
True Concurrency can be Traced∗

Uffe Henrik Engberg

Computer Science Department

Aarhus University

Ny Munkegade

DK-8000 Aarhus C, Denmark

April 3, 1990

Abstract

In this paper sets of labelled partial orders are employed as fundamental
mathematical entities for modelling nondeterministic and concurrent pro-
cesses thereby obtaining so-called noninterleaving semantics. Based on clo-
sures of sets of labelled partial orders, a simple recursive algebraic language
with refinement is given denotational models fully abstract w.r.t. correspond-
ing behaviourally motivated equivalences.

1 Introduction

During the last two decades a great deal of the research has been made
in order to achieve a good understanding of the meaning of concurrent

systems and how to reason about them, an understanding comparable to
that of sequential programs. Whereas it is standard to take the meaning

of a sequential program as a function from input to output there is
no prevailing agreement on what the meaning of concurrent programs

should be. As De Nicola and Hennessy reason in [DNH84] it is necessary
to search for counterparts to functions when forming semantic theories
for concurrency.

∗Supported by Esprit B.R.A. CEDISYS

1

In this research the algebraic framework has showed off valuable and for
CCS, TCSP and other process algebras a whole spectrum of behavioural

equivalences ranging from trace equivalence (in the classical language
theoretic sense) [Hoa85, OH86] over failure and testing [BHR84, DNH84,

OH86] to bisimulation equivalence [Mil80, Par81, Mil84] have been stud-
ied. Operationally these equivalences differ mainly in their view of the
branching structure of the labelled transition system associated with

processes. Through the study of degrees of branching some of the equiv-
alences have been given fully abstract denotational models where the

counterparts to input-output functions can be viewed as abstractions
of computation trees (also called synchronization trees) which in turn

are slightly modified unfoldings of the corresponding labelled transitions
systems. However these equivalences typically have the property that

they identifies concurrent and purely nondeterministic sequential pro-
cesses like

a ‖ b and a ; b⊕ b ; a(1)

and the semantics is often described as being interleaving.

Partly because of this intuitive unpleasant property of interleaving se-
mantics other approaches treat concurrency as independent of nonde-

terminism and the processes of (1) are distinguished. Among these
approaches are the so-called partial order semantics where causality, re-

spectively concurrency, is represented by means of partial orderings of
actions. I.e., alternatively to computation trees, constructions contain-

ing labelled partial orders (lpos for short) [Pra86] are proposed as coun-
terparts to functions. These constructions are often sets of some kind of

lpos and so nondeterminism cannot be discriminated in the semantics
using them. But, it is possible in the denotational semantics based on a
generalization of lpos, labelled event structures [Win87], where nonde-

terminism is dealt with by means of a conflict relation. Alternatively it
could be based on a generalization of computation tress, called causal

trees [DD89]. See [BC87] for a good survey on the rôle of partial orders
in semantics for concurrency. Apart from step semantics, different pro-

posals for generalizations of existing behavioural equivalences (for non-
determinism) have been made with time-based equivalence [Hen88b] and

distributed bisimulation [CH88, Kie89] among the most discriminating.
See also the final remarks of these papers.

Whereas the work on interleaving semantics has led to a number of e.g.,

2

axiomatisation and full abstractness results, such results are more un-
usual when it comes to noninterleaving semantics, [Hen88b] and [CH88,

Kie89] being among the few exceptions. Motivated by this we shall in
this paper explore the possibility of defining “natural” operational se-

mantics for a algebraic process language which at the same time open up
opportunities for fully abstract denotational models with lpos as main
ingredient of the entities modelling processes. That is to say we are

seeking behavioural equivalences where lpos come “naturally” in to the
corresponding models, thereby capturing nonsequentiality.

But rather than introducing some new elaborate labelled transition sys-
tem or cunning equivalence we shall stick to one of the simplest and most
established equivalences, trace equivalence, and follow [Pnu85, BIM88]

where increasing discriminating equivalences are obtained from the trace
equivalence by considering the congruence when different combinators

are added. Finding a combinator uncovering an aspect of concurrency,
the congruence will be forced to take the aspect into account.

The combinator we shall study makes it possible to prescribe through a

map how atomic actions within the scope of the combinator should be
refined or implemented in terms of basic processes (change of atomicity).

Because the refinement combinator enables “overlapping” of refined ac-
tions, the equivalences are not preserved under the new combinator and

their finer associated congruences are considered. The paper is largely
a continuation/ extension of [Lar88] and [NEL89] to cope with auto-
parallelism and recursion.

The paper is organized as follows. At first lpos, or rather equivalence
classes of lpos, operations and relations, are defined and a few proper-

ties stated. Then the process language, BLRrec
Ω , is introduced in section

3 and in the following three sections operational and denotational se-
mantics are given and the denotational models are proved to be fully

abstract w.r.t. the corresponding operational equivalences. These three
sections follow the same general line—at first the topic of the section is

treated for the full language, BLRrec
Ω , whereupon it is carried over to

the finite sublanguage (without recursion constructs), BLRΩ.

The operational capabilities are in section 4 given via an extended la-

belled transition system in the style of [Nic87, Hen88a] where an internal
step is used to resolve (internal) nondeterministic choice. It turns out

that a simple operational “lazy substitution” of refinements can be given

3

by means of the internal step relation and this operational “substitution”
is shown to coincide with the textual substitutions of refinements (on

the finite sublanguage).

In the following section 5 motivating examples are used to get an idea
of how a model for the finite sublanguage should look like—a model

which build on closures of sets of lpos with the property that the lpos
can reflect the “overlapping” capabilities of the refinement combinator.

Based on this models for the full language are given—acquaintance with
standard denotational techniques for dealing with recursion as presented

in [Hen88a] is assumed.

In section 6 the full abstractness results of BLRrec
Ω are lifted from BLRΩ

via the notion of algebraicity. In this course a new criterion for algebraic-

ity of precongruences—a language being expressive w.r.t. a preorder—
turn out to be very useful.

Finally we in section 7 conclude the paper and give a brief discussion of

possible extensions.

2 Pomsets

As it appears from the introduction, the concept of labelled partial or-
ders will be central for the models we are going to present. The basic

idea is that lpos will represent individual behaviours of processes. In
particular we will look at pomsets. We shall use the interpretation and

graphical representation of pomsets from [Gra81]. That is

a ��1 b
PPq c

-
��>

d
-ZZ~ d

(2)

is used to represent a behaviour of a process with five action occurrences,

where the d occurrences are causally mutual independent, but dependent
on the others, the b occurrence is causally dependent on a, but not on

c, a.s.o.

Pomsets are usually defined as proper classes of isomorphic lpos ([Gis88,
Pra86]). However by introducing lpos on basis of an appropriate ground

set, we shall in this section see how pomsets, as well as their operations,
partial orders and related notions, smoothly can be defined and reasoned

4

about entirely within the set-theory. In addition with alternative char-
acterizations of the partial orders isomorphy considerations are rarely

necessary.

Basic Definitions

We will look at lpos, over an action alphabet ∆—a countably infinite
alphabet (fixed through out the rest of the paper). We assume ∆ to be

disjoint from IN—the nonnegative integers. Furthermore we assume a
fixed ground set closed under pairing and containing IN and ∆.

Definition 2.1 Lpos and Pomsets

An lpo, p, is a tuple 〈Xp,≤p, `p〉, where Xp is a subset of the ground set

together with a partial order (reflexive, transitive and antisymmetric),
≤p, and a labelling function `p : Xp → ∆.

A morphism f : p→ q of lpos is a function f : Xp → Xq such that

x ≤p y ⇒ f(x) ≤q f(y) for all x, y ∈ Xp

`p(x) = `q(f(x)) for all x ∈ Xp

f is furthermore an isomorphism of lpos if f : Xp → Xq is a bijection

and f−1 also is a morphisms of lpos. When such an isomorphism exists
we write p ∼= q.

A pomset is an equivalence class of an lpo p under ∼= and is denoted [p];

p is called a representative of the equivalence class. Whenever an lpo
is denoted by a single symbol, p, we define for convenience p to be [p].

The set of pomsets is denoted P.

A pomset p is contained in pomset q if a representative of p can be
embedded in a representative of q. Formally: p is a subpomset of q,

written p ↪→ q, iff ∃Y. p = [q|Y], where for a set, Y , the restriction of
p to Y , p|Y , is the lpo 〈Xp|Y ,≤p|Y 2, `p|Y 〉.
For x ∈ Xp we sometimes (ambiguously) abbreviate p|{x} by x. 2

Observe that p as well as P indeed are sets (follows from the ground set
being one). The notion of subpomset is defined by means of a single rep-

resentative so the reader should check that the definition is independent
of the representative used in the definition.

5

For a pomset p and a set of pomsets Q we denote by Q(p) those pomsets
of Q which are contained in p, i.e., Q(p) = {q ∈ Q | q ↪→ p}.

Example: If p is the pomset represented in (2) then e.g.,

p ↪→ p, a - c - d ↪→ p, a - d ↪→ p

and
c, a - d,

b
c

PPq
��1 d

 ⊆ P(p)

Notice that we use x, y, . . . to range over elements of Xp. x and y are

said to be concurrent/causally independent in an lpo p,

x cop y iff x 6≤p y and y 6≤p x

With this definition cop is not reflexive! We say that Y ⊆ Xp is a cop-
set if all the elements of Y are mutual concurrent in p, i.e., if cop|Y 2 =

(Y × Y) \ {〈y, y〉 | y ∈ Y }.
ε is used to denote the empty lpo, 〈∅, ∅, ∅〉. We overload notation and use
ε [〈∅, ∅, ∅〉] and the singleton pomset [〈{a}, {〈a, a〉}, a 7→ a〉] respectively.

It will not be necessary to deal with infinite pomsets in the following so
we will throughout the rest of this paper assume pomsets to be finite,

i.e., we shall only consider pomsets p where Xp is finite.

Having restricted ourselves to finite pomsets we can now for a pomset
associate a unique multiplicity function over ∆ which for each action tells

how many elements in the pomsets that are labelled with this action.
The (finite) multiplicity function, mp, of a pomset p is simply mp :
∆ −→ IN , where ∀a ∈ ∆. mp(a) = |{x ∈ Xp | `p(x) = a}|. Multiplicity

functions are partially ordered pointwise and clearly every finite set of
multiplicity functions has a lub (least upper bound) which is finite.

Definition 2.2 Pomset Property

An lpo property, P∗, is ∼=-invariant if it is preserved under lpo isomor-
phism, i.e., p ∼= q and P∗(p) implies P∗(q).
P∗ is a pomset property if it is induced from a ∼=-invariant lpo property,
Q∗, as follows: P∗(p) iff Q∗(p) 2

6

In the sequel we shall make no distinction between a pomset property
and the lpo property it is induced from. An example of a pomset prop-

erty, P∗, is where P∗(p) demands ≤p to satisfy the trichotomy law:
∀x, y ∈ Xp. x ≤p y or y ≤p x, i.e., that ≤p shall be total. The set

of pomsets having this property is denoted W (words) and we write
the property as Pw. Pomsets of W are by Gischer [Gis88] alternatively
called tomsets. We shall often write w for w ∈ W , because of the one

to one correspondence between ∆∗ and W (see [Sta81]).

Operations on Pomsets

Pomsets have been equipped with a variety of operations ([Gra81, Sta81,
Pra86, Gis88]). In this paper we need only a few of these. The following
two are both natural generalizations of concatenation of words: sequen-

tial and parallel composition.

Definition 2.3 Sequential and Parallel Composition of Pomsets

For two pomsets, p0 and p1, their sequential/ parallel composition,

p0 · p1/ p0 × p1, is obtained (informally) by taking their disjoint union
(component wise), and in the case of sequential composition making all

elements of p1 causally dependent on all elements of p0. Formally the
operations are defined via the corresponding operations on the repre-
sentatives:

p0 · p1 = 〈X,≤, `〉 and p0 × p1 = 〈X,≤′, `〉, where

X is the set {0} ×Xp0
∪ {1} ×Xp1

≤ is the partial order defined by

〈i, x〉 ≤ 〈j, y〉 iff i = j and x ≤pi
y

or i = 0, j = 1
≤′ is the partial order defined by

〈i, x〉 ≤ 〈j, y〉 iff i = j and x ≤pi y

` is the function 〈i, x〉 7→ `pi
(x)

(So p0 · p1 = [p0 · p1] and p0 × p1 = [p0 × p1]). 2

Example: a ��1 b
PPq a
· c - d = a ��1 b

PPq a ��1
PPq c - d and a ��1 b

PPq a
× c - d =

a ��1 b
PPq a

c - d

7

Sets of pomsets and operators on them are used extensively in the models
we shall present, so we briefly treat them here. The two operations on

pomsets · and × generalize to sets in the natural way, e.g., P · Q =
{p · q | p ∈ P,q ∈ Q}. We shall also use ∪, the normal set union,

as operator on sets of pomsets. In the following P() will denote the
powerset operator.

The next operator refines the different elements of a pomset into different

pomsets (a formalization of the concept of “change of atomicity”).

Example: Consider the pomset a ��1 b
PPq b

. Suppose we would like to re-

fine the upper occurrence of b to
d
e

PPq
��1 d, the lower to c - a and the a

occurrence to
b
a

PPq
��1 a. Call this refinement π and the associated operator

<π>—then we would expect:

a ��1 b
PPq b

<π> =
b
a

��>
d -

��>
d

PPq
��1 a - e

ZZ~ c - a

Actually it does not make sense to talk about the upper, lower, etc.
occurrence of b in a pomset, but for a particular representative each
individual element can be replaced by “its own” pomset (representative)

thus obtaining the representative of, a new pomset.

The construction is not as simple as the others and we need to introduce

some additional notions.

Definition 2.4 Particular Refinement

Let p be an lpo. A particular refinement (abbreviated p. ref.) for p is a
mapping, πp, which for each element of Xp associates an lpo. For such

a mapping we can construct a new lpo p<πp> = 〈X,≤, `〉, where

X is the set {〈x, x′〉 | x ∈ Xp, x
′ ∈ Xπp(x)}

≤ is the partial order defined by

〈x, x′〉 ≤ 〈y, y′〉 iff x ≤p y and

x = y ⇒ x′ ≤πp(x) y′

` is the function 〈x, x′〉 7→ `πp(x)(x
′)

Notice that p<πp> is a finite lpo. It is not hard to see that sequential
(parallel) composition can be derived from particular refinements of an

8

ordered (unordered) two element pomset; see [Gis84, Eng89] for the
details. That is to say with the words of Gischer [Gis88] · and × are

pomset definable operations on pomsets. Gischer actually make a kind of
particular refinement into an operation on pomsets (called substitution)

but it would not allow the type of refinements we shall need.

The refinement operator for pomsets can defined using the particular
refinement construction for lpos.

Definition 2.5 Refinement of Pomsets
A P(P)-refinement is a mapping % : ∆→ P(P). We say that a P(P)-

refinement, %, is ε-free iff ∀a ∈ ∆. ε 6∈ %(a) and % is image finite if
%(a) is finite for every a ∈ ∆.
A p. ref. πp for an lpo p is consistent with a P(P)-refinement % iff

∀x ∈ Xp. [πp(x)] ∈ %(`p(x))

The mapping associated with % is now defined as <%> : P→ P(P) with
p<%> = {[p<πp>] | πp is a %-consistent p. ref. for p} and generalized

to sets of pomsets by P<%> =
⋃

p∈P p<%>.

In general p<%> is a finite set of pomsets when % is image finite because
we only work with finite pomsets.

Example: Consider the pomset of the last example and suppose % is

a P(P)-refinement such that a 7→

b
a

PPq
��1 a

 and b 7→

c - a,

d
e

PPq
��1 d

.

Then

a ��1 b
PPq b

<%> =

b

a
��>

c - a
PPq
��1 a

ZZ~ c - a

,
b

a
��>

d -
��>

d
PPq
��1 a - e

ZZ~ c - a

,
b

a ��1
PPq a

�
�7

d

��1 e
PPq dS
Sw e

��1
PPq d

��1
PPq d

The difference between our refinement operation and Gischers substitu-
tion can be illustrated by this example. The result of Gischers substi-
tution would be without the pomset in the “middle”.

The operations enjoy a number of properties of which some are:

Proposition 2.6

9

• ·, × and ∪ are associative with neutral elements {ε}, {ε} and ∅
respectively

• × and ∪ are commutative

• {ε}<%> = {ε}, {a}<%> = %(a) and <%> distributes over ·, × and

∪
• ·, ∪, × and <%> are ⊆-monotone in all their arguments

Two Partial Orders on Pomsets

The first relation on pomsets we are going to present is used to compare

the “concurrency” of two pomsets.

Definition 2.7 �-ordering on Pomsets

A pomset p is smoother than [Gra81]/ subsumed by [Gis88]/less nonse-
quential than the pomset q, p � q, if p except perhaps for some addi-

tional order on elements equals q. Formally this partial order on pom-
sets is induced from the corresponding lpo preorder by: p � q iff p � q,

where

p � q iff there exists bijective function Xq → Xpwhich is a mor-
phism of lpos.

