
A Unified Type System for Object-Oriented
Programming

Jens Palsberg
palsberg@daimi.au.dk

Michael I Schwartzback
mis@daimi.au.dk

Computer Science Department, Aarhus University
Ny Munkegade, DK-8000 Århus C, Denmark

June 1993

Abstract

We present a new type system for object-oriented languages with
assignments. Types are sets of classes, subtyping is set inclusion,
and genericity is class substitution. The type system enables sep-
arate compilation, and unifies, generalizes, and simplifies the type
systems underlying Simula/Beta, C++, and Eiffel, and Typed
Smalltalk, and one with type substitution proposed by Palsberg and
Schwartzback. Classes and types are both modeled as node-labeled,
ordered regular trees; this allows an efficient type-checking algorithm.

Keywords: polymorphism, assignments, subtyping, subclassing.

1 Introduction

Many object-oriented languages feature inheritance, variables, and assign-
ments. Major examples are Smalltalk [11], Simula [10], Beta [14], C++
[22], and Eiffel [17]. In order to guarantee that the run-time error Message-
not-understood will never occur, a number of type systems for such languages

1

have been proposed. These type systems differ markedly when comparing
their notion of type, polymorphism, and genericity.

This paper presents a new type system where types are sets of classes,
subtyping is set inclusion, and genericity is class substitution. It avoids
type variables and second-order entities, and enables separate compilation.
It also provides a clear distinction between types and classes, and between
subtyping and subclassing. A type is a specification; a class describes an im-
plementation. Subtyping supports polymorphic applications, and subclassing
supports reuse of class definitions [21]. Our type system thus unifies, gen-
eralizes, and simplifies the type systems underlying Simula/Beta, C++,
Eiffel(the Simula school, henceforth denoted SS), and Typed Smalltalk
[12, 13] (henceforth denoted TS), and one with type substitution proposed
by Palsberg and Schwartzbach [21, 20] (henceforth denoted PS).

In the following section we examine the previous type systems and dis-
cuss their strengths, weaknesses, similarities, and differences. In section 3
we present the unified type system and its semantics, and indicate an effi-
cient type-checking algorithm. Finally, in section 4 we show some example
programs.

2 Previous Type Systems

Usually, formal models of typed object-oriented programming are based on
the lambda calculus. They represent objects as records, and methods as
functions, and involve coercions together with subtypes [3, 19], polymorphic
types [18, 4], or F -bounded constraints [9, 8] in the description of inheritance.
In contrast, traditional object-oriented languages are not based on coercions
and do not support methods as values. Furthermore, the coercion models,
while being very general in some respects, do not support variables and
assignments because variable (mutable) types have no non-trivial subtypes,
as observed by Cardelli [5, 6].

In search for a better model, we examine some type systems designed for
object-oriented languages with variables and assignments. The distinguishing
features will be their notions of type, polymorphism, and genericity, see figure
1.

2

Figure 1: An overview of type systems.

2.1 Types

A type is an abstract description of a value. The values in object-oriented
languages are either instances of classes or nil. Traditionally, for example
in studies of functional languages, types are sets of values [4]. This view
of types is not appropriate for object-oriented languages with variables and
assignments because values are mutable. In the type systems SS, TS, and
PS, the type of a value is a set of classes: if the value is an instance of a
class, then that class must belong to the set; nil is a value of the empty set.
The smaller a type is, the more precise is its description of a value. The type
systems differ in which sets of classes are allowed. In SS, a type is the set of
all subclasses of a certain class. In TS, a type is any finite set of classes, and
in PS, a type is a singleton set, or—equivalently—simply a class.

Generalizing all three, the unified type system allows types to be so-called
apex sets of classes. This essentially allows all “cross-combinations” of types
from. the previous type systems; the technical definition is given in the
following section. Note that the expressive power of SS is incomparable with
that of TS; neither can emulate the other.

The SS and PS type systems enable separate compilation of classes; so
does the unified type system. In TS, each complete program is analyzed
separately, using abstract interpretation. This allows the generation of better
code, but that code cannot be reused. Note that a TS signature type denotes
a finite set of classes when analyzing a particular program. A signature in
TS is essentially a class containing only method headings. A signature type
is then the set of all subclasses of that class. Since programs are finite, the
TS compiler can expand a signature type to a finite set of classes.

