
use in specifying processes.

Definition 3.7

(i) 〈a〉l(α)
def
= 〈a〉(α, tt)

(ii) 〈a〉c(α)
def
= 〈a〉(tt, α)

(iii) [a]l(α)
def
= [a](α, ff)

(iv) [a]c(α)
def
= [a](ff, α)

�

12

Proposition 3.8 Suppose p ∈ P and α ∈ L. Then

(i) p |= 〈a〉l(α) iff ∃p′, p′′ : p
a→ 〈p′, p〉 & p′ |= α,

(ii) p |= 〈a〉c(α) iff ∃p′, p′′ : p
a→ 〈p′, p〉 & p′′ |= α,

(iii) p |= [a]l(α) iff ∀p′, p′′ : p
a→ 〈p′, p′′〉 implies p′ |= α, and

(iv) p |= [a]c(α) iff ∀p′, p′′ : p
a→ 〈p′, p′′〉 implies p′′ |= α.

Proof Is easily seen to be a consequence of definition 3.2 and 3.7. �

The two modalities 〈a〉l and 〈a〉c are defined via the possibility modality
〈a〉 but they are monadic and referring to the local and concurrent residual
respectively. The relationship p |= 〈a〉l(α) indicates that p is capable of
performing an a action whereupon the local residual will satisfy α. Similarly,
p |= 〈a〉c(α) indicates that p is capable of doing an a action whereupon the
concurrent residual will satisfy α.

The last two derived modalities [a]l and [a]c are defined through the necessity
modality but are monadic, referring to the local and concurrent residual re-
spectively. The relationship p |= [a]l(α) expresses intuitively that whenever p
performs an a action the local residual will satisfy α. Finally, p |= [a]c(α) ex-
presses that whenever p performs an a action the concurrent residual satisfies
α.

4 The Proof System

We aim to present a sound and complete proof system for our process lan-
guage CCSS defined in section 2. That is, we seek a proof system to decide
whether, for arbitrary CCSS processes p and formulae α, the relationship
p |= α holds. The proof system will be structural both in the structure of
formulae and in the structure of processes.

In constructing the proof system we are guided by the proof of completeness.
If a specific rule is required in order to obtain the proof of completeness the
rule is checked for soundness and then introduced as an inference rule.

It turns out that it is easy to develop axioms and inference rules for all the
combinators except the parallel composition (|). For instance, in search of

13

inference rules for the case p|q ` 〈a〉(α, β) it would be necessary to examine
the structure of both p and q. If p equals a.p′ then we could introduce an
inference rule like

p′ ` α, q ` β
a.p′|q ` 〈a〉(α, β)

But if p equals p′|p′′ then we have to dig deeper into the structure of p|q by
examining p′ and p′′, thus leading to the same analysis once more. Taking
this route it is not difficult to see that the inference rules for the parallel
combinator will be very awkward and unpleasant to read.

Instead we introduce a new dyadic combinator of our language providing
very intuitive inference rules for the parallel combinator. The price we pay
is a set of inference rules for the new combinator but these inference rules
are simpler and intuitively more attractive.

The combinator in question is left merge, denoted b, and its operational
semantics is as follows:

p
a→ 〈p′, p′′〉

pbq a→ 〈p′, p′′|q〉

Note that b has some similarity with the parallel combinator (|). Only with
respect to the first step there is a difference between | and b; in pbq the
process p has precedence over q and must perform the first action. This
is not the case for p|q. We extend our set of processes to include the new
combinator, left merge (b), and denote it by CCSS.

As promised, by introducing the left merge combinator the inference rules
for the parallel composition (|) becomes simple. In case the formula under
consideration is 〈a〉(α, β) the only inference rules required are:

pbq ` 〈a〉(α, β)
p|q ` 〈a〉(α, β)

qbp ` 〈a〉(α, β)
p|q ` 〈a〉(α, β)

The inference rules will be sound because for p|q to satisfy the formula
〈a〉(α, β) either p or q has to perform the action a required.