The �-downwards closure of a pomset p, {p′ ∈ P | p′ � p}, is denoted
δ(p). 2

Notice that for lpos p and q, p � q does not imply p ∼= q.

Example: a - b - c � a

b
PPq
��1 c and

a -
��>

b

c -
ZZ~ d

� a - b

c -
ZZ~ d

� a - b

c - d

If P∗ is a property of pomsets then δ∗(p) will be a shorthand for the
semi �-downwards closure {p′ ∈ P | p′ � p and P∗(p′)}. E.g., δw(p) =

{p′ ∈ P | p′ � p and Pw(p′)} = {p′ ∈ W | p′ � p}. Though we might
have p 6∈ δ∗(p) for some pomset property P∗, we call it the δ∗-closure.

δ∗ also generalize to sets: δ∗(Q) =
⋃

q∈Q δ∗(q) and is ⊆-monotone.

10

The following alternative characterization of � is often more convenient
to use.

Proposition 2.8 For pomsets p and q we have:

p � q iff p = 〈Xq′,≤p, `q′〉 and ≤p ⊇ ≤q′ for some q′ ∈ q
iff 〈Xp′,≤q, `p′〉 = q and ≤p′ ⊇ ≤q for some p′ ∈ p

Extend � to sets by: P � Q iff ∀p ∈ P,q ∈ Q. p � q; and to refine-
ments by: % � %′ iff ∀a ∈ ∆. %(a) � %′(a). From the last proposition
and the refinement construction it is not hard to see that P � Q and

% � %′ implies P<%> � Q<%′>. Since · and × can be obtained as
appropriate refinements of two element pomsets we then have

(3) · and × are �-monotone in their left and right arguments

and by refinements of the pomsets in the last example also

(p× q) · (p′ × q′) � (p · p′)× (q · q′).(4)

We now turn to the second partial order on pomsets.

Definition 2.9 v-ordering on Pomsets

p is a prefix of q, p v q, if p is a subpomset of q and the elements of p

only dominates the elements of p in q. Formally the corresponding lpo
preorder, v, is defined p v q iff there exists a ≤q-downwards closed set

Y such that p is isomorphic to the restriction of q to Y :

p v q iff ∃Y. p ∼= q|Y and {x ∈ Xq | ∃y ∈ Y. x ≤q y} ⊆ Y

The v-downwards closure of a pomset p is: π(p) = {p′ ∈ P | p′ v p}.
2

That p v q implies p ↪→ q follows from p ∼= q|Y . Observe that {x ∈
Xq | ∃y ∈ Y. x ≤q y} ⊆ Y just is a formalization of: Y is ≤q-downwards
closed.

Example: a ��1 b
PPq c

v a ��1 b
PPq c

PPq
��1 d , but a - b - d 6v a ��1 b

PPq c
PPq
��1 d

As for the partial order � there is an alternative characterization of v:

11

Proposition 2.10 For pomsets p and q we have:

p v q
iff p′ = q|Xp′ for some p′ ∈ p with {x ∈ Xq | ∃y ∈ Xp′. x ≤q y} ⊆ Xp′

iff p = q′|Xp
for some q′ ∈ q with {x ∈ Xq′ | ∃y ∈ Xp. x ≤q′ y} ⊆ Xp

The following proposition shade some light over over v and its relation
to �.

Proposition 2.11 Given pomsets p, q and r. Then

a) p v q× r iff ∃q′ v q, r′ v r. p = q′ × r′

b) p v q · r implies p v q or ∃r′ v r. p = q · r′

c) p v q implies ∃r. p · r � q

d) ∃r. p � r v q iff ∃s. p v s � q

Proof a) – c) are proven using the alternative characterizations of the

two preorders.

In [Pra86, page 49] Pratt outlines a proof of d). He defines prefix in
another, but equivalent way: p is a prefix of q if ∃Y. p ∼= q|Y and Xq \Y
is ≤q-upwards closed. A more formalized proof is:

only if : Assume p � r v q. By c) we know there is a pomset r′ such
that r · r′ � q. From p � r and �-monotonicity of · then p · r′ � q. But

p v p · r′ so we can just choose s = p · r′.
if : Suppose p v s � q. Then by the alternative characterizations of �
and v there are representatives p′ and q′ of p and q respectively such

that p′ = s|Xp′ , Xp′ is ≤s-downwards closed and q′ = 〈Xs,≤q′, `s〉 with
≤s ⊇ ≤q′. Define r to be q′|Xp′ . Then r is an lpo and to see that Xp′

is ≤r-downwards closed assume x ≤r y ∈ Xp′. Then x ≤q′ y and from
≤q′ ⊆ ≤s also x ≤s y. x ∈ Xp′ follows now from the ≤s-downwards

closure of Xp′. Hence r v q′. We also have r = 〈Xp′,≤q′|Xp′
2, `p′〉, so

from ≤q′ ⊆ ≤s then ≤r = ≤q|Xp′
2 ⊆ ≤s|Xp′

2 = ≤p′. Thus p′ � r v q′ and

p = p′ � r v q′ = q. 2

12

Two Types of Pomset Properties

The first type of pomset properties we shall consider is those where the

property of a pomset is inherited to all subpomsets. Following [BC87]
we call such a property hereditary and define it:

Definition 2.12 Hereditary Pomset Properties

A pomset property, P∗, is hereditary , iff

∀p ∈ P. P∗(p),q ↪→ p⇒ P∗(q)
2

The Pw-property is an example of a hereditary pomset property. To give

an example of the consequences of property being hereditary we state:

Proposition 2.13 Let P∗ be a hereditary pomset property. Then

q � p0 · p1, P∗(q)⇒ ∃q0,q1. q = q0 · q1 and qi � pi, P∗(qi) for i = 0, 1

Of course there is a similar proposition for parallel composition.

We shall now deal with a certain type of pomset properties where one
can deduce/ synthesize the property for the sequential composition of

two pomsets if they both have the property.

Definition 2.14 Dot Synthesizable Pomset Properties

A pomset property, P∗, is dot synthesizable, iff

∀p,q ∈ P. P∗(p) and P∗(q) implies P∗(p · q)(5)
2

The Pw-property is also an example of a dot synthesizable pomset prop-
erty.

Of course we cannot be sure that δ∗(p) is nonempty no matter whether

we have to do with hereditary or dot synthesizable pomset properties.
Take for instance the pomset property which is not fulfilled by any

pomset. However it can be shown that if P∗ is a dot synthesizable
pomset property holding for the empty and singleton pomsets then δ∗(p)

is nonempty for every pomset p. For example this is the case for Pw and
we conclude δw(p) 6= ∅ for every pomset p.

13

Proposition 2.15 If P∗ hereditary and dot synthesizable then

a) δ∗(p0 · p1) = δ∗(p0) · δ∗(p1)

b) δ∗(p0 × p1) = δ∗(δ∗(p0)× δ∗(p1))

c) δ∗π(p) = πδ∗(p), provided P∗ holds for ε and the singleton pomsets.

Notice that since δ = δtrue c) clearly is an extension of [Pra86].

Proof We just prove a) and c) since b) follows similar as a).

a) ⊆: Suppose q ∈ δ∗(p0 · p1)—i.e., q � p0 · p1 and P∗(q). Then by
proposition 2.13 there exists pomsets q0 and q1 such that q = q0 · q1

and qi � pi, P∗(qi) for i = 0, 1. This implies qi ∈ δ∗(pi) for i = 0, 1 and
q = q0 · q1 ∈ δ∗(p0) · δ∗(p1).

⊇: Given q ∈ δ∗(p0) · δ∗(p1). Then q = p′0 ·p′1 for some p′i ∈ δ∗(pi) and

i = 0, 1. This implies P∗(p′i) and p′i � pi for i = 0, 1, so as a consequence
of the �-monotonicity of · then p′0 · p′1 � p0 · p1, and P∗(p′0 · p′1) since

P∗ is dot synthesizable. Hence q ∈ δ∗(p0 · p1).

c) ⊆: Suppose q ∈ δ∗π(p). Then P∗(q) and there is a pomset r with
q � r v p. By c) of proposition 2.11 there is a r′ such that q · r′ � p.

From the proviso it then follows that there is a p′ ∈ δ∗(r′). Hence P∗(p′)
and by the �-monotonicity of · also q ·p′ � q · r′ � p. P∗(q ·p′) follows

from P∗(q) and P∗(p′). Because q v q ·p′ we actually have q ∈ πδ∗(p).

⊇: Let a q ∈ πδ∗(p) be given. This means there is a s such that P∗(s)
and q v s � p. q v s implies q ↪→ s, so because P∗ is hereditary we also

have P∗(q). By proposition 2.11.d) there is a pomset r with q � r v p.
Hence q ∈ δ∗π(p). 2

3 A Concurrent Process Language with
Action Refinement

The process language, BLRrec
Ω , we shall use will be an extension of a

very basic language over the abstract set of action symbols, ∆, contain-
ing a combinator for internal nondeterminism beside combinators for

sequencing and parallelism with auto-parallelism (but without commu-
nication).

14

BLRrec
Ω will also contain refinement combinators, which for each atomic

action states how it should be implemented by a basic process expres-

sion. So intuitively such a process should behave as if the refinements
were substituted in advance.

Finally BLRrec
Ω has the usual constructors for recursion, rec x. , where

x is a member of a fixed countable infinite set of variables, X.

So BLRrec
Ω consists of the closed expressions of BLRrec

Ω (X), which in
turn is the least set closed under expressions of the form (∆) – (rec):

(∆) a individual process labelled a ∈ ∆

(;) E0 ; E1 sequential composition of E0 and E1

(⊕) E0 ⊕E1 internal nondeterministic composition of E0 and E1

(‖) E0 ‖ E1 parallel composition of E0 and E1

(R) E[%] action refinement of E according to BL-refinement %
(Ω) Ω the completely undefined process

(X) x process variable x ∈ X
(rec)rec x. E the process, E, recursive in x ∈ X

where a BL-refinement is defined to be a mapping % : ∆ −→ BL and

BL is the least set closed under expressions of the form (∆) – (‖) above;
e.g., if E0, E1 ∈ BL then E0 ; E1 ∈ BL.

It will be convenient to define different sublanguages of BLRrec
Ω ; BLR

is obtained from (∆) – (R), BLΩ from (∆) – (‖), (Ω) etc.. These will
be used in open versions too; e.g., BLΩ(X) is obtained from (∆) – (‖),
(Ω), (X).

It will turn out that the binary combinators are associative, a fact we
shall make use of together with an assumption of the combinator prece-

dence: unary combinators, ;, ‖, ⊕—unary binding strongest.

4 Operational Semantics

Central to our idea of process behaviour will be the notion of a process

performing a sequence of actions. What actions a process can perform
will be given by an action relation, =⇒, holding through an a ∈ ∆

between configurations, with each BLRrec
Ω -expression being a possible

start configuration. Configurations are expressions from CLRrec
Ω , which

15

is almost like BLRrec
Ω with ∆ extended with † (a symbol distinct from

those of ∆). Intuitively † represents the extinct action and thereby

indicates how far control has reached. Formally CLRrec
Ω is (for technical

reasons) defined as the closed expressions of CLRrec
Ω (X) which is the

least set, C, satisfying:

† ∈ C
BLRrec

Ω (X) ⊆ C
E0 ; E1 ∈ C if E0 ∈ C and E1 ∈ BLRrec

Ω (X)

E0 ‖ E1 ∈ C if E0, E1 ∈ C

CLRΩ(X), CL etc. will be considered as CLRrec
Ω (X) restricted to con-

figurations corresponding to the appropriate sublanguages BLRΩ(X),
BL etc. E.g., a ‖ († ; b) ∈ CL but † ⊕ a 6∈ CL and a ; († ; b) 6∈ CL.

The construction of CLRrec
Ω reflects the idea that control cannot pass ;

before all previous actions are extinct.

So =⇒ will actually be a subset of CLRrec
Ω ×∆×CLRrec

Ω . If 〈E, a, E ′〉 ∈
=⇒ we write this as E

a
=⇒ E ′. One can think of this as E can evolve to

E ′ under the (external observable) action a. We shall follow DeNicola
[Nic87] and Hennessy [Hen88a] when defining =⇒. Hennessy does this in

an extended labelled transition system by means of a relation ↩→, which
reflects the step of an internal computation, and by a relation −→ for an

external computation step corresponding to an observable action. The
slight deviation from Hennessy in defining the relation, ↩→, for internal

steps are manily due to differences in the languages considered.

Here the internal steps serves a fourfold purpose:

1) resolve internal nondeterministic choices
2) remove extinct actions

3) substitute action refinements (in a lazy fashion)
4) unfold recursive definitions

The action relation,
a
=⇒, is defined as ↩→∗ a−→↩→∗, where ↩→ ⊆ CLRrec

Ω
2

and −→ ⊆ CLRrec
Ω ×∆× CLRrec

Ω are defined as the least relations sat-

isfying the following axioms and inference rules.

16

a
a−→ † E0

a−→ E ′0
E0 ; E1

a−→ E ′0 ; E1

E0
a−→ E ′0

E0 ‖ E1
a−→ E ′0 ‖ E1

E1 ‖ E0
a−→ E1 ‖ E ′0

† ; E ↩→ E
E0 ↩→ E ′0

E0 ; E1 ↩→ E ′0 ; E1

E0 ⊕ E1 ↩→ E0

E0 ⊕ E1 ↩→ E1

† ‖ E ↩→ E

E ‖ † ↩→ E

E0 ↩→ E ′0
E0 ‖ E1 ↩→ E ′0 ‖ E1

E1 ‖ E0 ↩→ E1 ‖ E ′0
a[%] ↩→ %(a)

(E0 ; E1)[%] ↩→ E0[%] ; E1[%]
(E0 ⊕E1)[%] ↩→ E0[%]⊕ E1[%]

(E0 ‖ E1)[%] ↩→ E0[%] ‖ E1[%]

E ↩→ E ′

E[%] ↩→ E ′[%]

Ω ↩→ Ω
Ω[%] ↩→ Ω

rec x. E ↩→ E[rec x. E/x]

Example: For BL-refinements, %′ and %, with %′(b) = c ;d and %(c) = e
we get:

a ; b ‖ a
a−→ † ; b ‖ a
a−→ † ; b ‖ †

↩→ b ‖ †
b−→ † ‖ †

↩→ †

(a ‖ b)[%′][%] ↩→ (a[%′] ‖ b[%′])[%]

↩→ (a[%′] ‖ c ; d)[%]

↩→ a[%′][%] ‖ (c ; d)[%]

↩→ a[%′][%] ‖ c[%] ; d[%]

↩→ a[%′][%] ‖ e ; d[%]
e−→ . . .

Example: The scenarios below show possible evolvements of F =
(rec x. E)[%] and F ′ = rec x. (E[%]):

17

F ↩→ (a⊕ a ; rec x. E)[%] ↩→ a[%]

↩→ (a ; rec x. E)[%] ↩→ b

↩→ a[%] ; F

↩→ b ; F
b
=⇒ F · · ·

...

F ′ ↩→ (a⊕ a ; F ′)[%] ↩→ a[%]

↩→ (a ; F ′)[%] ↩→ b

↩→∗ (b ; F ′[%])
b
=⇒ F ′[%] ↩→∗ b[%]

↩→∗ (b ; F ′[%])[%] ↩→ a

↩→∗ (a ; F ′[%][%])
a
=⇒ (F ′[%])[%] ↩→∗ a[%]

... ↩→∗ b
where E = a ⊕ a ; x and % is a BL-refinement such that %(a) = b and

%(b) = a.

So informally F can perform a finite sequence s ∈ ∆∗, iff s ∈ b∗ and
similar F ′, iff s ∈ (ba)∗ ∪ (ba)∗b.

The behavioural equivalences of processes we shall use will be very sim-

ple: two process are equivalent if they can perform the same sequences
of observable actions. However it remains to determine the sort of se-

quences to be used. Suppose only maximal sequences (in the sense that
the process cannot do any actions afterwards) are considered and denote

the associated equivalence by <∼>∼. <∼>∼ will be able to distinguish recursive
processes like:

rec x. (a⊕ b ; x) and rec x. (c⊕ b ; x)

because they obviously can do different maximal sequences. On the
other hand there will be no way to distinguish the processes:

rec x. (a ; x) and rec x. (b ; x)(6)

This is satisfactory if nontermination is viewed as unimportant and only
termination matters. Taking the opposite point of view, disregarding

termination, they must be distinguished. Denote the equivalence ar-
rising when considering prefixes of (possibly maximal) sequences by <∼=∼.
Then <∼=∼ will be able to distinguish the processes of (6) but in return
identify

rec x. (b⊕ b ; x) and rec x. (b ; x)

which on the contrary would not be identified by <∼>∼. The appropriate
equivalence depends on what view is taken. However there is the serious

drawback of <∼=∼ that it is not a congruence—not even on BL:

a⊕ a ; b <∼=∼ a ; b but (a⊕ a ; b) ; c 6<∼=∼ (a ; b) ; c

18

Therefore <∼=∼{;} would be more appropriate to study, where in general for
a set Σ, of combinators, we use vwΣ to denote the largest Σ-congruence

contained in the equivalence vw. Though <∼=∼{;} and <∼>∼ are congruences
w.r.t. ;, ⊕ and ‖ they are not preserved in [%]-contexts:

Example 4.1 Suppose e.g., %(a) = a ; a⊕ b, and E0 = a ‖ a, E1 = a ; a.