3

2.2 Polymorphism

Inclusion polymorphism allows objects to have more than one type [4]. When
types are sets of classes, a natural notion of subtyping is set inclusion. In
all the previous type systems, an object has both a declared type and its
supertypes. For example, nil is a value of any type, since the empty set is
included in any other. Notice also that in PS, subtyping reduces to equality
of classes, since we only have singleton sets. In all the type systems, an
assignment x:=e is legal if the object denoted by e is of the declared type of x.
This is decidable on compile-time in PS, but not in the others where variables
may hold instances of more than one class. Notice also that TS axiomatizes
a relation that corresponds exactly to set inclusion; this is necessary because
the type system involves type variables.

Figure 2: The class and type hierarchies (excerpts).

Following the previous type systems, the unified type system uses set in-
clusion as subtyping. For an illustration of the class and the type hierarchies,
see figure 2. The class hierarchy is that discussed in one of the Beta group’s
papers [16]. Notice that we turn it “upside-down” in order to get the small-
est class at the bottom. The figure uses the notation ↑C for the set of all

4

subclasses of C.
Note that the class hierarchy is a tree, whereas the type hierarchy is a

lattice. Note also that the Beta group interprets nil as an instance of an
auxiliary class on top of the class hierarchy [16]. This is awkward because it
implies that this class can be obtained by some sort of multiple inheritance
of all other classes. This again implies that instances of this auxiliary class
should be able to respond to any message; clearly nil is not able to do this.
Our explanation of nil as a value of the empty set is more satisfactory: it
reflects that nil is not an instance of any class, that it can not respond to
any messages, and that it can be assigned to any variable.

When type checking an assignment x:=e in the unified type system, the
compiler will find the declared type of x, T (x), compute the static type of e,
T (e), and analyze whether the assignment is safe, impossible, or possible, see
figure 3.

Figure 3: The three situations in type-checking.

The compiler must ensure that a variable only contains values of its type.
This is always true after the execution of the assignment if T (x) ⊇ T (e);

5

we then call the assignment safe. Otherwise, there are two options for a
compiler. It can either deem the assignment type-incorrect, as in TS, or
analyze the situation a little further, as in SS and the unified type system.
The further analysis will decide whether T (x) and T (e) are disjoint or not. If
they are, then we have impossibility: the value will never have the type of the
variable. If they are not disjoint, then we have possibility: the value may or
may not have the type of the variable. The SS type systems all allow possible
assignments but manage them differently. C++ simply ignores checking on
run-time whether the assigned object has an appropriate type or not. Eiffel
requires the programmer to use a special syntax for possible assignments, and
will then insert a run-time check in the code. Simula/Beta automatically
discovers whether assignments are possible, and inserts run-time checks. Note
that the TS compiler uses abstract interpretation to obtain as small a static
type for e as possible. The effect of this is that some assignments that the SS
type system view as possible can by the TS compiler be determined as either
safe or impossible. In the unified type system, we will allow the automatic
insertion of run-time checks in the code for possible assignments.

When type-checking a message send x.p(. . .), the compiler must ensure
that each class in the static type of the object denoted by x implements a
method p. This can be done by looking up the definition of a single class in
SS and PS; in TS a case analysis is necessary.

2.3 Genericity

The above analysis must be strengthened in the presence of genericity, which
allows the substitution of types in a class. One must ensure that type-
correctness is preserved in all generically derived classes. This is guaranteed
in the TS and PS systems, where types are finite, but not in the SS systems,
where extra run-time checks may be needed.