We now present the proof system in full and then go into details about some
of the axioms and inference rules afterwards.

14

Axioms

A1: p ` tt

A2: nil ` [a](α, β)

A3: nilbp ` [a](α, β)

A4: b.p ` [a](α, β) whenever b 6= a

A5: b.pbq ` [a](α, β) whenever b 6= a

Inference Rules

R1:

p ` α, p ` β
p ` α ∧ β

R2:

p ` α
p ` α ∨ β

p ` α
p ` β ∨ α

R3:

p ` a, nil ` β
a.p ` 〈a〉(α, β)

R4:

p ` 〈a〉(α, β)
p + q ` 〈a〉(α, β)

q ` 〈a〉(α, β)
p + q ` 〈a〉(α, β)

R5:

pbq ` 〈a〉(α, β)
p|q ` 〈a〉(α, β)

qbp ` 〈a〉(α, β)
p|q ` 〈a〉(α, β)

R6:

p ` α
a.p ` [a](α, β)

nil ` β
a.p ` [a](α, β)

15

R7:

p ` [a](α, β), q ` [a](α, β)
p + q ` [a](α, β)

R8:

pbq ` [a](α, β), qbp ` [a](α, β)
p|q ` [a](α, β)

R9:

p ` α, nil |q ` β
a.pbq ` 〈a〉(α, β)

R10:

pbr ` 〈a〉(α, β)
(p + q)br ` 〈a〉(α, β)

qbr ` 〈a〉(α, β)
(p + q)br ` 〈a〉(α, β)

R11:

pb(q|r) ` 〈a〉(α, β)
(p|q)br ` 〈a〉(α, β)

qb(p|r) ` 〈a〉(α, β)
(p|q)br ` 〈a〉(α, β)

R12:

pb(q|r) ` 〈a〉(α, β)
(pbq)br ` 〈a〉(α, β)

R13:

p ` α
a.pbq ` [a](α, β)

nil |q ` β
a.qbq ` [a](α, β)

R14:

pbr ` [a](α, β), qbr ` [a](α, β)
(p + q)br ` [a](α, β)

16

R15:

pb(q|r) ` [a](α, β), qb(p|r) ` [a](α, β)
(p|q)br ` [a](α, β)

R16:

pb(q|r) ` [a](α, β)
(pbq)br ` [a](α, β)

Axioms A1, A2 and A4 are standard and and require no explanation. Ax-
ioms A3 and A5 are new and concern the left merge combinator. They are
similar to A2 and A4 respectively and sound because the left component of
the left merge operator has precedence over the right component in the first
step.

Inference rules R1 and R2 are standard and require no explanation. Rules
R3 to R5 deal with the formula 〈a〉(α, β). There is one rule for each of
the combinators prefix, sum and parallel composition. The cases of sum and
parallel composition require no explanation. For the case of prefix we have
the extra requirement of nil ` β because in observing the action a of a.p the
concurrent residual becomes the nil process.

Rules R6 to R8 deal with the formula [a](α, β). Again there is one rule for
each of the combinators prefix, sum and parallel composition. Note the two
cases for the prefix combinator; either we require that the local residual, i.e.
p, satisfies α or that the concurrent residual, i.e. the nil process, satisfies
β; compare with definition 3.2 (vi). Observe that R5 and R8 are the only
inference rules required for the parallel combinator.

The rest of the inference rules deal with the left merge combinator; rule R9
to R12 in case the formula is 〈a〉(α, β) and rule R13 to R16 in case the
formula is [a](α, β). Observe that for each of the two formulae there is a rule
for each of the possible structures the left process p in pbq can have. We
will not go into details about the rules; they more or less follow the same
pattern as the rules in case we forget about tlie right process q in pbq. For
instance, rule R11 is similar to rule R5; we just have to remember that tlie
right process of the left merge operator will become part of the concurrent
residual.

Theorem 4.1 The proof system is sound and complet,e, i.e.

∀p ∈ CCSS, ∀α ∈ L : p |= α ⇔ p ` α.