Then E0 <∼>∼ , <∼>∼{;} E1 but E0[%] 6<∼>∼ , 6<∼=∼{;} E1[%] because E0[%]
aba
=⇒ † and

E1[%] 6aba
=⇒.

So we shall rather be interested in <∼>∼c and <∼=∼c, where c is all combinators—
the recursive inclusive. Actually the congruences will be induced from

corresponding preorders <∼ and <∼ respectively. Formally define for a finite
sequence s ∈ ∆∗ and E, E ′ ∈ CLRrec

Ω :

E
s
=⇒ E ′, s = a1a2 . . . an ∈ ∆∗ iff

∃E1, . . . , En ∈ CL∃a1, . . . , an ∈ ∆, n ≥ 0.

E
a1=⇒ E1

a2=⇒ . . .
an=⇒ En = E ′

where the case n = 0 means E ↩→∗ E ′.

Definition 4.2 <∼, <∼ ⊆ BLRrec
Ω × BLRrec

Ω are then defined:

E0 <∼ E1 iff ∀s ∈ ∆∗. E0
s
=⇒ † implies E1

s
=⇒ †

E0 <∼ E1 iff ∀s ∈ ∆∗. E0
s
=⇒ implies E1

s
=⇒

<∼>∼ is induced from <∼ by E0 <∼>∼ E1 iff E0 <∼ E1 and E1 <∼ E0. Similar for <∼=∼.
2

Notice that as expected <∼>∼ as well as <∼=∼ identifies a ; (b⊕ c) and a ; b⊕a ; c.

The Finite Sublanguage

We shall now elaborate on the previous comment that E[%] behaves

as if the refinements were substituted in E in advance. This could be
done for E ∈ RBLrec

Ω , but for developments in the sequel it will suffice

with E ∈ BLRΩ. To this end we formalize substitution as mapping
σ : CLRΩ −→ CLΩ, using {%} : BLΩ −→ BLΩ which performs a single

substitution in a refinement free expression. Because of their syntactic
nature we write them postfix. The definitions of σ and {%} are in full:

19

†σ = †
Ωσ = Ω Ω{%} = Ω

aσ = a a{%} = %(a)
(E0 ; E1)σ = E0σ ; E1σ (E0 ; E1){%} = E0{%} ; E1{%}

(E0 ⊕ E1)σ = E0σ ⊕E1σ (E0 ⊕ E1){%} = E0{%} ⊕E1{%}
(E0 ‖ E1)σ = E0σ ‖ E1σ (E0 ‖ E1){%} = E0{%} ‖ E1{%}

E[%]σ = (Eσ){%}

Notice that E[%] only if E ∈ BLRΩ and σ when restricted to BLRΩ

yield a map σ : BLRΩ −→ BLΩ.

Proposition 4.3 For E ∈ BLRΩ we have E <∼>∼ Eσ and E <∼=∼ Eσ

Proof Since E ′′σ = † iff E ′′ = † the proposition follows from

E
s
=⇒ E ′ implies Eσ

s
=⇒ E ′σ

Eσ
s=⇒ E ′ implies ∃E ′′ ∈ CLRΩ, E

s=⇒ E ′′, E ′′σ = E ′

where s ∈ ∆∗ and E now is supposed to be from CLRΩ. Each implica-

tion is proven by induction on the “length” of
s
=⇒ where the inductive

steps essentially consists of proofs of similar propositions for ↩→ and
a−→,

but using induction on the structure of E. 2

5 Denotational Semantics

This section is devoted the motivation and introduction of two denota-
tional models Mor and Mp

or intended to characterize <∼c and <∼c respec-

tively. The models are best motivated by considering how a model for <∼c

w.r.t. process expressions of BLR should look like and then generalize

this to <∼c and the rest of the language.

In general a denotational model, M , for a (behavioural) preorder will
consist of a partial ordered domain, A, together with a denotational

map, A[[]], which for each process expression yields an element of A.

Now to get an idea of how the denotational map, Aor[[]], of Mor should
be first recall that an E ∈ BLR behaves as if the refinement where

20

substituted in advance, i.e., as Eσ, so it is fair to expect Aor[[E]] =
Aor[[Eσ]].

Since the examples of the previous section show that <∼c rather is con-

cerned with the nonsequential than the nondeterministic aspects of be-
haviour, the denotational map should be formed as an abstraction of

sets of pomsets in place of an abstraction of computation trees. To this
end we define:

Definition 5.1 Canonical Pomset Association
The canonical associated pomsets of a BL-expression is given by the
map ℘ : BL→ P(P \ {ε}) \ ∅ defined compositionally as follows:

℘(a) = {a}
℘(E0 ; E1) = ℘(E0) · ℘(E1)
℘(E0 ⊕ E1) = ℘(E0) ∪ ℘(E1)

℘(E0 ‖ E1) = ℘(E0)× ℘(E1)

By analogy to the most abstract computation tree based models our
first suggestion for an abstraction might be to take the linearizations

of the canonical associated pomsets, i.e., use the map δw℘(σ) and for
the domain, Aor, choose the finite subsets of P \ {ε} ordered under

inclusion. But looking at example 4.1 we see that δw must be rejected
as being to abstract. Now δw can be regarded as abstracting from the
nontotal ordered pomsets of δ so a second attempt could be to use δ℘(σ).

However from

E ′0 = (a ; (b ‖ d)) ‖ c⊕ a ‖ (c ; (b ‖ d)) and

E ′1 = E ′0 ⊕ a ; b ‖ c ; d

follows that δ in return is not abstract enough. Thought by this expe-

rience we shall look for a pomset property P∗ turning δ∗ into a suitable
abstraction between δw and δ. Returning to example 4.1 the reason for
our success of distinguishing E0 and E1 through <∼c is the ability for each

of the “concurrent” actions to choose an appropriate BL-refinement and
make actions of these overlap when a sequence of actions is performed,

thereby reflecting the “concurrency” of E0. To transfer this idea to pom-
sets and find a property of pomsets stating when this “overlapping” is

possible, we shall temporarily and for sake of argument appeal to the fol-
lowing operational intuition of pomsets: if a is a minimal element it can

21

be performed (corresponds to an atomic action) resulting in the pomset
obtained by removing a. Of course image finite P(P)-refinements take

over the rôle of the BL-refinements. Now consider the pomset,
a - b
c - d

,

associated with E ′1 above. A prerequisite for overlapping is a refine-
ment splitting the actions—a fission refinement. I.e., we use a P(P)-

refinement, %f , such that a 7→ {aS · aF} and similar for b, c and d. In
order to reflect that a is concurrent to c and d, we start of the refine-

ments of a and c: aS and cS, in some order. Since a is concurrent to d
we want to start of d as well and do that by finishing c (i.e., perform cF)

at first. But then we prevent ourselves from reflecting that c is concur-
rent to b, since the refinement of c is already finished of before having
a chance to get b started. Similar if we finished a at first. This suggest

that we by “overlapping” can reflect all the concurrency of a pomset, p,
if p has the following recursively defined property Pol:

p has the property Pol iff
either p is empty
or there is a minimal element, x, of p such that

a) the remaining minimal elements of p is exactly the

elements concurrent to x
b) p′ has the property Pol, where p′ is obtained from p

by removing x

This property is easely formalized and proven equivalent to the following

alternative and more tractable pomset property:

Definition 5.2 Por-Property for Pomsets

A pomset p is said to have the Por-property, Por(p) iff for all x, x′, y, y′

in Xp we have:

if

x <p x′

cop

y <p y′
then

x <p y′

or
y <p x′ 2

Notice that by the universal quantification of x and y the Por-property is
hereditary and since the concurrent elements of a sequential composition

of pomsets must steem from the same pomset it follows that Por is dot
synthesizable too.

22

Example:
a - b
c -

ZZ~ d
and

a - b
c

has the Por-property,
a - b
c - d

has

not.

So we arrive at a model with denotational map Aor[[]] = δor℘(σ).

Now w.r.t. <∼c. From the operational semantics we see that a sequence
of E ; F involving actions of F must contain a maximal sequence, thus

getting the hint to incooperate the Mor model directly in the model Mp
or

capturing <∼c.

The final step consists in extending these ideas to handle recursion too.

This is in general (see e.g., [Hen88a]) for a language of recursive expres-
sions, RECΣ(X), over a signature, Σ, with free variables X, done by

extending A to an algebraic complete partial order (algebraic cpos for
short) and give the denotational map, A[[]], by means of environments:

A[[x]]ρA = ρA(x)

A[[f(t1, . . . , tk)]]ρA = fA(A[[E1]]ρA, . . . , A[[Ek]]ρA), f ∈ Σ k-ary
A[[rec x. E]]ρA = Y λa. A[[E]]ρA[a/x], where

• ρA ∈ ENVA, the cpo set of A-environments (maps from X to A)

• fA is a k-ary continuous operator on A associated with f and in

the special case of Ω, ΩA is the constant function yielding the least
element ⊥A of A.

• Y is a function yielding the least fixpoint of λa. A[[E]]ρA[a/x] in A

Hence for each expression, E, A[[E]] gives a continuous map from ENVA

to A, i.e., A[[E]] ∈ [ENVA −→ A], and if furthermore E is closed (with-
out free variables), A[[E]] is a constant function giving óne element, am-
biguously denoted A[[E]], of A.

Giving meaning to expressions in this way has different pleasant conse-
quences like that the induced denotational preorder, �A, given by

E �A F iff ∀ρA ∈ ENVA. A[[E]]ρA ≤A A[[F]]ρA

is a precongruence w.r.t. all the combinators. Also the meaning of an

expression, E, is the limit of its finite approximations Fin(E). An ex-
pression E ′ is an approximation to E if they are related by the syntactic

23

preorder, �, defined to be the least precongruence (w.r.t. to the ordinary
combinators) which satisfies:

Ω � E
E[rec x. E/x] � rec x. E

So Fin(E) = {E ′ ∈ FRECΣ(X) | E ′ � E}, where FRECΣ(X) is the

set of finite expressions. The term “approximates” for � is justified by
the fact � ⊆ �A.

Having finite approximations the notion of algebraic relations mentioned
in the introduction can be introduced formally:

A relation R over RECΣ (i.e., closed expressions) is algebraic if for all
E, F ∈ RECΣ:

E R F iff ∀E ′ ∈ Fin(E)∃F ′ ∈ Fin(F). E ′ R F ′

Actually the preorder �A (when restricted to RECΣ) is algebraic pro-
vided the denotations of closed finite expressions are compact elements

of A (an element is compact if whenever it is dominated by a lub of a
directed set then so it is by an element of that set). If on the other
hand any compact element is denotable by closed finite expression, �A

is substitutive, where

a relation R over RECΣ(X) is substitutive if for all E, F ∈ RECΣ(X):

E R F iff for all closed syntactic substitutions ρ, Eρ R Fρ

Proposition 5.3 If a model is finitary (i.e., an element is compact iff it
is denotable by a closed finite expression) then the denotational induced

preorder is substitutive and algebraic.

Using [DNH84] Hennessy in [Hen83] indicate a proof that �A is sub-
stitutive when every compact element is denotable by a closed finite

expression—a detailed proof of the proposition can be found in [Eng89].

Due to the pleasant consequences of having finitary models, the goal
will therefore be to extend the domains of the previous models to deal

with “infinity” while at the same time enforcing constraints which en-
sures the reachability of compact elements. The first subgoal is easely

24

attained simply by considering infinite sets of pomsets instead of finite.
Recalling that the previous obtained denotational maps were based on

the canonical map, ℘, we get a clue for the second subgoal. At first we
look at what pomsets we can get by ℘. Here we shall lean on a result

of Grabowski [Gra81] which essentially states that the sets of pomsets
generated from the singleton pomsets and ε by sequential and parallel
composition exactly are the N -free pomsets.

Definition 5.4 PN -free-Property for Pomsets

A pomset p is said to have the PN -free-property, PN -free(p) iff for all

x, x′, y, y′ in Xp we have:

if
x <p x′

cop cop

y <p y′
and x <p y′ then y ≤p x′

If a pomset p has the PN -free-property we say that p is N -free. Also we

shall say that a P(P)-refinement, %, is N -free iff p is N -free for all
p ∈ %(a) and a ∈ ∆. Similar for particular refinements. 2

Example:
a -

��>
b

c -ZZ~ d
and

a - b

c
are N -free, but

a - b

c -ZZ~ d
is not.

The result of Grabowski can (slightly modified for our set-up) be for-
mulated:

Proposition 5.5 P is a finite and nonempty set of N -free pomsets such
that ε 6∈ P iff ∃EP ∈ BL. ℘(EP) = P .

On top of the canonical map the δor-closure were used to obtain the

denotation. This suggests to let the elements of Aor be sets of pomsets
which are obtained as the δor-closure of a set, t, of N -free nonempty
pomsets. As already argued, information of the Mor-model must be in-

corporated when it comes to the Mp
or-model for the semantics concerning

prefix. Using the π-closure of pomsets to capture the idea of prefixes

of sequences it appears that elements of Ap
or should be pairs where the

second component is an element of Aor and the first component is the

δor- and π-closure of a nonempty set, s, of N -free pomsets with the ad-
ditional constraint that s shall be a superset of the set, t, which the

25

second component is a δor-closure of. The additional constraint origi-
nates in the fact that if a maximal sequence can be recorded then so

can any prefix of it. As noticed the Por property is both hereditary and
dot synthesizable, so by proposition 2.15 δor and π then commute and

it make sense to talk about the δor-/ π-closure of a set. Formally

Aor = {δor(t) | t ⊆ PN -free, ε 6∈ t}
Ap

or = {〈δorπ(s), δ(t)〉 | s, t ⊆ PN -free, ε 6∈ t ⊆ s 6= ∅}

We shall often make use of the observation that t ⊆ s⇒ δ∗(t) ⊆ δ∗(s)⇒
δ∗(t) ⊆ δ∗π(s) which follows from δ∗ being ⊆-monotone and the general
fact p ∈ π(p). With some care concerning the closures it can be shown:

Proposition 5.6 〈Aor,⊆〉 and 〈Ap
or,⊆〉 (component wise) are algebraic

cpos with least elements ∅ and 〈{ε}, ∅〉 respectively. The compact ele-

ments are those δor(s) ∈ Aor and 〈δorπ(s), δor(t)〉 ∈ Ap
or where s and t are

finite sets. Every nonempty D ⊆ Aor has a lub:
∨

or D =
⋃

D ∈ Aor and
similar every nonempty D ⊆ Ap

or has a lub
∨p

or D = 〈⋃ D1,
⋃

D2〉 ∈ Ap
or

where Di = {di | 〈d1, d2〉 ∈ D} for i = 0, 1.

Definition 5.7 Assume d = 〈P, Q〉 and di = 〈Pi, Qi〉 for i = 0, 1 are
elements of Ap

or. Then the operators of the Mp
or model are defined as

follows:

Ωp
or = 〈{ε}, ∅〉

ap
or = 〈{ε, a}, {a}〉

d0 ;por d1 = 〈P0 ∪Q0 · P1, Q0 ·Q1〉
d0 ⊕p

or d1 = 〈P0 ∪ P1, Q0 ∪Q1〉
d0 ‖por d1 = 〈δor(P0 × P1), δor(Q0 ×Q1)〉

d[%]por = 〈δorπ(P<℘(%)>), δor(Q<℘(%)>)〉, where

℘(%) is the ε-free P(P)-refinement ℘(%) given by (℘(%))(a) = ℘(%(a)).

The operators of the Mor model are derived from those of the Mp
or

simply by projecting the second component. I.e. if P0, P1 ∈ Aor then
P0 ‖or P1 equals δor(P0 × P1).

26

Proposition 5.8 The operators above are well-defined.

Proof The well-definedness of the Aor operators follows similar as for
Ap

or. We just look at ;por and [%]por. Assume d0, d1 ∈ Ap
or. Then d0 =

〈δorπ(s0), δor(t0)〉 for some s0, t0 ∈ PN -free such that ε 6∈ t0 ⊆ s0 6= ∅.
Similar for d1.