Genericity can be obtained through parameterized classes as in TS or
Eiffel although they are inflexible since any class can be inherited but
is not in itself parameterized. An alternative to parameterized classes is
the use of modifiable (virtual) declarations [15], as in Simula/Beta, and
C++. Note though, that individual conflicting modifications may yield
type-incorrect subclasses of a type-correct class; this leads to a fair amount
of run-time type-checking, which is superfluous if the resulting class is in fact
type-correct. Eiffel employs both parameterized classes and modifiable
declarations, leading to the problems reported by Cook [7]. Palsberg and

6

Schwartzbach suggested the genericity mechanism type substitution which
solves all these problems [21]. Type substitution is a subclassing concept that
complement inheritance; any class is generic, can be “instantiated” gradually
without planning, and has all of its generic instances as subclasses. Another
pleasant fact is that type substitution and inheritance together form an or-
thogonal basis for a general subclass relation that captures type-safe code
reuse [20]. Type substitution also avoids the type variables and second-order
entities used in connection with parametrization; hence, it simplifies both the
type system itself and the type-checking algorithm. The unified type system
uses type substitution—now under the name class substitution, because types
and classes are different. In figure 4 we summarize our conceptions of classes,
values, and types.

Classes
• A class describes an implementation.
• Subclassing is reuse of class definitions.
• Genericity and inheritance are subclassing mechanisms.

Values
• Instances of classes are values.
• nil is also a value, but it is not an instance of any class.

• A type describes a behavior through a set of possible
implementations.

• Subtyping is set inclusion.

Figure 4: Summary of classes versus types.

In the following section we formally present the unified type system. The
combination of types as sets of classes, subtyping as set inclusion, and gener-
icity as class substitution yields a general yet simple type system. For some
example programs, see section 4.

3 A Unified Type System

The unified type system is structural : all classes and types are given a pri-
ori—independently of the programmer’s definitions. Thus, the syntax for a

7

class in a program will simply denote a class; it will not create a new class.
This independency allows us to work in a precise mathematical framework.

3.1 Classes and Types

We shall give a simultaneous definition of two infinite sets of labeled, ordered,
regular trees: U is the set of all classes, and T is the set of all types.

Definition 1 A class consists of a piece of untyped code annotated with
types at various positions (declarations of variables and formal parameters).
We shall denote such untyped code by variations of the symbol γ. A type is
a set of classes. We shall only concern ourselves with apex sets, which can
be denoted by pairs of lists of classes such as

[c1, c2, . . . , ck||d1, d2, . . . , dn]

where k, n ≥ 0 and ci, dj are classes. The ci’s denote individual elements
of the set, whereas the di’s denote the class and all its subclasses. Viewing
untyped code and the notation

[−,−, . . . ,−||−,−, . . . ,−]

as labels, we see that both types and classes are node-labeled, ordered trees. 2

Classes and types may occur in layers, as sketched in figure 5. The trees
are not strictly bipartite, though, since the new expression involves a class
and not a type.

We next present an independent definition of a binary subclass relation �

on U . It was presented in [21, 20] where it was shown that it generalizes the
usual notion of inheritance and combines it with a general notion of gener-
icity. These results, which we retain while introducing subtyping, are briefly
reviewed in section 3.3.

Definition 2 If T is a labeled tree, then gen(T) is obtained from T by
replacing all maximal, proper occurrences of T itself by the special label 3.
This notion of a generator captures the recursive structure of a tree. 2

Definition 3 The ordering ≤ on labels is the usual prefix ordering. Note
that this is discrete (trivial) on [. . . || . . .] labels. 2

8

Figure 5: Classes and types.

Definition 4 Let T be a node-labeled ordered tree. We write α ∈ T when
α is a valid tree address in T . The empty tree address is denoted by λ. If
α ∈ T then T [α] denotes the label with address α in T , and T ↓ α denotes
the subtree of T whose root has address α. 2

Definition 5 The relation G1 �G G2 on generators holds precisely when

• ∀α ∈ G1 : G1[α] ≤ G2[α]

• ∀α, β ∈ G1 : G1 ↓ α = G1 ↓ β ⇒ G2 ↓ α = G2 ↓ β

The relation T1 � T2 holds precisely when

• ∀α ∈ T1 : gen(T1 ↓ α) �G gen(T2 ↓ α)

We call T1 the superclass and T2 the subclass. 2

Proposition 6 The relation � is a partial order on U .
Proof: This follows since gen(T) unique given T , and ≤,⇒ themselves are
partial orders. 2

An example of the �-order is illustrated in figure 6. The class with empty
code, which we shall denote object, is the unique minimal class under �.

9

Figure 6: Two �-related trees.