17

Proof It is rather easy to verify all the axioms and inference rules hence
we will not be concerned with the soundness of the proof system. The com-
pleteness proof is long and tedious involving well-founded induction on pairs
of formulae and processes equipped with a suitable well-founded order. We
have postponed the proof until appendix A. �

Example 4.2 We have already seen that a|b |= 〈a〉(tt, 〈b〉(tt, tt)). According
to the completeness of our proof system we must have a|b ` 〈a〉(tt, 〈b〉(tt, tt)).
This is the content of the following figure:

5 Conclusion

In this paper we have succeeded in giving a logical characterisation of the
distributed bisimulation equivalence. The logic has some similarity with
Hennessy-Milner logic; it contains two modalities, viz. the necessity and the
possibility modality. But whereas these modalities are monadic in Hennessy-
Milner logic they are dyadic in our logic.

Furthermore, we have provided a structural proof system for a small subset
of CCS containing prefix, sum and parallel composition as combinators. Via
a new operator introduced, called left merge, we have obtained very simple
inference rules for the parallel composition.

There is a number of interesting extensions to the presented work. It would be
preferable to allow the processes to communicate either via visible or invisible
actions. A solution to this extension would at least require modified inference
rules for the parallel combinator. If τ stands for the communication action

18

then in search of inference rules for p|q ` 〈a〉(α, β) it is no longer enough
to consider τ coming either from p or q; it could be the case that p and q
communicated thus creating the τ action. Perhaps the problem can be solved
by introducing yet another combinator which forces communication to occur
between its operand.5 In the future we will work on these problems.

It would also be interesting to extend the proof system to cover full CCS. At
least with respect to the combinator restriction we see non-trivial problems.
Hennessy and Castellani have not included restriction in [HC88] but mention
that it would cause difficulties because their framework does not fit the re-
striction combinator. On solving the problems a good starting point would
perhaps be [Kie89] where distributed bisimulation on a language including
restriction has been considered.

Acknowledgement

I would like to thank Uffe Engberg, Mogens Nielsen and Henrik Reif Andersen
at Aarhus University for careful reading of an earlier draft of this paper and
for helpful discussions during the work.

5Such a combinator has already been considered in [HC88] in order to obtain an alge-
braic characterisation for ∼d on a language including communication.

19

References

[Kie89] A. Kiehn. Distributed Bisimulations for Finite CCS, University of
Sussex, Dept. of Computer Science, Report no. 7/89, 1989.

[Cas88] I. Castellani. Bisimulations for Concurrency, Ph.D. Thesis, Edin-
burgh University, CST-51-88, April 1988.

[HC88] M. Hennessy and I. Castellani. Distributed Bisimulations, INRIA Re-
ports de Recherche, No. 875, 1988.

[HM85] M. Hennessy and R. Milner. Algebraic Law for Non-determinism and
Concurrency, Journal of ACM, Vol 32, No. 1, pp 137–161, 1985.

[Mil89] R. Milner. Communication and Concurrency, Prentice Hall, 1989.

[Sti85] C. Stirling. A Complete Modal Proof System for a Subset of CCS,
Tapsoft Proceedings, Vol 1, LNCS 185, pp253–267, 1985.

20

A Appendix

The purpose of this appendix is to prove that the proof system is complete.
The proof of completeness involves well-founded induction on pairs of formu-
lae and processes. Before we define the well-founded order to be used in the
proof we define an order on processes.

Let p, q and r be CCSS processes. By @ we denote the least relation on CCSS

satisfying the relationships shown in the following table:

p @ p + q q @ p + q pbq @ p|q
qbp @ p|q pbr @ (p + q)br qbr @ (p + q)br

pb(q|r) @ (p|q)br qb(p|r) @ (p|q)br pb(q|r) @ (pbq)br

It is easily checked that the relation @ is a well founded order. For instance,
the following metric M :

(i) M [nil) = 1,

(ii) M(a.p) = 1 + M(p),

(iii) M(p + q) = M(p) + M(q),

(iv) M(p|q) = M(p) + M(q) + 1, and

(v) M(pbq) = M(p) + 1

will satisfy M(p) < M(q) whenever p @ q where < is the less than ordering
on natural numbers.