From a) of proposition 5.9 below and the distributivity of δor over · we

immediately get: d0 ;por d1 = 〈δorπ(s0 ∪ t0 · s1), δor(t0 · t1)〉. By Grabowski
p · q is N -free when p and q are. So d0 ;por d1 ∈ Ap

or then follows from

ε 6∈ t0 · t1 because ε 6∈ t0, t1
⊆ s0 ∪ t0 · s1 since t1 ⊆ s1

6= ∅ by s0 6= ∅
Now to see that the [%]por operator on Ap

or is well-defined, let a d =

〈δorπ(s), δor(t)〉 ∈ Ap
or be given. Using d) of proposition 5.9 below for

the first component and lemma 5.10 for the second we get

d[%]por = 〈δorπ(s<℘(%)>), δor(t<℘(%)>)〉.
%(a) ∈ BL for every a ∈ ∆, so from proposition 5.5 (℘(%))(a) is a set
of N -free nonempty pomsets when a ∈ ∆. It can then be shown that

s<℘(%)> and t<℘(%)> are sets of N -free pomsets because s and t are
assumed to be N -free too. ℘(%) is ε-free so we conclude that d[%]por ∈ Ap

or.

2

The following proposition is useful not only for the proof of the propo-
sition above but also for other to come.

Proposition 5.9 Let % be an ε-free P(P)-assignment and suppose P, Q

and R are sets of pomsets such that P ⊇ R. Then

a) δorπ(P) ∪ δor(R) · δorπ(Q) = δorπ(P ∪R ·Q)

b) δorπ(P) ∪ δorπ(Q) = δorπ(P ∪Q)

c) δor(δorπ(P)× δorπ(Q)) = δorπ(P ×Q)

d) δorπ((δorπ(P))<%>) = δorπ(P<%>)

Proof For a) notice at first :

π(p · q) = π(p) ∪ {p} · π(q)(7)

27

We then get:
δorπ(P) ∪ δor(R) · δorπ(Q)

= δor(π(P) ∪R · π(Q)) δor distributes over · and ∪
= δor(π(P) ∪ π(R) ∪R · π(Q)) R ⊆ P and π is ⊆-monotone
= δor(π(P) ∪ π(R ·Q)) by (7)

= δorπ(P ∪R ·Q) π distributes over ∪
b) and c) follows from the distributivity of δor and π over ∪, proposition

2.15 and distributivity of π over ×.

d)δorπ((δorπ(P))<%>)
= πδor((δorπ(P))<%>) δor and π commutes

= πδor((π(P))<%>) lemma 5.10 (% is ε-free)
= δorπ((π(P))<%>) δor and π commutes

= δorπ(P<%>) lemma 5.11 below 2

Lemma 5.10 Let P be a set of pomsets and % an ε-freeP(P)-refinement.

Then
δor((δor(P))<%>) = δor(P<%>)

Proof Clearly it is enough to prove δor((δor(p))<%>) = δor(p<%>) for
a single pomset p. Each inclusion is proven separately.

To see δor((δor(p))<%>) ⊆ δor(p<%>) let q ∈ δor((δor(p))<%>). Then

Por(q) and there exists a q′ ∈ (δor(p))<%> such that q � q′. Therefore
q′ ∈ p′<%> for some p′ ∈ δor(p) and we have p′ � p. But by the nature

of <%> this implies ∀r′ ∈ p′<%>∃r ∈ p<%>. r′ � r . Hence there exists
a r ∈ p<%> such that q � q′ � r. Since Por(q) we have q ∈ δor(p<%>).

δor((δor(p))<%>) ⊇ δor(p<%>): Suppose q ∈ δor(p<%>). This means

Por(q) and q � [p<πp>], where <πp> is a %-consistent particular refine-
ment for a representative, p, of p. So it is enough to find an p′ ∈ δor(p)

such that q � [p′<πp′>], where πp′ also is consistent with %.

By proposition 2.8 q � [p<πp>] implies the existence of a representative,
q, of q such that q = 〈Xp<πp>,≤q, `p<πp>〉 and ≤q ⊇ ≤p<πp>.

Define p′ := 〈Xp,≤p′, `p〉, where ≤p′ is the reflexive closure of <p′ ⊆ Xp
2

defined by:

x <p′ y iff ∀〈x, x′〉, 〈y, y′〉 ∈ Xq. 〈x, x′〉 <q 〈y, y′〉(8)

28

That is, we order elements x, y in p′ if and only if all elements from πp(y)
are causally dependent on all elements πp(x) in q.

To see that p′ in fact is an lpo notice that ≤p′ by definition is reflexive,

clearly also transitive and the antisymmetry is seen from (8), the ε-
freeness of πp (a consequence of % being ε-free) and the antisymmetry

of ≤q.

Xp = Xp′ and `p = `p′ so p′ � p follows by proving ≤p′ ⊇ ≤p. By
definition x ≤p′ x. If x <p y then x 6= y, so by the construction of

p<πp> we have ∀〈x, x′〉, 〈y, y′〉 ∈ Xp<πp>. 〈x, x′〉 <p<πp> 〈y, y′〉 and from
≤q ⊇ ≤p<πp> this implies ∀〈x, x′〉, 〈y, y′〉 ∈ Xq. 〈x, x′〉 <q 〈y, y′〉. By

definition of <p′ then x <p′ y.

If p′ have the Por-property it then follows that p′ ∈ δor(p).

Assume that p′ does not have the Por-property. That is Xp′ contain

elements x1, x2, y1, y2 such that:

(9)
x1 <p′ y1

cop′

x2 <p′ y2

(10)
x1 6<p′ y2

and
x2 6<p′ y1

From the definition of p′, the ε-freeness of % and (10) it then follows that
there exists x′1, x

′
2, y
′
1, y
′
2 such that (11) below holds. From (9) then also

(12):

(11)

〈x1, x
′
1〉 6<q 〈y2, y

′
2〉

and
〈x2, x

′
2〉 6<q 〈y1, y

′
1〉

(12)

〈x1, x
′
1〉 <q 〈y1, y

′
1〉

〈x2, x
′
2〉 <q 〈y2, y

′
2〉

But from (11) and (12) it follows that:

〈x1, x
′
1〉 coq 〈x2, x

′
2〉

and we have a contradiction to the fact that q has the Por-property.

It remains to prove q � [p′<πp′>] for some %-consistent p. ref., πp′, for
p′. Since Xp = Xp′, πp is also a p. ref. for p′ and we know that it is
%-consistent. For the same reason Xp′<πp> = Xp<πp> = Xq and similarly

`p′<πp> = `q.

29

Next we show ≤q ⊇ ≤p′<πp>. Assume 〈x, x′〉 ≤p′<πp> 〈y, y′〉. By con-
struction of p′<πp> this implies x <p′ y or (x = y, x′ ≤πp(x) y′). In

the former case (8) directly gives 〈x, x′〉 <q 〈y, y′〉 and in the latter case
we have 〈x, x′〉 <p<πp> 〈x, y′〉 from the construction of p<πp>. Since

≤q ⊇ ≤p<πp> this implies 〈x, x′〉 <q 〈x, y′〉. Hence ≤q ⊇ ≤p′<πp>.
Collecting the facts we can use proposition 2.8 again to conclude q �
[p′<πp>] as desired. 2

Lemma 5.11 Let P be a set of pomset and % a P(P)-refinement. Then

π((π(P))<%>) = π(P<%>)

Proof π is a natural extension to sets of pomsets so it will do to show:

π((π(p))<%>) = π(p<%>). ⊇: Immediate from p ∈ π(p).

⊆: Let a q ∈ π((π(p))<%>) be given. Then q v r for some r ∈ s<%>
where s v p. By definition of <%>, r ∈ s<%> implies there is a %-

consistent p. ref. πs for s with r = [s<πs>]. Since s v p we can by the
alternative characterization of v find a representative p′ of p such that

s = p′|Xs
and Xs is ≤p′-downwards closed. Xs ⊆ Xp′ so we can extend

πs to a %-consistent p. ref. πp′ for p′. Because s = p′|Xs
and πp′ equals πs

on Xs we see s<πs> = p′<πp′>|Xs<πs>
.

We now show that Xs<πs> is ≤p′<πp′>-downwards closed. Suppose
〈x, x′〉 ≤p′<πp′> 〈y, y′〉 and 〈y, y′〉 ∈ Xs<πs>. By construction of p′<πp′>

the former implies x ≤p′ y. The latter similarly implies y ∈ Xs. Since
Xs is ≤p′-downwards closed then x ∈ Xs. Now x′ ∈ Xπp′ (x) so because

πp′ equals πs on Xs we also have x′ ∈ Xπs(x). Hence 〈x, x′〉 ∈ Xs<πs>.

Using the alternative characterization of v again we deduce [s<πs>] v
[p′<πp′>]. From the transitivity of v, q v r = [s<πs>] and [p′<πp′>] ∈
p′<%> = p<%> we then get q ∈ π(p<%>) as desired. 2

Proposition 5.12 The operators of Ap
or and Aor are continuous.

Proof The continuity of the Aor-operators is derived from the continu-
ity of the Ap

or-operators which easely are checked. E.g., to see that ;por is

right continuous let D′ be a nonempty subset of Ap
or and suppose 〈P, Q〉

is a member of Ap
or.

30

Let D = 〈P, Q〉 ;por D′ = {〈P ∪Q ·P ′, Q ·Q′〉 | 〈P ′, Q′〉 ∈ D}. Then D1 =
{P ∪Q ·P ′ | 〈P ′, Q′〉 ∈ D′} = {P ∪Q ·P ′1 | P ′1 ∈ D′1} = P ∪Q ·D′1 where

the last equation follows from D′1 6= ∅ which in turn is a consequence
of D′ 6= ∅. Also D2 = {Q · Q′ | 〈P ′, Q′〉 ∈ D′} = Q · D′2. We then

have:
∨p

or(〈P, Q〉 ;por D′) = 〈⋃ D1,
⋃

D2〉 = 〈⋃(P ∪ Q · D′1), ⋃
(Q · D′2)〉 =

〈P ∪Q · (⋃
D′1), Q · (⋃

D′2)〉 = 〈P, Q〉 ;por ∨p
or D′.

2

Now were we have showed that Aor and Ap
or are algebraic cpos and seen

that the different operators are continuous on the respective domains,
we for BLRrec

Ω (X) get the denotational maps:

Aor[[]] : BLRrec
Ω (X) −→ [ENVAor

−→ Aor]

Ap
or[[]] : BLRrec

Ω (X) −→ [ENVAp
or
−→ Ap

or]

Ap
or[[]]1 and Ap

or[[]]2 will be used to refer to the first and second compo-
nent of Ap

or[[]] respectively. Notice that if E is a closed expression then

Aor[[E]] = Ap
or[[E]]2 ⊆ Ap

or[[E]]1.

The preorders induced by Aor[[]] and Ap
or[[]] will be denoted �or and �p

or

respectively.

The Finite Sublanguage

In this subsection we shall prove some of the claims (like the alternative
characterization Aor[[]] = δor℘(σ)) stated in the motivation of the mod-

els, not only for expressions of BLR, but for the hole finite sublanguage
BLRΩ.

To this end we extend the canonical map, ℘, to BLΩ by deriving it from

℘p needed for the Mp
or model.

31

Definition 5.13 The map ℘p : BLΩ −→ P(P) × P(P) is defined in-

ductively:

℘p(Ω) = 〈{ε}, ∅〉
℘p(a) = 〈{ε, a}, {a}〉
℘p(E0 ; E1) = 〈℘p

1(E0) ∪ ℘p
2(E0) · ℘p

1(E1), ℘
p
2(E0) · ℘p

2(E1)〉
℘p(E0 ⊕ E1) = 〈℘p

1(E0) ∪ ℘p
1(E1), ℘

p
2(E0) ∪ ℘p

2(E1)〉
℘p(E0 ‖ E1) = 〈℘p

1(E0)× ℘p
1(E1), ℘

p
2(E0)× ℘p

2(E1)〉
where as usual ℘p

1(E) = P and ℘p
2(E) = Q if ℘p(E) = 〈P, Q〉.

The ordinary canonical map ℘ is extended to BLΩ by ℘ = ℘p
2.

Observe that ∀E ∈ BLΩ. ℘p
2(E) ⊆ ℘p

1(E).

Example: From ℘p(Ω;d) = 〈{ε}, ∅〉 it can be seen that ℘p((a;b);(Ω;d⊕
c)) = 〈{ε, a, a - b, a - b - c}, {a - b - c}〉 and ℘p((a ; (Ω ; d)⊕ b) ; c) =
〈{ε, a, b, b - c}, {b - c}〉

One can think of ℘p
1 as the canonical association of pomset prefixes of

an expression:

Proposition 5.14

a) If E ∈ BL then ℘p
1(E) = π(℘(E)).

b) If E ∈ BLΩ then ℘p
1(E) = π(℘p

1(E)).

Proof By structural induction on E using (7) and ℘p
2 = ℘ in the case

of E = E0 ; E1. 2

Clearly the definition of ℘p is designed with the denotational map of the

Mp
or-model in mind. An easy structural induction in fact shows:

Proposition 5.15 Given an E ∈ BLΩ then ℘p(E) = 〈P, Q〉 implies
ε 6∈ Q ⊆ P 6= ∅ and P, Q are finite subsets of PN -free.

As a first step we prove the alternative characterizations of the denota-

tional maps for BLΩ.

32

Proposition 5.16 For any E ∈ BLΩ:

a) Aor[[E]] = δor(℘(E))

b) Ap
or[[E]]i = δor(℘

p
i (E)) for i = 1, 2

Proof a) follows directly by induction on the structure of E using the
properties of δor and in b) we use the fact that ℘ = ℘p

2 and Aor[[E]] equals

Ap
or[[E]]2 to see that a) also reads

Ap
or[[E]]2 = δor(℘

p
2(E))(13)

Then b) follows from Ap
or[[E]]1 = δor(℘

p
1(E)) which also is proven by

induction on the structure of E. Here we just show the case E = E0 ;E1:
Ap

or[[E]]1 = Ap
or[[E0]]1 ∪Ap

or[[E0]]2 · Ap
or[[E1]]1 definition of Ap

or[[]]

= δor(℘
p
1(E0)) ∪ δor(℘

p
2(E0)) · δor(℘

p
1(E1)) induction and (13)

= δor(℘
p
1(E0) ∪ ℘p

2(E0) · ℘p
1(E1)) distributivity of δor

= δor(℘
p
1(E0 ; E1)) = δor(℘

p
1(E)) definition of ℘p

2

A simple consequence of this proposition and proposition 5.14 is:

Corollary 5.17 Ap
or[[E]] = 〈δorπ(℘(E)), δor(℘(E))〉 for every E ∈ BL

With the results obtained so far we are already able to show that the
models are surjective.

Proposition 5.18 Every compact element of Ap
or and Aor is the deno-

tation of a finite expression.

Proof Again the result for Aor is easely derived from the corresponding
proof for Ap

or. To see this we for a given compact element a ∈ Ap
or just

find an expression E ∈ BLΩ ⊆ BLRΩ such that Aor[[E]] = a. Recall at
first that a is an element of Ap

or in the Mp
or model when

a = 〈δorπ(s), δor(t)〉(14)

where s and t are two finite sets of N -free pomsets such that ε 6∈ t ⊆
s 6= ∅.

33

Now if u is an arbitrary finite and nonempty set of N -free pomset such
that ε 6∈ u we from the last corollary and proposition 5.5 deduce there

exists an Eu ∈ BL with

Ap
or[[Eu]] = 〈δorπ(u), δor(u)〉(15)

Now let a compact element a like (14) be given. We deal with different
cases of s and t:

ε 6∈ s and t = ∅: Take E = Es ; Ω ∈ BLΩ, where Es is a BL-expression
fulfilling (15).

ε 6∈ s and t 6= ∅: Because ε 6∈ t and s 6= ∅ we can then find Es, Et ∈ BL

fulfilling (15) and E = (Es ; Ω)⊕Et ∈ BLΩ can be used.

s = {ε}: From t ⊆ s and ε 6∈ t follows t = ∅ so E = Ω will do.

ε ∈ s and s \ {ε} 6= ∅: Then no matter whether t = ∅ or t 6= ∅ we can as

above find an E ′ ∈ BLΩ such that Ap
or[[E

′]] = 〈δorπ(s \ {ε}), δor(t)〉.
Letting E = Ω⊕ E ′ we get Ap

or[[E]] = 〈δorπ({ε} ∪ (s \ {ε})), δor(∅ ∪
t)〉 = 〈δorπ(s), δor(t)〉.

Inspecting how s and t can be for compact elements of Ap
or like (14) we

see that all cases are covered. 2

Proposition 5.19 For every E ∈ BLRΩ we have:

a) Aor[[E]] = Aor[[Eσ]]

b) Ap
or[[E]] = Ap

or[[Eσ]]

Proof a) goes as b) which is a simple induction on the structure of E

except for the case E = F [%] which goes as follows:
Ap

or[[E]] = (Ap
or[[F]])[%]por definition of Ap

or[[]]
= (Ap

or[[Fσ]])[%]por induction
= (Ap

or[[(Fσ){%}]]) lemma 5.20 and Fσ ∈ BLΩ

= (Ap
or[[(F [%]σ)]]) = Ap

or[[E]] definition of σ 2

Lemma 5.20 If E ∈ BLΩ then

a) Aor[[E{%}]] = (Aor[[E]])[%]or

b) Ap
or[[E{%}]] = (Ap

or[[E]])[%]por

34

Proof At first a) is proven by structural induction (following the same
line as b) but without the complication of an extra component).