Definition 7 Each t ∈ T corresponds to a set of classes as follows

[ci||dj] =
⋃
i

{ci} ∪
⋃
j

cone(dj)

where cone(d) = {d′ ∈ U | d � d′}. Intuitively, a cone contains all the sub-
classes of its root class. Thus, we allow finite sets of classes combined with a
finite union of �-cones rooted by classes. Such sets will be called apex sets. 2

In comparison, the PS system allows only a singleton, the TS system al-
lows only a finite set, and the SS systems allow only a single cone. For an
illustration of an apex set, see figure 7.

Figure 7: An apex set.

10

3.2 Type Expressions

For actual programming we offer a more convenient syntax for types.

Definition 8 The type expressions are generated by the grammar in fig-
ure 8 where c ∈ U is a constant. Each type expression τ denotes a unique
set [[τ]] ⊆ U , defined in the following manner

τ ::= c | ↑τ | τ1 + τ2 | Anything | Nothing

Figure 8: Syntax for type expressions.

• [[c]] = {c}

• [[↑τ]] =
⋃

c∈[[τ]] cone(c)

• [[τ(1) + τ2]] = [[τ1]] ∪ [[τ2]]

• [[Anything]] = U

• [[Nothing]] = ∅

The syntax τ1 + τ2, Anything, and Nothing is inspired by TS, and ↑ τ by
Beta. 2

Theorem 9 For any τ we have that [[τ]] is an apex set.
Proof: We proceed by induction in the structure of τ .

• If τ = c, then [τ] = [c||].

• If τ =↑τ ′ then we assume inductively that [[τ ′]] = [ci |dj]. It follows that

[[τ]] =
⋃

c∈[ci||dj]

cone (c) = [||ci, dj]

• If τ = τ1 + τ2 then we assume inductively that [[τ1]] = [c1
i ||d1

j] and
[[τ2]] = [c2

i ||d2
j]. Now, [[τ]] = [c1

i ||d1
j] ∪ [c2

i ||d2
j] = [c1

i , c
2
i ||d1

j , d
2
j].

• If τ = Anything, then [[τ]] = U = [||object].

• If τ = Nothing, then [[τ]] = ∅ = [||].
Notice that this translation is computable. 2

11

3.3 Genericity and Inheritance

This subsection reviews the results of [20, 21]. The subclass order a contains
two suborders �I and �S that correspond respectively to ordinary inheri-
tance and genericity in the form of class substitution.

Definition 10 The relations �I and �S as are defined as follows

• C1 �I C2 iff C1 � C2 ∧ ∀α ∈ C1 : C1 ↓ α 6= C1 ⇒ C1[α] = C2[α]

• C1 �S C2 iff C1 � C2 ∧ C1[λ] = C2[λ]

In inheritance only the code of the superclass itself (and its recursive occur-
rences) may be extended in the subclass; the type annotations must otherwise
remain unchanged. In class substitution the untyped code of the superclass
and the subclass must be the same; only the type annotations may change.

Figure 9: An orthogonal basis for subclassing.

We have the following fundamental result.

Theorem 11 �I and �S as form an order-theoretic orthogonal basis for
�.
Proof: See [20]. 2

12

The intuitive meaning of the above result is that any subclass can be ob-
tained from the superclass in a finite number of inheritance and substitution
steps. Furthermore, �S as is the unique minima1 relation that together with
�I has this property, and vice versa. The situation is sketched in figure 9.

class C2 inherits C2
γ

end C2

Figure 10: Syntax for inheritance.

Inheritance can be realized through the ordinary syntax. If C1�I C2 then
C2 can be denoted as indicated in figure 10, where γ is the extra code in (the
root label of) C2. We can develop a similar syntax for substitution.

Definition 12 We define ≤ on trees such that T1 ≤ T2 iff ∀α ∈ T1 : T1[α] ≤
T2[α]. Thus, it is a node-wise extension of the prefix ordering on labels. 2

Definition 13 Let Ā and B̄ be vectors of classes. We say that Ā is consistent
with B̄ when two trees with the same root labels and subtrees respectively
Ā and B̄ are �-related. 2

Theorem 14 For any consistent Ā, B̄ there is a unique ≤-minimal sub-
class of C in which all (visible) occurrences of Ai are substituted by Bi. This
class is denoted by C[Ā← B̄].
Proof: See [20]. 2

Note that C[Ā ← B̄] is more sophisticated than the textual substitution
of Bi for Ai; the latter need not produce a subclass.