We now define the well-founded order used in the completeness proof.

Definition A.1 Suppose α, β ∈ L and p, q ∈ CCSS. Let ≺ be a relation on
L × CCSS defined as follows:

(α, p) ≺ (β, q) iff α ∝ β or (α ≡ β and p @ q),

where ∝ denotes the structural order on formulae and ≡ denotes syntactical
equality on formulae. �

As both @ and ∝ are well-founded it follows that ≺ is a well-founded order.

21

We now present the completeness proof.

Theorem A.2 Let p ∈ CCSS and α ∈ L. Then p |= α implies p ` α.

Proof Suppose p |= α. By well-founded induction on (L×CCSS,≺) we want
to prove p ` α. That is, based on the induction hypothesis

∀(β, q) ∈ L × CCSS : if (β, q) ≺ (α, p) then q |= β implies q ` β

we prove that p |= α implies p ` α. We proceed by analysing the cases for α.

(i) α = tt. Then we have p ` α for all p ∈ CCSS by axiom A1.

(ii) α = ff . Then we cannot have p |= α by definition of |=.

(iii) α = β∧γ. By definition of |=, p |= β∧γ implies p |= β and p |= γ, hence
p ` β and p ` γ according to the induction hypothesis. By inference
rule R1 we conclude that p ` β ∧ γ.

(iv) α = β ∨ γ. Once again the required result follows from the induction
hypothesis but this time by using inference rule R2 instead of R1.

(v) α = 〈a〉(β, γ). We proceed by analysing the cases for p.

(a) p = nil . Then we cannot have p |= 〈a〉(β, γ).

(b) p = b.p1. As p |= 〈a〉(β, γ) we must have a = b, i.e. a.p1 |=
〈a〉(β, γ) which implies p1 |= β and nil |= γ. By the induction
hypothesis we conclude p1 ` β and nil ` γ, hence by rule R.3 we
have p ` 〈a〉(β, γ).

(c) p = q+r. By definition of the transition rules for the sum operator
(+), p |= 〈a〉(β, γ) implies q |= 〈a〉(β, γ) or r |= 〈a〉(β, γ). Thus by
the induction hypothesis we conclude q ` 〈a〉(β, γ) or r ` 〈a〉(β, γ)
which by rule R4 implies p ` 〈a〉(β, γ).

(d) p = q|s. According to the transition rules for | and b we have
that q|s |= 〈a〉(β, γ) implies qbs |= 〈a〉(β, γ) or sbq |= 〈a〉(β, γ).
By the induction hypothesis we conclude qbs ` 〈a〉(β, γ) or sbq `
〈a〉(β, γ), hence by rule R5 we have q|s ` 〈a〉(β, γ).

(e) p = qbs. We proceed by analysing the cases for q.

i. q = nil . Then we cannot have qba |= 〈a〉(β, γ).

22

ii. q = b.q1. If qbs |= 〈a〉(β, γ) then a = b, q1 |= β and nil |s |= γ.
By the induction hypothesis conclude q1 ` β and nil |s ` γ,
hence according to rule R9 we conclude that a.qbs ` 〈a〉(β, γ).

iii. q = q1 + q2. By definition of the transition rules for b and
sum (+), (q1 + q2)bs |= 〈a〉(β, γ) implies q1bs |= 〈a〉(β, γ) or
q2bs |= 〈a〉(β, γ). By the induction hypothesis we conclude
that q1bs ` 〈a〉(β, γ) or q2bs ` 〈a〉(β, γ), hence by rule R10
we have (q1 + q2)bs ` 〈a〉(β, γ).