From a) and the definition of [%]por we as usual deduce

Ap
or[[E{%}]]2 = δor(A

p
or[[E]]2<℘(%)>)(16)

With this we then by induction on the structure of E ∈ BLΩ prove

Ap
or[[E{%}]]1 = δorπ(Ap

or[[E]]1<℘(%)>)

from which b) then follows using (16). We just show the cases E = a

and E = E0 ; E1:

E = a Then:
Ap

or[[a{%}]]1 = Ap
or[[%(a)]]1 definition of {%}

= δor(℘
p
1(%(a))) %(a) ∈ BL and proposition 5.16

= δorπ(℘(%(a))) ℘p
1 = π ◦ ℘ and proposition 5.14

= δorπ((℘(%))(a)) definition of ℘(%)
= δorπ({ε, a}<℘(%)>) proposition 2.6
= δorπ(Ap

or[[a]]1<℘(%)>)

E = E0 ; E1 We get:
Ap

or[[E{%}]]1 = Ap
or[[E0{%} ; E1{%}]]1 definition of {%}

= Ap
or[[E0{%}]]1 ∪ Ap

or[[E0{%}]]2 · Ap
or[[E1{%}]]1 definition of Ap

or[[]]
= δorπ(Ap

or[[E0]]1<℘(%)>)∪
δor(A

p
or[[E0]]2<℘(%)>) · δorπ(Ap

or[[E1]]1<℘(%)>) induction and (16)
= δorπ(Ap

or[[E0]]1<℘(%)>∪ proposition 5.9 and

Ap
or[[E0]]2<℘(%)> ·Ap

or[[E1]]1<℘(%)>) Ap
or[[E0]]2 ⊆ Ap

or[[E0]]1
= δorπ((Ap

or[[E0]]1 ∪ Ap
or[[E0]]2 · Ap

or[[E1]]1)<℘(%)>) proposition 2.6

= δorπ(Ap
or[[E0 ; E1]]1) definition of Ap

or[[]]
2

Proposition 5.21 The denotation of a finite expression is a compact
element.

Proof The proof for the Mp
or model is exemplary for the corresponding

for the Mor model. Suppose E ∈ BLΩ. Then

Ap
or[[E]] = 〈δor(℘

P
1 (E)), δor(℘(p

2(E))〉 proposition 5.16
= 〈δorπ(℘P

1 (E)), δor(℘(p
2(E))〉 proposition 5.14

35

By proposition 5.15 it then follows that Ap
or[[E]] ∈ Fin(Ap

or). Now if
E ∈ BLRΩ then by proposition 5.19 Ap

or[[E]] = Ap
or[[Eσ]] and because

Eσ ∈ BLΩ it follows that Ap
or[[E]] denotes a compact element in Ap

or. 2

6 Full Abstractness

In this section we connect the denotational semantics with the opera-
tional through full abstractness results which are obtained by lifting via

algebraicity of the involved preorders the corresponding results for the
finite sublanguage.

As mentioned in the motivation of the behavioural process equivalence-

ses in section 4 we are after the largest precongruence contained in the
relevant preorder. Of course we want the obtained preorder to be a

precongruence not only w.r.t. the ordinary combinators but also w.r.t.
to the recursive combinators. If this shall be nontrivial the operational

preorders have to be extended to open expressions. This is usually done
in what might be called the substitutive way:

E0 <∼ E1 iff for every closed syntactic substitution ρ, E0ρ <∼ E1ρ

Similar for <∼. As for equivalences, we for a preorder,v, use vΣ to denote

the largest Σ-precongruence contained in v.

Theorem 6.1 The following denotations are fully abstract:

a) Aor[[]] on BLRrec
Ω (X) w.r.t. <∼c

b) Ap
or[[]] on BLRrec

Ω (X) w.r.t. <∼c

Proof At first we draw the attention to the easely derivable general fact

(see [Eng89]) that if Σ ⊆ Σ′ and vΣ agrees with some Σ′-precongruence
then vΣ = vΣ′

. Because the denotational preorders qua induced by the

denotational maps, are precongruences w.r.t. all the combinators (the
recursion combinators inclusive), it is then enough to show the theorem

to hold where the operational precongruences now are understood to be
the largest w.r.t. the ordinary combinators. These shall in the sequel
ambiguously be denoted <∼c and <∼c.

36

Since the domains are finitary (proposition 5.18 and 5.21) the associated
denotational induced preorders are by proposition 5.3 then substitutive

as well as algebraic. The different operational preorders are by definition
substitutive from which it follows that the associated precongruences are

substitutive too, so if we can manage to show that the involved oper-
ational precongruences are algebraic and agrees with the denotational
preorders on the closed finite sublanguage the theorem clearly follows.

From theorem 6.4 we know that <∼ and <∼ are algebraic over BLRrec
Ω .

Since theorem 6.14 gives the corresponding full abstractness results for

the finite sublanguage it only remains to show the operational precon-
gruences (w.r.t. the ordinary combinators) are algebraic. Both <∼ and <∼
are algebraic and by theorem 6.15 BLRΩ is expressive w.r.t. both pre-

orders (restricted to BLRΩ). Theorem 6.3 then gives us that <∼c and <∼c

are algebraic. 2

We shall now prove all the propositions we used to get the full abstract-

ness results. In order to introduce the idea of a language being expressive
we need the notion of contexts.

When considering a language a context, C, is normally thought of as
an expression with zero or more “holes”, to be filled by some other
expression of the language. Strictly speaking C is not an expression of

the language, but if we think of a “hole” as a special constant symbol,
e.g., [], a context will be an expression of the language extended with

this constant and the filling, C[E], of a context C with an expression E, is
obtained by replacing the special constant with E. This allows us to use

the syntactic precongruence � on contexts just as we do on ordinary
expressions and for example prove that if C and C′ are FRECΣ(X)-
contexts and E, F are RECΣ(X) expressions then

E � F implies C[E] � C[F](17)

C � C′ implies C[E] � C′[E](18)

With contexts we are also able to to give an alternative characterization

of vΣ:
E vΣ F iff ∀LΣ-contexts C. C[E] v C[F],(19)

where E, F belongs to a languageL and LΣ ⊆ L is the language obtained

from the signature Σ.

37

Definition 6.2 Given a preorder, v, over a language L and a subset

A ⊆ L. L is said to be A-expressive w.r.t. v iff for every E ∈ L
there exists a characteristic L-context CE[] such that

∀F ∈ A. E vc F iff CE[E] v CE[F]

where c is the combinators of L. If A = L then L is simply said to be
expressive w.r.t. v.

Theorem 6.3 Let v be an algebraic preorder over RECΣ containing
the syntactic preorder �. If FRECΣ is Fin(E)-expressive w.r.t v (re-

stricted to FRECΣ) for every E ∈ RECΣ then vΣ is algebraic too.

Proof Given E, F ∈ RECΣ we show

E vΣ F ⇔ ∀E ′ ∈ Fin(E)∃F ′ ∈ Fin(F). E ′ vΣ F ′

⇐: Assume ∀E ′ ∈ Fin(E)∃F ′ ∈ Fin(F). E ′ vΣ F ′. By (19) it is enough
to show C[E] v C[F] for any given FRECΣ-context C. So suppose C
is such a context. Let an E ′′ ∈ Fin(C[E]) be given. Then there is an
FRECΣ-context C′ � C and an E ′ ∈ Fin(E) such that E ′′ � C′[E ′].
By assumption there is an F ′ ∈ Fin(F) with E ′ vΣ F ′ and so also

C′[E ′] v C′[F ′]. Clearly C′[F ′] ∈ FRECΣ and from F ′ � F it follows by
(17) and (18) that C′[F ′] � C[F ′] � C[F] so we actually have C′[F ′] ∈
Fin(C[F]). � ⊆ v and the transitivity of v gives E ′′ v C′[F ′] =: F ′′.
Hence for every E ′′ ∈ Fin(C[E]) we have found an F ′′ ∈ Fin(C[F]) such

that E ′′ v F ′′. Because v is algebraic this implies C[E] v C[F] as we
wanted.

⇒: Assume E vΣ F and let an E ′ ∈ Fin(E) be given. We shall find

an F ′ ∈ Fin(F) such that E ′ vΣ F ′. Since E ′ ∈ FRECΣ and FRECΣ

is Fin(F)-expressive there for (this E ′) is an FRECΣ context, C, such

that for all F ′ ∈ Fin(F)

C[E ′] v C[F ′] iff E ′ vΣ F ′

Let C be such a characteristic context for E ′. We then just have to

find a F ′ ∈ Fin(F) such that C[E ′] v C[F ′]. Since E ′ � E we by
(17) have C[E ′] � C[E] and because C is an FRECΣ-context this gives

C[E ′] ∈ Fin(C[E]). E vΣ F implies C[E] v C[F] and by the algebraicity
of v we deduce there must be an F ′′ ∈ Fin(C[F]) such that C[E ′] v F ′′.

38

Because F ′′ ∈ Fin(C[F]) we can then find a C′ � C and an F ′ ∈ Fin(F)
with F ′′ � C′[F ′]. By (18) F ′′ � C′[F ′] � C[F ′] and from � ⊆ v and

transitivity of v we obtain C[E ′] v C[F ′] as desired. 2

Algebraicity of the Operational Preoders

In order to prove the algebraicity of the operational preoders we extend
the syntactic preorder, �, to BLRrec

Ω (X) in the obvious way. I.e., � is
extended to CLRrec

Ω (X) simply by letting � be the least relation over

CLRrec
Ω (X) which satisfies the rules below:

E � E Ω � E E[rec x. E/x] � E

E � F, F � G

E � G

E0 � F0, E1 � F1

E0 ; E1 � F0 ; F1

E0 ⊕ E1 � F0 ⊕ F1

E0 ‖ E1 � F0 ‖ F1

E � F

E[%] � F [%]

Notice that in this way we may only have E � F [%] if E and F comes
from BLRrec

Ω (X). It is also important to notice that † � E implies

E = † and that � contains the old precongruence over BLRrec
Ω (X).

Theorem 6.4 The preorders <∼ and <∼ over BLRrec
Ω are algebraic.

Proof The preorder <∼ is proved algebraic in exactly the same way as
we now will prove <∼ algebraic. For <∼ we shall prove: E <∼ F iff ∀E ′ ∈
Fin(E)∃F ′ ∈ Fin(F). E ′ <∼ F ′

if : Assume the right hand side holds and let an s ∈ ∆∗ be given such
that E

s=⇒. We prove F
s=⇒. Proposition 6.5 below gives an E ′ ∈ Fin(E)

with E ′ s
=⇒. By assumption there is also an F ′ ∈ Fin(F) such that

E ′ <∼ F ′. Hence F ′ s
=⇒ and using the same proposition again then F

s
=⇒.

only if : Assume E <∼ F and let an E ′ ∈ Fin(E) be given.

Similar as in the if -part we can use the assumption and proposition 6.5
to show that for each s ∈ ∆∗ such that E ′ s=⇒ we can pick an Fs ∈ Fin(F)

with Fs
s
=⇒.

Now for any H ∈ BLΩ it is an easy matter to prove by induction on the

structure of H that {s ∈ ∆∗ | H s
=⇒} is finite. By proposition 4.3 we

39

have {s ∈ ∆∗ | E ′ s
=⇒} = {s ∈ ∆∗ | E ′σ s

=⇒}, so because E ′σ ∈ BLΩ we
conclude {Fs ∈ Fin(F) | E ′ s=⇒} is finite too.

Fin(F) is directed w.r.t. � wherefore there is an ub F ′ ∈ Fin(F) for
{Fs | E ′ s=⇒}. By proposition 6.6 � ⊆ <∼ this therefore means that for

every Fs, F ′ can perform s. But there is exactly one Fs for each E ′ s
=⇒

wherefore we conclude E ′ <∼ F ′. 2

Proposition 6.5 Given E ∈ BLRrec
Ω . Then

a) E
s=⇒ † iff ∃E ′ ∈ Fin(E). E ′ s=⇒ †

b) E
s
=⇒ iff ∃E ′ ∈ Fin(E). E ′ s

=⇒

Proof E ′ ∈ Fin(E) means E ′ � E and E ′ ∈ BLRΩ, so the if -part of

a) and b) are just special cases of the following proposition. only if :

a) Suppose E
s
=⇒ †. Because † � † ∈ CLRΩ we can use lemma 6.7 to

find E ′, F ′ ∈ CLRΩ such that E � E ′ s
=⇒ F ′ � †. † � F ′ only if F ′ = †

so this means E � E ′ s
=⇒ †. Now E ′ � E ∈ BLRrec

Ω clearly implies
E ′ ∈ BLRrec

Ω wherefore we from E ′ ∈ CLRΩ deduce E ′ ∈ BLRΩ and

thus E ′ ∈ Fin(E).

b) Suppose E
s
=⇒. This means E

s
=⇒ F for some F ∈ CLRrec

Ω . Using
F � Ω the rest goes as under a). 2

Proposition 6.6 <∼ and <∼ extends � on BLRrec
Ω .

Proof We shall show that when � is restricted to BLRrec
Ω then � ⊆ <∼

and � ⊆ <∼. So let E, F ∈ BLRrec
Ω be given such that E � F . <∼ is

immediate from lemma 6.10 and for <∼ assume E
s=⇒ †. By lemma 6.10

there is an F ′ such that F
s
=⇒ F ′ � †. Since † � F ′ only if F ′ = † we

are done. 2

We now show that if a (possible recursive) process is able to perform
a sequence, then there is a finite approximation which also can do this

sequence.

Lemma 6.7 Suppose E ∈ CLRrec
Ω . Then

E
s
=⇒ F � F ′′ ∈ CLRΩ implies ∃E ′, F ′ ∈ CLRΩ. E � E ′ s

=⇒ F ′ � F ′′

40

Proof By induction on the size of
s
=⇒. In the basic case we have E = F

and can choose E ′ = F ′ = F ′′. In the inductive step there are two main

cases:

E ↩→ G
s
=⇒′ F � F ′′: (where

s
=⇒ = ↩→ s

=⇒′ and the length of
s
=⇒′ is less

than that of
s
=⇒) By hypothesis of induction there are G′, H ∈ CLRΩ

such that G � G′ s
=⇒ H � F ′′. Now E ↩→ G � G′ implies by lemma

6.8 below the existence of E ′, G′′ ∈ CLRΩ with E � E ′ ↩→∗ G′′ �
G′. We can then use lemma 6.10 on G′′ � G′ s

=⇒ H to find an F ′

which fulfills G′′ s=⇒ F ′ � H. Collecting the facts so far we have

E � E ′ ↩→∗ G′′ s
=⇒ F ′ � H � F ′′ and so E � E ′ s

=⇒ F ′ � F ′′. For
E ′ ∈ CLRΩ we easely prove E ′ s

=⇒ F ′ implies F ′ ∈ CLRΩ so this

case is settled.

E
a−→ G

s′
=⇒ F � F ′′: Similar but using lemma 6.9 in place of lemma 6.8.2

Lemma 6.8 If E ∈ CLRrec
Ω then

E ↩→ F � F ′′ ∈ CLRΩ implies ∃E ′, F ′ ∈ CLRΩ. E � E ′ ↩→∗ F ′ � F ′′

Proof If F ′′ = Ω the lemma follows by choosing E ′ = F ′ = Ω ∈ CLRΩ.
Hence we do not have to consider cases where F ′′ = Ω when we prove

the lemma by induction on the size, m, of the internal step E ↩→m F .
This means there is a proof of E ↩→ F from the rules of ↩→ with no more

than m stages. See [Win85] for the details. Since ↩→0 = ∅ the basic case
is trivial.

We now assume the lemma holds for m when proving it for m + 1 by

considering the different rules.

E = Ω ↩→m+1 Ω = F � F ′′: Not considered.

E = E0 ; E1 ↩→m+1 F � F ′′: There are two subcases:

E0 = † and F = E1: Let E ′ = † ; F ′′ ∈ CLRΩ and F ′ = F ′′.
F = F0 ; E1 where E0 ↩→m F0: When F ′′ 6= Ω it can then be argued

that F ′′ � F0 ; E1 implies F ′′ = F ′′0 ; E ′′1 for some F ′′0 � F0 and

E ′′1 � E1. By hypothesis of induction there are E ′0, F ′0 ∈ CLRΩ

with E0 � E0 ↩→∗ F ′0 � F ′′0 . Because F ′′ ∈ CLRΩ implies

E ′′1 ∈ BLRΩ we then have E ′ := E ′0 ;E ′′1 ∈ CLRΩ and F ′ := F ′0 ;
E ′′1 ∈ CLRΩ. Also E ′ ↩→∗ F ′ and E ′ = E ′0 ;E

′′
1 � E0 ;E

′′
1 � E0 ;E1

so as F ′′ = F ′′0 ; E ′′1 � F ′0 ; E ′′1 = F ′.