Theorem 15 If C1 �S C2 then C2 = C1[Ā← B̄] for some consistent Ā, B̄.
Proof: See [20]. 2

In [21] is argued for the pragmatic advantages of this mechanism.

13

3.4 Type-Correctness

A type annotated class may or may not be statically correct. The intention
is that when a class is deemed statically correct, then the run-time error
Message-not-understood will never occur [1]. Furthermore, this property must
be preserved in all subclasses.

Based on the discussion in section 2, we propose the following typecheck-
ing rules.

Definition 16 A class C is type-correct when the following two kinds of
checks are valid:

• Early checks: verify for all calls x.p(. . .) that a method p, with the
proper number of parameters, is implemented by all the classes in the
type of x in all subclasses of C.

• Inclusion checks: verify for all assignments x := e (and similarly for
parameter passings) that the type of e is a subset of the type of x in
all subclasses of C.

Type-correctness is a static property of program texts. 2

When we allow the introduction of run-time checks) then for every failed
inclusion check we must further determine if the types of x and e are disjoint
or not.

3.5 Type-C hecking Algorithm

Type-checking involves two kinds of checks. The early checks can be per-
formed in the standard fashion, since they are valid for all classes in a cone
iff they are valid for the root class; they will then also remain valid in all
subclasses.

The inclusion checks, generalized to consider run-time checks) require a
solution to the following problem.

Definition 17 The Inclusion Check Problem is when given two type ex-
pressions τ1, τ2 to decide

• safety: ∀ consistent Ā, B̄ : [[τ1]][Ā← B̄] ⊆ [[τ2]][Ā← B̄]

14

• impossibility: [[τ1]] ∩ [[τ2]] = ∅

• possibility: [[τ1]] ∩ [[τ2]] 6= ∅

These predicates are not disjoint. We want to find the first one that applies.
Only in the third case are run-time checks required. Concerning safety, it is
sufficient to consider �S-subclasses, as indicated. This true because inclu-
sions obviously will be preserved in all �I-subclasses. 2

The following result shows that class substitution does not preserve non-
trivial �-relations.

Lemma 18 If X 6= Y are classes, then there are classes A � B such that
X[A← B] 6�Y [A← B].
Proof: If X 6�Y then we are done with any choice with A = B. If X�Y then
we can find a minimal α ∈ X such that X[α] < Y [α]. Now, let A = X ↓ α
and choose B such that Y ↓ α �I B and Y [α] < B[λ]. Now A � B and
X[A← B] 6�[A← B], since X[A← B][α] 6≤ Y [A← B][α]. 2

Hence, �-relations can never be trusted to remain valid in subclasses.
From the proof of theorem 9 we see that the apex set [[τ]] can be computed

from τ . Thus, we need only provide a solution for apex sets directly. Further-
more, we need only decide the problem for singletons and single cones. This
is because apex sets are finite unions of such, so the result follows from ap-
propriate disjunctions and conjunctions. We now examine the four possible
combinations.

• Singleton c1, singleton c2: In this case we can ignore substitutions,
since they are all functional. Thus, safety holds when c1 = c2, and
impossibility holds otherwise.

• Cone ↑c1, singleton c2: Since a cone is always infinite, we can never
have safety. If c1 6�c2 then we have impossibility; otherwise, we have
possibility.

• Singleton c1, cone ↑c2: If c1 = c2 then safety holds; otherwise, lemma 18
states that it does not. If c2 6�c1 then we have impossibility; otherwise,
we have possibility.

15

• Cone ↑c1, cone ↑c2: If c1 = c2 then safety holds; otherwise, lemma 18
states that it does not. The intersection of ↑c1 and ↑c2 is exactly the
set of �-upper bounds of c1 and c2. If they have no upper bound then
impossibility holds; otherwise, possibility holds.

The above analysis shows that we must decide three properties of classes:
equality, the subclass relation �, and the existence of �-upper bounds. This
is possible using finite state automata algorithmics; details are given in the
appendix.