iv. q = q1|q2. According to the transition rules for | and b,
(q1, q2)bs |= 〈a〉(β, γ) implies q1b(q2|s) |= 〈a〉(β, γ) or q2b(q1|s) |=
〈a〉(β, γ). By the induction hypothesis we have q1b(q2|s) `
〈a〉(β, γ) or q2b(q1|s) ` 〈a〉(β, γ), hence by rule R11 we con-
clude (q1|q2)bs ` 〈a〉(β, γ)

v. q = q1bq2. By definition of the transition rule for b, (q1bq2)bs |=
〈a〉(β, γ) implies q1b(q2|s) ` 〈a〉(β, γ). By the induction hy-
pothesis it follows that q1b(q2|s) ` 〈a〉(β, γ), hence by rule
R12 (q1bq2)bs ` 〈a〉(β, γ).

(vi) We finally have to consider the case α = [a](β, γ). Again we proceed
by analysing the cases for p.

(a) p = nil . By axiom A2 we have nil ` [a](β, γ).

(b) p = b.p1. If b 6= a then we have b.p1 ` [a](β, γ) axiom A4. If
b = a then by definition of |=, a.p1 |= [a](β, γ) implies p1 |= β
or nil |= γ. By the induction hypothesis we conclude p1 ` β or
nil ` γ, hence by rule R6 we have a.p1 ` [a](β, γ).

(c) p = q+s. By definition of the transition rules for the sum operator
(+), q + s |= [a](β, γ) implies q |= [a](β, γ) and s |= [a](β, γ).
By the induction hypothesis we conclude q ` [a](β, γ) and s `
[a](β, γ), hence by rule R7 we have q + s ` [a](β, γ).

(d) p = q|s. By definition of the transition rule for |, p|s |= [a](β, γ)
implies pbs |= [a](β, γ) and sbp |= [a](β, γ). By the induction
hypothesis we conclude pbs ` [a](β, γ) and sbp ` [a](β, γ), hence
by rule R8 we have p|s |= [a](β, γ).

(e) We finally have to consider the case p = qbs. We proceed by
analysing the cases for q.

i. q = nil . By axiom A3 we have nilbs ` [a](β, γ).

23

ii. q = b.q1. If b 6= a we have b.q1bs ` [a](β, γ) by axiom A5. If
b = a then a.q1bs |= [a](β, γ) implies q1 |= β or nil |s |= γ. By
the induction hypothesis we have q1 ` β or nil |s ` γ, hence
by rule R13 we conclude a.q1bs ` [a](β, γ).

iii. q = q1 + q2. By the transition rules for sum (+) and b, (q1 +
q2)bs |= [a](β, γ) implies q1bs |= [a](β, γ) and q2bs |= [a](β, γ).
By the induction hypothesis we conclude q1bs ` [a](β, γ) and
q2bs ` [a](β, γ), hence by rule R14 we have (q1 + q2)bs `
[a](β, γ).

iv q = q1|q2. By definition of the transition rules for | and b, we
have that (q1|q2)bs |= [a](β, γ) implies q1b(q2|s) |= [a](β, γ)
and q2b(q1|s) |= [a](β, γ) . By the induction hypothesis we
conclude q1b(q2|s) ` [a](β, γ) and q2b(q1|s) ` [a](β, γ), hence
by rule R15 we have (q1|q2)bs ` [a](β, γ).

v. q = q1|q2. According to the inference rules for b, (q1bq2)bs |=
[a](β, γ) implies q1b(q2|s) |= [a](β, γ). By the induction hy-
pothesis we conclude q1b(q2|s) ` [a](β, γ) hence by rule R16
we have (q1bq2)bs ` [a](β, γ). �

B Appendix

In this appendix we investigate the logic obtained by exchange ‘and’ for
‘or’ and ‘or’ for ‘and’ in the interpretations of the two modality operators
diamond (〈〉) and box ([]) respectively. For easiness of discussion let a new
logic L′ be based on L concerning the syntax. For a process p to satisfy
〈a〉(α, β) in the new logic we only require that there exists an a derivative of
p such that the local residual satisfies α or such that the concurrent residual
satisfies β. On the other hand, for p to satisfy [a](α, β) in the new logic we
require for all a derivatives of p that the local residual satisfies α and that
the concurrent residual satisfies β. To be formal we now define the semantics
of the logic L′.