41

E = E0 ⊕ E1, E0 ‖ E1 ↩→m+1 F � F ′′: Similar.

E = G[%] ↩→m+1 F � F ′′: There are six subcases to be dealt with.

G = Ω and F = Ω: Not considered since Ω � F ′′ only if F ′′ = Ω.

G = a and F = %(a): Then E, F ∈ BLΩ. Chose E ′ = E and F ′ =
F .

G = G0 ; G1 and F = G0[%] ; G1[%]: When F ′′ is different from Ω we
can from F � F ′′ ∈ BLRΩ deduce F ′′ = F ′′0 ; F ′′1 where for
i = 0, 1 either (F ′′i = Ω) or (F ′′i = G′′i [%] and Gi � G′′i ∈ BLRΩ).

There are actually four subcases to consider, but we just treat
F ′′0 = G′′0[%] andF ′′1 = Ω because the other follow in the same way.

Choose E ′ = (G′′0 ;Ω)[%] ∈ BLRΩ and F ′ = G′′0[%] ;Ω[%] ∈ BLRΩ.
Then clearly E ′ ↩→ F ′ and E ′ � (G0 ; Ω)[%] � (G0 ; G1)[%] = E

and also F ′′ = G′0[%] ; Ω � G′′0[%] ; Ω[%] = F ′.
G = G0 ⊕G1 and G = G0 ‖G1: Analogous to the last case.

F = H[%] where G ↩→m H: Now Ω 6= F ′′ � H[%] only if F ′′ = H ′′[%]
for some H ′′ � H. By hypothesis of induction there are G′, H ′ ∈
BLRΩ such that G � G′ ↩→∗ H ′ � H ′′. Now G′ � G ∈ BLRrec

Ω
and G′ ∈ CLRΩ implies G′ ∈ BLRΩ and similar for H ′ so

we obtain E ′ := G′[%] ∈ BLRΩ, F ′ := H ′[%] ∈ BLRΩ and
E ′ ↩→∗ F ′. Clearly E ′ � E and F ′′ = H ′′[%] � H ′[%] = F ′.

E = rec x. G ↩→m+1 G[rec x. G/x] = F � F ′′: Choose E ′ = F ′ = F ′′ ∈
CLRΩ. Then of course E ′ ↩→0 F ′ � F ′ = F ′′ and because E ′ � F =
G[rec x. G/x] � rec x. G = E we also have E ′ � E.

2

Lemma 6.9 If E ∈ CLRrec
Ω and a ∈ ∆ then

E
a−→ F � F ′′ ∈ CLRΩ implies ∃E ′, F ′ ∈ CLRΩ. E � E ′ a−→ F ′ � F ′′

Proof At first the lemma is proven for the case F ′′ 6= Ω. This will be
done by induction on the size, m, of E

a−→m F . Only the inductive step

needs attention. We consider each rule in turn under the assumption
F ′′ 6= Ω and that the lemma holds for m.

E = a
a−→m+1 † = F � F ′′: Clearly A = a and F ′′ = †. Choose E ′ = a

and F ′ = †.
E = E0 ; E1

a−→m+1 F0 ; E1 = F where E0
a−→m F0: Ω 6= F ′′ � F0 ; E1 im-

plies F ′′ = F ′′0 ; E ′′1 where F0 � F ′′0 ∈ CLRΩ and E1 � E ′′1 ∈ BLRΩ.

42

By induction then ∃E ′0 ∈ CLRΩ. E0 � E ′0
a−→ F ′0 � F ′′0 . Letting

E ′ = E ′0 ; E ′′1 we have E ′ ∈ CLRΩ and E ′ � E ′0 ; E1 � E and using

the same inference rule finally E ′ = E ′0 ; E ′′1
a−→ F ′0 ; E ′′1 =: F ′ and

also F ′′ = F ′′0 ; E ′′1 � F ′.

E = E0 ‖ E1
a−→m+1 F0 ‖ F1 = F � F ′′: Similar/ symmetric.

Now from the rules of
a−→ obviously E

a−→ F only if † occurs in F . By

structural induction on F an F ′′′ ∈ CLRΩ can then be found such that
F � F ′′′ 6= Ω. As above appropriate E ′, F ′ ∈ CLRΩ are found for F ′′′.
When F ′′ = Ω we have F ′′′ � F ′′ so this case is dealt with. 2

Up til now we have showed that if a process is able to perform a sequence,
then there is a finite approximation which also can do this sequence.

Now we take the opposite angel and show that if E ′ is an approximation
of E then E can do all the sequences E ′ can. A stronger formulation of
this is:

Lemma 6.10 Suppose E, E ′ ∈ CLRrec
Ω . Then

E � E ′ s
=⇒ F ′ implies ∃F. E

s
=⇒ F � F ′

Proof As usual by induction on the size of
s=⇒ using the analogous for

single steps, namely that given E, E ′ ∈ CLRrec
Ω we have:

a) E � E ′ ↩→ F ′ implies ∃F. E ↩→∗ F � F ′

b) E � E ′ a−→ F ′ implies ∃F. E
a=⇒ F � F ′

If E ′ � E and E ′ by a single step evolves to F ′ we cannot expect that
E immediately by a similar step can evolve into F with F � F ′. This

is because E ′ � E can imply that some of the recursive subexpressions
of E have been “unwound” by � in order to obtain an expression equal
to E ′ up to Ω at some places in E ′. However by the recursion rule

for ↩→ it is possible to do one unwinding, so given E ′ � E we would
ideally like to unwind E soley by internal unwinding steps, u↩→, to an

E ′′ which equals E ′ up to Ω. Then we could be sure that whatever
single step E ′ could do, E ′′ would be able to do similarly (perhaps with

some extra internal steps). There is however the snag about it that
the definition of ↩→ does not open up for unwinding in the right hand

43

argument of the ;-combinator and neither in the arguments of the ⊕-
combinator. We shall therefore introduce E ′′ �u E ′ to mean that except

for such unwindings E ′′ is equal to E ′ up to Ω (both �u and u↩→ ⊆ ↩→ are
formalized immediately after the proof). With this we then both for a)

and b) at first use lemma 6.11 to find an E ′′ �u E ′ such that E u↩→∗ E ′′.
Finally we use lemma 6.13 to find an F �u F ′ such that in case of a)
E ′′ ↩→∗ F and in case of b) E ′′ a−→ F. 2

We define the subpreorder, �u⊆ � as the least relation over CLRrec
Ω (X)

which can be inferred from the rules:

E �u E
Ω �u E

E �u F, F �u G

E �u G

E �u F

E[%] �u F [%]

E0 �u F0, E1 � F1

E0 ; E1 �u F0 ; F1

E0 � F0, E1 � F1

E0 ⊕ E1 �u F0 ⊕ F1

E0 �u F0, E1 �u F1

E0 ‖ E1 �u F0 ‖ F1

Example: (rec y. E) ; (a ‖ rec x. (a ‖ x)) �u (rec y. E) ; rec x. a ‖ x but
(a ‖ rec x. (a ‖ x)) ; rec y. E 6�u (rec x. a ‖ x) ; rec y. E

This definition of �u deserves some remarks. The preorder � is used in

the premisses of the ;- and ⊕-inference rule just in order to capture the
unwindings which cannot be done by internal steps. There is no rule

for rec x. . This reflects that the expressions are equal up to Ω (except
of course in connection with ; and ⊕). Another consequence is that,
as opposed to �, if E �u F and E 6= Ω we can conclude F is on the

same form as E with components related according to the rules of �u.
E.g., E0 ; E1 �u F implies F = F0 ; F1, E0 �u F0 and E1 � F1. Also

rec x. E �u F implies F = rec x. E.

We write E u↩→ F for an internal step that solely originate in an un-
winding of a recursive subexpression. Formally u↩→ ⊆ ↩→ is defined to be

the least relation over CLRrec
Ω which can be deduced from rec x. E u↩→

E[rec x. E/x] and the u↩→ equivalent versions of the ↩→ inference rules.

Lemma 6.11 If E, E ′ ∈ CLRrec
Ω then E � E ′ implies ∃F. E u↩→∗ F �u

E ′.

44

Proof By induction on the number of rules used in the proof of E ′ �
E. There are three case in the basis of which the most interesting is:

E ′ = G[rec x. G/x] � rec x. G = E. By the recursion rule for u↩→ it is
seen that E u↩→ G[rec x. G/x] = E ′ �u E ′ so we can choose F = E ′.

Now for the inductive step there are five ways E ′ � E could have been

obtained.

E ′ � E ′′, E ′′ � E: By hypothesis of induction there are F ′ and F ′′ such
that E ′′ u↩→∗ F ′ �u E ′ and E u↩→∗ F ′′ �u E ′′. From lemma 6.12

below we know that F ′′ �u E ′′ u↩→∗ F ′ implies the existence of an F
such that F ′′ u↩→∗ F �u F ′. Then we actually have E u↩→∗ F ′′ u↩→∗
F �u F ′ �u E ′ as we want.

E ′ = E ′0 ; E ′1, E = E0 ; E1 and E ′0 � E0, E
′
1 � E1: Using the inductive hy-

pothesis on E0 � E ′0 we find an F0 such that E0
u↩→∗ F0 �u E ′0. Then

E = E0 ; E1
u↩→∗ F0 ; E1 and since E ′1 � E1 we by definition of �u

actually have E ′ = E ′0 ; E ′1 �u F0 ; E1 and we can let F = F0 ; E1.

E ′ = E ′0 ⊕ E ′1, E = E0 ⊕E1 and E ′0 � E0, E
′
1 � E1: Then also E �u E ′

so we can choose F = E because E u↩→0 F = E �u E ′.

E ′ = E ′0 ‖ E ′1, E = E0 ‖ E1 and E ′0 � E0, E
′
1 � E1: By induction there for

i = 0, 1 exists an Fi such that Ei
u↩→∗ Fi �u E ′i, so we get E =

E0 ‖E1
u↩→∗ F0 ‖F1. Letting F = F0 ‖F1 we have F �u E ′0 ‖E ′1 = E ′.

E ′ = G′[%], E = G[%] and G′ � G (and G, G′ ∈ BLRrec
Ω): Like above we

find an H such that G u↩→∗ H �u G′. By definition of �u we then
have F := H[%] �u G′[%] = E ′ and of course E u↩→∗ F . 2

Lemma 6.12 If E, E ′ ∈ CLRrec
Ω then

E �u E ′ u↩→∗ F ′ implies ∃F. E u↩→∗ F �u F ′

Proof By induction on the number of unwinding steps using:

E �u E ′ u↩→ F ′ ⇒ ∃F. E u↩→ F �u F ′(20)

which in turn is proven by induction on the size, m, of E ′ u↩→m F ′.
We can assume (20) holds for m when proving (20) for m + 1. The
different rules are handled one by one:

E ′ = rec x. G u↩→m+1 G[rec x. G/x] = F ′: From E �u rec x. G follows E =
rec x. G. Let F = F ′.

45

E ′ = E ′0 ; E ′1 u↩→m+1 F ′0 ; E ′1 = F ′ where E ′0 u↩→m F ′0: E ′0 ; E ′1 �u E implies
E = E0 ; E1 where E ′0 �u E0 and E ′1 � E1. We can then use the

hypothesis of induction to get an F0 with E0
u↩→ F0 �u F ′0. Then

also E = E0 ; E1
u↩→ F0 ; E1 �u F ′0 ; E ′1 = F ′ and we can choose

F = F0 ; E1.

E ′ = E ′0 ‖ E ′1 u↩→m+1 F ′: Similar/ symmetric as the rule for ;.

E ′ = G′[%] u↩→m+1 H ′[%] = F ′ where G′ u↩→m H ′: E �u G′[%] only if E =

G[%] and G′ �u G, so by induction G u↩→ H �u H ′ for some H and
we get E u↩→ H[%] �u H ′[%] = F ′ as desired.

2

Lemma 6.13 Suppose E, E ′ ∈ CLRrec
Ω and a ∈ ∆. Then

a) E �u E ′ ↩→ F ′ implies ∃F. E ↩→∗ F � F ′

b) E �u E ′ a−→ F ′ implies ∃F. E
a−→ F � F ′

Proof a) By induction on the size, m, of the internal step E ′ ↩→m F ′.
The basic case is trivial and in the inductive case the lemma can be
assumed to be true for all internal steps of size m. We now investigate

all the rules.
Using the fact that �u ⊆ � the inference rules are handled exactly

as in the proof of lemma 6.12. E.g., E ′ = G′[%] ↩→m+1 H ′[%] = F ′

where G′ ↩→m H ′. E �u G′[%] only if E = G[%] where G′ �u G, so by

hypothesis of induction then G ↩→∗ H for some H � H ′. By definition
of � we have F := H[%] � H ′[%] = F ′ and thus also E = G[%] ↩→∗
H[%] = F . We will therefore just look at the ordinary rules for ↩→.

E ′ = Ω ↩→m+1 Ω = F ′: Then E ′ = F ′ and we can choose E = F . Then
E ↩→0 F = E �u E ′ = F ′ and since �u ⊆ � we are done.

E ′ = † ; E ′1 ↩→m+1 E ′1 = F ′: †;E1 �u E implies E = †;E1 where E ′1 � E1.

With F = E1 we then get E = † ; E1 ↩→ F = E1 � E ′1 = F ′.

E = E ′0 ⊕ E ′1 ↩→m+1 F ′: Suppose w.l.o.g. F ′ = E ′0. E ′0 ⊕ E ′1 �u E only

if E = E0 ⊕ E1 where E ′0 � E0 and E ′1 � E1. But then also
E ↩→ E0 � E ′0 = F ′.

E ′ = E ′0 ‖ E ′1 ↩→m+1 F ′: Similar/ symmetric as the case with E ′ = † ; E ′1
but with the additional use of �u ⊆ �.

46

E ′ = G′[%] ↩→m+1 F ′: then E ′ �u E means E = G[%] where G′ �u G.
There are five ordinary rules according to the structure of G′:

G′ = Ω and F ′ = Ω: Let F = E. Since E ′ �u E implies E ′ � E we

then get E ↩→0 F = E � E ′ = Ω[%] � Ω = F ′.
G′ = a and F ′ = %(a): a �u G only if G = a, so we actually have

E = E ′ and one can choose F = F ′.
G′ = G′0 ; G′1 and F ′ = G′0[%] ; G′1[%]: G′0 ; G′1 �u G implies G = G0 ;

G1 where G′0 �u G1 and G′1 � G1. Again since �u ⊆ � we by
letting F = G0[%] ;G1[%] get F ′ � F and also E = (G0 ;G1)[%] ↩→
G0[%] ; G1[%] = F .

G′ = G′0 ⊕G′1 and G′ = G′0 ‖G′1: Similar as last case.

b) By induction on the size of the step E ′ a−→ F ′. The proof follows
exactly the line of a). 2

The Finite Sublanguage

In this subsection we give the full abstractness results for BLRΩ and
show the expressiveness of BLRΩ w.r.t. <∼ and <∼.

Theorem 6.14 The following denotations are fully abstract:

a) Aor[[]] on BLRΩ w.r.t. <∼c

b) Ap
or[[]] on BLRΩ w.r.t. <∼c

Proof a) By definition <∼c ⊆ BLRΩ ×BLRΩ is a precongruence w.r.t.
the combinators of BLRΩ. We then just have to show �or = <∼c. By

(19) this follows if we can prove for all E0, E1 ∈ BLRΩ

E0 �or E1 iff ∀BLRΩ-contexts C. C[E0] <∼ C[E1]

only if : Assume E0 �or E1 and let a BLRΩ-context, C, be given. �or

is a precongruence w.r.t. the combinators of BLRΩ so by structural
induction C[E0] �or C[E1] or equally Aor[[C[E0]]] ⊆ Aor[[C[E1]]]. From the

⊆-monotonicity of δw then δw(Aor[[C[E0]]]) ⊆ δw(Aor[[C[E1]]]) which by
proposition 6.16.a) implies C[E0] <∼ C[E1].

if : Assume E0 6�or E1 or equally Aor[[E0]] 6⊆ Aor[[E1]]. From a) of lemma

6.18 we see there is a BLRΩ-context, C, such that δw(Aor[[C[E0]]]) 6⊆
δw(Aor[[C[E1]]]). Then also C[E0] 6<∼ C[E1] by proposition 6.16.a).

47

b) Similar to a) using b) of proposition 6.16 and lemma 6.18, and in the
only if part recalling the definition of �p

or to deduce δw(Aor[[C[E0]]]1) ⊆
δw(Aor[[C[E1]]]1) from C[E0] �p

or C[E1]. 2

Theorem 6.15 BLRΩ is expressive w.r.t. both <∼ and <∼.