4 Examples

our example language is patterned after Smalltalk-80 [11] and requires
that variables and parameters are declared together with a type, given by the
syntax presented in section 3.2. Inheritance and class substitution are the
subclassing mechanisms; subtyping is set inclusion.

The example programs are reformulations of some taken from the HP
Abel group’s paper on interfaces for strongly-typed object-oriented pro-
gramming[2], the Beta group’s paper on strong typing of object-oriented
languages [16], Meyer’s book on object-oriented software construction [17],
and Cook’s paper on problems in the Eiffel type system [7]. These exam-
ples have been chosen to relate the unified type system to the critical issues
discussed in the literature.

4.1 Point Classes

Consider the point classes in figure 11. A point object has an equal method
for comparing itself with any object of a subclass of point. Class colorpoint
inherits point; its objects can compare themselves with any object of a sub-
class of colorpoint. The code in these two classes is obviously typecorrect (no
run-time checking is needed). In the example class we have declared four
variables and performed four message sends. In a separate compilation, all
four message sends require run-time checking. If only this particular pro-
gram is considered and no other classes are assumed to be present, then the
type ↑ point expands to point + colorpoint whereas ↑ colorpoint expands to
colorpoint. Then only the first and the fourth message send require run-time
checking; however, the compiled code will no longer be reusable.

16

class point
var x,y: integer
method equal(other: ↑ point) returns boolean

return (x=other.x) and (y=other.y)
end point
class colorpoint inherits point

var c: color
method equal(other: colorpoint) returns boolean

return (super.equal(other)) and (c=other.c)
end end colorpoint
class example

var p, p’: ↑ point
var c, c’: ↑ colorpoint
. . . p.equal(p’)
. . . c.equal(c’)
. . . p.equal(c’)
. . . c.equaI(p’)

end example

Figure 11: Point classes.

The HP Abel group argues that a separate hierarchy of interfaces is
necessary for the correct type-checking of these classes [2]. The example
shows, however, that the notion of types as sets of classes is appropriate: it
is simple, general, and leads to an efficient type-checking algorithm.

As noted by the Beta group [16], if p and p’ instead are declared as
of type point (a singleton type), and q and q’ as of type colorpoint then no
run-time checking is needed. In this case, the first three message sends are
type-correct whereas the forth is type-incorrect.

4.2 List Classes

Consider next the heterogeneous list classes and the (insertion) sort proce-
dure in figure 12. Any object of a subclass of recordlist can be sorted; the
resulting object is of the same class. All the code in these three classes is
type-correct (no run-time checking is needed). To see this, consider for in-
stance the sort procedure. The expression empty evaluates to a boolean, by

17

declaration. The expression self evaluates to the receiver object which is of
the declared result class, because of recursion. The expression tail.sort eval-
uates to an object of the same class as the receiver. In this class, head is an
object of a subclass of record, thus the message send (tail.sort).insert(head)
is type-correct and evaluates to an object of the same class as the receiver,
which is the declared result class.

Notice the application of class substitution in the definition of recordlist.
In fact, list acts like a parameterized class but is just a class, not a second-
order entity. If the program should have been written using parameterized
classes, then the creation of recordlist must be planned ahead by writing a
parameterized list class, and thereby also introducing the problems reported
by Cook [7].

The program could also have been written using the modifiable (virtual)
declarations of Simula/Beta. sing this approach, the declarations of head
and x would both be modified in class recordlist to have type ↑record. If the
declarations of head and x can be modified separately, then run-time checking
is required in all six places where either head or x (or both) are used. This
clearly yields poorer run-time performance than with our approach, which
does not introduce run-time checks into this program.

4.3 Cook’s Example

Let us finally reexamine (a reformulation of) one of the Eiffel programs
that Cook provided in his paper on problems in the Eiffel type system
[7], see figure 13. In the example class we have declared two variables, and
performed an assignment and a message send. This leads to a runtime error,
as noted by Cook, because get in the son object will try to access the extra
procedures of its argument which does not exist. In a separate compilation,
the assignment p:=s needs a run-time check because parent may in a subclass
be substituted by something greater than or incomparable with son. Also
the message send p.get(new parent) needs a run-time check (which will fail).