Definition B.1 Let p ∈ P and α ∈ L′. Finally, let p |= α denote that p
satisfies α. The relation |= is defined by structural induction on the structure
of α.

(i) ∀p ∈ P : p |= tt,

24

(ii) ∀p ∈ P : p 6|= tt,

(iii) p |= α ∧ β iff p |= α & p |= β,

(iv) p |= α ∨ β iff p |= α or p |= β,

(v) p |= 〈a〉(α, β) iff ∃p′, p′′ : p
a→ 〈p′, p′′〉 & (p′ |= α or p′′ |= β), and

(vi) p |= [a](α, β) iff ∀p′, p′′ : p
a→ 〈p′, p′′〉 implies p′ |= α and p′′ |= β.

�

It turns out that by this logic we get an equivalence on processes which is
weaker than the distributed bisimulation equivalence, i.e. by the logic L′ we
obtain an equivalence on P which on the one hand contains ∼d; but also
equate non distributed bisimulation equivalent processes. In order to justify
this postulate we first define an equivalence, denoted ∼wd, on processes and
subsequently show that ∼wd is characterised by the logic L′.

Definition B.2 R ∈ P ×P is a weakly distributed bisimulation provided for
all (p, q) ∈ R the following is satisfied:

(i) p
a→ 〈p′, p′′〉 implies q

a→ 〈q′, q′′〉 such that (p′, q′) ∈ R,

(ii) p
a→ 〈p′, p′′〉 implies q

a→ 〈q′, q′′〉 such that (p′′, q′′) ∈ R,

(iii) q
a→ 〈q′, q′′〉 implies p

a→ 〈p′, p′′〉 such that (p′, q′) ∈ R, and

(iv) q
a→ 〈q′, q′′〉 implies p

a→ 〈p′, p′′〉 such that (p′′, q′′) ∈ R.

�

Definition B.3 Let p, q ∈ P . Then p ∼wd q iff there exists a weakly dis-
tributed bisimulation R such that (p, q) ∈ R. If p ∼wd q we call p and q
weakly distributed bisimulation equivalent. �

Theorem B.4 Assume p, q ∈ P such that p and q are finitely branching
processes. Then

p ∼wd q ⇔ (∀α ∈ L′ : p |= α ⇔ q |= α)

Proof (⇒) : Assume p ∼wd q. By induction on the structure of α we show
p |= α ⇔ q |= α.

25

(i) a = tt. By definition of |= we have p |= tt iff q |= tt.

(ii) a = ff . Once again the required result follows from the definition of |=.

(iii) α = β ∧ γ. We have p |= α iff p |= β and p |= γ. By the induction
hypothesis this is the case iff q |= β and q |= γ, hence iff q |= α.

(iv) α = β ∨ γ. Once again the required result follows from the induction
hypothesis.

(v) α = 〈a〉(β, γ). By definition of |=, p |= 〈a〉(β, γ) implies that there exists
p′, p′′ such that p

a→ 〈p′, p′′〉 with p′ |= β or p′′ |= γ. Suppose first that
p′ |= β is the case. Now, as p ∼wd q we have that there exists q′, q′′

with q
a→ 〈q′, q′′〉 such that q′ ∼wd p′. By the induction hypothesis we

conclude q′ |= β hence q |= 〈a〉(β, γ). Secondly, suppose that p′′ |= γ
is the case. Again, as p ∼wd q, we have that there exists q′, q′′ with
q

a→ 〈q′, q′′〉 such that q′′ ∼wd p′′. By the induction hypothesis we
conclude q′′ |= γ hence q |= 〈a〉(β, γ). By similar arguments it can be
shown that q |= 〈a〉(β, γ) implies p |= 〈a〉(β, γ).