Proof <∼: Suppose E0 ∈ BLRΩ. Let C be the BLRΩ-context, [][%],
found by a) of lemma 6.18. Given any E1 ∈ BLRΩ we show

E0 <∼
c E1 iff C[E0] <∼ C[E1]

only if : Since <∼c by definition is a precongruence it follows that C[E0] <∼c

C[E1]. Again by definition of <∼c also <∼c ⊆ <∼.

if : C[E0] <∼ C[E1]

⇒ δw(Aor[[C[E0]]]) ⊆ δw(Aor[[C[E1]]]) proposition 6.16.a)
⇒ Aor[[E0]] ⊆ Aor[[E1]] by choice of C
⇒ E0 �or E1 definition of �or

⇒ E0 <∼c E1 by the theorem above

<∼: Similar as for <∼ but using the BLRΩ-context [][%];e from b) of lemma
6.18. 2

Proposition 6.16 For all E0, E1 ∈ BLRΩ:

a) δw(Aor[[E0]]) ⊆ δw(Aor[[E1]]) iff E0 <∼ E1

b) δw(Ap
or[[E0]]1) ⊆ δw(Ap

or[[E1]]1) iff E0 <∼ E1

Proof a) follows with exactly the same arguments as b) which in return

follows from the definition of <∼ and the general deduction (E ∈ BLRΩ)
δw(Ap

or[[E]]1) = δw(Ap
or[[Eσ]]1) proposition 5.19

= δw(℘p
1(Eσ)) proposition 5.16 and Eσ ∈ BLΩ

= {w ∈ W | Eσ
w=⇒} by b) of lemma 6.17 below

= {w ∈ W | E w
=⇒} proposition 4.3 2

48

In reading the following lemma recall our convention to identify ∆∗ and
W .

Lemma 6.17 Given E ∈ BLΩ and s ∈ ∆∗. Then

a) E
s
=⇒ † iff ∃p ∈ ℘(E). s � p

b) E
s
=⇒ iff ∃p ∈ ℘p

1(E). s � p

Proof a) Before we prove each implication notice that p ∈ ℘(E) implies

p 6= ε.

if : By induction on the structure of E.

E = Ω: Then ℘(E) = ∅ and we cannot have p ∈ ℘(E).

E = a: ℘(a) = {a} and we have p = a. Clearly a � a implies s = a.
The result then follows from a

a=⇒ †.
E = E0 ; E1: From ℘(E) = ℘(E0) · ℘(E1) we see p = p0 · p1 where

pi ∈ ℘(Ei) for i = 0, 1. s � p0 · p1 implies the existence of s0 � p0

and s1 � p1 such that s = s0 · s1. By hypothesis of induction then

E0
s0=⇒ † and E1

s1=⇒ † and so E0 ; E1
s0=⇒ † ; E1 ↩→ E1

s1=⇒ † as desired.

E = E0 ⊕ E1: p ∈ ℘(E) = ℘(E0)∪℘(E1) implies w.l.o.g. p ∈ ℘(E0). By
hypothesis of induction then also E0 ⊕E1 ↩→ E0

s
=⇒ †.

E = E0 ‖ E1: p ∈ ℘(E) = ℘(E0) × ℘(E1) implies p = p0 × p1 for some

p0 ∈ ℘(E0) and p1 ∈ ℘(E1). It can be shown that s � p0×p1 implies
the existence of s0 � p0 and s1 � p1 such that s is the interleaving
of s0 and s1. Hence we can use the hypothesis of induction to see

Ei
ai=⇒ † for i = 0, 1. By appropriate interleaved usage of the ‖-rules

for
a−→ we then get E0 ‖ E1

s
=⇒ . . .

an=⇒ † ‖ † ↩→ †.
only if : Also by induction on the structure of E.

E = Ω: Trivial because Ω
s
=⇒ F only if s = ε.

E = a: a can only do the step a
a−→ † so s = a. But s = a � a ∈ {a} =

℘(a).

E = E0 ; E1: The only way a process of the form E0 ; E1 can evolve to †
is if E0

s0=⇒ † and E1
s1=⇒ †, so we must have s = s0 ·s1. By hypothesis

then for i = 0, 1 si � pi where pi ∈ ℘(Ei). By �-monotonicity of ·
then s = s0 · s1 � s0 · p1 � p0 · p1 ∈ ℘(E0) · ℘(E1).

49

E = E0 ⊕ E1: Inspecting the definition of ↩→ and
a−→ one easely sees

that E0 ⊕ E1
s
=⇒ † implies E0 ⊕ E1 ↩→ F

s
=⇒ † where F = E0 or

F = E1. The result then follows from the hypothesis of induction
and definition of ℘.

E = E0 ‖ E1: From the ‖-rules E0 ‖ E1
s
=⇒ † only if E0 ‖ E1

s
=⇒ † ‖ † and

s is the interleaving of some s0 and s1 such that Ei
si=⇒ †. Using

the hypothesis of induction together with (4), (p× q) · (p′ × q′) �
(p · p′)× (q · q′), the desired result is then obtained similarly as in

the case E = E0 ; E1.

b) Here we use a) and the fact ℘ = ℘p
2.

if : By induction on the structure of E.

E = Ω: ℘p
1(Ω) = {ε} and we must have s = p = ε. But E ↩→0 E.

E = a: ℘p
1(a) = {a}. There are two possibilities for p—either p = ε

or p = a. The former case goes as above and the latter as in the
corresponding case of a).

E = E0 ; E1: ℘p
1(E) = ℘p

1(E0)∪℘p
2(E0) ·℘p

1(E1). If p ∈ ℘p
1(E0) the result

follows from hypothesis of induction. Otherwise p must equal p0 ·p1

where p0 ∈ ℘p
2(E0) and p1 ∈ ℘p

1(E1). From s � p0 · p1 follows

s = s0 · s1 where s0 � p0 and s1 � p1. Since p0 ∈ ℘p
2(E0) we can

use a) to get E0
s0=⇒ †. From s1 � p1 ∈ ℘p

1(E1) we by hypothesis of

induction also have E1
s1=⇒. Finally we get E0 ;E1

s0=⇒ † ;E1 ↩→ E1
s1=⇒.

E = E0 ⊕ E1 and E = E0 ‖ E1: On expressions of this form ℘p
1 is defined

like ℘p
2 so the arguments are identical to those of a).

only if : Also by induction on the structure of E.

E = Ω: Ω can only perform internal steps wherefore s = ε. But ε � ε ∈
{ε} = ℘p

1(Ω).

E = a: a can only do the step a
a−→ † so either s = ε or s = a. In both

cases we have s � s ∈ {ε, a} = ℘p
1(a).

E = E0 ; E1: For E0 ; E1
s
=⇒ F there are two cases:

E0
s0=⇒ †, E1

s1=⇒ F , where s = s0 · s1, or

E0
s
=⇒ F ′ for some F ′ such that F ′ ; E1 ↩→∗ F .

In the latter case we can apply the hypothesis of induction to find

a p ∈ ℘p
1(E0) such that s � p. As ℘p

1(E0) ⊆ ℘p
1(E0 ; E1) this case is

settled. In the former case we can use a) to find a p0 ∈ ℘p
2(E0) with

50

s0 � p0 and by induction there is a p1 ∈ ℘p
1(E1) such that s1 � p1.

From the �-monotonicity of · we then deduce s = s0 · s1 � p0 ·p1 ∈
℘p

2(E0) · ℘p
1(E0) ⊆ ℘p

1(E0 ; E1) as we want.

E = E0 ⊕ E1 and E = E0 ‖ E1: Similar arguments as in a). 2

Before proving the lemma giving the characteristic contexts used to

show full abstractness and BLRΩ expressive, we need to formalize the
notion of fission refinement formulated in section 5 when finding the
denotational models.

Our notation for fission refinements, which splits an atomic action into
two, is inspired by Hennessy [Hen87]. Now let a finite multiplicity func-

tion, m, be given and define n(m) = max{k | k = 1 or ∃a ∈ ∆. m(a) =
k} ∈ IN+. Since ∆ is infinite, but countable, there exists an injective
function h : ∆×{S, F}×{1, . . . , n(m)} → ∆. For convenience we shall

abbreviate h(〈a, S, k〉) by aSk
and h(〈a, F, k〉) by aFk

.

With such a function we associate a BL-refinement, %, by defining for

all a ∈ ∆:
%(a) = aS1

; aF1
⊕ . . .⊕ aSn(m)

; aFn(m)

and call it an m-fission refinement.
The corresponding ε-free P(P)-refinement, (ambiguously denoted) %,

has
%(a) = {aS1

· aF1
, . . . , aSn(m)

· aFn(m)
}

and is also called an m-fission refinement.

We shall refer to aSk
and aFk

as a fission pair of the m-fission refinement
%. I.e., the pair aSk

and aFk
is a fission of a.

With such refinements a %-consistent p. ref., πp, for an lpo p, corresponds
to a certain choice of óne fission pair, aSk

and aFk
, for each a ∈ ∆ and

a-occurrence in p (where an a-occurrence in p is an x ∈ Xp with `p(x) =

a). Thus we can define two injective functions,
πp

S ,
πp

F : Xp → Xp<πp>,
which (together) for an x ∈ Xp yield the occurrence in Xp<πp> of the

corresponding fission pair. I.e., x
πp

S (respectively x
πp

F) is that element
〈x, x′〉 where x′ ∈ Xπp(x) and `πp(x)(x

′) = aSk
(respectively aFk

) for some

1 ≤ k ≤ n(m), a = `p(x). On the other hand it is clear from the
construction of p<πp> that if z ∈ Xp<πp> is labelled aSk

then there is

51

an unique x ∈ Xp with x
πp

S = z. Similar for aFk
. We will drop the

superscript, πp, when it is clear from the context.

However in order to be able to distinguish the fission pairs associated
with different a-occurrences certain %-consistent p. ref.’s are of special
interest.

Suppose p is an lpo with mp ≤ m. Then there clearly are %-consistent
p. ref.’s, πp, injective in the sense:

∀x, y ∈ Xp. x 6= y ⇒ [πp(x)] 6= [πp(y)]

We call such a πp for a distinguishing %-consistent particular fission ref.

for p.

We say that an lpo q is p-reflecting under the distinguishing p. fission
ref., πp, if and only if any pair of concurrent elements from p have over-
lapping Start/ Finish (fission pairs) occurrences in q, formally: iff q =

〈Xp<πp>,≤q, `p<πp>〉,≤q ⊇ ≤p<πp> (so q � [p<πp>] ∈ p<%>) and for
all x, y ∈ Xp:

if

x

cop

y
then

xS <q yF

and
yS <q xF

With this notation we can then say for pomsets q′ and p′ that q′ is
p′-reflecting under the fission refinement % iff there are representatives

p and q of p′ and q′ respectively together with a distinguishing %-
consistent p. fission ref., πp, such that q is p-reflecting under πp

Lemma 6.18 Given an expression E0 ∈ BLRΩ. Then there is a refine-

ment combinator, [%],

a) such that for all E1 ∈ BLRΩ

Aor[[E0]] 6⊆ Aor[[E1]]⇒ δw(Aor[[E0[%]]]) 6⊆ δw(Aor[[E1[%]]])

b) and an action e ∈ ∆ such that for all E1 ∈ BLRΩ

Ap
or[[E0]] 6⊆ Ap

or[[E1]]⇒ δw(Ap
or[[E0[%] ; e]]1) 6⊆ δw(Ap

or[[E1[%] ; e]]1)

Proof a) Let m be the finite multiplicity function which is the lub for
{mp | p ∈ Aor[[E0]]} (finite set). Choose an m-fission refinement %. The

52

associated refinement combinator, [%], is the one we are after. To see
this let an arbitrary E1 ∈ BLRΩ be given such that Aor[[E0]] 6⊆ Aor[[E1]].

The proof is by contradiction. Assume on the contrary δw(Aor[[E0[%]]]) ⊆
δw(Aor[[E1[%]]]). Aor[[E0]] 6⊆ Aor[[E1]] only if there is a p ∈ Aor[[E0]] such

that p 6∈ Aor[[E1]]. p ∈ Aor[[E0]] implies Por(p) and by definition also
mp ≤ m. By lemma 6.20 there is a w ∈ δw(p<%>) which is p-reflecting.

Now w ∈ δw(p<%>) and p ∈ Aor[[E0]] implies w in δw(Aor[[E0]]<%>)

which, because δw ◦ δor = δw, equals δw(δor(Aor[[E0]]<%>)). By definition
of [%]or then also w ∈ δw(Aor[[E0[%]]]) and so w ∈ δw(Aor[[E1[%]]]) by the

assumption. Reversing the arguments we find a q ∈ Aor[[E1]] such that
w is a linearization of a pomset, r, of q<%>. Because w is p-reflecting
we then deduce from lemma 6.19 that p � q. Since Por(p) and Aor[[E1]]

is δor-closed then p ∈ Aor[[E1]]—a contradiction.

b) Let E0 ∈ BLRΩ be given. As for Aor[[]] we are after a fission re-

finement, %, such that any pomset, p, associated with the denotation
of E0 can be reflected in a linearization of q ∈ p<%>, but this time with
the additional requirement that e does not occur in any pomset which

steems from a <%>-refinement of a pomset associated with the denota-
tion of an arbitrary E1 ∈ BLRΩ. Since E1 can be any finite expression

there are practical no limitations on what singleton pomsets there may
be in a pomset from its denotation. We can therefore just as well pick

an arbitrary e ∈ ∆ and seek a fission refinement % for E0 such that

∀a ∈ ∆. e 6∈ L(%(a))(21)

Let m be the lub of the multiplicity functions of the pomsets of Ap
or[[E0]],

i.e., m =
∨{mp | p ∈ Ap

or[[E0]]1∪Ap
or[[E0]]2} (finite because E0 ∈ BLRΩ).

∆ \ {e} is (countable) infinite because ∆ is, so similarly as we argued
for the existence of fission refinements we can also find an m-fission

refinement % with desired property (21). Remember when dealing with
fission refinements we use the same symbol for the BL-fission refinement

and the P(P)-fission refinement.

Before we continue observe that for any E ∈ BLRΩ:

Ap
or[[E[%] ; e]]1 = Ap

or[[E[%]]]1 ∪Ap
or[[E[%]]]2 · {e}

Now let any E1 ∈ BLRΩ be given and suppose Ap
or[[E0]] 6⊆ Ap

or[[E1]].

Assume on the contrary δw(Ap
or[[E0[%] ; e]]1) ⊆ δw(Ap

or[[E1[%] ; e]]1). There
are two ways how Ap

or[[E0]] 6⊆ Ap
or[[E1]] can be:

53

Ap
or[[E0]]2 6⊆ Ap

or[[E1]]2: Then there is a p ∈ Ap
or[[E0]]2 with p 6∈ Ap

or[[E1]]2.
Since Ap

or[[E0]]2 is δor-closed p must have the Por-property. Because %

is m-fission refinement and mp ≤ m we can use lemma 6.20 to find a
w ∈ δw(p<%>) which is p-reflecting. w · e then belongs to:

δw(Ap
or[[E0]]2<%>) · {e}

= δw(δor(A
p
or[[E0]]2<%>)) · {e} δw ◦ δor = δw

= δw(Ap
or[[E0[%]]]2) · {e} definition of [%]por

= δw(Ap
or[[E0[%]]]2 · {e}) δw distributes over ·, δw({e}) = {e}

⊆ δw(Ap
or[[E0[%] ; e]]1) observation, ⊆ monotonicity of δw

⊆ δw(Ap
or[[E1[%] ; e]]1) assumption

= δw(Ap
or[[E1[%]]]1 ∪Ap

or[[E1[%]]]2 · {e}) from notice
= δw(Ap

or[[E1[%]]]1) ∪ δw(Ap
or[[E1[%]]]2) · {e}

Because Ap
or[[E1[%]]]1 = δor(A

p
or[[E1]]1<%>) we from (21) see that e 6∈

L(δw(Ap
or[[E1[%]]]1)). Hence also w · e 6∈ δw(Ap

or[[E1[%]]]1) and we are left

with w · e ∈ δw(Ap
or[[E1[%]]]2) · {e}. But then w ∈ δw(Ap

or[[E1[%]]]2) =
δw(δor(A

p
or[[E1]]2<%>)). This means there is a p1 ∈ Ap

or[[E1]]2 and q ∈
p1<%> such that w � q. Since w is p-reflecting we by lemma 6.19
get p � p1. Because Por(p) and Ap

or[[E1]] is δor-closed this implies p ∈
Ap

or[[E1]]2—a contradiction.

Ap
or[[E0]]1 6⊆ Ap

or[[E1]]1: We see there exists a p ∈ Ap
or[[E0]]1 such that

p 6∈ Ap
or[[E1]]1 and Por(p) because Ap

or[[E0]]1 is δor-closed (as well as π-
closed). We can also here find a p-reflecting linearizationw ∈ δw(p<%>).