In a traditional compilation, assuming absence of other classes, the type
↑parent expands to parent+son whereas ↑son expands to son. Then the assign-
ment is statically type-correct (but the message send still requires run-time
checking). An abstract interpretation of the two expressions, in the style
of Graver [13], would reveal that p.get(new parent) has no chance of being
type-correct, and could thus deem the program type-incorrect .

18

class record
var key: integer

end record
class list

var empty: boolean
var head: ↑ integer
var tail: list
method cons(x: ↑ object) returns list

var result: list
result:=new list
result.empty:=false
result.head:=x
result.tail:=self
return result

end list
class resordlist inherits list[object ← record]

method insert(x: ↑ record) returns recordlist
if empty or else x.key < head.key
then return self.cons(x)
else return (tail.insert(x)).cons(head)

method sort returns recordlist
if empty
then return self
else return (tail.sort).insert(head)

end recordlist

Figure 12: List classes and a sort procedure.

5 Conclusion

The unified type system is more expressive than previous type systems for ob
ject-oriented languages with assignments. Yet, its type-checking algorithm is
conceptually simple, due to the chosen representations of classes and types.

As a continuation of this work, we want to investigate techniques for type
inference that would construct the type annotations for completely untyped
programs. Subsequently, such typed programs can be subjected to abstract
interpretation for the purpose of removing superfluous runtime checks. Since

19

class parent
method get(arg: parent) returns integer

return 0
end parent
class son inherits parent

method extra returns integer
return 0

method get(arg: son) returns integer
return arg.extra

end son
class example

var p: ↑ parent
var s: ↑ son
. . .
p:=s
p.get(new parent) (∗ run-time error ∗)

end example

Figure 13: Cook’s example.

our type system caters for run-time checks, it provides a clean division be-
tween the two tasks.

A Algorithms on Classes

To be able to decide equality, �, and the existence of �-upper bounds, we
provide a finite representation of classes and types.

Proposition 19 Every regular, node-labeled tree T can be represented by
a finite, partial, deterministic automaton with labeled states, with language
{α | α ∈ T}, and where α is accepted in a state labeled T [α].
Proof: The finitely many different subtrees all become accept states with
the label of their root. The transitions of the automaton are determined by
the fan-out from the corresponding root. 2

Of course, these automata can be constructed directly from the program text.

20

Lemma 20 Equality of regular, node-labeled trees is decidable.
Proof sketch: A variation of the standard algorithm for language equality
of automata solves this problem in pseudo-linear time. 2

Lemma 21 The relation � on regular, node-labeled trees is decidable.
Proof sketch: If the two automata are initially minimized, then the relation
�G can be decided in linear time during a graph traversal. An automaton of
size n can be minimized in time O(n log n). Since we have at most n distinct
generators, decidability follows. 2

To decide the existence of an upper bound, it would be natural to com-
pute the least upper bound. Unfortunately, this may not exist.

Lemma 22 There exist classes with two distinct minimal �-upper bounds.

Proof: Look at the classes in figure 14. The classes U1, U2, and U3 are
all minimal upper bounds of the classes C1 and C2. In particular, note that
U3 is not �-less than U1 or U2. 2

However, there is an upper bound that is least in another ordering.

Lemma 23 If two classes have a �-upper bound, then they have a unique
≤- least one.
Proof: We must simply show that �-upper bounds are closed under ≤-
greatest lower bounds, u≤ . For any two classes U1 and U2 we see that
U1u≤U2 exists and is obtained by node-wise largest common prefix of labels.
Assume that U1 and U2 are both �-upper bounds of C1 and C2. We must
show that so is U = U1 u≤ U2. Clearly, we have that Ci ≤ U . Assume now
that Ci ↓ α = Ci ↓ β. Since Ci is �-related to both U1 and U2, we have that

U ↓ α = U1 ↓ α u≤ U2 ↓ α = U1 ↓ β u≤ U2 ↓ β = U ↓ β

It follows that Ci � U , as required. 2

In figure 14, the ≤-least �-upper bound of C1 and C2 is U3.