(vi) α = [a](β, γ). By definition of |=, p |= 〈a〉(β, γ) implies for all p′ and
p′′, if p

a→ 〈p′, p′′〉 then p′ |= β and p′′ |= γ. Now suppose q
a→ 〈q′, q′′〉.

As p ∼wd q we conclude that there exists p′1, p
′′
1 such that p

a→ 〈p′1, p′′1〉
and p′1 ∼wd q′. Moreover, there exists p′2, p

′′
2 such that p

a→ 〈p′2, p′′2〉 and
p′2 ∼wd q′. By the induction hypothesis we get q′ |= β and q′′ |= γ.
Since this argument holds for any q′, q′′ such that q

a→ 〈q′, q′′〉 we have
q |= [a](β, γ). By similar arguments it can be shown that q |= [a](β, γ)
implies p |= [a](β, γ).

(⇐) : Let ∼∗
wd= {(p, q) | ∀α ∈ L′ : p |= α ⇔ q |= α}. We show that ∼∗

wd

is a weakly distributed bisimulation. The proof proceeds by contradiction,
i.e. suppose there exists (p, q) ∈ ∼∗

wd which does not satisfy definition B.2.

Assume without loss of generality that p
a→ 〈p′, p′′〉 but for all q′, q′′ such that

q
a→ 〈q′, q′′〉 we have p′ 6∼∗

wd q′ or for all q′, q′′ such that q
a→ 〈q′, q′′〉 we have

p′′ 6∼∗
wd q′′. As q is assumed to be finitely branching let 〈q′1, q′′1〉, . . . , 〈q′n, q′′n〉

be the possible a derivatives of q. By definition of ∼∗
wd we have for all

i = 1, . . . , n that there exists α′
i such that p′ |= α′

i and q′i 6|= α′
i or we have for

all i = 1, . . . , n that there exists α′′
i such that p′′ |= α′′

i and q′′i 6|= α′′
i . Suppose

first that we have the existence of the formulae α′
i. Then let Γ = α′

1∧ . . .∧α′
n

26

and we conclude p |= 〈a〉(Γ, ff) but q 6|= 〈a〉(Γ, ff). Now suppose that we
have the existence of the formulae α′′

i . Then let Φ = α′′
1 ∧ . . . ∧ α′′

n and we
conclude p |= 〈a〉(ff, Φ) but q 6|= 〈a〉(ff, Φ). In both cases we arrive at a
contradiction, hence ∼∗

wd must be a weakly distributed bisimulation. �

We end this appendix with a comparison of ∼wd with ∼d and ∼ where ∼
denotes strong bisimulation equivalence [Mil89]. First we show that ∼d is
strongly contained in ∼wd.

Proposition B.5 We have ∼d $ ∼wd.

Proof The proof that ∼d is contained in ∼wd follows directly from the defi-
nition of ∼d and ∼wd. For the proof of strong inclusion let p = ab|cd + a +
ab + c + cd + a|c + ab|c + a|cd and q = a + ab + c + cd + a|c + ab|c + a|cd.
Then p 6∼d q because p

a→ 〈b, nil |cd〉 while for all q′, q′′ such that q
a→ (q′, q′′)

we have either q′ = nil or q′′ = nil except for the case where the a derivative
comes from the summand ab|c. But in this case we have q′′ = nil |c which is
not distributed bisimulation equivalent to nil |cd. On the other hand we have
p ∼wd q because the set

{(p, q), (nil |cd, nil |cd), (ab|nil , ab|nil), (nil |c, nil |c),
(a|nil , a|nil), (nil |nil , nil |nil), (b, b), (d, d), (nil , nil)}

is a weakly distributed bisimulation. �

Proposition B.6 The relations ∼ and ∼wd are incompatible where ∼ de-
notes strong bisimulation.

Proof We have ab + ba ∼ a|b but ab + ba 6∼wd a|b. On the other hand,
p 6∼ q and p ∼wd q where p and q are the processes defined in the previous
proposition. �

27