Notice that because of (21) we have e 6∈ L(w). We infer:

w∈ δw(Ap
or[[E0]]1<%>)

⊆ δw(π(Ap
or[[E0]]1<%>)) δw is ⊆ -monotone and P ⊆ π(P)

= δw(δorπ(Ap
or[[E0]]1<%>)) δw ◦ δor = δw

⊆ δw(Ap
or[[E0[%] ; e]]1) from notice and definition of ;por

⊆ δw(Ap
or[[E1[%] ; e]]1) assumption

= δw(Ap
or[[E1[%]]]1)∪

δw(Ap
or[[E1[%]]]2) · {e} as above

e 6∈ L(w) excludes w ∈ δw(Ap
or[[E1[%]]]2) · {e} so we can deduce that w ∈

δw(Ap
or[[E1[%]]]1) = δw(δorπ((Ap

or[[E1]]1)<%>)) = δwπ((Ap
or[[E1]]1)<%>). Then

there must be pomsets such that

w � q v q′ ∈ p1<%> where p1 ∈ Ap
or[[E1]]1

w is the linearization of some pomset refined by <%> and therefore must
be balanced w.r.t. to the fission pairs of %. Because w � q they have the

54

same labels and so q must also be balanced w.r.t. to the fission pairs.
With q v q′ ∈ p1<%> we can then use the lemma 6.19 to conclude there

is a pomset p′1 v p1 such that q ∈ p′1<%>. Because w � q ∈ p′1<%>
and w is p-reflecting we can as in the case above conclude p � p′1.
Ap

or[[E1]]1 is both δor- and π-closed, wherefore from p′1 v p1 ∈ Ap
or[[E1]]1

and Por(p) we then get p ∈ Ap
or[[E1]]1—again a contradiction. 2

Lemma 6.19 Suppose w′ is p′-reflecting under the fission refinement

%. If w′ � r ∈ q<%> then p′ � q.

Proof To see p′ � q we at first elucidate the situation. w′ being
p′-reflecting implies there are representatives w of w′ and p of p′ to-

gether with a distinguishing %-consistent p. fission ref., πp, such that
w = 〈Xp<πp>,≤w, `p<πp>〉,≤w ⊇ ≤p<πp>.

We also have w′ � r ∈ q<%>. Therefore there is a %-consistent p. ref.,

πq, and a morphism of lpos f : q<πq>→ w.

We shall find a morphism of lpos g : q → p. Define

g(x) = y iff ∃y ∈ Xp. y
πp

S = f(x
πq

S)

(gives sense since Xq

πq
S→ Xq<πq>

f→ Xw = Xp<πp>

πp
S← Xp).

To see this actually defines a function g : Xq → Xp we prove that there

for a given x ∈ Xq is one and only one y ∈ Xp such that yS = f(xS). πq

is %-consistent, so for each x ∈ Xq, `q<πq>(xS) = aSk
for some a and k.

From f being label preserving and `w = `p<πp> we get `p<πp>(f(xS)) =
aSk

and by definition of
πp

S there then exists an unique y ∈ Xp with

yS = f(xS).

Before continuing we observe

(22) f(xS) = g(x)S (23) f(xF) = g(x)F

(22) holds by definition of g. For (23) we have `p<πp>(g(x)S) = aSk
for

some a and k. As f is label preserving we from (22) get `q<πq>(xS) = aSk
.

Since πp and πq both are %-consistent p. fission ref.’s obviously then

`p<πp>(g(x)F) = aFk
= `q<πq>(xF) and again by f being label preserving

`p<πp>(f(xF)) = aFk
. Now since πp furthermore is distinguishing there

is at most óne element of p<πp> labelled aFk
. Hence f(xF) = g(x)F .

55

As the next step we show g to be bijective.
g injective: x 6= y ⇒ xS 6= yS

πq

S injective

⇒ f(xS) 6= f(yS) f injective
⇒ g(x)S 6= g(y)S by (22)

⇒ g(x) 6= g(y) because
πp

S is a function

g surjective: Given y ∈ Xp. Then `p<πp>(yS) = aSk
for some a and k.

Since f is surjective and label preserving there is an z ∈ Xq<πq> with

f(z) = yS and `q<πq>(z) = aSk
. But from the definition of

πq

S follows
that there exists an x ∈ Xq such that xS = z and so f(xS) = f(z) = yS

which implies g(x) = y.

It remains to show that g is label and order preserving.

g label preserving: Suppose x ∈ Xq and `q(x) = b. Then `q<πq>(xS) = bSk

for some k, and therefore bSk
= `p<πp>(f(xS)) = `p<πp>(g(x)S) by (22).

By definition of
πp

S , `p<πp>(g(x)S) = bSk
can only be because `p(g(x)) = b.

g order preserving: Assume x ≤q y. In the case x = y the result follows
from the reflexivity of ≤p. In the case x <q y we have

g(x)F <w g(y)S(24)

because x <q y ⇒ xF <q<πq> yS by construction of q<πq>

⇒ f(xF) <w f(yS) f is order preserving
⇒ g(x)F <w g(y)S by (22) and (23)

We cannot have g(y) <p g(x) since it by construction of p<πp> would

imply g(y)S <p<πp> g(x)F which in turn from ≤p<πp> ⊆ ≤w implies
g(y)S <w g(x)F—contradicting (24). g(x) cop g(y) can also be excluded

since we then from the fact that w is p-reflecting would get g(y)S <w

g(x)F—again contradicting (24). Hence we are left with g(x) <p g(y) as

the only possibility and we are done. 2

Lemma 6.20 Let p be a pomset with the Por-property and mp ≤ m,
where m is some finite multiplicity function over ∆. Also let % be an

m-fission refinement. Then there exists a linearization w of p<%> (i.e.,
w ∈ δw(p<%>)) which is p-reflecting under %.

56

Proof If p = ε it is trivial that w = ε will do, so we can assume p 6= ε
in the following. Since mp ≤ m there is a distinguishing %-consistent

p. fission ref., <πp>, for p. The result is then a consequence of the
corresponding statement for lpos:

Let πp be a distinguishing p. fission ref. for p 6= ε. Assume the min-

imal elements Mp of p listed in some arbitrary order are: x1, . . . , xn.
Then there exists an p-reflecting linearization w of p<πp> isomor-

phic to an lpo of the form:

x1S · . . . · xnS · v

In the proof, which is by induction on the size of Xp, we shall use
Mp ⊆ Xp to denote the set of minimal elements of p (w.r.t. ≤p).

The basis, Xp a singleton, is clear.

So assume |Xp| > 1. p has the Por-property which is equivalent with
the Pol-property we saw in section 5, so we can find an element xi ∈Mp

such that xi is dominated in Xp by all successors of Mp. Consider now

the lpo, p′, obtained by deleting xi from p.

Notice that Mp \ {xi} is a subset of the minimal elements of p′, hence

we may list Mp′ as follows:

x1, . . . , xi−1, xi+1, . . . , xn, y1, . . . , yk

Clearly πp′ = πp|Xp′ is a distinguishing %-consistent p. fission ref. for p′,
so because the Por property is inherited to p′ we can use the inductive
hypothesis to find a p′-reflecting linearization w′ of p′<πp′> isomorphic

to a lpo of the form

x1S · . . . · xi−1S · xi+1S · . . . · xnS · y1S · . . . · ykS · v′

Since xi is minimal in p there are no other elements before xiS and xiF

in p<πp>, and so xiS · xiF · w′ is isomorphic to a possible linearization
of p<πp>. By the way xi was chosen, the elements concurrent to xi are

exactly Mp \ {xi}. Then xiS and xiF are concurrent to x1S, . . . , xi−1S

and xi+1S, . . . , xnS in p<πp>, from which it follows that

x1S · . . . · xiS · . . . · xnS · xiF · y1S · . . . · ykS · v′

must be isomorphic to a linearization, w, of p<πp>, which quite easily
is seen to be p-reflecting as desired. 2

57

Lemma 6.21 Let a finite multiplicity function m over ∆ be given to-
gether with a ε-free m-fission refinement %. Suppose p,q and r are

pomsets such that p v q ∈ r<%>. If p is balanced w.r.t. to the fission
pairs of % in the sense:

∀a ∈ ∆, 1 ≤ k ≤ n(m). mp(aSk
) = mp(aFk

)

then there is a pomset s v r such that p ∈ s<%>.

Proof By definition of the refinement operator, q ∈ r<%> means there

is a %-consistent p. ref., πr, for r such that q = [r<πr>]. Then also
p v [r<πr>].

We illustrate the situation and the idea of the proof by an example.

Suppose r is the representative of the pomset

a -
��>

a
b - a

Then [r<πr>] typically may look like:

aS2
- aF2

-
��>

aS1
- aF1

bS4
- bF4

- aS2
- aF2

Evidently no matter how p is a (≤r<πr>-downwards closed) prefix of

[r<πr>] then for the fission pair aS2, aF2 the number of times aS2 occur
in p must be greater than or equal the number of times aF2

occur in p.
Similar for the other fission pairs. Clearly also if these numbers balance

for every fission pair then there can be no element of p labelled say aS1

without an immediate following element labelled aF1
. By the nature

of fission refinement these two elements must originate from the same
element in r and then p must a refinement of a prefix, s, of r. 2

7 Conclusion

To sum up the achievements of the paper one could say that means are

brought about to capture concurrency in processes through the trace
precongruences and that labelled partial orders in a natural way serve

as cornerstones in the associated models. It is in this sense we take the
liberty to phrase the paper: “true concurrency can be traced”.

58

Now for possible extensions. At first let us point to the possibility
of extending the operational semantics such that process can perform

sequences of multisteps. Though the behavioural equivalences would
be more discriminating the models fully abstract w.r.t. the associated

congruences would remain the same.

However our full abstractness results are obtained at the expense of a
simplified process language and an undetailed view on branching. We

shall thus discuss a few ideas to redress some of the shortcomings and
their impact on the results.

All the combinators of BLRrec
Ω are quite simple except for the refinement

combinator which suffers from an effective way to be specified. As it is
now, a refinement is given by a function from the (infinite) set of atomic

actions to the process expressions of BL. One way to go would be to
introduce the notation [a1 ; E1, . . . , an ; En] for the refinement where

all actions remain unrefined except that a1 is refined to E1, a2 to E2,
etc. and only allow such refinements. Then it would not be possible to
specify fission refinements as they are formulated now, but a closer look

at the proofs, where these refinements are used, shows that refinements
which “fission” on a finite set will do and so all the results go through.

With the refinement combinator it is possible to imitate relabelling by
considering the relabelling functions as a special class of BL-refinements

(maps to individual atomic processes). Looking at the way relabelling
usually is introduced in transition systems, the relabelling combinator is
static in nature in contrast to the more dynamic nature of the refinement

combinator, but this difference cannot be uncovered by the equivalences.
Inaction (NIL, SKIP) seems also easy to include in BLRrec

Ω . The few

proofs, where the refinements are assumed not to make actions disappear
(ε-freeness), get more complicated. A (maybe unexpected) consequence

of adding NIL would be that expressions like a and a⊕NIL would be
distinguished by <∼>∼ and also by the congruence of <∼=∼.

The discussed extensions stay so to say within the simplified view on

branching. But if we extend the parallel combinator of BLR such that
e.g., synchronization shall happen on all common actions as in TCSP

[BHR84] and we look at maximal sequences, we would at once get a
finer view, because the possibility of deadlock forces the model to reflect

branching structure—see [Pnu85]. We have carried out this work on
nonsequentiality “orthogonally” to existing work on branching, but it is

59

an intriguing question, whether such an extension could be modeled by
a smooth combination of e.g., the Mor model and the broom model of

Pnueli—capturing aspects of nonsequentiality as well as branching.

We conclude by a simple example which indicates that such a combina-
tion in no way is straightforward to obtain. Suppose

E = a ‖ b and F = a ; b⊕ b ; a⊕ a ‖ b

Then E and F are identified in both the Mor model and the broom
model, but E ′ = E[a ; c ; d] and F ′ = F [a ; c ; d] would be dis-

tinguishable in a parallel context with c ; b ; d—c is a possible maximal
sequence of F ′ ‖ c ; b ; d whereas this is not the case for E ′ ‖ c ; b ; d.

Hence a “conjunction” of the two models would be to abstract for the
congruence of <∼>∼ w.r.t the two combinators.

References

[BC87] Gérad Boudol and Ilaria Castellani. Concurrency and Atom-
icity. Rapports de Recherche 748, INRIA, 1987.

[BHR84] S.D. Brookes, Charles Anthony Richard Hoare, and A.W.

Roscoe. A Theory of Communicating Sequential Processes.
Journal of the ACM, 31(3):560–599, 1984.

[BIM88] Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation
Can’t be Traced: Preliminary Report. In 15th Ann. ACM

Symp. on Principles of Programming Languages, pages 229–
239, 1988.

[CH88] Ilaria Castellani and Matthew Hennessy. Distributed Bisimu-

lations. Rapports de Recherche 875, INRIA, 1988.

[DD89] Philippe Darondeau and Pierpaolo Degano. Causal Trees.

In Proc. ICALP 89 (Stressa), pages 234–248. Springer-Verlag
(LNCS 372), 1989.

[DNH84] Rocco De Nicola and M.C.B. Hennessy. Testing Equivalences

for Processes. Theoretical Computer Science, 34:83–133, 1984.

[Eng89] Uffe Henrik Engberg. Partial Orders and Fully Abstract Models
for Concurrency. PhD thesis, Computer Science Department,

60

Aarhus University, 1989. Appeared as technical report, DAIMI
PB 307, 1990.

[Gis84] Jay Loren Gischer. Partial Orders and the Theory of Shuffle.
PhD thesis, Stanford University, 1984.

[Gis88] Jay Loren Gischer. The Equational Theory of Pomsets. The-

oretical Computer Science, 61(2,3):199–224, 1988.

[Gra81] Jan Grabowski. On Partial Languages. Annales Societatis

Mathematicae Polonae, IV(2):427–498, 1981.

[Hen83] Matthew Hennessy. Synchronous and Asynchronous Experi-
ments on Processes. Information and Control , 59:36–83, 1983.

[Hen87] Matthew Hennessy. Axiomatising Finite Concurrent Pro-
cesses. Technical Report 4/84, University of Sussex, 1987.

[Hen88a] Matthew Hennessy. Algebraic Theory of Processes. Series in

the Foundations of Computing. MIT Press, 1988.

[Hen88b] Matthew Hennessy. Axiomatising Finite Concurrent Pro-

cesses. SIAM Journal on Computing, 17(5):997–1017, 1988.

[Hoa85] Charles Anthony Richard Hoare. Communicating Sequential
Processes. Series In Computer Science. Prentice Hall, 1985.

[Kie89] Astrid Kiehn. Distributed Bisimulations for Finite CCS. Tech-
nical report, University of Sussex, December 1989.

[Lar88] Kim Skak Larsen. A Fully Abstract Model for a Processes Al-
gebra with refinement. Master’s thesis, Department of Com-
puter Science , Aarhus University, 1988.

[Mil80] Robin Milner. A Calculus of Communicating Systems, vol-
ume 92 of LNCS . Springer-Verlag, 1980.

[Mil84] Robin Milner. Lectures on a Calculus of Communicating Sys-
tems. In Seminar on Concurrency, Pittsburgh, July 1984,
pages 197–220. Springer-Verlag (LNCS 197), 1984.

[NEL89] Mogens Nielsen, Uffe Engberg, and Kim Skak Larsen. A Sim-
ple Process Language with Refinement. In REX School/ Work-

shop on Linear Time, Branching Time and Partial Orders
in Logics and Models for Concurrency, Nordwijkerhout, The

61

Netherlands, May/ June 1988, pages 523–548. Springer-Verlag
(LNCS 354), 1989.

[Nic87] Rocco De Nicola. CCS Without τ ’s. In Proc. TAPSOFT 87
(Pisa), vol. 1, pages 138–152. Springer-Verlag (LNCS 249),

1987.

[OH86] Ernst-Rüdiger Olderog and Charles Anthony Richard Hoare.

Specification-Oriented Semantics for Communicating Pro-
cesses. Acta Informatica, 23:9–66, 1986.

[Par81] David Park. Concurrency and Automata on Infinite Se-

quences. In Theoretical Computer Science, 5th GI-Conference,
Karlsruhe, March 1981, pages 167–183. Springer-Verlag

(LNCS 104), 1981.

[Pnu85] Amir Pnueli. Linear and Branching Structures in the Seman-

tics and Logics of Reactive Systems. In 12th ICALP, pages
15–32. Springer-Verlag (LNCS 194), 1985.

[Pra86] Vaughan Pratt. Modeling Concurrency with Partial Orders.
International Journal of Parallel Programming, 15(1):33–71,
1986.

[Sta81] Peter H. Starke. Processes in Petri Nets. EIK, 17(8/9):389–
416, 1981.

[Win85] Glynn Winskel. On the Composition and Decomposition of
Assertions. Technical Report 59, University of Cambridge,

Computer Laboratory, 1985.

[Win87] Glynn Winskel. Event Structures. In Petri Nets: Application

and Relations to Other Models of concurrency, Advances in
Petri Nets, Sept. 1986, pages 325–392. Springer-Verlag (LNCS
255), 1987.

62

	Introduction
	Pomsets
	A Concurrent Process Language with [4] Action Refinement
	Operational Semantics
	Denotational Semantics
	Full Abstractness
	Conclusion