Lemma 24 There is an algorithm to compute the ≤-least �-upper bound
of two classes, or decide that none exists.
Proof sketch: Starting again with minimized automata, this can be done

21

Figure 14: Distinct minimal upper bounds.

essentially by a straight-forward recursive algorithm using dynamic program-
ming. The time complexity is bounded by the required size of the dynamic
table, which may become exponential in extreme cases. 2

References

[1] Alan H. Borning and Daniel H. H. Ingalls. A type declaration and in-
ference system for Smalltalk. In Ninth Symposium on Principles of Pro-
gramming Languages, pages 133–141. ACM Press, January 1982.

22

[2] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G.
Olthoff. Interfaces for strongly-typed object-oriented programming. In
Proc. OOPSLA’89, Fourth Annual Conference on Object-Oriented Pro-
gramming Systems, Languages and Applications. ACM, 1989.

[3] L. Cardelli. A semantics of multiple inheritance. In G. Kahn, D. Mac-
Queen, and Gordon Plotkin, editors, Semantics of Data Types, pages
51–68. Springer-Verlag (LNCS 173), 1984.

[4] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4), December 1985.

[5] Luca Cardelli. Typeful programming. Technical report, Digital Equip-
ment Corporation, 1989.

[6] Luca Cardelli and John C. Mitchell. Operations on records. In Proc.
Mathmatical Foundations of Programming Semantics, pages 22–52.
Springer-Verlag (LNCS 442), 1989.

[7] William Cook. A proposal for making Eiffel type-safe. In Proc.
ECOOP’89, European Conference on Object-Oriented Programming,
1989.

[8] William Cook, Walter Hill, and Peter Canning. Inheritance is not sub-
typing. In Seventeenth Symposium on Principles of Programming Lan-
guages. ACM Press, January 1990.

[9] William R. Cook, Walter L. Hill, and Peter S. Canning. F-bounded
polymorphism for object-oriented programming. In Proc. Conference on
Functional Programming Languages and Computer Architecture, 1989.

[10] O. J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base
language. Technical report, Norwegian Computing Center, Oslo, Nor-
way, 1968.

[11] A. Goldberg and D. Robson. Smalltalk-80—The Language and its Im-
plementation. Addison-Wesley, 1983.

[12] Justin O. Graver and Ralph E. Johnson. A type system for smalltalk. In
Seventeenth Symposium on Principles of Programming Languages, pages
136–150. ACM Press, January 1990.

23

[13] Justin Owen Graver. Type-Checking and Type-Inference for Object-
Oriented Programming Languages. PhD thesis, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, August 1989.
UIUCD-R-89-1539.

[14] B. B. Kristensen, O. L. Madsen, B. Møller-Pedersen, and K. Nygaard.
The Beta programming language. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, pages 7–48. MIT
Press, 1987.

[15] Ole L. Madsen and Birger Møller-Pedersen. Virtual classes: A power-
ful mechanism in object-oriented programming. In Proc, OOPSLA’89,
Fourth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications. ACM, 1989.

[16] Ole Lehrmann Madsen, Boris Magnusson, and Birger Møller-Pedersen.
Strong typing of object-oriented languages revisited. In Proc. OOP-
SLA/ECOOP’90, ACM SIGPLAN Fifth Annual Conference on Object-
Oriented Programming Systems, Languages and Applications; European
Conference on Object-Oriented Programming, 1990.

[17] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[18] Robin Milner. A theory of type polymorphism in programming. Journal
of Computer and System Sciences, 17, 1978.

[19] John C. Mitchell. Toward a typed foundation for method specialization
and inheritance. In Seventeenth Symposium on Principles of Program-
ming Languages. ACM Press, January 1990.

[20] Jens Palsberg and Michael I. Schwartzbach. Genericity And Inheritance.
Computer Science Department, Aarhus University. PB-318, 1990.

[21] Jens Palsberg and Michael I. Schwartzbach. Type substitution for
object-oriented programming. In Proc. OOPSLA/ECOOP’90, ACM
SIGPLAN Fifth Annual Conference on Object-Oriented Programming
Systems, Languages and Applications; European Conference on Object-
Oriented Programming, 1990.

24

[22] B. Stroustrup. The C++ Programming Language. Addison-Wesley,
1986.

25

